Nonresonant Searches for Axion-Like Particles in Vector Boson Scattering Processes at the LHC

Jonathan Machado Rodríguez Universidad Autónoma de Madrid - Instituto de Física Teórica

Based on: J. Bonilla, I. Brivio, J. Machado-Rodríguez, J. F. de Trocóniz [2202.03450]

Invisibles'22 Workshop, 20th-24th June 2022

Axion-Like Particles

- Axion-Like Particles (or ALPs) are neutral pseudo scalars with shift-invariant and/or anomalous couplings
- Effective Field Theory (EFT) consistent with SM gauge and CP symmetries
- ALP interactions with SM particles have a derivative character: they grow with momentum

$$\mathscr{L}_{ALP} \supset -\overline{c_{\tilde{B}}}^{a}_{f_{a}} B_{\mu\nu} \tilde{B}^{\mu\nu} - \overline{c_{\tilde{W}}}^{a}_{f_{a}} W^{i}_{\mu\nu} \tilde{W}^{i\mu\nu} - c_{\tilde{G}} \frac{a}{f_{a}} G^{A}_{\mu\nu} \tilde{G}^{A\mu\nu}$$

- LHC sensitive to NP scale $f_a \sim TeV$
- ALP couplings to EWK bosons: ZZ, WW and W $\gamma \xrightarrow{@LO} (c_{\tilde{B}}) (c_{\tilde{W}})$

A Novel Approach: Nonresonant ALPS in VBS

- Vector Boson Scattering (VBS)
- Nonresonant ALP searches proposed by M.B. Gavela, J.M. No, V. Sanz and J.F. de Trocóniz [1905.12953]
- ALP acts as a very off-shell mediator of the process $m_a^2 \ll \hat{s}$
- Signals independent of ALP mass m_a and its decay width up to $m_a \lesssim 100 \text{ GeV}$
- VBS limits on ALP couplings to vector boson independently of the gluon coupling

 $\longrightarrow c_{\tilde{B}} c_{\tilde{W}}$

A Novel Approach: Nonresonant ALPS in VBS

ALP Diboson Mass in CMS Leptonic Analyses

- ATLAS/CMS Run 2 measurements.
- **Reinterpretation of five CMS VBS analyses** with lepton/photon final states:
 - ZZ: CMS-SMP-20-01
 Zγ: CMS-SMP-20-016
 - Same-sign WW and WZ: CMS-SMP-19-012 $W\gamma$: CMS-SMP-19-008
- Look at high energy deviations in the tail of the transverse momentum/mass spectra
- Selections cuts and integrated luminosities in the CMS papers
- Calibrate our Delphes detector simulation for the ALP-mediated VBS using the SM EWK channel

ALP Diboson Mass in CMS Leptonic Analyses

	$oldsymbol{c}_{ ilde{oldsymbol{W}}} = oldsymbol{c}_{ ilde{oldsymbol{B}}}$ signal / interf. [fb]	Photophobic signal / interf. [fb]	Expected Lepton Events	Int. lum. $[fb^{-1}]$
ZZ	42.4 / -13.5	18.5 / -9.3	9.3 / -3.2	137
WZ	$18.4 \ / \ 1.7$	$23.9 \; / \;$ -0.14	$4.2 \ / \ 0.05$	137
$W^{\pm}W^{\pm}$	16.0 / -4.0	16.0 / -4.0	18 / -5.5	137
$W\gamma$	$28.7 \ / \ 4.3$	$5.4 \ / \ 1.7$	$3.6 \ / \ -0.04$	35.9
$Z\gamma$	$11.1 \ / \ 0.3$	20.9 / -9.1	$15.1 \ / \ 0.07$	137

Results

- No excess found
- Current limits with CMS Run 2 data and projected limits at Run 3 and HL-LHC in the ALP $(c_{\widetilde{W}}, c_{\widetilde{B}})$ parameter space
- Expected diff. cross sections parameterized in $(c_{\widetilde{W}}/f_a, c_{\widetilde{B}}/f_a)$ plane with 4th -2nd degree polynomials for pure ALP signal / interference

INVISIBLES 2022

Results

(for large fa and Ma < 100 GeV)

Results

Conclusions

- Access to EWK couplings independently of the gluons
- Limits independent of the ALP mass and decay width ($m_a \lesssim 100 \text{ GeV}$)
- **Current limits** (CMS Run 2 data) and **projected limits** (Run 3 and HL)
- Limits are very competitive and probe previously unexplored regions of the param. space
- Great opportunity for a **dedicated ALP searches** at Run 3 and HL-LHC

INVISIBLES 2022

Physical couplings

$$g_{a\gamma\gamma} = \frac{4}{f_a} (s_{\theta}^2 c_{\widetilde{W}} + c_{\theta}^2 c_{\widetilde{B}}) \qquad \qquad g_{a\gamma Z} = \frac{4}{f_a} s_{2\theta} (c_{\widetilde{W}} - c_{\widetilde{B}}) \qquad \qquad g_{agg} = \frac{4}{f_a} c_{\widetilde{G}}$$

$$g_{aZZ} = \frac{4}{f_a} (c_{\theta}^2 c_{\widetilde{W}} + s_{\theta}^2 c_{\widetilde{B}}) \qquad \qquad g_{aWW} = \frac{4}{f_a} c_{\widetilde{W}}$$

Comparison to existing bounds

- **Red:** this work
- Green: no assumptions
 - **Light blue:** nonresonant ggF. Depend on the coupling to gluons and asume $g_{agg} = 1 \text{ TeV}^{-1}$
- **Dark blue:** gluon dominance, i.e., $g_{agg} \gg g_{aV_1V_2}$
- **Orange:** $BR(a \rightarrow \gamma \gamma) = 1$
 - Grey: more elaborate assumptions on the EWK sector

INVISIBLES 2022

Comparison to existing bounds

Comparison to existing bounds

