
## **Chapter 18 – Comparing two population means – Independent samples**

**Review: One-sample and Matched Pairs Problems One-sample problems** Inference about one population One SRS One measurement on each individual C.I.:  $\bar{\mathbf{x}} \pm t^* \frac{s}{\sqrt{n}}$  Test Statistic:  $t = \frac{\bar{\mathbf{x}} - \mu}{s \sqrt{n}}$ df = n - 1Matched pairs problems Inference about one population of pairs One SRS of paired individuals with one measurement AN on each individual within the pair OR Inference about one population A A A One SRS with two measurements on each individual, randomizing if possible (e.g., before and after) Compute differences between observed values in each pair. 👫 👫 C.I.:  $\overline{d} \pm t^* \frac{s_d}{\sqrt{n}}$  Test Statistic:  $t = \frac{\overline{d} - 0}{s_d / \sqrt{n}}$ df = n - 1 B: Before A: After

In chapter 17, we considered the case of Matched pairs – dependent samples

In this chapter 18, we compare two population means from independent samples



|                                                                          |            |                                         |                    | Two  | Sample Problems |  |  |  |  |  |  |
|--------------------------------------------------------------------------|------------|-----------------------------------------|--------------------|------|-----------------|--|--|--|--|--|--|
| Notation for Comparing Two Population Means                              |            |                                         |                    |      |                 |  |  |  |  |  |  |
|                                                                          | One po     | pulation                                | One                | Samp | le              |  |  |  |  |  |  |
| Mean                                                                     |            | μ                                       |                    | x    |                 |  |  |  |  |  |  |
| Standard deviation                                                       |            | σ                                       |                    | S    |                 |  |  |  |  |  |  |
|                                                                          | Two po     | pulations                               | Two                | Samp | les             |  |  |  |  |  |  |
| Means                                                                    | $\mu_1$    | μ <sub>2</sub>                          | x                  | 1 X  | 2               |  |  |  |  |  |  |
| Standard deviations                                                      | $\sigma_1$ | σ2                                      | S                  | 1 S  | 2               |  |  |  |  |  |  |
| How should we combine two parameters to get one for comparison?          |            |                                         |                    |      |                 |  |  |  |  |  |  |
| Sum $\mu_1 + \mu_2$                                                      | 2? 🙁       | Not inform                              | ative              |      |                 |  |  |  |  |  |  |
| <b>Difference</b> $\mu_1 - \mu_2$ ?  Informative and mathematically nice |            |                                         |                    |      |                 |  |  |  |  |  |  |
| <b>Product</b> $\mu_1 \bullet \mu_2?$ $\bigcirc$ Not informative         |            |                                         |                    |      |                 |  |  |  |  |  |  |
| <b>Ratio</b> $\mu_1 / \mu_2$                                             | ₂? ☺       | Informative but not mathematically nice |                    |      |                 |  |  |  |  |  |  |
| Wh <mark>at is the corresp</mark>                                        | onding     | statistic? X                            | 1 - x <sub>2</sub> |      |                 |  |  |  |  |  |  |

|                                             |                                                                       |            |            | (          | Τ   | wo-Samp        | le Problems |   |  |  |  |  |
|---------------------------------------------|-----------------------------------------------------------------------|------------|------------|------------|-----|----------------|-------------|---|--|--|--|--|
| Notation for Comparing Two Population Means |                                                                       |            |            |            |     |                |             |   |  |  |  |  |
|                                             | One population One Sample                                             |            |            |            |     |                |             |   |  |  |  |  |
|                                             | Mean                                                                  |            | μ          |            | x   | · .            |             |   |  |  |  |  |
|                                             | Standard deviation                                                    |            | σ          |            | S   |                |             |   |  |  |  |  |
| Two populations Two Samples                 |                                                                       |            |            |            |     |                |             |   |  |  |  |  |
|                                             | Means                                                                 | $\mu_1$    | $\mu_2$    | x          | 1   | x <sub>2</sub> |             |   |  |  |  |  |
|                                             | Standard deviations                                                   | $\sigma_1$ | $\sigma_2$ | S          | 1   | SZ             |             |   |  |  |  |  |
|                                             | How should we con                                                     | nbine tw   | o parameto | ers to get | one | for co         | mparison    | ? |  |  |  |  |
| $\langle$                                   | $\mu_1 - \mu_2$ In words: Difference between two population means     |            |            |            |     |                |             |   |  |  |  |  |
|                                             | $\bar{x}_1 - \bar{x}_2$ In words: Difference between two sample means |            |            |            |     |                |             |   |  |  |  |  |

What is the corresponding statistic?  $\bar{x}_1 - \bar{x}_2$ 

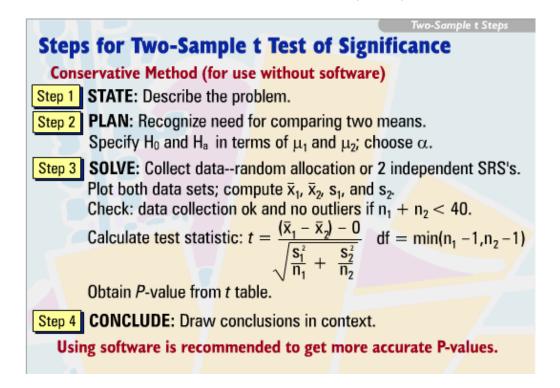
Two-Sample Problems

## **Two-Sample Problems**

Compare two populations or two treatments

## Two Populations (Surveys)

Take two separate SRS's from each of two distinct populations. Measure same variable on individuals in both samples. Perform test of hypothesis on  $H_0$ :  $\mu_1 - \mu_2 = 0$ . If significant, compute a confidence interval to estimate  $\mu_1 - \mu_2$ .

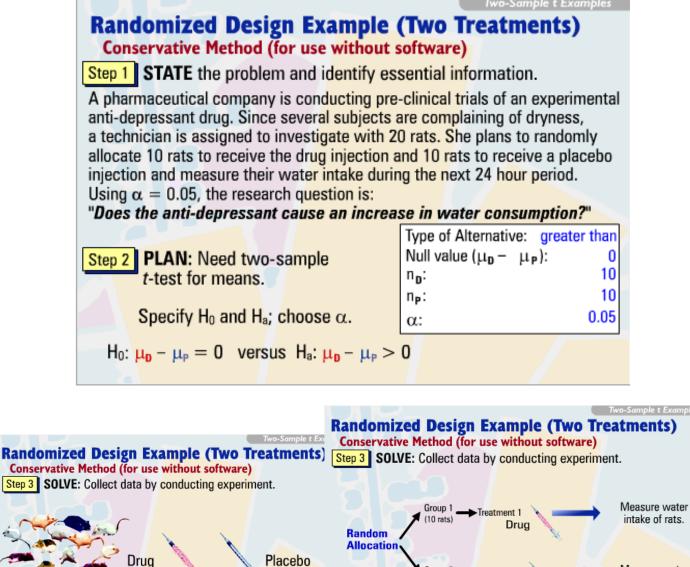

## Two Treatments (Experiments)

Randomly divide individuals into two groups. Apply different treatment to each group.

Measure same variable on individuals in both treatment groups.

Perform a test of hypothesis on  $H_0$ :  $\mu_{T1} - \mu_{T2} = 0$ .

T1 = Treatment 1 and T2 = Treatment 2

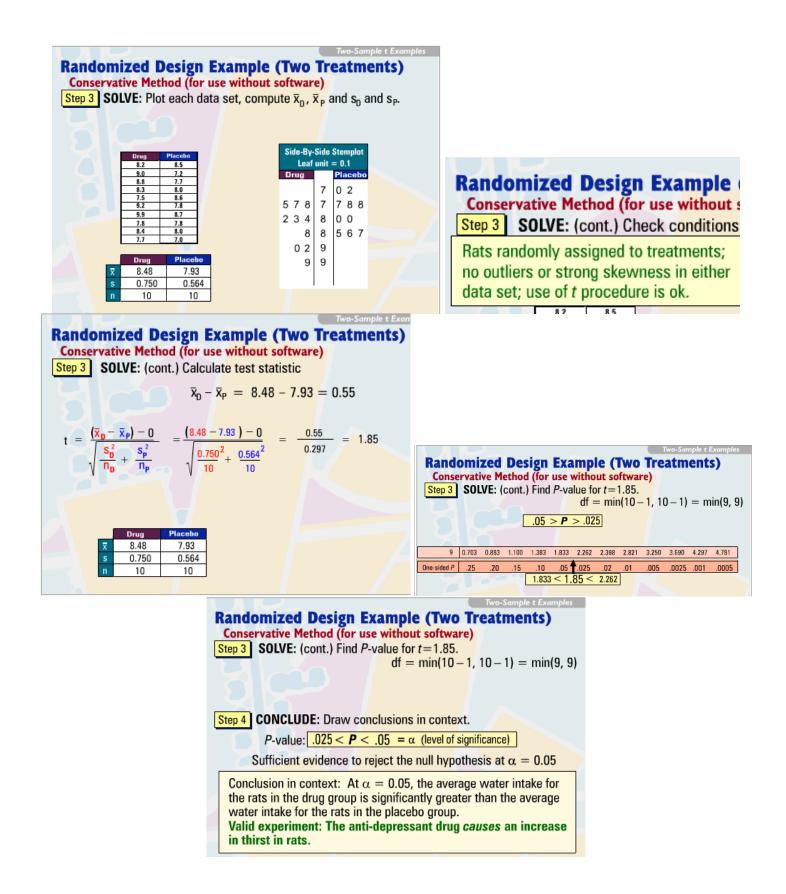


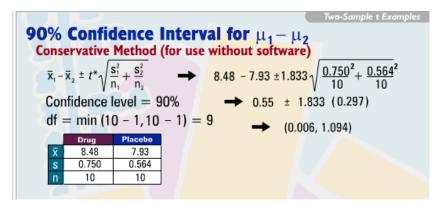

We will use the calculator to test hypothesis or construct confidence intervals for two population means

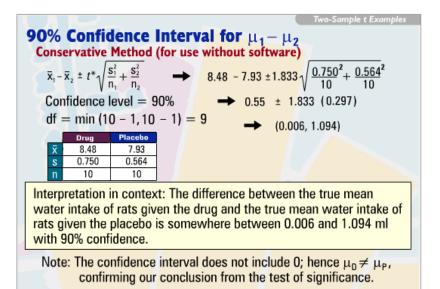


Measure water

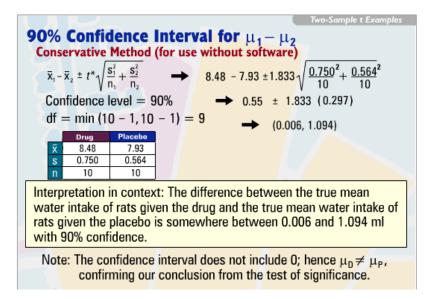
intake of rats.





Group 2


(10 rats)

Treatment 2


Placebo







Increase in water intake

