Nonresonant Searches for Axion-Like Particles in Vector Boson Scattering Processes at the LHC

Jonathan Machado Rodríguez

Universidad Autónoma de Madrid - Instituto de Física Teórica

Based on: J. Bonilla , I. Brivio, J. Machado-Rodríguez, J. F. de Trocóniz [2202.03450]

Axion-Like Particles

- Axion-Like Particles (or ALPs) are neutral pseudo scalars with shift-invariant and/or anomalous couplings
- Effective Field Theory (EFT) consistent with SM gauge and CP symmetries
- ALP interactions with SM particles have a derivative character: they grow with momentum

$$
\mathscr{L}_{A L P} \supset-c_{\tilde{B}} \frac{a}{f_{a}} B_{\mu \nu} \tilde{B}^{\mu \nu}-c_{\tilde{W}} \frac{a}{f_{a}} W_{\mu \nu}^{i} \tilde{W}^{i \mu \nu}-c_{\tilde{G}} \frac{a}{f_{a}} G_{\mu \nu}^{A} \tilde{G}^{A \mu \nu}
$$

- LHC sensitive to NP scale $f_{a} \sim T e V$
- ALP couplings to EWK bosons: ZZ, WW and $\mathrm{W} \gamma \stackrel{@ L O}{ } c_{\tilde{B}} c_{\tilde{W}}$

A Novel Approach: Nonresonant ALPS in VBS

- Vector Boson Scattering (VBS)
- Nonresonant ALP searches proposed by M.B. Gavela, J.M. No, V. Sanz and J.F. de Trocóniz [1905.12953]

- ALP acts as a very off-shell mediator of the process $m_{a}^{2} \ll \hat{s}$
- Signals independent of ALP mass m_{a} and its decay width up to $\mathrm{m}_{\mathrm{a}} \lesssim 100 \mathrm{GeV}$
- VBS limits on ALP couplings to vector boson independently of the gluon coupling
$\longrightarrow c_{\tilde{B}} c_{\tilde{W}}$ ÓU

A Novel Approach:

Nonresonant ALPS in VBS

- Derivative nature of ALP interactions: deviations in the tail of the diboson mass with respect to the SM

ALP Diboson Mass in CMS Leptonic Analyses

- ATLAS/CMS Run 2 measurements.
- Reinterpretation of five CMS VBS analyses with lepton/photon final states:
- ZZ: CMS-SMP-20-01
- $\mathrm{Z} \gamma:$ CMS-SMP-20-016
- Same-sign WW and WZ: CMS-SMP-19-012
- W γ :CMS-SMP-19-008
- Look at high energy deviations in the tail of the transverse momentum/mass spectra
- Selections cuts and integrated luminosities in the CMS papers
- Calibrate our Delphes detector simulation for the ALP-mediated VBS using the SM EWK channel

ALP Diboson Mass in CMS Leptonic Analyses

	$c_{\tilde{\tilde{W}}}=\boldsymbol{c}_{\tilde{\tilde{}}}$ signal $/$ interf. [fb]	Photophobic signal / interf. [fb]	Expected Lepton Events	Int. lum. $\left[\mathrm{fb}^{-1}\right]$
$Z Z$	$42.4 /-13.5$	$18.5 /-9.3$	$9.3 /-3.2$	137
$W Z$	$18.4 / 1.7$	$23.9 /-0.14$	$4.2 / 0.05$	137
$W^{ \pm} W^{ \pm}$	$16.0 /-4.0$	$16.0 /-4.0$	$18 /-5.5$	137
$W \gamma$	$28.7 / 4.3$	$5.4 / 1.7$	$3.6 /-0.04$	35.9
$Z \gamma$	$11.1 / 0.3$	$20.9 /-9.1$	$15.1 / 0.07$	137

Results

- No excess found
- Current limits with CMS Run 2 data and projected limits at Run 3 and HL-LHC in the ALP $\left(c_{\widetilde{W}}, c_{\tilde{B}}\right)$ parameter space
- Expected diff. cross sections parameterized in $\left(c_{\widetilde{W}} / f_{a}, c_{\tilde{B}} / f_{a}\right)$ plane with $4^{\text {th }}-2^{\text {nd }}$ degree polynomials for pure ALP signal / interference

95\% CL Exclusion Limits: -CMS Run 2 Observed -CMS Run 2 Expected - $\mathrm{L}=300 \mathrm{fb}^{-1}$ Expected — $\mathrm{L}=3000 \mathrm{fb}^{-1}$ Expected 5σ Discovery Limits: -- L = $3000 \mathrm{fb}^{-1}$ Expected
(for large fa and $\mathrm{Ma}<100 \mathrm{GeV}$)

Results

95\% CL Exclusion Limits: _ CMS Run 2 Observed - CMS Run 2 Expected _L $\mathrm{L}=300 \mathrm{fb}^{-1}$ Expected L $\mathrm{L}=3000 \mathrm{fb}^{-1}$ Expected 5σ Discovery Limits: _- L $=3000 \mathrm{fb}^{-1}$ Expected
(for large fa and $\mathrm{Ma}<100 \mathrm{GeV}$)

Results

Conclusions

- Access to EWK couplings independently of the gluons
- Limits independent of the ALP mass and decay width ($\mathrm{m}_{\mathrm{a}} \lesssim 100 \mathrm{GeV}$)
- Current limits (CMS Run 2 data) and projected limits (Run 3 and HL)
- Limits are very competitive and probe previously unexplored regions of the param. space
- Great opportunity for a dedicated ALP searches at Run 3 and HL-LHC

ArXiv: 2202.03450

Physical couplings

$$
\begin{aligned}
g_{a \gamma \gamma} & =\frac{4}{f_{a}}\left(s_{\theta}^{2} c_{\widetilde{W}}+c_{\theta}^{2} c_{\widetilde{B}}\right) & g_{a \gamma Z} & =\frac{4}{f_{a}} s_{2 \theta}\left(c_{\widetilde{W}}-c_{\widetilde{B}}\right) \\
g_{a Z Z} & =\frac{4}{f_{a}}\left(c_{\theta}^{2} c_{\widetilde{W}}+s_{\theta}^{2} c_{\widetilde{B}}\right) & g_{a W W} & =\frac{4}{f_{a}} c_{\widetilde{W}}
\end{aligned} \quad g_{a g g}=\frac{4}{f_{a}} c_{\widetilde{G}}
$$

Comparison to existing bounds

- Red: this work
- Green: no assumptions
- Light blue: nonresonant ggF. Depend on the coupling to gluons and asume $g_{a g g}=1 \mathrm{TeV}^{-1}$
- Dark blue: gluon dominance, i.e., $g_{a g g} \gg g_{a V_{1} V_{2}}$
- Orange: $B R(a \rightarrow \gamma \gamma)=1$
- Grey: more elaborate assumptions on the EWK sector

Comparison to existing bounds

Comparison to existing bounds

