
Reference Manual: Building Blocks

SAP® Adaptive Server®

Enterprise 16.0

DOCUMENT ID: DC36271-01-1600-01
LAST REVISED: May 2014
Copyright © 2014 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

CHAPTER 1: About These Topics1

CHAPTER 2: System and User-Defined Datatypes5
Datatype Categories ..5

Exact Numeric Datatypes ...5
Integer Types ...5
Decimal Datatypes ...6

Approximate Numeric Datatypes8
Understanding Approximate Numeric Datatypes

...8
Range, Precision, and Storage Size9
Entering Approximate Numeric Data9
NaN and Inf Values ..9

Money Datatypes ..10
Accuracy ..10
Range and Storage Size10
Entering Monetary Values10

timestamp Datatype ..10
Creating a timestamp Column11

Date and Time Datatypes ...11
Range and Storage Requirements12
Entering Date and Time Data12
Standards and Compliance17

Character Datatypes ...17
unichar and univarchar ..18
Length and Storage Size18
Entering Character Data19
Example of Treatment of Blanks20
Manipulating Character Data21

Reference Manual: Building Blocks iii

Standards and Compliance for Character
Datatypes ..21

Binary Datatypes ..22
Valid binary and varbinary Entries22
Entries of More than the Maximum Column Size

...22
Treatment of Trailing Zeros23
Platform Dependence ..24

bit Datatype ...24
sysname and longsysname Datatypes24
text, image, and unitext Datatypes25

Data Structures Used for Storing text, unitext,
and image Data ...26

Initialize text, unitext, and image Columns27
Save Space by Allowing NULL28
Obtain Information from sysindexes28
Using readtext and writetext28
Determine How Much Space a Column Uses29
Restrictions on text, image, and unitext Columns

...29
Selecting text, unitext, and image Data29
Converting text and image Datatypes30
Converting to or from Unitext30
Pattern Matching in text Data31
Duplicate Rows ..31
Using Large Object text, unitext, and image

Datatypes in Stored Procedures31
Standards and Compliance33

Range and Storage Size ..33
Datatypes of Columns, Variables, or Parameters36

Declaring Datatypes for a Column in a Table36
Declaring Datatypes for Local Variable in a Batch or

Procedure ...37
Declaring Datatypes for a Parameter in a Stored

Procedure ...37

Contents

iv SAP Adaptive Server Enterprise

Determine the Datatype of Numeric Literals37
Determine the Datatype of Character Literals 38

Datatypes of Mixed-Mode Expressions38
Determine the Datatype Hierarchy 38
Determine Precision and Scale40

Datatype Conversions ...40
Automatic Conversion of Fixed-Length NULL

Columns ...40
Handling Overflow and Truncation Errors41

Datatypes and Encrypted Columns42
User-Defined Datatypes ..44
Standards and Compliance ..45

CHAPTER 3: Transact-SQL Functions47
abs ...47
acos ...48
allocinfo ..49
ascii ...50
asehostname ..51
asin ..52
atan ...53
atn2 ...54
avg ...55
audit_event_name ...56
authmech ..60
biginttohex ...62
bintostr ...63
cache_usage ..64
case ...65
cast ..68

Usage for cast ...69
Conversions Involving Java Classes70
Implicit Conversion ...70
Explicit Conversion .. 70

Contents

Reference Manual: Building Blocks v

ceiling ...70
char ...72

Usage for char ..73
Reformatting Output With char73

char_length ..74
charindex ..75
coalesce ..77
col_length ...78
col_name ..80
compare ..81

Usage for compare ...84
Maximum Row and Column Length for APL and

DOL ...86
convert ..87

Usage for convert ...91
Conversions Involving Java classes92
Implicit Conversion ...92
Explicit Conversion ..92

cos ...93
cot ...93
count ...94
count_big ..96
create_locator ..97
current_bigdatetime ..98
current_bigtime ..99
current_date ...100
current_time ...101
curunreservedpgs ...102
data_pages ...103
datachange ...105

Usage for datachange ..105
Restrictions for datachange106

datalength ...107
dateadd ...108
datediff ..111

Contents

vi SAP Adaptive Server Enterprise

datename ..114
datepart ..116
day ...120
db_attr ...121
db_id ...123
db_instanceid ...124
db_name ...125
db_recovery_status ...126
dbencryption_status ...127
defrag_status ...128
degrees ...130
derived_stat ..131
difference ..136
dol_downgrade_check ..137
exp ...138
floor ...139
get_appcontext ..140
get_internal_date ...142
getdate ..143
getutcdate ...144
has_role ..144
hash ..146
hashbytes ...147
hextobigint ...149
hextoint ...150
host_id ..151
host_name ..152
instance_id ...153
identity_burn_max ...153
index_col ..154
index_colorder ...155
index_name ..156
inttohex ...158
isdate ..159
is_quiesced ..159

Contents

Reference Manual: Building Blocks vii

is_sec_service_on ...161
is_singleusermode ..162
isnull ...163
isnumeric ..164
instance_name ...164
lc_id ...165
lc_name ..165
lct_admin ..166
left ...169
len ..170
license_enabled ...171
list_appcontext ..172
locator_literal ...173
locator_valid ...174
lockscheme ..175
log ...176
log10 ...177
loginfo ...178
lower ...180
lprofile_id ..181
lprofile_name ...183
ltrim ...184
max ..185
migrate_instance_id ..187
min ..187
month ..189
mut_excl_roles ...190
newid ...191
next_identity ...193
nullif ..194
object_attr ..195
object_id ...199
object_name ...200
object_owner_id ..201
pagesize ...201

Contents

viii SAP Adaptive Server Enterprise

partition_id ...203
partition_name ...204
partition_object_id ..205
password_random ...206
patindex ..207
pi ..209
power ..210
proc_role ..211
pssinfo ..212
radians ..214
rand ...215
rand2 ...216
replicate ..217
reserve_identity ...218
reserved_pages ...220
return_lob ...223
reverse ..224
right ...225
rm_appcontext ...227
role_contain ...229
role_id ...230
role_name ...231
round ...232
row_count ...233
rtrim ..234
sdc_intempdbconfig ..235
set_appcontext ..236
setdata ..238
shrinkdb_status ...239
show_cached_plan_in_xml ..240
show_cached_text ...245
show_cached_text_long ...246
show_condensed_text ..247
show_dynamic_params_in_xml248
show_plan ..250

Contents

Reference Manual: Building Blocks ix

show_role ...252
show_sec_services ...253
sign ...253
sin ..255
sortkey ..256

Usage for sortkey ..257
Collation Tables ...258
Collation Names and IDs259

soundex ..261
space ...262
spaceusage ..263
spid_instance_id ..266
square ...266
sqrt ..267
stddev ...268
stdev ...269
stdevp ...269
stddev_pop ...269
stddev_samp ..271
str ..272
str_replace ..274
strtobin ...276
stuff ...277
substring ..279
sum ...280
suser_id ..282
suser_name ..283
syb_quit ..284
syb_sendmsg ...285
sys_tempdbid ...286
tan ...286
tempdb_id ...287
textptr ..288
textvalid ..289
to_unichar ..290

Contents

x SAP Adaptive Server Enterprise

tran_dumpable_status ..291
tsequal ..292

Usage for tsequal ..293
Adding a Timestamp to a New Table for

Browsing ..294
uhighsurr ..294
ulowsurr ..295
upper ...296
uscalar ..297
used_pages ..298
user ...299
user_id ..300
user_name ..301
valid_name ...302
valid_user ...303
var ...305
var_pop ...305
var_samp ..306
variance ..307
varp ...308
workload_metric ..308
xa_bqual ...309
xa_gtrid ...311
xact_connmigrate_check ..313
xact_owner_instance ..314
xmlextract ...315
xmlparse ...315
xmlrepresentation ..315
xmltable ..316
xmltest ..316
xmlvalidate ...316
year ...316

CHAPTER 4: Global Variables319

Contents

Reference Manual: Building Blocks xi

Using Global Variables in a Clustered Environment330

CHAPTER 5: Expressions, Identifiers, and Wildcard
Characters ..331

Expressions ...331
Size of Expressions ..331
Arithmetic and Character Expressions332
Relational and Logical Expressions332
Operator Precedence ...332
Arithmetic Operators ...333
Bitwise Operators ...333
String Concatenation Operator335
Comparison Operators ...335
Nonstandard Operators ..336
Using any, all, and in ...336
Negating and Testing .. 337
Ranges ...337
Using Nulls in Expressions ...337

Comparisons That Return TRUE337
Difference Between FALSE and UNKNOWN338
Using “NULL” as a Character String338
NULL Compared to the Empty String338

Connecting Expressions ...338
Using Parentheses in Expressions339
Comparing Character Expressions339
Using the Empty String ...339
Including Quotation Marks in Character Expressions

.. 340
Using the Continuation Character340

Identifiers ..340
Short Identifiers ..341
Tables Beginning With # (Temporary Tables)342
Case Sensitivity and Identifiers342
Uniqueness of Object Names343

Contents

xii SAP Adaptive Server Enterprise

Using Delimited Identifiers .. 343
Enabling Quoted Identifiers344

Identifying Tables or Columns by Their Qualified
Object Name ..346

Using Delimited Identifiers Within an Object
Name ...346

Omitting the Owner Name346
Referencing Your Own Objects in the Current

Database ...347
Referencing Objects Owned by the Database

Owner ..347
Using Qualified Identifiers Consistently347

Determining Whether an Identifier is Valid347
Renaming Database Objects348
Using Multibyte Character Sets348

like Pattern Matching ...348
Using not like ..349

Pattern Matching with Wildcard Characters350
Case and Accent Insensitivity351
Using Wildcard Characters ...351

The Percent Sign (%) Wildcard Character351
The Underscore (_) Wildcard Character352
Bracketed ([]) Characters352
The Caret (^) Wildcard Character352

Using Multibyte Wildcard Characters353
Using Wildcard Characters as Literal Characters353

Using Square Brackets ([]) as Escape
Characters ...353

Using the escape Clause354
Using Wildcard Characters With datetime Data355

CHAPTER 6: Reserved Words357
Transact-SQL Reserved Words ..357
ANSI SQL Reserved Words ...358

Contents

Reference Manual: Building Blocks xiii

Potential ANSI SQL Reserved Words360

CHAPTER 7: SQLSTATE Codes and Messages361
SQLSTATE Warnings ...361
Exceptions ..362

Cardinality Violations ..362
Data Exceptions ..362
Integrity Constraint Violations363
Invalid Cursor States ...364
Syntax Errors and Access Rule Violations365
Transaction Rollbacks ...366
with check option Violation ...366

Contents

xiv SAP Adaptive Server Enterprise

CHAPTER 1 About These Topics

The Adaptive Server Reference Manual includes four guides to SAP® Adaptive Server®

Enterprise and the Transact-SQL® language.

• Building Blocks describes the “parts” of Transact-SQL: datatypes, built-in functions,
global variables, expressions and identifiers, reserved words, and SQLSTATE errors.
Before you can use Transact-SQL sucessfully, you must understand what these building
blocks do and how they affect the results of Transact-SQL statements.

• Commands provides reference information about the Transact-SQL commands, which
you use to create statements.

• Procedures provides reference information about system procedures, catalog stored
procedures, extended stored procedures, and dbcc stored procedures. All procedures are
created using Transact-SQL statements.

• Tables provides reference information about the system tables, which store information
about your server, databases, users, and other details of your server. It also provides
information about the tables in the dbccdb and dbccalt databases.

Conventions
The following sections describe conventions used in the Reference Manual guides.

SQL is a free-form language. There are no rules about the number of words you can put on a
line or where you must break a line. However, for readability, all examples and most syntax
statements in this manual are formatted so that each clause of a statement begins on a new line.
Clauses that have more than one part extend to additional lines, which are indented. Complex
commands are formatted using modified Backus Naur Form (BNF) notation.

This table shows the conventions for syntax statements that appear in this manual:

Element Example

Command names,procedure names, utility names,
database names, datatypes, and other keywords
display in sans serif font.

select

sp_configure

master database

Book names, file names, variables, and path names
are in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

Reference Manual: Building Blocks 1

Element Example

Variables—or words that stand for values that you
fill in—when they are part of a query or statement,
are in italics in Courier font.

select column_name from ta-
ble_name where search_condi-
tions

Type parentheses as part of the command. compute row_aggregate (col-
umn_name)

Double colon, equals sign indicates that the syntax
is written in BNF notation. Do not type this sym-
bol. Indicates “is defined as”.

::=

Curly braces mean that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed options is optional. Do not type the
brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipe or vertical bar (|) means you may select
only one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the last
unit as many times as you like.

buy thing = price [cash | check |
credit] [, thing = price [cash |
check | credit]]...
You must buy at least one thing and give its price. You
may choose a method of payment: one of the items
enclosed in square brackets. You may also choose to
buy additional things: as many of them as you like. For
each thing you buy, give its name, its price, and (op-
tionally) a method of payment.

• Syntax statements (displaying the syntax and all options for a command) appear as
follows:
sp_dropdevice [device_name]

For a command with more options:
select column_name
 from table_name
 where search_conditions

CHAPTER 1: About These Topics

2 SAP Adaptive Server Enterprise

In syntax statements, keywords (commands) are in normal font and identifiers are in
lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like this:
select * from publishers

• Examples of output from the computer appear as follows:
pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can disregard case when
typing Transact-SQL keywords. For example, SELECT, Select, and select are the same.

SAP ASE sensitivity to the case of database objects, such as table names, depends on the sort
order installed on the SAP ASE server. You can change case sensitivity for single-byte
character sets by reconfiguring the SAP ASE sort order. For more information, see the System
Administration Guide.

CHAPTER 1: About These Topics

Reference Manual: Building Blocks 3

CHAPTER 1: About These Topics

4 SAP Adaptive Server Enterprise

CHAPTER 2 System and User-Defined
Datatypes

SAP® Adaptive Server® Enterprise provides several system datatypes and the user-defined
datatypes timestamp, sysname, and longsysname, which specify the type, size, and
storage format of columns, stored procedure parameters, and local variables.

Datatype Categories
SAP ASE provides several system datatypes and the user-defined datatypes timestamp,
sysname, and longsysname.

Exact Numeric Datatypes
Use the exact numeric datatypes to represent a value exactly. SAP ASE provides exact
numeric types for both integers (whole numbers) and numbers with a decimal portion.

Transact-SQL provides the smallint, int, bigint, numeric, and decimal ANSI
SQL exact numeric datatypes. The unsigned bigint, unsigned int, unsigned
smallint, and tinyint types are Transact-SQL extensions.

Integer Types
SAP ASE provides these exact numeric datatypes to store integers: bigint, int (or
integer), smallint, tinyint and each of their unsigned counterparts. Choose the
integer type based on the expected size of the numbers to be stored. Internal storage size varies
by type:

Datatype Stores Bytes
of
Stor-
age

bigint Whole numbers between -263 and 263 - 1 (from
-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807, inclusive.

8

int[eger
]

Whole numbers between-231 and 231 - 1 (-2,147,483,648 and
2,147,483,647), inclusive.

4

smallint Whole numbers between -215 and 215 -1 (-32,768 and 32,767), inclusive. 2

tinyint Whole numbers between 0 and 255, inclusive. (Negative numbers are not
permitted.)

1

Reference Manual: Building Blocks 5

Datatype Stores Bytes
of
Stor-
age

unsigned
bigint

Whole numbers between 0 and 18,446,744,073,709,551,615 8

unsigned
int

Whole numbers between 0 and 4,294,967,295 4

unsigned
smallint

Whole numbers between 0 and 65,535 2

Integer Data
Enter integer data as a string of digits without commas. Integer data can include a decimal
point as long as all digits to the right of the decimal point are zeros. The smallint,
integer, and bigint datatypes can be preceded by an optional plus or minus sign. The
tinyint datatype can be preceded by an optional plus sign.

The following shows ome valid entries for a column with a datatype of integer and
indicates how isql displays these values:

Value Entered Value Displayed

2 2

+2 2

-2 -2

2. 2

2.000 2

Some invalid entries for an integer column are:

Value Entered Type of Error

2,000 Commas not allowed.

2- Minus sign should precede digits.

3.45 Digits to the right of the decimal point are nonzero digits.

Decimal Datatypes
SAP ASE provides two other exact numeric datatypes, numeric and dec[imal], for
numbers that include decimal points. The numeric and decimal datatypes are identical in

CHAPTER 2: System and User-Defined Datatypes

6 SAP Adaptive Server Enterprise

all respects but one: only numeric datatypes with a scale of 0 and integer datatypes can
be used for the IDENTITY column.

Precision and Scale
The numeric and decimal datatypes accept two optional parameters, precision and
scale, enclosed in parentheses and separated by a comma:

datatype [(precision [, scale])]

SAP ASE treats each combination of precision and scale as a distinct datatype. For example,
numeric(10,0) and numeric(5,0) are two separate datatypes. The precision and
scale determine the range of values that can be stored in a decimal or numeric column:

• The precision specifies the maximum number of decimal digits that can be stored in the
column. It includes all digits, both to the right and to the left of the decimal point. You can
specify precisions ranging from 1 digit to 38 digits or use the default precision of 18 digits.

• The scale specifies the maximum number of digits that can be stored to the right of the
decimal point. The scale must be less than or equal to the precision. You can specify a scale
ranging from 0 digits to 38 digits, or use the default scale of 0 digits.

Storage Size
The storage size for a numeric or decimal column depends on its precision. The minimum
storage requirement is 2 bytes for a 1- or 2-digit column. Storage size increases by
approximately 1 byte for each additional 2 digits of precision, up to a maximum of 17 bytes.

Use this formula to calculate the exact storage size for a numeric or decimal column:

ceiling (precision / log10(256)) + 1

For example, the storage size for a numeric(18,4) column is 9 bytes.

Decimal Data
Enter decimal and numeric data as a string of digits preceded by an optional plus or minus
sign and including an optional decimal point. If the value exceeds either the precision or scale
specified for the column, the SAP ASE server returns an error message. Exact numeric types
with a scale of 0 are displayed without a decimal point.

This table shows some valid entries for a column with a datatype of numeric(5,3) and
indicates how these values are displayed by isql:

Value Entered Value Eisplayed

12.345 12.345

+12.345 12.345

-12.345 -12.345

12.345000 12.345

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 7

Value Entered Value Eisplayed

12.1 12.100

12 12.000

This table shows some invalid entries for a column with a datatype of numeric(5,3):

Value Entered Type of Error

1,200 Commas not allowed.

12- Minus sign should precede digits.

12.345678 Too many nonzero digits to the right of the decimal point.

Approximate Numeric Datatypes
Use the approximate numeric types, float, double precision, and real, for numeric
data that can tolerate rounding. The approximate numeric types are especially suited to data
that covers a wide range of values. They support all aggregate functions and all arithmetic
operations.

The float, double precision, and real datatypes are ANSI SQL entry-level
compliant.

Understanding Approximate Numeric Datatypes
Approximate numeric datatypes, used to store floating-point numbers, are inherently slightly
inaccurate in their representation of real numbers—hence the name “approximate numeric.”
To use these datatypes, you must understand their limitations.

When a floating-point number is printed or displayed, the printed representation is not quite
the same as the stored number, and the stored number is not quite the same as the number that
the user entered. Most of the time, the stored representation is close enough, and software
makes the printed output look just like the original input, but you must understand the
inaccuracy if you plan to use floating-point numbers for calculations, particularly if you are
doing repeated calculations using approximate numeric datatypes—the results can be
surprisingly and unexpectedly inaccurate.

The inaccuracy occurs because floating-point numbers are stored in the computer as binary
fractions (that is, as a representative number divided by a power of 2), but the numbers we use
are decimal (powers of 10). This means that only a very small set of numbers can be stored
accurately: 0.75 (3/4) can be stored accurately because it is a binary fraction (4 is a power of 2);
0.2 (2/10) cannot (10 is not a power of 2).

Some numbers contain too many digits to store accurately. double precision is stored
as 8 binary bytes and can represent about 17 digits with reasonable accuracy. real is stored as
4 binary bytes and can represent only about 6 digits with reasonable accuracy.

CHAPTER 2: System and User-Defined Datatypes

8 SAP Adaptive Server Enterprise

If you begin with numbers that are almost correct, and perform computations with them using
other numbers that are almost correct, you can easily end up with a result that is not even close
to being correct. If these considerations are important to your application, use an exact
numeric datatype.

Range, Precision, and Storage Size
The real and double precision types are built on types supplied by the operating
system. The float type accepts an optional binary precision in parentheses. float
columns with a precision of 1–15 are stored as real; those with higher precision are stored as
double precision.

The range and storage precision for all three types is machine-dependent.

The range and storage size for each approximate numeric type are:

Datatype Bytes of Storage

float[(default preci-
sion)]

4 for default precision < 16

8 for default precision >= 16

double precision 8

real 4

isql displays only 6 significant digits after the decimal point and rounds the remainder.

Entering Approximate Numeric Data
Enter approximate numeric data as a mantissa followed by an optional exponent.

• The mantissa is a signed or unsigned number, with or without a decimal point. The
column’s binary precision determines the maximum number of binary digits allowed in
the mantissa.

• The exponent, which begins with the character “e” or “E,” must be a whole number.

The value represented by the entry is:
mantissa * 10EXPONENT

For example, 2.4E3 represents the value 2.4 times 103, or 2400.

NaN and Inf Values
“NaN” and “Inf” are special values that the IEEE754/854 floating point number standards use
to represent values that are “not a number” and “infinity,” respectively.

In accordance with the ANSI SQL92 standard, the SAP ASE server does not allow the
insertion of these values in the database and do not allow them to be generated. In SAP ASE
versions earlier than 12.5, Open Client clients such as native-mode bcp, JDBC, and ODBC
could occasionally force these values into tables.

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 9

If you encounter a NaN or an Inf value in the database, contact Sybase Customer Support with
details of how to reproduce the problem.

Money Datatypes
Use the money and smallmoney datatypes to store monetary data.

You can use these types for U.S. dollars and other decimal currencies, but SAP ASE provides
no means to convert from one currency to another. You can use all arithmetic operations except
modulo, and all aggregate functions, with money and smallmoney data.

The money and smallmoney datatypes are Transact-SQL extensions.

Accuracy
Both money and smallmoney are accurate to one ten-thousandth of a monetary unit, but
they round values up to two decimal places for display purposes. The default print format
places a comma after every three digits.

Range and Storage Size
The range and storage requirements for money datatypes are:

Datatype Range Bytes of Stor-
age

money Monetary values between +922,337,203,685,477.5807 and
-922,337,203,685,477.5808

8

small-
money

Monetary values between +214,748.3647 and -214,748.3648 4

Entering Monetary Values
Monetary values entered with E notation are interpreted as float. This may cause an entry to
be rejected or to lose some of its precision when it is stored as a money or smallmoney
value.

money and smallmoney values can be entered with or without a preceding currency
symbol, such as the dollar sign ($), yen sign (¥), or pound sterling sign (£). To enter a negative
value, place the minus sign after the currency symbol. Do not include commas in your entry.

timestamp Datatype
Use the user-defined timestamp datatype in tables that are to be browsed in Client-Library™

applications. SAP ASE updates the timestamp column each time its row is modified. A
table can have only one column of timestamp datatype.

CHAPTER 2: System and User-Defined Datatypes

10 SAP Adaptive Server Enterprise

Creating a timestamp Column
If you create a column named timestamp without specifying a datatype, SAP ASE defines
the column as a timestamp datatype.

create table testing
 (c1 int, timestamp, c2 int)

You can also explicitly assign the timestamp datatype to a column named timestamp:

create table testing
 (c1 int, timestamp timestamp, c2 int)

You can also explicitly assign the timestamp datatype to a column with another name:

create table testing
 (c1 int, t_stamp timestamp,c2 int)

You can create a column named timestamp and assign it another datatype (although this
may be confusing to other users and does not allow the use of the browse functions in Open
Client™ or with the tsequal function):

create table testing
 (c1 int, timestamp datetime)

Date and Time Datatypes
Use datetime, smalldatetime, bigdatetime, bigtime, date, and time to store
absolute date and time information. Use timestamp to store binary-type information.

SAP ASE has various datatypes used to store date and time values.

• date
• time
• smalldatetime
• datetime
• bigdatetime
• bigtime
The default display format for dates is “Apr 15 1987 10:23PM”. bigdatetime/bigtime types
have a default display format of “Apr 15 1987 10:23:00.000000PM” You can use the convert
function for other styles of date display. You can also perform some arithmetic calculations on
date and time values with the built-in date functions, though the SAP ASE server may
round or truncate millisecond values.

• datetime columns hold dates between January 1, 1753 and December 31, 9999.
datetime values are accurate to 1/300 second on platforms that support this level of
granularity. The last digit of the fractional second is always 0, 3, or 6. Other digits are
rounded to one of these three digits, so 0 and 1 round to 0; 2, 3, and 4 round to 3; 5, 6, 7, and

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 11

8 round to 6; and 9 rounds to 10.. Storage size is 8 bytes: 4 bytes for the number of days
since the base date of January 1, 1900 and 4 bytes for the time of day.

• smalldatetime columns hold dates from January 1, 1900 to June 6, 2079, with
accuracy to the minute. Its storage size is 4 bytes: 2 bytes for the number of days after
January 1, 1900, and 2 bytes for the number of minutes after midnight.

• bigdatetime columns hold dates from January 1, 0001 to December 31, 9999 and
12:00:00.000000 AM to 11:59:59.999999 PM. Its storage size is 8 bytes. The internal
representation of bigdatetime is a 64 bit integer containing the number of
microseconds since 01/01/0000.

• bigtime columns hold times from 12:00:00.000000 AM to 11:59:59.999999 PM. Its
storage size is 8 bytes. The internal representation of bigtime is a 64 bit integer
containing the number of microseconds since midnight.

• date columns hold dates from January 1, 0001 to December 31, 9999. Storage size is 4
bytes.

• time is between 00:00:00:000 and 23:59:59:990. time values are accurate to 1/300
second. The last digit of the fractional second is always 0, 3, or 6. Other digits are rounded
to one of these three digits, so 0 and 1 round to 0; 2, 3, and 4 round to 3; 5, 6, 7, and 8 round
to 6; and 9 rounds to 10.You can use either military time or 12AM for noon and 12PM for
midnight. A time value must contain either a colon or the AM or PM signifier. AM or PM
may be in either uppercase or lowercase.

When entering date and time information, always enclose the time or date in single or double
quotes.

Range and Storage Requirements
There are range and storage requirements for the datetime, smalldatetime,
bigdatetime, bigtime, date, and time datatypes:

Datatype Range Bytes of Storage

datetime January 1, 1753 through December 31, 9999 8

smalldate-
time

January 1, 1900 through June 6, 2079 4

bigdate-
time

January 1, 0001 to December 31, 9999 8

bigtime 12:00:00.000000AM to 11:59:59.999999PM 8

date January 1, 0001 to December 31, 9999 4

time 12:00:00 AM to 11:59:59:990 PM 4

Entering Date and Time Data
The datetime, smalldatetime, bigdatetime and bigtime datatypes consist of
a date portion either followed by or preceded by a time portion (you can omit either the date or

CHAPTER 2: System and User-Defined Datatypes

12 SAP Adaptive Server Enterprise

the time, or both). The date datatype has only a date and the time datatype has only the time.
You must enclose values in single or double quotes.

Entering the Date
Dates consist of a month, day, and year and can be entered in a variety of formats for date,
datetime, bigdatetime, bigtime and smalldatetime.

• You can enter the entire date as an unseparated string of 4, 6, or 8 digits, or use slash (/),
hyphen (-), or period (.) separators between the date parts.
• When entering dates as unseparated strings, use the appropriate format for that string

length. Use leading zeros for single-digit years, months, and days. Dates entered in the
wrong format may be misinterpreted or result in errors.

• When entering dates with separators, use the set dateformat option to determine the
expected order of date parts. If the first date part in a separated string is four digits, SAP
ASE interprets the string as yyyy-mm-dd format.

• Some date formats accept 2-digit years (yy):
• Numbers less than 50 are interpreted as 20yy. For example, 01 is 2001, 32 is 2032, and

49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For example, 50 is 1950,
74 is 1974, and 99 is 1999.

• You can specify the month as either a number or a name. Month names and their
abbreviations are language-specific and can be entered in uppercase, lowercase, or mixed
case.

• If you omit the date portion of a datetime or smalldatetime value, SAP ASE uses
the default date of January 1, 1900. If you omit the date portion of a bigdatetime a default
value of January 1, 0001 is added.

This table describes the acceptable formats for entering the date portion of a datetime or
smalldatetime value:

Table 1. Date Formats for Date and Time Datatypes

Date Format Interpretation Sample En-
tries

Meaning

4-digit string with no separa-
tors

Interpreted as yyyy. Date defaults to
Jan 1 of the specified year.

“1947” Jan 1 1947

6-digit string with no separa-
tors

Interpreted as yymmdd.

For yy < 50, year is 20yy.

For yy >= 50, year is 19yy.

“450128”

“520128”

Jan 28 2045

Jan 28 1952

8-digit string with no separa-
tors

Interpreted as yyyymmdd. “20150415” Apr 15 2015

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 13

Date Format Interpretation Sample En-
tries

Meaning

String consisting of 2-digit
month, day, and year separa-
ted by slashes, hyphens, or
periods, or a combination of
the above

The dateformat and language set
options determine the expected or-
der of date parts. For us_english, the
default order is mdy.

For yy < 50, year is interpreted as
20yy. For yy >= 50, year is inter-
preted as 19yy.

“12/15/94”

“12.15.94”

“12-15-94”

“12.15/94”

All of these en-
tries are interpre-
ted as Dec 15
1994 when the da-
teformat option is
set to mdy.

String consisting of 2-digit
month, 2-digit day, and 4-
digit year separated by slash-
es, hyphens, or periods, or a
combination of the above

The dateformat and language set
options determine the expected or-
der of date parts. For us_english, the
default order is mdy.

“04/15.1994” Interpreted as Apr
15 1994 when the
dateformat option
is set to mdy.

Month is entered in character
form (either full month name
or its standard abbreviation),
followed by an optional com-
ma

If 4-digit year is entered, date parts
can be entered in any order.

“April 15, 1994”

“1994 15 apr”

“1994 April 15”

“15 APR 1994”

All of these en-
tries are interpre-
ted as Apr 15
1994.

If day is omitted, all 4 digits of year
must be specified. Day defaults to
the first day of the month.

“apr 1994” Apr 1 1994

If year is only 2 digits (yy), it is ex-
pected to appear after the day.

For yy < 50, year is interpreted as
20yy.

For yy >= 50, year is interpreted as
19yy.

“mar 16 17”

“apr 15 94”

Mar 16 2017

Apr 15 1994

The empty string “” Date defaults to Jan 1 1900. “” Jan 1 1900

Entering the Time
You must specify the time component of a datetime, smalldatetime, or time value.

hours[:minutes[:seconds[:milliseconds]] [AM | PM]

The time component of a bigdatetime or bigtime value must be specified as follows:
hours[:minutes[:seconds[.microseconds]] [AM | PM]

• Use 12AM for midnight and 12PM for noon.
• A time value must contain either a colon or an AM or PM signifier. The AM or PM can be

entered in uppercase, lowercase, or mixed case.

CHAPTER 2: System and User-Defined Datatypes

14 SAP Adaptive Server Enterprise

• The seconds specification can include either a decimal portion preceded by a decimal
point, or a number of milliseconds preceded by a colon. For example, “15:30:20:1” means
twenty seconds and one millisecond past 3:30 PM; “15:30:20.1” means twenty and one-
tenth of a second past 3:30 PM. Microseconds must be expressed with a decimal point.

• If you omit the time portion of a datetime or smalldatetime value, SAP ASE uses
the default time of 12:00:00:000AM.

Displaying Formats for datetime, smalldatetime, and date Values
The display format for datetime and smalldatetime values is “Mon dd yyyy
hh:mmAM” (or “PM”); for example, “Apr 15 1988 10:23PM”.

To display seconds and milliseconds, and to obtain additional date styles and date-part orders,
use the convert function to convert the data to a character string. SAP ASE may round or
truncate millisecond values.

Some examples of datetime entries and their display values are:

datetime Entries Value Displayed

“1947” Jan 1 1947 12:00AM

“450128 12:30:1PM” Jan 28 2045 12:30PM

“12:30.1PM 450128” Jan 28 2045 12:30PM

“14:30.22” Jan 1 1900 2:30PM

“4am” Jan 1 1900 4:00AM

Some examples of date entries and their display values are:

date Entries Value Displayed

“1947” Jan 1 1947

“450128” Jan 28 2045

“520317” Mar 17 1952

Display Formats for bigdatetime and bigtime
For bigdatetime and bigtime the value displays reflects a microsecond value.
bigdatetime and bigtime have default display formats that accomodate their increased
precision.

• hh:mm:ss.zzzzzzAM or PM
• hh:mm:ss.zzzzzz
• mon dd yyyy hh:mm:ss.zzzzzzAM(PM)
• mon dd yyyy hh:mm:ss.zzzzzz
• yyyy-mm-dd hh:mm:ss.zzzzzz

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 15

The format for time must be specified as:

• hours[:minutes[:seconds[.microseconds]] [AM | PM]
• hours[:minutes[:seconds[number of milliseconds]] [AM | PM]

Use 12 AM for midnight and 12 PM for noon. A bigtime value must contain either a colon
or an AM or PM signifier. AM or PM can be entered in uppercase, lowercase, or mixed case.

The seconds specification can include either a decimal portion preceded by a point or a
number of milliseconds preceded by a colon. For example, “12:30:20:1” means twenty
seconds and one millisecond past 12:30; “12:30:20.1” means twenty and one-tenth of a
second past.

To store a bigdatetime or bigtime time value that includes microseconds, specify a
string literal using a point. “00:00:00.1” means one tenth of a second past midnight and
“00:00:00.000001” means one millionth of a second past midnight. Any value after the colon
specifying fractional seconds continues to refer to a number of milliseconds. Such as
“00:00:00:5” means 5 milliseconds.

Displaying Formats for time Value
The display format for time values is “hh:mm:ss:mmmAM” (or “PM”); for example,
“10:23:40:022PM.

Entry Value displayed

"12:12:00” 12:12PM

“01:23PM” or “01:23:1PM” 1:23PM

“02:24:00:001” 2:24AM

Finding Values That Match a Pattern
Use the like keyword to look for dates that match a particular pattern. If you use the equality
operator (=) to search date or time values for a particular month, day, and year, the SAP ASE
server returns only those values for which the time is precisely 12:00:00:000AM.

For example, if you insert the value “9:20” into a column named arrival_time, the SAP
ASE server converts the entry into “Jan 1 1900 9:20AM.” If you look for this entry using the
equality operator, it is not found:
where arrival_time = "9:20" /* does not match */

You can find the entry using the like operator:
where arrival_time like "%9:20%"

When using like, the SAP ASE server first converts the dates to datetime or date format
and then to varchar. The display format consists of the 3-character month in the current
language, 2 characters for the day, 4 characters for the year, the time in hours and minutes, and
“AM” or “PM.”

CHAPTER 2: System and User-Defined Datatypes

16 SAP Adaptive Server Enterprise

When searching with like, you cannot use the wide variety of input formats that are available
for entering the date portion of datetime, smalldatetime, bigdatetime,
bigtime, date, and time values. You cannot search for seconds or milliseconds with like
and match a pattern, unless you are also using style 9 or 109 and the convert function.

If you are using like, and the day of the month is a number between 1 and 9, insert 2 spaces
between the month and the day to match the varchar conversion of the datetime value.
Similarly, if the hour is less than 10, the conversion places 2 spaces between the year and the
hour. The following clause with 1 space between “May” and “2”) finds all dates from May 20
through May 29, but not May 2:
like "May 2%"

You do not need to insert the extra space with other date comparisons, only with like, since the
datetime values are converted to varchar only for the like comparison.

Manipulating Dates
You can do some arithmetic calculations on date and time datatypes values with the built-in
date functions.

See Transact-SQL Users Guide.

Standards and Compliance
ANSI SQL – Compliance level: The datetime and smalldatetime datatypes are
Transact-SQL extensions. date and time datatypes are entry-level compliant.

Character Datatypes
Which datatype you use for a situation depends on the type of data you are storing.

Use:

• The character datatypes to store strings consisting of letters, numbers, and symbols.
Character datatypes can store a maximum of a page size worth of data.

• varchar(n) and char(n) for both single-byte character sets such as us_english and
for multibyte character sets such as Japanese.

• The unichar(n) and univarchar(n) datatypes to store Unicode characters. They
are useful for single-byte or multibyte characters when you need a fixed number of bytes
per character.

• The fixed-length datatype, nchar(n) , and the variable-length datatype,
nvarchar(n), for both single-byte and multibyte character sets, such as Japanese. The
difference between nchar(n) and char(n) and nvarchar(n) and varchar(n)
is that both nchar(n) and nvarchar(n) allocate storage based on n times the number
of bytes per character (based on the default character set). char(n) and varchar(n)
allocate n bytes of storage.

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 17

• The text datatype—or multiple rows in a subtable—for strings longer than the char or
varchar dataype allow.

See also
• text, image, and unitext Datatypes on page 25

unichar and univarchar
You can use the unichar and univarchar datatypes anywhere that you can use char and
varchar character datatypes, without having to make syntax changes.

In SAP ASE version 12.5.1 and later, queries containing character literals that cannot be
represented in the server’s character set are automatically promoted to the unichar datatype
so you do not have to make syntax changes for data manipulation language (DML) statements.
Additional syntax is available for specifying arbitrary characters in character literals, but the
decision to “promote” a literal to unichar is based solely on representability.

With data definition language (DDL) statements, the syntax changes required are minimal.
For example, in the create table command, the size of a Unicode column is specified in units
of 16-bit Unicode values, not bytes, thereby maintaining the similarity between char(200)
and unichar(200). sp_help, which reports on the lengths of columns, uses the same units.
The multiplication factor (2) is stored in the new global variable @@unicharsize.

See Configuring Character Sets, Sort Orders, and Languages in the System Administration
Guide for more information about Unicode.

Length and Storage Size
Character variables strip the trailing spaces from strings when the variable is populated in a
varchar column of a cursor.

Use n to specify the number of bytes of storage for char and varchar datatypes. For
unichar, use n to specify the number of Unicode characters (the amount of storage allocated
is 2 bytes per character). For nchar and nvarchar, n is the number of characters (the
amount of storage allocated is n times the number of bytes per characer for the server’s current
default character set).

If you do not use n to specify the length:

• The default length is 1 byte for columns created with create table, alter table, and
variables created with declare.

• The default length is 30 bytes for values created with the convert function.

Entries shorter than the assigned length are blank-padded; entries longer than the assigned
length are truncated without warning, unless the string_rtruncation option to the set
command is set to on. Fixed-length columns that allow nulls are internally converted to
variable-length columns.

Use n to specify the maximum length in characters for the variable-length datatypes,
varchar(n), univarchar(n), and nvarchar(n). Data in variable-length columns is

CHAPTER 2: System and User-Defined Datatypes

18 SAP Adaptive Server Enterprise

stripped of trailing blanks; storage size is the actual length of the data entered. Data in
variable-length variables and parameters retains all trailing blanks, but is not padded to the
defined length. Character literals are treated as variable-length datatypes.

Fixed-length columns tend to take more storage space than variable-length columns, but are
accessed somewhat faster. This table summarizes the storage requirements of the different
character datatypes:

Datatype Stores Bytes of Storage

char(n) Character n

uni-
char(n)

Unicode character n*@@unicharsize (@@unicharsize equals 2)

nchar(n) National character n * @@ncharsize

var-
char(n)

Character varying Actual number of characters entered

univarch-
ar(n)

Unicode character varying Actual number of characters * @@unicharsize

nvarch-
ar(n)

National character varying Actual number of characters * @@ncharsize

Determining Column Length with System Functions
Use the char_length string function and datalength system function to determine column
length.

• char_length returns the number of characters in the column, stripping trailing blanks for
variable-length datatypes.

• datalength returns the number of bytes, stripping trailing blanks for data stored in
variable-length columns.

When a char value is declared to allow NULL values, the SAP ASE server stores it internally
as a varchar.

If the min or max aggregate functions are used on a char column, the result returned is
varchar, and is therefore stripped of all trailing spaces.

Entering Character Data
Character strings must be enclosed in single or double quotes. If you use set quoted_identifier
on, use single quotes for character strings; otherwise, the SAP ASE server treats them as
identifiers.

Strings that include the double-quote character should be surrounded by single quotes. Strings
that include the single-quote character should be surrounded by double quotes. For example:
'George said, "There must be a better way."'
"Isn't there a better way?"

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 19

An alternative is to enter two quotation marks for each quotation mark you want to include in
the string. For example:
"George said, ""There must be a better way.""
'Isn''t there a better way?'

To continue a character string onto the next line of your screen, enter a backslash (\) before
going to the next line.

For more information about quoted identifiers, see the section Delimited Identifiers of the
Transact SQL User’s Guide.

Entering Unicode Characters
Optional syntax allows you to specify arbitrary Unicode characters.

If a character literal is immediately preceded by U& or u& (with no intervening white space),
the parser recognizes escape sequences within the literal. An escape sequence of the form
\xxxx (where xxxx represents four hexadecimal digits) is replaced with the Unicode character
whose scalar value is xxxx. Similarly, an escape sequence of the form \+yyyyyy is replaced
with the Unicode character whose scalar value is yyyyyy. The escape sequence \\ is replaced
by a single \. For example, the following is equivalent to:

select * from mytable where unichar_column = U&'\4e94'

The U& or u& prefix simply enables the recognition of escapes. The datatype of the literal is
chosen solely on the basis of representability. Thus, for example, the following two queries are
equivalent:

select * from mytable where char_column = 'A'
select * from mytable where char_column = U&'\0041'

In both cases, the datatype of the character literal is char, since “A” is an ASCII character,
and ASCII is a subset of all SAP-supported server character sets.

The U& and u& prefixes also work with the double-quoted character literals and for quoted
identifiers. However, quoted identifiers must be representable in the server’s character set,
insofar as all database objects are identified by names in system tables, and all such names are
of datatype char.

Example of Treatment of Blanks
Create a table named spaces that has both fixed- and variable-length character columns.

create table spaces (cnot char(5) not null,
 cnull char(5) null,
 vnot varchar(5) not null,
 vnull varchar(5) null,
 explanation varchar(25) not null)

insert spaces values ("a", "b", "c", "d", "pads char-not-null only")

CHAPTER 2: System and User-Defined Datatypes

20 SAP Adaptive Server Enterprise

insert spaces values ("1 ", "2 ", "3 ", "4 ", "truncates
trailing blanks")
insert spaces values (" e", " f", " g", " h", "leading
blanks, no change")
insert spaces values (" w ", " x ", " y ", " z ", "truncates
trailing blanks")
insert spaces values ("", "", "", "", "empty string equals space")

select "[" + cnot + "]",
 "[" + cnull + "]",
 "[" + vnot + "]",
 "[" + vnull + "]",
 explanation from spaces
 explanation
 ------- ------- ------- ------- --------------------
 [a] [b] [c] [d] pads char-not-null only
 [1] [2] [3] [4] truncates trailing blanks
 [e] [f] [g] [h] leading blanks, no change
 [w] [x] [y] [z] truncates trailing blanks
 [] [] [] [] empty string equals space

(5 rows affected)

This example illustrates how the column’s datatype and null type interact to determine how
blank spaces are treated:

• Only char not null and nchar not null columns are padded to the full width of the
column; char null columns are treated like varchar and nchar null columns are
treated like nvarchar.

• Only unichar not null columns are padded to the full width of the column; unichar
null columns are treated like univarchar.

• Preceding blanks are not affected.
• Trailing blanks are truncated except for char, unichar, and nchar not null columns.

• The empty string (“ ”) is treated as a single space. In char, nchar, and unichar not
null columns, the result is a column-length field of spaces.

Manipulating Character Data
You can use the like keyword to search character strings for particular characters and the built-
in string functions to manipulate their contents.

You can use strings consisting of numbers for arithmetic after being converted to exact and
approximate numeric datatypes with the convert function.

Standards and Compliance for Character Datatypes
ANSI SQL – Compliance level: Transact-SQL provides the char and varchar ANSI SQL
datatypes. The nchar, nvarchar, unichar, and univarchar datatypes are Transact-
SQL extensions.

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 21

Binary Datatypes
Use the binary datatypes, binary(n) and varbinary(n), to store raw binary data, such
as pictures, in a raw binary notation, up to the maximum column size for your server’s logical
page size.

The binary and varbinary datatypes are Transact-SQL extensions.

Valid binary and varbinary Entries
Binary data begins with the characters “0x” and can include any combination of digits, and the
uppercase and lowercase letters A through F.

Use n to specify the column length in bytes, or use the default length of 1 byte. Each byte stores
2 binary digits. If you enter a value longer than n, the SAP ASE server truncates the entry to the
specified length without warning or error.

Use the fixed-length binary type, binary(n), for data in which all entries are expected to be
approximately equal in length.

Use the variable-length binary type, varbinary(n), for data that is expected to vary
greatly in length.

Because entries in binary columns are zero-padded to the column length (n), they may
require more storage space than those in varbinary columns, but they are accessed
somewhat faster.

If you do not use n to specify the length:

• The default length is 1 byte for columns created with create table, alter table, and
variables created with declare.

• The default length is 30 bytes for values created with the convert function.

Entries of More than the Maximum Column Size
Use the image datatype to store larger blocks of binary data (up to 2,147,483,647 bytes) on
external data pages.

You cannot use the image datatype for variables or for parameters in stored procedures.

See also
• text, image, and unitext Datatypes on page 25

CHAPTER 2: System and User-Defined Datatypes

22 SAP Adaptive Server Enterprise

Treatment of Trailing Zeros
All binary not null columns are padded with zeros to the full width of the column. Trailing
zeros are truncated in all varbinary data and in binary null columns, since columns that
accept null values must be treated as variable-length columns.

The following example creates a table with all four variations of binary and varbinary
datatypes, NULL, and NOT NULL. The same data is inserted in all four columns and is
padded or truncated according to the datatype of the column.

create table zeros (bnot binary(5) not null,
 bnull binary(5) null,
 vnot varbinary(5) not null,
 vnull varbinary(5) null)

insert zeros values (0x12345000, 0x12345000, 0x12345000, 0x12345000)
insert zeros values (0x123, 0x123, 0x123, 0x123)

select * from zeros
bnot bnull vnot vnull
------------ --------- ---------- ---------
0x1234500000 0x123450 0x123450 0x123450
0x0123000000 0x0123 0x0123 0x0123

Because each byte of storage holds 2 binary digits, the SAP ASE server expects binary entries
to consist of the characters “0x” followed by an even number of digits. When the “0x” is
followed by an odd number of digits, the SAP ASE server assumes that you omitted the
leading 0 and adds it for you.

Input values “0x00” and “0x0” are stored as “0x00” in variable-length binary columns
(binary null, image, and varbinary columns). In fixed-length binary (binary not
null) columns, the value is padded with zeros to the full length of the field:

insert zeros values (0x0, 0x0,0x0, 0x0)
select * from zeros where bnot = 0x00
bnot bnull vnot vnull
---------- ------ ----- ------------
0x0000000000 0x00 0x00 0x00

If the input value does not include the “0x”, the SAP ASE server assumes that the value is an
ASCII value and converts it. For example:

create table sample (col_a binary(8))

insert sample values (’002710000000ae1b’)

select * from sample
col_a

0x3030323731303030

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 23

Platform Dependence
The exact form in which you enter a particular value depends upon the platform you are using.
Therefore, calculations involving binary data can produce different results on different
machines.

You cannot use the aggregate functions dum or avg with the binary datatypes.

For platform-independent conversions between hexadecimal strings and integers, use the
inttohex and hextoint functions rather than the platform-specific convert function. For details,
see Transact-SQL Users Guide.

bit Datatype
Use the bit datatype for columns that contain true/false and yes/no types of data. The
status column in the syscolumns system table indicates the unique offset position for
bit datatype columns.

bit columns hold either 0 or 1. Integer values other than 0 or 1 are accepted, but are always
interpreted as 1.

Storage size is 1 byte. Multiple bit datatypes in a table are collected into bytes. For example,
7 bit columns fit into 1 byte; 9 bit columns take 2 bytes.

Columns with a datatype of bit cannot be NULL and cannot have indexes on them.

The bit datatype is a Transact-SQL extension.

sysname and longsysname Datatypes
sysname and longsysname are user-defined datatypes that are distributed on the SAP
ASE installation media and used in the system tables.

The definitions are:

• sysname – varchar(30) "not null"
• longsysname – varchar(255) "not null"
You can declare a column, parameter, or variable to be of types sysname and
longsysname. Alternately, you can also create a user-defined datatype with a base type of
sysname and longsysname, and then define columns, parameters, and variables with the
user-defined datatype.

All user-defined datatypes, including sysname and longsysname, are Transact-SQL
extensions.

CHAPTER 2: System and User-Defined Datatypes

24 SAP Adaptive Server Enterprise

text, image, and unitext Datatypes
text columns are variable-length columns that can hold up to 2,147,483,647 (231 - 1) bytes
of printable characters.

The variable-length unitext datatype can hold up to 1,073,741,823 Unicode characters
(2,147,483,646 bytes).

image columns are variable-length columns that can hold up to 2,147,483,647 (231 - 1) bytes
of raw binary data.

A key distinction between text and image is that text is subject to character-set
conversion if you are not using the default character set of SAP ASE. image is not subject to
character-set conversion.

Define a text, unitext, or image column as you would any other column, with a create
table or alter table statement. text, unitext, or image datatype definitions do not include
lengths. text, unitext, and image columns do permit null values. Their column
definition takes the form:

column_name {text | image | unitext} [null]

For example, the create table statement for the author’s blurbs table in the pubs2 database
with a text column, blurb, that permits null values, is:

create table blurbs
(au_id id not null,
copy text null)

This example creates a unitext column that allows null values:

create table tb (ut unitext null)

To create the au_pix table in the pubs2 database with an image column:

create table au_pix
(au_id char(11) not null,
pic image null,
format_type char(11) null,
bytesize int null,
pixwidth_hor char(14) null,
pixwidth_vert char(14) null)

The SAP ASE server stores text, unitext, and image data in a linked list of data pages
that are separate from the rest of the table. Each text, unitext, or image page stores one
logical page size worth of data (2, 4, 8, or 16K). All text, unitext, and image data for a
table is stored in a single page chain, regardless of the number of text, unitext, and
image columns the table contains.

You can place subsequent allocations for text, unitext, and image data pages on a
different logical device with sp_placeobject.

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 25

image values that have an odd number of hexadecimal digits are padded with a leading zero
(an insert of “0xaaabb” becomes “0x0aaabb”).

You can use the partition option of the alter table command to partition a table that contains
text, unitext, and image columns. Partitioning the table creates additional page chains
for the other columns in the table, but has no effect on the way the text, unitext, and
image columns are stored.

You can use unitext anywhere you use the text datatype, with the same semantics.
unitext columns are stored in UTF-16 encoding, regardless of the SAP ASE default character
set.

Data Structures Used for Storing text, unitext, and image Data
When you allocate text, unitext, or image data, a 16-byte text pointer is inserted into the row
you allocated. Part of this text pointer refers to a text page number at the head of the text,
unitext, or image data. This text pointer is known as the first text page.

The first text page contains two parts:

• The text data page chain, which contains the text and image data and is a double-linked list
of text pages

• The optional text-node structure, which is used to access the user text data

Once an first text page is allocated for text, unitext, or image data, it is never
deallocated. If an update to an existing text, unitext,or image data row results in fewer
text pages than are currently allocated for this text, unitext, or image data, the SAP
ASE server deallocates the extra text pages. If an update to text, unitext, or image data
sets the value to NULL, all pages except the first text page are deallocated.

This figure shows the relationship between the data row and the text pages.

Figure 1: Relationship Between the Text Pointer and Data Rows

In the figure, columns c_text and c_image are text and image columns containing the
pages at the bottom of the picture.

CHAPTER 2: System and User-Defined Datatypes

26 SAP Adaptive Server Enterprise

Initialize text, unitext, and image Columns
text, unitext, and image columns are not initialized until you update them or insert a
non-null value. Initialization allocates at least one data page for each non-null text, unitext, or
image data value. It also creates a pointer in the table to the location of the text, unitext, or
image data.

For example, the following statements create the table testtext and initialize the blurb
column by inserting a non-null value. The column now has a valid text pointer, and the first text
page has been allocated.

create table texttest
(title_id varchar(6), blurb text null, pub_id char(4))
insert texttest values
("BU7832", "Straight Talk About Computers is an annotated analysis of
what computers can do for you: a no-hype guide for the critical
user.", "1389")

The following statements create a table for image values and initialize the image column:

create table imagetest
(image_id varchar(6), imagecol image null, graphic_id char(4))
insert imagetest values
("94732", 0x0000008300000000000100000000013c, "1389")

Note: Surround text values with quotation marks and precede image values with the
characters “0x”.

For information on inserting and updating text, unitext, and image data with Client-
Library programs, see the Client-Library/C Reference Manual.

Define unitext Columns
You can define a unitext column the same way you define other datatypes, using create
table or alter table statements. You do not define the length of a unitext column, and the
column can be null.

This example creates a unitext column that allows null values:

create table tb (ut unitext null)

The default unicode sort order defines the sort order for unitext columns for pattern matching
in like clauses and in the patindex function, this is independent of the SAP ASE default sort
order.

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 27

Save Space by Allowing NULL
To save storage space for empty text, unitext, or image columns, define them to permit null
values and insert nulls until you use the column. Inserting a null value does not initialize a text,
unitext, or image column and, therefore, does not create a text pointer or allocate storage.

For example, the following statement inserts values into the title_id and pub_id
columns of the testtext table created above, but does not initialize the blurb text
column:
insert texttest
(title_id, pub_id) values ("BU7832", "1389")

Obtain Information from sysindexes
Each table with text, unitext, or image columns has an additional row in
sysindexes that provides information about these columns. The name column in
sysindexes uses the form “tablename.” The indid is always 255.

These columns provide information about text storage:

Column Description

ioampg Pointer to the allocation page for the text page chain

first Pointer to the first page of text data

root Pointer to the last page

segment Number of the segment where the object resides

You can query the sysindexes table for information about these columns. For example, the
following query reports the number of data pages used by the blurbs table in the pubs2
database:

select name, data_pages(db_id(), object_id("blurbs"), indid)
 from sysindexes
 where name = "tblurbs"

Note: The system tables poster shows a one-to-one relationship between sysindexes and
systabstats. This is correct, except for text and image columns, for which
information is not kept in systabstats.

Using readtext and writetext
Before you can use writetext to enter text data or readtext to read it, you must initialize the
text column.

Using update to replace existing text, unitext, and image data with NULL reclaims all
allocated data pages except the first page, which remains available for future use of writetext.
To deallocate all storage for the row, use delete to remove the entire row.

CHAPTER 2: System and User-Defined Datatypes

28 SAP Adaptive Server Enterprise

There are restrictions for using readtext and writetext on a column defined for unitext.

For more information, see readtext and writetext in the Reference Manual: Commands.

Determine How Much Space a Column Uses
sp_spaceused provides information about the space used for text data as index_size.

sp_spaceused blurbs
name rowtotal reserved data index_size unused
--------------- -------- --------- ------- ---------- ------
blurbs 6 32 KB 2 KB 14 KB 16 KB

Restrictions on text, image, and unitext Columns
You cannot use text, image, or unitext columns in some places.

• order by, compute, group by, and union clauses
• An index
• Subqueries or joins
• A where clause, except with the keyword like

In triggers, both the inserted and deleted text values reference the new value; you cannot
reference the old value.

Selecting text, unitext, and image Data
text, unitext, and image values can be quite large. When the select list includes text and
image values, the limit on the length of the data returned depends on the setting of the
@@textsize global variable, which contains the limit on the number of bytes of text or image
data a select returns.

The default limit is 32K bytes for isql; the default depends on the client software. Change the
value for a session with set textsize.

These global variables return information on text, unitext, and image data:

Variable Explanation

@@textptr The text pointer of the last text, unitext, or image column inserted or up-
dated by a process. Do not confuse this global variable with the textptr function.

@@textcolid ID of the column referenced by @@textptr.

@@textdbid ID of a database containing the object with the column referenced by @@textptr.

@@textobjid ID of the object containing the column referenced by @@textptr.

@@textsize Current value of the set textsize option, which specifies the maximum length, in
bytes, of text, unitext, or image data to be returned with a select statement. It
defaults to 32K. The maximum size for @@textsize is 231 - 1 (that is, 2,147,483,647).

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 29

Variable Explanation

@@textts Text timestamp of the column referenced by @@textptr.

Converting text and image Datatypes
You can explicitly convert text values to char, unichar, varchar, and univarchar,
and image values to binary or varbinary with the convert function, but you are limited to the
maximum length of the character and binary datatypes, which is determined by the maximum
column size for your server’s logical page size.

If you do not specify the length, the converted value has a default length of 30 bytes. Implicit
conversion is not supported.

Converting to or from Unitext
You can implicitly convert any character or binary datatype to unitext, as well as explicitly
convert to and from unitext to other datatypes. The conversion result, however, is limited to
the maximum length of the destination datatype.

When a unitext value cannot fit the destination buffer on a Unicode character boundary,
data is truncated. If you have enabled enable surrogate processing, the unitext value is never
truncated in the middle of a surrogate pair of values, which means that fewer bytes may be
returned after the datatype conversion. For example, if a unitext column ut in table tb stores
the string “U+0041U+0042U+00c2” (U+0041 representing the Unicode character “A”), this
query returns the value “AB” if the server’s character set is UTF-8, because U+00C2 is
converted to 2-byte UTF-8 0xc382:
select convert(char(3), ut) from tb

Conversion Datatypes

These datatypes convert implicitly to uni-
text

char, varchar, unichar, univarchar,
binary, varbinary, text, image

These datatypes convert implicitly from
unitext

text, image

These datatypes convert explicitly from
unitext

char, varchar, unichar, univarchar,
binary, varbinary

The alter table modify command does not support text, image, or unitext columns to be the
modified column. To migrate from a text to a unitext column:

• Use bcp out -Jutf8 out to copy text column data out

• Create a table with unitext columns
• Use bcp in -Jutf8 to insert data into the new table

CHAPTER 2: System and User-Defined Datatypes

30 SAP Adaptive Server Enterprise

Pattern Matching in text Data
Use the patindex function to search for the starting position of the first occurrence of a
specified pattern in a text, unitext, varchar, univarchar, unichar, or char
column. The % wildcard character must precede and follow the pattern (except when you are
searching for the first or last character).

You can also use the like keyword to search for a particular pattern. The following example
selects each text data value from the copy column of the blurbs table that contains the
pattern “Net Etiquette.”
select copy from blurbs
where copy like "%Net Etiquette%"

Duplicate Rows
The pointer to the text, image, and unitext data uniquely identifies each row. Therefore, a table
that contains text, image, and unitext data does not contain duplicate rows unless there are
rows in which all text, image, and unitext data is NULL. If this is the case, the pointer has not
been initialized.

Using Large Object text, unitext, and image Datatypes in Stored Procedures
The SAP ASE server allows you to declare a large object (LOB) text, image, or unitext
datatype for a local variable, and pass that variable as an input parameter to a stored procedure,
as well as prepare SQL statements that include LOB parameters.

The SAP ASE server caches SQL statements using LOB when you enable the statement
cache. See Configuring Memory in the System Administration Guide, Volume 2.

These restrictions apply to using LOBs in stored procedures.

• LOB parameters are not supported for replication.
• You cannot use LOB datatype for execute immediate and deferred compilation.

Declaring a LOB Datatype
Use the declare function to declare an LOB datatype for a local variable.

declare @variable LOB_datatype

• LOB_datatype – is one of: text, image, and unitext.

This example declares the text_variable as text datatype:

declare @text_variable text

Creating a LOB Parameter
Use the create procedure command to create an LOB parameter.

create procedure proc_name [@parameter_name LOB_datatype
as {SQL_statement}

This example creates the new_proc procedure, which uses the text LOB datatype:

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 31

create procedure new_proc @v1 text
as
select char_length(@v1)

Examples for Using LOB Datatypes
Use LOB datatypes as the input parameter for a stored procedure, or in a text function.

Example 1

Uses an LOB as the input parameter for a stored procedure:

1. Create table_1:

create table t1 (a1 int, a2 text)
 insert into t1 values(1, "aaaa")
 insert into t1 values(2, "bbbb")
 insert into t1 values(3, "cccc")

2. Create a stored procedure using an LOB local variable as a parameter:
create procedure my_procedure @new_var text
 as select @new_var

3. Declare the local variable and execute the stored procedure.
declare @a text
select @a = a2 from t1 where a1 = 3
exec my_procedure @a

cccc

Example 2

Uses an LOB variable in a text function:

declare @a text
select @a = "abcdefgh"
select datalength(@a)

 8

Example 3

Declares an LOB text local variable:
declare @a text
select @a = '<doc><item><id>1</id><name>Box</name></item>'
 +'<item><id>2</id><name>Jar</name></item></doc>'
select id from xmltable ('/doc/item' passing @a
 columns id int path 'id', name varchar(20) path 'name')
as items_table
 id

 1
 2

And then passes the same LOB parameters to a stored procedure:

CHAPTER 2: System and User-Defined Datatypes

32 SAP Adaptive Server Enterprise

create proc pr1 @a text
as
select id from xmltable ('/doc/item' passing @a
columns id int path 'id', name varchar(20) path 'name') as
items_table
declare @a text
select @a =
'<doc><item><id>1</id><name>Box</name></item>'
+'<item><id>2</id><name>Jar</name></item></doc>'
 id

 1
 2

Standards and Compliance
ANSI SQL – Compliance level: The text, image, and unitext datatypes are Transact-
SQL extensions.

Range and Storage Size
The range of valid values and storage size differ with each system-supplied datatypes.

For simplicity, the datatypes are printed in lowercase characters, although the SAP ASE server
allows you to use either uppercase or lowercase characters for system datatypes.

User-defined datatypes, such as timestamp, are case-sensitive. Most SAP ASE-supplied
datatypes are not reserved words; you can use them to name other objects.

Table 2. Range and Storage Size of Exact Numeris Integer System Datatypes

Datatype Syno-
nyms

Range Bytes of Stor-
age

bigint Whole numbers between 263 and -263 - 1 (from
-9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807, inclusive.

8

int integer 231 -1 (2,147,483,647) to -231 (-2,147,483,648 4

smallint 215 -1 (32,767) to -215 (-32,768) 2

tinyint 0 to 255 (Negative numbers are not permitted) 1

unsigned
bigint

Whole numbers between 0 and
18,446,744,073,709,551,615

8

unsigned
int

Whole numbers between 0 and 4,294,967,295 4

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 33

Datatype Syno-
nyms

Range Bytes of Stor-
age

unsigned
smallint

Whole numbers between 0 and 65535 2

Table 3. Range and Storage Size of Exact Numeric Decimal System Datatypes

Datatype Synonyms Range Bytes of storage

numeric (p,
s)

1038 -1 to -1038 2 to 17

decimal (p,
s)

dec 1038 -1 to -1038 2 to 17

Table 4. Range and Storage Size of Approximate Numeric System Datatypes

Datatype Synonyms Range Bytes of storage

float (pre-
cision)

machine dependent • 4 for default precision < 16

• 8 for default precision >=

16

double pre-
cision

machine dependent 8

real machine dependent 4

Table 5. Range and Storage Size of Money Datatypess

Data-
type

Syno-
nyms

Range Bytes of stor-
age

small-
money

214,748.3647 to -214,748.3648 4

money 922,337,203,685,477.5807 to -922,337,203,685,477.5808 8

Table 6. Range and Storage Size of Date/Time System Datatypes

Datatype Synonyms Range Bytes of stor-
age

smalldate-
time

January 1, 1900 to June 6, 2079 4

datetime January 1, 1753 to December 31, 9999 8

CHAPTER 2: System and User-Defined Datatypes

34 SAP Adaptive Server Enterprise

Datatype Synonyms Range Bytes of stor-
age

date January 1, 0001 to December 31, 9999 4

time 12:00:00AM to 11:59:59:990PM 4

bigdatetime January 1, 0001 to December 31, 9999 and
12:00.000000AM to 11:59:59.999999 PM

8

bigtime 12:00:00.000000 AM to 11:59:59.999999 PM 8

Table 7. Range and Storage Size of Character System Datatypes

Datatype Synonyms Range Bytes of storage

char(n) character pagesize n

varchar(n) character varying,
char varying

pagesize actual entry length

unichar Unicode character pagesize n * @@unicharsize
(@@unicharsize equals
2)

univarchar Unicode character varying,
char varying

pagesize actual number of charac-
ters * @@unicharsize

nchar(n) national character,
national char

pagesize n * @@ncharsize

nvarch-
ar(n)

nchar varying, na-
tional char vary-
ing, national char-
acter varying

pagesize @@ncharsize * number
of characters

text 231 -1 (2,147,483,647)
bytes or fewer

0 when uninitialized; mul-
tiple of 2K after initializa-
tion

unitext 1 – 1,073,741,823 0 when uninitialized; mul-
tiple of 2K after initializa-
tion

Table 8. Range and Storage Size of Binary System Datatypes

Datatype Syno-
nyms

Range Bytes of storage

binary(n) pagesize n

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 35

Datatype Syno-
nyms

Range Bytes of storage

varbina-
ry(n)

pagesize actual entry length

image 231 -1 (2,147,483,647) bytes or
fewer

0 when uninitialized; multiple of 2K
after initialization

Table 9. Range and Storage Size of Bit System Datatypes

Datatype Syno-
nyms

Range Bytes of storage

bit 0 or 1 1 (one byte holds up to 8 bit col-
umns)

Datatypes of Columns, Variables, or Parameters
You must declare the datatype for a column, local variable, or parameter. The datatype can be
any of the system-supplied datatypes, or any user-defined datatype in the database.

Declaring Datatypes for a Column in a Table
Declare the datatype of a new column in a create table or alter table statement.

create table [[database.]owner.]table_name
 (column_name datatype [identity | not null | null]
 [, column_name datatype [identity | not null |
 null]]...)
alter table [[database.]owner.]table_name
 add column_name datatype [identity | null
 [, column_name datatype [identity | null]...

For example:
create table sales_daily
 (stor_id char(4)not null,
 ord_num numeric(10,0)identity,
 ord_amt money null)

You can also declare the datatype of a new column in a select into statement, use convert or
cast:
select convert(double precision, x), cast (int, y) into
 newtable from oldtable

CHAPTER 2: System and User-Defined Datatypes

36 SAP Adaptive Server Enterprise

Declaring Datatypes for Local Variable in a Batch or Procedure
Use the declare function to declare the datatype for a local variable in a batch or stored
procedure.

declare @variable_name datatype
 [, @variable_name datatype]...

For example:
declare @hope money

Declaring Datatypes for a Parameter in a Stored Procedure
Use the declare function to declare the datatype for a parameter in a stored procedure.

create procedure [owner.]procedure_name [;number]
 [[(]@parameter_name datatype [= default] [output]
 [,@parameter_name datatype [= default]
 [output]]...[)]]
[with recompile]
as SQL_statements

For example:
create procedure auname_sp @auname varchar(40)
as
 select au_lname, title, au_ord
 from authors, titles, titleauthor
 where @auname = au_lname
 and authors.au_id = titleauthor.au_id
 and titles.title_id = titleauthor.title_id

Determine the Datatype of Numeric Literals
Numeric literals entered with E notation are treated as float; all others are treated as exact
numerics.

• Literals between 231 - 1 and -231 with no decimal point are treated as integer.

• Literals that include a decimal point, or that fall outside the range for integers, are treated
as numeric.

Note: To preserve backward compatibility, use E notation for numeric literals that should
be treated as float.

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 37

Determine the Datatype of Character Literals
You cannot declare the datatype of a character literal. SAP ASE treats character literals as
varchar, except those that contain characters that cannot be converted to the server’s default
character set.

Such literals are treated as univarchar. This makes it possible to perform such queries as
selecting unichar data in a server configured for “iso_1” using a “sjis” (Japanese) client.
For example:

Since the character literal cannot be represented using the char datatype (in “iso_1”), it is
promoted to the unichar datatype, and the query succeeds.

Datatypes of Mixed-Mode Expressions
When you perform concatenation or mixed-mode arithmetic on values with different
datatypes, the SAP ASE server must determine the datatype, length, and precision of the
result.

Determine the Datatype Hierarchy
Each system datatype has a datatype hierarchy, which is stored in the systypes system
table. User-defined datatypes inherit the hierarchy of the system datatype on which they are
based.

The datatype hierarchy applies only to computations or expressions involving numeric
datatypes. SAP ASE converts all terms involved first to the datatype highest in the hierarchy
before the expression is evaluated or the comparison is performed. For example, when adding
and int to a float, the resulting sum has a float datatype.

That is, the SAP ASE server considers the datetime value “20-Nov-2012 23:24:25” equal
to the date value “20-Nov-2012” since it compares only the date component (in this case, the
string “20-Nov-2012”).

This is compliant with the ANSI SQL standard.

The following query ranks the datatypes in a database by hierarchy. In addition to the
information shown below, your query results include information about any user-defined
datatypes in the database:

select name, hierarchy
 from systypes
 order by hierarchy

CHAPTER 2: System and User-Defined Datatypes

38 SAP Adaptive Server Enterprise

name hierarchy
---------- ---------
floatn 1
float 2
datetimn 3
datetime 4
real 5
numericn 6
numeric 7
decimaln 8
decimal 9
moneyn 10
money 11
smallmoney 12
smalldatet 13
intn 14
uintn 15
bigint 16
ubigint 17
int 18
uint 19
smallint 20
usmallint 21
tinyint 22
bit 23
univarchar 24
unichar 25
unitext 26
sysname 27
varchar 27
nvarchar 27
longsysnam 27
char 28
nchar 28
timestamp 29
varbinary 29
binary 30
text 31
image 32
date 33
time 34
daten 35
timen 36
bigdatetime 37
bigtime 38
bigdatetimen 39
bigtimen 40
xml 41
extended time 99

Note: u<int_type> is an internal representation. The correct syntax for unsigned types is
unsigned {int | integer | bigint | smallint }

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 39

The datatype hierarchy determines the results of computations using values of different
datatypes. The result value is assigned the datatype that is closest to the top of the list or has the
least hierarchical value.

In this example, qty from the sales table is multiplied by royalty from the roysched
table. qty is a smallint, which has a hierarchy of 20; royalty is an int, which has a
hierarchy of 18. Therefore, the datatype of the result is an int:

smallint(qty) * int(royalty) = int

Determine Precision and Scale
For numeric and decimal datatypes, each combination of precision and scale is a distinct
SAP ASE datatype.

If you perform arithmetic on two numeric or decimal values:

• n1 with precision p1 and scale s1, and
• n2 with precision p2 and scale n2

SAP ASE determines the precision and scale of the results:

Operation Precision Scale

n1 + n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 - n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 * n2 s1 + s2 + (p1 - s1) + (p2 - s2) + 1 s1 + s2

n1 / n2 max(s1 + p2 + 1, 6) + p1 - s1 + p2 max(s1 + p2 -s2 + 1, 6)

Datatype Conversions
Many conversions from one datatype to another are handled automatically by the SAP ASE
server. These are called implicit conversions. Other conversions must be performed explicitly
with the convert, hextointt, intttohex, hextobigint, bintostr, strtobin, and biginttohex
functions.

See Transact-SQL Users Guide for details about datatype conversions supported by the SAP
ASE server.

Automatic Conversion of Fixed-Length NULL Columns
Only columns with variable-length datatypes can store null values. When you create a NULL
column with a fixed-length datatype, the SAP ASE server automatically converts it to the

CHAPTER 2: System and User-Defined Datatypes

40 SAP Adaptive Server Enterprise

corresponding variable-length datatype. The SAP ASE server does not inform the user of the
datatype change.

This table lists the fixed- and variable-length datatypes to which they are converted. Certain
variable-length datatypes, such as moneyn, are reserved datatypes; you cannot use them to
create columns, variables, or parameters:

Original Fixed-Length Datatype Converted to

char varchar
unichar univarchar
nchar nvarchar
binary varbinary
datetime datetimn
date daten
time timen
float floatn
bigint, int, smallint, and tinyint intn
unsigned bigint, unsigned int, and unsigned
smallint

uintn

decimal decimaln
numeric numericn
money and smallmoney moneyn

Handling Overflow and Truncation Errors
The arithabort option determines how the SAP ASE server behaves when an arithmetic error
occurs. The two arithabort options, arithabort arith_overflow and arithabort
numeric_truncation, handle different types of arithmetic errors.

You can set each option independently, or set both options with a single set arithabort on or
set arithabort off statement.

• arithabort arith_overflow specifies behavior following a divide-by-zero error or a loss of
precision during either an explicit or an implicit datatype conversion. This type of error is
considered serious. The default setting, arithabort arith_overflow on, rolls back the entire
transaction in which the error occurs. If the error occurs in a batch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier commands in the
batch, but the SAP ASE server does not execute any statements that follow the error-
generating statement in the batch.

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 41

Setting arith_overflow to on refers to the execution time, not to the level of normalization
to which the SAP ASE server is set.
If you set arithabort arith_overflow off, the SAP ASE server aborts the statement that
causes the error, but continues to process other statements in the transaction or batch.

• arithabort numeric_truncation specifies behavior following a loss of scale by an exact
numeric datatype during an implicit datatype conversion. (When an explicit conversion
results in a loss of scale, the results are truncated without warning.) The default setting,
arithabort numeric_truncation on, aborts the statement that causes the error but continues
to process other statements in the transaction or batch. If you set arithabort
numeric_truncation off, the SAP ASE server truncates the query results and continues
processing.

The arithignore option determines whether the SAP ASE server prints a warning message
after an overflow error. By default, the arithignore option is turned off. This causes the SAP
ASE server to display a warning message after any query that results in numeric overflow. To
ignore overflow errors, use set arithignore on.

Datatypes and Encrypted Columns
Some SAP ASE datatypes support encrypted columns, as well as the on-disk length of
encrypted columns.

Datatype Input
Data
Length

Encryp-
ted Col-
umn
Type

Max En-
crypted
Data
Length
(No in-
it_vec-
tor)

Actual
Encryp-
ted Data
Length
(No in-
it_vector)

Max En-
crypted
Data
Length
(With in-
it_vec-
tor)

Actual En-
crypted
Data
Kength
(With in-
it_vector)

date 4 varbi-
nary

17 17 33 33

time 4 varbi-
nary

17 17 33 33

small-
date-
time

4 varbi-
nary

17 17 33 33

bigda-
tetime

8 varbi-
nary

17 17 33 33

bigtime 8 varbi-
nary

17 17 33 33

CHAPTER 2: System and User-Defined Datatypes

42 SAP Adaptive Server Enterprise

Datatype Input
Data
Length

Encryp-
ted Col-
umn
Type

Max En-
crypted
Data
Length
(No in-
it_vec-
tor)

Actual
Encryp-
ted Data
Length
(No in-
it_vector)

Max En-
crypted
Data
Length
(With in-
it_vec-
tor)

Actual En-
crypted
Data
Kength
(With in-
it_vector)

date-
time

8 varbi-
nary

17 17 33 33

small-
money

4 varbi-
nary

17 17 33 33

money 8 varbi-
nary

17 17 33 33

bit 8 varbi-
nary

17 17 33 33

bigint 8 varbi-
nary

17 1 7 33 33

un-
signed
bigint

8 varbi-
nary

17 17 33 33

uni-
char(10
)

2 (1 uni-
char
character)

varbi-
nary

33 17 49 33

uni-
char(10
)

20 (10
uni-
char
charac-
ters)

varbi-
nary

33 33 49 49

uni-
varch-
ar(20)

20 (10
uni-
char
charac-
ters)

varbi-
nary

49 33 65 49

The text, image, and unitext datatypes do not support encrypted columns.

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 43

User-Defined Datatypes
User-defined datatypes are built from the system datatypes and from the sysname or
longsysname user-defined datatypes.

After you create a user-defined datatype, you can use it to define columns, parameters, and
variables. Objects that are created from user-defined datatypes inherit the rules, defaults, null
type, and IDENTITY property of the user-defined datatype, as well as inheriting the defaults
and null type of the system datatypes on which the user-defined datatype is based.

You must create user-defined datatypes in each database in which they are to be used. Create
frequently used types in the model database. These types are automatically added to each
new database (including tempdb, which is used for temporary tables) as it is created.

The SAP ASE server allows you to create user-defined datatypes, based on any system
datatype, using sp_addtype. You cannot create a user-defined datatype based on another user-
defined datatype, such as timestamp or the tid datatype in the pubs2 database.

The sysname and longsysname datatypes are exceptions to this rule. Though sysname
and longsysname are user-defined datatypes, you can use them to build user-defined
datatypes.

You can create user-defined datatypes that are the maximum datatype length (versions of
Adaptive Server earlier than 15.7 SP121 restricted the length to the server page size). Use the
@@maxvarlen global variable to check the maximum possible variable length allowed when
creating a user-defined datatype.

User-defined datatypes are database objects. Their names are case-sensitive and must
conform to the rules for identifiers.

You can bind rules to user-defined datatypes with sp_bindrule and bind defaults with
sp_bindefault.

By default, objects built on a user-defined datatype inherit the user-defined datatype’s null
type or IDENTITY property. You can override the null type or IDENTITY property in a
column definition.

Use sp_rename to rename a user-defined datatype.

Use sp_droptype to remove a user-defined datatype from a database.

Note: You cannot drop a datatype that is already in use in a table.

Use sp_help to display information about the properties of a system datatype or a user-defined
datatype. You can also use sp_help to display the datatype, length, precision, and scale for
each column in a table.

The ANSI SQL compliance level for user-defined datatypes are a Transact-SQL extension.

CHAPTER 2: System and User-Defined Datatypes

44 SAP Adaptive Server Enterprise

Standards and Compliance
Transact-SQL datatypes are either ANSI SQL standards or user-defined.

Transact-SQL – ANSI SQL standards are:

• char
• varchar
• smallint
• int
• bigint
• decimal
• numeric
• float
• real
• date
• time
• double precision
Transact-SQL Extensions – user-defined datatypes are:

• binary
• varbinary
• bit
• nchar
• datetime
• smalldatetime
• bigdatetime
• bigtime
• tinyint
• unsigned smallint
• unsigned int
• unsigned bigint
• money
• smallmoney
• text
• unitext
• image
• nvarchar
• unichar

CHAPTER 2: System and User-Defined Datatypes

Reference Manual: Building Blocks 45

• univarchar
• sysname
• longsysname
• timestamp

CHAPTER 2: System and User-Defined Datatypes

46 SAP Adaptive Server Enterprise

CHAPTER 3 Transact-SQL Functions

Often used as part of a stored procedure or program, functions are allowed in the select list, in
the where clause, and anywhere an expression is allowed, and are used to return information
from the database.

See the Using Transact-SQL Functions in Queries in the Transact-SQL Users Guide for
detailed information about how to use these functions.

See XML Services for detailed information about the XML functions: xmlextract, xmlparse,
xmlrepresentation, xmltable, xmltest, and xmlvalidate.

The permission checks for Transact-SQL functions differ based on your granular permissions
settings. See the Security Administration Guide for more information on granular
permissions.

abs
Returns the absolute value of an expression.

Syntax
abs(numeric_expression)

Parameters

• numeric_expression – is a column, variable, or expression with datatype that is an exact
numeric, approximate numeric, money, or any type that can be implicitly converted to one
of these types.

Examples

• Example 1 – Returns the absolute value of -1:

select abs(-1)

 1

Usage

abs, a mathematical function, returns the absolute value of a given expression. Results are of
the same type and have the same precision and scale as the numeric expression.

See also Transact-SQL Users Guide.

Reference Manual: Building Blocks 47

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute abs.

See also
• ceiling on page 70

• floor on page 139

• round on page 232

• sign on page 253

acos
Returns the angle (in radians) of the specified cosine.

Syntax
acos(cosine)

Parameters

• cosine – is the cosine of the angle, expressed as a column name, variable, or constant of
type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples

• Example 1 – Returns the angle where the cosine is 0.52:

select acos(0.52)

 1.023945

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

48 SAP Adaptive Server Enterprise

Permissions

Any user can execute acos.

See also
• cos on page 93

• degrees on page 130

• radians on page 214

allocinfo
Returns a list of allocation pages that are stored in an object allocation map (OAM) page.

Syntax
allocinfo(db_id, page_id, "help" | "alloc pages on oam")

Parameters

• db_id – is the database ID.
• page_id – is the page ID.

• help – shows available options.

• alloc pages on oam – provides allocation page information.

Examples

• Example – Provides a list of allocation pages that are stored in an object allocation map
(OAM) page:
select allocinfo(1,888,"alloc pages on oam")

00010000000003

Usage
Mechanism to retrieve all allocation pages for a particular partition or index. Returns NULL
for an invalid page when using the alloc pages on oam option value.

Permissions
You must have sa_role to execute this command.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 49

ascii
Returns the ASCII code for the first character in an expression.

Syntax
ascii(char_expr | uchar_expr)

Parameters

• char_expr – is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples

• Example 1 – Returns the author’s last names and the ACSII codes for the first letters in
their last names, if the ASCII code is less than 70:

select au_lname, ascii(au_lname) from authors
where ascii(au_lname) < 70
 au_lname
 ------------------------------ -----------
 Bennet 66
 Blotchet-Halls 66
 Carson 67
 DeFrance 68
 Dull 68

Usage

When a string function accepts two character expressions but only one expression is
unichar, the other expression is “promoted” and internally converted to unichar. This
follows existing rules for mixed-mode expressions. However, this conversion may cause
truncation, since unichar data sometimes takes twice the space.

If char_expr or uchar_expr is NULL, returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

50 SAP Adaptive Server Enterprise

Permissions

Any user can execute ascii.

See also
• char on page 72

• to_unichar on page 290

asehostname
Returns the physical or virtual host on which the SAP ASE server is running.

Syntax
asehostname

Examples

• Example 1 – Returns the SAP ASE server host name:
select asehostname()
----------------------------------- linuxkernel.sybase.com

Standards

SQL/92 and SQL/99 compliant

Permissions

The permission checks for asehostname differ based on your granular permissions settings.

Settings Description

Granular permissions
enabled

With granular permissions enabled, you must be granted select on ase-
hostname or have manage server permission to execute asehost-

name.

Granular permissions
disabled

With granular permissions disabled, you must be granted select on ase-
hostname or be a user with sa_role to execute asehostname.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 51

asin
Returns the angle (in radians) of the specified sine.

Syntax
asin(sine)

Parameters

• sine – is the sine of the angle, expressed as a column name, variable, or constant of type
float, real, double precision, or any datatype that can be implicitly converted
to one of these types.

Examples

• Example 1 – Returns the angle of a sine of 0.52:
select asin(0.52)

 0.546851

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute asin.

See also
• degrees on page 130

• radians on page 214

• sin on page 255

CHAPTER 3: Transact-SQL Functions

52 SAP Adaptive Server Enterprise

atan
Returns the angle (in radians) of a tangent with the specified value.

Syntax
atan(tangent)

Parameters

• tangent – is the tangent of the angle, expressed as a column name, variable, or constant of
type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples

• Example 1 – Returns the angle of a tangent of 0.50:
select atan(0.50)

 0.463648

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute atan.

See also
• atn2 on page 54

• degrees on page 130

• radians on page 214

• tan on page 286

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 53

atn2
Returns the angle (in radians) of the specified sine and cosine.

Syntax
atn2(sine, cosine)

Parameters

• sine – is the sine of the angle, expressed as a column name, variable, or constant of type
float, real, double precision, or any datatype that can be implicitly converted
to one of these types.

• cosine – is the cosine of the angle, expressed as a column name, variable, or constant of
type float, real, double precision, or any datatype that can be implicitly
converted to one of these types.

Examples

• Example 1 – Returns the angle based on a sine of .50 and cosine of .48:
select atn2(.50, .48)

 0.805803

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute atn2.

See also
• atan on page 53

• degrees on page 130

• radians on page 214

• tan on page 286

CHAPTER 3: Transact-SQL Functions

54 SAP Adaptive Server Enterprise

avg
Calculates the numeric average of all (distinct) values.

Syntax
avg([all | distinct] expression)

Parameters

• all – applies avg to all values. all is the default.
• distinct – eliminates duplicate values before avg is applied. distinct is optional.
• expression – is a column name, constant, function, any combination of column names,

constants, and functions connected by arithmetic or bitwise operators, or a subquery. With
aggregates, an expression is usually a column name.

Examples

• Example 1 – Calculates the average advance and the sum of total sales for all business
books. Each of these aggregate functions produces a single summary value for all of the
retrieved rows:

select avg(advance), sum(total_sales)
from titles
where type = "business"
------------------------ -----------
 6,281.25 30788

• Example 2 – Used with a group by clause, the aggregate functions produce single values
for each group, rather than for the entire table. This statement produces summary values
for each type of book:

select type, avg(advance), sum(total_sales)
from titles
group by type
type
 ------------ ------------------------ -----------
 UNDECIDED NULL NULL
 business 6,281.25 30788
 mod_cook 7,500.00 24278
 popular_comp 7,500.00 12875
 psychology 4,255.00 9939
 trad_cook 6,333.33 19566

• Example 3 – Groups the titles table by publishers and includes only those groups of
publishers who have paid more than $25,000 in total advances and whose books average
more than $15 in price:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 55

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $25000 and avg(price) > $15
 pub_id
 ------ -------------------- --------------------
 0877 41,000.00 15.41
 1389 30,000.00 18.98

Usage

• avg, an aggregate function, finds the average of the values in a column. avg can only be
used on numeric (integer, floating point, or money) datatypes. Null values are ignored in
calculating averages.

• When you average (signed or unsigned) int, smallint, tinyint data, the SAP ASE
server returns the result as an int value. When you average (signed or unsigned) bigint
data, the SAP ASE server returns the result as a bigint value. To avoid overflow errors in
DB-Library programs, declare variables used for resultrs appropriately.

• You cannot use avg with the binary datatypes.
• Since the average value is only defined on numeric datatypes, using avg Unicode

expressions generates an error.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute avg.

See also
• Expressions on page 331

• max on page 185

• min on page 187

audit_event_name
Returns a description of an audit event.

Syntax
audit_event_name(event_id)

CHAPTER 3: Transact-SQL Functions

56 SAP Adaptive Server Enterprise

Parameters

• event_id – is the number of an audit event.

Examples

• Example 1 – Queries the audit trail for table creation events:
select * from audit_data where audit_event_name(event) = "Create
Table"

• Example 2 – Obtains current audit event values. See the Usage section below for a
complete list of audit values and their descriptions.
create table #tmp(event_id int, description varchar(255))
go
declare @a int
select @a=1
while (@a<120)
begin
 insert #tmp values (@a, audit_event_name(@a))
 select @a=@a + 1
end
select * from #tmp
go

event_id description
--------- -------------------
 1 Ad hoc Audit Record
 2 Alter Database
 ...
 104 Create Index
 105 Drop Index

Usage

The following lists the ID and name of each of the audit events:

• 1 Ad Hoc Audit record
• 2 Alter Database
• 3 Alter table
• 4 BCP In
• 5 NULL
• 6 Bind Default
• 7 Bind Message
• 8 Bind Rule
• 9 Create Database
• 10 Create Table
• 11 Create Procedure

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 57

• 12 Create Trigger
• 13 Create Rule
• 14 Create Default
• 15 Create Message
• 16 Create View
• 17 Access To Database
• 18 Delete Table
• 19 Delete View
• 20 Disk Init
• 21 Disk Refit
• 22 Disk Reinit
• 23 Disk Mirror
• 24 Disk Unmirror
• 25 Disk Remirror
• 26 Drop Database
• 27 Drop Table
• 28 Drop Procedure
• 29 Drop Trigger
• 30 Drop Rule
• 31 Drop Default
• 32 Drop Message
• 33 Drop View
• 34 Dump Database
• 35 Dump Transaction
• 36 Fatal Error
• 37 Nonfatal Error
• 38 Execution Of Stored Procedure
• 39 Execution Of Trigger
• 40 Grant Command
• 41 Insert Table
• 42 Insert View
• 43 Load Database
• 44 Load Transaction
• 45 Log In
• 46 Log Out
• 47 Revoke Command
• 48 RPC In
• 49 RPC Out
• 50 Server Boot

CHAPTER 3: Transact-SQL Functions

58 SAP Adaptive Server Enterprise

• 51 Server Shutdown
• 52 NULL
• 53 NULL
• 54 NULL
• 55 Role Toggling
• 56 NULL
• 57 NULL
• 58 NULL
• 59 NULL
• 60 NULL
• 61 Access To Audit Table
• 62 Select Table
• 63 Select View
• 64 Truncate Table
• 65 NULL
• 66 NULL
• 67 Unbind Default
• 68 Unbind Rule
• 69 Unbind Message
• 70 Update Table
• 71 Update View
• 72 NULL
• 73 Auditing Enabled
• 74 Auditing Disabled
• 75 NULL
• 76 SSO Changed Password
• 79 NULL
• 80 Role Check Performed
• 81 DBCC Command
• 82 Config
• 83 Online Database
• 84 Setuser Command
• 85 User-defined Function Command
• 86 Built-in Function
• 87 Disk Release
• 88 Set SSA Command
• 90 Connect Command
• 91 Reference
• 92 Command Text

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 59

• 93 JCS Install Command
• 94 JCS Remove Command
• 95 Unlock Admin Account
• 96 Quiesce Database Command
• 97 Create SQLJ Function
• 98 Drop SQLJ Function
• 99 SSL Administration
• 100 Disk Resize
• 101 Mount Database
• 102 Unmount Database
• 103 Login Command
• 104 Create Index
• 105 Drop Index
• 106 NULL
• 107 NULL
• 108 NULL
• 109 NULL
• 110 Deploy UDWS
• 111 Undeploy UDWS
• 115 Password Administration

Note: The SAP ASE server does not log events if audit_event_name returns NULL.

See also:

• select in Reference Manual: Commands
• sp_audit in Reference Manual: Procedures

Standards

ANSI SQL – compliance level: Transact-SQL extension.

Permissions

Any user can execute audit_event_name.

authmech
Determines what authentication mechanism is used by a specified logged in server process
ID.

Syntax
authmech ([spid])

CHAPTER 3: Transact-SQL Functions

60 SAP Adaptive Server Enterprise

Examples

• Example 1 – Returns the authentication mechanism for server process ID 42, whether
KERBEROS, LDAP, or any other mechanism:

select authmech(42)
• Example 2 – Returns the authentication mechanism for the current login’s server process

ID:

select authmech()

or

select authmech(0)
• Example 3 – Prints the authentication mechanism used for each login session:

select suid, authmech(spid)
 from sysprocesses where suid!=0

Usage

• This function returns output of type varchar from one optional argument.

• If the value of the server process ID is 0, the function returns the authentication method
used by the server process ID of the current client session.

• If no argument is specified, the output is the same as if the value of the server process ID is
0.

• Possible return values include ldap, ase, pam, and NULL.

Permissions

The permission checks for authmech differ based on your granular permissions settings.

Settings Description

Granular permis-
sions enabled

With granular permissions enabled, any user can execute authmech to query a
current personal session. You must have select permission on authmech to
query the details of another user’s session.

Granular permis-
sions disabled

With granular permissions disabled, any user can execute authmech to query a
current personal session. You must be a user with sso_role or have select
permission on authmech to query the details of another user’s session.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 61

biginttohex
Returns the platform-independent 8 byte hexadecimal equivalent of the specified integer.

Syntax
biginttohex (integer_expression)

Parameters

• integer_expression – is the integer value to be converted to a hexadecimal string.

Examples

• Example 1 – Converts the big integer -9223372036854775808 to a hexadecimal string:

1> select biginttohex(-9223372036854775808)
2> go

8000000000000000

Usage

• biginttohex, a datatype conversion function, returns the platform-independent
hexadecimal equivalent of an integer, without a “0x” prefix.

• Use the biginttohex function for platform-independent conversions of integers to
hexadecimal strings. biginttohex accepts any expression that evaluates to a bigint. It
always returns the same hexadecimal equivalent for a given expression, regardless of the
platform on which it is executed.

Permissions

Any user can execute biginttohex.

See also
• convert on page 87

• hextobigint on page 149

• hextoint on page 150

• inttohex on page 158

CHAPTER 3: Transact-SQL Functions

62 SAP Adaptive Server Enterprise

bintostr
Converts a sequence of hexadecimal digits to a string of its equivalent alphanumeric
characters or varbinary data.

Syntax
select bintostr(sequence of hexadecimal digits)

Parameters

• sequence of hexadecimal digits – is the sequence of valid hexadecimal digits, consisting
of [0 – 9], [a – f] and [A – F], and which is prefixed with “0x”.

Examples

• Example 1 – Converts the hexadecimal sequence of “0x723ad82fe” to an alphanumeric
string of the same value:

1> select bintostr(0x723ad82fe)
2> go

0723ad82fe

In this example, the in-memory representation of the sequence of hexadecimal digits and
its equivalent alphanumeric character string are:

Hexadecimal digits (5 bytes)

0 7 2 3 a d 8 2 f e

Alphanumeric character string (9 bytes)

0 7 2 3 a d 8 2 f e

The function processes hexadecimal digits from right to left. In this example, the number
of digits in the input is odd. For this reason, the alphanumeric character sequence has a
prefix of “0” and is reflected in the output.

• Example 2 – Converts the hexadecimal digits of a local variable called @bin_data to an
alphanumeric string equivalent to the value of “723ad82fe”:

declare @bin_data varchar(30)
select @bin_data = 0x723ad82fe
select bintostr(@bin_data)
go

0723ad82fe

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 63

Usage

• Any invalid characters in the input results in null as the output.
• The input must be valid varbinary data.

• A NULL input results in NULL output.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute bintostr.

See also
• strtobin on page 276

cache_usage
Returns cache usage as a percentage of all objects in the cache to which the table belongs.

Syntax
cache_usage(table_name)

Parameters

• table_name – is the name of a table. The name can be fully qualified (that is, it can include
the database and owner name).

Examples

• Example 1 – Returns percentage of the cache used by the titles tables:
select cache_usage("titles")

 98.876953

• Example 2 – Returns, from the master database, the percentage of the cache used by the
authors tables

select cache_usage ("pubs2..authors")

 98.876953

CHAPTER 3: Transact-SQL Functions

64 SAP Adaptive Server Enterprise

Usage

• cache_usage does not provide any information on how much cache the current object is
using, and does not provide information for cache usages of indexes if they are bound to
different cache.

• (In cluster environments) cache_usage provides cache usage of the cache the object is
bound to in current node.

Permissions

Any user can execute cache_usage.

case
case expression simplifies standard SQL expressions by allowing you to express a search
condition using a when...then construct instead of an if statement. It supports conditional SQL
expressions; can be used anywhere a value expression can be used.

Syntax

case and expression syntax:
case
 when search_condition then expression
 [when search_condition then expression]...
 [else expression]
end

case and value syntax:
case value
 when value then expression
 [when value then expression]...
 [else expression]
end

Parameters

• case – begins the case expression.
• when – precedes the search condition or the expression to be compared.
• search_condition – is used to set conditions for the results that are selected. Search

conditions for case expressions are similar to the search conditions in a where clause.
Search conditions are detailed in the Transact-SQL User’s Guide.

• then – precedes the expression that specifies a result value of case.
• expression and value – is a column name, a constant, a function, a subquery, or any

combination of column names, constants, and functions connected by arithmetic or
bitwise operators.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 65

• else – is optional. When not specified, else null is implied.

Examples

• Example 1 – Selects all the authors from the authors table and, for certain authors,
specifies the city in which they live:

select au_lname, postalcode,
 case
 when postalcode = "94705"
 then "Berkeley Author"
 when postalcode = "94609"
 then "Oakland Author"
 when postalcode = "94612"
 then "Oakland Author"
 when postalcode = "97330"
 then "Corvallis Author"
 end
from authors

• Example 2 – Returns the first occurrence of a non-NULL value in either the lowqty or
highqty column of the discounts table:

select stor_id, discount,
 coalesce (lowqty, highqty)
from discounts

Yuo can also use the following format to produce the same result, since coalesce is an
abbreviated form of a case expression:

select stor_id, discount,
 case
 when lowqty is not NULL then lowqty
 else highqty
 end
from discounts

• Example 3 – Selects the titles and type from the titles table. If the book type is
UNDECIDED, nullif returns a NULL value:

select title,
 nullif(type, "UNDECIDED")
from titles

You can also use the following format to produce the same result, since nullif is an
abbreviated form of a case expression:

select title,
 case
 when type = "UNDECIDED" then NULL
 else type
 end
from titles

• Example 4 – Produces an error message, because at least one expression must be
something other than the null keyword:

CHAPTER 3: Transact-SQL Functions

66 SAP Adaptive Server Enterprise

select price, coalesce (NULL, NULL, NULL)
from titles
All result expressions in a CASE expression must not be NULL.

• Example 5 – Produces an error message, because at least two expressions must follow
coalesce:
select stor_id, discount, coalesce (highqty) from discounts
A single coalesce element is illegal in a COALESCE expression.

• Example 6 – This case with values example updates salary information for employees:
update employees
 set salary =
 case dept
 when 'Video' then salary * 1.1
 when 'Music' then salary * 1.2
 else 0
 end

• Example 7 – In the movie_titles table, the movie_type column is encoded with an
integer rather than the cha(10) needed to spell out “Horror,” “Comedy,” “Romance,”
and “Western.” However, a text string is returned to applications through the use of case
expression:
select title,
 case movie_type
 when 1 then 'Horror'
 when 2 then 'Comedy'
 when 3 then 'Romance'
 when 4 then 'Western'
 else null
 end,
 our_cost
from movie_titles

Usage

• Use case with value when comparing values, where value is the value desired. If value
equals expression, then the value of the case is result. If value1 does not equal express,
valuet is compared to value2. If value equals value2, then the value of the CASE is result2.
If none of the value1 ... valuen are equal to the desired valuet, then the value of the CASE is
resultx. All of the resulti can be either a value expression or the keyword NULL. All of the
valuei must be comparable types, and all of the results must have comparable datatypes.

• If your query produces a variety of datatypes, the datatype of a case expression result is
determined by datatype hierarchy. If you specify two datatypes that the SAP ASE server
cannot implicitly convert (for example, char and int), the query fails.

See also if...else, select, where clause in Reference Manual: Commands.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 67

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute case.

See also
• Expressions on page 331

• Datatypes of Mixed-Mode Expressions on page 38

• coalesce on page 77

• nullif on page 194

cast
Converts the specified value to another datatype.

Syntax
cast (expression as datatype [(length | precision[, scale])])

Parameters

• expression – is the value to be converted from one datatype or date format to another. It
includes columns, constants, functions, any combination of constants, and functions that
are connected by arithmetic or bitwise operators orsubqueries.

When Java is enabled in the database, expression can be a value to be converted to a Java-
SQL class.

When unichar is used as the destination datatype, the default length of 30 Unicode
values is used if no length is specified.

• length – is an optional parameter used with char, nchar, unichar, univarchar,
varchar, nvarchar, binary and varbinary datatypes. If you do not supply a
length, the SAP ASE server truncates the data to 30 characters for character types and 30
bytes for binary types. The maximum allowable length for character and binary expression
is 64K.

• precision – is the number of significant digits in a numeric or decimal datatype. For float
datatypes, precision is the number of significant binary digits in the mantissa. If you do not
supply a precision, the SAP ASE server uses the default precision of 18 for numeric and
decimal datatypes.

• scale – is the number of digits to the right of the decimal point in a numeric, or decimal
datatype. If you do not supply a scale, the SAP ASE server uses the default scale of 0.

CHAPTER 3: Transact-SQL Functions

68 SAP Adaptive Server Enterprise

Examples

• Example 1 – Converts the date into a more readable datetime format:

select cast("01/03/63" as datetime)
go

 Jan 3 1963 12:00AM

(1 row affected)
• Example 2 – Converts the total_sales column in the title database to a 12-character

column:

select title, cast(total_sales as char(12))

Standards

ANSI SQL – Compliance level: ANSI compliant.

Permissions

Any user can execute cast.

Usage for cast
There are additional considerations for using cast.

• cast uses the default format for date and time datatypes.

• cast generates a domain error when the argument falls outside the range over which the
function is defined. This should happen rarely.

• You cannot use null/not null keywords to specify the resulting datatype’s nullability. You
can, however, use cast with the null value itself to achieve a nulalble result datatype. To
convert a value to a nullable datatype, you the convert() function, which does allow the use
of null/not null keywords.

• You can use cast to convert an image column to binary or varbinary. You are
limited to the maximum length of the binary datatypes that is determined by the
maximum column size for your server’s logical page size. If you do not specify the length,
the converted value has a default length of 30 characters.

• You can use unichar expressions as a destination datatype, or they can be converted to
another datatype. unichar expressions can be converted either explicitly between any
other datatype supported by the server, or implicitly.

• If you do not specify length when unichar is used as a destination type, the default
length of 30 Unicode values is used. If the length of the destination type is not large enough
to accommodate the given expression, an error message appears.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 69

Conversions Involving Java Classes
When Java is enabled in the database, you can use cast to change datatypes in a number of
ways.

• Convert Java object types to SQL datatypes.
• Convert SQL datatypes to Java types.
• Convert any Java-SQL class installed in the SAP ASE server to any other Java-SQL class

installed in the SAP ASE server if the compile-time datatype of the expression (the source
class) is a subclass or superclass of the target class.

The result of the conversion is associated with the current database.

Implicit Conversion
Implicit conversion between types when the primary fields do not match may cause data
truncation, the insertion of a default value, or an error message to be raised.

For example, when a datetime value is converted to a date value, the time portion is truncated,
leaving only the date portion. If a time value is converted to a datetime value, a default date
portion of Jan 1, 1900 is added to the new datetime value. If a date value is converted to a
datetime value, a default time portion of 00:00:00:000 is added to the datetime value.

Example of Implicit Conversion

DATE -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
TIME -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> DATE
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> TIME

Explicit Conversion
If you attempt to explicitly convert a date to a datetime, and the value is outside the
datetime range such as “Jan 1, 1000” the conversion is not allowed and an informative error
message is raised.

Example of Explicit Conversion

DATE -> UNICHAR, UNIVARCHAR
TIME -> UNICHAR, UNIVARCHAR
UNICHAR, UNIVARCHAR -> DATE
UNICHAR, UNIVARCHAR -> TIME

ceiling
Returns the smallest integer greater than or equal to the specified value.

Syntax
ceiling(value)

CHAPTER 3: Transact-SQL Functions

70 SAP Adaptive Server Enterprise

Parameters

• value – is a column, variable, or expression with a datatype is exact numeric, approximate
numeric, money, or any type that can be implicitly converted to one of these types.

Examples

• Example 1 – Returns a value of 124:

select ceiling(123.45)
124

• Example 2 – Returns a value of -123:

select ceiling(-123.45)
-123

• Example 3 – Returns a value of 24.000000:

select ceiling(1.2345E2)
24.000000

• Example 4 – Returns a value of -123.000000:

select ceiling(-1.2345E2)
-123.000000

• Example 5 – Returns a value of 124.00

select ceiling($123.45)
124.00

• Example 6 – Returns values of “discount” from the salesdetail table where
title_id is the value “PS3333”:

select discount, ceiling(discount) from salesdetail where title_id
= "PS3333"
discount
 -------------------- --------------------
 45.000000 45.000000
 46.700000 47.000000
 46.700000 47.000000
 50.000000 50.000000

Usage

ceiling, a mathematical function, returns the smallest integer that is greater than or equal to the
specified value. The return value has the same datatype as the value supplied.

For numeric and decimal values, results have the same precision as the value supplied and
a scale of zero.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 71

See also:

• set in Reference Manual: Commands.
• Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute ceiling.

See also
• abs on page 47

• floor on page 139

• round on page 232

• sign on page 253

char
Converts a single-byte integer value to a character value (char is usually used as the inverse of
ascii), returning the character equivalent of an integer.

Syntax
char(integer_expr)

Parameters

• integer_expr – is any integer (tinyint, smallint, or int) column name, variable,
or constant expression between 0 and 255.

Examples

• Example 1 –
select char(42)
-
*

• Example 2 –
select xxx = char(65)

CHAPTER 3: Transact-SQL Functions

72 SAP Adaptive Server Enterprise

xxx

A

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute char.

Usage for char
There are additional considerations for using char.

• char returns a char datatype. If the resulting value is the first byte of a multibyte
character, the character may be undefined.

• If char_expr is NULL, returns NULL.

See also Transact-SQL Users Guide.

See also
• ascii on page 50
• str on page 272

Reformatting Output With char
You can use concatenation and char values to add tabs or carriage returns to reformat output.
char(10) converts to a return; char(9) converts to a tab.

For example:
/* just a space */
select title_id + " " + title from titles where title_id = "T67061"
/* a return */
select title_id + char(10) + title from titles where title_id =
"T67061"
/* a tab */
select title_id + char(9) + title from titles where title_id =
"T67061"

T67061 Programming with Curses

T67061

Programming with Curses

T67061 Programming with Curses

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 73

char_length
Returns the number of characters in an expression.

Syntax
char_length(char_expr | uchar_expr)

Parameters

• char_expr – is a character-type column name, variable, or constant expression of char,
varchar, nchar, text_locator, unitext_locator, or nvarchar type.

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples

• Example 1 – Returns a number of characters from titles where the ID is PC9999:

select char_length(notes) from titles
 where title_id = "PC9999"

 39

• Example 2 – Returns the number of characters from three variables:

declare @var1 varchar(20), @var2 varchar(20), @char char(20)
 select @var1 = "abcd", @var2 = "abcd ", @char = "abcd"
 select char_length(@var1), char_length(@var2),
char_length(@char)
 ----------- ----------- -----------
 4 8 20

Usage

For:

• Compressed large object (LOB) columns, char_length returns the number of original
plain text characters.

• Variable-length columns and variables, char_length returns the number of characters (not
the defined length of the column or variable). If explicit trailing blanks are included in
variable-length variables, they are not stripped. For literals and fixed-length character
columns and variables, char_length does not strip the expression of trailing blanks (see
Example 2).

• unitext, unichar, and univarchar columns, char_length returns the number of
Unicode values (16-bit), with one surrogate pair counted as two Unicode values. For

CHAPTER 3: Transact-SQL Functions

74 SAP Adaptive Server Enterprise

example, this is what is returned if a unitext column ut contains row value U+0041U
+0042U+d800dc00:
select char_length(ut) from unitable

4

• Multibyte character sets, the number of characters in the expression is usually fewer than
the number of bytes; use datalength to determine the number of bytes.

• Unicode expressions, returns the number of Unicode values (not bytes) in an expression.
Surrogate pairs count as two Unicode values.

If char_expr or uchar_expr is NULL, char_length returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute char_length.

See also
• datalength on page 107

charindex
Returns an integer representing the starting position of an expression.

Syntax
charindex(expression1, expression2 [, start])

Parameters

• expression – is a binary or character column name, variable, or constant expression. Can
be char, varchar, nchar, nvarchar, unichar, univarchar, binary,
text_locator, unitext_locator, image_locator or varbinary.

• start – when specified, causes the search for expression1 to start at the given offset in
expression2. When start is not given, the search start at the beginning of expression2. start
can be an expression, but must return an integer value.

Examples

• Example 1 – Returns the position at which the character expression “wonderful” begins in
the notes column of the titles table:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 75

select charindex("wonderful", notes)
from titles
where title_id = "TC3218"

 46

• Example 2 – This query executes successfully, returning zero rows. The column
spt_values.name is defined as varchar(35):

select name
from spt_values
where charindex('NO', name, 1000) > 0

In comparison, this query does not use start, returning the position at which the character
expression “wonderful” begins in the notes column of the titles table:

select charindex("wonderful", notes)
from titles
where title_id = "TC3218"

 46

Usage

• charindex, a string function, searches expression2 for the first occurrence of expression1
and returns an integer representing its starting position. If expression1 is not found,
charindex returns 0.

• If expression1 contains wildcard characters, charindex treats them as literals.
• If expression2 is NULL, returns 0.
• If a varchar expression is given as one parameter and a unichar expression as the

other, the varchar expression is implicitly converted to unichar (with possible
truncation).

• If only one of expression1 or expression2 is a locator, the datatype of the other expression
must be implicitly convertible to the datatype of the LOB referenced by the locator.

• When expression1 is a locator, the maximum length of the LOB referenced by the locator
is 16KB.

• The start value is interpreted as the number of characters to skip before starting the search
for varchar, univarchar, text_locator, and unitext_locator datatypes,
and as the number of bytes for binary and image_locator datatypes.

• The maximum length of expression1 is 16,384 bytes.
• If a varchar expression is given as one parameter and a unichar expression as the

other, the varchar expression is implicitly converted to unichar (with possible
truncation).

See also Transact-SQL Users Guide.

CHAPTER 3: Transact-SQL Functions

76 SAP Adaptive Server Enterprise

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute charindex.

See also
• patindex on page 207

coalesce
Supports conditional SQL expressions; can be used anywhere a value expression can be used;
alternative for a case expression. coalesce expression simplifies standard SQL expressions
by allowing you to express a search condition as a simple comparison instead of using a
when...then construct.

Syntax
coalesce(expression, expression [, expression]...)

Parameters

• coalesce – evaluates the listed expressions and returns the first non-null value. If all
expressions are null, coalesce returns NULL.

• expression – is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise operators.

Examples

• Example 1 – Returns the first occurrence of a non-null value in either the lowqty or
highqty column of the discounts table:

select stor_id, discount,
 coalesce (lowqty, highqty)
from discounts

• Example 2 – An alternative way of writing the previous example:

select stor_id, discount,
 case
 when lowqty is not NULL then lowqty
 else highqty
 end
from discounts

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 77

Usage

• You can use coalesce expressions anywhere an expression in SQL.
• At least one result of the coalesce expression must return a non-null value. This example

produces the following error message:
select price, coalesce (NULL, NULL, NULL)
from titles
All result expressions in a CASE expression must not be NULL.

• If your query produces a variety of datatypes, the datatype of a case expression result is
determined by datatype hierarchy. If you specify two datatypes that the SAP ASE server
cannot implicitly convert (for example, char and int), the query fails.

• coalesce is an abbreviated form of a case expression. Example 2 describes an alternative
way of writing the coalesce statement.

• coalesce must be followed by at least two expressions. This example produces the
following error message:
select stor_id, discount, coalesce (highqty)
from discounts
A single coalesce element is illegal in a COALESCE expression.

See also case, nullif, select, if...else, where clause in Reference Manual: Commands

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute coalesce.

See also
• Expressions on page 331

• Datatypes of Mixed-Mode Expressions on page 38

col_length
Returns the defined length of a column.

Syntax
col_length(object_name, column_name)

CHAPTER 3: Transact-SQL Functions

78 SAP Adaptive Server Enterprise

Parameters

• object_name – is name of a database object, such as a table, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the database and
owner name). It must be enclosed in quotes.

• column_name – is the name of the column.

Examples

• Example 1 – Finds the length of the title column in the titles table. The “x” gives a
column heading to the result:

select x = col_length("titles", "title")
 x

 80

Usage

To find the actual length of the data stored in each row, use datalength.

For:

• text, unitext, and image columns – col_length returns 16, the length of the
binary(16) pointer to the actual text page.

• unichar columns – the defined length is the number of Unicode values declared when
the column was defined (not the number of bytes represented).

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute col_length.

See also
• datalength on page 107

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 79

col_name
Returns the name of the column where the table and column IDs are specified, and can be up to
255 bytes in length.

Syntax
col_name(object_id, column_id [, database_id])

Parameters

• object_id – is a numeric expression that is an object ID for a table, view, or other database
object. These are stored in the id column of sysobjects.

• column_id – is a numeric expression that is a column ID of a column. These are stored in
the colid column of syscolumns.

• database_id – is a numeric expression that is the ID for a database. These are stored in the
db_id column of sysdatabases.

Examples

• Example 1 – Returns the name of the column for table 208003772 and column ID 2:
select col_name(208003772, 2)

title

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute col_name.

See also
• db_id on page 123

• object_id on page 199

CHAPTER 3: Transact-SQL Functions

80 SAP Adaptive Server Enterprise

compare
Allows you to directly compare two character strings based on alternate collation rules.

Syntax
compare ({char_expression1|uchar_expression1},
 {char_expression2|uchar_expression2}),
 [{collation_name | collation_ID}]

Parameters

• char_expression1 or uchar_expression1 – are the character expressions to compare to
char_expression2 or uchar_expression 2.

• char_expression2 or uchar_expression2 – are the character expressions against which to
compare char_expression1 or uchar_expression1.

char_expression1 and char_expression2 can be:

• Character type (char, varchar, nchar, or nvarchar)

• Character variable, or
• Constant character expression, enclosed in single or double quotation marks

uchar_expression1 and uchar_expression2 can be:

• Character type (unichar or univarchar)

• Character variable, or
• Constant character expression, enclosed in single or double quotation marks

• collation_name or collation_ID – collation_name can be a quoted string or a character
variable that specifies the collation to use, while collation_ID is an integer constant or a
variable that specifies the collation to use. The valid values are:

Description Collation name Collation ID

Deafult Unicode multilingual default 20

Thai dictionary order thaidict 21

ISO14651 standard iso14651 22

UTF-16 ordering – matches UTF-8 binary ordering utf8bin 24

CP 850 Alternative – no accent altnoacc 39

CP 850 Alternative – lowercase first altdict 45

CP 850 Western European – no case preference altnocsp 46

CP 850 Scandinavian – dictionary ordering scandict 47

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 81

Description Collation name Collation ID

CP 850 Scandinavian – case-insensitive with preference scannocp 48

GB Pinyin gbpinyin n/a

Binary sort binary 50

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

Latin-1 English, French, German no case, preference nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-5 Russian no case rusnocs 59

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Cyrillic no case cyrnocs 64

ISO 8859-7 Greek dictionary elldict 65

ISO 8859-2 Hungarian dictionary hundict 69

ISO 8859-2 Hungarian no accents hunnoac 70

ISO 8859-2 Hungarian no case hunnocs 71

ISO 8859-9 Turkish dictionary turdict 72

ISO 8859-9 Turkish no accents turknoac 73

ISO 8859-9 Turkish no case turknocs 74

CP932 binary ordering cp932bin 129

Chinese phonetic ordering dynix 130

GB2312 binary ordering gb2312bn 137

Common Cyrillic dictionary cyrdict 140

Turkish dictionary turdict 155

EUCKSC binary ordering euckscbn 161

Chinese phonetic ordering gbpinyin 163

CHAPTER 3: Transact-SQL Functions

82 SAP Adaptive Server Enterprise

Description Collation name Collation ID

Russian dictionary ordering rusdict 165

SJIS binary ordering sjisbin 179

EUCJIS binary ordering eucjisbn 192

BIG5 binary ordering big5bin 194

Shift-JIS binary order sjisbin 259

Examples

• Example 1 – Compares aaa and bbb:

1> select compare ("aaa","bbb")
2> go

 -1
(1 row affected)

Alternatively, you can also compare aaa and bbb using this format:

1> select compare (("aaa"),("bbb"))
2> go

 -1
(1 row affected)

• Example 2 – Compares aaa and bbb and specifies binary sort order:

1> select compare ("aaa","bbb","binary")
2> go

 -1
(1 row affected)

Alternatively, you can compare aaa and bbb using this format, and the collation ID
instead of the collation name:

1> select compare (("aaa"),("bbb"),(50))
2> go

 -1
(1 row affected)

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 83

Permissions

Any user can execute compare.

Usage for compare
There are additional considerations for using compare.

• The compare function returns the following values, based on the collation rules that you
chose:
• 1 – indicates that char_expression1 or uchar_expression1 is greater than

char_expression2 or uchar_expression2.
• 0 – indicates that char_expression1 or uchar_expression1 is equal to char_expression2

or uchar_expression2.
• -1 – indicates that char_expression1 or uchar_expression1 is less than

char_expression2 or uchar expression2.
• char_expression1, uchar_expression1, and char_expression2, uchar_expression2 must be

characters that are encoded in the server’s default character set.
• char_expression1, uchar_expression 1, or char_expression2, uchar_expression2, or both,

can be empty strings:
• If char_expression2 or uchar_expression2 is empty, the function returns 1.
• If both strings are empty, then they are equal, and the function returns 0.
• If char_expression1 or uchar_expression 1 is empty, the function returns -1.
The compare function does not equate empty strings and strings containing only spaces.
compare uses the sortkey function to generate collation keys for comparison. Therefore, a
truly empty string, a string with one space, or a string with two spaces do not compare
equally.

• If either char_expression1, uchar_expression1; or char_expression2, uchar_expression2
is NULL, then the result is NULL.

• If a varchar expression is given as one parameter and a unichar expression is given as
the other, the varchar expression is implicitly converted to unichar (with possible
truncation).

• If you do not specify a value for collation_name or collation_ID, compare assumes binary
collation.

Table 10. Valid Values for collation_name and collation_ID

Description Collation Name Collation ID

Default Unicode multilingual default 20

Thai dictionary order thaidict 21

ISO14651 standard iso14651 22

UTF-16 ordering – matches UTF-8 binary ordering utf8bin 24

CHAPTER 3: Transact-SQL Functions

84 SAP Adaptive Server Enterprise

Description Collation Name Collation ID

CP 850 Alternative – no accent altnoacc 39

CP 850 Alternative – lowercase first altdict 45

CP 850 Western European – no case preference altnocsp 46

CP 850 Scandinavian – dictionary ordering scandict 47

CP 850 Scandinavian – case-insensitive with preference scannocp 48

GB Pinyin gbpinyin n/a

Binary sort binary 50

Latin-1 English, French, German dictionary dict 51

Latin-1 English, French, German no case nocase 52

Latin-1 English, French, German no case, preference nocasep 53

Latin-1 English, French, German no accent noaccent 54

Latin-1 Spanish dictionary espdict 55

Latin-1 Spanish no case espnocs 56

Latin-1 Spanish no accent espnoac 57

ISO 8859-5 Russian dictionary rusdict 58

ISO 8859-5 Russian no case rusnocs 59

ISO 8859-5 Cyrillic dictionary cyrdict 63

ISO 8859-5 Cyrillic no case cyrnocs 64

ISO 8859-7 Greek dictionary elldict 65

ISO 8859-2 Hungarian dictionary hundict 69

ISO 8859-2 Hungarian no accents hunnoac 70

ISO 8859-2 Hungarian no case hunnocs 71

ISO 8859-9 Turkish dictionary turdict 72

ISO 8859-9 Turkish no accents turknoac 73

ISO 8859-9 Turkish no case turknocs 74

CP932 binary ordering cp932bin 129

Chinese phonetic ordering dynix 130

GB2312 binary ordering gb2312bn 137

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 85

Description Collation Name Collation ID

Common Cyrillic dictionary cyrdict 140

Turkish dictionary turdict 155

EUCKSC binary ordering euckscbn 161

Chinese phonetic ordering gbpinyin 163

Russian dictionary ordering rusdict 165

SJIS binary ordering sjisbin 179

EUCJIS binary ordering eucjisbn 192

BIG5 binary ordering big5bin 194

Shift-JIS binary order sjisbin 259

See also
• sortkey on page 256

Maximum Row and Column Length for APL and DOL
compare can generate up to six bytes of collation information for each input character.
Therefore, the result from using compare may exceed the length limit of the varbinary
datatype. If this happens, the result is truncated to fit.

The SAP ASE server issues a warning message, but the query or transaction that contained the
compare function continues to run. Since this limit is dependent on the logical page size of
your server, truncation removes result bytes for each input character until the result string is
less than the following for DOL and APL tables:

Table 11. APL Tables

Page Size Maximum Row Length Maximum Column
Length

2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

CHAPTER 3: Transact-SQL Functions

86 SAP Adaptive Server Enterprise

Table 12. DOL Tables

Page Size Maximum Row Length Maximum Column
Length

2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes if table does not in-
clude any variable length col-
umns

16K (16384 bytes) 16300 (subject to a max start
offset of varlen = 8191)

8191-6-2 = 8183 bytes if table
includes at least on variable
length column.This size in-
cludes six bytes for the row
overhead and two bytes for the
row length field

convert
Converts the specified value to another datatype or a different datetime display format.

Syntax
convert (datatype [(length) | (precision[, scale])]
 [null | not null], expression [, style])

Parameters

• datatype – is the system-supplied datatype (for example, char(10), unichar (10),
varbinary (50), or int) into which to convert the expression. You cannot use user-
defined datatypes.

When Java is enabled in the database, datatype can also be a Java-SQL class in the current
database.

• length – is an optional parameter used with char, nchar, unichar, univarchar,
varchar, nvarchar, binary, and varbinary datatypes. If you do not supply a
length, the SAP ASE server truncates the data to 30 characters for the character types and
30 bytes for the binary types. The maximum allowable length for character and binary
expression is 64K.

• precision – is the number of significant digits in a numeric or decimal datatype. For
float datatypes, precision is the number of significant binary digits in the mantissa. If

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 87

you do not supply a precision, the SAP ASE server uses the default precision of 18 for
numeric and decimal datatypes.

• scale – is the number of digits to the right of the decimal point in a numeric, or decimal
datatype. If you do not supply a scale, the SAP ASE server uses the default scale of 0.

• null | not null – specifies the nullabilty of the result expression. If you do not supply either
null or not null, the converted result has the same nullability as the expression.

• expression – is the value to be converted from one datatype or date format to another.

When Java is enabled in the database, expression can be a value to be converted to a Java-
SQL class.

When unichar is used as the destination datatype, the default length of 30 Unicode
values is used if no length is specified.

• style – is the display format to use for the converted data. When converting money or
smallmoney data to a character type, use a style of 1 to display a comma after every 3
digits.

When converting datetime or smalldatetime data to a character type, use the style
numbers in the following table to specify the display format. Values in the left-most
column display 2-digit years (yy). For 4-digit years (yyyy), add 100, or use the value in the
middle column.

When converting date data to a character type, use style numbers 1 through 7 (101
through 107) or 10 through 12 (110 through 112) in the following table to specify the
display format. The default value is 100 (mon dd yyyy hh:miAM (or PM)). If date data is
converted to a style that contains a time portion, that time portion reflects the default value
of zero.

When converting time data to a character type, use style number 8 or 9 (108 or 109) to
specify the display format. The default is 100 (mon dd yyyy hh:miAM (or PM)). If time
data is converted to a style that contains a date portion, the default date of Jan 1, 1900 is
displayed.

Table 13. Date Format Conversions Using the style Parameter

Without
Century
(yy)

With Century
(yyyy)

Standard Output

- 0 or 100 Default mon dd yyyy hh:mm AM (or PM)

1 101 USA mm/dd/yy

2 2 SQL standard yy.mm.dd

3 103 English/French dd/mm/yy

4 104 German dd.mm.yy

CHAPTER 3: Transact-SQL Functions

88 SAP Adaptive Server Enterprise

Without
Century
(yy)

With Century
(yyyy)

Standard Output

5 105 dd-mm-yy

6 106 dd mon yy

7 107 mon dd, yy

8 108 HH:mm:ss

- 9 or 109 Default + millisec-
onds

mon dd yyyy hh:mm:ss AM (or PM)

10 110 USA mm-dd-yy

11 111 Japan yy/mm/dd

12 112 ISO yymmdd

13 113 yy/dd/mm

14 114 mm/yy/dd

14 114 hh:mi:ss:mmmAM(or PM)

15 115 dd/yy/mm

- 16 or 116 mon dd yyyy HH:mm:ss

17 117 hh:mmAM

18 118 HH:mm

19 hh:mm:ss:zzzAM

20 hh:mm:ss:zzz

21 yy/mm/dd HH:mm:ss

22 yy/mm/dd HH:mm AM (or PM)

23 yyyy-mm-ddTHH:mm:ss

36 136 hh:mm:ss.zzzzzzAM(PM)

37 137 hh:mm.ss.zzzzzz

38 138 mon dd yyyy hh:mm:ss.zzzzzzAM(PM)

39 139 mon dd yyyy hh:mm:ss.zzzzzz

40 140 yyyy-mm-dd hh:mm:ss.zzzzzz

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 89

“mon” indicates a month spelled out, “mm” the month number or minutes. “HH ”indicates
a 24-hour clock value, “hh” a 12-hour clock value. The last row, 23, includes a literal “T” to
separate the date and time portions of the format.Styles 24–35 are undefined.

The default values (style 0 or 100), and style 9 or 109 return the century (yyyy). When
converting to char or varchar from smalldatetime, styles that include seconds or
milliseconds show zeros in those positions.

Examples

• Example 1 – Converts the specified value in title to another datatype display format:

select title, convert(char(12), total_sales)
from titles

• Example 2 – Converts the title and total sales from title:

select title, total_sales
from titles
where convert(char(20), total_sales) like "1%"

• Example 3 – Converts the current date to style 3, dd/mm/yy:

select convert(char(12), getdate(), 3)
• Example 4 – If the value pubdate can be null, you must use varchar rather than

char, or errors may result:

select convert(varchar(12), pubdate, 3) from titles
• Example 5 – Returns the integer equivalent of the string “0x00000100”. Results can vary

from one platform to another:

select convert(integer, 0x00000100)
• Example 6 – Returns the platform-specific bit pattern as an SAP binary type:

select convert (binary, 10)
• Example 7 – Returns 1, the bit string equivalent of $1.11:

select convert(bit, $1.11)
• Example 8 – Creates #tempsales with total_sales of datatype char(100), and

does not allow null values. Even if titles.total_sales was defined as allowing
nulls, #tempsales is created with #tempsales.total_sales not allowing null
values:

select title, convert (char(100) not null, total_sales) into
#tempsales
from titles

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

90 SAP Adaptive Server Enterprise

Permissions

Any user can execute convert.

Usage for convert
There are additional considerations for using convert.

• convert, a datatype conversion function, converts between a wide variety of datatypes and
reformats date/time and money data for display purposes.

• If they are compressed, convert decompresses large object (LOB) columns before
converting them to other datatypes.

• convert – returns the specified value, converted to another datatype or a different datetime
display format. When converting from unitext to other character and binary datatypes, the
result is limited to the maximum length of the destination datatype. If the length is not
specified, the converted value has a default size of 30 bytes. If you are using enabled
enable surrogate processing, a surrogate pair is returned as a whole. For example, this is
what is returned if you convert a unitext column that contains data U+0041U+0042U
+20acU+0043 (stands for “AB ı”) to a UTF-8 varchar(3) column:

select convert(varchar(3), ut) from untable

AB

• convert generates a domain error when the argument falls outside the range over which the
function is defined. This should happen rarely.

• Use null or not null to specify the nullability of a target column. Specifically, this can be
used with select into to create a new table and change the datatype and nullability of
existing columns in the source table (See Example 8, above).
The result is an undefined value if:
• The expression being converted is to a not null result.
• The expression’s value is null.
Use the following select statement to generate a known non-NULL value for predictable
results:
select convert(int not null isnull(col2, 5)) from table1

• You can use convert to convert an image column to binary or varbinary. You are
limited to the maximum length of the binary datatypes, which is determined by the
maximum column size for your server’s logical page size. If you do not specify the length,
the converted value has a default length of 30 characters.

• You can use unichar expressions as a destination datatype or you can convert them to
another datatype. unichar expressions can be converted either explicitly between any
other datatype supported by the server, or implicitly.

• If you do not specify the length when unichar is used as a destination type, the default
length of 30 Unicode values is used. If the length of the destination type is not large enough
to accommodate the given expression, an error message appears.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 91

See also Transact-SQL Users Guide; Java in Adaptive Server Enterprise for a list of allowed
datatype mappings and more information about datatype conversions involving Java classes.

See also
• User-Defined Datatypes on page 44

• hextoint on page 150

• inttohex on page 158

Conversions Involving Java classes
When Java is enabled in the database, you can use convert to change datatypes in a number of
ways.

• Convert Java object types to SQL datatypes.
• Convert SQL datatypes to Java types.
• Convert any Java-SQL class installed in the SAP ASE server to any other Java-SQL class

installed in the SAP ASE server if the compile-time datatype of the expression (the source
class) is a subclass or superclass of the target class.

The result of the conversion is associated with the current database.

Implicit Conversion
Implicit conversion between types when the primary fields do not match may cause data
truncation, the insertion of a default value, or an error message to be raised.

For example, when a datetime value is converted to a date value, the time portion is truncated,
leaving only the date portion. If a time value is converted to a datetime value, a default date
portion of Jan 1, 1900 is added to the new datetime value. If a date value is converted to a
datetime value, a default time portion of 00:00:00:000 is added to the datetime value.

Example of Implicit Conversion

DATE -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
TIME -> VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> DATE
VARCHAR, CHAR, BINARY, VARBINARY, DATETIME, SMALLDATETIME -> TIME

Explicit Conversion
If you attempt to explicitly convert a date to a datetime and the value is outside the
datetime range, such as “Jan 1, 1000” the conversion is not allowed and an informative
error message is raised.

Example of Explicit Conversioan

DATE -> UNICHAR, UNIVARCHAR
TIME -> UNICHAR, UNIVARCHAR
UNICHAR, UNIVARCHAR -> DATE
UNICHAR, UNIVARCHAR -> TIME

CHAPTER 3: Transact-SQL Functions

92 SAP Adaptive Server Enterprise

cos
Returns the cosine of the angle specified in radians.

Syntax
cos(angle)

Parameters

• angle – is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

Examples

• Example 1 – Returns the cosine of 44:
select cos(44)
 0.999843

Usage

cos, a mathematical function, returns the cosine of the specified angle, in radians.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute cos.

cot
Returns the cotangent of the angle specified in radians.

Syntax
cot(angle)

Parameters

• angle – is any approximate numeric (float, real, or double precision) column
name, variable, or constant expression.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 93

Examples

• Example 1 – Returns the cotangent of 90:
select cot(90)

 -0.501203

Usage

cot, a mathematical function, returns the cotangent of the specified angle, in radians.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute cot.

See also
• degrees on page 130

• radians on page 214

• sin on page 255

count
Returns the number of (distinct) non-null values, or the number of selected rows as an integer.

Syntax
count([all | distinct] expression)

Parameters

• all – applies count to all values. all is the default.
• distinct – eliminates duplicate values before count is applied. distinct is optional.
• expression – is a column name, constant, function, any combination of column names,

constants, and functions connected by arithmetic or bitwise operators, or a subquery. With
aggregates, an expression is usually a column name.

CHAPTER 3: Transact-SQL Functions

94 SAP Adaptive Server Enterprise

Examples

• Example 1 – Finds the number of different cities in which authors live:

select count(distinct city)
from authors

• Example 2 – Lists the types in the titles table, but eliminates the types that include
only one book or none:

select type
from titles
group by type
having count(*) > 1

Usage

• When distinct is specified, count finds the number of unique non-null values. count can be
used with all datatypes, including unichar, but cannot be used with text and image.
Null values are ignored when counting.

• count(column_name) returns a value of 0 on empty tables, on columns that contain only
null values, and on groups that contain only null values.

• count(*) finds the number of rows. count(*) does not take any arguments, and cannot be
used with distinct. All rows are counted, regardless of the presence of null values.

• When tables are being joined, include count(*) in the select list to produce the count of the
number of rows in the joined results. If the objective is to count the number of rows from
one table that match criteria, use count(column_name).

• You can use count as an existence check in a subquery. For example:
select * from tab where 0 <
 (select count(*) from tab2 where ...)

However, because count counts all matching values, exists or in may return results faster.
For example:
select * from tab where exists
 (select * from tab2 where ...)

See also Transact-SQL Users Guide, and compute, group by and having clauses, select,
where in Reference Manual: Commands

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute count.

See also
• Expressions on page 331

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 95

count_big
Returns the number of (distinct) non-null values, or the number of selected rows as a
bigint.

Syntax
count_big([all | distinct] expression)

Parameters

• all – applies count_big to all values. all is the default.
• distinct – eliminates duplicate values before count_big is applied. distinct is optional.
• expression – is a column name, constant, function, any combination of column names,

constants, and functions connected by arithmetic or bitwise operators, or a subquery. With
aggregates, an expression is usually a column name.

Examples

• Example 1 – Finds the number of occurances of name in systypes:

1> select count_big(name) from systypes
2> go

42

Usage

• When distinct is specified, count_big finds the number of unique non-null values. Null
values are ignored when counting.

• count_big(column_name) returns a value of 0 on empty tables, on columns that contain
only null values, and on groups that contain only null values.

• count_big(*) finds the number of rows. count_big(*) does not take any arguments, and
cannot be used with distinct. All rows are counted, regardless of the presence of null
values.

• When tables are being joined, include count_big(*) in the select list to produce the count of
the number of rows in the joined results. If the objective is to count the number of rows
from one table that match criteria, use count_big(column_name).

• You can use count_big as an existence check in a subquery. For example:
select * from tab where 0 <
 (select count_big(*) from tab2 where ...)

However, because count_big counts all matching values, exists or in may return results
faster. For example:

CHAPTER 3: Transact-SQL Functions

96 SAP Adaptive Server Enterprise

select * from tab where exists
 (select * from tab2 where ...)

See also compute clause, group by and having clauses, select, where clause commands in
Reference Manual: Commands

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute count_big.

create_locator
Explicitly creates a locator for a specified LOB then returns the locator.

The locator created by create_locator is valid only for the duration of the transaction
containing the query that used create_locator. If no transaction was started, then the locator is
valid only until the query containing the create_locator completes execution

Syntax
create_locator (datatype, lob_expression)

Parameters

• datatype – is the datatype of the LOB locator. Valid values are:

• text_locator
• unitext_locator
• image_locator

• lob_expression – is a LOB value of datatype text, unitext, or image.

Examples

• Example 1 – Creates a text locator from a simple text expression:
select create_locator(text_locator, convert (text, "abc"))

• Example 2 – Creates a local variable @v of type text_locator, and then creates a
locator using @v as a handle to the LOB stored in the textcol column of
my_table.

declare @v text_locator

 select @v = create_locator(text_locator, textcol) from
my_table where id=10

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 97

Usage

See also deallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute create_locator.

See also
• locator_literal on page 173

• locator_valid on page 174

• return_lob on page 223

current_bigdatetime
Finds the current date as it exists on the server, and returns a bigtime value representing the
current time with microcecond precision. The accuracy of the current time portion is limited
by the accuracy of the system clock.

Syntax
current_bigdatetime()

Examples

• Example 1 – Find the current bigdatetime:
select current_bigdatetime())

Nov 25 1995 10:32:00.010101AM

• Example 2 – Find the current bigdatetime:
select datepart(us, current_bigdatetime())

010101

Usage

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL – Compliance level: Entry-level compliant.

Permissions

Any user can execute current_date.

CHAPTER 3: Transact-SQL Functions

98 SAP Adaptive Server Enterprise

See also
• Date and Time Datatypes on page 11
• dateadd on page 108
• datediff on page 111
• datepart on page 116
• datename on page 114
• current_bigtime on page 99

current_bigtime
Finds the current date as it exists on the server, and returns a bigtime value representing the
current time with microcecond precision. The accuracy of the current time portion is limited
by the accuracy of the system clock.

Syntax
current_bigtime()

Examples

• Example 1 – Finds the current bigtime:
select current_bigtime())

10:32:00.010101AM

• Example 2 – Finds the current bigtime:
select datepart(us, current_bigtime())

01010

Usage

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL – Compliance level: Entry-level compliant.

Permissions

Any user can execute current_date.

See also
• Date and Time Datatypes on page 11
• dateadd on page 108

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 99

• datediff on page 111
• datepart on page 116
• datename on page 114
• current_bigdatetime on page 98

current_date
Finds and returns the current date as it exists on the server.

Syntax
current_date()

Examples

• Example 1 – Identifies the current date with datename:

1> select datename(month, current_date())
2> go

August

• Example 2 – Identifies the current date with datepart:

1> select datepart(month, current_date())
2> go

8

(1 row affected)

Usage

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL – Compliance level: Entry-level compliant.

Permissions

Any user can execute current_date.

See also
• Date and Time Datatypes on page 11
• dateadd on page 108
• datename on page 114

CHAPTER 3: Transact-SQL Functions

100 SAP Adaptive Server Enterprise

• datepart on page 116
• getdate on page 143

current_time
Finds and returns the current time as it exists on the server.

Syntax
current_time()

Examples

• Example 1 – Finds the current time:

1> select current_time()
2> go

 12:29PM

(1 row affected)
• Example 2 – Use with datename:

1> select datename(minute, current_time())
2> go

45

(1 row affected)

Usage

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL – Compliance level: Entry-level compliant.

Permissions

Any user can execute current_time.

See also
• Date and Time Datatypes on page 11
• dateadd on page 108
• datename on page 114
• datepart on page 116

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 101

• getdate on page 143

curunreservedpgs
Displays the number of free pages in the specified disk piece.

Syntax
curunreservedpgs (dbid, lstart, unreservedpgs)

Parameters

• dbid – is the ID for a database. These are stored in the db_id column of
sysdatabases.

• lstart – is the starting logical page number for the disk piece for which you are retrieving
data. lstart uses an unsigned int datatype.

• unreservedpgs – is the default value curunreservedpgs returns if no in-memory data is
available. unreservedpgs uses an unsigned int datatype.

Examples

• Example 1 – Returns the database name, device name, and the number of unreserved
pages for each device fragment

If a database is open, curunreservedpgs takes the value from memory. If it is not in use,
the value is taken from the third parameter you specify in curunreservedpgs. In this
example, the value comes from the unreservedpgs column in the sysusages table.

select
(dbid), d.name,
 curunreservedpgs(dbid, lstart, unreservedpgs)
 from sysusages u, sysdevices d
where u.vdevno=d.vdevno
and d.status &2 = 2
 name
 ------------------------------ -------------------------- ------

master master 1634
tempdb master 423
model master 423
pubs2 master 72
sybsystemdb master 399
sybsystemprocs master 6577
sybsyntax master 359

(7 rows affected)

CHAPTER 3: Transact-SQL Functions

102 SAP Adaptive Server Enterprise

• Example 2 – Displays the number of free pages on the segment for dbid starting on
sysusages.lstart:

select curunreservedpgs (dbid, sysusages.lstart, 0)

Usage

If a database is open, the value returned by curunreservedpgs is taken from memory. If it is
not in use, the value is taken from the third parameter you specify in curunreservedpgs.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute curunreservedpgs.

See also
• db_id on page 123

• lct_admin on page 166

data_pages
Returns the number of pages used by the specified table, index, or a specific partition. The
result does not include pages used for internal structures.

This function replaces data_pgs and ptn_data_pgs from versions of SAP ASE earlier than
15.0.

Syntax
data_pages(dbid, object_id [, indid [, ptnid]])

Parameters

• dbid – is the database ID of the database that contains the data pages.
• object_id – is an object ID for a table, view, or other database object. These are stored in the

id column of sysobjects.

• indid – is the index ID of the target index.
• ptnid – is the partition ID of the target partition.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 103

Examples

• Example 1 – Returns the number of pages used by the object with a object ID of 31000114
in the specified database (including any indexes):

select data_pages(5, 31000114)
• Example 2 – (In cluster environments) Returns the number of pages used by the object in

the data layer, regardless of whether or not a clustered index exists:

select data_pages(5, 31000114, 0)
• Example 3 – (In cluster environments) Returns the number of pages used by the object in

the index layer for a clustered index. This does not include the pages used by the data
layer:

select data_pages(5, 31000114, 1)
• Example 4 – Returns the number of pages used by the object in the data layer of the

specific partition, which in this case is 2323242432:

select data_pages(5, 31000114, 0, 2323242432)

Usage

In the case of an APL (all-pages lock) table, if a clustered index exists on the table, then
passing in an indid of:

• 0 – reports the data pages.
• 1 – reports the index pages.

All erroneous conditions return a value of zero, such as when the object_id does not exist in the
current database, or the targeted indid or ptnid cannot be found.

Instead of consuming resources, data_pages discards the descriptor for an object that is not
already in the cache.

See also sp_spaceused in Reference Manual: Procedures.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute data_pages.

See also
• object_id on page 199

• row_count on page 233

CHAPTER 3: Transact-SQL Functions

104 SAP Adaptive Server Enterprise

datachange
Measures the amount of change in the data distribution since update statistics last ran.
Specifically, it measures the number of inserts, updates, and deletes that have occurred on
the given object, partition, or column, and helps you determine if invoking update statistics
would benefit the query plan.

Syntax
datachange(object_name, partition_name, column_name)

Parameters

• object_name – is the object name in the current database.
• partition_name – is the data partition name. This value can be null.
• column_name – is the column name for which the datachange is requested. This value

can be null.

Examples

• Example 1 – Provides the percentage change in the au_id column in the author_ptn
partition:
select datachange("authors", "author_ptn", "au_id")

• Example 2 – Provides the percentage change in the authors table on the au_ptn
partition. The null value for the column_name parameter indicates that this checks all
columns that have historgram statistics and obtains the maximum datachange value from
among them.
select datachange("authors", "au_ptn", null)

Permissions

Any user can execute datachange.

Usage for datachange
There are additional considerations for using datachange.

• The datachange function requires all three parameters.
• datachange is a measure of the inserts, deletes and updates but it does not count them

individually. datachange counts an update as a delete and an insert, so each update
contributes a count of 2 towards the datachange counter.

• The datachange built-in returns the datachange count as a percent of the number of rows,
but it bases this percentage on the number of rows remaining, not the original number of

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 105

rows. For example, if a table has five rows and one row is deleted, datachange reports a
value of 25 % since the current row count is 4 and the datachange counter is 1.

• datachange is expressed as a percentage of the total number of rows in the table, or
partition if you specify a partition. The percentage value can be greater than 100 percent
because the number of changes to an object can be much greater than the number of rows in
the table, particularly when the number of deletes and updates happening to a table is very
high.

• The value that datachange displays is the in-memory value. This can differ from the on-
disk value because the on-disk value gets updated by the housekeeper, when you run
sp_flushstats, or when an object descriptor gets flushed.

• The datachange values is not reset when histograms are created for global indexes on
partitioned tables.

• Instead of consuming resources, datachange discards the descriptor for an object that is
not already in the cache.

datachange is reset or initialized to zero when:

• New columns are added, and their datachange value is initialized.
• New partitions are added, and their datachange value is initialized.
• Data-partition-specific histograms are created, deleted or updated. When this occurs, the

datachange value of the histograms is reset for the corresponding column and partition.
• Data is truncated for a table or partition, and its datachange value is reset
• A table is repartitioned either directly or indirectly as a result of some other command, and

the datachange value is reset for all the table’s partitions and columns.
• A table is unpartitioned, and the datachange value is reset for all columns for the table.

Restrictions for datachange
datachange has the following restrictions:

• datachange statistics are not maintained on tables in system tempdbs, user-defined
tempdbs, system tables, or proxy tables.

• datachange updates are non-transactional. If you roll back a transaction, the datachange
values are not rolled back, and these values can become inaccurate.

• If memory allocation for column-level counters fails, the SAP ASE server tracks partition-
level datachange values instead of column-level values.

• If the SAP ASE server does not maintain column-level datachange values, it then resets
the partition-level datachange values whenever the datachange values for a column are
reset.

CHAPTER 3: Transact-SQL Functions

106 SAP Adaptive Server Enterprise

datalength
Returns the actual length, in bytes, of the specified column or string.

Syntax
datalength(expression)

Parameters

• expression – is a column name, variable, constant expression, or a combination of any of
these that evaluates to a single value. expression can be of any datatype, an is usually a
column name. If expression is a character constant, it must be enclosed in quotes.

Examples

• Example 1 – Finds the length of the pub_name column in the publishers table:

select Length = datalength(pub_name)
from publishers
Length

 13
 16
 20

Usage

• datalength returns the uncompressed length of a large object column, even when the
column is compressed.

• For columns defined for the Unicode datatype, datalength returns the actual number of
bytes of the data stored in each row. For example, this is what is returned if a unitext
column ut contains row value U+0041U+0042U+d800dc00:

select datalength(ut) from unitable

8

• datalength finds the actual length of the data stored in each row. datalength is useful on
varchar, univarchar, varbinary, text, and image datatypes, since these
datatypes can store variable lengths (and do not store trailing blanks). When a char or
unichar value is declared to allow nulls, the SAP ASE server stores it internally as
varchar or univarchar. For all other datatypes, datalength reports the defined
length.

• datalength accepts the text_locator, unitext_locator, and
image_locator LOB datatypes.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 107

• datalength of any NULL data returns NULL.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute datalength.

See also
• char_length on page 74

• col_length on page 78

dateadd
Adds an interval to a specified date or time.

Syntax
dateadd(date_part, integer, {date | time | bigtime | datetime, |
bigdatetime})

Parameters

• date_part – is a date part or abbreviation. For a list of the date parts and abbreviations
recognized by the SAP ASE server, see Transact-SQL Users Guide.

• numeric – is an integer expression.
• date expression – is an expression of type datetime, smalldatetime,

bigdatetime, bigtime, date, time, or a character string in a datetime format.

Examples

• Example 1 – Adds one million microseconds to a bigtime:

declare @a bigtime
select @a = "14:20:00.010101"
select dateadd(us, 1000000, @a)

2:20:01.010101PM

• Example 2 – Adds 25 hours to a bigdatetime and the day increments:

declare @a bigdatetime
select @a = "apr 12, 0001 14:20:00 "
select dateadd(hh, 25, @a)

CHAPTER 3: Transact-SQL Functions

108 SAP Adaptive Server Enterprise

Apr 13 0001 2:20PM

• Example 3 – Displays the new publication dates when the publication dates of all the
books in the titles table slip by 21 days:

select newpubdate = dateadd(day, 21, pubdate)
from titles

• Example 4 – Adds one day to a date:
declare @a date
select @a = "apr 12, 9999"
select dateadd(dd, 1, @a)

Apr 13 9999

• Example 5 – Subtracts five minutes to a time:
select dateadd(mi, -5, convert(time, "14:20:00"))

2:15PM

• Example 6 – Adds one day to a time and the time remains the same:
declare @a time
select @a = "14:20:00"
select dateadd(dd, 1, @a)

2:20PM

• Example 7 – Adds higher values resulting in the values rolling over to the next significant
field, even though there are limits for each date_part, as with datetime values:

--Add 24 hours to a datetime
select dateadd(hh, 24, "4/1/1979")

Apr 2 1979 12:00AM

--Add 24 hours to a date
select dateadd(hh, 24, "4/1/1979")

Apr 2 1979

Usage

• dateadd, a date function, adds an interval to a specified date. For information about dates,
see Transact-SQL Users Guide.

• dateadd takes three arguments: the date part, a number, and a date. The result is a
datetime value equal to the date plus the number of date parts. If the last argument is a
bigtime, and the datepart is a year, month, or day, the result is the original bigtime
argument.
If the date argument is a smalldatetime value, the result is also a smalldatetime.
You can use dateadd to add seconds or milliseconds to a smalldatetime, but such an

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 109

addition is meaningful only if the result date returned by dateadd changes by at least one
minute.

• If a string is given as an argument in place of the chronological value the server interprets it
as a datetime value regardless of its apparent precision. This default behavior may be
changed by setting the configuration parameter builtin date strings or the set option
builtin_date_strings. When these options are set, the server interprets strings given to
chronological builtins as bigdatetimes. See the System Administration Guide for more
information.

• When a datepart of microseconds is given to this built-in string, values are always
interpreted as bigdatetime.

• Use the datetime datatype only for dates after January 1, 1753. datetime values must
be enclosed in single or double quotes. Use the date datatype for dates from January 1,
0001 to 9999. date must be enclosed in single or double quotes.Use char, nchar,
varchar, or nvarchar for earlier dates. The SAP ASE server recognizes a wide
variety of date formats.
The SAP ASE server automatically converts between character and datetime values
when necessary (for example, when you compare a character value to a datetime
value).

• Using the date part weekday or dw with dateadd is not logical, and produces spurious
results. Use day or dd instead.

Table 14. date_part Recognized Abbreviations

Date part Abbreviation Values

Year yy 1753 – 9999 (datetime)

1900 – 2079 (smalldatetime)

0001 – 9999 (date)

Quarter qq 1 – 4

Month mm 1 – 12

Week wk 1054

Day dd 1 – 7

dayofyear dy 1 – 366

Weekday dw 1 – 7

Hour hh 0 – 23

Minute mi 0 – 59

Second ss 0 – 59

millisecond ms 0 – 999

CHAPTER 3: Transact-SQL Functions

110 SAP Adaptive Server Enterprise

Date part Abbreviation Values

microsecond us 0 – 999999

See also:

• System Administration Guide, Transact-SQL Users Guide
• select, where clause in Reference Manual: Commands

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute dateadd.

See also
• User-Defined Datatypes on page 44

• Date and Time Datatypes on page 11

• datediff on page 111

• datename on page 114

• datepart on page 116

• getdate on page 143

datediff
Calculates the number of date parts between two specified dates or times.

Syntax
datediff(datepart, {date, date | time, time | bigtime, bigtime |
datetime, datetime | bigdatetime, bigdatetime}])

Parameters

• datepart – is a date part or abbreviation. For a list of the date parts and abbreviations
recognized by the SAP ASE server, see Transact-SQL Users Guide.

• date expression1 – is an expression of type datetime, smalldatetime,
bigdatetime, bigtime, date, time, or a character string in a datetime format.

• date expression2 – is an expression of type datetime, smalldatetime,
bigdatetime, bigtime, date, time, or a character string in a datetime format.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 111

Examples

• Example 1 – Returns the number of microseconds between two bigdatetimes:

declare @a bigdatetime
declare @b bigdatetime
select @a = "apr 1, 1999 00:00:00.000000"
select @b = "apr 2, 1999 00:00:00.000000"
select datediff(us, @a, @b)

86400000000

• Example 2 – Returns the overflow size of milliseconds return value:
select datediff(ms, convert(bigdatetime, "4/1/1753"),
convert(bigdatetime, "4/1/9999"))
Msg 535, Level 16, State 0:
Line 2:
Difference of two datetime fields caused overflow at runtime.
Command has been aborted

• Example 3 – Finds the number of days that have elapsed between pubdate and the
current date (obtained with the getdate function):

select newdate = datediff(day, pubdate, getdate())
 from titles

• Example 4 – Finds the number of hours between two times:
declare @a time
declare @b time
select @a = "20:43:22"
select @b = "10:43:22"
select datediff(hh, @a, @b)

 -10

• Example 5 – Finds the number of hours between two dates:
declare @a date
declare @b date
select @a = "apr 1, 1999"
select @b = "apr 2, 1999"
select datediff(hh, @a, @b)

 24

• Example 6 – Finds the number of days between two times:
declare @a time
declare @b time
select @a = "20:43:22"
select @b = "10:43:22"
select datediff(dd, @a, @b)

 0

• Example 7 – Returns the overflow size of milliseconds return value:
select datediff(ms, convert(date, "4/1/1753"), convert(date,
"4/1/9999"))

CHAPTER 3: Transact-SQL Functions

112 SAP Adaptive Server Enterprise

Msg 535, Level 16, State 0:
Line 2:
Difference of two datetime fields caused overflow at runtime.
Command has been aborted

Usage

• datediff takes three arguments. The first is a datepart. The second and third are
chronological values. For dates, times, datetimes and bigdatetimes, the
result is a signed integer value equal to date2 and date1, in date parts.
• If the second or third argument is a date, and the datepart is an hour, minute, second,

millisecond, or microsecond, the dates are treated as midnight.
• If the second or third argument is a time, and the datepart is a year, month, or day, then

zero is returned.
• datediff results are truncated, not rounded when the result is not an even multiple of the

datepart.
• For the smaller time units, there are overflow values and the function returns an

overflow error if you exceed these limits.
• datediff produces results of datatype int, and causes errors if the result is greater than

2,147,483,647. For milliseconds, this is approximately 24 days, 20:31.846 hours. For
seconds, this is 68 years, 19 days, 3:14:07 hours.

• datediff results are always truncated, not rounded, when the result is not an even multiple
of the date part. For example, using hour as the date part, the difference between
“4:00AM” and “5:50AM” is 1.
When you use day as the date part, datediff counts the number of midnights between the
two times specified. For example, the difference between January 1, 1992, 23:00 and
January 2, 1992, 01:00 is 1; the difference between January 1, 1992 00:00 and January 1,
1992, 23:59 is 0.

• The month datepart counts the number of first-of-the-months between two dates. For
example, the difference between January 25 and February 2 is 1; the difference between
January 1 and January 31 is 0.

• When you use the date part week with datediff, you see the number of Sundays between
the two dates, including the second date but not the first. For example, the number of weeks
between Sunday, January 4 and Sunday, January 11 is 1.

• If you use smalldatetime values, they are converted to datetime values internally
for the calculation. Seconds and milliseconds in smalldatetime values are
automatically set to 0 for the purpose of the difference calculation.

• If the second or third argument is a date, and the datepart is hour, minute, second, or
millisecond, the dates are treated as midnight.

• If the second or third argument is a time, and the datepart is year, month, or day, then 0
is returned.

• datediff results are truncated, not rounded, when the result is not an even multiple of the
date part.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 113

• If a string is given as an argument in place of the chronological value the server interprets it
as a datetime value regardless of its apparent precision. This default behavior may be
changed by setting the configuration parameter builtin date strings or the set option
builtin_date_strings. When these options are set, the server interprets strings given to
chronological builtins as bigdatetimes. See the System Administration Guide for
more information.

• When a datepart of microseconds is given to this built-in, string values are always
interpreted as bigdatetime.

• For the smaller time units, there are overflow values, and the function returns an overflow
error if you exceed these limits:
• Microseconds:approx 3 days
• Milliseconds: approx 24 days
• Seconds: approx 68 years
• Minutes: approx 4083 years
• Others: No overflow limit

See also System Administration Guide, Transact-SQL Users Guide, and select and where
clause in Reference Manual: Commands.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute datediff.

See also
• Date and Time Datatypes on page 11

• dateadd on page 108

• datename on page 114

• datepart on page 116

• getdate on page 143

datename
Returns the specified datepart of the specified date or time as a character string.

Syntax
datename(datepart {date | time | bigtime | datetime | bigdatetime})

CHAPTER 3: Transact-SQL Functions

114 SAP Adaptive Server Enterprise

Parameters

• datepart – is a date part or abbreviation. For a list of the date parts and abbreviations
recognized by the SAP ASE server, see Transact-SQL Users Guide.

• date_expression – is an expression of type datetime, smalldatetime, bigdatetime,
bigtime, time or a character string in a datetime format.

Examples

• Example 1 – Finds the month name of a bigdatetime:

declare @a bigdatetime
select @a = "apr 12, 0001 00:00:00.010101"
select datename(mm, @a)

April

• Example 2 – Assumes a current date of November 20, 2000:

select datename(month, getdate())
November

• Example 3 – Finds the month name of a date:
declare @a date
select @a = "apr 12, 0001"
select datename(mm, @a)

 April

• Example 4 – Finds the seconds of a time:
declare @a time
select @a = "20:43:22"
select datename(ss, @a)

 22

Usage

• datename, a date function, returns the name of the specified part (such as the month
“June”) of a datetime or smalldatetime value, as a character string. If the result
is numeric, such as “23” for the day, it is still returned as a character string.

• Takes a date, time, bigdatetime, bigtime, datetime, or smalldatetime
value as its second argument

• The date part weekday or dw returns the day of the week (Sunday, Monday, and so on)
when used with datename.

• Since smalldatetime is accurate only to the minute, when a smalldatetime value
is used with datename, seconds and milliseconds are always 0.

See also select, where clause in Reference Manual: Commands.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 115

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute datename.

See also
• Date and Time Datatypes on page 11

• dateadd on page 108

• datename on page 114

• datepart on page 116

• getdate on page 143

datepart
Returns the integer value of the specified part of a date expression

Syntax
datepart(date_part {date | time | datetime | bigtime | bigdatetime}))

Parameters

• date_part – is a date part. The date parts, their abbreviations recognized by datepart, and
their acceptable values are.

Date Part Abbrevia-
tion

Values

year yy 1753 – 9999 (2079 for smalldatetime). 0001 to 9999 for
date

quarter qq 1 – 4

month mm 1 – 12

week wk 1 – 54

day dd 1 – 31

dayofyear dy 1 – 366

weekday dw 1 – 7 (Sun. – Sat.)

hour hh 0 – 23

CHAPTER 3: Transact-SQL Functions

116 SAP Adaptive Server Enterprise

Date Part Abbrevia-
tion

Values

minute mi 0 – 59

second ss 0 – 59

millisecond ms 0 – 999

microsec-
ond

us 0 - 999999

calweekof-
year

cwk 1 – 53

calyearof-
week

cyr 1753 – 9999 (2079 for smalldatetime). 0001 to 9999 for
date

caldayof-
week

cdw 1 – 7

When you enter a year as two digits (yy):

• Numbers less than 50 are interpreted as 20yy. For example, 01 is 2001, 32 is 2032, and
49 is 2049.

• Numbers equal to or greater than 50 are interpreted as 19yy. For example, 50 is 1950,
74 is 1974, and 99 is 1999.

For datetime, smalldatetime, and time types milliseconds can be preceded by either a
colon or a period. If preceded by a colon, the number means thousandths of a second. If
preceded by a period, a single digit means tenths of a second, two digits mean
hundredths of a second, and three digits mean thousandths of a second. For example,
“12:30:20:1” means twenty and one-thousandth of a second past 12:30; “12:30:20.1”
means twenty and one-tenth of a second past 12:30.
Microseconds must be preceded by a decimal point and represent fractions of a second.

• date_expression – is an expression of type datetime, smalldatetime,
bigdatetime, bigtime, date, time, or a character string in a datetime format.

Examples

• Example 1 – Finds the microseconds of a bigdatetime:

declare @a bigdatetime
select @a = "apr 12, 0001 12:00:00.000001"
select datepart(us, @a)

000001

• Example 2 – Assumes a current date of November 25, 1995:

select datepart(month, getdate())

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 117

 11

• Example 3 – Returns the year of publication from traditional cookbooks:

select datepart(year, pubdate) from titles
 where type = "trad_cook"

 1990
 1985
 1987

• Example 4 – Returns the calendar week of January 1, 1993:

select datepart(cwk,'1993/01/01')

 53

• Example 5 – Returns the calendar year of the week January 1, 1993:

select datepart(cyr,’1993/01/01’)

 1992

• Example 6 – Returns the day of the year for January 1, 1993:

select datepart(cdw,’1993/01/01’)

 5

• Example 7 – Find the hours in a time:
declare @a time
select @a = "20:43:22"
select datepart(hh, @a)

 20

• Example 8 – Returns 0 (zero) if an hour, minute, or second portion is requested from a
date using datename or datepar) the result is the default time; Returns the default date of
Jan 1 1990 if month, day, or year is requested from a time using datename or
datepart:
--Find the hours in a date
declare @a date
select @a = "apr 12, 0001"
select datepart(hh, @a)

 0
--Find the month of a time
declare @a time
select @a = "20:43:22"
select datename(mm, @a)

January

CHAPTER 3: Transact-SQL Functions

118 SAP Adaptive Server Enterprise

When you give a null value to a datetime function as a parameter, NULL is returned.

Usage

• Returns the specified datepart in the first argument of the specified date, and the
second argument, as an integer. Takes a date, time, datetime, bigdatetime,
bigtime, or smalldatetime value as its second argument. If the datepart is hour,
minute, second, millisecond, or microsecond, the result is 0.

• datepart returns a number that follows ISO standard 8601, which defines the first day of
the week and the first week of the year. Depending on whether the datepart function
includes a value for calweekofyear, calyearofweek, or caldayorweek, the date returned
may be different for the same unit of time. For example, if the SAP ASE server is
configured to use U.S. English as the default language, the following returns 1988:
datepart(cyr, "1/1/1989")

However, the following returns 1989:
datepart(yy, "1/1/1989)

This disparity occurs because the ISO standard defines the first week of the year as the first
week that includes a Thursday and begins with Monday.
For servers using U.S. English as their default language, the first day of the week is
Sunday, and the first week of the year is the week that contains January 4th.

• The date part weekday or dw returns the corresponding number when used with datepart.
The numbers that correspond to the names of weekdays depend on the datefirst setting.
Some language defaults (including us_english) produce Sunday=1, Monday=2, and so on;
others produce Monday=1, Tuesday=2, and so on.You can change the default behavior on
a per-session basis with set datefirst. See the datefirst option of the set command for more
information.

• calweekofyear, which can be abbreviated as cwk, returns the ordinal position of the week
within the year. calyearofweek, which can be abbreviated as cyr, returns the year in which
the week begins. caldayofweek, which can abbreviated as cdw, returns the ordinal position
of the day within the week. You cannot use calweekofyear, calyearofweek, and
caldayofweek as date parts for dateadd, datediff, and datename.

• Since datetime and time are only accurate to 1/300th of a second, when these
datatypes are used with datepart, milliseconds are rounded to the nearest 1/300th
second.

• Since smalldatetime is accurate only to the minute, when a smalldatetime value
is used with datepart, seconds and milliseconds are always 0.

• The values of the weekday date part are affected by the language setting.

See also select, where clause in Reference Manual: Commands.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 119

Permissions

Any user can execute datepart.

See also
• Date and Time Datatypes on page 11
• dateadd on page 108
• datediff on page 111
• datename on page 114
• getdate on page 143

day
Returns an integer that represents the day in the datepart of a specified date.

Syntax
day(date_expression)

Parameters

• date_expression – is an expression of type datetime, smalldatetime, date, or a
character string in a datetime format.

Examples

• Example 1 – Returns the integer 02:
day("11/02/03")

02

Usage

day(date_expression) is equivalent to datepart(dd,date_expression).

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute day.

See also
• Chapter 2, System and User-Defined Datatypes on page 5

CHAPTER 3: Transact-SQL Functions

120 SAP Adaptive Server Enterprise

• datepart on page 116

• month on page 189

• year on page 316

db_attr
Returns the durability, dml_logging, and template settings, and compression level for the
specified database.

Syntax
db_attr('database_name' | database_ID | NULL, 'attribute')

Parameters

• database_name – name of the database.
• database_ID – ID of the database
• NULL – if included, db_attr reports on the current database
• attribute – is one of:

• help – display db_attr usage information.
• durability – returns durability of the given database: full, at_shutdown, or

no_recovery.
• dml_logging – returns the value for data manipulation language (DML) logging for

specified database: full or minimal.
• template – returns the name of the template database used for the specified database. If

no database was used as a template to create the database, returns NULL.
• compression – returns the compression level for the database.
• list_dump_fs – identifies the features to be included in future dumps.You may not be

able to load a database or transaction dumps that are generated in a later version into an
earlier version. The features that are in use in a database, and objects that are created
using newer features, are captured in database and transaction dumps. Before
generating such dumps, use list_dump_fs to identify the features to be included in
future dumps.

Examples

• Example 1 – Returns the syntax for db_attr:
select db_attr(0, "help")

Usage: db_attr('dbname' | dbid | NULL, 'attribute')
List of options in attributes table:
 0 : help
 1 : durability

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 121

 2 : dml_logging
 3 : template
 4 : compression

• Example 2 – Selects the name, durability setting, dml_logging setting and template used
from sysdatabses:

select name = convert(char(20), name),
durability = convert(char(15), db_attr(name, "durability")),
 dml_logging = convert(char(15), db_attr(dbid,
 "dml_logging")),
 template = convert(char(15), db_attr(dbid, "template"))
from sysdatabases
name durability dml_logging
template
---------------- ---------------- ------------------------

master full full NULL
model full full NULL
tempdb no_recovery full NULL
sybsystemdb full full NULL
sybsystemprocs full full NULL
repro full full NULL
imdb no_recovery full db1
db full full NULL
at_shutdown_db at_shutdown full NULL
db1 full full NULL
dml at_shutdown minimal NULL

• Example 3 – Runs db_attr against the DoesNotExist database, which does not exist:

select db_attr("DoesNotExist", "durability")

NULL

• Example 4 – Runs db_attr against a database with an ID of 12345, which does not exist:
select db_attr(12345, "durability")

NULL

• Example 5 – Runs db_attr against an attribute that does not exist:
select db_attr(1, "Cmd Does Not Exist")

NULL

• Example 6 – Returns the various features that are in use for the pubs2 database, and the
target server version, which can safely load such dumps. The last line in bold indicates that
the optimized data load with parallel index updates was executed in this database, and is
contained in the transaction log.

1> select db_attr('pubs2', 'list_dump_fs')
2> go

Features found active in the database that will be recorded in a

CHAPTER 3: Transact-SQL Functions

122 SAP Adaptive Server Enterprise

subsequent dump header:

ID= 3: 15.7.0.007: Database has compressed tables at version 1
ID= 4: 15.7.0.000: Database has system catalog changes made in 15.7 GA
ID= 7: 15.7.0.020: Database has system catalog changes made in 15.7 ESD#02
ID=11: 15.7.0.100: Database has the Sysdams catalog
ID=13: 15.7.0.100: Database has indexes sorted using RID value comparison
ID=14: 15.7.0.110: Log has transactions generating parallel index
operations

Future dumps of pubs2 will be loadable only in the target server version indicated. To load
the dumps of such a database in a target version that is earlier than the version listed,
downgrade the database to remove the footprint of newer features.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute db_attr.

db_id
Displays the ID number of the specified database.

Syntax
db_id(database_name)

Parameters

• database_name – is the name of a database. database_name must be a character
expression. If it is a constant expression, it must be enclosed in quotes.

Examples

• Example 1 – Returns the ID number of sybsystemprocs:

select db_id("sybsystemprocs")

4

Usage

If you do not specify a database_name, db_id returns the ID number of the current database.

See also Transact-SQL Users Guide.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 123

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute db_id.

See also
• db_name on page 125

• object_id on page 199

db_instanceid
(Cluster environments only) Returns the ID of the owning instance of a specified local
temporary database. Returns NULL if the specified database is a global temporary database or
a nontemporary database.

Syntax

db_instanceid(database_id)
db_instanceid(database_name)

Parameters

• database_id – ID of the database.
• database_name – name of the database

Examples

• Example 1 – Returns the owning instance for database ID 5
select db_instanceid(5)

Usage

Access to a local temporary database is allowed only from the owning instance.
db_instanceid determines whether the specified database is a local temporary database, and
the owning instance for the local temporary database.You can then connect to the owning
instance and access its local temporary database.

You must include an parameter with db_instanceid.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

124 SAP Adaptive Server Enterprise

Permissions

Any user can run sdc_intempdbconfig.

db_name
Displays the name of the database with the specified ID number.

Syntax
db_name([database_id])

Parameters

• database_id – is a numeric expression for the database ID (stored in
sysdatabases.dbid).

Examples

• Example 1 – Returns the name of the current database:

select db_name()
• Example 2 – Returns the name of database ID 4:

select db_name(4)

sybsystemprocs

Usage

If you do not specify database_id, db_name returns the name of the current database.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute db_name.

See also
• col_name on page 80

• db_id on page 123

• object_name on page 200

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 125

db_recovery_status
(Cluster environments only) Returns the recovery status of the specified database. Returns the
recovery status of the current database if you do not include a value for database_ID or
database_name.

Syntax

db_recovery_status([database_ID | database_name])

Parameters

• database_ID – is the ID of the database whose recovery status you are requesting.
• database_name – is the name of the database whose recovery status you are requesting.

Examples

• Example 1 – Returns the recovery status of the current database:
select db_recovery_status()

• Example 2 – Returns the recovery status of the database with named test:

select db_recovery_status("test")
• Example 3 – Returns the recovery status of a database with a database id of 8:

select db_recovery_status(8)

Usage

A return value of:

• 0 – indicates the database is not in node-failover recovery.
• 1 – indicates the database is in node-failover recovery.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute db_recovery_status.

CHAPTER 3: Transact-SQL Functions

126 SAP Adaptive Server Enterprise

dbencryption_status
Reports database encryption/decryption status and progress.

Syntax
dbencryption_status ('status'|'progess', dbid[,
 lstart])

Parameters

• status – returns the encryption status of the database you specify in dbid. You must supply
dbid to use status. The returned values are:

• 0 – indicates a normal database.
• 1 – indicates that a database is encrypted.
• 2 – indicates that a database is being encrypted.
• 3 – indicates that a database is partially encrypted (but not in the process of being

encrypted).
• 4 – indicates that a database is being decrypted.
• 5 – indicates that a database is partially decrypted (but not in the process of being

decrypted).
• progress – reports on the percentage of encryption/decryption progress. If you supply:

• dbid – progress returns the percentage of processed pages in the whole database.

• Both dbid and lstart (the logical start page) – progress returns the percentage of
processed pages in the fragment indicated by lstart.

• dbid – is the database ID.

Usage

When you use "progress" and SAP ASE finds no progress information, such as when there
is no encryption or decryption operation occurring, or if the encryption/decryption process is
finished, SAP ASE returns "-1."

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 127

Security

Permissions

Auditing

defrag_status
Returns metrics of any defragmentation operation that is started or ongoing on the named
object or partition.

Syntax
defrag_status(dbid, objid [, ptnid | -1 [, "tag"]]

Parameters

• dbid – is the ID of the target database.
• objid – is the ID of the target object.

• ptnid – is the ID of the partition or enter -1.

-1 refers to all the partitions in the table. If ptnid is unspecified, -1 is the default value.

In case of invoking the built-in with four parameters, the third parameter

'ptnid' cannot be skipped. So, it has to be specified accordingly.

• tag – is one of:

• frag index or fragmentation index– the fragmentation index is the number of times the
size of the object is larger compared to the size of the same if it was completely
defragmented.
This index can be any number greater than or equal to zero. The lower the index, the
less fragmented the table or partition is. The higher the index, the more fragmented the
object is and is more likely to free up space with defragmentation.
For example, a value of 0.2 , means the table occupies 20% more space than what it
would be if the data were fully defragmented. This index can be any number > 0. For
example, 1 means the table is occupying 100% more space than what a fully
defragmented version of the data would occupy.

• pct defrag or pct defragmented – is the percentage of pages defragmented.
• pages defrag or pages defragmented – the number of pages defragmented.
• pages gen or pages generated– the number of new pages generated.
• pages tbd or pages to be defragmented– the number of pages still left to be processed

and defragmented.

CHAPTER 3: Transact-SQL Functions

128 SAP Adaptive Server Enterprise

• last run – the start time of the most recent invocation of this command.
• executing – boolean, whether the command is executing currently.
• elapsed mins – the number of minutes elapsed since the start of the most recent

invocation of this command. This value is non-zero when executing is 1, and is zero
otherwise.

Examples

• Example 1 – executes defrag_status on the table mymsgs:
select defrag_status(db_id(), object_id('mymsgs'))

If defragmentation has not yet been performed, the output is:
--
frag index=0.20, pct defrag=0, pages defrag=0, pages gen=0,
pages tbd=1174, last run=, executing=0, elapsed mins=0

If defragmentation has been performed, the output is:

frag index=0.07, pct defrag=100, pages defrag=1167, pages gen=1072,
pages tbd=0, last run=Oct 9 2012 2:27:11:446PM, executing=0,
elapsed mins=0

• Example 2 – executes defrag_status on the data partition p1:
select defrag_status(db_id(), object_id('t1'), partition_id('t1', 'p1'))

If defragmentation has not yet been performed, the output is:

frag index=0.75, pct defrag=0, pages defrag=0, pages gen=0, pages tbd=67,
last run=, executing=0, elapsed mins=0

If defragmentation is executed, the output is:
--
frag index=0.00, pct defrag=100, pages defrag=61, pages gen=32,
pages tbd=0, last run=Oct 9 2012 2:44:53:830PM, executing=0,
elapsed mins=0

If partial defragmentation is executed, the output is:

frag index=0.02, pct defrag=41, pages defrag=135, pages gen=144,
pages tbd=190, last run=Oct 9 2012 3:17:56:070PM, executing=0,
elapsed mins=0

While defragmentation is in progress, the output is:

frag index=0.90, pct defrag=10, pages defrag=40, pages gen=24,
pages tbd=360, last run=Oct 9 2012 3:01:01:233PM, executing=1,
elapsed mins=1

• Example 3 – executes the pct defrag parameter:
select defrag_status(db_id(), object_id('t1'), -1, 'pct defrag')

The output displays the percentage of the pages that have been defragmented.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 129

--
8

When 1 row is affected:
select defrag_status(db_id(), object_id('t1'), partition_id('t1', 'p1'),
 'pct defrag')

The output is:

41

degrees
Converts the size of the angle from degrees to radians.

Syntax
degrees(numeric)

Parameters

• numeric – is a number, in radians, to convert to degrees.

Examples

• Example 1 – Returns a radian of 45 degrees:
select degrees(45)

 2578

Usage

degrees, a mathematical function, converts radians to degrees. Results are of the same type as
the numeric expression.

For numeric and decimal expressions, the results have an internal precision of 77 and a scale
equal to that of the expression.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute degrees.

CHAPTER 3: Transact-SQL Functions

130 SAP Adaptive Server Enterprise

See also
• radians on page 214

derived_stat
Returns derived statistics for the specified object and index.

Syntax
derived_stat("object_name" | object_id,
 index_name | index_id,
 ["partition_name" | partition_id,]
 “statistic”)

Parameters

• object_name – is the name of the object you are interested in. If you do not specify a fully
qualified object name, derived_stat searches the current database.

• object_id – is an alternative to object_name, and is the object ID of the object you are
interested in. object_id must be in the current database

• index_name – is the name of the index, belonging to the specified object that you are
interested in.

• index_id – is an alternative to index_name, and is the index ID of the specified object that
you are interested in.

• partition_name – is the name of the partition, belonging to the specific partition that you
are interested in. partition_name is optional. When you use partition_name or partition_id,
the SAP ASE server returns statistics for the target partition, instead of for the entire
object.

• partition_id – is an alternative to partition_name, and is the partition ID of the specified
object that you are interested in. partition_id is optional.

• “statistic” – the derived statistic to be returned. Available statistics are:

• data page cluster ratio or dpcr – the data page cluster ratio for the object/index pair
• index page cluster ratio or ipcr – the index page cluster ratio for the object/index pair
• data row cluster ratio or drcr – the data row cluster ratio for the object/index pair
• large io efficiency or lgio – the large I/O efficiency for the object/index pair
• space utilization or sput – the space utilization for the object/index pair

Examples

• Example 1 – Selects the space utilization for the titleidind index of the titles
table:

select derived_stat("titles", "titleidind", "space utilization")

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 131

• Example 2 – Selects the data page cluster ratio for index ID 2 of the titles table. Note
that you can use either "dpcr" or "data page cluster ratio":

select derived_stat("titles", 2, "dpcr")
• Example 3 – Statistics are reported for the entire object, as neither the partition ID nor

name is not specified:

1> select derived_stat(object_id("t1"), 2, "drcr")
2> go

 0.576923

• Example 4 – Reports the statistic for the partition tl_928003396:

1> select derived_stat(object_id("t1"), 0, "t1_928003306",
"drcr")
2> go

 1.000000

(1 row affected)
• Example 5 – Selects derived statistics for all indexes of a given table, using data from

syspartitions:

select convert(varchar(30), name) as name, indid,
 convert(decimal(5, 3), derived_stat(id, indid, 'sput')) as
'sput',
 convert(decimal(5, 3), derived_stat(id, indid, 'dpcr')) as
'dpcr',
 convert(decimal(5, 3), derived_stat(id, indid, 'drcr')) as
'drcr',
 convert(decimal(5, 3), derived_stat(id, indid, 'lgio')) as
'lgio'
from syspartitions where id = object_id('titles')
go
 name indid sput dpcr drcr lgio
 ------------------------------ ------ -------- -------- --------

 titleidind_2133579608 1 0.895 1.000 1.000
 1.000
 titleind_2133579608 2 0.000 1.000 0.688
 1.000

(2 rows affected)
• Example 6 – Selects derived statistics for all indexes and partitions of a partitioned table.

Here, mymsgs_rr4 is a roundrobin partitioned table that is created with a global index
and a local index.

1> select * into mymsgs_rr4 partition by roundrobin 4 lock
datarows
2> from master..sysmessages
2> go

CHAPTER 3: Transact-SQL Functions

132 SAP Adaptive Server Enterprise

(7597 rows affected)
1> create clustered index mymsgs_rr4_clustind on mymsgs_rr4(error,
severity)
2> go
1> create index mymsgs_rr4_ncind1 on mymsgs_rr4(severity)
2> go
1> create index mymsgs_rr4_ncind2 on mymsgs_rr4(langid, dlevel)
local index
2> go

2> update statistics mymsgs_rr4
1>

2> select convert(varchar(10), object_name(id)) as name,
3> (select convert(varchar(20), i.name) from sysindexes i
4> where i.id = p.id and i.indid = p.indid),
5> convert(varchar(30), name) as ptnname, indid,
6> convert(decimal(5, 3), derived_stat(id, indid, partitionid,
'sput')) as 'sput',
7> convert(decimal(5, 3), derived_stat(id, indid, partitionid,
'dpcr')) as 'dpcr',
8> convert(decimal(5, 3), derived_stat(id, indid, partitionid,
'drcr')) as 'drcr',
9> convert(decimal(5, 3), derived_stat(id, indid, partitionid,
'lgio')) as 'lgio'
10> from syspartitions p
11> where id = object_id('mymsgs_rr4')

name ptnname indid spu
t dpcr drcr lgio
----------------------------- -------------------------- -----
---- ---- ---- ----
mymsgs_rr4 mymsgs_rr4 mymsgs_rr4_786098810 0 0.90
1.000 1.00 1.000
mymsgs_rr4 mymsgs_rr4 mymsgs_rr4_802098867 0 0.90
1.000 1.00 1.000
mymsgs_rr4 mymsgs_rr4 mymsgs_rr4_818098924 0 0.89
1.000 1.00 1.000
mymsgs_rr4 mymsgs_rr4 mymsgs_rr4_834098981 0 0.90
1.000 1.00 1.000
mymsgs_rr4 mymsgs_rr4_clustind mymsgs_rr4_clustind_850099038 2
0.83 0.995 1.00 1.000
mymsgs_rr4 mymsgs_rr4_ncind1 mymsgs_rr4_ncind1_882099152 3
0.99 0.445 0.88 1.000
mymsgs_rr4 mymsgs_rr4_ncind2 mymsgs_rr4_ncind2_898099209 4
0.15 1.000 1.00 1.000
mymsgs_rr4 mymsgs_rr4_ncind2 mymsgs_rr4_ncind2_914099266 4
0.88 1.000 1.00 1.000
mymsgs_rr4 mymsgs_rr4_ncind2 mymsgs_rr4_ncind2_930099323 4 0.877
1.000 1.000 1.000
mymsgs_rr4 mymsgs_rr4_ncind2 mymsgs_rr4_ncind2_946099380 4 0.945
0.993 1.000 1.000

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 133

• Example 7 – Selects derived statistics for all allpages-locked tables in the current
database:

2> select convert(varchar(10), object_name(id)) as name
3> (select convert(varchar(20), i.name) from sysindexes i
4> where i.id = p.id and i.indid = p.indid),
5> convert(varchar(30), name) as ptnname, indid,
6> convert(decimal(5, 3), derived_stat(id, indid, partitionid,
'sput')) as 'sput',
7> convert(decimal(5, 3), derived_stat(id, indid, partitionid,
'dpcr')) as 'dpcr',
8> convert(decimal(5, 3), derived_stat(id, indid, partitionid,
'drcr')) as 'drcr',
9> convert(decimal(5, 3), derived_stat(id, indid, partitionid,
'lgio')) as 'lgio'
10> from syspartitions p
11> where lockscheme(id) = "allpages"
12> and (select o.type from sysobjects o where o.id = p.id) =
'U'
 name ptnname indid sput dpcr
drcr lgio
----------- ----------------- --------------------------- -----
---- ---- ---- ----
 stores stores stores_18096074 0 0.276
1.000 1.000 1.000
 discounts discounts discounts_50096188 0 0.075
1.000 1.000 1.000
 au_pix au_pix au_pix_82096302 0 0.000
1.000 1.000 1.000
 au_pix tau_pix tau_pix_82096302 255 NULL
NULL NULL NULL
 blurbs blurbs blurbs_114096416 0 0.055
1.000 1.000 1.000
 blurbs tblurbs tblurbs_114096416 255 NULL
NULL NULL NULL
 t1apl t1apl t1apl_1497053338 0 0.095
1.000 1.000 1.000
 t1apl t1apl t1apl_1513053395 0 0.082
1.000 1.000 1.000
 t1apl t1apl t1apl_1529053452 0 0.095
1.000 1.000 1.000
 t1apl t1apl_ncind t1apl_ncind_1545053509 2 0.149
0.000 1.000 1.000
 t1apl t1apl_ncind_local t1apl_ncind_local_1561053566 3 0.066
0.000 1.000 1.000
 t1apl t1apl_ncind_local t1apl_ncind_local_1577053623 3 0.057
0.000 1.000 1.000
 t1apl t1apl_ncind_local t1apl_ncind_local_1593053680 3 0.066
0.000 1.000 1.000
 authors auidind auidind_1941578924 1 0.966
0.000 1.000 1.000
 authors aunmind aunmind_1941578924 2 0.303
0.000 1.000 1.000
 publishers pubind pubind_1973579038 1 0.059
0.000 1.000 1.000

CHAPTER 3: Transact-SQL Functions

134 SAP Adaptive Server Enterprise

 roysched roysched roysched_2005579152 0 0.324
1.000 1.000 1.000
 roysched titleidind titleidind_2005579152 2 0.777
1.000 0.941 1.000
 sales salesind salesind_2037579266 1 0.444
0.000 1.000 1.000
 salesdetai salesdetail salesdetail_2069579380 0 0.614
1.000 1.000 1.000
 salesdetai titleidind titleidind_2069579380 2 0.518
1.000 0.752 1.000
 salesdetai salesdetailind salesdetailind_2069579380 3 0.794
1.000 0.726 1.000
 titleautho taind taind_2101579494 1 0.397
0.000 1.000 1.000
 titleautho auidind auidind_2101579494 2 0.285
0.000 1.000 1.000
 titleautho titleidind titleidind_2101579494 3 0.223
0.000 1.000 1.000
 titles titleidind titleidind_2133579608 1 0.895
1.000 1.000 1.000
 titles titleind titleind_2133579608 2 0.402
1.000 0.688 1.000

(27 rows affected)

Usage

• derived_stat returns a double precision value.
• The values returned by derived_stat match the values presented by the optdiag utility.
• If the specified object or index does not exist, derived_stat returns NULL.
• Specifying an invalid statistic type results in an error message.
• Using the optional partition_name or partition_id reports the requested statistic for the

target partition; otherwise, derived_stat reports the statistic for the entire object.
• Instead of consuming resources, derived_stat discards the descriptor for an object that is

not already in the cache.
• If you provide:

• Four arguments – derived_stat uses the third argument as the partition, and returns
derived statistics on the fourth argument.

• Three arguments – derived_stat assumes you did not specifiy a partition, and returns
derived statistic specified by the third argument.

See also:

• Access Methods and Query Costing for Single Tables and Statistics Tables and Displaying
Statistics with optdiag in Performance and Tuning Guide

• optdiag in Utility Guide

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 135

Permissions

The permission checks for derived_stat differ based on your granular permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must be the table owner or have
manage database permission to execute derived_stat

Disabled With granular permissions disabled, you must be the table owner or be a user
with sa_role to execute derived_stat.

difference
Returns the difference between two soundex values.

Syntax
difference(expr1,expr2)

Parameters

• expr1 – is a character-type column name, variable, or constant expression of char,
varchar, nchar, nvarchar, or unichar type.

• expr2 – is another character-type column name, variable, or constant expression of char,
varchar, nchar, nvarchar, or unichar type.

Examples

• Example 1 – Returns the difference between "smithers" and "smothers":

select difference("smithers", "smothers")

4

• Example 2 – Returns the difference between "smothers" and "brothers":

select difference("smothers", "brothers")

2

Usage

• difference, a string function, returns an integer representing the difference between two
soundex values.

• The difference function compares two strings and evaluates the similarity between them,
returning a value from 0 to 4. The best match is 4.

CHAPTER 3: Transact-SQL Functions

136 SAP Adaptive Server Enterprise

The string values must be composed of a contiguous sequence of valid single- or double-
byte roman letters.

• If expr1 or expr2 is NULL, returns NULL.
• If you give a varchar expression is given as one parameter and a unichar expression

as the other, the varchar expression is implicitly converted to unichar (with possible
truncation).

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute difference.

See also
• soundex on page 261

dol_downgrade_check
Returns the number of data-only-locked (DOL) tables in the specified database that contain
variable-length columns wider than 8191 bytes. Returns 0 when there are no wide, variable-
length columns and you can safely perform the downgrade.

Syntax
dol_downgrade_check('database_name', target_version)

Parameters

• database_name – name or ID of the database you are checking. database_name may be a
qualified object name (for example, mydb.dbo.mytable).

• target_version – integer version of SAP ASE to which you are downgrading (for example,
version 15.0.3 is 1503).

Examples

• Example 1 – Checks DOL tables in the pubs2 database for wide, variable-length
columns so you can downgrade to version 15.5:
select dol_downgrade_check('pubs2', 1550)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 137

Usage

• Returns zero (success) if the target version is SAP ASE version 15.7 or later, indicating
that no work is necessary.

• If you specify a qualified table, but do not indicate the database to which it belongs,
dol_downgrade_check checks the current database.

Permissions

The permission checks for dol_downgrade_check differ based on your granular permissions
settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must be the database owner or have
manage database permission to execute dol_downgrade_check.

Disabled With granular permissions disabled, you must be the database owner or be a
user with sa_role to execute dol_downgrade_check.

exp
Calculates the value that results from raising a constant to the specified power, and returns the
exponential value of the specified value.

Syntax
exp(approx_numeric)

Parameters

• approx_numeric – is any approximate numeric (float, real, or double
precision) column name, variable, or constant expression.

Examples

• Example 1 – Returns the exponential value of 3:
select exp(3)

 20.085537

Usage

See also Transact-SQL Users Guide.

CHAPTER 3: Transact-SQL Functions

138 SAP Adaptive Server Enterprise

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute exp.

See also
• log on page 176

• log10 on page 177

• power on page 210

floor
Returns the largest integer that is less than or equal to the specified value.

Syntax
floor(numeric)

Parameters

• numeric – is any exact numeric (numeric, dec, decimal, tinyint, smallint,
int, or bigint), approximate numeric (float, real, or double precision), or
money column, variable, constant expression, or a combination of these.

Examples

• Example 1 – Returns the largest integer that is less than or equal to 123:
select floor(123)

 123

• Example 2 – Returns the largest integer that is less than or equal to the 123.45:
select floor(123.45)

 123

• Example 3 – Returns the largest integer that is less than or equal to 1.2345E2:
select floor(1.2345E2)

 123.000000

• Example 4 – Returns the largest integer that is less than or equal to -123.45:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 139

select floor(-123.45)

 -124

• Example 5 – Returns the largest integer that is less than or equal to -1.2345E2:
select floor(-1.2345E2)

 -124.000000

• Example 6 – Returns the largest integer that is less than or equal to $123.45:
select floor($123.45)

 123.00

Usage

For numeric and decimal expressions, the results have a precision equal to that of the
expression and a scale of 0.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute floor.

See also
• abs on page 47

• ceiling on page 70

• round on page 232

• sign on page 253

get_appcontext
Returns the value of the attribute in a specified context. get_appcontext is provided by the
Application Context Facility (ACF).

Syntax
get_appcontext (“context_name”, “attribute_name”)

CHAPTER 3: Transact-SQL Functions

140 SAP Adaptive Server Enterprise

Parameters

• context_name – is a row specifying an application context name, saved as datatype
char(30).

• attribute_name – is a row specifying an application context attribute name, saved as
char(30).

Examples

• Example 1 – Shows VALUE1 returned for ATTR1.

select get_appcontext("CONTEXT1", "ATTR1")

VALUE1

ATTR1 does not exist in CONTEXT2:
select get_appcontext("CONTEXT2", "ATTR1")

• Example 2 – Shows the result when a user without appropriate permissions attempts to get
the application context.

select get_appcontext("CONTEXT1", "ATTR2", "VALUE1")
Select permission denied on built-in get_appcontext, database dbid

-1

Usage

• This function returns 0 for success and -1 for failure.
• If the attribute you require does not exist in the application context, get_appcontext

returns NULL.
• get_appcontext saves attributes as char datatypes. If you are creating an access rule that

compares the attribute value to other datatypes, the rule should convert the char data to
the appropriate datatype.

• All arguments for this function are required.
• For more information on the ACF, see Row-Level Access Control in System

Administration Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

The permission checks for get_appcontext differ based on your granular permissions
settings.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 141

Granular
Permissions

Description

Enabled With granular permissions enabled, you must have select permission on
get_appcontext to execute the function.

Disabled With granular permissions disabled, you must have select permission
on get_appcontext or be a user with sa_role to execute the function.

See also
• get_appcontext on page 140
• list_appcontext on page 172
• rm_appcontext on page 227
• set_appcontext on page 236

get_internal_date
Returns the current date and time from the internal clock maintained by the SAP ASE server.

Syntax
get_internal_date

Examples

• Example 1 – The system clock is synchronized with the SAP ASE internal clock. Current
system date: January 20, 2007, 5:04AM:
select get_internal_date()
Jan 20 2007 5:04AM

• Example 2 – The system clock is not synchronized with the SAP ASE internal clock.
Current system date: August 27, 2007, 1:08AM.
select get_internal_date()
Aug 27 2007 1:07AM

Usage

get_internal_date may return a different value than getdate. getdate returns the system clock
value, while get_internal_date returns the value of the server’s internal clock.

At startup, the SAP ASE server initializes its internal clock with the current value of the
operating system clock, and increments it based on regular updates from the operating system.

The SAP ASE server periodically synchronizes the internal clock with the operating system
clock. The two typically differ by a maximum of one minute.

CHAPTER 3: Transact-SQL Functions

142 SAP Adaptive Server Enterprise

The SAP ASE server uses the internal clock value to maintain the date of object creation,
timestamps for transaction log records, and so on. To retrieve such values, use
get_internal_date rather than getdate.

Permissions

Any user can execute get_internal_date

See also
• getdate on page 143

getdate
Returns the current system date and time.

Syntax
getdate()

Examples

• Example 1 – Assumes a current date of November 25, 1995, 10:32 a.m.:

select getdate()
Nov 25 1995 10:32AM

• Example 2 – Assumes a current date of November:

select datepart(month, getdate())
11

• Example 3 – Assumes a current date of November:

select datename(month, getdate())
November

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute getdate.

See also
• Date and Time Datatypes on page 11
• dateadd on page 108

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 143

• datediff on page 111

• datename on page 114

• datepart on page 116

getutcdate
Returns a date and time where the value is in Universal Coordinated Time (UTC). getutcdate
is calculated each time a row is inserted or selected.

Syntax
getutcdate()

Examples

• Example 1 – Returns a date and time in Universal Coordinated Time:
insert t1 (c1, c2, c3) select c1, getutcdate(),
getdate() from t2)

Permissions

Any user can execute getutcdate.

See also
• biginttohex on page 62

• convert on page 87

has_role
Returns information about whether an invoking user has been granted, and has activated, the
specified role.

Syntax
has_role ("role_name", option)

Parameters

• role_name – is the name of a system or user-defined role.
• option – allows you to limit the scope of the information returned. Currently, the only

option supported is 1, which suppresses auditing.

CHAPTER 3: Transact-SQL Functions

144 SAP Adaptive Server Enterprise

Examples

• Example 1 – Creates a procedure to check if the user is a System Administrator:

create procedure sa_check as
if (has_role("sa_role", 0) > 0)
begin
 print "You are a System Administrator."
 return(1)
end

• Example 2 – Checks that the user has been granted the System Security Officer role:

select has_role("sso_role", 1)
• Example 3 – Checks that the user has been granted the Operator role:

select has_role("oper_role", 1)

Usage

• has_role functions the same way proc_role does. In SAP ASE versions 15.0 and later, we
recommend that you use has_role instead of proc_role. You need not, hoever, convert all
of your existing uses of proc_role to has_role.

• has_role returns 0 if the user has:
• Not been granted the specified role
• Not been granted a role which contains the specified role
• Been granted, but has not activated, the specified role

• has_role returns:
• 1 – if the invoking user has been granted, and has activated, the specified role.
• 2 – if the invoking user has a currently active role, which contains the specified role.

See also:

• alter role, create role, drop role, grant, revoke, set in Reference Manual: Commands
• Transact-SQL Users Guide

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute has_role.

See also
• mut_excl_roles on page 190

• role_contain on page 229

• role_id on page 230

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 145

• role_name on page 231

• show_role on page 252

hash
Produces a fixed-length hash value expression.

Syntax
hash(expression , [algorithm])

Parameters

• expression – is the value to be hashed. This can be a column name, variable, constant
expression, or any combination of these that evaluates to a single value. It cannot be
image, text, unitext, or off-row Java datatypes. Expression is usually a column
name. If expression is a character constant, it must be enclosed in quotes.

• algorithm – is the algorithm used to produce the hash value. A character literal (not a
variable or column name) that can take the values of either md5 or sha1, 2 (meaning md5
binary), or 3 (meaning sha1 binary). If omitted, md5 is used.

Algorithm Results in

hash(expression, ‘md5’) A varchar 32-byte string.

md5 (Message Digest Algorithm 5) is the cryptographic hash
function with a 128-bit hash value.

hash(expression) A varchar 32-byte string

hash(expression, ‘sha1’) A varchar 40-byte string

sha1 (Secure Hash Algorithm) is the cryptographic hash function
with a 160-bit hash value.

hash(expression, 2) A varbinary 16-byte value (using the md5 algorithm)

hash(expression, 3) A varbinary 20-byte value (using the sha1 algorithm)

Examples

• Example 1 – This example shows how a seal is implemented. The existence of a table
called “atable” and with columns id, sensitive_field and tamper seal.

update atable set tamper_seal=hash(convert(varchar(30),
id) + sensitive_field+@salt, 'sha1')

CHAPTER 3: Transact-SQL Functions

146 SAP Adaptive Server Enterprise

Usage

When specified as a character literal, algorithm is not case-sensitive—“md5”, “Md5” and
“MD5” are equivalent. However, if expression is specified as a character datatype then the
value is case sensitive. “Time,” “TIME,” and “time” produce different hash values.

If algorithm is a character literal, the result is a varchar string. For “md5” this is a 32-byte
string containing the hexadecimal representation of the 128-bit result of the hash calculation.
For “sha1” this is a 40-byte string containing the hexadecimal representation of the 160-bit
result of the hash calculation.

If algorithm is an integer literal, the result is a varbinary value. For 2, this is a 16-byte value
containing the 128-bit result of the hash calculation. For 3, this is a 20-byte value containing
the 160-bit result of the hash calculation.

Note: Trailing null values are trimmed by the SAP ASE server when inserted into
varbinary columns.

Individual bytes that form expression are fed into the hash algorithm in the order they appear in
memory. For many datatypes order is significant. For example, the binary representation of the
4-byte INT value 1 will be 0x00, 0x00, 0x00, 0x01 on MSB-first (big-endian) platforms and
0x01, 0x00, 0x00, 0x00 on LSB-first (little-endian) platforms. Because the stream of bytes is
different between platforms, the hash value is different as well. Use hashbytes function to
achieve platform independent hash value.

Note: The hash algorithms MD5 and SHA1 are no longer considered entirely secure by the
cryptographic community. As for any such algorithm, you should be aware of the risks of
using MD5 or SHA1 in a security-critical context.

Standards

SQL92- and SQL99-compliant

Permissions

Any user can execute hash.

See also
• hashbytes on page 147

hashbytes
Produces a fixed-length, hash value expression.

Syntax
hashbytes(algorithm, expression[, expression...] [, using options])

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 147

Parameters

• expression[, expression...] – is the value to be hashed. This value can be a column name,
variable, constant expression, or a combination of these that produces a single value. It
cannot be image, text, unitext, or off-row Java datatypes.

• algorithm – is the algorithm used to produce the hash value. A character literal (not a
variable or a column name) that can take the values “md5”, “sha”, “sha1”, or “ptn”.

• Md5 (Message Digest Algorithm 5) – is the cryptographic hash algorithm with a 128 bit
hash value. hashbytes('md5', expression[,...]) results in a varbinary 16-byte value.

• Sha-Sha1 (Secure Hash Algorithm) – is the cryptographic hash algorithm with a 160-
bit hash value. hashbytes('shal', expression[,...]) results in a varbinary 20-byte
value.

• Ptn – The partition hash algorithm with 32-bit hash value. The using clause is ignored
for the ‘ptn’ algorithm. hashbytes('ptn', expression[,...]) results in an unsigned int
4-byte value.

• using – Orders bytes for platform independence. The optional using clause can
precede the following option strings:

• lsb – all byte-order dependent data is normalized to little-endian byte-order before
being hashed.

• msb – all byte-order dependent data is normalized to big-endian byte-order before
being hashed.

• unicode – character data is normalized to unicode (UTF–16) before being hashed.

Note: A UTF – 16 string is similar to an array of short integers. Because it is byte-
order dependent, use lsb or msb in conjunction with UNICODE for platform
independence.

• unicode_lsb – a combination of unicode and lsb.

• unicode_msb – a combination of unicode and msb.

Examples

• Example 1 – Seals each row of a table against tampering. This example assumes the
existence of a user table called “xtable” and col1, col2, col3 and
tamper_seal.

update xtable set tamper_seal=hashbytes('sha1', col1,
col2, col4, @salt)
--
declare @nparts unsigned int
select @nparts= 5
select hashbytes('ptn', col1, col2, col3) % nparts from xtable

• Example 2 – Shows how col1, col2, and col3 are used to partition rows into five
partitions.

alter table xtable partition by hash(col1, col2, col3) 5

CHAPTER 3: Transact-SQL Functions

148 SAP Adaptive Server Enterprise

Usage

The algorithm parameter is not case-sensitive; “md5,” “Md5” and “MD5” are all equivalent.
However, if the expression is specified as a character datatype, the value is case sensitive.
“Time,” “TIME,” and “time” produce different hash values.

Note: Trailing null values are trimmed by the SAP ASE server when inserting into
varbinary columns.

In the absence of a using clause, the bytes that form expression are fed into the hash algorithm
in the order they appear in memory. For many datatypes, order is significant. For example, the
binary representation of the 4-byte INT value 1 will be 0x00, 0x00, 0x00, 0x01, on MSB-first
(big-endian) platforms and 0x01, 0x00, 0x00, 0x00 on LSB-first (little-endian) platforms.
Because the stream of bytes is different for different platforms, the hash value is different as
well.

With the using clause, the bytes that form expression can be fed into the hashing algorithm in a
platform-independent manner. The using clause can also be used to transform character data
into Unicode so that the hash value becomes independent of the server’s character
configuration.

Note: The hash algorithms MD5 and SHA1 are no longer considered entirely secure by the
cryptographic community. Be aware of the risks of using MD5 or SHA1 in a security-critical
context.

Standards

SQL92- and SQL99-compliant

Permissions

Any user can execute hashbyte.

See also
• hash on page 146

hextobigint
Returns the platform-independent bigint value equivalent of a hexadecimal string

Syntax
hextobigint(hexadecimal_string)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 149

Parameters

• hexadecimal_string – is the hexadecimal value to be converted to an big integer; must be a
character-type column, variable name, or a valid hexadecimal string, with or without a
“0x” prefix, enclosed in quotes.

Examples

• Example 1 – The following example converts the hexadecimal string 0x7fffffffffffffff to a
big integer.

1> select hextobigint("0x7fffffffffffffff")
2> go

9223372036854775807

Usage

Use the hextobigint function for platform-independent conversions of hexadecimal data to
integers. hextobigint accepts a valid hexadecimal string, with or without a “0x” prefix,
enclosed in quotes, or the name of a character-type column or variable.

hextobigint returns the bigint equivalent of the hexadecimal string. The function always
returns the same bigint equivalent for a given hexadecimal string, regardless of the
platform on which it is executed.

See also
• biginttohex on page 62

• convert on page 87

• inttohex on page 158

• hextoint on page 150

hextoint
Returns the platform-independent integer equivalent of a hexadecimal string.

Syntax
hextoint(hexadecimal_string)

Parameters

• hexadecimal_string – is the hexadecimal value to be converted to an integer; must be a
character-type column, variable name, or a valid hexadecimal string, with or without a
“0x” prefix, enclosed in quotes.

CHAPTER 3: Transact-SQL Functions

150 SAP Adaptive Server Enterprise

Examples

• Example 1 – Returns the integer equivalent of the hexadecimal string “0x00000100”. The
result is always 256, regardless of the platform on which it is executed:

select hextoint ("0x00000100")

Usage

Use the hextoint function for platform-independent conversions of hexadecimal data to
integers. hextoint accepts a valid hexadecimal string, with or without a “0x” prefix, enclosed
in quotes, or the name of a character-type column or variable.

hextoint returns the integer equivalent of the hexadecimal string. The function always returns
the same integer equivalent for a given hexadecimal string, regardless of the platform on
which it is executed.

See the Transact-SQL Guide for more information about datatype conversion.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute hextoint.

See also
• biginttohex on page 62

• convert on page 87

• inttohex on page 158

host_id
Returns the client computer’s operating system process ID for the current SAP ASE client (not
the server process).

Syntax
host_id()

Examples

• Example 1 – The name of the client computer, “ephemeris” and the process ID on the
computer, “ephemeris” for the SAP ASE client process, 2309:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 151

select host_name(), host_id()
----------------------------- -----------------------
 ephemeris 2309

The following is the process information, gathered using the UNIX ps command, from the
computer “ephemeris” showing that the client in this example is “isql” and its process ID is
2309:
2309 pts/2 S 0:00 /work/as125/OCS-12_5/bin/isql

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute host_id.

See also
• host_name on page 152

host_name
Displays the current host computer name of the client process (not the server process).

Syntax
host_name()

Examples

• Example 1 – Displays the current host computer name:
select host_name()

violet

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

152 SAP Adaptive Server Enterprise

Permissions

Any user can execute host_name.

See also
• host_id on page 151

instance_id
(Cluster environments only) Returns the ID of the named instance, or the instance from which
it is issued if you do not provide a value for name.

Syntax
instance_id([name])

Parameters

• name – name of the instance for which you are searching the ID.

Examples

• Example 1 – Returns the ID of the local instance:
select instance_id()

• Example 2 – Returns the ID of the instance named “myserver1”:
select instance_id(myserver1)

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute instance_id.

identity_burn_max
Tracks the identity burn max value for a given table. This function returns only the value; it
does not perform an update.

Syntax
identity_burn_max(table_name)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 153

Parameters

• table_name – is the name of the table selected.

Examples

• Example 1 – Returns the identity burn max value of t1:
select identity_burn_max("t1")
t1

51

Permissions

The permission checks for identity_burn_max differ based on your granular permissions
settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must be the table owner or have
manage database permission to execute identity_burn_max.

Disabled With granular permissions disabled, you must be the database owner or table
owner, or be a user with sa_role to execute identity_burn_max.

index_col
Displays the name of the indexed column in the specified table or view to a maximum of 255
bytes in length.

Syntax
index_col(object_name, index_id, key_#[, user_id])

Parameters

• object_name – is the name of a table or view. The name can be fully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

• index_id – is the number of object_name’s index. This number is the same as the value of
sysindexes.indid.

• key_# – is a key in the index. This value is between 1 and sysindexes.keycnt for a
clustered index and between 1 and sysindexes.keycnt+1 for a nonclustered index.

• user_id – is the owner of object_name. If you do not specify user_id, it defaults to the
caller’s user ID.

CHAPTER 3: Transact-SQL Functions

154 SAP Adaptive Server Enterprise

Examples

• Example 1 – Finds the names of the keys in the clustered index on table t4:

declare @keycnt integer
select @keycnt = keycnt from sysindexes
 where id = object_id("t4")
 and indid = 1
while @keycnt > 0
begin
 select index_col("t4", 1, @keycnt)
 select @keycnt = @keycnt - 1
end

Usage

index_col returns NULL if object_name is not a table or view name.

See also:

• Transact-SQL Users Guide
• sp_helpindex in Reference Manual: Procedures

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute index_col.

See also
• object_id on page 199

index_colorder
Returns the column order.

Syntax
index_colorder(object_name, index_id, key_#[, user_id])

Parameters

• object_name – is the name of a table or view. The name can be fully qualified (that is, it can
include the database and owner name). It must be enclosed in quotes.

• index_id – is the number of object_name’s index. This number is the same as the value of
sysindexes.indid.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 155

• key_# – is a key in the index. Valid values are 1 and the number of keys in the index. The
number of keys is stored in sysindexes.keycnt.

• user_id – is the owner of object_name. If you do not specify user_id, it defaults to the
caller’s user ID.

Examples

• Example 1 – Returns “DESC” because the salesind index on the sales table is in
descending order:

select name, index_colorder("sales", indid, 2)
from sysindexes
where id = object_id ("sales")
and indid > 0
name
------------------------- -------------------------
salesind DESC

Usage

index_colorder returns:

• “ASC” for columns in ascending order
• “DESC” for columns in descending order.
• NULL if object_name is not a table name or if key_# is not a valid key number.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute index_colorder.

index_name
Returns an index name, when you provide the index ID, the database ID, and the object on
which the index is defined.

Syntax
index_name(dbid, objid, indid)

CHAPTER 3: Transact-SQL Functions

156 SAP Adaptive Server Enterprise

Parameters

• dbid – is the ID of the database on which the index is defined.
• objid – is the ID of the table (in the specified database) on which the index is defined.
• indid – is the ID of the index for which you want a name.

Examples

• Example 1 – Illustrates the normal usage of this function.

select index_name(db_id("testdb"),
 object_id("testdb...tab_apl"),1)

• Example 2 – Illustrates the output if the database ID is NULL and you use the current
database ID.

select index_name(NULL,object_id("testdb..tab_apl"),1)

• Example 3 – Displays the table name if the index ID is 0, and the database ID and object ID
are valid.

select index_name(db_id("testdb"),
 object_id("testdb..tab_apl"),1)

Usage

index_name:

• Uses the current database ID, if you pass a NULL value in the dbid parameter
• Returns NULL if you pass a NULL value in the dbid parameter.
• Returns the object name, if the index ID is 0, and you pass valid inputs for the object ID and

the database ID.

Permissions

Any user can execute index_name.

See also
• db_id on page 123

• object_id on page 199

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 157

inttohex
Returns the platform-independent hexadecimal equivalent of the specified integer, without a
“0x” prefix.

Syntax
inttohex(integer_expression)

Parameters

• integer_expression – is the integer value to be converted to a hexadecimal string.

Examples

• Example 1 – Returns the hexadecimal equivalent of 10:
select inttohex (10)

0000000A

Usage

Use the inttohex function for platform-independent conversions of integers to hexadecimal
strings. inttohex accepts any expression that evaluates to an integer. It always returns the same
hexadecimal equivalent for a given expression, regardless of the platform on which it is
executed.

See the Transact-SQL Guide for more information about datatype conversion..

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute inttohex.

See also
• convert on page 87

• hextobigint on page 149

• hextoint on page 150

CHAPTER 3: Transact-SQL Functions

158 SAP Adaptive Server Enterprise

isdate
Determines whether an input expression is a valid datetime value.

Syntax

isdate(character_expression)

Parameters

• character_expression – is a character-type variable, constant expression, or column
name.

Examples

• Example 1 – Determines if the string 12/21/2005 is a valid datetime value:

select isdate('12/21/2005')
• Example 2 – Determines if stor_id and date in the sales table are valid datetime

values:
select isdate(stor_id), isdate(date) from sales
---- ----
0 1

store_id is not a valid datetime value, but date is.

Usage

Returns:

• 1 – if the expression is a valid datetime value

• 0 – if it is not. Returns 0 for NULL input.

is_quiesced
Indicates whether a database is in quiesce database mode. is_quiesced returns 1 if the
database is quiesced and 0 if it is not.

Syntax
is_quiesced(dbid)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 159

Parameters

• dbid – is the database ID of the database.

Examples

• Example 1 – Uses the test database, which has a database ID of 4, and which is not
quiesced:
1> select is_quiesced(4)
2> go

 0

(1 row affected)
• Example 2 – Uses the test database after running quiesce database to suspend activity:

1> quiesce database tst hold test
2> go
1> select is_quiesced(4)
2> go

 1

(1 row affected)
• Example 3 – Uses the test database after resuming activity using quiesce database:

1> quiesce database tst release
2> go
1> select is_quiesced(4)
2> go

 0

(1 row affected)
• Example 4 – Executes a select statement with is_quiesced using an invalid database ID:

1>select is_quiesced(-5)
2> go

 NULL

(1 row affected)

Usage

is_quiesced:

• Has no default values. You see an error if you execute is_quiesced without specifying a
database.

CHAPTER 3: Transact-SQL Functions

160 SAP Adaptive Server Enterprise

• Returns NULL if you specify a database ID that does not exist.

See also quiesce database in Reference Manual: Commands.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute is_quiesced.

is_sec_service_on
Determines whether a particular security service is active during the session.

Syntax
is_sec_service_on(security_service_nm)

Parameters

• security_service_nm – is the name of the security service.

Examples

• Example 1 – Indicates whether unifiedlogin is active:
select is_sec_service_on("unifiedlogin")

Usage

• Returns 1 if the service is enabled; otherwise, returns 0.
• To find valid names of security services, execute:

select * from syssecmechs

The result might look something like:
sec_mech_name available_service
------------- --------------------
dce unifiedlogin
dce mutualauth
dce delegation
dce integrity
dce confidentiality
dce detectreplay
dce detectseq

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 161

The available_service column displays the security services that are supported by
the SAP ASE server.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute is_sec_service_on.

See also
• show_sec_services on page 253

is_singleusermode
Determines whether the SAP ASE server is running in single-user mode.

Syntax
is_singleusermode()

Examples

• Example 1 – Shows a server running in single-user mode:
select is_singleusermode()

 1

Usage

Returns:

• 0 – if the SAP ASE server is not running in single-user mode.
• 1 – if the SAP ASE server is running in single-user mode.

Permissions

Any user can run is_singleusermode.

CHAPTER 3: Transact-SQL Functions

162 SAP Adaptive Server Enterprise

isnull
Substitutes the value specified in expression2 when expression1 evaluates to NULL.

Syntax
isnull(expression1, expression2)

Parameters

• expression – is a column name, variable, constant expression, or a combination of any of
these that evaluates to a single value. It can be of any datatype, including unichar.
expression is usually a column name. If expression is a character constant, it must be
enclosed in quotes.

Examples

• Example 1 – Returns all rows from the titles table, replacing null values in price
with 0:

select isnull(price,0)
from titles

Usage

• isnull, a system function, substitutes the value specified in expression2 when expression1
evaluates to NULL. For general information about system functions, see Transact-SQL
Users Guide.

• The datatypes of the expressions must convert implicitly, or you must use the convert
function.

• If expression1 parameter is a char datatype and expression2 is a literal parameter, the
results from your select statement that includes isnull differ based on whether you enable
literal autoparameterization. To avoid this situation, do not autoparameterize char
datatype literals within isnull().
Stored procedures that use isnull() with the same expression settings may also exhibit
unexpected behavior. If this occurs, re-create the corresponding autoparameterizations.

See also Controlling Literal Parameterization in Performance and Tuning Series: Query
Processing and Abstract Plans; System Administration Guide: Volume 1; Transact-SQL
Users Guide

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 163

Permissions

Any user can execute isnull.

See also
• convert on page 87

isnumeric
Determines if an expression is a valid numeric datatype.

Syntax
isnumeric (character_expression)

Parameters

• character_expression – is a character-type variable, constant expression, or a column
name.

Examples

• Example 1 – Determines if the values in the postalcode column of the authors table
contains valid numeric datatypes:

select isnumeric(postalcode) from authors
• Example 2 – Determines if the value $100.12345 is a valid numeric datatype:

select isnumeric("$100.12345")

Usage

• Returns 1 if the input expression is a valid integer, floating point number, money or
decimal type; returns 0 if it does not or if the input is a NULL value. A return value of 1
guarantees that you can convert the expression to one of these numeric types.

• You can include currency symbols as part of the input.

instance_name
(Cluster environments only) Returns the name for the SAP ASE with an ID that you provide,
or the name of the SAP ASE from which it is issued if you do not provide a value for id.

Syntax
instance_name([id])

CHAPTER 3: Transact-SQL Functions

164 SAP Adaptive Server Enterprise

Parameters

• id – is the ID of the SAP ASE with the name you are researching.

Examples

• Example 1 – Returns the name of the instance with an ID of 12:
select instance_name(12)

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute instance_name.

lc_id
(Cluster environments only) Returns the ID of the logical cluster whose name you provide, or
the current logical cluster if you do not provide a name.

Syntax
lc_id(logical_cluster_name)

Parameters

• logical_cluster_name – is the name of the logical cluster.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute lc_id

lc_name
(Cluster environments only) Returns the name of the logical cluster with the ID you provide,
or the current logical cluster if you do not provide an ID.

Syntax
lc_name([logical_cluster_ID])

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 165

Parameters

• logical_cluster_ID – is the ID of the logical cluster.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute lc_name.

lct_admin
Manages the last-chance threshold (LCT). It returns the current value of the LCT and aborts
transactions in a transaction log that has reached its LCT.

Syntax
lct_admin({{"lastchance" | "logfull" | "reserved_for_rollbacks"},
 database_id
 |"reserve", {log_pages | 0 }
 | "abort", process-id [, database-id]})

Parameters

• lastchance – creates a LCT in the specified database.
• logfull – returns 1 if the LCT has been crossed in the specified database and 0 if it has

not.
• reserved_for_rollbacks – determines the number of pages a database currently reserved

for rollbacks.
• database_id – specifies the database.
• reserve – obtains either the current value of the LCT or the number of log pages required

for dumping a transaction log of a specified size.
• log_pages – is the number of pages for which to determine a LCT.
• 0 – returns the current value of the LCT. The size of the LCT in a database with separate log

and data segments does not vary dynamically. It has a fixed value, based on the size of the
transaction log. The LCT varies dynamically in a database with mixed log and data
segments.

• abort – aborts transactions in a database where the transaction log has reached its last-
chance threshold. Only transactions in log-suspend mode can be aborted.

• logsegment_freepages – describes the free space available for the log segment. This is the
total value of free space, not per-disk.

CHAPTER 3: Transact-SQL Functions

166 SAP Adaptive Server Enterprise

• process-id – is the ID (spid) of a process in log-suspend mode. A process is placed in log-
suspend mode when it has open transactions in a transaction log that has reached its last-
chance threshold (LCT).

• database-id – is the ID of a database with a transaction log that has reached its LCT. If
process-id is 0, all open transactions in the specified database are terminated.

Examples

• Example 1 – Creates the log segment last-chance threshold for the database with dbid 1.
It returns the number of pages at which the new threshold resides. If there was a previous
last-chance threshold, it is replaced:

select lct_admin("lastchance", 1)
• Example 2 – Returns 1 if the last-chance threshold for the database with dbid of 6 has

been crossed, and 0 if it has not:

select lct_admin("logfull", 6)
• Example 3 – Calculates and returns the number of log pages that would be required to

successfully dump the transaction log in a log containing 64 pages:

select lct_admin("reserve", 64)

 16

• Example 4 – Returns the current last-chance threshold of the transaction log in the
database from which the command was issued:

select lct_admin("reserve", 0)
• Example 5 – Aborts transactions belonging to process 83. The process must be in log-

suspend mode. Only transactions in a transaction log that has reached its LCT are
terminated:

select lct_admin("abort", 83)
• Example 6 – Aborts all open transactions in the database with dbid of 5. This form

awakens any processes that may be suspended at the log segment last-chance threshold:

select lct_admin("abort", 0, 5)
• Example 7 – Determines the number of pages reserved for rollbacks in the pubs2

database, which has a dbid of 5:

select lct_admin("reserved_for_rollbacks", 5, 0)
• Example 8 – Describes the free space available for a database with a dbid of 4:

select lct_admin("logsegment_freepages", 4)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 167

Usage

• lct_admin, a system function, manages the log segment’s last-chance threshold. For
general information about system functions, see Transact-SQL Users Guide.

• If lct_admin(“lastchance”, dbid) returns zero, the log is not on a separate segment in this
database, so no last-chance threshold exists.

• Whenever you create a database with a separate log segment, the server creates a default
last chance threshold that defaults to calling sp_thresholdaction. This happens even if a
procedure called sp_thresholdaction does not exist on the server at all.
If your log crosses the last-chance threshold, the SAP ASE server suspends activity, tries to
call sp_thresholdaction, finds it does not exist, generates an error, then leaves processes
suspended until the log can be truncated.

• To terminate:
• The oldest open transaction in a transaction log that has reached its LCT, enter the ID of

the process that initiated the transaction.
• All open transactions in a transaction log that has reached its LCT, enter 0 as the

process-id, and specify a database ID in the database-id parameter.

See also:

• dump transaction in Reference Manual: Commands
• sp_thresholdaction in Reference Manual: Procedures
• System Administration Guide; Transact-SQL Users Guide

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

The permission checks for lct_admin differ based on your granular permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must have manage database
permission to execute lct_admin abort. Any user can execute the other
lct_admin options.

Disabled With granular permissions disabled, you must be a user with sa_role to
execute lct_admin abort. Any user can execute the other lct_admin options.

See also
• curunreservedpgs on page 102

CHAPTER 3: Transact-SQL Functions

168 SAP Adaptive Server Enterprise

left
Returns a specified number of characters on the left end of a character string.

Syntax
left(character_expression, integer_expression)

Parameters

• character_expression – is the character string from which the characters on the left are
selected.

• integer_expression – is the positive integer that specifies the number of characters
returned. An error is returned if integer_expression is negative.

Examples

• Example 1 – Returns the five leftmost characters of each book title:
use pubs
select left(title, 5) from titles
order by title_id

The B
Cooki
You C
.....
Sushi

(18 row(s) affected)
• Example 2 – Returns the two leftmost characters of the character string “abcdef”:

select left("abcdef", 2)

ab
(1 row(s) affected)

Usage

• character_expression can be of any datatype (except text or image) that can be
implicitly converted to varchar or nvarchar. character_expression can be a constant,
variable, or a column name. You can explicitly convert character_expression using
convert.

• left is equivalent to substring(character_expression, 1, integer_expression).

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 169

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute left.

See also
• Chapter 3, Transact-SQL Functions on page 47

• len on page 170

• str_replace on page 274

• substring on page 279

len
Returns the number of characters, not the number of bytes, of a specified string expression,
excluding trailing blanks.

Syntax
len(string_expression)

Parameters

• string_expression – is the string expression to be evaluated.

Examples

• Example 1 – Returns the characters:
select len(notes) from titles
where title_id = "PC9999"

39

Usage

This function is the equivalent of char_length(string_expression).

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute len.

CHAPTER 3: Transact-SQL Functions

170 SAP Adaptive Server Enterprise

See also
• Chapter 3, Transact-SQL Functions on page 47

• char_length on page 74

• left on page 169

• str_replace on page 274

license_enabled
Returns 1 if a feature’s license is enabled, 0 if the license is not enabled, or NULL if you
specify an invalid license name.

Syntax
license_enabled("ase_server" | "ase_ha" | "ase_dtm" | "ase_java" |
 "ase_asm")

Parameters

• ase_server – specifies the license for the SAP ASE server.
• ase_ha – specifies the license for the the SAP ASE high availability feature.
• ase_dtm – specifies the license for the SAP ASE distributed transaction management

features.
• ase_java – specifies the license for the Java in Adaptive Server feature.
• ase_asm – specifies the license for the SAP ASE advanced security mechanism.

Examples

• Example 1 – Indicates that the license for the SAP ASE distributed transaction
management feature is enabled:

select license_enabled("ase_dtm")

 1

Usage

For information about installing license keys for SAP ASE features, see your installation
guide.

See also:

• Installation guide for your platform
• sp_configure system procedure

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 171

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute license_enabled.

list_appcontext
Lists all the attributes of all the contexts in the current session. list_appcontext is provided by
the ACF.

Syntax
list_appcontext(["context_name"])

Parameters

• context_name – is an optional argument that names all the application context attributes in
the session.

Examples

• Example 1 – Shows the results when a user with appropriate permissions attempts to list
the application contexts:

select list_appcontext ([context_name])
Context Name: (CONTEXT1)
Attribute Name: (ATTR1) Value: (VALUE2)
Context Name: (CONTEXT2)
Attribute Name: (ATTR1) Value: (VALUE1)

• Example 2 – Shows the results when a user without appropriate permissions attempts to
list the application contexts:

select list_appcontext()
Select permission denied on built-in list_appcontext, database
DBID

-1

Usage

• This function returns 0 for success.
• Since built-in functions do not return multiple result sets, the client application receives

list_appcontext returns as messages.

CHAPTER 3: Transact-SQL Functions

172 SAP Adaptive Server Enterprise

See also Row-Level Access Control in System Administration Guide for more information on
the ACF.

Standards

ANSI SQL – Compliance level: Transact-SQL extension

Permissions

The permission checks for list_appcontext differ based on your granular permissions
settings.

Settings Description

Granular permissions
enabled

With granular permissions enabled, you must have select permission
on list_appcontext to execute the function.

Granular permissions
disabled

With granular permissions disabled, you must have select permis-
sion on list_appcontext or be a user with sa_role to execute the function.

See also
• get_appcontext on page 140
• list_appcontext on page 172
• rm_appcontext on page 227
• set_appcontext on page 236

locator_literal
Identifies a binary value as a locator literal.

Syntax
locator_literal(locator_type, literal_locator)

Parameters

• locator_type – is the type of locator. One of text_locator, image_locator, or
unitext_locator.

• literal_locator – is the actual binary value of a LOB locator.

Examples

• Example 1 – This example inserts an image LOB that is stored in memory and identified
by its locator in the imagecol column of my_table. Use of the locator_literal function
ensures that the SAP ASE server correctly interprets the binary value as a LOB locator.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 173

insert my_table (imagecol) values
 (locator_literal(image_locator,
0x9067ef4501000000001000000040100400800000000)

Usage

Use locator_literal to ensure that the SAP ASE server correctly identifies the literal locator
value and does not misinterpret it as an image or other binary.

See also deallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute locator_literal.

See also
• locator_valid on page 174

• return_lob on page 223

• create_locator on page 97

locator_valid
Determines whether a LOB locator is valid.

Syntax
locator_valid (locator_descriptor)

Parameters

• locator_descriptor – is a valid representation of a LOB locator: a host variable, a local
variable, or the literal binary value of a locator.

Examples

• Example 1 – Validates the locator value
0x9067ef4501000000001000000040100400800000000:
locator_valid (0x9067ef4501000000001000000040100400800000000)

 1

Usage

• locator_valid returns 1 if the specified locator is valid. Otherwise, it returns 0 (zero).

CHAPTER 3: Transact-SQL Functions

174 SAP Adaptive Server Enterprise

• A locator becomes invalid if invalidated by the deallocate lob command, or at the
termination of a transaction.

See also deallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute locator_valid.

See also
• create_locator on page 97

• locator_literal on page 173

• return_lob on page 223

lockscheme
Returns the locking scheme of the specified object as a string.

Syntax

lockscheme(object_name)
lockscheme(object_id [, db_id])

Parameters

• object_name – is the name of the object that the locking scheme returns. object_name can
also be a fully qualified name.

• db_id – the ID of the database specified by object_id.
• object_id – the ID of the object that the locking scheme returns.

Examples

• Example 1 – Selects the locking scheme for the titles table in the current database:

select lockscheme("titles")
• Example 2 – Selects the locking scheme for object_id 224000798 (in this case, the

titles table) from database ID 4 (the pubs2 database):

select lockscheme(224000798, 4)
• Example 3 – Returns the locking scheme for the titles table (object_name in this

example is fully qualified):

select lockscheme(tempdb.ownerjoe.titles)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 175

Usage

• lockscheme returns varchar(11) and allows NULLs.

• lockscheme defaults to the current database if you:
• Do not provide a fully qualified object_name.
• Do not provide a db_id.
• Provide a null for db_id.

• If the specified object is not a table, lockscheme returns the string “not a table.”

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute lockscheme.

log
Calculates the natural logarithm of the specified number.

Syntax
log(approx_numeric)

Parameters

• approx_numeric – is any approximate numeric (float, real, or double
precision) column name, variable, or constant expression.

Examples

• Example 1 – Calculates the log of 20:
select log(20)

 2.995732

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

176 SAP Adaptive Server Enterprise

Permissions

Any user can execute log.

See also
• log10 on page 177

• power on page 210

log10
Calculates the base 10 logarithm of the specified number.

Syntax
log10(approx_numeric)

Parameters

• approx_numeric – is any approximate numeric (float, real, or double
precision) column name, variable, or constant expression.

Examples

• Example 1 – Calculates the base 10 log of 20:
select log10(20)

 1.301030

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute log10.

See also
• log on page 176

• power on page 210

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 177

loginfo
Returns information about a transaction log.

Syntax
loginfo (dbid | dbname, option]
loginfo (dbid | dbname, option, option1]

Parameters

• dbid – is the database ID.
• dbname – is the database name.
• option – is the specific information you need about the transaction log. Valid options are:

• active_pages – the total number of pages between the oldest transaction at the time of
the most recent checkpoint, and the end of the log.

• can_free_using_dump_tran – returns a number from 0 to 100 indicating the span of
transaction log which can be truncated with the dump transaction command without
having to abort oldest active transaction. If there is a secondary truncation point before
the start of the oldest active transaction, then this is the span in the log (in percent)
between the start of the log (first log page) and the secondary truncation point. If the
secondary truncation point is not before the oldest active transaction, then this is the
span in the log (in percent) between the start of the log (first log page) and start of the
oldest active transaction.

• checkpoint_page – returns the page number in the log that contains the most recent
checkpoint log record.

• checkpoint_marker – returns the record ID (RID) in the log that contains the most
recent checkpoint log record.

• checkpoint_date – returns the date of the most recent checkpoint log record.
• database_has_active_transaction – returns 0 if there are no active transactions in the

log. Returns 1 if there is an active transaction in the log.
• first_page – returns the page number of the first log page.
• help – shows a message with the different options.
• inactive_pages – the total number of log pages between first_page and either

stp_page or oldest_transaction, whichever comes first. This is the number of log
pages that will be truncated by the dump transaction command.

• is_dump_in_progress – returns 1 if dump transaction command is in progress,
returns 0 if no dump command is in progress.

• is_stp_blocking_dump – returns 1 if there is a secondary truncation point before the
start of the oldest active transaction, otherwise, returns 0.

CHAPTER 3: Transact-SQL Functions

178 SAP Adaptive Server Enterprise

• oldest_active_transaction_date – returns the start time of oldest active transaction.
Returns binary(8) number which needs to be converted to date as shown in the example
below:
select (convert(datetime, convert(binary(8),
 loginfo(4, 'oldest_active_transaction_date')), 109))

• oldest_active_transaction_page – returns the logical page number of start of oldest
active transaction in the log. Returns 0 if there is no active transaction.

• oldest_active_transaction_pct – returns a number from 0 to 100 indicating the span of
the oldest active transaction in percentage of total log space.

• oldest_active_transaction_spid – returns the spid of the session having the oldest
active transaction in the log of the Adaptive Server.

• oldest_transaction_page – returns the page number in the log on which the oldest
active transaction at the time of the most recent checkpoint, started. If there was no
active transaction at the time of the most recent checkpoint, oldest_transaction_page
returns the same value as checkpoint_page.

• oldest_transaction_marker – returns the RID (page number and row ID) in the log on
which the oldest active transaction at the time of the most recent checkpoint, started. If
there was no active transaction at the time of the most recent checkpoint,
oldest_transaction_marker returns the same value as checkpoint_marker.

• oldest_transaction_date – is the at which the oldest active transaction started.
• root_page – returns the page number of the last log page.
• stp_page – returns the page number of the secondary truncation point (STP), if it

exists. The secondary truncation point (or STP) is the point in the log of the oldest
transaction yet to be processed for replication. The transaction may or may not be
active. In cases where the transaction is no longer active, the STP by definition
precedes the oldest active transaction.

• stp_span_pct – returns a number from 0 to 100 indicating the span of secondary
truncation point to the end of log with respect to total log space.

• stp_pages – the total number of log pages between the STP and the oldest active
transaction.

• total_pages – is the total number of log pages in the log chain, from first_page to
root_page.

• until_instant_marker – is the RID (page number and row ID) of the log record
associated with until_time_date.

• until_time_date – is the latest time that could be encapsulated in the dump that is
usable by the until_time clause of load transaction.

• until_time_page – is the log page on which the log record associated with
until_time_date resides.

• xactspanbyspid – This option is to be used only with the third parameter, which is the
SPID of the task. Returns the transaction span if the SPID has an active transaction in
the log. Returns 0 otherwise.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 179

Note: For a Mixed Log Data (MLD) database, this function returns a value equivalent to 0.
The new options for this function are not supported or meant to be used for MLD
databases.

Examples

• Example 1 – Shows how to display transaction log information.
select loginfo(dbid, 'database_has_active_transaction'),
 loginfo(dbid, 'oldest_active_transaction_pct'),
 loginfo(dbid, 'oldest_active_transaction_spid'),
 loginfo(dbid, 'can_free_using_dump_tran'),
 loginfo(dbid, 'is_stp_blocking_dump'),
 loginfo(dbid, 'stp_span_pct')

has_act_tran OAtran_spid Act_log_portion_pct dump_tran_free_pct is_stp_blocking stp_span_pct log_occupied_pct
------------ ------------ ------------------- ------------------ --------------- ------------ ---------------
 1 14 17 7 0 25 32

The function returns the transaction log information:

• 1 active transaction
• 14 is the SPID of the oldest transaction
• 17 percent of the log that is occupied by an active transaction
• 7 percent of the transaction log that can be freed by using the dump transaction

command
• 0 blocking secondary truncation points
• 25 percent of the log that is occupied by the span of the secondary truncation point
• 32 percent of the log that is occupied

• Example 2 – Returns the amount of log space that is spanned for a particular transaction.
select loginfo(dbid, ‘xactspanbyspid’, spid)
spid log_span_pct

 15 2

Permissions

The user must have sa_role to execute loginfo.

lower
Converts uppercase characters to lowercase, returning a character value.

Syntax
lower(char_expr | uchar_expr)

CHAPTER 3: Transact-SQL Functions

180 SAP Adaptive Server Enterprise

Parameters

• char_expr – is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples

• Example 1 – Converts the cities in the publishers database to lowercase:

select lower(city) from publishers

boston
washington
berkeley

Usage

• lower is the inverse of upper.
• If char_expr or uchar_expr is NULL, returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute lower.

See also
• upper on page 296

lprofile_id
Returns the login profile ID of the specified login profile name, or the login profile ID of the
login profile associated with the current login or the specified login name.

Syntax
lprofile_id(name)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 181

Parameters

• name – (Optional) login profile name or a login name.

Examples

• Example 1 – Returns the login profile ID of the specified login profile name:

select lprofile_id('intern_lr')

 3

• Example 2 – Returns the login profile ID of the current login:

select lprofile_id()

 4

• Example 3 – Returns the login profile ID of a specified login name:

select lprofile_id('jon')

 5

Usage

If you:

• Specify a login profile name – lprofile_id returns the corresponding login profile ID. If you
specify a login name, lprofile_id returns the associated (if any) login profile ID.

• Do not specify name – lprofile_id returns the login profile ID of the current login.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

The permission checks for lprofile_id differ based on your granular permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, any user can execute lprofile_id to return
the ID of their own profile. You must have manage any login pro-
file permission to execute lprofile_id and retrieve the profile ID of other
users.

CHAPTER 3: Transact-SQL Functions

182 SAP Adaptive Server Enterprise

Granular
Permissions

Description

Disabled With granular permissions disabled, any user can execute lprofile_id to return
the ID of their own profile. You must be a user with sso_role to execute
lprofile_id and retrieve the profile ID of other users.

See also
• lprofile_name on page 183

lprofile_name
Returns the login profile name of the specified login profile ID, or the login profile name of the
login profile associated with the current login or the specified login suid.

Syntax
lprofile_id(ID)

Parameters

• ID – (Optional) login profile ID or a login suid.

Examples

• Example 1 – Returns the login profile name of a specified login:

select lprofile_name(lprofile_id('jon'))

admin_lr

• Example 2 – Returns the login profile name of the specified login profile ID:

select lprofile_name(3)-------------intern_lr
• Example 3 – Returns login profile name of the current login:

select lprofile_name()

supervisor_lr

Usage

If you:

• Specify a login profile ID – lprofile_name returns its corresponding login profile name. If
you specify a login suid, lprofile_name returns the associated (if any) login profile name.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 183

• Do not specify ID – lprofile_name returns the login profile name of the current login.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

The permission checks for lprofile_name differ based on your granular permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, any user can execute lprofile_name to
return the profile name of their own profile. You must have manage any
login profile permission to execute lprofile_name and retrieve the
profile name of other users.

Disabled With granular permissions disabled, any user can execute lprofile_name to
return the profile name of their own profile. You must have sso_role to execute
lprofile_name and retrieve the profile name of other users.

See also
• lprofile_id on page 181

ltrim
Removes leading blanks from the character expression. Only values equivalent to the space
character in the current character set are removed.

Syntax
ltrim(char_expr | uchar_expr)

Parameters

• char_expr – is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples

• Example 1 – Removes the leading blanks before "123":
select ltrim(" 123")

CHAPTER 3: Transact-SQL Functions

184 SAP Adaptive Server Enterprise

123

Usage

• If char_expr or uchar_expr is NULL, returns NULL.
• For Unicode expressions, returns the lowercase Unicode equivalent of the specified

expression. Characters in the expression that have no lowercase equivalent are left
unmodified.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute ltrim.

See also
• rtrim on page 234

max
Returns the maximum value in a column or expression.

Syntax
max(expression)

Parameters

• expression – is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a subquery.

Examples

• Example 1 – Returns the maximum value in the discount column of the
salesdetail table as a new column:

select max(discount) from salesdetail

 62.200000

• Example 2 – Returns the maximum value in the discount column of the
salesdetail table as a new row:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 185

select discount from salesdetail
compute max(discount)

Usage

• You can use max with exact and approximate numeric, character, and datetime
columns; you cannot use it with bit columns. With character columns, max finds the
highest value in the collating sequence. max ignores null values. max implicitly converts
char datatypes to varchar, and unichar datatypes to univarchar, stripping all
trailing blanks.

• unichar data is collated according to the default Unicode sort order.

• max preserves the trailing zeros in varbinary data.

• max returns a varbinary datatype from queries on binary data.

• The SAP ASE server goes directly to the end of the index to find the last row for max when
there is an index on the aggregated column, unless:
• The expression not a column.
• The column is not the first column of an index.
• There is another aggregate in the query.
• There is a group by or where clause.

See also:

• compute, group by and having clauses, select, where clause in Reference Manual:
Commands

• For general information about aggregate functions, see Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute max.

See also
• avg on page 55

• min on page 187

CHAPTER 3: Transact-SQL Functions

186 SAP Adaptive Server Enterprise

migrate_instance_id
If issued in the context of a migrated task, migrate_instance_id returns the instance ID of the
instance from which the caller migrated. If issued in the context of a nonmigrated task,
migrate_instance_id returns the ID of the current instance.

Syntax
migrate_instance_id()

Usage

You may issue migrate_instance_id from a login trigger to determine which statements in the
trigger should be executed in case a task is migrated.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute migrate_instance_id.

min
Returns the lowest value in a column.

Syntax
min(expression)

Parameters

• expression – is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a subquery. With
aggregates, an expression is usually a column name.

Examples

• Example 1 – Returns the lowest value in the price column:

select min(price) from titles
 where type = "psychology"

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 187

 7.00

Usage

• You can use min with numeric, character, time, and datetime columns, but not with
bit columns. With character columns, min finds the lowest value in the sort sequence.
min implicitly converts char datatypes to varchar, and unichar datatypes to
univarchar, stripping all trailing blanks. min ignores null values. distinct is not
available, since it is not meaningful with min.

• min preserves the trailing zeros in varbinary data.

• min returns a varbinary datatype from queries on binary data.

• unichar data is collated according to the default Unicode sort order.

• The SAP ASE server goes directly to the first qualifying row for min when there is an index
on the aggregated column, unless:
• The expression is not a column.
• The column is not the first column of an index.
• There is another aggregate in the query.
• There is a group by clause.

See also:

• compute, group by and having clauses, select, where clause in Reference Manual:
Commands

• Transact-SQL Users Guide

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute min.

See also
• Expressions on page 331

• avg on page 55

• max on page 185

CHAPTER 3: Transact-SQL Functions

188 SAP Adaptive Server Enterprise

month
Returns an integer that represents the month in the datepart of a specified date.

Syntax
month(date_expression)

Parameters

• date_expression – is an expression of type datetime, smalldatetime, date, or a
character string in a datetime format.

Examples

• Example 1 – Returns the integer 11:
day("11/02/03")

11

Usage

month(date_expression) is equivalent to datapart(mm, date_expression).

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute month.

See also
• Chapter 2, System and User-Defined Datatypes on page 5

• datepart on page 116

• day on page 120

• year on page 316

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 189

mut_excl_roles
Returns information about the mutual exclusivity between two roles.

Syntax
mut_excl_roles (role1, role2 [membership | activation])

Parameters

• role1 – is one user-defined role in a mutually exclusive relationship.
• role2 – is the other user-defined role in a mutually exclusive relationship.
• level – is the level (membership or activation) at which the specified roles are exclusive.

Examples

• Example 1 – Shows that the admin and supervisor roles are mutually exclusive:

alter role admin add exclusive membership supervisor
select
mut_excl_roles("admin", "supervisor", "membership")

 1

Usage

mut_excl_roles, a system function, returns information about the mutual exclusivity between
two roles. If the System Security Officer defines role1 as mutually exclusive with role2 or
a role directly contained by role2, mut_excl_roles returns 1. If the roles are not mutually
exclusive, mut_excl_roles returns 0.

See also:

• alter role, create role, drop role, grant, set, revoke in Reference Manual: Commands
• Transact-SQL Users Guide
• sp_activeroles, sp_displayroles in Reference Manual: Procedures

Standards

ANSI SQL – Compliance level: Transact-SQL extension

Permissions

Any user can execute mut_excl_roles.

CHAPTER 3: Transact-SQL Functions

190 SAP Adaptive Server Enterprise

See also
• proc_role on page 211

• role_contain on page 229

• role_id on page 230

• role_name on page 231

newid
Generates human-readable, globally unique IDs (GUIDs) in two different formats, based on
arguments you provide. The length of the human-readable format of the GUID value is either
32 bytes (with no dashes) or 36 bytes (with dashes).

Syntax
newid([optionflag])

Parameters

• option flag –

• 0, or no value – the GUID generated is human-readable (varchar), but does not
include dashes. This argument, which is the default, is useful for converting values into
varbinary.

• -1 – the GUID generated is human-readable (varchar) and includes dashes.

• -0x0 – returns the GUID as a varbinary.

• Any other value for newid returns NULL.

Examples

• Example 1 – Creates a table with varchar columns 32 bytes long, then uses newid with no
arguments with the insert statement:

create table t (UUID varchar(32))
go
insert into t values (newid())
insert into t values (newid())
go
select * from t
UUID

f81d4fae7dec11d0a76500a0c91e6bf6
7cd5b7769df75cefe040800208254639

• Example 2 – Produces a GUID that includes dashes:

select newid(1)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 191

b59462af-a55b-469d-a79f-1d6c3c1e19e3

• Example 3 – Creates a default that converts the GUID format without dashes to a
varbinary(16) column:

create table t (UUID_VC varchar(32), UUID varbinary(16))
go
create default default_guid
as
strtobin(newid())
go
sp_bindefault default_guid, "t.UUID"
go
insert t (UUID_VC) values (newid())
go

• Example 4 – Returns a new GUID of type varbinary for every row that is returned
from the query:
select newid(0x0) from sysobjects

• Example 5 – Uses newid with the varbinary datatype:

sp_addtype binguid, "varbinary(16)"
create default binguid_dflt
as
newid(0x0)
sp_bindefault "binguid_dflt","binguid"
create table T1 (empname char(60), empid int, emp_guid binguid)
insert T1 (empname, empid) values ("John Doe", 1)
insert T1 (empname, empid(values ("Jane Doe", 2)

Usage

• newid generates two values for the globally unique ID (GUID) based on arguments you
pass to newid. The default argument generates GUIDs without dashes. By default newid
returns new values for every filtered row.

• You can use newid in defaults, rules, and triggers, similar to other functions.
• Make sure the length of the varchar column is at least 32 bytes for the GUID format

without dashes, and at least 36 bytes for the GUID format with dashes. The column length
is truncated if it is not declared with these minimum required lengths. Truncation increases
the probability of duplicate values.

• An argument of zero is equivalent to the default.
• You can use the GUID format without dashes with the strtobin function to convert the

GUID value to 16-byte binary data. However, using strtobin with the GUID format with
dashes results in NULL values.

• Because GUIDs are globally unique, they can be transported across domains without
generating duplicates.

CHAPTER 3: Transact-SQL Functions

192 SAP Adaptive Server Enterprise

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute newid.

next_identity
Retrieves the next identity value that is available for the next insert.

Syntax
next_identity(table_name)

Parameters

• table_name – identifies the table being used.

Examples

• Example 1 – Updates the value of c2 to 10. The next available value is 11.

select next_identity ("t1")
t1

11

Usage

next_identity returns:

• The next value to be inserted by this task. In some cases, if multiple users are inserting
values into the same table, the actual value reported as the next value to be inserted is
different from the actual value inserted if another user performs an intermediate insert.

• A varchar chararcter to support any precision of the identity column. If the table is a
proxy table, a non-user table, or the table does not have identity property, NULL is
returned.

Permissions

The permission checks for next_identity differ based on your granular permissions settings.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 193

Granular
Permissions

Description

Enabled With granular permissions enabled, you must be the table owner, or be a user
with select permission on the identity column of the table, or have man-
age database permission to execute next_identity.

Disabled With granular permissions disabled, you must be the database owner or table
owner, or be a user with sa_role, or have select permission on the identity
column of the table to execute next_identity.

nullif
Allows SQL expressions to be written for conditional values. nullif expressions can be used
anywhere a value expression can be used; alternative for a case expression.

Syntax
nullif(expression, expression)

Parameters

• nullif – compares the values of the two expressions. If the first expression equals the
second expression, nullif returns NULL. If the first expression does not equal the second
expression, nullif returns the first expression.

• expression – is a column name, a constant, a function, a subquery, or any combination of
column names, constants, and functions connected by arithmetic or bitwise operators.

Examples

• Example 1 – Selects the titles and type from the titles table. If the book type is
UNDECIDED, nullif returns a NULL value:

select title,
 nullif(type, "UNDECIDED")
from titles

Alternately, you can also write:

select title,
 case
 when type = "UNDECIDED" then NULL
 else type
 end
from titles

CHAPTER 3: Transact-SQL Functions

194 SAP Adaptive Server Enterprise

Usage

• nullif expression alternate for a case expression.
• nullif expression simplifies standard SQL expressions by allowing you to express a search

condition as a simple comparison instead of using a when...then construct.
• You can use nullif expressions anywhere an expression can be used in SQL.
• At least one result of the case expression must return a non-null value. For example the

following results in an error message:
select price, coalesce (NULL, NULL, NULL)
from titles
All result expressions in a CASE expression must not be NULL.

• If your query produces a variety of datatypes, the datatype of a case expression result is
determined by datatype hierarchy. If you specify two datatypes that the SAP ASE server
cannot implicitly convert (for example, char and int), the query fails.

See also case, coalesce, select, if...else, where clause in Reference Manual: Commands.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute nullif.

See also
• Expressions on page 331

object_attr
Reports the table’s current logging mode, depending on the session, table and database-wide
settings.

Syntax
object_attr(table_name, string)

Parameters

• table_name – name of a table.
• string – is the name of the table property that has been queried. The supported string values

are:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 195

• dml_logging – returns the DML logging level for the requested object in effect, based
on the explicitly set table or database’s DML logging level.

• dml_logging for session – returns the DML logging level for the current session,
taking into account the user running object_attr, the table’s schema, and rules
regarding multistatement transactions, and so on. The return value from this argument
can be different for different users, and different for statements or transactions for the
same user.

• compression – returns the compression type for the requested object.
• help – prints a list of supported string arguments.

Examples

• Example 1 – To determine which properties he or she can query, the user runs:
select object_attr('sysobjects', 'help')
Usage: object_attr('tabname', 'attribute')

List of options in attributes table:
 0 : help
 1 : dml_logging
 2 : dml_logging for session
 3 : compression

dml_logging reports the statically defined dml_logging level for the object, and
dml_logging for session reports the runtime logging level chosen for the object,
depending on the database-specific and session settings.

• Example 2 – The default logging mode of a table with durability set to full:
select object_attr("pubs2..authors",
 "dml_logging")

Returns: FULL
• Example 3 – If the session has logging disabled for all tables, the logging mode returned

for tables owned by this user is minimal.
select object_attr("pubs2..authors",
 "dml_logging")

Returns: FULL

SET DML_LOGGING MINIMAL
go

select object_attr("pubs2..authors",
 "dml_logging for session")

Returns: MINIMAL
• Example 4 – If a table has been altered to explicitly select minimal logging, object_attr

returns a value of minimal, even if the session and database-wide logging is FULL.
create database testdb WITH DML_LOGGING = FULL
go

CHAPTER 3: Transact-SQL Functions

196 SAP Adaptive Server Enterprise

create table non_logged_table (...)
WITH DML_LOGGING = MINIMAL
go

select object_attr("non_logged_table",
 "dml_logging")
Returns: MINIMAL

• Example 5 – Changes a table’s logging from full to minimal. If you explicitly create a
table with full logging, you can reset the logging to minimal during a session if you are the
table owner or a user with the sa_role:

1. Create the testdb database with minimal logging:

create database testdb
with dml_logging = minimal

2. Create a table with dml_logging set to full:
create table logged_table(...)
with dml_logging = full

3. Reset the logging for the session to minimal:
set dml_logging minimal

4. The logging for the table is minimal:
select object_attr("logged_table",
 "dml_logging for session")

minimal

• Example 6 – If you create a table without specifying the logging mode, changing the
session’s logging mode also changes the table’s logging mode:

• Create the table normal_table:
create table normal_table

• Check the session’s logging:
select object_attr("normal_table", "dml_logging")

FULL

• Set the session logging to minimal:
set dml_logging minimal

• The table’s logging is set to minimal:
select object_attr("normal_table",
 "dml_logging for session")

minmimal

• Example 7 – The logging mode returned by object_attr depends on the table you run it
against. In this example, user joe runs a script, but the logging mode the SAP ASE server
returns changes. The tables joe.own_table and mary.other_table use a full
logging mode:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 197

select object_attr("own_table","dml_logging")

 FULL

When joe runs object_attr against mary.other_table, this table is also set to full:

select object_attr("mary.other_table", "dml_logging")

 FULL

If joe changes the dml_logging to minimal, only the logging mode of the tables he owns are
affected:
set dml_logging minimal
select object_attr("own_table", "dml_logging for session")

 MINIMAL

Tables owned by other users continue to operate in their default logging mode:
Select object_attr("mary.other_table", "dml_logging for session")

 FULL

• Example 8 – Identify the run-time choices of logging a new show_exec_info, and use it in
the SQL batch:

1. Enable set showplan:
set showplan on

2. Enable the set command:
set show_exec_info on

3. Set dml_logging to minimal and check the logging with object_attr:
set dml_logging minimal
select object_attr("logged_table", "dml_logging for session")

4. Delete rows from the table:
delete logged_table

The SAP ASE server reports the table’s logging mode at run-time with
show_exec_info parameter.

Usage

• The return type is a varchar, which appropriately returns the value of the property (for
example, on or off) depending on the property queried for.

• The logging mode as reported by extensions to showplan output might be affected at run-
time, if there are set statements in the same batch, preceding the execution of the DML,
which changes the logging mode of the table

• The return value is the value NULL (not the string “NULL”) for an unknown property.

CHAPTER 3: Transact-SQL Functions

198 SAP Adaptive Server Enterprise

• A special-type of string parameter, help prints to the session’s output all the currently
supported properties for object_attr. This allows you to quickly identify which properties
are supported by object_attr.

object_id
Returns the object ID of the specified object.

Syntax
object_id(object_name)

Parameters

• object_name – is the name of a database object, such as a table, view, procedure, trigger,
default, or rule. The name can be fully qualified (that is, it can include the database and
owner name). Enclose the object_name in quotes.

Examples

• Example 1 – Returns the object IDs from titles:

select object_id("titles")

 208003772

• Example 2 – Returns the object ID from sysobjects:

select object_id("master..sysobjects")

 1

Usage

• object_id, a system function, returns the object’s ID. Object IDs are stored in the id
column of sysobjects.

• Instead of consuming resources, object_id discards the descriptor for an object that is not
already in the cache.

See also:

• Transact-SQL Users Guide
• sp_help in Reference Manual: Procedures
• sysobjects in Reference Manual: Tables

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 199

Permissions

Any user can execute object_id.

See also
• col_name on page 80

• db_id on page 123

• object_name on page 200

object_name
Returns the name of the object with the object ID you specify; up to 255 bytes in length.

Syntax
object_name(object_id[, database_id])

Parameters

• object_id – is the object ID of a database object, such as a table, view, procedure, trigger,
default, or rule. Object IDs are stored in the id column of sysobjects.

• database_id – is the ID for a database if the object is not in the current database. Database
IDs are stored in the db_id column of sysdatabases.

Examples

• Example 1 –

select object_name(208003772)

titles

• Example 2 –

select object_name(1, 1)

sysobjects

Usage

See also:

• Transact-SQL Users Guide
• sp_help in Reference Manual: Procedures

CHAPTER 3: Transact-SQL Functions

200 SAP Adaptive Server Enterprise

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute object_name.

See also
• col_name on page 80

• db_id on page 123

• object_id on page 199

object_owner_id
Returns an object’s owner ID.

Syntax
object_owner_id(object_id[, database_id])

Parameters

• object_id – is the ID of the object you are investigating.
• database_id – is the ID of the database in which the object resides.

Examples

• Example 1 – Selects the owner’s ID for an object with an ID of 1, in the database with the
ID of 1 (the master database):
select object_owner_id(1,1)

Permissions

Any user can execute object_owner_id.

pagesize
Returns the page size, in bytes, for the specified object.

Syntax

pagesize(object_name[,])
pagesize(object_id[,db_id[, index_id]])

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 201

Parameters

• object_name – is the object name of the page size of this function returns.
• index_name – indicates the index name of the page size you want returned.
• object_id – is the object ID of the page size this function returns.
• db_id – is the database ID of the object.
• index_id – is the index ID of the object you want returned.

Examples

• Example 1 – Selects the page size for the title_id index in the current database.

select pagesize("title", "title_id")
• Example 2 – Returns the page size of the data layer for the object with object_id 1234 and

the database with a db_id of 2 (the previous example defaults to the current database):
select pagesize(1234,2, null)
select pagesize(1234,2)
select pagesize(1234)

• Example 3 – All default to the current database:
select pagesize(1234, null, 2)
select pagesize(1234)

• Example 4 – Selects the page size for the titles table (object_id 224000798) from
the pubs2 database (db_id 4):

select pagesize(224000798, 4)
• Example 5 – Returns the page size for the nonclustered index’s pages table mytable,

residing in the current database:

pagesize(object_id(‘mytable’), NULL, 2)
• Example 6 – Returns the page size for object titles_clustindex from the current

database:

select pagesize("titles", "titles_clustindex")

Usage

• pagesize defaults to the data layer if you do not provide an index name or index_id (for
example, select pagesize("t1")) if you use the word “null” as a parameter (for
example, select pagesize("t1", null).

• If the specified object is not an object requiring physical data storage for pages (for
example, if you provide the name of a view), pagesize returns 0.

• If the specified object does not exist, pagesize returns NULL.

CHAPTER 3: Transact-SQL Functions

202 SAP Adaptive Server Enterprise

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute pagesize.

partition_id
Returns the partition ID of the specified data or index partition name.

Syntax
partition_id(table_name, partition_name[,index_name])

Parameters

• table_name – is the name for a table.
• partition_name – is the partition name for a table partition or an index partition.
• index_name – is the name of the index of interest.

Examples

• Example 1 – Returns the partition ID corresponding to the partition name
testtable_ptn1 and index id 0 (the base table). The testtable must exist in the
current database:

select partition_id("testtable", "testtable_ptn1")
• Example 2 – Returns the partition ID corresponding to the partition name

testtable_clust_ptn1 for the index name clust_index1. The testtable must
exist in the current database:

select partition_id("testtable", "testtable_clust_ptn1",
"clust_index1")

• Example 3 – This is the same as the previous example, except that the user need not be in
the same database as where the target table is located:

select partition_id("mydb.dbo.testtable",
"testtable_clust_ptn1",
 "clust_index1")

Usage

You must enclose table_name, partition_name and index_name in quotes.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 203

See also
• data_pages on page 103
• object_id on page 199
• partition_name on page 204
• reserved_pages on page 220
• row_count on page 233
• used_pages on page 298

partition_name
Returns the explicit name of a new partition, partition_name returns the partition name of the
specified data or index partition id.

Syntax
partition_name(indid, ptnid[, dbid])

Parameters

• indid – is the index ID for the target partition.
• ptnid – is the ID of the target partition.
• dbid – is the database ID for the target partition. If you do not specify this parameter, the

target partition is assumed to be in the current database.

Examples

• Example 1 – Returns the partition name for the given partition ID belonging to the base
table (with an index ID of 0). The lookup is done in the current database because it does not
specify a database ID:

select partition_name(0, 1111111111)
• Example 2 – Returns the partition name for the given partition ID belonging to the

clustered index (index ID of 1 is specified) in the testdb database.

select partition_name(1, 1212121212, db_id("testdb")

Usage

If the search does not find the target partition, the return is NULL.

See also
• data_pages on page 103
• object_id on page 199
• partition_id on page 203

CHAPTER 3: Transact-SQL Functions

204 SAP Adaptive Server Enterprise

• reserved_pages on page 220

• row_count on page 233

partition_object_id
Displays the object ID for a specified partition ID and database ID.

Syntax
partition_object_id(partition_id [, database_id])

Parameters

• partition_id – is the ID of the partition whose object ID is to be retrieved.
• database_id – is the database ID of the partition.

Examples

• Example 1 – Displays the object ID for partition ID 2:
select partition_object_id(2)

• Example 2 – Displays the object ID for partition ID 14 and database ID 7:
select partition_object_id(14,7)

• Example 3 – Returns a NULL value for the database ID because a NULL value is passed to
the function:
select partition_object_id(1424005073, NULL)

NULL
(1 row affected)

Usage

• partition_object_id uses the current database ID if you do not include a database ID.
• partition_object_id returns NULL if you:

• Use a NULL value for the partition_id.
• Include a NULL value for database_id.
• Provide an invalid or non-existent partition_id or database_id.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 205

password_random
Generates a pseudorandom password that satisfies the global password complexity checks
defined on the SAP ASE server. “Pseudorandom” indicates that the SAP ASE server is
simulating random-like numbers, since no computer generates truly random numbers.

Syntax
password_random ([pwdlen])

Parameters

• pwdlen – is an integer that specifies the length of the random password. If you omit
pwdlen, the SAP ASE server generates a password with a length determined by the
“minimum password length” global option, for which the default value is 6.

Examples

• Example 1 – Shows the password complexity checks stored in the server:
minimum password length: 10
min digits in password: 2
min alpha in password: 4
min upper char in password: 1
min special char in password: -1
min lower char in password: 1

select password_random()

6pY5l6UT]Q

• Example 2 – Shows password complexity checks stored in the server:
minimum password length: 15
minimum digits in password: 4
minimum alpha in password: 4
minimum upper-case characters in password: 1
minimum lower-case characters in password: 2
minimum special characters in password: 4

select password_random(25)

S/03iuX[ISi:Y=?8f.[eH%P51

• Example 3 – Updates the password column with random passwords for all employees
who have names that begin with “A”:
update employee
set password = password_random()
where name like 'A%'

CHAPTER 3: Transact-SQL Functions

206 SAP Adaptive Server Enterprise

• Example 5 – Enclose the random password generated in single or double quotes if using it
directly:
select @password = password_random(11)

%k55Mmf/2U2

sp_adlogin 'jdoe','%k55Mmf/2U2'

Usage

The passwords generated by password_random() are pseudorandom; to generate truly
random passwords, use a stronger random generator.

The complexity checks are:

• Minimum password length
• Minimum number of:

• Digits in password
• Special characters in password
• Alphabetic characters in password
• Uppercase characters in password
• Lowercase characters in password

patindex
Returns the starting position of the first occurrence of a specified pattern.

Syntax
patindex("%pattern%", char_expr|uchar_expr[, using
 {bytes | characters | chars}])

Parameters

• pattern – is a character expression of the char or varchar datatype that may include
any of the pattern-match wildcard characters supported by the SAP ASE server. The %
wildcard character must precede and follow pattern (except when searching for first or last
characters)..

• char_expr – is a character-type column name, variable, or constant expression of char,
varchar, nchar, nvarchar, text_locator, or unitext_locator type.

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar, or univarchar type.

• using – specifies a format for the starting position.
• bytes – returns the offset in bytes.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 207

• chars or characters – returns the offset in characters (the default).

Examples

• Example 1 – Selects the author ID and the starting character position of the word “circus”
in the copy column:

select au_id, patindex("%circus%", copy)
from blurbs
au_id
 ----------- -----------
 486-29-1786 0
 648-92-1872 0
 998-72-3567 38
 899-46-2035 31
 672-71-3249 0
 409-56-7008 0

• Example 3 – Finds all the rows in sysobjects that start with “sys” with a fourth
character that is “a”, “b”, “c”, or “d”:

select name
from sysobjects
where patindex("sys[a-d]%", name) > 0
name

sysalternates
sysattributes
syscharsets
syscolumns
syscomments
sysconfigures
sysconstraints
syscurconfigs
sysdatabases
sysdepends
sysdevices

Usage

• patindex, a string function, returns an integer representing the starting position of the first
occurrence of pattern in the specified character expression, or a 0 if pattern is not found.

• You can use patindex on all character data, including text and image data.

• For text, unitext, and image data, if ciphertext is set to 1, then patindex is not
supported. An error message appears.

• For text, unitext, and image data, if ciphertext is set to 0, then the byte or character
index of the pattern within the plaintext is returned.

• For unichar, univarchar, and unitext, patindex returns the offset in Unicode
characters. The pattern string is implicitly converted to UTF-16 before comparison, and
the comparison is based on the default unicode sort order configuration. For example, this

CHAPTER 3: Transact-SQL Functions

208 SAP Adaptive Server Enterprise

is what is returned if a unitext column contains row value U+0041U+0042U+d800U
+dc00U+0043:
select patindex("%C%", ut) from unitable

4

• By default, patindex returns the offset in characters; to return the offset in bytes (multibyte
character strings), specify using bytes.

• Include percent signs before and after pattern. To look for pattern as the first characters in a
column, omit the preceding %. To look for pattern as the last characters in a column, omit
the trailing %.

• If char_expr or uchar_expr is NULL, patindex returns 0.
• If you give a varchar expression as one parameter and a unichar expression as the

other, the varchar expression is implicitly converted to unichar (with possible
truncation).

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute patindex.

See also
• Pattern Matching with Wildcard Characters on page 350

• charindex on page 75

• substring on page 279

pi
Returns the constant value 3.1415926535897936.

Syntax
pi()

Examples

• Example 1 – Returns pi:
select pi()

 3.141593

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 209

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute pi.

See also
• degrees on page 130

• radians on page 214

power
Returns the value that results from raising the specified number to a given power. power, a
mathematical function, returns the value of value raised to the power power. Results are of the
same type as value.

Syntax
power(value, power)

Parameters

• value – is a numeric value.
• power – is an exact numeric, approximate numeric, or money value.

Examples

• Example 1 – Returns the value that results from raising 2 to the power of 3:
select power(2, 3)

 8

Usage

In expressions of type numeric or decimal, this function returns precision:38, scale 18.

See also Transact-SQL Users Guide.

CHAPTER 3: Transact-SQL Functions

210 SAP Adaptive Server Enterprise

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute power.

See also
• exp on page 138

• log on page 176

• log10 on page 177

proc_role
Returns information about whether the user has been granted a specified role.

Note: SAP recommends that you use has_role instead of proc_role. You need not, however,
convert your existing uses of proc_role to has_role.

Syntax
proc_role("role_name")

Parameters

• role_name – is the name of a system or user-defined role.

Examples

• Example 1 – Creates a procedure to check if the user is a system administrator:

create procedure sa_check as
if (proc_role("sa_role") > 0)
begin
 print "You are a System Administrator."
 return(1)
end

• Example 2 – Checks that the user has been granted the system security officer role:

select proc_role("sso_role")
• Example 3 – Checks that the user has been granted the operator role:

select proc_role("oper_role")

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 211

Usage

• Using proc_role with a procedure that starts with “sp_” returns an error.
• proc_role, a system function, checks whether an invoking user has been granted, and has

activated, the specified role.
• proc_role returns 0 if the user has:

• Not been granted the specified role
• Not been granted a role which contains the specified role
• Been granted, but has not activated, the specified role

• proc_role returns 1 if the invoking user has been granted, and has activated, the specified
role.

• proc_role returns 2 if the invoking user has a currently active role, which contains the
specified role.

See also:

• alter role, create role, drop role, grant, revoke, set in Reference Manual: Commands
• Transact-SQL Users Guide

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute proc_role.

See also
• mut_excl_roles on page 190

• role_contain on page 229

• role_id on page 230

• role_name on page 231

• show_role on page 252

pssinfo
Returns information from the SAP ASE process status structure (pss).

Syntax
pssinfo(spid | 0, 'pss_field')

CHAPTER 3: Transact-SQL Functions

212 SAP Adaptive Server Enterprise

Parameters

• spid – is the process ID. When you enter 0, the current process is used.
• pss_field – is the process status structure field. Valid values are:

• dn – distinguished name when using LDAP authentication.
• extusername – when using external authentication like (PAM, LDAP), extusername

returns the external PAM or LDAP user name used.
• ipaddr – client IP address.
• ipport – client IP port number used for the client connection associated with the user

task being queried.
• isolation_level – isolation level for the current session.
• tempdb_pages – number of tempdb pages used.

Examples

• Example 1 – Displays the port number for spid number 14

select pssinfo(14,'ipport')

 52039

Usage

• The pssinfo function also includes the option to display the external user name and the
distinguish name.

• ipport output, combined with ipaddr output, allows you to uniquely identify network
traffic between the SAP ASE server and the client.

Permissions

The permission checks for pssinfo differ based on your granular permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must be the owner of the proccess
ID, or have manage server permission to execute pssinfo.

Disabled With granular permissions disabled, you must be the owner of the process
ID, or be a user with sa_role or sso_role to execute pssinfo.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 213

radians
Converts degrees to radians. Returns the size, in radians, of an angle with the specified number
of degrees.

Syntax
radians(numeric)

Parameters

• numeric – is any exact numeric (numeric, dec, decimal, tinyint, smallint, or
int), approximate numeric (float, real, or double precision), or money
column, variable, constant expression, or a combination of these.

Examples

• Example 1 – Returns the size, in radians, of 2578:
select radians(2578)

 44

Usage

• radians, a mathematical function, converts degrees to radians. Results are of the same type
as numeric.

• To express numeric or decimal dataypes, this function returns precision: 38, scale 18.
• When money datatypes are used, internal conversion to float may cause loss of

precision.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute radians.

See also
• degrees on page 130

CHAPTER 3: Transact-SQL Functions

214 SAP Adaptive Server Enterprise

rand
Returns a random float value between 0 and 1 using the specified (optional) integer as a seed
value.

Syntax
rand([integer])

Parameters

• integer – is any integer (tinyint, smallint, or int) column name, variable, constant
expression, or a combination of these.

Examples

• Example 1 – Returns a random float value:
select rand()

 0.395740

• Example 2 – Returns a random float value for a seed value of 100:
declare @seed int
select @seed=100
select rand(@seed)

 0.000783

Usage

The rand function uses the output of a 32-bit pseudorandom integer generator. The integer is
divided by the maximum 32-bit integer to give a double value between 0.0 and 1.0. The rand
function is seeded randomly at server start-up, so getting the same sequence of random
numbers is unlikely, unless the user first initializes this function with a constant seed value.

The rand function is a global resource.

Multiple users calling the rand function progress along a single stream of pseudorandom
values. If a repeatable series of random numbers is needed, the user must assure that the
function is seeded with the same value initially and that no other user calls rand while the
repeatable sequence is desired.

See also Transact-SQL Users Guide.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 215

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute rand.

See also
• Approximate Numeric Datatypes on page 8
• rand2 on page 216

rand2
Returns a random value between 0 and 1, which is generated using the specified seed value,
and computed for each returned row when used in the select list. Unlike rand, it is computed
for each returned row when it is used in the select list.

Syntax
rand2([integer])

Parameters

• integer – is any integer (tinyint, smallint, or int) column name, variable, constant
expression, or a combination of these.

Examples

• Example 1 – If there are n rows is table t, the following select statement returns n
different random values, not just one.

select rand2() from t

Usage

• The behavior of rand2 in places other than the select list is undefined.
• The rand and rand2 functions use the output of a 32-bit pseudorandom integer generator.

The integer is divided by the maximum 32-bit integer to give a double value between 0.0
and 1.0. and2 is seeded randomly at server start-up, so getting the same sequence of
random numbers is unlikely, unless the user first initializes this function with a constant
seed value.
The rand2 function is a global resource.
Multiple users calling the rand2 function progress along a single stream of pseudorandom
values. If a repeatable series of random numbers is needed, the user must assure that the

CHAPTER 3: Transact-SQL Functions

216 SAP Adaptive Server Enterprise

function is seeded with the same value initially and that no other user calls rand while the
repeatable sequence is desired.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute rand2.

See also
• Approximate Numeric Datatypes on page 8

• rand on page 215

replicate
Returns a string with the same datatype as char_expr or uchar_expr containing the same
expression repeated the specified number of times or as many times as fits into 16K, whichever
is less.

Syntax
replicate(char_expr | uchar_expr, integer_expr)

Parameters

• char_expr – is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

• integer_expr – is any integer (tinyint, smallint, or int) column name, variable,
or constant expression.

Examples

• Example 1 – Returns a string consisting of "abcd" three times:
select replicate("abcd", 3)

abcdabcdabcd

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 217

Usage

If char_expr or uchar_expr is NULL, returns a single NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute replicate.

See also
• stuff on page 277

reserve_identity
reserve_identity allows a process to reserve a block of identity values for use by that process.

Syntax
reserve_identity (table_name, number_of_values)

Parameters

• table_name – is the name of the table for which the reservation are made. The name can be
fully qualified; that is, it can include the database_name, owner_name, and object_name
(in quotes).

• number_of_values – is the number of sequential identity values reserved for this process.
This must be a positive value that does not cause any of the reserved values to exceed the
maximum values for the datatype of the identity column.

Examples

• Example 1 – Describes a typical usage scenario for reserve_identity, and assumes that
table1 includes col1 (with a datatype of int) and a col2 (an identity column with a
datatype of int). This process is for spid 3:

select reserve_identity("table1", 5)

10

Insert values for spids 3 and 4:

Insert table1 values(56) -> spid 3
Insert table1 values(48) -> spid 3

CHAPTER 3: Transact-SQL Functions

218 SAP Adaptive Server Enterprise

Insert table1 values(96) -> spid 3
Insert table1 values(02) -> spid 4
Insert table1 values(84) -> spid 3

Select from table table1:

select * from table1
Col1 col2
-------- -----
3 1-> spid 3 reserved 1-5
3 2-> spid 3
3 3-> spid 3
4 6<= spid 4 gets next unreserved value
3 4<= spid 3 continues with reservation

The result set shows that spid 3 reservered identity values 1 – 5, spid 4 receives the next
unreserved value, and then spid 3 reserves the subsequent identity values.

Usage

• After a process calls reserve_identity to reserve the block of values, subsequent identity
values needed by this process are drawn from this reserved pool. When these reserved
numbers are exhausted, or if you insert data into a different table, the existing identity
options apply. reserve_identity can retain more than one block of identity values, so if
inserts to different tables are interleaved by a single process, the next value in a table’s
reserved block is used.
Reserves a specified size block of identity values for the specified table, which are used
exclusively by the calling process. Returns the reserved starting number, and subsequent
inserts into the specified table by this process use these values. When the process
terminates, any unused values are eliminated.

• The sp_configure system procedure’s “identity reservation size” parameter specifies a
server-wide limit on the value passed to the number_of_values parameter.

• The return value, start_value, is the starting value for the block of reserved identity values.
The calling process uses this value for the next insert into the specified table

• reserve_identity allows a process to:
• Reserve identity values without issuing an insert statement.
• Know the values reserved prior issuing the insert statement
• “Grab” different size blocks of identity values, according to need.
• Better control “over gaps” by reserving only what is needed (that is, they are not

restricted by preset server grab size
• Values are automatically used with no change to the insert syntax.
• NULL values are returned if:

• A negative value or zero is specified as the block size.
• The table does not exist.
• The table does not contain an identity column.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 219

• If you issue reserve_identity on a table in which this process has already reserved these
identity values, the function succeeds and the most recent group of values is used.

• You cannot use reserve_identity to reserve identity values on a proxy table. Local servers
can use reserve_identity on a remote table if the local server calls a remote procedure that
calls reserve_identity. Because these reserved values are stored on the remote server but in
the session belonging to the local server, subsequent inserts to the remote table use the
reserved values.

• If the identity_gap is less than the reserved block size, the reservation succeeds by
reserving the specified block size (not an identity_gap size) of values. If these values are
not used by the process, this results in potential gaps of up to the specified block size
regardless of the identity_gap setting.

See also sp_configure in Reference Manual: Procedures.

Permissions

You must have insert permission on the table to reserve identity values. Permission checks do
not differ based on the granular permissions settings.

reserved_pages
Reports the number of pages reserved for a database, object, or index. The result includes
pages used for internal structures.

This function replaces the reserved_pgs function used in SAP ASE versions earlier than
15.0.

Syntax
reserved_pages(dbid, object_id[, indid[, ptnid]])

Parameters

• dbid – is the database ID of the database where the target object resides.
• object_id – is an object ID for a table.
• indid – is the index ID of target index.
• ptnid – is the partition ID of target partition.

Examples

• Example 1 – Returns the number of pages reserved by the object with a object ID of
31000114 in the specified database (including any indexes):

select reserved_pages(5, 31000114)
• Example 2 – Returns the number of pages reserved by the object in the data layer,

regardless of whether or not a clustered index exists:

CHAPTER 3: Transact-SQL Functions

220 SAP Adaptive Server Enterprise

select reserved_pages(5, 31000114, 0)
• Example 3 – Returns the number of pages reserved by the object in the index layer for a

clustered index. This does not include the pages used by the data layer:

select reserved_pages(5, 31000114, 1)
• Example 4 – Returns the number of pages reserved by the object in the data layer of the

specific partition, which in this case is 2323242432:

select reserved_pages(5, 31000114, 0, 2323242432)
• Example 5 – Use one of the following three methods to calculate space in a database with

reserved_pages:

• Use case expressions to select a value appropriate for the index you are inspecting,
selecting all non-log indexes in sysindexes for this database. In this query:

• The data has a value of “index 0”, and is available when you include the statements
when sysindexes.indid = 0 or sysindexes.indid = 1.

• indid values greater than 1 for are indexes. Because this query does not sum the
data space into the index count, it does not include a page count for indid of 0.

• Each object has an index entry for index of 0 or 1, never both.
• This query counts index 0 exactly once per table.
select
'data rsvd' = sum(case
 when indid > 1 then 0
 else reserved_pages(db_id(), id, 0)
 end),
'index rsvd' = sum(case
 when indid = 0 then 0
 else reserved_pages(db_id(), id, indid)
 end)
from sysindexes
where id != 8
data rsvd index rsvd
---------- -----------
 812 1044

• Query sysindexes multiple times to display results after all queries are complete:

declare @data int,
@dbsize int,
@dataused int,
@indices int,
@indused int
select @data = sum(reserved_pages(db_id(), id, 0)),
 @dataused = sum(used_pages(db_id(), id, 0))
from sysindexes
where id != 8
and indid <= 1
select @indices = sum(reserved_pages(db_id(), id, indid)),
 @indused = sum(used_pages(db_id(), id, indid))
from sysindexes
where id != 8 and indid > 0

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 221

select @dbsize as 'db size',
@data as 'data rsvd'
db size data rsvd
----------- -----------
 NULL 820

• Query sysobjects for data space information and sysindexes for index information.
From sysobjects, select table objects: [S]ystem or [U]ser:

declare @data int,
 @dbsize int,
 @dataused int,
 @indices int,
 @indused int
select @data = sum(reserved_pages(db_id(), id, 0)),
@dataused = sum(used_pages(db_id(), id, 0))
from sysobjects
where id != 8
and type in ('S', 'U')
select @indices = sum(reserved_pages(db_id(), id, indid)),
 @indused = sum(used_pages(db_id(), id, indid))
from sysindexes
where id != 8
and indid > 0
select @dbsize as 'db size',
 @data as 'data rsvd',
 @dataused as 'data used',
 @indices as 'index rsvd',
 @indused as 'index used'
db size data rsvd data used index rsvd index used
--------- ----------- ----------- ----------- ----------
 NULL 812 499 1044 381

Usage

• If a clustered index exists on an all-pages locked table, passing an index ID of 0 reports the
reserved data pages, and passing an index ID of 1 reports the reserved index pages. All
erroneous conditions result in a value of zero being returned.

• reserved_pages counts whatever you specify; if you supply a valid database, object, index
(data is “index 0” for every table), it returns the reserved space for this database, object, or
index. However, it can also count a database, object, or index multiple times. If you have it
count the data space for every index in a table with multiple indexes, you get it counts the
data space once for every index. If you sum these results, you get the number of indexes
multiplied by the total data space, not the total number of data pages in the object.

• Instead of consuming resources, reserved_pages discards the descriptor for an object that
is not already in the cache.

• reserved_pages replaces the reserved_pgs function from versions of SAP ASE earlier
than 15.0. These are the differences between reserved_pages and reserved_pgs.
• In SAP ASE versions 12.5 and earlier, the SAP ASE server stored OAM pages for the

data and index in sysindexes. In SAP ASE versions 15.0 and later, this information
is stored per-partition in sysparitions. Because this information is stored

CHAPTER 3: Transact-SQL Functions

222 SAP Adaptive Server Enterprise

differently, reserved_pages and reserved_pgs require different parameters and have
different result sets.

• reserved_pgs required a page ID. If you supplied a value that did not have a matching
sysindexes row, the supplied page ID was 0 (for example, the data OAM page of a
nonclustered index row). Because 0 was never a valid OAM page, if you supplied a
page ID of 0, reserved_pgs returned 0; because the input value is invalid,
reserved_pgs could not count anything.
However, reserved_pages requires an index ID, and 0 is a valid index ID (for example,
data is “index 0” for every table). Because reserved_pages can not tell from the
context that you do not require it to recount the data space for any index row except
indid 0 or 1, it counts the data space every time you pass 0 as an index ID. Because
reserved_pages counts this data space once per row, its yields a sum many times the
true value.
These differences are described as:
• reserved_pgs does not affect the sum if you supply 0 as a value for the page ID for

the OAM page input; it just returns a value of 0.
• If you supply reserved_pages with a value of 0 as the index ID, it counts the data

space. Issue reserved_pages only when you want to count the data, or you affect
the sum.

See also update statistics in Reference Manual: Commands.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute reserved_pgs.

See also
• data_pages on page 103

• reserved_pages on page 220

• row_count on page 233

• used_pages on page 298

return_lob
Dereferences a locator, and returns the LOB referenced by that locator.

Syntax
return_lob (datatype, locator_descriptor)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 223

Parameters

• datatype – is the datatype of the LOB. Valid datatypes are:

• text
• unitext
• image

• locator_descriptor – is a valid representation of a LOB locator: a host variable, a local
variable, or the literal binary value of a locator.

Examples

• Example 1 – This example dereferences the locator and returns the LOB referenced by the
literal locator value 0x9067ef4501000000001000000040100400800000000.
return_lob (text, locator_literal(text_locator,
0x9067ef4501000000001000000040100400800000000))

Usage

return_lob overrides the set send_locator on command, and always returns a LOB.

See also deallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute return_lob.

See also
• create_locator on page 97

• locator_literal on page 173

• locator_valid on page 174

reverse
Returns the specified string with characters listed in reverse order.

Syntax
reverse(expression | uchar_expr)

Parameters

• expression – is a character or binary-type column name, variable, or constant expression
of char, varchar, nchar, nvarchar, binary, or varbinary type.

CHAPTER 3: Transact-SQL Functions

224 SAP Adaptive Server Enterprise

• uchar_expr – is a character or binary-type column name, variable, or constant expression
of unichar or univarchar type.

Examples

• Example 1 – Returns "abcd" in reverse:
select reverse("abcd")

dcba

• Example 2 – Returns the reverse of 0x12345000:
select reverse(0x12345000)

0x00503412

Usage

• reverse, a string function, returns the reverse of expression.
• If expression is NULL, reverse returns NULL.
• Surrogate pairs are treated as indivisible and are not reversed.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute reverse.

See also
• lower on page 180

• upper on page 296

right
Returns the part of the character or binary expression starting at the specified number of
characters from the right. Return value has the same datatype as the character expression.

Syntax
right(expression, integer_expr)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 225

Parameters

• expression – is a character or binary-type column name, variable, or constant expression
of char, varchar, nchar, unichar, nvarchar, univarchar, binary, or
varbinary type.

• integer_expr – is any integer (tinyint, smallint, or int) column name, variable,
or constant expression.

Examples

• Example 1 – Returns the part of "abcde" starting at three characters from the right:
select right("abcde", 3)

 cde

• Example 2 – Returns the part of "abcde" starting at two characters from the right:
select right("abcde", 2)
 --
 de

• Example 3 – Returns the part of "abcde" starting at six characters from the right:
select right("abcde", 6)

 abcde

• Example 4 – Returns the part of "0x12345000" starting at three characters from the right:
select right(0x12345000, 3)

 0x345000

• Example 5 – Returns the part of "0x12345000" starting at two characters from the right:
select right(0x12345000, 2)

 0x5000

• Example 6 – Returns the part of "0x12345000" starting at six characters from the right:
select right(0x12345000, 6)

 0x12345000

Usage

• right, a string function, returns the specified number of characters from the rightmost part
of the character or binary expression.

CHAPTER 3: Transact-SQL Functions

226 SAP Adaptive Server Enterprise

• If the specified rightmost part begins with the second surrogate of a pair (the low
surrogate), the return value starts with the next full character. Therefore, one less character
is returned.

• The return value has the same datatype as the character or binary expression.
• If expression is NULL, right returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension

Permissions

Any user can execute right.

See also
• rtrim on page 234

• substring on page 279

rm_appcontext
Removes a specific application context, or all application contexts. rm_appcontext is
provided by the Application Context Facility (ACF).

Syntax
rm_appcontext(“context_name”, “attribute_name”)

Parameters

• context_name – is a row specifying an application context name. It is saved as datatype
char(30).

• attribute_name – is a row specifying an application context attribute name. It is saved as
datatype char(30).

Examples

• Example 1 – Removes an application context by specifying some or all attributes:

select rm_appcontext("CONTEXT1", "*")

0
select rm_appcontext("*", "*")

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 227

0
select rm_appcontext("NON_EXISTING_CTX","ATTR")

-1

• Example 2 – Shows the result when a user without appropriate permissions attempts to
remove an application context:

select rm_appcontext("CONTEXT1","ATTR2")

-1

Usage

• This function always returns 0 for success.
• All the arguments for this function are required.

For more information on the ACF see Row-Level Access Control in System Administration
Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

The permission checks for rm_appcontext differ based on your granular permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must have select permission on
rm_appcontext to execute the function.

Disabled With granular permissions disabled, you must be a user with sa_role, or
have select permission on rm_appcontext to execute the function.

See also
• get_appcontext on page 140

• list_appcontext on page 172

• set_appcontext on page 236

CHAPTER 3: Transact-SQL Functions

228 SAP Adaptive Server Enterprise

role_contain
Determines whether a specified role is contained within another specified role.

Syntax
role_contain("role1", "role2")

Parameters

• role1 – is the name of a system or user-defined role.
• role2 – is the name of another system or user-defined role.

Examples

• Example 1 – Determines whether intern_role is contained within doctor_role:
select role_contain("intern_role", "doctor_role")

1

• Example 2 – Determines whether specialist_role is contained within intern_role:
select role_contain("specialist_role", "intern_role")

0

Usage

role_contain, a system function, returns 1 if role1 is contained by role2. Otherwise,
role_contain returns 0.

See also:

• alter role in Reference Manual: Commands
• For more information about contained roles and role hierarchies, see the System

Administration Guide. For system functions, see Transact-SQL Users Guide.
• sp_activeroles, sp_displayroles in Reference Manual: Procedures

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute role_contain.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 229

See also
• mut_excl_roles on page 190
• proc_role on page 211
• role_id on page 230
• role_name on page 231

role_id
Returns the role ID of the specified role name.

Syntax
role_id("role_name")

Parameters

• role_name – is the name of a system or user-defined role. Role names and role IDs are
stored in the syssrvroles system table.

Examples

• Example 1 – Returns the system role ID of sa_role:

select role_id("sa_role")

0

• Example 2 – Returns the system role ID of the intern_role:

select role_id("intern_role")

6

Usage

• role_id, a system function, returns the system role ID (srid). System role IDs are stored in
the srid column of the syssrvroles system table.

• If the role_name is not a valid role in the system, the SAP ASE server returns NULL.

See also:

• Roles – see the System Administration Guide
• System functions – see Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

230 SAP Adaptive Server Enterprise

Permissions

Any user can execute role_id.

See also
• mut_excl_roles on page 190

• proc_role on page 211

• role_contain on page 229

• role_name on page 231

role_name
Returns the role name of the specified role ID.

Syntax
role_name(role_id)

Parameters

• role_id – is the system role ID (srid) of the role. Role names are stored in
syssrvroles.

Examples

• Example 1 – Returns the role name of ID 01:
select role_name(01)

sso_role

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension

Permissions

Any user can execute role_name.

See also
• mut_excl_roles on page 190

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 231

• proc_role on page 211

• role_contain on page 229

• role_id on page 230

round
Returns the value of the specified number, rounded to the specified number of decimal places.

Syntax
round(number, decimal_places)

Parameters

• number – is any exact numeric (numeric, dec, decimal, tinyint, smallint,
int, or bigint), approximate numeric (float, real, or double precision), or
money column, variable, constant expression, or a combination of these.

• decimal_places – is the number of decimal places to round to.

Examples

• Example 1 – Returns the value of 123.4545, rounded to 2 decimal places:
select round(123.4545, 2)

 123.4500

• Example 2 – Returns the value of 123.45, rounded to -2 decimal places:
select round(123.45, -2)

 100.00

• Example 3 – Returns the value of 1.2345E2, rounded to 2 decimal places:
select round(1.2345E2, 2)

 123.450000

• Example 4 – Returns the value of 1.2345E2, rounded to -2 decimal places:
select round(1.2345E2, -2)

 100.000000

CHAPTER 3: Transact-SQL Functions

232 SAP Adaptive Server Enterprise

Usage

• round, a mathematical function, rounds the number so that it has decimal_places
significant digits.

• A positive value for decimal_places determines the number of significant digits to the right
of the decimal point; a negative value for decimal_places determines the number of
significant digits to the left of the decimal point.

• Results are of the same type as number and, for numeric and decimal expressions, have an
internal precision equal to the precision of the first argument plus 1 and a scale equal to that
of number.

• round always returns a value. If decimal_places is negative and exceeds the number of
significant digits specified for number, the SAP ASE server returns 0. (This is expressed in
the form 0.00, where the number of zeros to the right of the decimal point is equal to the
scale of numeric.) For example, the following returns a value of 0.00:

select round(55.55, -3)

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute round.

See also
• abs on page 47

• ceiling on page 70

• floor on page 139

• sign on page 253

• str on page 272

row_count
Returns an estimate of the number of rows in the specified table.

Syntax
row_count(dbid, object_id [,ptnid] [, “option”])

Parameters

• dbid – is the the database ID where target object resides.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 233

• object_id – is the object ID of table.
• ptnid – is the partition ID of interest.

Examples

• Example 1 – Returns an estimate of the number of rows in the given object:

select row_count(5, 31000114)
• Example 2 – Returns an estimate of the number of rows in the specified partition (with

partition ID of 2323242432) of the object with object IDof 31000114:

select row_count(5, 31000114, 2323242432)

Usage

• All erroneous conditions return in a value of zero being returned.
• Instead of consuming resources, row_count discards the descriptor for an object that is not

already in the cache.

Standards

ANSI SQL – Compliance level: Transact-SQL extension

Permissions

Any user can execute row_count.

See also
• reserved_pages on page 220

• used_pages on page 298

rtrim
Trims the specified expression of trailing blanks.

Syntax
rtrim(char_expr | uchar_expr)

Parameters

• char_expr – is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

CHAPTER 3: Transact-SQL Functions

234 SAP Adaptive Server Enterprise

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples

• Example 1 – Trims the trailing blanks off after "abcd":
select rtrim("abcd ")

abcd

Usage

• For Unicode, a blank is defined as the Unicode value U+0020.
• If char_expr or uchar_expr is NULL, returns NULL.
• Only values equivalent to the space character in the current character set are removed.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute rtrim.

See also
• ltrim on page 184

sdc_intempdbconfig
(Cluster environments only) Returns 1 if the system is currently in temporary database
configuration mode; if not, returns 0.

Syntax

sdc_intempdbconfig()

Examples

• Example 1 – Displays whether the system is in temporary database configuration mode or
not:
select sdc_intempdbconfig()

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 235

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute sdc_intempdbconfig.

set_appcontext
Sets an application context name, attribute name, and attribute value for a user session, defined
by the attributes of a specified application. set_appcontext is a provided by the ACF.

Syntax
set_appcontext(“context_name, “attribute_name”, “attribute_value”)

Parameters

• context_name – is a row that specifies an application context name. It is saved as the
datatype char(30).

• attribute_name – is a row that specifies an application context attribute name. It is saved as
the datatype char(30).

• attribute_value – is a row that specifies and application attribute value. It is saved as the
datatype char(30).

Examples

• Example 1 – Creates an application context called CONTEXT1, with an attribute ATTR1
that has the value VALUE1.

select set_appcontext ("CONTEXT1", "ATTR1", "VALUE1")

0

Attempting to override the existing application context created causes:

select set_appcontext("CONTEXT1", "ATTR1", "VALUE1")

-1

• Example 2 – Shows set_appcontext including a datatype conversion in the value.

declare@numericvarchar varchar(25)
select @numericvar = "20"
select set_appcontext ("CONTEXT1", "ATTR2",
convert(char(20), @numericvar))

CHAPTER 3: Transact-SQL Functions

236 SAP Adaptive Server Enterprise

0

• Example 3 – Shows the result when a user without appropriate permissions attempts to set
the application context.

select set_appcontext("CONTEXT1", "ATTR2", "VALUE1")

-1

Usage

• set_appcontext returns 0 for success and -1 for failure.
• If you set values that already exist in the current session, set_appcontext returns -1.
• This function cannot override the values of an existing application context. To assign new

values to a context, remove the context and re-create it using new values.
• set_appcontext saves attributes as char datatypes. If you are creating an access rule that

must compare the attribute value to another datatype, the rule should convert the char
data to the appropriate datatype.

• All the arguments for this function are required.
• For more information on the ACF see Row-Level Access Control in System

Administration Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

The permission checks for set_appcontext differ based on your granular permissions
settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must have select permission on
set_appcontext to execute the function.

Disabled With granular permissions disabled, you must be a user with sa_role, or
have select permission on set_appcontext to execute the function.

See also
• get_appcontext on page 140

• list_appcontext on page 172

• rm_appcontext on page 227

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 237

setdata
Overwrites some or all of a large object (LOB).

Syntax
setdata(locator_name, offset_value, new_value)

Parameters

• locator_name – is a locator that references the LOB value you are modifying.
• offset_value – is a position within the LOB to which locator_name points. This is the

position where the the SAP ASE server begins writing the contents of new_value. The
value for offset_value is in characters for text_locator and unitext_locator, and in bytes
for image_locator. The first character or byte of the LOB has an offset_value of 1.

• new_value – is the data with which you are overwriting the old data.

Examples

• Example 1 – The final select statement in this example returns the string “SAP ABC/IQ/
ASA” instead of the original string, “SAP “ASE/IQ/ASA”:
declare @v text_locator
 select @v = create_locator
 (text_locator, convert(text, "SAP ASE/IQ/ASA")
 select setdata(@v, 8, "ABC")
 select return_lob(text, @v)

Usage

• setdata modifies the LOB value in-place. That is, the SAP ASE server does not copy the
LOB before it is modified.

• If the length of new_value is longer than the remaining length of the LOB after skipping
the offset_value, the SAP ASE server extends the LOB to hold the entire length of
new_value.

• If the sum of new_value and offset_value is shorter than the length of the LOB, the SAP
ASE server does not change or truncate the data at the end of the LOB.

• setdata returns NULL if the offset_value is longer than the LOB value you are updating.

See also deallocate locator, truncate lob in Reference Manual: Commands.

Permissions

Any user can execute setdata.

CHAPTER 3: Transact-SQL Functions

238 SAP Adaptive Server Enterprise

See also
• create_locator on page 97

• locator_valid on page 174

• return_lob on page 223

shrinkdb_status
Determines the status of a shrink operation.

Syntax
 shrinkdb_status(database_name, query)

Parameters

• database_name – is the name of the database you are checking.
• query – is one of:

• in_progress – determines if a shrink database is in progress on this database. Returns a
value of 0 for no, a value of 1 for yes.

• owner_instance – determines which instance in a cluster is running a shrink operation.
Returns:
• 0 – if no shrink is in progress.
• The owning instance ID – if an instance has a shrink operation running. For a

nonclustered server, the "owning instance” is always 1.
• au_total – returns the total number of allocation units (that is, groups of 256 pages) the

shrink operation affects.
• au_current – returns the total number of allocation units processed by the shrink

operation.
• pages_moved – returns the number of index or data pages moved during the current

shrink operation. pages_moved does not include empty pages that were released
during the shrink operation.

• begin_date – the date and time the current shrink operation began, returned as an
unsigned bigint.

• end_date – returns the date and time the shrink operation ended. Returns 0 when the
shrink operation is ongoing or completed but not waiting for a restart.

• requested_end_date – returns the date and time the active shrink operation is
requested to end.

• time_move – returns the amount of time, in microseconds, spent moving pages.
time_move includes the time spent updating page references to the moved pages, but
does not include the time spent performing administrative tasks that happen at the end
of individual move blocks.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 239

• time_repair – returns the amount of time, in microseconds, spent on administrative
tasks for moving blocks. time_repair plus the value for time_move indicates the
approximate amount of time Adaptive Server spent working on the current shrink
operation.

• last_error – returns the error the shrink operation encountered when it came to
abnormal stop.

• current_object_id – Object ID of the table being shrunk
• current_page – number of the page most recently, or currently, being moved
• buffer_read_wait – amount of time, in microseconds, spent waiting for buffers to be

read
• buffer_write_wait – amount of time, in microseconds, spent waiting for buffers to be

written
• pages_read – number of pages read by the shrink operation
• pages_written – number of pages written by the shrink operation
• index_sort_count – number of times the shrink operation sorted duplicated indexes

Examples

• Example 1 – checks the progress of the pubs2 database shrink operation:

shrinkdb_status("pubs2", "in_progress")
• Example 2 – returns the amount of time Adaptive Server spent moving the pages of the

pubs2 database:

shrinkdb_status("pubs2", "time_move")
• Example 3 – returns the amount of time Adaptive Server spent shinking the pubs2

database:
shrinkdb_status("pubs2", "time_move")

Usage

shrinkdb_status returns 0 if no shrink operations are currently running on the database.

show_cached_plan_in_xml
Displays, in XML, the executing query plan for queries in the statement cache.

show_cached_plan_in_xml returns sections of the showplan utility output in XML format.

Syntax
show_cached_plan_in_xml(statement_id, plan_id, [level_of_detail])

CHAPTER 3: Transact-SQL Functions

240 SAP Adaptive Server Enterprise

Parameters

• statement_id – is the object ID of the lightweight procedure. A lightweight procedure is
one that can be created and invoked internally by the SAP ASE server. This is the SSQLID
column from monCachedStatement, which contains a unique identifier for each
cached statement.

• plan_id – is the unique identifier for the plan. This is the PlanID from
monCachedProcedures. A value of zero for plan_id displays the showplan output for
all cached plans for the indicated SSQLID.

• level_of_detail – is a value from 0 – 6 indicating the amount of detail
show_cached_plan_in_xml returns, and determines which sections of showplan are
returned by show_cached_plan_in_xml. The default value is 0.

Table 15. Level of Detail

level_of_detail Parameter opTree execTree

0 (the default) X X

1 X

2 X

3 X

4 X X

5 X X

6 X X X

The output of show_cached_plan_in_xml includes the plan_id and these sections:

• parameter – contains the parameter values used to compile the query and the
parameter values that caused the slowest performance. The compile parameters are
indicated with the <compileParameters> and </compileParameters>
tags. The slowest parameter values are indicated with the <execParameters> and
</execParameters> tags. For each parameter, show_cached_plan_in_xml
displays the:
• Number
• Datatype
• Value – values that are larger than 500 bytes and values for insert-value statements

do not appear. The total memory used to store the values for all parameters is 2KB
for each of the two parameter sets.

Examples

• Example 1 – Shows a query plan rendered in XML:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 241

select show_cache_plan_in_xml(1328134997,0)
go

<?xml version="1.0" encoding="UTF-8"?>
<query>
 <statementId>1328134997</statementId>
<text>
 <![CDATA[SQL Text: select name from sysobjects where id = 10]]>
</text>
<plan>
 <planId>11</planId>
 <planStatus> available </planStatus>
 <execCount>1371</execCount>
 <maxTime>3</maxTime>
 <avgTime>0</avgTime>
 <compileParameters/>
 <execParameters/>
 <opTree>
 <Emit>
 <VA>1</VA>
 <est>
 <rowCnt>10</rowCnt>
 <lio>0</lio>
 <pio>0</pio>
 <rowSz>22.54878</rowSz>
 </est>
 <act>
 <rowCnt>1</rowCnt>
 </act>
 <arity>1</arity>
 <IndexScan>
 <VA>0</VA>
 <est>
 <rowCnt>10</rowCnt>
 <lio>0</lio>
 <pio>0</pio>
 <rowSz>22.54878</rowSz>
 </est>
 <act>
 <rowCnt>1</rowCnt>
 <lio>3</lio>
 <pio>0</pio>
 </act>
 <varNo>0</varNo>
 <objName>sysobjects</objName>
 <scanType>IndexScan</scanType>
 <indName>csysobjects</indName>
 <indId>3</indId>
 <scanOrder> ForwardScan </scanOrder>
 <positioning> ByKey </positioning>
 <perKey>
 <keyCol>id</keyCol>
 <keyOrder> Ascending </keyOrder>
 </perKey>
 <indexIOSizeInKB>2</indexIOSizeInKB>

CHAPTER 3: Transact-SQL Functions

242 SAP Adaptive Server Enterprise

 <indexBufReplStrategy> LRU </indexBufReplStrategy>
 <dataIOSizeInKB>2</dataIOSizeInKB>
 <dataBufReplStrategy> LRU </dataBufReplStrategy>
 </IndexScan>
 </Emit>
 </opTree>
</plan>

• Example 2 – Shows enhanced <est>, <act>, and <scanCoverage> tags available
in 15.7.1 and later versions of SAP ASE:

select show_cached_plan_in_xml(1123220018, 0)
go
<?xml version="1.0" encoding="UTF-8"?>
<query>
 <statementId>1123220018</statementId>
 <text>
 <![CDATA[
 SQL Text: select distinct c1, c2 from t1, t2 where c1 = d1 PLAN
'(distinct_hashing (nl_join (t_scan t2) (i_scan i1t1
t1)))']]>
 </text>
 <plan>
 <planId>6</planId>
 <planStatus> available </planStatus>
 <execCount>1</execCount>
 <maxTime>16</maxTime>
 <avgTime>16</avgTime>
 <compileParameters/>
 <execParameters/>
 <opTree>
 <Emit>
 <VA>4</VA>
 <est>
 <rowCnt>1</rowCnt>
 <lio>0</lio>
 <pio>0</pio>
 <rowSz>10</rowSz>
 </est>
 <arity>1</arity>
 <HashDistinct>
 <VA>3</VA>
 <est>
 <rowCnt>1</rowCnt>
 <lio>5</lio>
 <pio>0</pio>
 <rowSz>10</rowSz>
 </est>
 <arity>1</arity>
 <WorkTable>
 <wtObjName>WorkTable1</wtObjName>
 </WorkTable>
 <NestLoopJoin>
 <VA>2</VA>
 <est>
 <rowCnt>1</rowCnt>

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 243

 <lio>0</lio>
 <pio>0</pio>
 <rowSz>10</rowSz>
 </est>
 <arity>2</arity>
 <TableScan>
 <VA>0</VA>
 <est>
 <rowCnt>1</rowCnt>
 <lio>1</lio>
 <pio>0.9999995</pio>
 <rowSz>6</rowSz>
 </est>
 <varNo>0</varNo>
 <objName>t2</objName>
 <scanType>TableScan</scanType>
 <scanOrder> ForwardScan </scanOrder>
 <positioning> StartOfTable </positioning>
 <scanCoverage> NonCovered </scanCoverage>
 <dataIOSizeInKB>16</dataIOSizeInKB>
 <dataBufReplStrategy> LRU </
dataBufReplStrategy>
 </TableScan>
 <IndexScan>
 <VA>1</VA>
 <est>
 <rowCnt>1</rowCnt>
 <lio>0</lio>
 <pio>0</pio>
 <rowSz>10</rowSz>
 </est>
 <varNo>1</varNo>
 <objName>t1</objName>
 <scanType>IndexScan</scanType>
 <indName>i1t1</indName>
 <indId>1</indId>
 <scanOrder> ForwardScan </scanOrder>
 <positioning> ByKey </positioning>
 <scanCoverage> NonCovered </scanCoverage>
 <perKey>
 <keyCol>c1</keyCol>
 <keyOrder> Ascending </keyOrder>
 </perKey>
 <dataIOSizeInKB>16</dataIOSizeInKB>
 <dataBufReplStrategy> LRU </
dataBufReplStrategy>
 </IndexScan>
 </NestLoopJoin>
 </HashDistinct>
 </Emit>
 <est>
 <totalLio>6</totalLio>
 <totalPio>0.9999995</totalPio>
 </est>
 <act>
 <totalLio>0</totalLio>

CHAPTER 3: Transact-SQL Functions

244 SAP Adaptive Server Enterprise

 <totalPio>0</totalPio>
 </act>
 </opTree>
 </plan>
</query>

Usage

• Enable the statement cache before you use show_cached_plan_in_xml.
• Use show_cached_plan_in_xml for cached statements only.
• The plan does not print if it is in use. Plans with the status of available print plan

details. Plans with the status of in use show only the process ID.

Permissions

The permission checks for show_cached_plan_in_xml differ based on your granular
permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must be a user with mon_role, or
have monitor qp performance permission to execute
show_cached_plan_in_xml.

Disabled With granular permissions disabled, you must be a user with mon_role or
sa_role to execute show_cached_plan_in_xml.

show_cached_text
Displays the SQL text of a cached statement.

Syntax
show_cached_text(statement_id)

Parameters

• statement_id – is the ID of the statement. Derived from the SSQLID column of
monCachedStatement.

Examples

• Example 1 – Displays the contents of monCachedStatement, then uses the
show_cached_text function to show the SQL text:
select InstanceID, SSQLID, Hashkey, UseCount, StmtType
from monCachedStatement

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 245

InstanceID SSQLID Hashkey UseCount StmtType
---------- ---------- ---------- ----------- --------
0 329111220 1108036110 0 2
0 345111277 1663781964 1 1
select show_cached_text(329111220)

select id from sysroles

Usage

• show_cached_text displays up to 16K of SQL text, and truncates text longer than 16K.
Use show_cached_text_long for text longer than 16K.

• show_cached_text returns a varchar datatype.

Permissions

The permission checks for show_cached_text differ based on your granular permissions
settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must be a user with mon_role, or
have monitor qp performance permission to execute
show_cached_text.

Disabled With granular permissions disabled, you must be a user with mon_role or
sa_role to execute show_cached_text.

show_cached_text_long
Displays the SQL text for cached statements longer than 16K.

Syntax
show_cached_text_long(statement_id)

Parameters

• statement_id – is the ID of the statement. Derived from the SSQLID column of
monCachedStatement.

Examples

• Example 1 – This selects the SQL text from the monCachedStatement monitoring
table (the result set has been shortened for easier readability):

CHAPTER 3: Transact-SQL Functions

246 SAP Adaptive Server Enterprise

select show_cached_text_long(SSQLID) as sql_text, StatementSize
from monCachedStatement
sql_text
 StatementSize

--
SELECT first_column
188888

Usage

• show_cached_text_long displays up to 2M of SQL text.
• show_cached_text_long returns a text datatype.

• Using show_cached_text_long requires you to configure set textsize value at a large value.
If you configure a value that is too small, SAP ASE clients (for example, isql) truncate the
show_cached_text_long result set.

Permissions

The permission checks for show_cached_text_long differ based on your granular
permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must be a user with mon_role, or
have monitor qp performance permission to execute
show_cached_text_long.

Disabled With granular permissions disabled, you must be a user with mon_role or
sa_role to execute show_cached_text_long.

show_condensed_text
Returns the unified SQL text for cached statements.

Syntax
show_condensed_text(statement_id, option)

Parameters

• statement_id – is ID of the statement. Derived from the SSQLID column of
monCachedStatement.

• option – is a string constant, enclosed in quotes. One of:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 247

• text – returns the condensed text
• hash – return the hash value for the condensed text

Examples

• Example 1 – displays condensed text for cached SQL text:
select show_condensed_text(SSQLID, 'text') from
monCachedStatement

 SELECT SHOW_CONDENSED_TEXT(SSQLID,$) FROM monCachedStatement

• Example 2 – displays the hash value of the condensed text for cached SQL text: 1:
 select show_condensed_text(SSQLID, 'hash') from
monCachedStatement

1331016445

Usage

show_condensed_text:

• Returns a text datatype

• Supports long SQL text (greater than 16KB)
• Returns NULL for invalid option values

Permissions
The permission checks for show_condensed_text depend on your granular permissions
settings:

• Granular permissions enabled – you must have the mon_role, or have monitor qp
performance permission to execute show_condensed_text.

• Granular permissions disabled – you must have the mon_role or sa_role to execute
show_condensed_text.

show_dynamic_params_in_xml
Returns parameter information for a dynamic SQL query (a prepared statement) in XML
format.

Syntax
show_dynamic_params_in_xml(object_id)

CHAPTER 3: Transact-SQL Functions

248 SAP Adaptive Server Enterprise

Parameters

• object_id – ID of the dynamic, SQL lightweight stored procedure you are investigating.
Usually the return value of the @@plwpid global variable.

Examples

• Example 1 – In this example, first find the object ID:

select @@plwpid

707749902

Then use the ID as the input parameter for show_dynamic_params_in_xml:
select show_dynamic_params_in_xml(707749902)
<?xml version="1.0" encoding="UTF-8"?>
<query>
 <parameter>
 <number>1</number>
 <type>INT</type>
 <column>tab.col1</column>
 </parameter>
</query>

Parameter Value Definition

number 1 Dynamic parameter is in the statement’s first position

type INT Table uses the int datatype

column tab.col1 Query use the col1 column of the tab table

Usage

• show_dynamic_params_in_xml allows dynamic parameters in where clauses, the set
clause of an update, and the values list of an insert.

• For where clauses, show_dynamic_params_in_xml determines associations according to
the smallest subtree involving an expression with a column, a relational operator, and an
expression with a parameter. For example:
select * from tab where col1 + 1 = ?

If the query has no subtree, show_dynamic_params_in_xml omits the <column>
element. For example:
select * from tab where ? < 1000

• show_dynamic_params_in_xml selects the first column it encounters for expressions
involving multiple columns:
delete tab where col1 + col2 > ?

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 249

• The association is unambigous for update . . . set statements. For example:
update tab set col1 = ?

show_plan
Retrieves the query plan for a specified server process (the target process) and a SQL
statement. This function is called several times by sp_showplan because a built-in function
can return just one value per call, but sp_showplan must return several values to the client.

Syntax
show_plan(spid, batch_id, context_id, statement_number)

Parameters

• spid – is the process ID for any user connection.
• batch_id – is the unique number for a batch.
• context_id – is the unique number of every procedure (or trigger).
• statement_number – is the number of the current statemenmt within a batch.

Examples

• Example 1 – In this example, show_plan performs the following:

• Validates parameter values that sp_showplan cannot validate. -1 is passed in when the
user executes sp_showplan without a value for a parameter. Only the spid value is
required.

• If just a process ID is received, then show_plan returns the batch ID, the context ID,
and the statement number in three successive calls by sp_showplan.

• Find the E_STMT pointer for the specified SQL statement number.
• Retrieves the target process’s query plan for the statement. For parallel worker

processes the equivalent parent plan is retrieved to reduce performance impact.
• Synchronizes access to the query plan with the target process.

if (@batch_id is NULL)
 begin
 /* Pass -1 for unknown values. */
 select @return_value = show_plan(@spid, -1, -1, -1)
 if (@return_value < 0)
 return (1)
 else
 select @batch_id = @return_value

 select @return_value = show_plan(@spid, @batch_id, -1, -1)
 if (@return_value < 0)
 return (1)
 else

CHAPTER 3: Transact-SQL Functions

250 SAP Adaptive Server Enterprise

 select @context_id = @return_value

 select @return_value = show_plan(@spid, @batch_id,
@context_id, -1)
 if (@return_value < 0)
 return (1)
 else
 begin
 select @stmt_num = @return_value
 return (0)
 end
 end

As the example shows, call show_plan three times for a spid :

• The first returns the batch ID
• The second returns the context ID
• The third displays the query plan, and returns the current statement number.

Usage

For a statement that is not performing well, you can change the plans by altering the optimizer
settings or specifying an abstract plan.

When you specify the first int variable in the existing show_plan argument as “-”, show_plan
treats the second parameter as a SSQLID.

Note: A single entry in the statement cache may be associated with multiple, and possibly
different, SQL plans. show_plan displays only one of them.

See also sp_showplan in Reference Manual: Procedures

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

The permission checks for show_plan differ based on your granular permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must be a user with monitor
qp performance permission to execute show_plan.

Disabled With granular permissions disabled, you must be a user with sa_role to
execute show_plan.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 251

show_role
Displays the currently active system-defined roles of the current login.

Syntax
show_role()

Examples

• Example 1 – Displays the currently active system-defined roles of the current login:
select show_role()
sa_role sso_role oper_role replication_role

• Example 2 – Displays "You have sa_role" if sa_role is the first role in the currently active
system-defined roles:
if charindex("sa_role", show_role()) >0
begin
 print "You have sa_role"
end

Usage

• show_role, a system function, returns the login’s current active system-defined roles, if
any (sa_role, sso_role, oper_role, or replication_role). If the login has no roles,
show_role returns NULL.

• When a Database Owner invokes show_role after using setuser, show_role displays the
active roles of the Database Owner, not the user impersonated with setuser.

See also:

• Transact-SQL Users Guide
• alter role, create role, drop role, grant, revoke, set in Reference Manual: Commands
• sp_activeroles, sp_displayroles in Reference Manual: Procedures

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute show_role.

See also
• proc_role on page 211

CHAPTER 3: Transact-SQL Functions

252 SAP Adaptive Server Enterprise

• role_contain on page 229

show_sec_services
Lists the security services that are active for the session.

Syntax
show_sec_services()

Examples

• Example 1 – Shows that the user’s current session is encrypting data and performing
replay detection checks:

select show_sec_services()
encryption, replay_detection

Usage

If no security services are active, show_sec_services returns NULL.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute show_sec_services.

See also
• is_sec_service_on on page 161

sign
Returns the sign (1 for positive, 0, or -1 for negative) of the specified value.

Syntax
sign(numeric)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 253

Parameters

• numeric – is any exact numeric (numeric, dec, decimal, tinyint, smallint,
int, or bigint), approximate numeric (float, real, or double precision), or
money column, variable, constant expression, or a combination of these.

Examples

• Example 1 – Returns the sign for -123:
select sign(-123)

 -1

• Example 2 – Returns the sign for 0:
select sign(0)

 0

• Example 3 – Returns the sign for 123:
select sign(123)

 1

Usage

Results are of the same type, and have the same precision and scale, as the numeric expression.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute sign.

See also
• abs on page 47

• ceiling on page 70

• floor on page 139

• round on page 232

CHAPTER 3: Transact-SQL Functions

254 SAP Adaptive Server Enterprise

sin
Returns the sine of the angle-specified in radians.

Syntax
sin(approx_numeric)

Parameters

• approx_numeric – is any approximate numeric (float, real, or double
precision) column name, variable, or constant expression.

Examples

• Example 1 – Returns the sine of 45:
select sin(45)

 0.850904

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute sin.

See also
• cos on page 93

• degrees on page 130

• radians on page 214

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 255

sortkey
Generates values that can be used to order results based on collation behavior, which allows
you to work with character collation behaviors beyond the default set of Latin character-based
dictionary sort orders and case- or accent-sensitivity.

Syntax
sortkey(char_expression | uchar_expression)[, {collation_name |
 collation_ID}])

Parameters

• char_expression – is a character-type column name, variable, or constant expression of
char, varchar, nchar, or nvarchar type.

• uchar_expression – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

• collation_name – is a quoted string or a character variable that specifies the collation to
use.

• collation_ID – is an integer constant or a variable that specifies the collation to use.

Examples

• Example 1 – Shows sorting by European language dictionary order:

select * from cust_table where cust_name like "TI%" order by
 (sortkey(cust_name, "dict")

• Example 2 – Shows sorting by simplified Chinese phonetic order:

select *from cust_table where cust name like "TI%" order by
 (sortkey(cust-name, "gbpinyin")

• Example 3 – Shows sorting by European language dictionary order using the in-line
option:

select *from cust_table where cust_name like "TI%" order by
cust_french_sort

• Example 4 – Shows sorting by Simplified Chinese phonetic order using preexisting keys:

select * from cust_table where cust_name like "TI%" order by
 cust_chinese_sort.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

256 SAP Adaptive Server Enterprise

Permissions

Any user can execute sortkey.

Usage for sortkey
There are additional considerations for sortkey.

• sortkey, a system function, generates values that can be used to order results based on
collation behavior. This allows you to work with character collation behaviors beyond the
default set of Latin-character-based dictionary sort orders and case- or accent-sensitivity.
The return value is a varbinary datatype value that contains coded collation
information for the input string that is returned from the sortkey function.
For example, you can store the values returned by sortkey in a column with the source
character string. Ro retrieve the character data in the desired order, include in the select
statement an order by clause on the columns that contain the results of running sortkey.
sortkey guarantees that the values it returns for a given set of collation criteria work for the
binary comparisons that are performed on varbinary datatypes.

• sortkey can generate up to six bytes of collation information for each input character.
Therefore, the result from using sortkey may exceed the length limit of the varbinary
datatype. If this happens, the result is truncated to fit. Since this limit is dependent on the
logical page size of your server, truncation removes result bytes for each input character
until the result string is less than the following for DOL and APL tables:

Table 16. Maximum Row and Column Length—APL and DOL Tables

Locking
Scheme

Page Size Maximum Row
Length

Maximum Column
Length

APL tables 2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

8K (8192 bytes) 8106 8104 bytes

16K (16384
bytes)

16298 16296 bytes

DOL tables 2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

8K (8192 bytes) 8108 8102 bytes

16K (16384
bytes)

16300 16294 bytes

If table does not include any
variable length columns

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 257

Locking
Scheme

Page Size Maximum Row
Length

Maximum Column
Length

16K (16384
bytes)

16300

(subject to a max start
offset of varlen = 8191)

8191-6-2 = 8183 bytes

If table includes at least on
variable length column.*

* This size includes six bytes for the row overhead and two bytes for the row length field.

If this occurs, the SAP ASE server issues a warning message, but the query or transaction
that contained the sortkey function continues to run.

• char_expression or uchar_expression must be composed of characters that are encoded in
the server’s default character set.

• char_expression or uchar_expression can be an empty string. If it is an empty string,
sortkey returns a zero-length varbinary value, and stores a blank for the empty string.

An empty string has a different collation value than an NULL string from a database
column.

• If char_expression or uchar_expression is NULL, sortkey returns a null value.
• If a unicode expression has no specified sort order, the SAP ASE server uses the binary

sort order.
• If you do not specify a value for collation_name or collation_ID, sortkey assumes binary

collation.
• The binary values generated from the sortkey function can change from one major version

to another major version of SAP ASE, such as version 12.0 to 12.5, version 12.9.2 to 12.0,
and so on. If you are upgrading to the current version of SAP ASE, regenerate keys and
repopulate the shadow columns before any binary comparison takes place.

Note: Upgrades from version 12.5 to 12.5.0.1 do not require this step, and the SAP ASE
server does not generate any errors or warning messages if you do not regenerate the keys.
Although a query involving the shadow columns should work fine, the comparison result
may differ from the pre-upgrade server.

See also
• compare on page 81

Collation Tables
There are two types of collation tables you can use to perform multilingual sorting.

• A “built-in” collation table created by the sortkey function. This function exists in
versions of SAP ASE later than 11.5.1. You can use either the collation name or the
collation ID to specify a built-in table.

• An external collation table that uses the Unilib library sorting functions. You must use the
collation name to specify an external table. These files are located in $SYBASE/
collate/unicode.

CHAPTER 3: Transact-SQL Functions

258 SAP Adaptive Server Enterprise

Both of these methods work equally well, but a “built-in” table is tied to a SAP ASE
database, while an external table is not. If you use an SAP ASE database, a built-in table
provides the best performance. Both methods can handle any mix of English, European,
and Asian languages.

The two ways to use sortkey are:

• In-line – this uses sortkey as part of the order by clause and is useful for retrofitting an
existing application and minimizing the changes. However, this method generates sort
keys on-the-fly, and therefore does not provide optimum performance on large data sets of
moe than 1000 records.

• Pre-existing keys – this method calls sortkey whenever a new record requiring
multilingual sorting is added to the table, such as a new customer name. Shadow columns
(binary or varbinary type) must be set up in the database, preferably in the same
table, one for each desired sort order such as French, Chinese, and so on. When a query
requires output to be sorted, the order by clause uses one of the shadow columns. This
method produces the best performance since keys are already generated and stored, and
are quickly compared only on the basis of their binary values.

You can view a list of available collation rules. Print the list by executing either sp_helpsort,
or by querying and selecting the name, id, and description from syscharsets
(type is between 2003 and 2999).

Collation Names and IDs
The valid values for collation name and ID, and their descriptions.

Collation Name Collation ID Description

default 20 Deafult Unicode multilingual

thaidict 21 Thai dictionary order

iso14651 22 ISO14651 standard

utf8bin 24 UTF-16 ordering – matches UTF-8 binary ordering

altnoacc 39 CP 850 Alternative – no accent

altdict 45 CP 850 Alternative – lowercase first

altnocsp 46 CP 850 Western European – no case preference

scandict 47 CP 850 Scandinavian – dictionary ordering

scannocp 48 CP 850 Scandinavian – case-insensitive with preference

gbpinyin n/a GB Pinyin

binary 50 Binary sort

dict 51 Latin-1 English, French, German dictionary

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 259

Collation Name Collation ID Description

nocase 52 Latin-1 English, French, German no case

nocasep 53 Latin-1 English, French, German no case, preference

noaccent 54 Latin-1 English, French, German no accent

espdict 55 Latin-1 Spanish dictionary

espnocs 56 Latin-1 Spanish no case

espnoac 57 Latin-1 Spanish no accent

rusdict 58 ISO 8859-5 Russian dictionary

rusnocs 59 ISO 8859-5 Russian no case

cyrdict 63 ISO 8859-5 Cyrillic dictionary

cyrnocs 64 ISO 8859-5 Cyrillic no case

elldict 65 ISO 8859-7 Greek dictionary

hundict 69 ISO 8859-2 Hungarian dictionary

hunnoac 70 ISO 8859-2 Hungarian no accents

hunnocs 71 ISO 8859-2 Hungarian no case

turdict 72 ISO 8859-9 Turkish dictionary

turknoac 73 ISO 8859-9 Turkish no accents

turknocs 74 ISO 8859-9 Turkish no case

cp932bin 129 CP932 binary ordering

dynix 130 Chinese phonetic ordering

gb2312bn 137 GB2312 binary ordering

cyrdict 140 Common Cyrillic dictionary

turdict 155 Turkish dictionary

euckscbn 161 EUCKSC binary ordering

gbpinyin 163 Chinese phonetic ordering

rusdict 165 Russian dictionary ordering

sjisbin 179 SJIS binary ordering

eucjisbn 192 EUCJIS binary ordering

big5bin 194 BIG5 binary ordering

CHAPTER 3: Transact-SQL Functions

260 SAP Adaptive Server Enterprise

Collation Name Collation ID Description

sjisbin 259 Shift-JIS binary order

soundex
Returns a four-character soundex code for character strings that are composed of a contiguous
sequence of valid single- or double-byte Roman letters.

Syntax
soundex(char_expr | uchar_expr)

Parameters

• char_expr – is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples

• Example 1 – Returns the four-character soundex codes for "smith" and "smythe":
select soundex ("smith"), soundex ("smythe")
----- -----
S530 S530

Usage

• soundex, a string function, returns a four-character soundex code for character strings that
are composed of a contiguous sequence of valid single- or double-byte roman letters.

• The soundex function converts an alphabetic string to a four-digit code for use in locating
similar-sounding words or names. All vowels are ignored unless they constitute the first
letter of the string.

• If char_expr or uchar_expr is NULL, returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute soundex.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 261

See also
• difference on page 136

space
Returns a string consisting of the specified number of single-byte spaces.

Syntax
space(integer_expr)

Parameters

• integer_expr – is any integer (tinyint, smallint, or int) column name, variable,
or constant expression.

Examples

• Example 1 – Returns a string with four spaces between "aaa" and "bbb":
select "aaa", space(4), "bbb"
--- ---- ---
aaa bbb

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute space.

See also
• isnull on page 163

• rtrim on page 234

CHAPTER 3: Transact-SQL Functions

262 SAP Adaptive Server Enterprise

spaceusage
Returns metrics for space use in SAP ASE as a comma-separated string.

Syntax
spaceusage(db_id [, object_id [, index_id [, partition_id]]])

Parameters

• db_id – a numeric expression that is the ID for a database. These are stored in the dbid
column of sysdatabases.

• object_id – a numeric expression that is an object ID for a table object. These are stored in
the id column of sysobjects..

• object_id – a numeric expression that is an object ID for a table object. These are stored in
the id column of sysobjects.

• index_id – is the index ID of the object you are investigating. Depending on the index_id
you use, spaceusage reports:

• index_id = 0 – returns the space metrics for only the data layer of an object, including
all its data partitions.

• index_id = 1 – is applicable only for allpages-locked tables with a clustered index and
returns the space metrics for only the index layer of the clustered index.

• index_id > 1 – returns the space metrics for the index layer of the corresponding index.
• index_id = 255 – returns the space metrics for off-row, large object page chains.

• partition_id – the ID of the partition for which space usage metrics are to be retrieved.

Examples

• Example 1 – Returns space usage information for the entire database:
select spaceusage()
"reserved pages=1163, used pages=494, data pages=411, index
pages=78,
oam pages=83, allocation units=94, row count=50529, tables=33,
LOB pages=3, syslog pages=8"

• Example 2 – Returns space metrics for all the indexes on the object specified by object_id,
including all partitions, if any, on each index, and the space used by off-row large object
page chains:
select spaceusage(dbid, objid)

• Example 3 – Returns space metrics for the specified partition for the listed object_id and
index_id:
select spaceusage(database_id, object_id, index_id)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 263

The output from spaceusage run against a database containing numerous user objects is
shown below. spaceusage reports the space metrics for the data layer and all the indexes
on this table.
select spaceusage(db_id(), object_id('syspartitions'))

reserved pages=2220, used pages=2104, data pages=2100, index
pages=1096, oam pages=4, allocation units=373, row count=174522,
tables=1, LOB pages=0

In this result, the reserved pages, used pages, and data pages values report the respective
page counts for data and index pages. Because index pages reports the page counts for
only the index pages of the three indexes on syspartitions, determine the number of
data pages for only the data layer of this table by subtracting the value for index pages from
the value for the data pages: 2100 - 1096 = 1004 pages.

Confirm the number of data pages for only the data layer of this table by executing
spaceusage with a value for the index_id parameter of 0:
select spaceusage(db_id(), object_id('syspartitions'), 0)

reserved pages=1064, used pages=1005, data pages=1004, index
pages=0, oam pages=1, allocation units=229, row count=174522,
tables=1, LOB pages=0

spaceusage reports a value for data pages (1004), which is consistent with the equation
above, and because the query requests space metrics for only the data layer, it returns a
value of 0 for the index pages.

• Example 4 – Returns the aggregate space metrics for all objects, including user and
system catalogs, that occupy space in the database:
select spaceusage(database_id)

However, spaceusage does not report on tables that do not occupy space (for example,
fake and proxy tables). Currently, spaceusage also does not report on syslogs.

Usage
Depending on which parameters you include, spaceusage may report on any or all of:

• reserved pages – number of pages reserved for an object, which may include index
pages if you selected index IDs based on the input parameters.

• used pages – number of pages used by the object, which may include index pages if
you selected index IDs based on the input parameters.
The value for used pages that spaceusage returns when you specify index_id = 1 (that is,
for all-pages clustered indexes) is the used page count for the index layer of the clustered
index. However, the value the used_pages function returns when you specify index_id = 1
includes the used page counts for the data and the index layers.

CHAPTER 3: Transact-SQL Functions

264 SAP Adaptive Server Enterprise

• data pages – number of data pages used by the object, which may include index pages
if you selected index IDs based on the input parameters.

• index pages – number of index-only pages, if the input parameters specified
processing indexes on the objects. To determine the number of pages used for only the
index-level pages, subtract the number of large object (LOB) pages from the number of
index pages.

• oam pages – number of OAM pages for all OAM chains, as selected by the input
parameters.
For example, if you specify:
spaceusage(database_id, object_id, index_id)

oam pages indicates the number of OAM pages found for this index and any of its local
index partitions. If you run spaceusage against a specific object, oam pages returns the
amount of overhead for the extra pages used for this object’s space management.
When you execute spaceusage for an entire database, oam pages returns the total
overhead for the number of OAM pages needed to track space across all objects, and their
off-row LOB columns.

• allocation units – number of allocation units that hold one or more extents for the
specified object, index, or partition. allocation units indicates how many
allocation units (or pages) Adaptive Server must scan while accessing all the pages of that
object, index, or partition.
When you run spaceusage against the entire database, allocation units returns
the total number of allocation units reserving space for an object. However, because
Adaptive Server can share allocation units across objects, this field might show a number
greater than the total number of allocation units in the entire database.

• row count – number of rows in the object or partition. spaceusage reports this row
count as 0 when you specify the index_id parameter.

• tables – total number of tables processed when you execute spaceusage and include
only the database_id parameter (that is, when you are investigating space metrics for the
entire database).

• LOB pages – number of off-row large object pages for which the index ID is 255.

LOB pages returns a nonzero value only when you use spaceusage to determine the
space metrics for all indexes, or only the LOB index, on objects that contain off-row LOB
data. LOB pages returns 0 when you use spaceusage to examine the space metrics only
for tables (which have index IDs of 0).
When you run spaceusage against the entire database, LOB pages displays the
aggregate page counts for all LOB columns occupying off-row storage in all objects.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 265

spid_instance_id
(Cluster environments only) Returns the instance ID on which the specified process ID (spid)
is running.

Syntax
spid_instance_id(spid_value)

Parameters

• spid_value – the spid number for which you are requesting the instance ID.

Examples

• Example 1 – Returns the ID of the instance that is running process ID number 27:
select spid_instance_id(27)

Usage

• If you do not include a spid value, spid_instance_id returns NULL.
• If you enter an invalid or nonexisting process ID value, spid_instance_id returns NULL.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute spid_instance_id.

square
Calculates the square of a specified value expressed as a float.

Syntax
square(numeric_expression)

Parameters

• numeric_expression – is a numeric expression of type float.

CHAPTER 3: Transact-SQL Functions

266 SAP Adaptive Server Enterprise

Examples

• Example 1 – Returns the square from an integer column:
select square(total_sales)from titles

16769025.00000
15023376.00000
350513284.00000
...
16769025.00000
(18 row(s) affected)

• Example 2 – Returns the square from a money column:
select square(price) from titles

399.600100
142.802500
8.940100
NULL
...
224.700100
(18 row(s) affected)

Usage

This function is the equivalent of power(numeric_expression,2), but it returns type float
rather than int.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute square.

See also
• Chapter 2, System and User-Defined Datatypes on page 5

• power on page 210

sqrt
Calculates the square root of the specified number.

Syntax
sqrt(approx_numeric)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 267

Parameters

• approx_numeric – is any approximate numeric (float, real, or double
precision) column name, variable, or constant expression that evaluates to a positive
number.

Examples

• Example 1 – Calculates the square root of 4:
select sqrt(4)
 2.000000

Usage

If you attempt to select the square root of a negative number, the SAP ASE server returns an
error message similar to:
Domain error occurred.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute sqrt.

See also
• power on page 210

stddev
Computes the standard deviation of a sample consisting of a numeric expression, as a
double.

Note: stddev and stdev are aliases for stddev_samp.

Syntax

See stddev_samp.

See also
• stddev_samp on page 271

CHAPTER 3: Transact-SQL Functions

268 SAP Adaptive Server Enterprise

stdev
Computes the standard deviation of a sample consisting of a numeric expression, as a
double.

Note: stddev and stdev are aliases for stddev_samp.

Syntax

See stddev_samp.

See also
• stddev_samp on page 271

stdevp
Computes the standard deviation of a population consisting of a numeric expression, as a
double.

Note: stdevp is an alias for stddev_pop.

Syntax

See stddev_pop.

See also
• stddev_pop on page 269

stddev_pop
Computes the standard deviation of a population consisting of a numeric expression, as a
double. stdevp is an alias for stddev_pop, and uses the same syntax.

Syntax
stddev_pop ([all | distinct] expression)

Parameters

• all – applies stddev_pop to all values. all is the default.
• distinct – eliminates duplicate values before stddev_pop is applied.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 269

• expression – is the expression—commonly a column name—in which its population-
based standard deviation is calculated over a set of rows.

Examples

• Example 1 – The following statement lists the average and standard deviation of the
advances for each type of book in the pubs2 database.

select type, avg(advance) as "avg", stddev_pop(advance)
 as "stddev" from titles group by type order by type

Usage

Computes the population standard deviation of the provided value expression evaluated for
each row of the group (if distinct was specified, then each row that remains after duplicates
have been eliminated), defined as the square root of the population variance.

Figure 2: Formula for Population-Related Statistical Aggregate Functions

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute stddev_pop.

See also
• stddev_samp on page 271

• var_pop on page 305

• var_samp on page 306

CHAPTER 3: Transact-SQL Functions

270 SAP Adaptive Server Enterprise

stddev_samp
Computes the standard deviation of a sample consisting of a numeric expression as a
double. stdev and stddev are aliases for stddev_samp, and use the same syntax.

Syntax
stddev_samp ([all | distinct] expression)

Parameters

• all – applies stddev_samp to all values. all is the default.
• distinct – eliminates duplicate values before stddev_samp is applied.
• expression – is any numeric datatype (float, real, or double precision)

expression.

Examples

• Example 1 – The following statement lists the average and standard deviation of the
advances for each type of book in the pubs2 database.

select type, avg(advance) as "avg",
 stddev_samp(advance) as "stddev" from titles
 where total_sales > 2000 group by type order by type

Usage

Computes the sample standard deviation of the provided value expression evaluated for each
row of the group (if distinct was specified, then each row that remains after duplicates have
been eliminated), defined as the square root of the sample variance.

Figure 3: Formula for Sample-Related Statistical Aggregate Functions

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 271

Permissions

Any user can execute stddev_samp.

See also
• stddev_pop on page 269

• var_pop on page 305

• var_samp on page 306

str
Returns the character equivalent of the specified number, and pads the output with a character
or numeric to the specified length.

Syntax
str(approx_numeric[, length [, decimal]])

Parameters

• approx_numeric – is any approximate numeric (float, real, or double
precision) column name, variable, or constant expression.

• length – sets the number of characters to be returned (including the decimal point, all digits
to the right and left of the decimal point, and blanks). The default is 10.

• decimal – sets the number of decimal digits to be returned. The default is 0. Also can be
used to pad the output with a character or numeric to the specified length.

When you specify a character or numeric as a literal string, the character or numeric is used
as padding for the field. When you specify a numeric value, sets the number of decimal
places. The default is 0. When decimal is not set, the field is padded with blanks to the
value specified by length.

Examples

• Example 1 – When decimal is set as the string literal '0', the field is padded with 0 to a
length of 10 spaces.
select str(5,10,'0')

 0000000005

• Example 2 – When decimal is a numeric of 5, the number of decimal places is set to 5.
select str(5,10,5)

 5.00000

CHAPTER 3: Transact-SQL Functions

272 SAP Adaptive Server Enterprise

• Example 3 – When decimal is set to the character of '_', the original value is maintained
and the field is padded with the specified character to a length of 16 spaces.
select str(12.34500,16,'_')

________12.34500

• Example 4 – Without decimal set, the floating number is set to zero decimal places and the
field is padded with blanks to a length of 16 spaces.
select str(12.34500e,16)

 12

• Example 5 – With decimal set to a numeric, the floating number is processed to 7 decimal
places and the field is padded with blanks to a length of 16 spaces.
select str(12.34500e,16,7)

 12.3450000

• Example 6 – Specify a prefix character and process a floating number to a specified
number of decimal places using these examples:
select str(convert(numeric(10,2),12.34500e),16,'-')

-----------12.35
select str(convert(numeric(10,8),12.34500e),16,'-')

-----12.34500000

Usage

length and decimal are optional, but if used, must be positive integers. str rounds the decimal
portion of the number so that the results fit within the specified length. The length should be
long enough to accommodate the decimal point and, if the number is negative, the number’s
sign. The decimal portion of the result is rounded to fit within the specified length. If the
integer portion of the number does not fit within the length, however, str returns a row of
asterisks of the specified length. For example:
select str(123.456, 2, 4)
--
**

If approx_numeric is NULL, returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 273

Permissions

Any user can execute str.

See also
• abs on page 47
• ceiling on page 70
• floor on page 139
• round on page 232
• sign on page 253

str_replace
Replaces any instances of the second string expression (string_expression2) that occur within
the first string expression (string_expression1) with a third expression (string_expression3).

Syntax
str_replace("string_expression1", "string_expression2",
"string_expression3")

Parameters

• string_expression1 – is the source string, or the string expression to be searched,
expressed as char, varchar, unichar, univarchar, varbinary, or binary
datatype.

• string_expression2 – is the pattern string, or the string expression to find within the first
expression (string_expression1). string_expression2 is expressed as char, varchar,
unichar, univarchar, varbinary, or binary datatype.

• string_expression3 – is the replacement string expression, expressed as char,
varchar, unichar, univarchar, binary, or varbinary datatype.

Examples

• Example 1 – Replaces the string def within the string cdefghi with yyy.

str_replace("cdefghi","def","yyy")

cyyyghi
(1 row(s) affected)

• Example 2 – Replaces all spaces with "toyota".

select str_replace("chevy, ford, mercedes", "","toyota")

chevy,toyotaford,toyotamercedes
(1 row(s) affected)

CHAPTER 3: Transact-SQL Functions

274 SAP Adaptive Server Enterprise

Note: The SAP ASE server converts an empty string constant to a string of one space
automatically, to distinguish the string from NULL values.

• Example 3 – Returns “abcghijklm”:

select str_replace("abcdefghijklm", "def", NULL)

abcghijklm
(1 row affected)

Usage

• Returns varchar data if string_expression (1, 2, or 3) is char or varchar.

• Returns univarchar data if string_expression (1, 2, or 3) is unichar or
univarchar.

• Returns varbinary data if string_expression (1, 2, or 3) is binary or varbinary.

• All arguments must share the same datatype.
• If any of the three arguments is NULL, the function returns null.

str_replace accepts NULL in the third parameter and treats it as an attempt to replace
string_expression2 with NULL, effectively turning str_replace into a “string cut”
operation.
For example, the following returns “abcghijklm”:
str_replace("abcdefghijklm", "def", NULL)

• The result length may vary, depending upon what is known about the argument values
when the expression is compiled. If all arguments are variables with known constant
values, the SAP ASE server calculates the result length as:
result_length = ((s/p)*(r-p)+s)
where
s = length of source string
p = length of pattern string
r = length of replacement string
if (r-p) <= 0, result length = s

• If the source string (string_expression1) is a column, and string_expression2 and
string_expression3 are constant values known at compile time, the SAP ASE server
calculates the result length using the formula above.

• If the SAP ASE server cannot calculate the result length because the argument values are
unknown when the expression is compiled, the result length used is 255, unless traceflag
244 is on. In that case, the result length is 16384.

• result_len never exceeds 16384.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 275

Permissions

Any user can execute str_replace.

See also
• Chapter 2, System and User-Defined Datatypes on page 5

strtobin
Converts a sequence of alphanumeric characters to their equivalent hexadecimal digits.

Syntax
select strtobin(“string of valid alphanumeric characters”)

Parameters

• string of valid alphanumeric characters – is string of valid alphanumeric characters,
which consists of [1 – 9], [a – f] and [A – F].

Examples

• Example 1 – Converts the alphanumeric string of “723ad82fe” to a sequence of
hexadecimal digits:

select strtobin("723ad82fe")
go

0x0723ad82fe

The in-memory representation of the alphanumeric character string and its equivalent
hexadecimal digits are:

Alphanumeric character string (9 bytes)

0 7 2 3 a d 8 2 f e

Hexadecimal digits (5 bytes)

0 7 2 3 a d 8 2 f e

The function processes characters from right to left. In this example, the number of
characters in the input is odd. For this reason, the hexadecimal sequence has a prefix of “0”
and is reflected in the output.

• Example 2 – Converts the alphanumeric string of a local variable called @str_data to a
sequence of hexadecimal digits equivalent to the value of “723ad82fe”:

declare @str_data varchar(30)
select @str_data = "723ad82fe"

CHAPTER 3: Transact-SQL Functions

276 SAP Adaptive Server Enterprise

select strtobin(@str_data)
go

0x0723ad82fe

Usage

• Any invalid characters in the input results in NULL as the output.
• The input sequence of hexadecimal digits must have a prefix of “0x”.
• A NULL input results in NULL output.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute strtobin.

See also
• bintostr on page 63

stuff
Returns the string formed by deleting a specified number of characters from one string and
replacing them with another string.

Syntax
stuff(char_expr1 | uchar_expr1, start, length, char_expr2 |
uchar_expr2)

Parameters

• char_expr1 – is a character-type column name, variable, or constant expression of char,
varchar, nchar, or nvarchar type.

• uchar_expr1 – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

• start – specifies the character position at which to begin deleting characters.
• length – specifies the number of characters to delete.
• char_expr2 – is another character-type column name, variable, or constant expression of

char, varchar, nchar, or nvarchar type.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 277

• uchar_expr2 – is another character-type column name, variable, or constant expression of
unichar or univarchar type.

Examples

• Example 1 – Returns a string formed by deleting from the second character for three
characters, and replacing them with "x," "y," and "z":
select stuff("abc", 2, 3, "xyz")

axyz

• Example 2 – Returns a string formed by deleting from the second character for three
characters, and replacing the deleted characters with NULL:

select stuff("abcdef", 2, 3, null)
go

aef

• Example 3 – Returns a string formed by deleting from the second character for three
characters, and replacing the deleted characters with nothing else:
select stuff("abcdef", 2, 3, "")

a ef

Usage

• stuff, a string function, deletes length characters from char_expr1 or uchar_expr1 at start,
then inserts char_expr2 or uchar_expr2 into char_expr1 or uchar_expr2 at start. For
general information about string functions, see Transact-SQL Users Guide.

• If the start position or the length is negative, a NULL string is returned. If the start position
is zero or longer than expr1, a NULL string is returned. If the length to be deleted is longer
than expr1, expr1 is deleted through its last character (see Example 1).

• If the start position falls in the middle of a surrogate pair, start is adjusted to be one less. If
the start length position falls in the middle of a surrogate pair, length is adjusted to be one
less.

• To use stuff to delete a character, replace expr2 with NULL rather than with empty
quotation marks. Using ‘‘ ‘’ to specify a null character replaces it with a space (see
Eexamples 2 and 3).

• If char_expr1 or uchar_expr1 is NULL, stuff returns NULL. If char_expr1 or or
uchar_expr1 is a string value and char_expr2 or uchar_expr2 is NULL, stuff replaces the
deleted characters with nothing.

• If you give a varchar expression as one parameter and a unichar expression as the
other, the varchar expression is implicitly converted to unichar (with possible
truncation).

CHAPTER 3: Transact-SQL Functions

278 SAP Adaptive Server Enterprise

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute stuff.

See also
• replicate on page 217

• substring on page 279

substring
Returns the string formed by extracting the specified number of characters from another
string.

Syntax
substring(expression, start, length)

Parameters

• expression – is a binary or character column name, variable, or constant expression. Can
be char, nchar, unichar, varchar, univarchar, or nvarchar data, binary,
or varbinary.

• start – specifies the character position at which the substring begins.
• length – specifies the number of characters in the substring.

Examples

• Example 1 – Displays the last name and first initial of each author, for example, “Bennet
A.”:

select au_lname, substring(au_fname, 1, 1)
from authors

• Example 2 – Converts the author’s last name to uppercase, then displays the first three
characters:

select substring(upper(au_lname), 1, 3)
from authors

• Example 3 – Concatenates pub_id and title_id, then displays the first six characters
of the resulting string:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 279

select substring((pub_id + title_id), 1, 6)
from titles

• Example 4 – Extracts the lower four digits from a binary field, where each position
represents two binary digits:

select substring(xactid,5,2)
from syslogs

Usage

• substring, a string function, returns part of a character or binary string. For general
information about string functions, see Transact-SQL Users Guide.

• If substring’s second argument is NULL, the result is NULL. If substring’s first or third
argument is NULL, the result is blank..

• If the start position from the beginning of uchar_expr1 falls in the middle of a surrogate
pair, start is adjusted to one less. If the start length position from the beginning of
uchar_expr1 falls in the middle of a surrogate pair, length is adjusted to one less.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute substring.

See also
• charindex on page 75

• patindex on page 207

• stuff on page 277

sum
Returns the total of the values.

Syntax
sum([all | distinct] expression)

Parameters

• all – applies sum to all values. all is the default.
• distinct – eliminates duplicate values before sum is applied. distinct is optional.

CHAPTER 3: Transact-SQL Functions

280 SAP Adaptive Server Enterprise

• expression – is a column name, constant, function, any combination of column names,
constants, and functions connected by arithmetic or bitwise operators, or a subquery. With
aggregates, an expression is usually a column name.

Examples

• Example 1 – Calculates the average advance and the sum of total sales for all business
books. Each of these aggregate functions produces a single summary value for all of the
retrieved rows:

select avg(advance), sum(total_sales)
from titles
where type = "business"

• Example 2 – Used with a group by clause, the aggregate functions produce single values
for each group, rather than for the entire table. This statement produces summary values
for each type of book:

select type, avg(advance), sum(total_sales)
from titles
group by type

• Example 3 – Groups the titles table by publishers, and includes only those groups of
publishers who have paid more than $25,000 in total advances and whose books average
more than $15 in price:

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > $25000 and avg(price) > $15

Usage

• sum, an aggregate function, finds the sum of all the values in a column. sum can only be
used on numeric (integer, floating point, or money) datatypes. Null values are ignored in
calculating sums.

• When you sum integer data, the SAP ASE server treats the result as an int value, even if
the datatype of the column is smallint or tinyint.When you sum bigint data, the
SAP ASE server treats the result as a bigint.To avoid overflow errors in DB-Library
programs, declare all variables for results of averages or sums appropriately.

• You cannot use sum with the binary datatypes.
• This function defines only numeric types; use with Unicode expressions generates an

error.

See also:

• compute clause, group by and having clauses, select, where clause in Reference Manual:
Commands

• Transact-SQL Users Guide

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 281

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute sum.

See also
• Expressions on page 331

• count on page 94

• max on page 185

• min on page 187

suser_id
Returns the server user’s ID number from the syslogins table.

Syntax
suser_id([server_user_name])

Parameters

• server_user_name – is an SAP ASE login name.

Examples

• Example 1 – Returns the server user's ID number:
select suser_id()

 1

• Example 2 – Returns the ID number for margaret:
select suser_id("margaret")

 5

Usage

• suser_id, a system function, returns the server user’s ID number from syslogins. For
general information about system functions, see Transact-SQL Users Guide.

• To find the user’s ID in a specific database from the sysusers table, use the user_id
system function.

CHAPTER 3: Transact-SQL Functions

282 SAP Adaptive Server Enterprise

• If no server_user_name is supplied, suser_id returns the server ID of the current user.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute suser_id.

See also
• suser_name on page 283

• user_id on page 300

suser_name
Returns the name of the current server user, or the user whose server ID is specified.

Syntax
suser_name([server_user_id])

Parameters

• server_user_id – is an SAP ASE user ID.

Examples

• Example 1 – Returns the name of the current user:
select suser_name()

sa

• Example 2 – Returns the name of the user whose server ID is 4:
select suser_name(4)

margaret

Usage

See alsoTransact-SQL Users Guide .

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 283

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute suser_name.

See also
• suser_id on page 282

• user_name on page 301

syb_quit
Terminates the connection.

Syntax
syb_quit()

Examples

• Example 1 – Terminates the connection in which the function is executed and returns an
error message.

select syb_quit()

CT-LIBRARY error:
 ct_results(): network packet layer:
internal net library error: Net-Library operation terminated due
to disconnect

Usage

You can use syb_quit to terminate a script if the isql preprocessor command exit causes an
error.

Permissions

Any user can execute syb_quit.

CHAPTER 3: Transact-SQL Functions

284 SAP Adaptive Server Enterprise

syb_sendmsg
(UNIX only) Sends a message to a User Datagram Protocol (UDP) port.

Syntax
syb_sendmsg ip_address, port_number, message

Parameters

• ip_address – is the IP address of the machine where the UDP application is running.
• port_number – is the port number of the UDP port.
• message – is the message to send. It can be up to 255 characters in length.

Examples

• Example 1 – Sends the message “Hello” to port 3456 at IP address 120.10.20.5:

select syb_sendmsg("120.10.20.5", 3456, "Hello")
• Example 2 – Reads the IP address and port number from a user table, and uses a variable

for the message to be sent:

declare @msg varchar(255)
 select @msg = "Message to send"
 select syb_sendmsg (ip_address, portnum, @msg)
 from sendports
 where username = user_name()

Usage

• To enable the use of UDP messaging, a System Security Officer must set the configuration
parameter allow sendmsg to 1.

• No security checks are performed with syb_sendmsg. We strongly recommend that you
not use syb_sendmsg to send sensitive information across the network. By enabling this
functionality, the user accepts any security problems that result from its use.

• For a sample C program that creates a UDP port, see sp_sendmsg.
• See also sp_sendmsg in Reference Manual: Procedures

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute syb_sendmsg.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 285

sys_tempdbid
(Cluster environments only) Returns the id of the effective local system temporary database of
the specified instance. Returns the id of the effective local system temporary database of the
current instance when instance_id is not specified.

Syntax
sys_tempdbid(instance_id)

Parameters

• instance_id – ID of the instance.

Examples

• Example 1 – Returns the effective local system temporary database id for the instance with
an instance id of 3:
select sys_tempdbid(3)

Usage

If you do not specify an instance ID, sys_tempdbid returns the ID of the effective local system
temporary database for the current instance.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can run sys_tempdbid.

tan
Calculates the tangent of the angle, specified in radians.

Syntax
tan(angle)

CHAPTER 3: Transact-SQL Functions

286 SAP Adaptive Server Enterprise

Parameters

• angle – is the size of the angle in radians, expressed as a column name, variable, or
expression of type float, real, double precision, or any datatype that can be
implicitly converted to one of these types.

Examples

• Example 1 – Calculates the tangent of 60:
select tan(60)

 0.320040

Usage

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute tan.

See also
• atan on page 53

• atn2 on page 54

• degrees on page 130

• radians on page 214

tempdb_id
Reports the temporary database to which a given session is assigned. The input of the
tempdb_id function is a server process ID, and its output is the temporary database to which
the process is assigned. If you do not provide a server process, tempdb_id reports the dbid of
the temporary database assigned to the current process.

Syntax
tempdb_id()

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 287

Examples

• Example 1 – Finds all the server processes that are assigned to a given temporary database:

select spid from master..sysprocesses
 where tempdb_id(spid) = db_id("tempdatabase")

Usage

select tempdb_id gives the same result as select @@tempdbid.

See also select in Reference Manual: Commands.

textptr
Returns a pointer to the first page of a text, image, or unitext column.

Syntax
textptr(column_name)

Parameters

• column_name – is the name of a text column.

Examples

• Example 1 – Uses the textptr function to locate the text column, copy, associated with
au_id 486-29-1786 in the author’s blurbs table. The text pointer is placed in local
variable @val and supplied as a parameter to the readtext command, which returns 5 bytes,
starting at the second byte (offset of 1):

declare @val binary(16)
 select @val = textptr(copy) from blurbs
 where au_id = "486-29-1786"
 readtext blurbs.copy @val 1 5

• Example 2 – Selects the title_id column and the 16-byte text pointer of the copy
column from the blurbs table:

select au_id, textptr(copy) from blurbs

Usage

• textptr, a text and image function, returns the text pointer value, a 16-byte varbinary
value.

• The textptr value returned for an in-row LOB column residing in a data-only-locking data
row that is row-forwarded remains unchanged and valid after the forwarding.

CHAPTER 3: Transact-SQL Functions

288 SAP Adaptive Server Enterprise

• If a text, unitext, or image column has not been initialized by a non-null insert or by
any update statement, textptr returns a NULL pointer. Use textvalid to check whether a
text pointer exists. You cannot use writetext or readtext without a valid text pointer.

Note: Trailing f in varbinary values are truncated when they are stored in tables. If storing
text pointer values in a table, use binary as the column’s datatype.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute textptr.

See also
• text, image, and unitext Datatypes on page 25

• textvalid on page 289

textvalid
Returns 1 if the pointer to the specified text, unitext, in-row, and off-row LOB columns is
valid; 0 if it is not.

Syntax
textvalid("table_name.column_name", textpointer)

Parameters

• table_name.column_name – is the name of a table and its text column.

• textpointer – is a text pointer value.

Examples

• Example 1 – Reports whether a valid text pointer exists for each value in the blurb
column of the texttest table:

select textvalid ("texttest.blurb", textptr(blurb)) from texttest

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 289

Usage

• textvalid checks that a given text pointer is valid. Returns 1 if the pointer is valid, or 0 if it is
not.

• The identifier for the column must include the table name.

For general information about text and image functions, see Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute textvalid.

See also
• text, image, and unitext Datatypes on page 25
• textptr on page 288

to_unichar
Returns a unichar expression having the value of the specified integer expression.

Syntax
to_unichar(integer_expr)

Parameters

• integer_expr – is any integer (tinyint, smallint, or int) column name, variable, or
constant expression.

Usage

• to_unichar, a string function, converts a Unicode integer value to a Unicode character
value.

• If a unichar expression refers to only half of a surrogate pair, an error message appears
and the operation is aborted.

• If a integer_expr is NULL, to_unichar returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

290 SAP Adaptive Server Enterprise

Permissions

Any user can execute to_unichar.

See also
• text, image, and unitext Datatypes on page 25

• char on page 72

tran_dumpable_status
Returns a true/false indication of whether dump transaction is allowed.

Syntax
tran_dumpable_status("database_name")

Parameters

• database_name – is the name of the target database.

Examples

• Example 1 – Checks to see if the pubs2 database can be dumped:

1> select tran_dumpable_status("pubs2")
2> go

 106

(1 row affected)

In this example, you cannot dump pubs2. The return code of 106 is a sum of all the
conditions met (2, 8, 32, 64). See the Usage section for a description of the return codes.

Usage

tran_dumpable_status allows you to determine if dump transaction is allowed on a database
without having to run the command. tran_dumpable_status performs all of the checks that
the SAP ASE server performs when dump transaction is issued.

If tran_dumpable_status returns 0, you can perform the dump transaction command on the
database. If it returns any other value, it cannot. The non-0 values are:

• 1 – A database with the name you specified does not exist.
• 2 – A log does not exist on a separate device.
• 4 – The log first page is in the bounds of a data-only disk fragment.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 291

• 8 – the trunc log on chkpt option is set for the database.
• 16 – Non-logged writes have occurred on the database.
• 32 – Truncate-only dump tran has interrupted any coherent sequence of dumps to dump

devices.
• 64 – Database is newly created or upgraded. Transaction log may not be dumped until a

dump database has been performed.
• 128 – Database durability does not allow transaction dumps.
• 256 – Database is read-only. dump transaction started a transaction, which is not allowed

on read-only databases.
• 512 – Database is online for standby access. dump transaction started a transaction, which

is not allowed on databases in standby access because the transactoin would disturb the
load sequence.

• 1024 – Database is an archive database, which do not support dump transaction.

See also: dump transaction in Reference Manual: Commands

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute tran_dumpable_status.

tsequal
Compares timestamp values to prevent update on a row that has been modified since it was
selected for browsing.

Syntax
tsequal(browsed_row_timestamp, stored_row_timestamp)

Parameters

• browsed_row_timestamp – is the timestamp column of the browsed row.

• stored_row_timestamp – is the timestamp column of the stored row.

Examples

• Example 1 – Retrieves the timestamp column from the current version of the
publishers table and compares it to the value in the timestamp column that has been
saved. To add the timestamp column:

alter table publishers add timestamp

CHAPTER 3: Transact-SQL Functions

292 SAP Adaptive Server Enterprise

If the values in the two timestamp columns are equal, tsequal updates the row. If the
values are not equal, tsequal returns the error message below:

update publishers
set city = "Springfield"
where pub_id = "0736"
and tsequal(timestamp, 0x0001000000002ea8)
Msg 532, Level 16, State 2:

Server 'server_name', Line 1:
The timestamp (changed to 0x0001000000002ea8) shows that the row
has been updated by another user.
Command has been aborted.
(0 rows affected)

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute tsequal.

Usage for tsequal
There are additional considerations for using tsequal.

• tsequal, a system function, compares the timestamp column values to prevent an
update on a row that has been modified since it was selected for browsing. For general
information about system functions, see Transact-SQL Users Guide.

• tsequal allows you to use browse mode without calling the dbqual function in DB-
Library. Browse mode supports the ability to perform updates while viewing data. It is
used in front-end applications using Open Client and a host programming language. A
table can be browsed if its rows have been timestamped.

• To browse a table in a front-end application, append the for browse keywords to the end of
the select statement sent to the SAP ASE server. For example:
Start of select statement in an Open Client application
...
 for browse

Completion of the Open Client application routine
• Do not use tsequal in the where clause of a select statement; only in the where clause of

insert and update statements where the rest of the where clause matches a single unique
row.
If you use a timestamp column as a search clause, compare it like a regular
varbinary column; that is, timestamp1 = timestamp2.

See also Transact-SQL Users Guide.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 293

Adding a Timestamp to an Existing Table
To prepare an existing table for browsing, add a column named timestamp using alter table.
For example, to add a timestamp column with a NULL value to each existing row:

alter table oldtable add timestamp

To generate a timestamp, update each existing row without specifying new column values:
update oldtable
set col1 = col1

See also
• timestamp Datatype on page 10

Adding a Timestamp to a New Table for Browsing
When creating a new table for browsing, include a column named timestamp in the table
definition.

The column is automatically assigned a datatype of timestamp; you do not have to specify
its datatype.

For example:
create table newtable(col1 int, timestamp, col3 char(7))

Whenever you insert or update a row, the SAP ASE server timestamps it by automatically
assigning a unique varbinary value to the timestamp column.

uhighsurr
Returns 1 if the Unicode value at position start is the higher half of a surrogate pair (which
should appear first in the pair). Otherwise, returns 0. This function allows you to write explicit
code for surrogate handling.

Syntax
uhighsurr(uchar_expr, start)

Parameters

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

• start – specifies the character position to investigate.

CHAPTER 3: Transact-SQL Functions

294 SAP Adaptive Server Enterprise

Usage

• uhighsurr, a string function, allows you to write explicit code for surrogate handling.
Specifically, if a substring starts on a Unicode character where uhighsurr is true, extract a
substring of at least 2 Unicode values (substr does not extract half of a surrogate pair).

• If uchar_expr is NULL, uhighsurr returns NULL.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute uhighsurr.

See also
• ulowsurr on page 295

ulowsurr
Returns 1 if the Unicode value at start is the low half of a surrogate pair (which should appear
second in the pair). Otherwise, returns 0. This function allows you to explicitly code around
the adjustments performed by substr(), stuff(), and right().

Syntax
ulowsurr(uchar_expr, start)

Parameters

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar or univarchar type.

• start – specifies the character position to investigate.

Usage

• ulowsurr, a string function, allows you to write explicit code around adjustments
performed by substr, stuff, and right. Specifically, if a substring ends on a Unicode value
where ulowsurr is true, the user knows to extract a substring of 1 less characters (or 1
more). substr does not extract a string that contains an unmatched surrogate pair.

• If uchar_expr is NULL, ulowsurr returns NULL.

See also Transact-SQL Users Guide.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 295

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute ulowsurr.

See also
• uhighsurr on page 294

upper
Converts specified lowercase string to the uppercase equivalent.

Syntax
upper(char_expr)

Parameters

• char_expr – is a character-type column name, variable, or constant expression of char,
unichar, varchar, nchar, nvarchar, or univarchar type.

Examples

• Example 1 – Converts "abcd" to uppercase letters:
select upper("abcd")

ABCD

Usage

• upper, a string function, converts lowercase to uppercase, returning a character value.
• If char_expr or uchar_expr is NULL, upper returns NULL.
• Characters that have no upper-ase equivalent are left unmodified.
• If a unichar expression is created containing only half of a surrogate pair, an error

message appears and the operation is aborted.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

CHAPTER 3: Transact-SQL Functions

296 SAP Adaptive Server Enterprise

Permissions

Any user can execute upper.

See also
• lower on page 180

uscalar
Returns the Unicode scalar value for the first Unicode character in an expression.

Syntax
uscalar(uchar_expr)

Parameters

• uchar_expr – is a character-type column name, variable, or constant expression of
unichar, or univarchar type.

Usage

• uscalar, a string function, returns the Unicode value for the first Unicode character in an
expression.

• If uchar_expr is NULL, returns NULL.
• If uscalar is called on a uchar_expr containing an unmatched surrogate half, and error

occurs and the operation is aborted.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute uscalar.

See also
• ascii on page 50

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 297

used_pages
Reports the number of pages used by a table, an index, or a specific partition. Unlike
data_pages, used_pages does include pages used for internal structures. This function
replaces the used_pgs function used in versions of SAP ASE earlier than 15.0.

Syntax
used_pages(dbid, object_id[, indid[, ptnid]])

Parameters

• dbid – is the database id where target object resides.
• object_id – is the object ID of the table for which you want to see the used pages. To see the

pages used by an index, specify the object ID of the table to which the index belongs.
• indid – is the index id of interest.
• ptnid – is the partition id of interest.

Examples

• Example 1 – Returns the number of pages used by the object with a object ID of 31000114
in the specified database (including any indexes):

select used_pages(5, 31000114)
• Example 2 – Returns the number of pages used by the object in the data layer, regardless of

whether or not a clustered index exists:

select used_pages(5, 31000114, 0)
• Example 3 – Returns the number of pages used by the object in the index layer for an index

with index ID 2. This does not include the pages used by the data layer (See the first bullet
in the Usage section for an exception):

select used_pages(5, 31000114, 2)
• Example 4 – Returns the number of pages used by the object in the data layer of the

specific partition, which in this case is 2323242432:

select used_pages(5, 31000114, 0, 2323242432)

Usage

• In an all-pages locked table with a clustered index, the value of the last parameter
determines which pages used are returned:
• used_pages(dbid, objid, 0) – which explicitly passes 0 as the index ID, returns only the

pages used by the data layer.

CHAPTER 3: Transact-SQL Functions

298 SAP Adaptive Server Enterprise

• used_pages(dbid, objid, 1) – returns the pages used by the index layer as well as the
pages used by the data layer.

To obtain the index layer used pages for an all-pages locked table with a clustered index,
subtract used_pages(dbid, objid, 0) from used_pages(dbid, objid, 1).

• Instead of consuming resources, used_pages discards the descriptor for an object that is
not already in the cache.

• In in an all-pages-locked table with a clustered index, used_pages is passed only the used
pages in the data layer, for a value of indid = 0. When indid=1 is passed, the used
pages at the data layer and at the clustered index layer are returned, as in previous versions.

• used_pages is similar to the old used_pgs(objid, doampg, ioampg) function.
• All erroneous conditions result in a return value of zero.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute used_pgs.

See also
• data_pages on page 103

• object_id on page 199

user
Returns the name of the current user.

Syntax
user

Examples

• Example 1 – Returns the name of the current user:

select user

dbo

Usage

If the sa_role is active, you are automatically the database owner in any database you are
using. Inside a database, the user name of the database owner is always “dbo”.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 299

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute user.

See also
• user_name on page 301

user_id
Returns the ID number of the specified user or of the current user in the database.

Syntax
user_id([user_name])

Parameters

• user_name – is the name of the user.

Examples

• Example 1 – Returns the ID number of the current user:
select user_id()

 1

• Example 2 – Returns the ID number for user margaret:
select user_id("margaret")

 4

Usage

• user_id, a system function, returns the user’s ID number. For general information about
system functions, see Transact-SQL Users Guide.

• user_id reports the number from sysusers in the current database. If no user_name is
supplied, user_id returns the ID of the current user. To find the server user ID, which is the
same number in every database on the SAP ASE server, use suser_id.

CHAPTER 3: Transact-SQL Functions

300 SAP Adaptive Server Enterprise

• Inside a database, the “guest” user ID is always 2.
• Inside a database, the user_id of the database owner is always 1. If you have the sa_role

active, you are automatically the database owner in any database you are using. To return to
your actual user ID, use set sa_role off before executing user_id. If you are not a valid user
in the database, the SAP ASE server returns an error when you use set sa_role off.

See also:

• setuser in Reference Manual: Commands
• Transact-SQL Users Guide

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute user_id.

See also
• suser_id on page 282

• user_name on page 301

user_name
Returns the name within the database of the specified user or of the current user.

Syntax
user_name([user_id])

Parameters

• user_id – is the ID of a user.

Examples

• Example 1 – Returns the name within the database of the current user:
select user_name()

dbo

• Example 2 – Returns the name within the database with user ID 4:
select user_name(4)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 301

margaret

Usage

If the sa_role is active, you are automatically the database dwner in any database you are
using. Inside a database, the user_name of the database dwner is always “dbo”.

See also Transact-SQL Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

You must be a user with sa_role or sso_role to use this function on a user_id other than
your own.

See also
• suser_name on page 283
• user_id on page 300

valid_name
Returns 0 if the specified string is not a valid identifier or a number other than 0 if the string is a
valid identifier, and can be up to 255 bytes in length.

Syntax
valid_name(character_expression[, maximum_length])

Parameters

• character_expression – is a character-type column name, variable, or constant expression
of char, varchar, nchar or nvarchar type. Constant expressions must be enclosed
in quotation marks.

• maximum_length – is an integer larger than 0 and less than or equal to 255. The default
value is 30. If the identifier length is larger than the second argument, valid_name returns
0, and returns a value greater than zero if the identifier length is invalid.

Examples

• Example 1 – Creates a procedure to verify that identifiers are valid:

create procedure chkname
@name varchar(30)

CHAPTER 3: Transact-SQL Functions

302 SAP Adaptive Server Enterprise

as
 if valid_name(@name) = 0
 print "name not valid"

Usage

• valid_name, a system function, returns 0 if the character_expression is not a valid
identifier (illegal characters, more than 30 bytes long, or a reserved word), or a number
other than 0 if it is a valid identifier.

• The SAP ASE server identifiers can be a maximum of 16384 bytes in length, whether
single-byte or multibyte characters are used. The first character of an identifier must be
either an alphabetic character, as defined in the current character set, or the underscore (_)
character. Temporary table names, which begin with the pound sign (#), and local variable
names, which begin with the at sign (@), are exceptions to this rule. valid_name returns 0
for identifiers that begin with the pound sign (#) and the at sign (@).

See also:

• Transact-SQL Users Guide
• sp_checkreswords in Reference Manual: Procedures

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute valid_name.

valid_user
Returns 1 if the specified ID is a valid user or alias in at least one database.

Syntax
valid_user(server_user_id [, database_id])

Parameters

• server_user_id – is a server user ID. Server user IDs are stored in the suid column of
syslogins.

• database_id – is the ID of the database on which you are determining if the user is valid.
Database IDs are stored in the dbid column of sysdatabases.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 303

Examples

• Example 1 – Shows that the user with an suid of 4 is a valid user or alias in at least one
database:
select valid_user(4)

 1

• Example 2 – Shows that the user with an suid of 4 is a valid user or alias in the database
with an ID of 6.
select valid_user(4,6)

 1

Usage

• valid_user returns 1 if the specified server_user_id is a valid user or alias in the specified
database_id.

• If you do not specify a database_id, or if it is 0, valid_user determines if the user is a valid
user or alias on at least one database.

See also:

• Transact-SQL Users Guide
• sp_adduser in Reference Manual: Procedures

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

The permission checks for valid_user differ based on your granular permissions settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must have manage any log-
in or manage server permission to execute valid_user on a serv-
er_user_id other than your own.

Disabled With granular permissions disabled, you must be a user with sa_role or
sso_role to execute valid_user on a server_user_id other than your
own.

CHAPTER 3: Transact-SQL Functions

304 SAP Adaptive Server Enterprise

var
Computes the statistical variance of a sample consisting of a numeric expression, as a
double, and returns the variance of a set of numbers.

Note: var and variance are aliases of var_samp.

Syntax

See var_samp.

See also
• var_samp on page 306

var_pop
Computes the statistical variance of a population consisting of a numeric expression, as a
double. varp is an alias for var_pop, and uses the same syntax.

Syntax
var_pop ([all | distinct] expression)

Parameters

• all – applies var_pop to all values. all is the default.
• distinct – eliminates duplicate values before var_pop is applied.
• expression – is an expression—commonly a column name—in which its population-

based variance is calculated over a set of rows.

Examples

• Example 1 – Lists the average and variance of the advances for each type of book in the
pubs2 database:

select type, avg(advance) as "avg", var_pop(advance)
 as "variance" from titles group by type order by type

Usage

Computes the population variance of the provided value expression evaluated for each row of
the group (if distinct was specified, then each row that remains after duplicates have been
eliminated), defined as the sum of squares of the difference of value expression, from the mean
of value expression, divided by the number of rows in the group or partition.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 305

Figure 4: Formula for Population-Related Statistical Aggregate Functions

For general information about aggregate functions, see Aggregate Functions in Transact-SQL
Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute var_pop.

See also
• stddev_pop on page 269

• stddev_samp on page 271

• var_samp on page 306

var_samp
Computes the statistical variance of a sample consisting of a numeric-expression, as a
double, and returns the variance of a set of numbers. var and variance are aliases of
var_samp, and use the same syntax.

Syntax
var_samp ([all | distinct] expression)

Parameters

• all – applies var_samp to all values. all is the default.
• distinct – eliminates duplicate values before var_samp is applied.
• expression – is any numeric datatype (float, real, or double) expression.

Examples

• Example 1 – Lists the average and variance of the advances for each type of book in the
pubs2 database:

CHAPTER 3: Transact-SQL Functions

306 SAP Adaptive Server Enterprise

select type, avg(advance) as "avg", var_samp(advance)
 as "variance" from titles where
 total_sales > 2000 group by type order by type

Usage

var_samp returns a result of double-precision floating-point datatype. If applied to the empty
set, the result is NULL.

Figure 5: Formula for Sample-Related Statistical Aggregate Functions

For general information about aggregate functions, see Aggregate Functions in Transact-SQL
Users Guide.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute var_samp.

See also
• stddev_pop on page 269

• stddev_samp on page 271

• var_pop on page 305

variance
Computes the statistical variance of a sample consisting of a numeric expression, as a
double, and returns the variance of a set of numbers.

Note: var and variance are aliases of var_samp.

Syntax

See var_samp.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 307

See also
• var_samp on page 306

varp
Computes the statistical variance of a population consisting of a numeric expression, as a
double.

Note: varp is an alias of var_pop.

Syntax

See var_pop.

See also
• var_pop on page 305

workload_metric
(Cluster environments only) Queries the current workload metric for the instance you specify,
or updates the metric for the instance you specify.

Syntax
workload_metric(instance_id | instance_name [, new_value])

Parameters

• instance_id – ID of the instance.
• instance_name – name of the instance.
• new_value – float value representing the new metric.

Examples

• Example 1 – Sees the user metric on the current instance:
select workload_metric()

• Example 2 – Sees the user metric on instance “ase2”:
select workload_metric("ase2")

• Example 3 – Sets the value of the user metric on “ase3” to 27.54:
select workload_metric("ase3", 27.54)

CHAPTER 3: Transact-SQL Functions

308 SAP Adaptive Server Enterprise

Usage

• A NULL value indicates the current instance.
• If a value is specified for new_value, the specified value becomes the current user metric. If

a value is not specified for new_value, the current workload metric is returned.
• The value of new_value must be zero or greater.
• If a value is supplied for new_value, workload_metric returns that value if the operation is

successful. Otherwise, workload_metric returns -1.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

The permission checks for workload_metric differ based on your granular permissions
settings.

Granular
Permissions

Description

Enabled With granular permissions enabled, you must have manage cluster
permission or be a user with ha_role to execute workload_metric.

Disabled With granular permissions disabled, you must be a user with sa_role or
ha_role to execute workload_metric.

xa_bqual
Returns the binary version of the bqual component of an ASCII XA transaction ID.

Syntax
xa_bqual(xid, 0)

Parameters

• xid – is the ID of an SAP ASE transaction, obtained from the xactname column in
systransactions or from sp_transactions.

• 0 – is reserved for future use

Examples

• Example 1 – Returns “0x227f06ca80”, the binary translation of the branch qualifier for
the SAP ASE transaction ID “0000000A_IphIT596iC7bF2#AUfkzaM_8DY6OE0”. The
SAP ASE transaction ID is first obtained using sp_transactions:

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 309

1> sp_transactions
xactkey type coordinator starttime
 state connection dbid spid loid failover srvnam
e namelen xactname
------------------------------ -------- -----------
------------------- ---------- ---------- ----- ----- -----
----------- ------- -------

0x531600000600000017e4885b0700 External XA Dec 9
2005 5:15PM In Command Attached 7 20 877 Resident
Tx NULL 39 0000000A_IphIT596iC7bF2#AUfkzaM_8DY6OE0
1> select xa_bqual("0000000A_IphIT596iC7bF2#AUfkzaM_8DY6OE0", 0)
2> go
...

0x227f06ca80

• Example 2 – xa_bqual is often used together with xa_gtrid. This example returns the
global transaction IDs and branch qualifiers from all rows in systransactions where
its coordinator column is the value of “3”:

1> select gtrid=xa_gtrid(xactname,0),
 bqual=xa_bqual(xactname,0)
 from systransactions where coordinator = 3
2> go
 gtrid

 bqual

 0xb1946cdc52464a61cba42fe4e0f5232b

 0x227f06ca80

Usage

If an external transaction is blocked on the SAP ASE server and you are using sp_lock and
sp_transactions to identify the blocking transaction, you can use the XA transaction manager
to terminate the global transaction. However, when you execute sp_transactions, the value of
xactname it returns is in ASCII string format, while XA Server uses an undecoded binary
value. Using xa_bqual thus allows you to determine the bqual portion of the transaction
name in a format that can be understood by the XA transaction manager.

xa_bqual returns:

• The translated version of this string that follows the second “_” (underscore) and preceeds
either the third “_” or end-of-string value, whichever comes first.

• NULL if the transaction ID cannot be decoded, or is in an unexpected format.

CHAPTER 3: Transact-SQL Functions

310 SAP Adaptive Server Enterprise

Note: xa_bqual does not perform a validation check on the xid, but only returns a translated
string.

See also sp_lock, sp_transactions in Reference Manual: Procedures.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can use xa_bqual.

See also
• xa_gtrid on page 311

xa_gtrid
Returns the binary version of the gtrid component of an ASCII XA transaction ID.

Syntax
xa_gtrid(xactname, int)

Parameters

• xid – is the ID of an SAP ASE transaction, obtained from the xactname column in
systransactions or from sp_transactions.

• 0 – is reserved for future use

Examples

• Example 1 – In this typical situation, returns “0x227f06ca80,” the binary translation of the
branch qualifier, and “0xb1946cdc52464a61cba42fe4e0f5232b,” the global transaction
ID, for the SAP ASE transaction ID
“0000000A_IphIT596iC7bF2#AUfkzaM_8DY6OE0”:

1> select xa_gtrid("0000000A_IphIT596iC7bF2#AUfkzaM_8DY6OE0", 0)
2> go
 ...

 0xb1946cdc52464a61cba42fe4e0f5232b

(1 row affected)

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 311

• Example 2 – xa_bqual is often used together with xa_gtrid. This example returns the
global transaction IDs and branch qualifiers from all rows in systransactions where
its coordinator column is the value of “3”:

1> select gtrid=xa_gtrid(xactname,0),
 bqual=xa_bqual(xactname,0)
 from systransactions where coordinator = 3
2> go
 gtrid

 bqual

 0xb1946cdc52464a61cba42fe4e0f5232b

 0x227f06ca80

Usage

If an external transaction is blocked on the SAP ASE server and you are using sp_lock and
sp_transactions to identify the blocking transaction, you can use the XA transaction manager
to terminate the global transaction. However, when you execute sp_transactions, the value of
xactname it returns is in ASCII string format, while XA Server uses an undecoded binary
value. Using xa_gtrid thus allows you to determine the gtrid portion of the transaction name
in a format that can be understood by the XA transaction manager.

xa_gtrid returns:

• The translation version of tis string that follows the first “_” (underscore) and preceeds
either the second “_” or end-of-string value, whichever comes first.

• NULL if the transaction ID cannot be decoded, or is in an unexpected format.

Note: xa_gtrid does not perform a validation check on the xid, but only returns a translated
string.

See also sp_lock, sp_transactions in Reference Manual: Procedures.

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can use xa_gtrid.

See also
• xa_bqual on page 309

CHAPTER 3: Transact-SQL Functions

312 SAP Adaptive Server Enterprise

xact_connmigrate_check
(Cluster environments only) Determines whether or not a connection can process an external
transaction.

Syntax
xact_connmigrate_check(“txn_name”)

Parameters

• txn_name – (optional) is a transaction ID.

Examples

• Example 1 – SHows an XA transaction “txn_name” running on instance “ase1”.
select xact_connmigrate_check("txn_name")

 1

• Example 2 – Shows an XA transaction “txn_name” running on instance “ase2”. The
connection can migrate.
select xact_connmigrate_check("txn_name")

 1

• Example 3 – Shows an XA transaction “txn_name” running on instance “ase2”. The
connection cannot migrate.
select xact_connmigrate_check("txn_name")

 0

Usage

If an XID is specified, xact_connmigrate_check returns:

• 1 if the connection is to the instance running the specified transaction, or the connection is
to another instance in a migratable state

• 0 if the connection or transaction ID does not exist, or the connection is to another instance
that is not in a migratable state

If an XID is not specified, xact_connmigrate_check returns:

• 1 if the connection is in a migratable state

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 313

• 0 if the connection does not exist or is not in a migratable state

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute xact_connmigrate_check.

See also
• xact_owner_instance on page 314

xact_owner_instance
(Cluster environments only) Returns the instance ID on which the distributed transaction is
running.

Syntax
xact_owner_instance(“txn_name”)

Parameters

• txn_name – is a transaction ID.

Examples

• Example 1 – Shows an XA transaction “txn_name” running on instance “ase1”:
select xact_owner_instance(txn_name)

 1

• Example 2 – Shows an XA transaction “txn_name” not running:
select xact_owner_instance(txn_name)

 NULL

Usage

xact_owner_instance returns:

• The instance ID of the instance running the transaction, or
• Null, if the transaction is not running

CHAPTER 3: Transact-SQL Functions

314 SAP Adaptive Server Enterprise

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute xact_owner_instance.

See also
• xact_connmigrate_check on page 313

xmlextract
Applies an XML query expression to an XML document and returns the specified result.
Information can be returned with or without the XML tags.

Usage
See XML Services for syntax, examples, and usage information for xmlextract and all other
Transact-SQL functions that support XML in the database.

xmlparse
Parses an XML document passed as a parameter, and returns an image (default), binary, or
varbinary value that contains a parsed form of the document.

Usage
See XML Services for syntax, examples, and usage information for xmlparse and all other
Transact-SQL functions that support XML in the database.

xmlrepresentation
Examines the image parameter of an expression, and returns an integer value that indicates
whether the parameter contains parsed XML data or another sort of image data.

Usage
See XML Services for syntax, examples, and usage information for xmlrepresentation and all
other Transact-SQL functions that support XML in the database.

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 315

xmltable
Extracts data from an XML document and returns it as a SQL table.

Usage
See XML Services for syntax, examples, and usage information for xmltable and all other
Transact-SQL functions that support XML in the database.

xmltest
Is a SQL predicate that evaluates an XML query expression, which can reference the XML
document parameter, and returns a Boolean result. xmltest resembles a SQL like predicate.

Usage
See XML Services for syntax, examples, and usage information for xmltest and all other
Transact-SQL functions that support XML in the database.

xmlvalidate
Validates an XML document.

Usage
See XML Services for syntax, examples, and usage information for xmlvalidate and all other
Transact-SQL functions that support XML in the database.

year
Returns an integer that represents the year in the datepart of a specified date.

Syntax
year(date_expression)

Parameters

• date_expression – is an expression of type datetime, smalldatetime, date,
time or a character string in a datetime format.

CHAPTER 3: Transact-SQL Functions

316 SAP Adaptive Server Enterprise

Examples

• Example 1 – Returns the integer 03:
year("11/02/03")

03
(1 row(s) affected)

Usage

year(date_expression) is equivalent to datepart(yy, date_expression).

Standards

ANSI SQL – Compliance level: Transact-SQL extension.

Permissions

Any user can execute year.

See also
• Chapter 2, System and User-Defined Datatypes on page 5

• datepart on page 116

• day on page 120

• month on page 189

CHAPTER 3: Transact-SQL Functions

Reference Manual: Building Blocks 317

CHAPTER 3: Transact-SQL Functions

318 SAP Adaptive Server Enterprise

CHAPTER 4 Global Variables

Global variables are system-defined variables that are updated by the SAP ASE server while
the system is running.

Some global variables are session-specific, while others are server instance-specific. For
example, @@error contains the last error number generated by the system for a given user
connection.

To specify application context variables, use get_appcontext and set_appcontext.

To view the value for any global variable, enter:
select variable_name

For example:
select @@char_convert

Many global variables report on system activity occurring from the last time the SAP ASE
server was started. sp_monitor displays the current values of some of the global variables.

The global variables available for SAP ASE are:

Global Variable Definition

@@active_instances Returns the number of active instances in the cluster

@@authmech A read-only variable that indicates the mechanism used to authenticate the
user.

@@bootcount Returns the number of times an SAP ASE server installation has been
started.

@@boottime Returns the date and time the SAP ASE server was last started.

@@bulkarraysize Returns the number of rows to be buffered in local server memory before
being transferred using the bulk copy interface Used only with Component
Integration Services for transferring rows to a remote server using select
into. See the Component Integration Services User’s Guide.

@@bulkbatchsize Returns the number of rows transferred to a remote server via select into

proxy_table using the bulk interface. Used only with Component Integra-
tion Services for transferring rows to a remote server using select into. See
the Component Integration Services User’s Guide.

@@char_convert Returns 0 if character set conversion is not in effect. Returns 1 if character
set conversion is in effect.

Reference Manual: Building Blocks 319

Global Variable Definition

@@cis_rpc_handling Returns 0 if cis rpc handling is off. Returns 1 if cis rpc handling is on. See
the Component Integration Services User’s Guide.

@@cis_version Returns the date and version of Component Integration Services.

@@client_csexpan-
sion

Returns the expansion factor used when converting from the server char-
acter set to the client character set. For example, if it contains a value of 2, a
character in the server character set could take up to twice the number of
bytes after translation to the client character set.

@@client_csid Returns -1 if the client character set has never been initialized; returns the
client character set ID from syscharsets for the connection if the
client character set has been initialized.

@@client_csname Returns NULL if client character set has never been initialized; returns the
name of the character set for the connection if the client character set has
been initialized.

@@clusterboottime Returns the date and time the cluster was first started, even if the instance
that originally started the cluster start has shut down.

@@clustercoordid Returns the instance id of the current cluster coordinator.

@@clustermode Returns the string: “shared-disk cluster”.

@@clustername Returns the name of the cluster.

@@cmpstate Returns the current mode of the SAP ASE server in a high availability
environment. Not used in a non-high availability environment.

@@connections Returns the number of user logins attempted.

@@cpu_busy Returns the amount of time, in ticks, that the CPU has spent doing SAP ASE
work since the last time the SAP ASE server was started.

The value of @@user_busy + @@system_busy should equal the value of
@@cpu_busy.

CHAPTER 4: Global Variables

320 SAP Adaptive Server Enterprise

Global Variable Definition

@@cursor_rows A global variable designed specifically for scrollable cursors. Displays the
total number of rows in the cursor result set. Returns:

• -1 – the cursor is:
• Dynamic – because dynamic cursors reflect all changes, the number

of rows that qualify for the cursor is constantly changing. You can
never be certain that all the qualified rows are retrieved.

• semi_sensitive and scrollable, but the scrolling worktable is not yet
fully populated – the number of rows that qualify the cursor is
unknown at the time this value is retrieved.

• 0 – either no cursors are open, no rows qualify for the last opened cursor,
or the last open cursor is closed or deallocated.

• n – the last opened or fetched cursor result set is fully populated. The
value returned is the total number of rows in the cursor result set.

@@curloid Returns the curent session’s lock owner ID.

@@datefirst Set using set datefirst n where n is a value between 1 and 7. Returns the
current value of @@datefirst, indicating the specified first day of each
week, expressed as tinyint.

The default value in the SAP ASE server is Sunday (based on the us_lan-
guage default), which you set by specifying set datefirst 7. See
the datefirst option of the set command for more information on settings
and values.

@@dbts Returns the timestamp of the current database.

Timestamp columns always display values in big-endian byte order, but on
little-endian platforms, @@dbts is displayed in little-endian byte order. To
convert a little-endian @@dbts value to a big-endian value that can be
compared with timestamp column values, use:

reverse(substring(@@dbts,1,2)) + 0x0000 + re-
verse(substring(@@dbts,5,4))

@@error Returns the error number most recently generated by the system.

The @@error global variable is commonly used to check the error status of
the most recently executed batch in the current user session. @@error con-
tains 0 if the last transaction succeeded; otherwise, @@error contains the
last error number generated by the system.

@@error is not set for severity level 10 messages.

@@errorlog Returns the full path to the directory in which the SAP ASE server error log
is kept, relative to $SYBASE directory (%SYBASE% on Windows).

CHAPTER 4: Global Variables

Reference Manual: Building Blocks 321

Global Variable Definition

@@failedoverconn Returns a value greater than 0 if the connection to the primary companion
has failed over and is executing on the secondary companion server. Used
only in a high availability environment, and is session-specific.

@@fetch_status Returns:

• 0 – fetch operation successful.
• -1 – fetch operation unsuccessful.
• -2 – value reserved for future use.

@@guestuserid Returns the ID of the guest user.

@@hacmpserver-
name

Returns the name of the companion server in a high availability setup.

@@haconnection Returns a value greater than 0 if the connection has the failover property
enabled. This is a session-specific property.

@@heapmemsize Returns the size of the heap memory pool, in bytes. See the System Ad-
ministration Guide for more information on heap memory.

@@identity Returns the most recently generated IDENTITY column value.

@@idle Returns the amount of time, in ticks, that the SAP ASE server has been idle
since it was last started.

@@instanceid Returns the ID of the instance from which it was executed.

@@instancename Returns the name of the instance from which it was executed.

@@invaliduserid Returns a value of -1 for an invalid user ID.

@@io_busy Returns the amount of time, in ticks, that the SAP ASE server has spent
doing input and output operations.

@@isolation Returns the value of the session-specific isolation level (0, 1, or 3) of the
current Transact-SQL program.

@@jsinstanceid ID of the instance on which the Job Scheduler is running, or run once
enabled.

@@kernel_addr Returns the starting address of the first shared memory region that contains
the kernel region. The result is in the form of 0xaddress pointer value.

@@kernel_size Returns the size of the kernel region that is part of the first shared memory
region.

CHAPTER 4: Global Variables

322 SAP Adaptive Server Enterprise

Global Variable Definition

@@kernelmode Returns the mode (threaded or process) for which the SAP ASE server is
configured.

@@langid Returns the server-wide language ID of the language in use, as specified in
syslanguages.langid.

@@language Returns the name of the language in use, as specified in syslanguag-
es.name.

@@lastkpgendate Returns the date and time of when the last key pair was generated as set by
sp_passwordpolicy’s “keypair regeneration period” policy option.

@@lastlogindate Available to each user login session, @@lastlogindate includes a date-
time datatype, its value is the lastlogindate column for the login
account before the current session was established. This variable is specific
to each login session and can be used by that session to determine the
previous login to the account. If the account has not been used previously or
“sp_passwordpolicy 'set', enable last login updates” is 0, then the value of
@@lastlogindate is NULL.

@@lock_timeout Set using set lock wait n. Returns the current lock_timeout setting, in mil-
liseconds. @@lock_timeout returns the value of n. The default value is no
timeout. If no set lock wait n is executed at the beginning of the session,
@@lock_timeout returns -1.

@@lwpid Returns the object ID of the next most recently run lightweight procedure.

@@max_connections Returns the maximum number of simultaneous connections that can be
made with the SAP ASE server in the current computer environment. You
can configure the SAP ASE server for any number of connections less than
or equal to the value of @@max_connections with the number of user
connections configuration parameter.

@@max_precision Returns the precision level used by decimal and numeric datatypes
set by the server. This value is a fixed constant of 38.

@@maxcharlen Returns the maximum length, in bytes, of a character in the SAP ASE
server's default character set.

@@maxgroupid Returns the highest group user ID. The highest value is 1048576.

@@maxpagesize Returns the server’s logical page size.

@@maxspid Returns maximum valid value for the spid.

@@maxsuid Returns the highest server user ID. The default value is 2147483647.

@@maxuserid Returns the highest user ID. The highest value is 2147483647.

CHAPTER 4: Global Variables

Reference Manual: Building Blocks 323

Global Variable Definition

@@maxvarlen Returns the maximum possible variable length allowed for a user-defined
datatype.

@@mempool_addr Returns the global memory pool table address. The result is in the form
0xaddress pointer value. This variable is for internal use.

@@min_poolsize Returns the minimum size of a named cache pool, in kilobytes. It is calcu-
lated based on the DEFAULT_POOL_SIZE, which is 256, and the current
value of max database page size.

@@mingroupid Returns the lowest group user ID. The lowest value is 16384.

@@minspid Returns 1, which is the lowest value for spid.

@@minsuid Returns the minimum server user ID. The lowest value is -32768.

@@minuserid Returns the lowest user ID. The lowest value is -32768.

@@monitors_active Reduces the number of messages shown by sp_sysmon.

@@ncharsize Returns the maximum length, in bytes, of a character set in the current server
default character set.

@@nestlevel Returns the current nesting level.

@@nextkpgendate Returns the date and time of when the next key pair scheduled to be gen-
erated, as set by sp_passwordpolicy’s “keypair regeneration period” pol-
icy option.

@@nodeid Returns the current installation's 48-bit node identifier. The SAP ASE server
generates a nodeid the first time the master device is first used, and uniquely
identifies an SAP ASE installation.

@@optgoal Returns the current optimization goal setting for query optimization.

@@optoptions Returns a bitmap of active options.

@@options Returns a hexadecimal representation of the session’s set options.

@@optlevel Returns the currently optimization level setting.

@@opttimeoutlimit Returns the current optimization timeout limit setting for query optimiza-
tion

@@ospid (Threaded mode only) Returns the operating system ID for the server.

@@pack_received Returns the number of input packets read by the SAP ASE server.

@@pack_sent Returns the nmber of output packets written by the SAP ASE server.

CHAPTER 4: Global Variables

324 SAP Adaptive Server Enterprise

Global Variable Definition

@@packet_errors Returns the number of errors detected by the SAP ASE server while reading
and writing packets.

@@pagesize Returns the server’s virtual page size.

@@parallel_degree Returns the current maximum parallel degree setting.

@@plwpid Returns the object ID of the most recently prepared lightweight procedure.

@@probesuid Returns a value of 2 for the probe user ID.

@@procid Returns the stored procedure ID of the currently executing procedure.

@@quorum_phys-
name

Returns the physical path for the quorum device

@@recovery_state Indicates whether the SAP ASE server is in recovery based on these returns:

• NOT_IN_RECOVERY – the SAP ASE server is not in start-up recovery
or in failover recovery. Recovery has been completed and all databases
that can be online are brought online.

• RECOVERY_TUNING – the SAP ASE server is in recovery (either
startup or failover) and is tuning the optimal number of recovery tasks.

• BOOTIME_RECOVERY – the SAP ASE server is in startup recovery
and has completed tuning the optimal number of tasks. Not all databases
have been recovered.

• FAILOVER_RECOVER – the SAP ASE server is in recovery during an
HA failover and has completed tuning the optimal number of recovery
tasks. All databases are not brought online yet.

@@remotestate Returns the current mode of the primary companion in a high availability
environment. For values returned, see Using Failover in a High Availability
Environment.

@@repartition_de-
gree

Returns the current dynamic repartitioning degree setting.

@@resource_granu-
larity

Returns the maximum resource usage hint setting for query optimization.

CHAPTER 4: Global Variables

Reference Manual: Building Blocks 325

Global Variable Definition

@@rowcount Returns the number of rows affected by the last query. The value of
@@rowcount is affected by whether the specified cursor is forward-only or
scrollable.

If the cursor is the default, non-scrollable cursor, the value of @@rowcount
increments one by one, in the forward direction only, until the number of
rows in the result set are fetched.These rows are fetched from the underlying
tables to the client. The maximum value for @@ rowcount is the number of
rows in the result set.

In the default cursor, @@rowcount is set to 0 by any command that does not
return or affect rows, such as an if or set command, or an update or delete
statement that does not affect any rows.

If the cursor is scrollable, there is no maximum value for @@rowcount. The
value continues to increment with each fetch, regardless of direction, and
there is no maximum value. The @@rowcount value in scrollable cursors
reflects the number of rows fetched from the result set, not from the under-
lying tables, to the client.

@@scan_parallel_de-
gree

Returns the current maximum parallel degree setting for nonclustered index
scans.

@@servername Returns the name of the SAP ASE server.

@@setrowcount Returns the current value for set rowcount.

@@shmem_flags Returns the shared memory region properties. This variable is for internal
use. There are a total of 13 different properties values corresponding to 13
bits in the integer. The valid values represented from low to high bit are:
MR_SHARED, MR_SPECIAL, MR_PRIVATE, MR_READABLE,
MR_WRITABLE, MR_EXECUTABLE, MR_HWCOHERENCY,
MR_SWCOHERENC, MR_EXACT, MR_BEST, MR_NAIL, MR_PSUE-
DO, MR_ZERO.

@@spid Returns the server process ID of the current process.

@@sqlstatus Returns status information (warning exceptions) resulting from the execu-
tion of a fetch statement.

@@ssl_ciphersuite Returns NULL if SSL is not used on the current connection; otherwise, it
returns the name of the cipher suite you chose during the SSL handshake on
the current connection.

@@stringsize Returns the amount of character data returned from a toString() method. The
default is 50. Max values may be up to 2GB. A value of zero specifies the
default value. See the Component Integration Services User’s Guide for
more information.

CHAPTER 4: Global Variables

326 SAP Adaptive Server Enterprise

Global Variable Definition

@@sys_tempdbid Returns the database ID of the executing instance’s effective local system
temporary databas.e

@@system_busy Number of ticks during which the SAP ASE server was running a system
task.

The value of @@user_busy + @@system_busy should equal the value of
@@cpu_busy.

@@system_view Returns the session-specific system view setting, either “instance” or “clus-
ter.”

@@tempdbid Returns a valid temporary database ID (dbid) of the session’s assigned
temporary database.

@@textcolid Returns the column ID of the column referenced by @@textptr.

@@textdataptnid Returns the partition ID of a text partition containing the column referenced
by @@textptr.

@@textdbid Returns the database ID of a database containing an object with the column
referenced by @@textptr.

@@textobjid Returns the object ID of an object containing the column referenced by
@@textptr.

@@textptnid Returns the partition ID of a data partition containing the column referenced
by @@textptr.

@@textptr Returns the text pointer of the last text, unitext, or image column
inserted or updated by a process (Not the same as the textptr function).

@@textptr_parame-
ters

Returns 0 if the current status of the textptr_parameters configuration pa-
rameter is off. Returns 1 if the current status of the textptr_parameters if on.
See the Component Integration Services User’s Guide for more informa-
tion.

@@textsize Returns the limit on the number of bytes of text, unitext, or image
data a select returns. Default limit is 32K bytes for isql; the default depends
on the client software. Can be changed for a session with set textsize.

@@textts Returns the text timestamp of the column referenced by @@textptr.

@@thresh_hystere-
sis

Returns the decrease in free space required to activate a threshold. This
amount, also known as the hysteresis value, is measured in 2K database
pages. It determines how closely thresholds can be placed on a database
segment.

CHAPTER 4: Global Variables

Reference Manual: Building Blocks 327

Global Variable Definition

@@timeticks Returns the number of microseconds per tick. The amount of time per tick is
machine-dependent.

@@total_errors Returns the number of errors detected by the SAP ASE server while reading
and writing.

@@total_read Returns the number of disk reads by the SAP ASE server.

@@total_write Returns the number of disk writes by the SAP ASE server.

@@tranchained Returns 0 if the current transaction mode of the Transact-SQL program is
unchained. Returns 1 if the current transaction mode of the Transact-SQL
program is chained.

@@trancount Returns the nesting level of transactions in the current user session.

CHAPTER 4: Global Variables

328 SAP Adaptive Server Enterprise

Global Variable Definition

@@tranrollback Returns the type of rollback encountered, if any. If the return value is:

• < 0 – a server induced implicit rollback of a multistatement transaction.
@@tranrollback stores the negation of the error number that resulted in
the implicit transaction rollback.

• 0 – this session of the currently active transaction encountered no im-
plicit rollbacks.

• > 0 < 10 – the most-recent occurrence of a transaction rollback was a
user-issued rollback from one of these SQL commands:
• rollback tran in a SQL batch, procedure or trigger
• rollback trigger outside a trigger’s scope.
The return value for @@transtate describes which rollback command
the user issued:
• 1 – user issued an explicit rollback tran command
• 2 – user issued a rollback tran to savepoint. The transaction is still

active.
• > 100 – The most recent occurrence of a transaction rollback was in-

voked on a single-statement transaction. @@transtate stores the error
number that caused the statement to rollback.

SAP ASE does not change a negative value for @@tranrollback until the
next rollback tran or commit tran is issued, indicating that the session has
encountered an implicit transaction rollback. SAP ASE resets the value for
@@tranrollback to 0 once it successfully applies the next rollback tran or
commit tran. The value for @@tranrollback is 0 at the end of this example:

set chained on
go
<... Execute a DML statement ...>
if (@@error != 0) and (@@tranrollback < 0)
begin
 rollback tran
end
go

@@transactional_rpc Returns 0 if RPCs to remote servers are transactional. Returns 1 if RPCs to
remote servers are not transactional. See enable xact coordination and set
option transactional_rpc in the Reference Manual. Also, see the Compo-
nent Integration Services User’s Guide.

@@transtate Returns the current state of a transaction after a statement executes in the
current user session.

@@trigger_name Returns the name of the trigger currently executing.

@@unicharsize Returns 2, the size of a character in unichar.

CHAPTER 4: Global Variables

Reference Manual: Building Blocks 329

Global Variable Definition

@@user_busy Number of ticks during which the SAP ASE server was running a user task

The value of @@user_busy + @@system_busy should equal the value of
@@cpu_busy

@@version Returns the date, version string, and so on of the current release of the SAP
ASE server.

@@version_as_inte-
ger

Returns the number of the last upgrade version of the current release of the
SAP ASE server as an integer. For example, @@version_as_integer returns
12500 if you are running SAP ASE version 12.5, 12.5.0.3, or 12.5.1.

@@version_number Returns the entire version of the current release of the SAP ASE server as an
integer.

See also
• get_appcontext on page 140

• set_appcontext on page 236

• textptr on page 288

Using Global Variables in a Clustered Environment
For @@servername, the Cluster Edition returns the name of the cluster, not the instance
name. Use @@instancename to return the name of the instance.

In a non-clustered SAP ASE environment, the value for @@identity changes for every record
inserted. If the most recent record inserted contains a column with the IDENTITY property,
@@identity is set to the value of this column, otherwise it is set to “0” (an invalid value). This
variable is session-specific, and takes its value based on the last insert that occurred during this
session.

In a clustered environment, multiple nodes perform inserts on tables, so the session-specific
behavior is not retained for @@identity. In a clustered environment, the value for @@identity
depends on the last record inserted in the node for the current session and not on the last record
inserted in the cluster.

CHAPTER 4: Global Variables

330 SAP Adaptive Server Enterprise

CHAPTER 5 Expressions, Identifiers, and
Wildcard Characters

This section describes Transact-SQL expressions, valid identifiers, and wildcard characters.

Expressions
An expression is a combination of one or more constants, literals, functions, column
identifiers and/or variables, separated by operators, that returns a single value.

Expressions can be of several types, including arithmetic, relational, logical (or Boolean), and
character string. In some Transact-SQL clauses, a subquery can be used in an expression. A
case expression can be used in an expression.

The types of expressions that are used in SAP ASE syntax statements are:

Usage Definition

expression Can include constants, literals, functions, column identifiers, variables, or
parameters

logical expression An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that always returns the same value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or an expression that implicitly converts to a
floating value

integer_expr Any integer expression or an expression that implicitly converts to an integer
value

numeric_expr Any numeric expression that returns a single value

char_expr Any expression that returns a single character-type value

binary_expression An expression that returns a single binary or varbinary value

Size of Expressions
Expressions returning binary or character data can be up to 16384 bytes in length.

If you upgraded from an earlier release of SAP ASE that only allowed expressions up to 255
bytes in length, and your stored procedures or scripts stored a result string of up to 255 bytes,
the remainder was truncated. You may have to rewrite these stored procedures and scripts to
account for the additional length of the expressions.

Reference Manual: Building Blocks 331

Arithmetic and Character Expressions
The general pattern for arithmetic and character expressions is:

{constant | column_name | function | (subquery)
 | (case_expression)}
 [{arithmetic_operator | bitwise_operator |
 string_operator | comparison_operator }
 {constant | column_name | function | (subquery)
 | case_expression}]...

Relational and Logical Expressions
A logical expression or relational expression returns TRUE, FALSE, or UNKNOWN.

The general patterns are:

expression comparison_operator [any | all] expression
expression [not] in expression
[not]exists expression
expression [not] between expression and expression
expression [not] like "match_string" [escape "escape_character "]
not expression like "match_string" [escape "escape_character "]
expression is [not] null
not logical_expression
logical_expression {and | or} logical_expression

Operator Precedence
Operators have the following precedence levels, where 1 is the highest level and 6 is the
lowest.

1. unary (single argument) – + ~

2. * / %

3. binary (two argument) + – & | ^

4. not

5. and

6. or

When all operators in an expression are at the same level, the order of execution is left to right.
You can change the order of execution with parentheses—the most deeply nested expression
is processed first.

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

332 SAP Adaptive Server Enterprise

Arithmetic Operators
The SAP ASE server uses the following arithmetic operators:

Operator Meaning

+ Addition

– Subtraction

* Multiplication

/ Division

% Modulo (Transact-SQL extension)

Addition, subtraction, division, and multiplication can be used on exact numeric, approximate
numeric, and money type columns.

The modulo operator cannot be used on smallmoney or money columns. Modulo finds the
integer remainder after a division involving two whole numbers. For example, 21 % 11 = 10
because 21 divided by 11 equals 1 with a remainder of 10.

In TSQL, the results of modulo has the same sign as the dividend. For example:
1> select -11 % 3, 11 % -3, -11 % -3
2> go
-------------- ----------- ----------- -----------
 -2 2 -2

(1 row affected)

When you perform arithmetic operations on mixed datatypes, for example float and int,
the SAP ASE server follows specific rules for determining the type of the result.

See also
• Chapter 2, System and User-Defined Datatypes on page 5

Bitwise Operators
The bitwise operators are a Transact-SQL extension for use with integer type data. These
operators convert each integer operand into its binary representation, then evaluate the
operands column by column. A value of 1 corresponds to true; a value of 0 corresponds to
false.

This table summarizes the results for operands of 0 and 1. If either operand is NULL, the
bitwise operator returns NULL:

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 333

Table 17. Truth Tables for Bitwise Operations

& (and) 1 0

1 1 0

0 0 0

| (or) 1 0

1 1 1

0 1 0

^ (exclusive or) 1 0

1 0 1

0 1 0

~ (not)

1 FALSE

0 0

The examples in this table use two tinyint arguments, A = 170 (10101010 in binary form)
and B = 75 (01001011 in binary form):

Table 18. Examples of Bitwise Operations

Operation Binary Form Result Explanation

(A & B) 10101010

01001011

00001010

10 Result column equals 1 if both A and B are 1. Other-
wise, result column equals 0.

(A | B) 10101010

01001011

11101011

235 Result column equals 1 if either A or B, or both, is 1.
Otherwise, result column equals 0

(A ^ B) 10101010

01001011

11100001

225 Result column equals 1 if either A or B, but not both,
is 1

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

334 SAP Adaptive Server Enterprise

Operation Binary Form Result Explanation

(~A) 10101010

01010101

85 All 1s are changed to 0s and all 0s to 1s

String Concatenation Operator
You can use both the + and || (double-pipe) string operators to concatenate two or more
character or binary expressions.

For example, the following displays author names under the column heading Name in last-
name first-name order, with a comma after the last name; for example, “Bennett, Abraham.”:

select Name = (au_lname + ", " + au_fname)
 from authors

This example results in "abcdef", "abcdef":

select "abc" + "def", "abc" || "def"

The following returns the string “abc def”. The empty string is interpreted as a single space in
all char, varchar, unichar, nchar, nvarchar, and text concatenation, and in
varchar and univarchar insert and assignment statements:

select "abc" + "" + "def"

When concatenating non-character, non-binary expressions, always use convert:
select "The date is " +
 convert(varchar(12), getdate())

A string concatenated with NULL evaluates to the value of the string. This is an exception to
the SQL standard, which states that a string concatenated with a NULL should evaluate to
NULL.

Comparison Operators
The SAP ASE server uses these comparison operators:

Operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 335

Operator Meaning

!= (Transact-SQL extension) Not equal to

!> (Transact-SQL extension) Not greater than

!< (Transact-SQL extension) Not less than

In comparing character data, < means closer to the beginning of the server’s sort order and >
means closer to the end of the sort order. Uppercase and lowercase letters are equal in a case-
insensitive sort order. Use sp_helpsort to see the sort order for your SAP ASE server. Trailing
blanks are ignored for comparison purposes. So, for example, “Dirk” is the same as
“Dirk ”.

In comparing dates, < means earlier and > means later.

Put single or double quotes around all character and datetime data used with a comparison
operator:
= "Bennet"
> "May 22 1947"

Nonstandard Operators
These operators are Transact-SQL extensions.

• Modulo operator: %
• Negative comparison operators: !>, !<, !=
• Bitwise operators: ~, ^, |, &
• Join operators: *= and =*

Using any, all, and in
Use any, all, and in in your queries to return different results.

any is used with <, >, or = and a subquery. It returns results when any value retrieved in the
subquery matches the value in the where or having clause of the outer statement. For more
information, see the Transact-SQL User’s Guide.

all is used with < or > and a subquery. It returns results when all values retrieved in the subquery
are less than (<) or greater than (>) the value in the where or having clause of the outer
statement. For more information, see the Transact-SQL User’s Guide.

in returns results when any value returned by the second expression matches the value in the
first expression. The second expression must be a subquery or a list of values enclosed in
parentheses. in is equivalent to = any. For more information, see the reference page for the
where clause in Reference Manual: Commands.

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

336 SAP Adaptive Server Enterprise

Negating and Testing
not negates the meaning of a keyword or logical expression.

Use exists, followed by a subquery, to test for the existence of a particular result.

Ranges
between is the range-start keyword; and is the range-end keyword.

The following range is inclusive:
 where column1 between x and y

The following range is not inclusive:
 where column1 > x and column1 < y

Using Nulls in Expressions
Use is null or is not null in queries on columns defined to allow null values.

An expression with a bitwise or arithmetic operator evaluates to NULL if any of the operands
are null. For example, the following evaluates to NULL if column1 is NULL:
1 + column1

Comparisons That Return TRUE
In general, the result of comparing null values is UNKNOWN, since it is not possible to
determine whether NULL is equal (or not equal) to a given value or to another NULL.

However, the following cases return TRUE when expression is any column, variable or literal,
or combination of these, which evaluates as NULL:

• expression is null

• expression = null

• expression = @x, where @x is a variable or parameter containing NULL. This exception
facilitates writing stored procedures with null default parameters.

• expression != n, where n is a literal that does not contain NULL, and expression evaluates
to NULL.

The negative versions of these expressions return TRUE when the expression does not
evaluate to NULL:

• expression is not null

• expression != null

• expression != @x

Note: The far right side of these exceptions is a literal null, or a variable or parameter
containing NULL. If the far right side of the comparison is an expression (such as
@nullvar + 1), the entire expression evaluates to NULL.

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 337

Following these rules, null column values do not join with other null column values.
Comparing null column values to other null column values in a where clause always returns
UNKNOWN for null values, regardless of the comparison operator, and the rows are not
included in the results. For example, this query returns no result rows where column1 contains
NULL in both tables (although it may return other rows):
select column1
from table1, table2
where table1.column1 = table2.column1

Difference Between FALSE and UNKNOWN
Although neither FALSE nor UNKNOWN returns values, there is an important logical
difference between FALSE and UNKNOWN, because the opposite of false (“not false”) is
true. For example, “1 = 2” evaluates to false and its opposite, “1 != 2”, evaluates to true. But
“not unknown” is still unknown. If null values are included in a comparison, you cannot negate
the expression to get the opposite set of rows or the opposite truth value.

Using “NULL” as a Character String
Only columns for which NULL was specified in the create table statement and into which you
have explicitly entered NULL (no quotes), or into which no data has been entered, contain null
values. Avoid entering the character string “NULL” (with quotes) as data for a character
column. It can only lead to confusion. Use “N/A”, “none”, or a similar value instead. When
you want to enter the value NULL explicitly, do not use single or double quotes.

NULL Compared to the Empty String
The empty string (“ ”or ‘ ’) is always stored as a single space in variables and column data.

This concatenation statement is equivalent to “abc def”, not to “abcdef”:
"abc" + "" + "def"

The empty string is never evaluated as NULL.

Connecting Expressions
and connects two expressions and returns results when both are true. or connects two or more
conditions and returns results when either of the conditions is true.

When more than one logical operator is used in a statement, and is evaluated before or. You
can change the order of execution with parentheses.

This table shows the results of logical operations, including those that involve null values.

Table 19. Truth Tables for Logical Expressions

and TRUE FALSE NULL

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

338 SAP Adaptive Server Enterprise

NULL UNKNOWN FALSE UNKNOWN

or TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

NULL TRUE UNKNOWN UNKNOWN

not

TRUE FALSE

FALSE TRUE

NULL UNKNOWN

The result UNKNOWN indicates that one or more of the expressions evaluates to NULL, and
that the result of the operation cannot be determined to be either TRUE or FALSE.

See also
• Using Nulls in Expressions on page 337

Using Parentheses in Expressions
Parentheses can be used to group the elements in an expression. When “expression” is given as
a variable in a syntax statement, a simple expression is assumed. “Logical expression” is
specified when only a logical expression is acceptable.

Comparing Character Expressions
Character constant expressions are treated as varchar. If they are compared with non-
varchar variables or column data, the datatype precedence rules are used in the comparison
(that is, the datatype with lower precedence is converted to the datatype with higher
precedence). If implicit datatype conversion is not supported, you must use the convert
function.

Comparison of a char expression to a varchar expression follows the datatype precedence
rule; the “lower” datatype is converted to the “higher” datatype. All varchar expressions are
converted to char (that is, trailing blanks are appended) for the comparison. If a unichar
expression is compared to a char (varchar, nchar, nvarchar) expression, the latter is
implicitly converted to unichar.

Using the Empty String
The empty string ("") or ('') is interpreted as a single blank in insert or assignment
statements on varchar or univarchar data.

In concatenation of varchar, char, nchar, nvarchar data, the empty string is
interpreted as a single space; for following example is stored as “abc def”:

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 339

"abc" + "" + "def"

The empty string is never evaluated as NULL.

Including Quotation Marks in Character Expressions
There are two ways to specify literal quotes within a char, or varchar entry.

The first method is to double the quotes. For example, if you begin a character entry with a
single quote and you want to include a single quote as part of the entry, use two single quotes:
'I don''t understand.'

With double quotes:
"He said, ""It's not really confusing."""

The second method is to enclose a quote in the opposite kind of quote mark. In other words,
surround an entry containing a double quote with single quotes (or vice versa). Here are some
examples:
'George said, "There must be a better way."'
"Isn't there a better way?"
'George asked, "Isn"t there a better way?"'

Using the Continuation Character
To continue a character string to the next line on your screen, enter a backslash (\) before
going to the next line.

Identifiers
Identifiers are names for database objects such as databases, tables, views, columns, indexes,
triggers, procedures, defaults, rules, and cursors.

The limit for the length of object names or identifiers is 255 bytes for regular identifiers, and
253 bytes for delimited identifiers. The limit applies to most user-defined identifiers including
table name, column name, index name and so on. Due to the expanded limits, some system
tables (catalogs) and built-in functions have been expanded.

For variables, “@” count as 1 byte, and the allowed name for it is 254 bytes long.

Listed below are the identifiers, system tables, and built-in functions that are affected these
limits.

The maximum length for these identifiers is now 255 bytes.

• Table name
• Column name
• Index name
• View name

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

340 SAP Adaptive Server Enterprise

• User-defined datatype
• Trigger name
• Default name
• Rule name
• Constraint name
• Procedure name
• Variable name
• JAR name
• Name of LWP or dynamic statement
• Function name
• Name of the time range
• Application context name

Most user-defined SAP ASE identifiers can be a maximum of 255 bytes in length, whether
single-byte or multibyte characters are used. Others can be a mximum of 30 bytes. Refer to the
Transact-SQL User’s Guide for a list of both 255-byte and 30-byte identifiers.

The first character of an identifier must be either an alphabetic character, as defined in the
current character set, or the underscore (_) character.

Note: Temporary table names, which begin with the pound sign (#), and variable names,
which begin with the at sign (@), are exceptions to this rule.

Subsequent characters can include letters, numbers, the symbols #, @, _, and currency
symbols such as $ (dollars), ¥ (yen), and £ (pound sterling). Identifiers cannot include special
characters such as !, %, ^, &, *, and . or embedded spaces.

You cannot use a reserved word, such as a Transact-SQL command, as an identifier.

You cannot use the dash symbol (–) as an identifier.

See also
• Chapter 6, Reserved Words on page 357

Short Identifiers
The maximum length for these identifiers is 30 bytes:

• Cursor name
• Server name
• Host name
• Login name
• Password
• Host process identification
• Application name

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 341

• Initial language name
• Character set name
• User name
• Group name
• Database name
• Logical device name
• Segment name
• Session name
• Execution class name
• Engine name
• Quiesce tag name
• Cache name

Tables Beginning With # (Temporary Tables)
Tables with names that begin with the pound sign (#) are temporary tables. You cannot create
other types of objects with names that begin with the pound sign.

The SAP ASE server performs special operations on temporary table names to maintain
unique naming on a per-session basis. When you create a temporary table with a name of fewer
than 238 bytes, the sysobjects name in the tempdb adds 17 bytes to make the table name
unique. If the table name is more than 238 bytes, the temporary table name in sysobjects
uses only the first 238 bytes, then adds 17 bytes to make it unique.

In versions of SAP ASE earlier than 15.0, temporary table names in sysobjects were 30
bytes. If you used a table name with fewer than 13 bytes, the name was padded with
underscores (_) to 13 bytes, then another 17 bytes of other characters to bring the name up to
30 bytes.

Case Sensitivity and Identifiers
Sensitivity to the case (upper or lower) of identifiers and data depends on the sort order
installed on your SAP ASE server.

Case sensitivity can be changed for single-byte character sets by reconfiguring SAP ASE’s
sort order; see the System Administration Guide for more information. Case is significant in
utility program options.

If the SAP ASE server is installed with a case-insensitive sort order, you cannot create a table
named MYTABLE if a table named MyTable or mytable already exists. Similarly, the
following command returns rows from MYTABLE, MyTable, or mytable, or any combination
of uppercase and lowercase letters in the name:
select * from MYTABLE

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

342 SAP Adaptive Server Enterprise

Uniqueness of Object Names
Object names need not be unique in a database. However, column names and index names
must be unique within a table, and other object names must be unique for each owner within a
database. Database names must be unique on the SAP ASE server.

Using Delimited Identifiers
Delimited identifiers are object names enclosed in double quotes. Using delimited identifiers
allows you to avoid certain restrictions on object names. In earlier versions of SAP ASE, only
table, view, and column names could be delimited by quotes; other object names could not.
This changed beginning with SAP ASE version 15.7, although enabling the ability requires
setting a configuration parameter.

Delimited identifiers can be reserved words, can begin with non-alphabetic characters, and
can include characters that would not otherwise be allowed. They cannot exceed 253 bytes.

Warning! Delimited identifiers may not be recognized by all front-end applications and
should not be used as parameters to system procedures.

Before creating or referencing a delimited identifier, you must execute:
set quoted_identifier on

Each time you use the delimited identifier in a statement, you must enclose it in double quotes.
For example:
create table "1one"(col1 char(3))
create table "include spaces" (col1 int)
create table "grant"("add" int)
insert "grant"("add") values (3)

While the quoted_identifier option is turned on, do not use double quotes around character or
date strings; use single quotes instead. Delimiting these strings with double quotes causes the
SAP ASE server to treat them as identifiers. For example, to insert a character string into col1
of 1table , use:
insert "1one"(col1) values ('abc')

Do not use:
insert "1one"(col1) values ("abc")

To insert a single quote into a column, use two consecutive single quotation marks. For
example, to insert the characters “a’b” into col1 use:
insert "1one"(col1) values('a''b')

Syntax That Includes Quotes
When the quoted_identifier option is set to on, you do not need to use double quotes around an
identifier if the syntax of the statement requires that a quoted string contain an identifier. For
example:

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 343

set quoted_identifier on
create table '1one' (c1 int)

However, object_id() requires a string, so you must include the table name in quotes to select
the information:
select object_id('1one')

 896003192

You can include an embedded double quote in a quoted identifier by doubling the quote:
create table "embedded""quote" (c1 int)

However, there is no need to double the quote when the statement syntax requires the object
name to be expressed as a string:
select object_id('embedded"quote')

Enabling Quoted Identifiers
The quoted identifier enhancement configuration parameter allows the SAP ASE server to
use quoted identifiers for:

• Tables
• Views
• Column names
• Index names (SAP ASE version 15.7 and later)
• System procedure parameters (SAP ASE version 15.7 and later)

quoted identifier enhancement is part of the enable functionality group, and its default
settings depends on the settings for enable functionality group configuration parameter. See
the System Administration Guide, Volume 1.

To enable quoted identifiers:

1. Set the enable functionality group or quoted identifier enhancement configuration
parameter to 1. For example:
sp_configure "enable functionality group", 1

2. Restart the SAP ASE server so the change takes effect.
3. Turn on quoted_identifier for the current session:

set quoted_identifier on
Once you enable quoted identifier enhancement, the query processor removes delimiters and
trailing spaces from object definitions when you include quoted identifiers. For example, the
SAP ASE server considers "ident", [ident], and ident to be identical. If quoted
identifier enhancement is not enabled, "ident" is considered distinct from the other two.

When you start the SAP ASE server with quoted identifier enhancement enabled:

• Objects you create with quoted identifiers before restarting the SAP ASE server with the
enable functionality group configuration parameter enabled are not automatically

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

344 SAP Adaptive Server Enterprise

accessible when you use quoted identifiers after starting the server with this parameter
enabled, and vice versa. That is, the SAP ASE server does not automatically rename all
database objects.
However, you can use sp_rename to manually rename objects. For example, if you create
an object named "ident" and then restart the SAP ASE server with enable functionality
group enabled, rename the object by issuing:
sp_rename '"ident"', 'ident'

• The SAP ASE server treats [tab.dba.ident] and "tab.dba.ident" as fully
qualified names.

• Any Transact-SQL statements, functions, and system or stored procedures that accept
identifiers for objects also work with delimited identifiers.

• The valid_name function distinguishes strings that are valid for identifiers under regular
rules from those that are valid under the rules for delimited identifiers, with a nonzero
return indicating a valid name.
For example, valid_name('ident/v1') returns true (zero) since 'ident/v1' is
valid only as a delimited identifier. However, valid_name('ident') returns a
nonzero value because 'ident' is valid as a delimited identifier or as a normal identifier.

• Identifiers are limited to 253 characters (28 bytes) (without quoted identifier
enhancement enabled these are 255 characters (30 bytes) long). Valid lengths for
delimited identifiers include the delimiters and any embedded or trailing spaces.

Note: We recommend that you avoid conventional identifiers that cannot be represented as
delimited identifiers zones (254–255 or 29–30 bytes in length). The SAP ASE server and
its subsystems occasionally construct internal SQL statements with delimiters added to
identifiers.

• Do not use dots and delimiters as part of identifiers because of how the SAP ASE server
interprets double quotes in varchar strings referring to identifiers.

• Identifiers have these additional constraints if they relate to items outside the SAP ASE
server:
• Identifiers must begin with an alphabetic character followed by alphanumeric

characters or several special characters ($, #, @, _, ¥, £). Additionally:
• SQL variables can include @ as the first character.
• Temporary objects (objects in tempdb) can include # as the first character.

• You cannot use reserved words as identifiers.
• Delimited identifiers need not conform to the rules for conventional identifiers, but

must be delimited with matching square brackets or with double quotes.
• You cannot use delimited identifiers for variables or labels.
• You must enable set quoted_identifier to use quoted identifiers. Once you enable set

quoted_identifier, you must enclose varchar string literals in single, not double,
quotes.

• varchar string literals that contain identifiers cannot include delimiter characters.

• Delimited identifiers cannot begin with the pound-sign (#). They should also not:

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 345

• Begin with (@)
• Include spaces
• Contain the dot character (.), or the delimiter characters: “, [, or]

• Trailing spaces are stripped from delimited identifiers, and zero-length identifiers are
not allowed.

See also
• Chapter 6, Reserved Words on page 357

Identifying Tables or Columns by Their Qualified Object Name
You can uniquely identify a table or column by adding other names that qualify it—the
database name, owner’s name, and (for a column) the table or view name.

Each qualifier is separated from the next one by a period. For example:

database.owner.table_name.column_name

database.owner.view_name.column_name

The naming conventions are:
[[database.]owner.]table_name
[[database.]owner.]view_name

Using Delimited Identifiers Within an Object Name
If you use set quoted_identifier on, you can use double quotes around individual parts of a
qualified object name.

Use a separate pair of quotes for each qualifier that requires quotes. For example, use:
database.owner."table_name"."column_name"

Do not use:
database.owner."table_name.column_name"

Omitting the Owner Name
You can omit the intermediate elements in a name and use dots to indicate their positions, as
long as the system is given enough information to identify the object:

For example:
database..table_name

database..view_name

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

346 SAP Adaptive Server Enterprise

Referencing Your Own Objects in the Current Database
You need not use the database name or owner name to reference your own objects in the
current database. The default value for owner is the current user, and the default value for
database is the current database.

If you reference an object without qualifying it with the database name and owner name, the
SAP ASE server tries to find the object in the current database among the objects you own.

Referencing Objects Owned by the Database Owner
If you omit the owner name and you do not own an object by that name, the SAP ASE server
looks for objects of that name owned by the Database Owner.

You must qualify objects owned by the Database Owner only if you own an object of the same
name, but you want to use the object owned by the Database Owner. However, you must
qualify objects owned by other users with the user’s name, whether or not you own objects of
the same name.

Using Qualified Identifiers Consistently
When qualifying a column name and table name in the same statement, be sure to use the same
qualifying expressions for each; they are evaluated as strings and must match; otherwise, an
error is returned.

Example 1

select demo.mary.publishers.city from demo.mary.publishers
city ----------------------- Boston Washington Berkeley

Example 2

This example is incorrect because the syntax style for the column name does not match the
syntax style used for the table name.

select demo.mary.publishers.city from demo..publishers
The column prefix "demo.mary.publishers" does not match a table name
or alias name used in the query.

Determining Whether an Identifier is Valid
Use the system function valid_name, after changing character sets or before creating a table or
view, to determine whether the object name is acceptable to the SAP ASE server.

The syntax is:
select valid_name("object_name")

If object_name is not a valid identifier (for example, if it contains illegal characters or is more
than 30 bytes long), the SAP ASE server returns 0. If object_name is a valid identifier, the SAP
ASE server returns a nonzero number.

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 347

Renaming Database Objects
Rename user objects (including user-defined datatypes) with sp_rename.

Warning! After you rename a table or column, you must redefine all procedures, triggers, and
views that depend on the renamed object.

Using Multibyte Character Sets
In multibyte character sets, a wider range of characters is available for use in identifiers. For
example, on a server with the Japanese language installed, the following types of characters
may be used as the first character of an identifier: Zenkaku or Hankaku Katakana, Hiragana,
Kanji, Romaji, Greek, Cyrillic, or ASCII.

Although Hankaku Katakana characters are legal in identifiers on Japanese systems, they are
not recommended for use in heterogeneous systems. These characters cannot be converted
between the EUC-JIS and Shift-JIS character sets.

The same is true for some 8-bit European characters. For example, the OE ligature, is part of
the Macintosh character set (codepoint 0xCE). This character does not exist in the ISO 8859-1
(iso_1) character set. If the OE ligature exists in data being converted from the Macintosh to
the ISO 8859-1 character set, it causes a conversion error.

If an object identifier contains a character that cannot be converted, the client loses direct
access to that object.

like Pattern Matching
The SAP ASE server allows you to treat square brackets individually in the like pattern-
matching algorithm.

For example, matching a row with ‘[XX]’ in earlier versions of SAP ASE required you to use:
select * from t1 where f1 like '[[]XX[]]'

However, you can also use:
select * from t1 where f1 like '[[]XX]'

Because of the need for full compatibility, this feature is available only in SAP ASE version
15.7 and later by enabling the command:
sp_configure “enable functionality group”, 1

If you do not enable this feature, the behavior of like pattern-matching for square brackets is as
in versions of SAP ASE earlier than 15.7.

When you enable this feature:

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

348 SAP Adaptive Server Enterprise

• like pattern-matching allows a closing square bracket (“]”) immediately following an
opening bracket (“[”) to stand for itself, so that the pattern “[]]” matches the string
“]”.

• An initial caret (“^”) inverts the sense in all character ranges, so that the pattern “[^]]”
should match any single character string that is not “]”.

• In any other position, the closing bracket (“]”) marks the end of the character range.

The patterns that work when you enable this feature are:

Pattern Matches

“[[]” “[”

“[]]” “]”

“]” “]”

“[[]XX]” “[XX]”

“[[]XX[]]” “[XX]”

Using not like
Use not like to find strings that do not match a particular pattern.

These two queries are equivalent: they find all the phone numbers in the authors table that
do not begin with the 415 area code.
select phone
from authors
where phone not like "415%"

select phone
from authors
where not phone like "415%"

For example, this query finds the system tables in a database whose names begin with “sys”:
select name
from sysobjects
where name like "sys%"

To see all the objects that are not system tables, use:
 not like "sys%"

If you have a total of 32 objects and like finds 13 names that match the pattern, not like then
finds the 19 objects that do not match the pattern.

not like and the negative wildcard character [^] may give different results. You cannot always
duplicate not like patterns with like and ^. This is because not like finds the items that do not
match the entire like pattern, but like with negative wildcard characters is evaluated one
character at a time.

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 349

A pattern such as like “[^s][^y][^s]%" may not produce the same results. Instead of 19, you
might get only 14, with all the names that begin with “s”, or have “y” as the second letter, or
have “s” as the third letter eliminated from the results, as well as the system table names. This
is because match strings with negative wildcard characters are evaluated in steps, one
character at a time. If the match fails at any point in the evaluation, it is eliminated.

See also
• The Caret (^) Wildcard Character on page 352

Pattern Matching with Wildcard Characters
Wildcard characters represent one or more characters, or a range of characters, in a
match_string.

A match_string is a character string containing the pattern to find in the expression. It can be
any combination of constants, variables, and column names or a concatenated expression,
such as:
like @variable + "%".

If the match string is a constant, it must always be enclosed in single or double quotes.

Use wildcard characters with the keyword like to find character and date strings that match a
particular pattern. You cannot use like to search for seconds or milliseconds.

Use wildcard characters in where and having clauses to find character or date/time
information that is like—or not like—the match string:

{where | having} [not]
 expression [not] like match_string
 [escape "escape_character "]

expression can be any combination of column names, constants, or functions with a character
value.

Wildcard characters used without like have no special meaning. For example, this query finds
any phone numbers that start with the four characters “415%”:
select phone
from authors
where phone = "415%"

See also
• Using Wildcard Characters With datetime Data on page 355

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

350 SAP Adaptive Server Enterprise

Case and Accent Insensitivity
If your SAP ASE server uses a case-insensitive sort order, case is ignored when comparing
expression and match_string.

For example, this clause would return “Smith,” “smith,” and “SMITH” on a case-insensitive
SAP ASE server:
where col_name like "Sm%"

If your SAP ASE server is also accent-insensitive, it treats all accented characters as equal to
each other and to their unaccented counterparts, both uppercase and lowercase. The
sp_helpsort system procedure displays the characters that are treated as equivalent,
displaying an “=” between them.

Using Wildcard Characters
You can use the match string with a number of wildcard characters.

The summary of wildcard characters is:

Symbol Meaning

% Any string of 0 or more characters.

_ Any single character.

[] Any single character within the specified range ([a-f]) or set ([abcdef]).

[^] Any single character not within the specified range ([^a-f]) or set ([^abcdef]).

Enclose the wildcard character and the match string in single or double quotes (like
“[dD]eFr_nce”).

The Percent Sign (%) Wildcard Character
Use the % wildcard character to represent any string of zero or more characters.

For example, to find all the phone numbers in the authors table that begin with the 415 area
code:
select phone
from authors
where phone like "415%"

To find names that have the characters “en” in them (Bennet, Green, McBadden):
select au_lname
from authors
where au_lname like "%en%"

Trailing blanks following “%” in a like clause are truncated to a single trailing blank. For
example, “%” followed by two spaces matches “X ”(one space); “X ” (two spaces);
“X ” (three spaces), or any number of trailing spaces.

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 351

The Underscore (_) Wildcard Character
Use the underscore (_) wildcard character to represent any single character.

For example, to find all six-letter names that end with “heryl” (for example, Cheryl):
select au_fname
from authors
where au_fname like "_heryl"

Bracketed ([]) Characters
Use brackets to enclose a range of characters, such as [a-f], or a set of characters such as
[a2Br]. When ranges are used, all values in the sort order between (and including) rangespec1
and rangespec2 are returned.

For example, “[0-z]” matches 0-9, A-Z and a-z (and several punctuation characters) in 7-bit
ASCII.

To find names ending with “inger” and beginning with any single character between M and
Z:
select au_lname
from authors
where au_lname like "[M-Z]inger"

To find both “DeFrance” and “deFrance”:
select au_lname
from authors
where au_lname like "[dD]eFrance"

When using bracketed identifiers to create objects, such as with create table [table_name] or
create dstabase [dbname], you must include at least one valid character.

All trailing spaces within bracketed identifiers are removed from the object name. For
example, you achieve the same results executing the following create table commands:

• create table [tab1<space><space>]

• create table [tab1]

• create table [tab1<space><space><space>]

• create table tab1

This rule applies to all objects you can create using bracketed identifiers.

The Caret (^) Wildcard Character
The caret is the negative wildcard character. Use it to find strings that do not match a particular
pattern.

For example, “[^a-f]” finds strings that are not in the range a-f and “[^a2bR]” finds strings that
are not “a,” “2,” “b,” or “R.”

To find names beginning with “M” where the second letter is not “c”:

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

352 SAP Adaptive Server Enterprise

select au_lname
from authors
where au_lname like "M[^c]%"

When ranges are used, all values in the sort order between (and including) rangespec1 and
rangespec2 are returned. For example, “[0-z]” matches 0-9, A-Z , a-z, and several punctuation
characters in 7-bit ASCII.

Using Multibyte Wildcard Characters
If the multibyte character set configured on your SAP ASE server defines equivalent double-
byte characters for the wildcard characters _, %, - [,], and ̂ , you can substitute the equivalent
character in the match string. The underscore equivalent represents either a single- or double-
byte character in the match string.

Using Wildcard Characters as Literal Characters
To search for the occurrence of %, _, [,], or ̂ within a string, you must use an escape character.
When a wildcard character is used in conjunction with an escape character, the SAP ASE
server interprets the wildcard character literally, rather than using it to represent other
characters.

The SAP ASE server provides two types of escape characters:

• Square brackets, a Transact-SQL extension
• Any single character that immediately follows an escape clause, compliant with the SQL

standards

Using Square Brackets ([]) as Escape Characters
Use square brackets as escape characters for the percent sign, the underscore, and the left
bracket. The right bracket does not need an escape character; use it by itself. If you use the
hyphen as a literal character, it must be the first character inside a set of square brackets.

Examples of square brackets used as escape characters with like are:

Table 20. Using Square Brackets to Search for Wildcard Characters

like predicate Meaning

like "5%" 5 followed by any string of 0 or more characters

like "5[%]" 5%

like "_n" an, in, on (and so on)

like "[_]n" _n

like "[a-cdf]" a, b, c, d, or f

like "[-acdf]" -, a, c, d, or f

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 353

like predicate Meaning

like "[[]" [

like "]"]

like “[[]ab]” []ab

Using the escape Clause
Use the escape clause to specify an escape character. Any single character in the server’s
default character set can be used as an escape character. If you try to use more than one
character as an escape character, the SAP ASE server generates an exception.

Do not use existing wildcard characters as escape characters because:

• If you specify the underscore (_) or percent sign (%) as an escape character, it loses its
special meaning within that like predicate and acts only as an escape character.

• If you specify the left or right bracket ([or]) as an escape character, the Transact-SQL
meaning of the bracket is disabled within that like predicate.

• If you specify the hyphen (-) or caret (^) as an escape character, it loses its special meaning
and acts only as an escape character.

An escape character retains its special meaning within square brackets, unlike wildcard
characters such as the underscore, the percent sign, and the open bracket.

The escape character is valid only within its like predicate and has no effect on other like
predicates contained in the same statement. The only characters that are valid following an
escape character are the wildcard characters (_, %, [,], or [^]), and the escape character itself.
The escape character affects only the character following it, and subsequent characters are not
affected by it.

If the pattern contains two literal occurrences of the character that happens to be the escape
character, the string must contain four consecutive escape characters. If the escape character
does not divide the pattern into pieces of one or two characters, the SAP ASE server returns an
error message. Examples of escape clauses used with like are:

Table 21. Using the Escape Clause

like predicate Meaning

like "5@%" escape "@" 5%

like "*_n" escape "*" _n

like "%80@%%" escape "@" String containing 80%

like "*_sql**%" escape "*" String containing _sql*

like "%#####_#%%" escape "#" String containing ##_%

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

354 SAP Adaptive Server Enterprise

Using Wildcard Characters With datetime Data
When you use like with datetime values, the SAP ASE server converts the dates to the
standard datetime format, then to varchar. Since the standard storage format does not
include seconds or milliseconds, you cannot search for seconds or milliseconds with like and a
pattern.

It is a good idea to use like when you search for datetime values, since datetime entries
may contain a variety of date parts. For example, if you insert the value “9:20” and the current
date into a column named arrival_time, the clause:

where arrival_time = '9:20'

would not find the value, because the SAP ASE server converts the entry into “Jan 1 1900
9:20AM.” However, the following clause would find this value:
where arrival_time like '%9:20%'

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

Reference Manual: Building Blocks 355

CHAPTER 5: Expressions, Identifiers, and Wildcard Characters

356 SAP Adaptive Server Enterprise

CHAPTER 6 Reserved Words

Keywords, also known as reserved words, are words that have special meanings.

Transact-SQL Reserved Words
These words are reserved by the SAP ASE server as keywords (part of SQL command syntax).

You cannot use these words as names of database objects such as databases, tables, rules, or
defaults. They can be used as names of local variables and as stored procedure parameter
names.

To find the names of existing objects that are reserved words, use sp_checkreswords in
Reference Manual: Procedures.

Words

A add, all, alter, and, any, arith_overflow, as, asc, at, authorization, avg

B begin, between, break, browse, bulk, by

C cascade, case, char_convert, check, checkpoint, close, clustered, coalesce, commit, compressed,
compute, confirm, connect, constraint, continue, controlrow, convert, count, count_big, create,
current, cursor

D database, dbcc, deallocate, declare, decrypt, decrypt_default, default, delete, desc, deterministic,
disk, distinct, drop, dual_control, dummy, dump

E else, encrypt, end, endtran, errlvl, errordata, errorexit, escape, except, exclusive, exec, execute,
exists, exit, exp_row_size, external

F fetch, fillfactor, for, foreign, from

G goto, grant, group

H having, holdlock

I identity, identity_gap, identity_start, if, in, index, inout, insensitive, insert, install, intersect, into,
is, isolation

J jar, join

K key, kill

L level, like, lineno, load, lob_compression, lock

Reference Manual: Building Blocks 357

Words

M manage, materialized, max, max_rows_per_page, min, mirror, mirrorexit, modify

N national, new, noholdlock, nonclustered, not, null, nullif, numeric_truncation

Note: Although “new” is not a Transact-SQL reserved word, since it may become a reserved
word in the future, you should avoid using it (for example, to name a database object). “New” is a
special case because it appears in the spt_values table, and because sp_checkreswords

displays “New” as a reserved word.

O of, off, offsets, on, once, online, only, open, option, or, order, out, output, over

P partition, perm, permanent, plan, prepare, primary, print, privileges, proc, procedure, proces-
sexit, proxy_table, public

Q quiesce

R raiserror, read, readpast, readtext, reconfigure, references, release_locks_on_close, remove, re-
org, replace, replication, reservepagegap, return, returns, revoke, role, rollback, rowcount, rows,
rule

S save, schema, scroll, select, semi_sensitive, set, setuser, shared, shutdown, some, statistics,
stringsize, stripe, sum, syb_identity, syb_restree, syb_terminate

T table, temp, temporary, textsize, to, tracefile, tran, transaction, trigger, truncate, tsequal

U union, unique, unpartition, update, use, user, user_option, using

V values, varying, view

W waitfor, when, where, while, with, work, writetext

X xmlextract, xmlparse, xmltable, xmltest

See also
• Potential ANSI SQL Reserved Words on page 360

ANSI SQL Reserved Words
The SAP ASE server includes entry-level ANSI SQL features. Full ANSI SQL
implementation includes the words listed in the following tables as command syntax.

Upgrading identifiers can be a complex process; therefore, we are providing this list for your
convenience. The publication of this information does not commit SAP to providing all of
these ANSI SQL features in subsequent releases. In addition, subsequent releases may include
keywords not included in this list.

ANSI SQL keywords that are not reserved words in Transact-SQL are:

CHAPTER 6: Reserved Words

358 SAP Adaptive Server Enterprise

Words

A absolute, action, allocate, are, assertion

B bit, bit_length, both

C cascaded, case, cast, catalog, char, char_length, character, character_length, coalesce, collate,
collation, column, connection, constraints, corresponding, cross, current_date, current_time,
current_timestamp, current_user

D date, day, dec, decimal, deferrable, deferred, describe, descriptor, diagnostics, disconnect, do-
main

E end-exec, exception, extract

F false, first, float, found, full

G get, global, go

H hour

I immediate, indicator, initially, inner, input, insensitive, int, integer, interval

J join

L language, last, leading, left, local, lower

M match, minute, module, month

N names, natural, nchar, next, no, nullif, numeric

O octet_length, outer, output, overlaps

P pad, partial, position, preserve, prior

R real, relative, restrict, right

S scroll, second, section, semi_sensitive, session_user , size , smallint, space, sql, sqlcode, sqlerror,
sqlstate, substring, system_user

T then, time, timestamp, timezone_hour, timezone_minute, trailing, translate, translation, trim,
true

U unknown, upper, usage

V value, varchar

W when, whenever, write, year

Z zone

CHAPTER 6: Reserved Words

Reference Manual: Building Blocks 359

Potential ANSI SQL Reserved Words
If you are using the ISO/IEC 9075:1989 standard, avoid using these words because they may
become ANSI SQL reserved words in the future.

Words

A after, alias, async

B before, boolean, breadth

C call, completion, cycle

D data, depth, dictionary

E each, elseif, equals

G general

I ignore

L leave, less, limit, loop

M modify

N new, none

O object, oid, old, operation, operators, others

P parameters, pendant, preorder, private, protected

R recursive, ref, referencing, resignal, return, returns, routine, row

S savepoint, search, sensitive, sequence, signal, similar, sqlexception, structure

T test, there, type

U under

V variable, virtual, visible

W wait, without

CHAPTER 6: Reserved Words

360 SAP Adaptive Server Enterprise

CHAPTER 7 SQLSTATE Codes and Messages

SQLSTATE codes are required for entry level ANSI SQL compliance, and provide diagnostic
infomration about warnings and exceptions.

• Warnings – conditions that require user notification but are not serious enough to prevent a
SQL statement from executing successfully

• Exceptions – conditions that prevent a SQL statement from having any effect on the
database

Each SQLSTATE code consists of a 2-character class followed by a 3-character subclass. The
class specifies general information about error type. The subclass specifies more specific
information.

SQLSTATE codes are stored in the sysmessages system table, along with the messages
that display when these conditions are detected. Not all SAP ASE error conditions are
associated with a SQLSTATE code—only those mandated by ANSI SQL. In some cases,
multiple SAP ASE error conditions are associated with a single SQLSTATE value.

SQLSTATE Warnings
The SAP ASE server detects SQLSTATE warning conditions

The warnings are:

Message Value Description

Warning – null
value elimina-
ted in set
function.

01003 Occurs when you use an aggregate function (avg, max, min, sum,
count) on an expression with a null value.

Warning –
string data,
right trunca-
tion

01004 Occurs when character, unichar, or binary data is truncated to 255
bytes. The data may be:

• The result of a select statement in which the client does not sup-
port the WIDE TABLES property.

• Parameters to an RPC on remote SAP ASE servers or Open Serv-
ers that do not support the WIDE TABLES property.

See also
• avg on page 55

• max on page 185

Reference Manual: Building Blocks 361

• min on page 187

• sum on page 280

• count on page 94

Exceptions
The SAP ASE server detects various types of exceptions.

• Cardinality violations
• Data exceptions
• Integrity constraint violations
• Invalid cursor states
• Syntax errors and access rule violations
• Transaction rollbacks
• with check option violations

Cardinality Violations
Cardinality violations occur when a query that should return only a single row returns more
than one row to an Embedded SQL™ application.

Message Value Description

Subquery returned more
than 1 value. This is
illegal when the sub-
query follows =, !=, <,
<=, >, >=. or when the
subquery is used as an
expression.

21000 Occurs when:

• A scalar subquery or a row subquery returns more
than one row.

• A select into parameter_list query in Embedded
SQL returns more than one row.

Data Exceptions
Data exceptions occur when an entry is too long for its datatype, or contains an illegal escape
sequence or other format errors.

Message Value Description

Arithmetic overflow
occurred.

22003 Occurs when:

• An exact numeric type would lose precision or scale as a
result of an arithmetic operation or a sum function.

• An approximate numeric type would lose precision or
scale as a result of truncation, rounding, or a sum function.

CHAPTER 7: SQLSTATE Codes and Messages

362 SAP Adaptive Server Enterprise

Message Value Description

Data exception –
string data right
truncated.

22001 Occurs when a char, unichar, univarchar, or
varchar column is too short for the data being inserted or
updated and non-blank characters must be truncated.

Divide by zero oc-
curred.

22012 Occurs when a numeric expression is being evaluated and the
value of the divisor is zero.

Illegal escape char-
acter found. There
are fewer bytes than
necessary to form a
valid character.

22019 Occurs when you are searching for strings that match a given
pattern if the escape sequence does not consist of a single
character.

Invalid pattern
string. The charac-
ter following the
escape character
must be percent
sign, underscore,
left square bracket,
right square brack-
et, or the escape
character.

22025 Occurs when you are searching for strings that match a par-
ticular pattern when:

• The escape character is not immediately followed by a
percent sign, an underscore, or the escape character itself,
or

• The escape character partitions the pattern into substrings
whose lengths are other than 1 or 2 characters.

See also
• sum on page 280

Integrity Constraint Violations
Integrity constraint violations occur when an insert, update, or delete statement violates a
primary key, foreign key, check, or unique constraint or a unique index.

Message Value Description

Attempt to insert duplicate key row
in object object_name with unique
index index_name.

23000 Occurs when a duplicate row is in-
serted into a table that has a unique
constraint or index.

Check constraint violation occur-
red, dbname = database_name, table
name = table_name, constraint name
= constraint_name.

23000 Occurs when an update or delete
would violate a check constraint on a
column.

CHAPTER 7: SQLSTATE Codes and Messages

Reference Manual: Building Blocks 363

Message Value Description

Dependent foreign key constraint
violation in a referential integ-
rity constraint. dbname = data-
base_name, table name = table_name,
constraint name = constraint_name.

23000 Occurs when an update or delete on a
primary key table would violate a
foreign key constraint.

Foreign key constraint violation
occurred, dbname = database_name,
table name = table_name, constraint
name = constraint_name.

23000 Occurs when an insert or update on a
foreign key table is performed with-
out a matching value in the primary
key table.

Invalid Cursor States
Invalid cursor states occur when a fetch uses a cursor that is not currently open, or an update
where current of or delete where current of affects a cursor row that has been either modified
or deleted, or not been fetched.

Message Value Description

Attempt to use cursor cur-
sor_name which is not open. Use
the system stored procedure
sp_cursorinfo for more informa-
tion.

24000 Occurs when an attempt is made to fetch
from a cursor that has never been opened
or that was closed by a commit statement
or an implicit or explicit rollback. Reopen
the cursor and repeat the fetch.

Cursor cursor_name was closed
implicitly because the current
cursor position was deleted due
to an update or a delete. The
cursor scan position could not
be recovered. This happens for
cursors which reference more
than one table.

24000 Occurs when the join column of a multit-
able cursor has been deleted or changed.
Issue another fetch to reposition the cur-
sor.

The cursor cursor_name had its
current scan position deleted
because of a DELETE/UPDATE WHERE
CURRENT OF or a regular searched
DELETE/UPDATE. You must do a new
FETCH before doing an UPDATE or
DELETE WHERE CURRENT OF.

24000 Occurs when a user issues an update/de-
lete where current of whose current cur-
sor position has been deleted or changed.
Issue another fetch before retrying the
update/delete where current of.

CHAPTER 7: SQLSTATE Codes and Messages

364 SAP Adaptive Server Enterprise

Message Value Description

The UPDATE/DELETE WHERE CURRENT
OF failed for the cursor cur-
sor_name because it is not posi-
tioned on a row.

24000 Occurs when a user issues an update/de-
lete where current of on a cursor that:

• Has not yet fetched a row
• Has fetched one or more rows after

reaching the end of the result set

Syntax Errors and Access Rule Violations
Syntax errors are generated by SQL statements that contain unterminated comments, implicit
datatype conversions not supported by the SAP ASE server or other incorrect syntax.

Access rule violations are generated when users try to access an object that does not exist or
one for which they do not have the correct permissions.

Message Value Description

command permission de-
nied on object ob-
ject_name, database da-
tabase_name, owner own-
er_name.

42000 Occurs when a user tries to access an object for which
he or she does not have the proper permissions.

Implicit conversion from
datatype ‘datatype’ to
‘datatype’ is not al-
lowed. Use the CONVERT
function to run this
query.

42000 Occurs when the user attempts to convert one datatype
to another but the SAP ASE server cannot do the con-
version implicitly.

Incorrect syntax near
object_name.

42000 Occurs when incorrect SQL syntax is found near the
object specified.

Insert error: column
name or number of sup-
plied values does not
match table definition.

42000 Occurs during inserts when an invalid column name is
used or when an incorrect number of values is inserted.

Missing end comment mark
‘*/’.

42000 Occurs when a comment that begins with the /* open-
ing delimiter does not also have the */ closing delim-
iter.

CHAPTER 7: SQLSTATE Codes and Messages

Reference Manual: Building Blocks 365

Message Value Description

object_name not found.
Specify owner.objectname
or use sp_help to check
whether the object ex-
ists (sp_help may pro-
duce lots of output).

42000 Occurs when a user tries to reference an object that he
or she does not own. When referencing an object
owned by another user, be sure to qualify the object
name with the name of its owner.

The size (size) given to
the object_name exceeds
the maximum. The largest
size allowed is size.

42000 Occurs when:

• The total size of all the columns in a table defini-
tion exceeds the maximum allowed row size.

• The size of a single column or parameter exceeds
the maximum allowed for its datatype.

Transaction Rollbacks
Transaction rollbacks occur when the transaction isolation level is set to 3, but the SAP ASE
server cannot guarantee that concurrent transactions can be serialized. This type of exception
generally results from system problems such as disk crashes and offline disks.

Message Value Description

Your server command (process
id #process_id) was dead-
locked with another process
and has been chosen as dead-
lock victim. Re-run your com-
mand.

40001 Occurs when the SAP ASE server detects
that it cannot guarantee that two or more
concurrent transactions can be serialized.

with check option Violation
This class of exception occurs when data being inserted or updated through a view would not
be visible through the view.

Message Value Description

The attempted insert or update failed
because the target view was either cre-
ated WITH CHECK OPTION or spans another
view created WITH CHECK OPTION. At
least one resultant row from the com-
mand would not qualify under the CHECK
OPTION constraint.

44000 Occurs when a view, or any
view on which it depends, was
created with a with check op-
tion clause.

CHAPTER 7: SQLSTATE Codes and Messages

366 SAP Adaptive Server Enterprise

	Reference Manual: Building Blocks
	Contents
	CHAPTER 1: About These Topics
	CHAPTER 2: System and User-Defined Datatypes
	Datatype Categories
	Exact Numeric Datatypes
	Integer Types
	Decimal Datatypes

	Approximate Numeric Datatypes
	Understanding Approximate Numeric Datatypes
	Range, Precision, and Storage Size
	Entering Approximate Numeric Data
	NaN and Inf Values

	Money Datatypes
	Accuracy
	Range and Storage Size
	Entering Monetary Values

	timestamp Datatype
	Creating a timestamp Column

	Date and Time Datatypes
	Range and Storage Requirements
	Entering Date and Time Data
	Entering the Date
	Entering the Time
	Displaying Formats for datetime, smalldatetime, and date Values
	Display Formats for bigdatetime and bigtime
	Displaying Formats for time Value
	Finding Values That Match a Pattern
	Manipulating Dates

	Standards and Compliance

	Character Datatypes
	unichar and univarchar
	Length and Storage Size
	Determining Column Length with System Functions

	Entering Character Data
	Entering Unicode Characters

	Example of Treatment of Blanks
	Manipulating Character Data
	Standards and Compliance for Character Datatypes

	Binary Datatypes
	Valid binary and varbinary Entries
	Entries of More than the Maximum Column Size
	Treatment of Trailing Zeros
	Platform Dependence

	bit Datatype
	sysname and longsysname Datatypes
	text, image, and unitext Datatypes
	Data Structures Used for Storing text, unitext, and image Data
	Initialize text, unitext, and image Columns
	Define unitext Columns

	Save Space by Allowing NULL
	Obtain Information from sysindexes
	Using readtext and writetext
	Determine How Much Space a Column Uses
	Restrictions on text, image, and unitext Columns
	Selecting text, unitext, and image Data
	Converting text and image Datatypes
	Converting to or from Unitext
	Pattern Matching in text Data
	Duplicate Rows
	Using Large Object text, unitext, and image Datatypes in Stored Procedures
	Declaring a LOB Datatype
	Creating a LOB Parameter
	Examples for Using LOB Datatypes

	Standards and Compliance

	Range and Storage Size
	Datatypes of Columns, Variables, or Parameters
	Declaring Datatypes for a Column in a Table
	Declaring Datatypes for Local Variable in a Batch or Procedure
	Declaring Datatypes for a Parameter in a Stored Procedure
	Determine the Datatype of Numeric Literals
	Determine the Datatype of Character Literals

	Datatypes of Mixed-Mode Expressions
	Determine the Datatype Hierarchy
	Determine Precision and Scale

	Datatype Conversions
	Automatic Conversion of Fixed-Length NULL Columns
	Handling Overflow and Truncation Errors

	Datatypes and Encrypted Columns
	User-Defined Datatypes
	Standards and Compliance

	CHAPTER 3: Transact-SQL Functions
	abs
	acos
	allocinfo
	ascii
	asehostname
	asin
	atan
	atn2
	avg
	audit_event_name
	authmech
	biginttohex
	bintostr
	cache_usage
	case
	cast
	Usage for cast
	Conversions Involving Java Classes
	Implicit Conversion
	Explicit Conversion

	ceiling
	char
	Usage for char
	Reformatting Output With char

	char_length
	charindex
	coalesce
	col_length
	col_name
	compare
	Usage for compare
	Maximum Row and Column Length for APL and DOL

	convert
	Usage for convert
	Conversions Involving Java classes
	Implicit Conversion
	Explicit Conversion

	cos
	cot
	count
	count_big
	create_locator
	current_bigdatetime
	current_bigtime
	current_date
	current_time
	curunreservedpgs
	data_pages
	datachange
	Usage for datachange
	Restrictions for datachange

	datalength
	dateadd
	datediff
	datename
	datepart
	day
	db_attr
	db_id
	db_instanceid
	db_name
	db_recovery_status
	dbencryption_status
	defrag_status
	degrees
	derived_stat
	difference
	dol_downgrade_check
	exp
	floor
	get_appcontext
	get_internal_date
	getdate
	getutcdate
	has_role
	hash
	hashbytes
	hextobigint
	hextoint
	host_id
	host_name
	instance_id
	identity_burn_max
	index_col
	index_colorder
	index_name
	inttohex
	isdate
	is_quiesced
	is_sec_service_on
	is_singleusermode
	isnull
	isnumeric
	instance_name
	lc_id
	lc_name
	lct_admin
	left
	len
	license_enabled
	list_appcontext
	locator_literal
	locator_valid
	lockscheme
	log
	log10
	loginfo
	lower
	lprofile_id
	lprofile_name
	ltrim
	max
	migrate_instance_id
	min
	month
	mut_excl_roles
	newid
	next_identity
	nullif
	object_attr
	object_id
	object_name
	object_owner_id
	pagesize
	partition_id
	partition_name
	partition_object_id
	password_random
	patindex
	pi
	power
	proc_role
	pssinfo
	radians
	rand
	rand2
	replicate
	reserve_identity
	reserved_pages
	return_lob
	reverse
	right
	rm_appcontext
	role_contain
	role_id
	role_name
	round
	row_count
	rtrim
	sdc_intempdbconfig
	set_appcontext
	setdata
	shrinkdb_status
	show_cached_plan_in_xml
	show_cached_text
	show_cached_text_long
	show_condensed_text
	show_dynamic_params_in_xml
	show_plan
	show_role
	show_sec_services
	sign
	sin
	sortkey
	Usage for sortkey
	Collation Tables
	Collation Names and IDs

	soundex
	space
	spaceusage
	spid_instance_id
	square
	sqrt
	stddev
	stdev
	stdevp
	stddev_pop
	stddev_samp
	str
	str_replace
	strtobin
	stuff
	substring
	sum
	suser_id
	suser_name
	syb_quit
	syb_sendmsg
	sys_tempdbid
	tan
	tempdb_id
	textptr
	textvalid
	to_unichar
	tran_dumpable_status
	tsequal
	Usage for tsequal
	Adding a Timestamp to a New Table for Browsing

	uhighsurr
	ulowsurr
	upper
	uscalar
	used_pages
	user
	user_id
	user_name
	valid_name
	valid_user
	var
	var_pop
	var_samp
	variance
	varp
	workload_metric
	xa_bqual
	xa_gtrid
	xact_connmigrate_check
	xact_owner_instance
	xmlextract
	xmlparse
	xmlrepresentation
	xmltable
	xmltest
	xmlvalidate
	year

	CHAPTER 4: Global Variables
	Using Global Variables in a Clustered Environment

	CHAPTER 5: Expressions, Identifiers, and Wildcard Characters
	Expressions
	Size of Expressions
	Arithmetic and Character Expressions
	Relational and Logical Expressions
	Operator Precedence
	Arithmetic Operators
	Bitwise Operators
	String Concatenation Operator
	Comparison Operators
	Nonstandard Operators
	Using any, all, and in
	Negating and Testing
	Ranges
	Using Nulls in Expressions
	Comparisons That Return TRUE
	Difference Between FALSE and UNKNOWN
	Using “NULL” as a Character String
	NULL Compared to the Empty String

	Connecting Expressions
	Using Parentheses in Expressions
	Comparing Character Expressions
	Using the Empty String
	Including Quotation Marks in Character Expressions
	Using the Continuation Character

	Identifiers
	Short Identifiers
	Tables Beginning With # (Temporary Tables)
	Case Sensitivity and Identifiers
	Uniqueness of Object Names
	Using Delimited Identifiers
	Enabling Quoted Identifiers

	Identifying Tables or Columns by Their Qualified Object Name
	Using Delimited Identifiers Within an Object Name
	Omitting the Owner Name
	Referencing Your Own Objects in the Current Database
	Referencing Objects Owned by the Database Owner
	Using Qualified Identifiers Consistently

	Determining Whether an Identifier is Valid
	Renaming Database Objects
	Using Multibyte Character Sets

	like Pattern Matching
	Using not like

	Pattern Matching with Wildcard Characters
	Case and Accent Insensitivity
	Using Wildcard Characters
	The Percent Sign (%) Wildcard Character
	The Underscore (_) Wildcard Character
	Bracketed ([]) Characters
	The Caret (^) Wildcard Character

	Using Multibyte Wildcard Characters
	Using Wildcard Characters as Literal Characters
	Using Square Brackets ([]) as Escape Characters
	Using the escape Clause

	Using Wildcard Characters With datetime Data

	CHAPTER 6: Reserved Words
	Transact-SQL Reserved Words
	ANSI SQL Reserved Words
	Potential ANSI SQL Reserved Words

	CHAPTER 7: SQLSTATE Codes and Messages
	SQLSTATE Warnings
	Exceptions
	Cardinality Violations
	Data Exceptions
	Integrity Constraint Violations
	Invalid Cursor States
	Syntax Errors and Access Rule Violations
	Transaction Rollbacks
	with check option Violation

