Basic principles and applications of ARPES and Spin-ARPES

Ivana Vobornik

CNR-IOM, APE Beamline @ Elettra, AREA Science Park, Trieste, Italy and NFFA Trieste

Outline

- A brief introduction to **photoemission**
 - History
 - Theory
 - Experimental requirements
- Valence band photoemission
 - Refreshing solid state physics concepts
 - ARPES
 - Spin ARPES → complete photoemission experiment
- Complete photoemission experiment @ Elettra
 - **ARPES** and **Spin-ARPES** station:

1887 - Photoelectric Effect

Observed by Heinrich Hertz 1887

- P. Lenard: measuring kinetic energy of photoelectrons in retarding field

Experimental observations:

- Measured photoelectron current increases with photon intensity

- Maximum energy of the (photo)electrons **depends on light frequency** (contrary to classical expectation)

1905 – Explained by Albert Einstein

The Nobel Prize in Physics 1921 Albert Einstein

Share this: f 📴 🗾 🛨 🔤 555

The Nobel Prize in Physics 1921

Albert Einstein Prize share: 1/1

The Nobel Prize in Physics 1921 was awarded to Albert Einstein "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect".

1905 – Photoelectric effect according to Einstein

- Electrons inside material absorb incoming light quanta - photons

- If their energy is sufficiently high they leave the material carrying info on their properties inside the material

Birth of photoemission 1950s

PHYSICAL REVIEW

VOLUME 105. NUMBER 5

Precision Method for Obtaining Absolute Values of Atomic Binding Energies

CARL NORDLING, EVELYN SOKOLOWSKI, AND KAI SIEGBAHN Department of Physics, University of Uppsala, Uppsala, Sweden (Received January 10, 1957) counts/100 m

WE have recently developed a precision method of investigating atomic binding energies, which we believe will find application in a variety of problems in atomic and solid state physics. In principle, the method is an old one: a magnetic analysis of electrons expelled from a substance exposed to x-radiation. Previous attempts in this direction have, however, given considerably less information about atomic structure than ordinary x-ray spectroscopic experiments, and some twenty years ago the method seems to have been definitely abandoned. We have introduced a number of improvements, both regarding the intensity and, in particular, the accuracy (a factor 100), which now enables us to measure atomic binding energies with an accuracy of one single electron volt from microgram quantities. The definition of the lines is essentially limited by the natural line widths of the atomic levels themselves. There is no shift of the lines due to electron scattering or similar causes, which could introduce systematic errors.

FIG. 1. Lines resulting from photoelectrons expelled from Cu by $Mo K\alpha_1$ and $Mo K\alpha_2$ x-radiation. The satellites marked D.E.L. are interpreted as due to electrons which have suffered a discrete energy loss when scattered in the source.

The Nobel Prize in Physics 1981 Nicolaas Bloembergen, Arthur L. Schawlow, Kai M. Siegbahn

Share this: f 📴 🗾 🛨 🔄 18

The Nobel Prize in Physics 1981

Nicolaas Bloembergen Prize share: 1/4 Arthur Leonard Schawlow Prize share: 1/4

Kai M. Siegbahn Prize share: 1/2

The Nobel Prize in Physics 1981 was divided, one half jointly to Nicolaas Bloembergen and Arthur Leonard Schawlow "for their contribution to the development of laser spectroscopy" and the other half to Kai M. Siegbahn "for his contribution to the development of high-resolution electron spectroscopy".

ideal tool for the chemical investigation of surfaces and thin film, expressed in the famous acronym created by Siegbahn: ESCA (electron spectroscopy for chemical analysis) or

XPS – X-ray Photoelectron/Photoemission Spectroscopy

Atom → Solid Cartoon

What do we learn from photoemitted electrons? Ekin

Experimental requirements for XPS (ESCA)

Experimental requirements – real life

End station of APE – LE beamline at Elettra

Sample manipulator

Sample surface preparation chamber

Hemispherical electron energy analyzer

Photons

ARPES chamber

Surface sensitivity – electron mean free path

- Number of electrons reaching the surface is reduced by electron-electron scattering

→Only sensitive to first couple of atomic layers!! →Clean surfaces and UHV needed

- Scattered electrons with lower kinetic energies form background (secondaries)

Valence band photoemission

Atom → Solid Cartoon

Real vs. reciprocal (momentum or k-)space

Free electron vs. electron in a lattice:

Periodic potential → electronic bands and band gaps

Classification of materials according to the filling of the electronic bands

The question is...

Can E vs. k (i.e., the electronic band structure of solids) be directly measured?

... and the answer...

Yes!

Valence band photoemission with angular resolution: Angle-Resolved PhotoEmission Spectroscopy - **ARPES**

What do we learn from photoemitted valence electrons?

Energy conservation

$$E_{kin} = h \nu \overline{E_{B}} - \Phi$$

Momentum conservation

Inside the crystal:

$$\vec{k}_f = \vec{k}_i + \vec{k}_{h\nu}$$
$$\vec{k}_f = \vec{k}_i$$

Refraction on the surface (Snell's law):

What do we learn from photoemitted valence electrons?

Measure:

- Kinetic energy of the photoemitted electrons
- Angle at which they are emitted

How do we handle the angle of the photoemitted electrons?

- Large angular acceptance (~30°)

- Analyzer electronic lenses keep track of the electrons emitted at different angles

> - 2d detection (MCP)

→ Dispersion along the analyzer slit directly measured (i.e. dispersion along one line in k space)

Band mapping: 2d surface state on Au(111) surface

- 2d electron gas – parabolic disperion, circular Fermi contour - expected

Back to textbooks: $1D \rightarrow 2D \rightarrow 3D$

Fermi surface mapping – Fermi surface of copper

- 3d Fermi surface of Cu:
 Almost (but not really) free electrons: the sphere is not perfect – the necks connect the spheres in the subsequent Brillouin zones

Solid State Physics

Neil W. Ashcroft N. David Mermin

- With single photon energy ARPES measures a spherical cut through the 3d Fermi surface

Periodic Table of the Fermi Surfaces of Elemental Solids

http://www.phys.ufl.edu/fermisurface

Source of tight binding parameters (except for fcc Co ferromagnet): D.A. Papaconstantopoulos, *Handbook of the band structure of elemental solids*, Plenum 1986. This work is supported by NSF, AFOSR, Research Corporation, and a Sun Microsystems Academic Equipment Grant.

Principal boost to ARPES development

The Nobel Prize in Physics 1987 J. Georg Bednorz, K. Alex Müller

Share this: f 📴 🗾 🕂 🔄 11

The Nobel Prize in Physics 1987

J. Georg Bednorz Prize share: 1/2 K. Alexander Müller Prize share: 1/2

The Nobel Prize in Physics 1987 was awarded jointly to J. Georg Bednorz and K. Alexander Müller "for their important breakthrough in the discovery of superconductivity in ceramic materials"

Searching for the mechanism of high Tc superconductivity → room temperature superconductivity!!!

Share this: f 📴 😏 🛨 🔤 🗐 🗍

Superconducting gap:

High Tc cuprates: Band mapping and Fermi surface mapping... by hand

Energy resolution < 10 meV; angular resolution ~1°

I. Vobornik, PhD thesis, EPFL, Lausanne, 1999

ARPES evolution

Milestone: Development of two 1994 dimensional detectors

→Images rather than spectra, BUT still composed of spectra!!!

P. Aebi *et al.,* Phys. Rev. Lett. **72**, 2757 (1994)

P.V. Bogdanov et al., Phys. Rev. B 64 180505 (R) (2001), A. Bansil, M. Lindroos *Phys. Rev. Lett.* **83** 5154 (1999)

20XX ?

A.A. Kordyuk et al., Phys. Rev. B **70**, 214525 (2004)

Energy resolution ~1 meV; angular resolution ~0.1°

What do we learn from the ARPES SPECTRA?

Intuitive (NOT exact) three-step model of the photoemission process:

Three-step model: step 1

Transition probability from initial to final state under the excitation by the photon with vector potential **A**

$$w_{fi} = \frac{2\pi}{\hbar} \left| \left\langle f \left| H_{int} \right| i \right\rangle \right|^2 \delta(E_f - E_i - h\nu) \qquad H_{int} = \frac{e}{mc} \vec{A} \cdot \vec{p}$$

Optical transition in the solid:

- Energy is conserved

$$E_f = E_i + h\nu$$

- Wave vector is conserved modulo G

$$\vec{k}_f = \vec{k}_i + \vec{G}$$

Three-step model: step 2

Inelastic scattering of the photoelectron with

other electrons

(excitation of e-h-pairs, plasmons)

• phonons

- Generation of secondary electrons "inelastic background"

- Loss of energy and momentum information in the photoelectron current: inelastic mean free path

Three-step model: step 3

The lowest energy electrons can't exceed the work function potential

 $E_{kin} = h v - E_B - \Phi$

Surface breaks crystal symmetry k_{\perp} is not a good quantum number

Exact one-step vs. intuitive three-step model

three-step model

one-step model

Photoemission intensity is directly related with...

One particle Green's function

describes the propagation of an extra electron (t>t') (hole, t<t') added to the many body system</p>

 $G(xt, x't') = -i \langle N, 0 | T[\Psi(xt)\Psi^+(x't')] | N, 0 \rangle$

How?

Starting from the Fermi golden rule

the transition probability from the initial state $|N,0\rangle$ to a final state $|N,s\rangle$ with a photoelectron of energy $ε_{\kappa}$ and momentum κ is given by

$$p(\varepsilon_{\kappa}) = \frac{2\pi}{\hbar} \sum_{s} \left| \left\langle N, s \right| H_{\text{int}} \left| N, 0 \right\rangle \right|^2 \delta(E_s^N - E_0^N - \hbar \omega) = \dots$$

Dipole approximation, **Sudden** approximation - the photoelectron is instanteneously created and decoupled form the remaining N-1 electron system

$$\dots = \frac{2\pi}{\hbar} |M_{k\kappa}|^2 A(\kappa, \omega) = \frac{2\pi}{\hbar} |M_{k\kappa}|^2 \frac{1}{\pi} |\operatorname{Im} G^{<}(\kappa, \omega)|$$

Beyond images- spectral line-shape & electronic correlations

Matrix elements – orbital character of the bands

from even symmetry states

$$I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{A} \cdot \vec{p} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{k} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) \propto \langle f | \vec{k} | i \rangle^2 A(\vec{k}, \omega) f(\omega)$$

$$= I(\vec{k}, \omega) = I(\vec{k}, \omega)$$

$$= I(\vec{k}, \omega)$$

$$= I(\vec{k}, \omega)$$

$$= I(\vec{k}, \omega)$$

$$H_{int} = \boldsymbol{A} \cdot \boldsymbol{p}$$

The light beam and the analyser define the **scattering plane.**

If to be detected, the photoelectron final state **has to be even** under reflection in the scattering plane.

Access to the **symmetries** (i.e. Orbital character) of the initial state in the solid

Prevalent s- or p- character of the Be(0001) surface states

I. Vobornik et al., PRB 2005, PRL 2007

ARPES w/ synchrotron radiation: powerful tool in investigation of electronic properties of materials

- electronic band structure, orbital character, correlations

ARPES and 21st century materials

Electronic materials Spintronic materials Functional materials

2004: graphene came into scene

- The thinnest possible material only one atom thick
- Ballistic conduction charge carriers travel for μm w/o scattering
- The material with the largest surface area per unit weight 1 gram of graphene can cover several football stadiums
- The strongest material 40 N/m, theoretical limit
- ✓ The stiffest known material stiffer than diamond
- The most stretchable crystal can be stretched as much as 20%
- ✓ The most thermal conductive material ~5000 Wm⁻¹K⁻¹ at room temperature

Impermeable to gases – even for helium

Photo: U. Montan Andre Geim Prize share: 1/2

Photo: U. Montan Konstantin Novoselov Prize share: 1/2

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene"

Application areas of Graphene

Dirac electrons enter the condensed matter physics...

Conical (linear) Dirac dispersion and point-like Fermi surface measured by ARPES:

... and not only in graphene: topological insulators

C. Kane & J. Moore, Physics World, Feb.2011, 32

... more textbooks -> beyond Ashcroft-Mermin/Kitell

Quantum Materials in 20th century

Quantum Materials in 21st century

Topological insulators

Transition metal dichalcogenides (TMDCs)

- Layered structure with strong intra-layer covalent bonding and weak (van der Waals type) inter-layer coupling
- Exhibit wide variety of physical properties semimetals (WTe₂, TiSe₂), metals (NbS₂, VSe₂), semiconductors (MoS₂, MoSe₂), superconductors (NbSe₂, TaS₂)
- Properties often conditioned by the number of layers
- Host spin polarized electrons and /or Dirac/Weyl fermions

Quantum Materials in 21st century – High energy physics concepts within condensed matter

- Low-dimensional materials (2D, surfaces, few atomic layers)
- The Bloch wave functions follow Dirac-like or Weyl-like equations at vicinity of some special points of the Brillouin zone
- Envisioned applications: spintronics, quantum computing, etc.
- The materials characterized by particular spin texture →
 ARPES Milestone : High-resolution Spin-ARPES

What else do we learn from photoemitted electrons?

Spin - ARPES: *E(k), Spin* Complete set of quantum numbers of photoemitted electron

Complete photoemission experiment!

Exchange-split spin-polarized bands in ferromagnetic iron

Detecting electron's spin: spin-dependent scattering

MOTT scattering

VLEED scattering

- spin-orbit interaction
- left-right asymmetry
- >25keV
- commercial
- Au target
- FOM 10⁻⁴

- magnetic exchange interaction
- parallel-antiparallel asymmetry
- <15eV</p>
- non-commercial
- FeO target
- FOM 10⁻²

Target magnetization dependent intensity asymmetry between spin up and spin down electrons

If the target is magnetized Up / Down, the incoming electrons with spin-up/down will be reflected more (top/bottom panel)

If the primary beam is polarized, then non-zero **asymmetry** value will be measure.

Resulting ARPES spectra \rightarrow

Spin-integrated vs. spin-resolved ARPES

$$P = \frac{1}{S} \frac{EDC_{m\uparrow} - EDC_{m\downarrow}}{EDC_{m\uparrow} + EDC_{m\downarrow}}, \qquad SEDC_{\uparrow\downarrow} = \frac{(1 \pm P)(EDC_{m\uparrow} + EDC_{m\downarrow})}{2}$$

VLEED based spin-ARPES scheme

Two scattering chambers

In each two orthogonal directions of spin can be measured

Vectorial (3d) spin analysis

UNDER CONSTRUCTION

Magnetization coils outside...

... and inside the scattering chamber

VESPA: spin polarimeter @ APE

- VESPA: Very Efficient Spin Polarization Analysis
- Designed, built and commissioned in Trieste (CNR-IOM, NFFA)

Operates from Dec. 2015 at APE beamline @ Elettra

APE: Advanced Photoelectric effect Experiments

Two independent, off-axis, variable polarization (APPLE type) undulators \rightarrow two independent canted beamlines operating simultaneously \rightarrow First users: 2003

APE surface science laboratory

Complete Photoemission Experiment @ beamline APE

Spin-resolved ARPES at beamline APE (CNR-IOM, NFFA)

In search for spin polarized electrons for future spintronic materials

- VESPA: Very Efficient
 Spin Polarization Analysis
- Designed, built and commissioned in Trieste (CNR-IOM, NFFA)
- Operates from 2015 at APE beamline @ Elettra
- C. Bigi et al. JSR (2017) 24, 750-756, on the title page of JSR:

IUCr Journals | Wiley

Some recent results:

Maximazing Rashba-like spin splitting in PtCo₂

V. Sunko *et al.*, Nature **549**, 492–496 (2017) **nature**

Surface induced symmetry breaking enhances spin-orbit interaction and induces spin polarized electrons on the surface of PtCo₂.

Weyl electrons on the surface of MoTe₂

J. Jiang *et al.*, Nature Communications 8,

13973 (2017)

Measured spin polarization provides evidence of the presence of Weyl electrons in MoTe₂.

Co-existence of type-I and type-II three dimensional bulk Dirac fermions in PdTe₂

M.S. Bahramy *et al.,* Nature Materials, 2018

materials

Spin-resolved ARPES data confirm the helical spin texture of the two surface states in PdTe₂ and therefore their topological nature.

Latest result: Spin- Fermi surface mapping

O.J. Clark et al., PRL 2018

After this lecture...

→ feeling of what ARPES and Spin-ARPES can do for you

→ If interested in quantum properties of materials - electronic band structures, Fermi surfaces, electronic correlations, spin polarization:

http://www.elettra.trieste.it/elettra-beamlines/ape.html

http://www.trieste.nffa.eu/

Interested in learning more?

• ARPES:

- S. Hüfner, Photoelectron Spectroscopy Principles and Applications, 3rd ed. (Berlin, Springer, 2003)
- S. Suga, A. Sekiyama, Photoelectron Spectroscopy Bulk and Surface Electronic Structures (Berlin, Springer, 2014)
- F. Reinert and S. Hüfner, New Journal of Physics 7, 97 (2005)
- A. Damascelli, Physica Scripta T109, 61 (2004)
- S. Hüfner et al., J. Electron Spectrosc. Rel. Phen. 100, 191 (1999)
- Spin-ARPES:
 - Taichi Okuda, J. Phys.: Condens. Matter 29 483001 (2017)
 - Chiara Bigi et al., J. Synchrotron Rad. 24, 750-756 (2017)

Photoemission relations

$$w_{fi} = \frac{2\pi}{\hbar} \left| \left\langle f \left| H_{\text{int}} \right| i \right\rangle \right|^2 \delta(E_f - E_i - h\nu)$$

$$H_{\rm int} = \frac{e}{mc} \vec{A} \cdot \vec{p}$$