Chapter 18 - Comparing two population means - Independent samples

In chapter 17, we considered the case of Matched pairs - dependent samples

In this chapter 18, we compare two population means from independent samples

Two-Sample Problems

Compare two populations or two treatments

Two Populations (Survey)

Take two separate SRS's. (Stratified sample with 2 strata)
One measurement on each individual.
Sample 1 from Population 1 Sample 2 from Population 2
MBlind!
phitlyly
Two Treatments (Experiment)
Randomly divide individuals into two treatment groups.
One measurement on each individual.

Examples of Two-Sample Problems

Compare mean weight of filling of double stuffed with mean weight of filling of regular oreos.

$$
\begin{aligned}
& \mathrm{n}_{\text {Regulas Oreo }}=49 \\
& \mathrm{n}_{\text {Dooble statted }}=52
\end{aligned}
$$

Fail to reject H_{0}

Notation for Comparing Two Population Means		
	One population	One Sample
Mean	μ	$\overline{\mathrm{x}}$
Standard deviation	σ	S
	Two populations	Two Samples
Means	μ_{1}	μ_{2}
Standard deviations	σ_{1}	σ_{2}
		\bar{x}_{1}

How should we combine two parameters to get one for comparison?
$\mu_{1}-\mu_{2} \quad$ In words: Difference between two population means
$\bar{x}_{1}-\bar{x}_{2} \quad$ In words: Difference between two sample means
What is the corresponding statistic? $\bar{x}_{1}-\bar{x}_{2}$

Two-Sample Problems

Compare two populations or two treatments
Two Populations (Surveys)
Take two separate SRS's from each of two distinct populations.
Measure same variable on individuals in both samples.
Perform test of hypothesis on $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$.
If significant, compute a confidence interval to estimate $\mu_{1}-\mu_{2}$.

Two Treatments (Experiments)

Randomly divide individuals into two groups.
Apply different treatment to each group.
Measure same variable on individuals in both treatment groups.
Perform a test of hypothesis on $\mathrm{H}_{0}: \mu_{\mathrm{T} 1}-\mu_{\mathrm{T} 2}=0$.

$$
\mathrm{T} 1=\text { Treatment } 1 \text { and } \mathrm{T} 2=\text { Treatment } 2
$$

Steps for Two-Sample \mathbf{t} Test of Significance

Conservative Method (for use without software)
Step 1 STATE: Describe the problem.
Step 2 PLAN: Recognize need for comparing two means.
Specify H_{0} and H_{a} in terms of μ_{1} and μ_{2} i choose α.
Step 3 SOLVE: Collect data-random allocation or 2 independent SRS's.
Plot both data sets; compute $\bar{x}_{1}, \overline{\mathrm{x}}_{2}, \mathrm{~s}_{1}$, and s_{2}.
Check: data collection ok and no outliers if $n_{1}+n_{2}<40$.
Calculate test statistic: $t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$ df $=\min \left(n_{1}-1, n_{2}-1\right)$
Obtain P-value from t table.
Step 4 CONCLUDE: Draw conclusions in context.
Using software is recommended to get more accurate P -values.

We will use the calculator to test hypothesis or construct confidence intervals for two population means

Randomized Design Example (Two Treatments)

Conservative Method (for use without software)

Step 1 STATE the problem and identify essential information.
A pharmaceutical company is conducting pre-clinical trials of an experimental anti-depressant drug. Since several subjects are complaining of dryness, a technician is assigned to investigate with 20 rats. She plans to randomly allocate 10 rats to receive the drug injection and 10 rats to receive a placebo injection and measure their water intake during the next 24 hour period.
Using $\alpha=0.05$, the research question is:
"Does the anti-depressant cause an increase in water consumption?"
Step 2 PLAN: Need two-sample t-test for means.

Specify H_{0} and H_{a}; choose α.

$$
\mathrm{H}_{0}: \mu_{\mathrm{D}}-\mu_{\mathrm{P}}=0 \text { versus } \mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{D}}-\mu_{\mathrm{P}}>0
$$

Randomized Design Example (Two Treatments)

Conservative Method (for use without software)
Step 3 SOLVE: Collect data by conducting experiment.

Conservative Method (for use without software)
Step 3 SOLVE: Collect data by conducting experiment.

Randomized Design Example (Two Treatments) Conservative Method (for use without software)
Step 3 SOLVE: Plot each data set, compute \bar{x}_{0}, \bar{x}_{p} and s_{0} and s_{p}.

	Drug	Placebo
$\overline{\mathrm{z}}$	8.48	7.93
s	0.750	0.564
n	10	10

Two-Samplet Exam
Randomized Design Example (Two Treatments)
Conservative Method (for use without software)
Step 3 SOLVE: (cont.) Calculate test statistic

$$
\begin{gathered}
\bar{x}_{D}-\bar{x}_{p}=8.48-7.93=0.55 \\
\mathrm{t}=\frac{\left(\overline{\mathrm{x}}_{\mathrm{D}}-\overline{\mathrm{x}}_{\mathrm{p}}\right)-0}{\sqrt{\frac{\mathrm{~s}_{0}^{2}}{n_{0}}+\frac{\mathrm{s}_{\mathrm{p}}^{2}}{n_{p}}}}=\frac{(8.48-7.93)-0}{\sqrt{\frac{0.750^{2}}{10}+\frac{0.564^{2}}{10}}}=\frac{0.55}{0.297}=1.85
\end{gathered}
$$

	Drug	Placebo
$\overline{\mathrm{x}}$	8.48	7.93
s	0.750	0.564
n	10	10

Randomized Design Example ।

 Conservative Method (for use without : Step 3 SOLVE: (cont.) Check conditions Rats randomly assigned to treatments; no outliers or strong skewness in either data set; use of t procedure is ok.Randomized Design Example (Two Treatments)
Conservative Method (for use without software)
Step 3 SOLVE: (cont.) Find P-value for $t=1.85$. $\mathrm{df}=\min (10-1,10-1)=\min (9,9)$

$$
.05>P>.025
$$

9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
One-sided P	25	20	. 15	. 10	. 05	. 025	02	. 01	. 005	. 0025	. 001	. 0005

Randomized Design Example (Two Treatments)

Conservative Method (for use without software)
Step 3 SOLVE: (cont.) Find P-value for $t=1.85$.

$$
\mathrm{df}=\min (10-1,10-1)=\min (9,9)
$$

Step 4 CONCLUDE: Draw conclusions in context.
P-value: $.025<\boldsymbol{P}<.05=\alpha$ (level of significance)
Sufficient evidence to reject the null hypothesis at $\alpha=0.05$
Conclusion in context: At $\alpha=0.05$, the average water intake for the rats in the drug group is significantly greater than the average water intake for the rats in the placebo group.
Valid experiment: The anti-depressant drug causes an increase in thirst in rats.

90\% Confidence Interval for $\mu_{1}-\mu_{2}$

Conservative Method (for use without software)

Two-Sample t Examples

90\% Confidence Interval for $\mu_{1}-\mu_{2}$

Conservative Method (for use without software)

	Drug	Placebo
$\overline{\mathrm{X}}$	8.48	7.93
S	0.750	0.564
n	10	10

Interpretation in context: The difference between the true mean water intake of rats given the drug and the true mean water intake of rats given the placebo is somewhere between 0.006 and 1.094 ml with 90\% confidence.

Note: The confidence interval does not include 0 ; hence $\mu_{D} \neq \mu_{P}$, confirming our conclusion from the test of significance.

Increase in water intake

90\% Confidence Interval for $\mu_{1}-\mu_{2}$

Conservative Method (for use without software)

$$
\begin{aligned}
& \overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2} \pm t^{*} \sqrt{\frac{\mathrm{~s}_{1}^{2}}{\mathrm{n}_{1}}+\frac{\mathrm{s}_{2}^{2}}{\mathrm{n}_{2}}} \rightarrow 8.48-7.93 \pm 1.833 \sqrt{\frac{0.750^{2}}{10}+\frac{0.564^{2}}{10}} \\
& \text { Confidence level }=90 \% \\
& \mathrm{df}=\min (10-1,10-1)=9 \rightarrow 0.55 \pm 1.833(0.297) \\
& \begin{array}{|c|c|c|}
\hline & \text { Drug } & \text { Placebo } \\
\hline \overline{\mathrm{x}} & 8.48 & 7.93 \\
\hline \mathrm{~s} & 0.750 & 0.564 \\
\hline \mathrm{n} & 10 & 10 \\
\hline
\end{array}
\end{aligned}
$$

Interpretation in context: The difference between the true mean water intake of rats given the drug and the true mean water intake of rats given the placebo is somewhere between 0.006 and 1.094 ml with 90% confidence.

Note: The confidence interval does not include 0 ; hence $\mu_{D} \neq \mu_{p}$, confirming our conclusion from the test of significance.

