
Data Modeling

SAP® Sybase® PowerDesigner®

16.5 SP02

Windows

DOCUMENT ID: DC38058-01-1652-01
LAST REVISED: May 2013
Copyright © 2013 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

PART I: Building Data Models1

CHAPTER 1: Getting Started with Data Modeling3
Conceptual Data Models ...3
Logical Data Models ..3
Physical Data Models ..4
Creating a Data Model ...5

Data Model Properties ..7
Database Properties (PDM)8

Customizing your Modeling Environment10
Setting CDM/LDM Model Options10

Assertion Template ..12
Migration Settings (LDM)12

Setting PDM Model Options ...13
Column and Domain Model Options15
Reference Model Options15
Other Object Model Options16

Setting Data Model Display Preferences17
Viewing and Editing the DBMS Definition File17

Changing the DBMS ...18
Extending your Modeling Environment20
Linking Objects with Traceability Links21

CHAPTER 2: Conceptual and Logical Diagrams23
Supported CDM/LDM Notations ...23
Conceptual Diagrams ..27

Conceptual Diagram Objects ..28
Example: Building a Data Dictionary in a CDM29

Logical Diagrams ...39

Data Modeling iii

Logical Diagram Objects ...40
Importing a Deprecated PDM Logical Model41
Importing Multiple Interconnected PDM Logical

Models ..42
Data Items (CDM) ...42

Creating a Data Item ...43
Data Item Properties ...43
Controlling Uniqueness and Reuse of Data Items44

Entities (CDM/LDM) ...45
Creating an Entity ...45
Entity Properties ...45
Copying Entities ..46
Displaying Attributes and Other Information on an

Entity Symbol ...47
Attributes (CDM/LDM) ...50

Creating an Attribute ...50
Attribute Properties ...50
Deleting Attributes (CDM) ...52

Identifiers (CDM/LDM) ...52
Creating an Identifier ..52
Identifier Properties ..52

Relationships (CDM/LDM) ...53
Creating a Relationship ..56
Relationship Properties ..56
Enabling Many-to-many Relationships in an LDM60
Creating a Reflexive Relationship60
Defining a Code Option for Relationships61
Changing a Relationship into an Associative Entity61
Identifier Migration Along Relationships61

Associations and Association Links (CDM)62
Creating an Association with Links63
Creating an Association Without Links63
Association Properties ..63
Association Link Properties ..64
Creating a Reflexive Association65

Contents

iv SAP Sybase PowerDesigner

Defining a Dependent Association65
Changing an Association into an Associative Entity66
Creating an Association Attribute 67

Inheritances (CDM/LDM) ...67
Creating an Inheritance ..68

Creating an Inheritance with the Inheritance Tool
...68

Inheritance Properties .. 69
Making Inheritance Links Mutually Exclusive 71

CHAPTER 3: Physical Diagrams73
Physical Diagram Objects ...74
Tables (PDM) ..76

Creating a Table ..76
Table Properties ..76
Linking a Table to an Abstract Data Type79
Creating an XML Table or View 79
Specifying Table Constraints .. 80
Denormalizing Tables and Columns80

Horizontal Partitions ...81
Vertical Partitions ...81
Table Collapsings ...82
Column Denormalization83
Denormalization Object Properties84
Removing Partitionings and Table Collapsings85

PowerBuilder DataWindow Extended Attributes85
Displaying Column, Domain, and Data Type

Information on a Table Symbol86
Physical Options (PDM) ..88

Defining Default Physical Options89
Columns (PDM) ..91

Creating a Column ..91
Column Properties ..91
Setting Data Profiling Constraints94

Contents

Data Modeling v

Specifying Constraints Through Business Rules
...95

Creating Data Formats For Reuse96
Specifying Advanced Constraints97

Populating Columns with Test Data98
Test Data Profile Properties98
Assigning Test Data Profiles to Columns101

Creating a Computed Column102
Attaching a Column to a Domain103
Copying or Replicating a Column from Another Table

..104
Primary, Alternate, and Foreign Keys (PDM)105

Creating Primary Keys ..105
Rebuilding Primary Keys106

Creating Alternate Keys ..107
Creating Foreign Keys ..107
Key Properties ..107

Indexes (PDM) ..108
Creating Standard, Key, or Function-Based Indexes . .109
Index Properties ..110
Rebuilding Indexes ...111

Views (PDM) ...112
Creating a View ..112
View Properties ..113
View Queries ..115
Materialized Views ..117
Showing View Dependencies using Traceability Links

..117
Defining a Generation Order for Views118

Triggers (PDM) ...119
Creating a Table or View Trigger120
Creating Triggers from References121
Creating a DBMS Trigger ..121
Trigger and DBMS Trigger Properties122
Trigger Naming Conventions123

Contents

vi SAP Sybase PowerDesigner

Calling a Related Procedure in a Trigger Template124
Indicating Trigger Order for Multiple Triggers124
Defining Triggers with Multiple Events125
Rebuilding Triggers ... 125
Trigger Templates ...127
Trigger Template Items ...128

PowerDesigner Pre-Defined Trigger Template
Items ..130

Creating SQL/XML Queries with the Wizard132
Generating Triggers and Procedures136

Defining a Generation Order for Stored
Procedures ..137

Creating User-Defined Error Messages138
Stored Procedures and Functions (PDM)140

Creating a Stored Procedure or Function 140
Procedure Properties ..141
Tracing Trigger and Procedure Dependencies142

Creating Procedure Dependencies Manually144
Rebuilding Trigger and Procedure

Dependencies ...146
Attaching a Stored Procedure to a Table147

Rebuilding Procedures Attached to Tables148
Procedure Templates (PDM)148

Users, Groups, and Roles (PDM)149
Creating a User, Group, or Role150
User, Group, and Role Properties150
Assigning an Owner to an Object151
Granting System Privileges ..151

Generating Privileges ..153
Granting Object Permissions154

Defining Column Permissions155
Assigning a User to a Group or Role 157

Synonyms (PDM) ...157
Creating a Synonym ...158
Synonym Properties ...158

Contents

Data Modeling vii

Creating a View from a Synonym159
Defaults (PDM) ...160

Creating a Default ...160
Default Properties ...161
Assigning a Default to a Column or a Domain161
Rebuilding Defaults ...162

Domains (CDM/LDM/PDM) ..162
Creating a Domain ..163
Domain Properties ..163

PowerDesigner Standard Data Types165
Controlling Non-Divergence from a Domain167

Sequences (PDM) ..169
Creating a Sequence ..169
Assigning a Sequence to a Column170
Sequence Properties ..171

Abstract Data Types (PDM) ...171
Creating an Abstract Data Type172
Abstract Data Type Properties172
Linking an Abstract Data Type to a Java Class174

References (PDM) ..174
Creating a Reference ..175
Reference Properties ..175
Automatic Reuse and Migration of Columns178
Rebuilding References ..181
Displaying Information on Reference Symbols181

View References (PDM) ...182
Creating a View Reference ...183
View Reference Properties ...184

Business Rules (CDM/LDM/PDM)184
Creating a Business Rule ...185
Business Rule Properties ...185
Attaching a Business Rule to a Model Object187
Creating and Attaching a Constraint Rule187

Lifecycles (PDM) ..189
Modeling a Lifecycle ...190

Contents

viii SAP Sybase PowerDesigner

Generating Data Archiving Scripts to Implement
your Lifecycle ...192

Lifecycle Properties ..193
Phases (PDM) ..195
Archiving Data From External Databases196

Linking an External Database by Generation197
Linking an External Database through the

Mapping Editor ..197
Linking an External Database via the Data

Source Wizard ...198
Tablespaces and Storages (PDM)198

Creating a Tablespace or Storage199
Tablespace and Storage Properties200

Web Services (PDM) ..201
Creating a Web Service ..202
Web Service Properties ..202
Web Operations (PDM) ..204
Web Parameters (PDM) ..206
Web Result Columns (PDM)208
Generating Web Services for Sybase ASA, ASE, and

IQ ..208
Generating Web Services for IBM DB2209
Reverse Engineering Web Services212

CHAPTER 4: Multidimensional Diagrams215
Multidimensional Diagram Objects216
Identifying Fact and Dimension Tables217
Generating Cubes ..217

Modifying Cubes ...219
Facts (PDM) ..219

Creating a Fact ...219
Fact Properties ...220
Measures (PDM) ...220

Dimensions (PDM) ...222

Contents

Data Modeling ix

Creating a Dimension ...222
Dimension Properties ...222
Fact and Dimension Attributes (PDM)223
Hierarchies (PDM) ..225

Associations (PDM) ...226
Operational to Warehouse Data Mappings227
Generating Data Warehouse Extraction Scripts228
Generating Cube Data ...229

CHAPTER 5: Checking a Data Model233
Abstract Data Type Checks (PDM)233
Abstract Data Type Procedure Checks (PDM)234
Association Checks (CDM) ...235
Association Checks (PDM) ...237
Column Checks (PDM) ..238
Cube Checks (PDM) ...240
Database Checks (PDM) ..241
Database Package Checks (PDM)242
Database Package Sub-Object Checks (PDM)243
Data Format Checks (CDM/LDM/PDM)244
Data Item Checks (CDM) ...245
Data Source Checks (PDM) ...246
Default Checks (PDM) ...247
Dimension Checks (PDM) ...248
Domain Checks (CDM/LDM/PDM)250
Entity Attribute Checks (CDM/LDM)251
Entity Identifier Checks (CDM/LDM)253
Entity Checks (CDM/LDM) ...254
Fact Checks (PDM) ..255
Fact Measure and Dimension Hierarchy and Attribute

Checks (PDM) ..257
Horizontal and Vertical Partitioning and Table

Collapsing Checks (PDM) ...257
Index and View Index Checks (PDM)258

Contents

x SAP Sybase PowerDesigner

Inheritance Checks (CDM/LDM)260
Join Index Checks (PDM) ..261
Key Checks (PDM) ...262
Lifecycle and Lifecycle Phase Checks (PDM)263
Package Checks (CDM/LDM/PDM)265
Procedure Checks (PDM) ..267
Reference and View Reference Checks (PDM)268
Relationship Checks (CDM/LDM)269
Sequence Checks (PDM) ...271
Synonym Checks (PDM) ...272
Table and View Checks (PDM) ..273
Tablespace and Storage Checks (PDM)275
Trigger and DBMS Trigger Checks (PDM)276
User, Group, and Role Checks (PDM)277
View Checks (PDM) ...278
Web Service and Web Operation Checks (PDM)279

CHAPTER 6: Generating and Reverse-Engineering
Databases ...281

Writing SQL Code in PowerDesigner281
Previewing SQL Statements ...285
Connecting to a Database ...288

Executing SQL Queries ..289
Generating a Database from a PDM290

Database Generation Dialog Options Tab293
Database Generation Dialog Format Tab296
Quick Launch Selection and Settings Sets297
Customizing Scripts ..298

Inserting Begin and End Scripts for Database
Creation ...299

Inserting Begin and End Scripts for Table and
Tablespace Creation300

Generating a BusinessObjects Universe301
Generating Test Data to a Database304

Contents

Data Modeling xi

Estimating Database Size ...306
Modifying a Database ..308
Displaying Data from a Database311
Reverse Engineering a Database into a PDM312

Reverse Engineering from Scripts312
Reverse Engineering from a Live Database314
Reverse Engineering Options Tab316

Reverse Engineering Encoding Format317
Database Reverse Engineering Selection Window318
Reverse Engineering Target Models Tab 319
Optimizing Live Database Reverse Engineering

Queries ...320
Reverse Engineering Database Statistics321

Archive PDMs ...322

CHAPTER 7: Generating Other Models from a Data
Model ..323

Generating Other Models from a CDM324
Generating PDM Table Keys from CDM Entity

Identifiers ..324
Generating Other Models from an LDM327
Generating Other Models from a PDM327

Customizing Data Type Mappings328
Customizing XSM Generation for Individual Objects ..330
Configuring the Generated Model Options332

CHAPTER 8: Migrating from ERwin to
PowerDesigner ...335

Importing Individual ERwin Files336
Importing Multiple ERwin Files ..337
Post-Import ...338
PowerDesigner vs ERwin Terminology339
Getting Started Using PowerDesigner for Former ERwin

Users ..340

Contents

xii SAP Sybase PowerDesigner

PART II: DBMS Definition Reference343

CHAPTER 9: HP Neoview ...345
Materialized View Groups (Neoview)348

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)
...351

Trusted Contexts (DB2) ...354
Auxiliary Tables (DB2) ...355
Tablespace Prefix (DB2) ..356
Materialized Query Tables (DB2)357
Masks (DB2) ...358
Row Permissions (DB2) ..359

CHAPTER 11: IBM DB2 for Common Server361
Database Partition Groups (DB2)367
Index Extensions (DB2) ...368
Security Policies (DB2) ...368

Security Labels (DB2) ...369
Security Label Components (DB2)370

Event Monitors (DB2) ..371
Federated Systems (DB2) ...374

Nicknames (DB2) ..374
Servers (DB2) ...377
Wrappers (DB2) ..381
User Mappings (DB2) ...382

CHAPTER 12: Microsoft SQL Server383
Horizontal Partitioning (SQL Server)400

Partition Functions (SQL Server)400
Partition Schemes (SQL Server)401

Contents

Data Modeling xiii

Common Language Runtime (CLR) Integration (SQL
Server) ..402

CLR Assemblies (SQL Server)402
CLR Aggregate Functions (SQL Server)403
CLR User-Defined Types (SQL Server)405
CLR Procedures, Functions, and Triggers (SQL

Server) ..406
Encryption (SQL Server) ...406

Certificates (SQL Server) ...407
Asymmetric Keys (SQL Server)408
Symmetric Keys (SQL Server)410

Full Text Search (SQL Server) ..411
Full-Text Catalogs (SQL Server)411
Full-Text Indexes (SQL Server)412

Spatial Indexes (SQL Server) ..413
XML Indexes (SQL Server) ..415
XML Data Types (SQL Server) ..416

XML Schema Collections (SQL Server)417
Database Mirroring (SQL Server)418

End Points (SQL Server) ..419
Service Broker (SQL Server) ..420

Message Types (SQL Server)421
Contracts (SQL Server) ..422
Message Contracts (SQL Server)423
Queues (SQL Server) ...424
Event Notifications (SQL Server)426
Services (SQL Server) ..427
Routes (SQL Server) ..428
Remote Service Bindings (SQL Server)429

Resource Governor (SQL Server)430
Workload Groups (SQL Server)430
Resource Pools (SQL Server)431

Schemas (SQL Server) ..432
Synonyms (SQL Server) ..433
Analysis Services (SQL Server 2000)433

Contents

xiv SAP Sybase PowerDesigner

Generating Cubes ...435
Reverse Engineering Cubes436

Analysis Services (SQL Server 2005)438
Specifying a Data Source for Cubes438
Generating Cubes for Microsoft SQL Server 2005439
Reverse Engineering Microsoft SQL Server 2005

Cubes ...443

CHAPTER 13: Netezza ..449
History Configurations (Netezza)452

CHAPTER 14: Oracle ...455
Object and SQLJ Object Data Types (Oracle)462
Bitmap Join Indexes (Oracle) ...462

Automatically Creating Bitmap Join Indexes Through
Rebuilding .. 462

Manually Creating Bitmap Join Indexes463
Bitmap Join Index Properties463

Database Packages (Oracle) ...464
Database Package Procedures 466
Database Package Variables467
Database Package Cursors ..468
Database Package Exceptions469
Database Package Types ... 470
Database Package Parameters 471
Database Package Templates 471

Rebuilding Table Database Packages 472
Transparent Data Encryption (Oracle)473
Clusters (Oracle) ..474
Database Links (Oracle) ..475
Materialized View Logs (Oracle)477

Contents

Data Modeling xv

CHAPTER 15: SAP Sybase Adaptive Server
Enterprise ...479

Proxy Tables (ASE) ..482
Encryption Keys (ASE) ..483

CHAPTER 16: SAP Business Suite485
Importing an SAP Business Suite Data Dictionary493
Generating an SAP Business Suite Data Dictionary to

HANA ..497

CHAPTER 17: SAP HANA ...499
Exporting Objects to the HANA Repository504
Importing Objects from the HANA Repository506

CHAPTER 18: SAP Sybase IQ509
Reference Architecture Modeling (IQ)514
Information Lifecycle Management (IQ)514
Events (IQ/SQL Anywhere) ...515
Dbspaces (IQ) ...516
Table and Column Partitions (IQ)518
Logical Servers and Policies (IQ)519
Multiplex Servers (IQ) ..521
Login Policies (IQ/SQL Anywhere)522
LDAP Servers (IQ) ..524
Remote Servers (IQ) ..525
External Logins (IQ) ...526
Spatial Data (IQ/SQL Anywhere)527

Spatial Reference Systems (SQL Anywhere)527
Spatial Units of Measure (SQL Anywhere)529

Full Text Searches (IQ/SQL Anywhere)530
Text Configurations (IQ/SQL Anywhere)530

Contents

xvi SAP Sybase PowerDesigner

Text Indexes (IQ/SQL Anywhere)531
Indexes (IQ) ..531

Rebuilding IQ Indexes ...532
Join Indexes (IQ/Oracle) ..534

Automatically Creating Join Indexes Through
Rebuilding ..536

Adding References to a Join Index537
IQ Data Movement Scripts ..537

Generating the Data Movement Script539

CHAPTER 19: SAP Sybase SQL Anywhere541
Auto-increment Columns ..544
Mirror Servers (SQL Anywhere)545
Spatial Data (SQL Anywhere) ...547
Events, Login Policies, and Full Text Searches (SQL

Anywhere) ..547
Certificates (SQL Anywhere) ..547
Proxy Tables (ASE/SQL Anywhere)548

Generating the Remote Server and Proxy Tables
Creation Scripts ..549

CHAPTER 20: Teradata ...551
Partitions (Teradata) ..558
Transform Groups (Teradata) ...560
Database Permissions (Teradata)561
Primary Indexes (Teradata) ...561
Error Tables (Teradata) ..561
Join Indexes (Teradata) ...562
Hash Indexes (Teradata) ...563
Glop Sets (Teradata) ..564
Replication Groups (Teradata) ...565
Replication Rules and Rule Sets (Teradata)565

Contents

Data Modeling xvii

CHAPTER 21: Other Databases567
Informix SQL ..567
Ingres ..568
Interbase ...569
Microsoft Access ...569

Generating a Microsoft Access Database570
Reverse Engineering a Microsoft Access Database

..570
MySQL ..570
NonStop SQL ...572
PostgreSQL ..573
Red Brick Warehouse ..577

Index ...579

Contents

xviii SAP Sybase PowerDesigner

PART I

Building Data Models

The chapters in this part explain how to model your data systems in SAP® Sybase®

PowerDesigner®.

Data Modeling 1

2 SAP Sybase PowerDesigner

CHAPTER 1 Getting Started with Data
Modeling

A data model is a representation of the information consumed and produced by a system,
which lets you analyze the data objects present in the system and the relationships between
them. PowerDesigner provides conceptual, logical, and physical data models to allow you to
analyze and model your system at all levels of abstraction.

Suggested Bibliography

• Graeme Simsion, Van Nostrand Reinhold, Data Modeling Essentials, 1994, 310 pages;
paperbound; ISBN 1850328773

• James Martin, Prentice Hall, Information Engineering, 1990, three volumes of 178, 497,
and 625 pages respectively; clothbound, ISBN 0-13-464462-X (vol. 1), 0-13-464885-4
(vol. 2), and 0-13-465501-X (vol. 3).

• Joe Celko, Joe Celko's SQL for Smarties (Morgan Kaufmann Publishers, Inc., 1995), 467
pages; paperbound; ISBN 1-55860-323-9.

Conceptual Data Models
A conceptual data model (CDM) helps you analyze the conceptual structure of an information
system, to identify the principal entities to be represented, their attributes, and the
relationships between them. A CDM is more abstract than a logical (LDM) or physical (PDM)
data model.

A CDM allows you to:

• Represent the organization of data in a graphic format to create Entity Relationship
Diagrams (ERD).

• Verify the validity of data design.
• Generate a Logical Data Model (LDM), a Physical Data Model (PDM) or an Object-

Oriented Model (OOM), which specifies an object representation of the CDM using the
UML standard.

To create a CDM, see Creating a Data Model on page 5. For detailed information about
conceptual diagrams, see Conceptual Diagrams on page 27.

Logical Data Models
A logical data model (LDM) helps you analyze the structure of an information system,
independent of any specific physical database implementation. An LDM has migrated entity

Data Modeling 3

identifiers and is less abstract than a conceptual data model (CDM), but does not allow you to
model views, indexes and other elements that are available in the more concrete physical data
model (PDM).

You can use a logical model as an intermediary step in the database design process between the
conceptual and physical designs:

• Start with a CDM containing entities, attributes, relationships, domains, data items and
business rules. If need be, you may develop the CDM in several design steps starting from a
high level model to a low level CDM

• Generate an LDM. Create indexes and specify FK column names and other common
features

• Generate one or more PDMs, each targeted to a specific DBMS implementation

This design process allows you to keep everything consistent in a large development effort.

To create an LDM, see Creating a Data Model on page 5. For detailed information about
logical diagrams, see Logical Diagrams on page 39.

Physical Data Models
A physical data model (PDM) helps you to analyze the tables, views, and other objects in a
database, including multidimensional objects necessary for data warehousing. A PDM is
more concrete than a conceptual (CDM) or logical (LDM) data model. You can model,
reverse-engineer, and generate for all the most popular DBMSs.

PowerDesigner provides you with tools for modeling your operational and business
intelligence environments:

CHAPTER 1: Getting Started with Data Modeling

4 SAP Sybase PowerDesigner

• Operational/relational environment - modeled in physical diagrams (see Chapter 3,
Physical Diagrams on page 73). The physical analysis may follow a conceptual and/or
logical analysis, and addresses the details of the actual physical implementation of data in
a database, to suit your performance and physical constraints.

• Business intelligence environment:
• Data warehouse or data mart database tables - can be modeled in physical diagrams and

mapped to their source operational tables to generate data extraction scripts.
• Data warehouse cubes (in ROLAP or HOLAP environments) - can be modeled in

multidimensional diagrams (see Chapter 4, Multidimensional Diagrams on page 215)
and mapped to their source warehouse tables.

• SAP® BusinessObjects™ Universes - can be generated from warehouse PDMs for
direct consumption or for editing in BusinessObjects environments (see Generating a
BusinessObjects Universe on page 301).

• OLAP cubes - can be modeled in multidimensional diagrams and mapped to their
source operational or warehouse tables to generate cube data.

PowerDesigner provides support for a wide range of database families through DBMS
definition files (*.xdb, located in Resource Files\DBMS inside your installation
directory), which customize the metamodel to support the specific syntax of a DBMS, through
extended attributes, objects, and generation templates. To view and edit the resource file for
your DBMS, select Database > Edit Current DBMS. For detailed information about
working with these files, see Customizing and Extending PowerDesigner > DBMS Definition
Files.

Creating a Data Model
You create a new data model by selecting File > New Model.

Note: In addition to creating a data model from scratch with the following procedure, you can
also:

• create a CDM by importing an ERwin model (.ERX) or by generating it from another
PowerDesigner model.

• create an LDM by generating it from another PowerDesigner model.
• create a PDM by reverse-engineering it from an existing database (see Reverse

Engineering a Database into a PDM on page 312) or generating it from another
PowerDesigner model.

The New Model dialog is highly configurable, and your administrator may hide options that
are not relevant for your work or provide templates or predefined models to guide you through
model creation. When you open the dialog, one or more of the following buttons will be
available on the left hand side:

CHAPTER 1: Getting Started with Data Modeling

Data Modeling 5

• Categories - which provides a set of predefined models and diagrams sorted in a
configurable category structure.

• Model types - which provides the classic list of PowerDesigner model types and
diagrams.

• Template files - which provides a set of model templates sorted by model type.

1. Select File > New Model to open the New Model dialog.

2. Click a button, and then select a category or model type (Conceptual Data Model,
Logical Data Model or Physical Data Model) in the left-hand pane.

3. Select an item in the right-hand pane. Depending on how your New Model dialog is
configured, these items may be first diagrams or templates on which to base the creation of
your model.

Use the Views tool on the upper right hand side of the dialog to control the display of the
items.

4. Enter a model name. The code of the model, which is used for script or code generation, is
derived from this name using the model naming conventions.

5. [PDM only] Select a target DBMS , which customizes PowerDesigner's default modifying
environment with target-specific properties, objects, and generation templates.

CHAPTER 1: Getting Started with Data Modeling

6 SAP Sybase PowerDesigner

By default, PowerDesigner creates a link in the model to the specified file. To copy the
contents of the resource and save it in your model file, click the Embed Resource in
Model button to the right of this field. Embedding a file in this way enables you to make
changes specific to your model without affecting any other models that reference the
shared resource.

6. [optional] Click the Select Extensions button and attach one or more extensions to your
model.

7. Click OK to create and open the data model .

Note: Sample data models are available in the Example Directory.

Data Model Properties
You open the model property sheet by right-clicking the model in the Browser and selecting
Properties.

Each data model has the following model properties:

Property Description

Name/Code/Comment Identify the model. The name should clearly convey the model's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You
can optionally add a comment to provide more detailed information about
the model. By default the code is auto-generated from the name by applying
the naming conventions specified in the model options. To decouple name-
code synchronization, click to release the = button to the right of the Code
field.

Filename Specifies the location of the model file. This box is empty if the model has
never been saved.

Author Specifies the author of the model. If you enter nothing, the Author field in
diagram title boxes displays the user name from the model property sheet
Version Info tab. If you enter a space, the Author field displays nothing.

Version Specifies the version of the model. You can use this box to display the
repository version or a user defined version of the model. This parameter is
defined in the display preferences of the Title node.

DBMS [PDM only] Specifies the model target.

CHAPTER 1: Getting Started with Data Modeling

Data Modeling 7

Property Description

Database Specifies the database that is the target for the model. You can create a
database in the model by clicking the Create tool to the right of this field.

If your DBMS supports multiple databases in a single model (enabled by
the EnableManyDatabases entry in the Database category of the

DBMS), this field is not present, and is replaced by a list of databases in the
Model menu. A Database category is also displayed in the physical options
of your database objects.

Default diagram Specifies the diagram displayed by default when you open the model.

Keywords Provide a way of loosely grouping objects through tagging. To enter mul-
tiple keywords, separate them with commas.

Database Properties (PDM)
You can create a database from the General tab of the model property sheet or, if your DBMS
supports multiple databases in a single model, from the list of databases in the Model menu.

A database has the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

DBMS DBMS for the database

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Options - Lists the physical options associated with the database (see Physical Options
(PDM) on page 88).

• Script - Specifies begin and end scripts to bookend the database creation script.
• Rules - Specifies the business rules associated with the database.

CHAPTER 1: Getting Started with Data Modeling

8 SAP Sybase PowerDesigner

Using a Database in a Physical Option
You can use a database in a physical option.

1. Open the property sheet of an object with physical options.

2. Click the Options tab, select the in database (...) optionand click the >> button.

3. Select a database from the list below the right pane.

4. Click OK.

When you use the in [<tablespace>] physical option, you associate a predefined tablespace
with a database using the following syntax:

DBname.TBSPCname

For example, tablespace CUST_DATA belongs to database myBase. In the following
example, table Customer will be created in tablespace CUST_DATA:

You should not define a database together with a tablespace physical option on the same
object, this will raise an error during check model.

The database Dependencies tab displays the list of objects that use the current database in their
physical options.

CHAPTER 1: Getting Started with Data Modeling

Data Modeling 9

Customizing your Modeling Environment
The PowerDesigner data model provides various means for customizing and controlling your
modeling environment.

Setting CDM/LDM Model Options
You can set CDM/LDM model options by selecting Tools > Model Options or right-clicking
the diagram background and selecting Model Options.

You can set the following options on the Model Settings page:

Option Description

Name/Code case
sensitive

Specifies that the names and codes for all objects are case sensitive, allowing you
to have two objects with identical names or codes but different cases in the same
model. If you change case sensitivity during the design process, we recommend
that you check your model to verify that your model does not contain any duplicate
objects.

Enable links to
requirements

Displays a Requirements tab in the property sheet of every object in the model,
which allows you to attach requirements to objects (see Requirements Model-
ing).

Enforce non-di-
vergence

Specifies that attributes attached to a domain must remain synchronized with the
selected properties (see Controlling Non-Divergence from a Domain on page
167).

Use data type
full name

Specifies that the complete data type is displayed in entity symbols.

Default data type Specifies the default data type to apply to domains and attributes if none is selected
for them.

External Short-
cut Properties

Specifies the properties that are stored for external shortcuts to objects in other
models for display in property sheets and on symbols. By default, All properties
appear, but you can select to display only Name/Code to reduce the size of your
model.

Note: This option only controls properties of external shortcuts to models of the
same type (PDM to PDM, EAM to EAM, etc). External shortcuts to objects in
other types of model can show only the basic shortcut properties.

CHAPTER 1: Getting Started with Data Modeling

10 SAP Sybase PowerDesigner

Option Description

Notation You can choose between the following notations:

• Entity / Relationship [Default – used throughout this manual] Entity/rela-
tionship notation connects entities with links representing one of four rela-
tionships between them. These relationships have properties that apply to both
entities involved in the relationship

• Merise - uses associations instead of relationships
• E/R + Merise - both entity/relationship and Merise are used in the same model
• IDEF1X - data modeling notation for relationships and entities. In this nota-

tion, each set of relationship symbols describes a combination of the option-
ality and cardinality of the entity next to it

• Barker – inheritances are represented by placing the child entities inside the
parent entity symbol, and relationships are drawn in two parts, each reflecting
the multiplicity of the associated entity role.

For more information about these notations, see Supported CDM/LDM Notations
on page 23

Unique code Requires that data items or relationships have unique codes

Allow n-n rela-
tionships

[LDM only] Allows n-n relationships to be displayed.

Allow reuse Allows the reuse of one data item as an attribute for more than one entity provided
the attributes have same name and data type and do not belong to a primary key.

When deselected or when the attribute belongs to a primary key, the data item
cannot be reused. In this case, if the Unique code check box is selected, a new data
item with identical name but different code is created, otherwise a new data item
with identical name and code is created.

When you delete an entity or entity attributes, these options determine whether or
not the corresponding data items are also deleted, as follows:

• Both – deletes the entity attribute.
• Unique Code only – deletes the entity attribute.
• Allow Reuse only – deletes the entity attribute and the corresponding data

item (if it is not used by another entity).
• None – deletes the entity attribute and the corresponding data item.

For information about controlling the naming conventions of your models, see Core Features
Guide > Modeling with PowerDesigner > Objects > Naming Conventions.

CHAPTER 1: Getting Started with Data Modeling

Data Modeling 11

Assertion Template
The assertion template is a GTL template used to automatically generate sentences from the
role names you specify on the Cardinalities tab of relationship property sheets. To review or
edit the template, select Tools > Model Options > Assertion Template.

The PowerDesigner Generation Template Language (GTL) is used to generate text from the
objects, properties, and relationships defined in the PowerDesigner metamodel and in
extensions to it.

The GTL code in the template extracts various properties of the relationship object and the
entities it connects to generate the assertion statements. The mandatory property and
cardinalities are evaluated in each direction in order to generate the appropriate wording
around the entity and role names.

You can edit the assertion template as necessary, to change the wording or to reference other
properties. To reference extended attributes or other extensions, you must specify the
extension file for the template to use in the Assertion Extension list.

A sample extension file, Relationship Assertion with Plural Entity
Names, is provided, which provides support for using plural entity names in assertions. For
information about attaching this or any other xem to your model, see Extending Your
Modeling Environment on page 20

For detailed information about working with GTL, see Customizing and Extending
PowerDesigner > Customizing Generation with GTL .

Migration Settings (LDM)
To set migration settings, select Tools > Model Options, and select the Migration settings
sub-category under Model Settings.

These options control the migration of identifiers along relationships:

Option Description

Migrate attribute
properties

Enables the domain, the checks or the rules to be kept when an attribute is
migrated.

CHAPTER 1: Getting Started with Data Modeling

12 SAP Sybase PowerDesigner

Option Description

Foreign attribute
name

Specifies the naming convention for migrated foreign identifiers. You can select
one of the default templates from the list or enter your own using the following
variables:

• %PARENT% - Name/Code of the parent entity

• %ATTRIBUTE% - Name/Code of the parent attribute

• %IDENTIFIER% - Name/Code of the identifier constraint attached to the
relationship

• %RELATIONSHIP% - Name/Code of the relationship

• %PARENTROLE% - Role of the entity that generated the parent entity, this
variable proceeds from the conceptual environment. If no role is defined on
the relationship, %PARENTROLE% takes the content of %PARENT% to
avoid generating an attribute with no name

The following example checks the %PARENTROLE% value; if it is equal to the
parent name (which is the replacement value) then the template "%.3:PARENT
%_%ATTRIBUTE%" will be used, otherwise template "%PARENTROLE%
will be used because the user has entered a parent role for the relationship:

Note that customized naming templates reappear in the generation dialog box the
next time you open it, but are not saved to the list of predefined templates.

Use template Controls when the primary identifier attribute name template will be used. You
can choose between:

• Always use template.

• Only use template in case of conflict.

Setting PDM Model Options
You can set PDM model options by selecting Tools > Model Options or right-clicking the
diagram background and selecting Model Options.

You can set the following options on the Model Settings page:

Option Function

Name/Code case
sensitive

Specifies that the names and codes for all objects are case sensitive, allowing
you to have two objects with identical names or codes but different cases in the
same model. If you change case sensitivity during the design process, we
recommend that you check your model to verify that your model does not
contain any duplicate objects.

Enable links to re-
quirements

Displays a Requirements tab in the property sheet of every object in the model,
which allows you to attach requirements to objects (see Requirements Mod-
eling).

CHAPTER 1: Getting Started with Data Modeling

Data Modeling 13

Option Function

External Shortcut
Properties

Specifies the properties that are stored for external shortcuts to objects in other
models for display in property sheets and on symbols. By default, All prop-
erties appear, but you can select to display only Name/Code to reduce the size
of your model.

Note: This option only controls properties of external shortcuts to models of
the same type (PDM to PDM, EAM to EAM, etc). External shortcuts to objects
in other types of model can show only the basic shortcut properties.

Notation Specifies the use of one of the following notation types for the model. You can
choose between:

• Relational - Arrow pointing to primary key. This option is the default, and
is used in this manual.

• CODASYL - Arrow pointing to foreign key.

• Conceptual - Cardinality displayed in IE format (crow's feet).

• IDEF1X - Cardinality and mandatory status displayed on reference, pri-
mary columns in separate containers and dependent tables with rounded
rectangles.

When you change notation, all symbols in all diagrams are updated accord-
ingly. If you switch from Merise to IDEF1X, all associations are converted to
relationships.

For information about controlling the naming conventions of your models, see Core Features
Guide > Modeling with PowerDesigner > Objects > Naming Conventions.

CHAPTER 1: Getting Started with Data Modeling

14 SAP Sybase PowerDesigner

Column and Domain Model Options
To set model options for columns and domains, select Tools > Model Options, and select the
Column & Domain sub-category in the left-hand Category pane.

You can set the following options on this tab:

Option Function

Enforce non-diver-
gence

Specifies that columns attached to a domain must remain synchronized with
the selected properties (see Controlling Non-Divergence from a Domain on
page 167).

Default data type Specifies the default data type to be applied to columns and domains if none is
selected for them.

Column / Domain:
Mandatory by de-
fault

Specifies that columns or domains are created, by default, as mandatory and
that they may must, therefore contain non-null values.

Reference Model Options
To set model options for references, select Tools > Model Options, and select the Reference
sub-category in the left-hand Category pane.

You can set the following options on this tab:

Option Function

Unique code Requires that references have unique codes. If this option is not selected then
different references can have the same code (except when two references share
the same child table).

Auto-reuse / Auto-
migrate columns

Enable the reuse of columns in child tables as foreign key columns and the
migration of primary key columns to child tables during the creation of refer-
ences (see Automatic Reuse and Migration of Columns on page 178).

Mandatory parent Specifies that the relationship between child and parent tables is, by default,
mandatory, i.e., each foreign key value in the child table must have a corre-
sponding key value, in the parent table.

Change parent al-
lowed

Specifies that a foreign key value can change to select another value in the
referenced key in the parent table.

Check on commit Specifies that referential integrity is checked only on commit, rather than
immediately after row insertion. This feature can be useful when working with
circular dependencies. Not available with all DBMSs.

Propagate column
properties

Propagates changes made to the name, code, stereotype, or data type of a parent
table column to the corresponding child column.

Default link on cre-
ation

Specifies how reference joins are created (see Automatic Reuse and Migration
of Columns on page 178).

CHAPTER 1: Getting Started with Data Modeling

Data Modeling 15

Option Function

Default implemen-
tation

Specifies how referential integrity is implemented in the reference. You can
select either:

• Declarative – referential integrity is defined by constraint in foreign dec-
larations

• Trigger – referential integrity is implemented by triggers

For more information on referential integrity, see Reference Properties on page
175.

Default Constraints:
Update

Controls how updating a key value in the parent table will, by default, affect the
foreign key value in the child table. Depending on your DBMS, you can choose
from some or all of the following settings:

• None – no effect
• Restrict – cannot update parent value if one or more matching child values

exist (no effect)
• Cascade - update matching child values
• Set null - set matching child values to NULL
• Set default – set matching child values to default value

Default Constraints:
Delete

Controls how deleting a key value in the parent table will, by default, affect the
foreign key value in the child table. Depending on your DBMS, you can choose
from some or all of the following settings:

• None – no effect
• Restrict – cannot delete parent value if one or more matching child values

exist (no effect)
• Cascade - delete matching child values
• Set null - set matching child values to NULL
• Set default – set matching child values to default value

Other Object Model Options
To set model options for tables and views, indexes, join indexes, procedures, sequences,
triggers, and database packages select Tools > Model Options, and select the appropriate
sub-category under Model Settings.

You can set the following options for these objects:

Option Function

Default owner Specifies a default owner for the specified object from the list of users (see
Creating a User on page 150). To create a user, click on the ellipsis button to
open the List of Users, and click the Add a Row tool.

If the user specified is subsequently deleted, this option (and the ownership of
all associated objects) will be reset to none.

CHAPTER 1: Getting Started with Data Modeling

16 SAP Sybase PowerDesigner

Option Function

Ignore identifying
owner

[tables and views] Specifies that the owner of a table or view is ignored for
identification purposes. Since, by default, both the name/code and the owner
are considered during a uniqueness check, this option enables you to enforce
distinct names for these objects.

For example, if a model contains a table called "Table_1", which belongs to
User_1, and another table, also called "Table_1", which belongs to User_2, it
will, by default, pass a uniqueness check because of the different owners.

Rebuild automati-
cally triggers

[triggers] Automatically rebuilds the triggers on the child and parent tables of a
reference when you:

• change the implementation of a reference
• change the referential integrity rules of a reference implemented by a

trigger
• change the child or parent table of a reference implemented by a trigger

(new and old)
• create or delete a reference implemented by a trigger
• change the maximum cardinality of the references

If this option is not selected, you can manually instruct PowerDesigner to
rebuild triggers at any time by selecting Tools > Rebuild Objects > Rebuild
Triggers.

Setting Data Model Display Preferences
PowerDesigner display preferences allow you to customize the format of object symbols, and
the information that is displayed on them. To set data model display preferences, select Tools
> Display Preferences or right-click the diagram background and select Display Preferences
from the contextual menu.

For detailed information about customizing and controlling the attributes and collections
displayed on object symbols, see Core Features Guide > Modeling with PowerDesigner >
Diagrams, Matrices, and Symbols > Display Preferences.

Viewing and Editing the DBMS Definition File
Each PDM is linked to a definition file that extends the standard PowerDesigner metamodel to
provide objects, properties, data types, and generation parameters and templates specific to
the language being modeled. Definition files and other resource files are XML files located in
the Resource Files directory inside your installation directory, and can be opened and
edited in the PowerDesigner Resource Editor.

Warning! The resource files provided with PowerDesigner inside the Program Files
folder cannot be modified directly. To create a copy for editing, use the New tool on the
resource file list, and save it in another location. To include resource files from different
locations for use in your models, use the Path tool on the resource file list.

CHAPTER 1: Getting Started with Data Modeling

Data Modeling 17

To open your model's definition file and review its extensions, select Database > Edit
Current DBMS.

For detailed information about the format of these files, see Customizing and Extending
PowerDesigner > DBMS Definition Files.

Note: Some resource files are delivered with "Not Certified" in their names. Sybase® will
perform all possible validation checks, however Sybase does not maintain specific
environments to fully certify these resource files. Sybase will support the definition by
accepting bug reports and will provide fixes as per standard policy, with the exception that
there will be no final environmental validation of the fix. Users are invited to assist Sybase by
testing fixes of the definition provided by Sybase and report any continuing inconsistencies.

Changing the DBMS
You can change the DBMS being modeled in your PDM at any time.

If you change the DBMS being modeled, the model will be altered to conform with the new
DBMS as follows:

• All data types specified in your model will be converted to their equivalents in the new
DBMS.

• Any objects not supported by the new DBMS will be deleted
• Certain objects, whose behavior is heavily DBMS-dependent may lose their values.

Note: You may be required to change the DBMS if you open a model and the associated
definition file is unavailable.

1. Select Database > Change Current DBMS:

CHAPTER 1: Getting Started with Data Modeling

18 SAP Sybase PowerDesigner

2. Select a DBMS from the list.

By default, PowerDesigner creates a link in the model to the specified file. To copy the
contents of the resource and save it in your model file, click the Embed Resource in
Model button to the right of this field. Embedding a file in this way enables you to make
changes specific to your model without affecting any other models that reference the
shared resource.

3. [optional] Click the DBMS Preserve Options tab, and select the check boxes for the
objects and options that you want to preserve:

• Triggers and stored procedures – triggers are always rebuilt when you change DBMS.
• Physical options - if the syntax of an option is incompatible with the new DBMS, the

values will be lost, even if you have selected to preserve the physical option. For
example, the physical option in used by ASA is not supported by Oracle and any values
associated with that option will be lost.

• DBMS-specific objects - databases, storages, tablespaces, abstract data types,
sequences.

• Extended attributes - which are defined for a particular DBMS.

CHAPTER 1: Getting Started with Data Modeling

Data Modeling 19

Note: If you are changing DBMS within a database family, for example between Sybase
ASE 12.5 and 15, all preserve options available are selected by default. The database
objects not supported by the old and new DBMSs are disabled.

4. Click OK.

A message box opens to tell you that the DBMS has been changed.

5. Click OK to return to the model.

Extending your Modeling Environment
You can customize and extend PowerDesigner metaclasses, parameters, and file generation
with extensions, which can be stored as part of your model or in separate extension files
(*.xem) for reuse with other models.

To access extension defined in a *.xem file, simply attach the file to your model. You can do
this when creating a new model by clicking the Select Extensions button at the bottom of the
New Model dialog, or at any time by selecting Model > Extensions to open the List of
Extensions and clicking the Attach an Extension tool.

In each case, you arrive at the Select Extensions dialog, which lists the extensions available,
sorted on sub-tabs appropriate to the type of model you are working with:

CHAPTER 1: Getting Started with Data Modeling

20 SAP Sybase PowerDesigner

To get started extending objects, see Core Features Guide > Modeling with PowerDesigner >
Objects > Extending Objects. For detailed information about working with extensions, see
Customizing and Extending PowerDesigner > Extension Files.

Linking Objects with Traceability Links
You can create traceability links to show any kind of relationship between two model objects
(including between objects in different models) via the Traceability Links tab of the object's
property sheet. These links are used for documentation purposes only, and are not interpreted
or checked by PowerDesigner.

For more information about traceability links, see Core Features Guide > Linking and
Synchronizing Models > Getting Started with Linking and Syncing > Creating Traceability
Links.

CHAPTER 1: Getting Started with Data Modeling

Data Modeling 21

CHAPTER 1: Getting Started with Data Modeling

22 SAP Sybase PowerDesigner

CHAPTER 2 Conceptual and Logical
Diagrams

The data models in this chapter allow you to model the semantic and logical structure of your
system.

PowerDesigner provides you with a highly flexible environment in which to model your data
systems. You can begin with either a CDM (see Conceptual Diagrams on page 27) or an
LDM (see Logical Diagrams on page 39) to analyze your system and then generate a PDM
(see the Chapter 3, Physical Diagrams on page 73) to work out the details of your
implementation. Full support for database reverse-engineering allows you to take existing
data structures and analyze them at any level of abstraction.

For more information about intermodel generation, see Chapter 7, Generating Other Models
from a Data Model on page 323.

Supported CDM/LDM Notations
PowerDesigner supports the most popular data modeling notations in the CDM and LDM.
You can choose your notation by clicking Tools > Model Options and selecting it in the
Notation list.

Entity/relationship Notation
In the Entity/relationship notation, entities are represented as rectangles and divided in three
compartments: name, attributes, and identifiers.

Data Modeling 23

The termination points of relationships indicate the cardinality as follows:

(Note that the Merise notation uses associations instead of relationships):

CHAPTER 2: Conceptual and Logical Diagrams

24 SAP Sybase PowerDesigner

Inheritance symbols indicate if they are complete and if they have mutually exclusive
children:

Complete Mutually exclusive Symbol

No No

Yes No

No Yes

Yes Yes

IDEF1X Notation
In the Idef1x notation, entity names are displayed outside the symbol, and dependent entities
are drawn with round corners.

Relationship symbols indicate the cardinality as follows:

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 25

Inheritance symbols indicate if the inheritance is complete:

Complete Symbol

Yes

No

Barker Notation
In the Barker notation, entities are drawn with round corners, and inheritances are displayed
by placing children inside the parent entity.

CHAPTER 2: Conceptual and Logical Diagrams

26 SAP Sybase PowerDesigner

Only attributes are listed and a symbol specifies whether each attribute is a key, a mandatory or
an optional attribute as follows:

Relationship symbols indicate the cardinality as follows:

The line style specifies if a relationship is mandatory:

Conceptual Diagrams
A conceptual data diagram provides a graphical view of the conceptual structure of an
information system, and helps you identify the principal entities to be represented, their
attributes, and the relationships between them.

Note: To create a conceptual diagram in an existing CDM, right-click the model in the
Browser and select New > Conceptual Diagram. To create a new model, select File > New
Model, choose Conceptual Data Model as the model type and Conceptual Diagram as the
first diagram, and then click OK.

In the following conceptual diagram, the Teacher and Student entities inherit attributes from
the Person parent entity. The two child entities are linked with a one-to-many relationship (a
teacher has several students but each student has only one main teacher).

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 27

In addition:

• a teacher can teach several subjects and a subject can be taught by several teachers (many-
to-many).

• a teacher can teach several lessons and a lesson is taught by only one teacher (one-to-
many).

• a student attends multiple lessons and a lesson is followed by multiple students (many-
to-many).

• a student studies multiple subjects and a subject can be studied by multiple students
(many-to-many).

Conceptual Diagram Objects
PowerDesigner supports all the objects necessary to build conceptual diagrams.

Object Tool Symbol Description

Domain [none] [none] Set of values for which a data item is
valid. See Domains (CDM/LDM/
PDM) on page 162.

Data Item [none] [none] Elementary piece of information. See
Data Items (CDM) on page 42.

CHAPTER 2: Conceptual and Logical Diagrams

28 SAP Sybase PowerDesigner

Object Tool Symbol Description

Entity Person, place, thing, or concept that is
of interest to the enterprise. See Entities
(CDM/LDM) on page 45.

Entity Attribute [none] [none] Elementary piece of information at-
tached to an entity. See Attributes
(CDM/LDM) on page 50.

Identifier [none] [none] One or many entity attributes, whose
values uniquely identify each occur-
rence of the entity. See Identifiers
(CDM/LDM) on page 52.

Relationship Named connection or relation between
entities (ER modeling methodology).
See Relationships (CDM/LDM) on
page 53.

Inheritance Relationship that defines an entity as a
special case of a more general entity.
See Inheritances (CDM/LDM) on page
67.

Association Named connection or association be-
tween entities (Merise modeling meth-
odology). See Associations and Asso-
ciation Links (CDM) on page 62.

Association
Link

Link that connects an association to an
entity. See Associations and Associa-
tion Links (CDM) on page 62.

Example: Building a Data Dictionary in a CDM
PowerDesigner supports the definition and maintenance of an enterprise data dictionary in a
CDM. A data dictionary defines the data items, entities and attributes of the enterprise, and by
managing it in a CDM and linking it (through generation or through the mapping editor) with
your data and other models, you can ensure consistency of use and benefit from sophisticated
impact analysis and "where used" reporting.

Data dictionaries ensure consistency of use by providing a single authoritative definition for
all common data elements used across the enterprise. They are used to standardize data
content, context, and definitions and to achieve consistency and reusability while increasing
the quality of the data used throughout the organization. By clearly defining and delineating
the objects that comprise the enterprise and its systems, they enable:

• easier integration and communication between systems

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 29

• more standardized messaging between applications
• higher quality business intelligence and analytics
• better understanding between all subject matter experts
• more agile response to change and more complete impact analysis

A data dictionary defined in a PowerDesigner CDM provides:

• a unique list of entities and data items
• data items as descriptions of data artifacts
• entities connected to data items through attributes
• entity-to-entity relationships
• traceability from the data dictionary to logical and physical data models and other models
• impact analysis and “where used” reporting capabilities

1. Select File > New to open the New Model dialog, select to create a new CDM and give it an
appropriate name, for example, Enterprise Data Dictionary.

2. Select Model > Data Items to open the List of Data Items and enter some concepts that
you want to define. Each data item is an elementary piece of information, which represents
a fact or a definition defined using business terms.

CHAPTER 2: Conceptual and Logical Diagrams

30 SAP Sybase PowerDesigner

Some examples of data items are Customer Name, Order Description, and Zip
Code. Data items exist independently of any containing entity, which is important in a
data dictionary as you are seeking to define atomic business data and terms, independent of
how they may ultimately be used by entities. For more information about defining data
items, see Data Items (CDM) on page 42.

3. Select Model > Entities to open the List of Entities and enter some of the entities that you
want to define. Entities represent more complex business structures composed of one or
more attributes (which are associated with data items).

Some examples of entities are Customer, Product, Order. When you create entities,
a symbol for each one will be created in the CDM diagram. While such a graphical
representation is not strictly necessary for the purposes of creating a data dictionary, you
may find this diagram useful to help you visualize the content and structure of business
concepts.

For more information about defining entities, see Entities (CDM/LDM) on page 45.

4. Double-click an entity in the Browser or diagram to open its property sheet, and click the
Attributes tab. Entity attributes provide the link between an entity and a data item:

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 31

Create a new attribute by reusing an existing data item by clicking the Reuse Data Item
tool and selecting the data item that you want to reuse. By default, PowerDesigner allows
you to reuse a data item for more than one entity attribute so that, for example, you can
define a Zip Code data item once, and reuse it in whatever entities contain addresses. If
you then update the data item, your changes will simultaneously cascade down to all the
entity attributes that use it. This is a great way to enforce consistency throughout the data
dictionary model.

You can also create data items in this list by clicking the Insert a Row or Add a Row tool
to add a new line in the list and entering an appropriate name. PowerDesigner will create
the attribute and an associated data item. You can also create a new attribute by creating a
copy of an existing data item. Click the Add Data Item tool and select the data item that
you want to copy. Any changes made through this attribute or directly to this copy of the
data item will only affect this attribute and no others.

5. Double-click one of your entity symbols (or its Browser entry) to open its property sheet so
that you can provide a precise definition for it. The Comment field on the General tab is
intended for a simple, short description in unformatted text, while the Description field on
the Notes tab allows for fully formatted text, and is intended to contain the complete,
detailed definition from the business:

CHAPTER 2: Conceptual and Logical Diagrams

32 SAP Sybase PowerDesigner

6. [optional] Select the Relationship tool in the pallet and create relationships between the
entities in your data dictionary. Click and hold in one entity, then drag the cursor to a
second entity and release the mouse button. Draw other relationships as necessary and then
right-click anywhere in the diagram to drop the tool. Double-click a relationship line to
open its property sheet and specify properties such as role name and cardinality.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 33

For detailed information about defining relationships, see Relationships (CDM/LDM) on
page 53.

7. The purpose of a data dictionary is to map the concepts that it defines to the concepts,
logical entities, and physical tables that make up the implementation of these ideas in the
enterprise. PowerDesigner provides two complementary methods for connecting the data
dictionary with your other models:

• Generation - If you have no existing PDM, you can generate a new model from your
data dictionary. Click Tools > Generate Physical Data Model to open the Generate
dialog, select the Generate new... option, and specify a name for the model to
generate. Click the Selection tab and select the concepts you want to generate to the
new model, and then click OK.

CHAPTER 2: Conceptual and Logical Diagrams

34 SAP Sybase PowerDesigner

You can review the links created between the data dictionary and your other models in
the Generation Links Viewer (select Tools > Generation Links > Derived Models).
You can regenerate whenever necessary to propagate updates or additions in the data
dictionary to your other models. The Merge Models dialog (see Core Features Guide >
Modeling with PowerDesigner > Comparing and Merging Models) will appear, which
lets you review and approve (or reject) the changes that will be propagated from the
data dictionary to the model.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 35

For detailed information about generating models, see Chapter 7, Generating Other
Models from a Data Model on page 323.

• Mapping Editor - If you have an existing PDM or other model it may be more
appropriate to map your data dictionary concepts to your PDM objects using the
Mapping Editor, which provides a finer degree of control and a simple drag and drop
interface.
Open the model containing the objects you want to link with your data dictionary and
select Tools > Mapping Editor. In the Data Source Creation Wizard, enter Data
Dictionary in the Data Source field, select Conceptual Model in the Model
type list, and click Next. Select your data dictionary CDM and click Next. Select the
Create default mapping option to instruct PowerDesigner to auto-create mappings
where possible based on shared names, and click Finish to open your model and the
data dictionary in the Mapping Editor:

CHAPTER 2: Conceptual and Logical Diagrams

36 SAP Sybase PowerDesigner

You can create additional mappings as necessary by dragging and dropping entities
and attributes from the data dictionary onto objects in the target model. Note that
mappings created in this way will not automatically propagate changes.
For detailed information about using the Mapping Editor, see Core Features Guide >
Linking and Synchronizing Models > Object Mappings.

8. Once the data dictionary is established and linked to the other models used in the enterprise
to define the information architecture, you will need to manage changes to it. New
concepts will be added and existing elements updated due to refinements in understanding
the business or changes to business operations. Some elements may also be removed
(though this will probably be rare). Maintaining your data dictionary in a PowerDesigner
CDM enables you to leverage sophisticated impact analysis tools to help you understand
the time, cost and risk associated with proposed changes.

To launch an impact analysis, select one or more objects in a diagram or the Browser and
select Tools > Impact and Lineage Analysis:

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 37

You can edit the rule sets used to control the analysis and manually adjust the tree view by
right-clicking items. Once the analysis view contains the level of detail you want, click the
Generate Diagram button to create an impact analysis diagram. This diagram, which can
be saved and compared to other impact analysis snapshots, shows the connections that link
your dictionary concepts through intermediate objects and models to the physical objects
that implement them, providing a graphical "where used" report:

CHAPTER 2: Conceptual and Logical Diagrams

38 SAP Sybase PowerDesigner

The diagram helps you plan the implementation of a change, as everything defined in the
diagram will require further assessment to ensure the change does not invalidate any
specific work we have done at the implementation level.

For detailed information about working with impact analysis, see Core Features Guide >
Linking and Synchronizing Models > Impact and Lineage Analysis.

9. Share your data dictionary with your modeling team and ensure that the latest version is
always available to them, by checking it into your PowerDesigner repository library as a
reference model (see Core Features Guide > Administering PowerDesigner > Deploying
an Enterprise Glossary and Library).

10. Share your data dictionary with other members of your organization through the
PowerDesigner Portal (see Core Features Guide > Storing, Sharing and Reporting on
Models > The PowerDesigner Portal) or by publishing it to HTML or RTF (see Core
Features Guide > Storing, Sharing and Reporting on Models > Reports).

Logical Diagrams
A logical data diagram provides a graphical view of the structure of an information system,
and helps you analyze the structure of your data system through entities and relationships, in
which primary identifiers migrate along one-to-many relationships to become foreign
identifiers, and many-to-many relationships can be replaced by intermediate entities.

Note: To create a logical diagram in an existing LDM, right-click the model in the Browser
and select New > Logical Diagram. To create a new model, select File > New Model, choose
Logical Data Model as the model type and Logical Diagram as the first diagram, and then
click OK.

The following logical diagram represent the same system as that in our CDM example (see
Conceptual Diagrams on page 27).

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 39

Primary identifiers have migrated along one-to-many relationships to become foreign
identifiers, and many-to-many relationships are replaced with an intermediary entity linked
with one-to-many relationships to the extremities.

Logical Diagram Objects
PowerDesigner supports all the objects necessary to build logical diagrams.

Object Tool Symbol Description

Domain [none] [none] Set of values for which a data item is
valid. See Domains (CDM/LDM/
PDM) on page 162.

Entity Person, place, thing, or concept that is
of interest to the enterprise. See Entities
(CDM/LDM) on page 45.

Entity Attribute [none] [none] Elementary piece of information at-
tached to an entity. See Attributes
(CDM/LDM) on page 50.

CHAPTER 2: Conceptual and Logical Diagrams

40 SAP Sybase PowerDesigner

Object Tool Symbol Description

Identifier [none] [none] One or many entity attributes, whose
values uniquely identify each occur-
rence of the entity. See Identifiers
(CDM/LDM) on page 52.

Relationship Named connection or relation between
entities (ER modeling methodology).
See Relationships (CDM/LDM) on
page 53.

n-n Relationship [LDM only] Named cardinality repre-
sented with an intermediary entity. See
Relationships (CDM/LDM) on page
53.

Inheritance Relationship that defines an entity as a
special case of a more general entity.
See Inheritances (CDM/LDM) on page
67.

Importing a Deprecated PDM Logical Model
If you have previously created a PDM with the logical model DBMS, you will be invited to
migrate to an LDM when you open it.

1. Select File > Open and browse to the PDM logical model to open.

2. Click Open to display the Import Logical Data Model dialog:

3. Choose one of the following options:

• Convert the model to a logical data model – Note that only tables, columns, keys and
references are preserved

• Change the DBMS target to "ANSI Level 2" and open it as a PDM

4. Click OK to open the model.

Note: A PDM with the logical model DBMS that had been generated from a CDM will retain
its links to the source CDM when you convert it to an LDM. However, for any PDM generated
from the old LDM, you will need to restore the generation links by regenerating the PDM from

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 41

the new LDM, using the Update existing PDM option (see Core Features Guide > Linking and
Synchronizing Models > Generating Models and Model Objects).

Importing Multiple Interconnected PDM Logical Models
If you have previously created multiple PDMs with the logical model DBMS, and these
models are connected by shortcuts and generation or other links, you can convert them en
masse to logical data models and preserve their interconnections.

1. Select File > Import > Legacy Logical Data Models to open the Import Logical Data
Models dialog:

2. Click Open, browse to the legacy PDMs you want to import, select them, and then click
OK to add them to the list. You can, if necessary, add multiple PDMs from multiple
directories by repeating this step.

3. When you have added all the necessary PDMs to the list, click OK to import them into
interconnected LDMs.

Data Items (CDM)
A data item is an elementary piece of information, which represents a fact or a definition in an
information system, and which may or may not have any eventual existence as a modeled
object.

You can attach a data item to an entity (see Entities (CDM/LDM) on page 45) in order to
create an entity attribute (see Attributes (CDM/LDM) on page 50), which is associated with
the data item.

There is no requirement to attach a data item to an entity. It remains defined in the model and
can be attached to an entity at any time.

Data items are not generated when you generate an LDM or PDM.

CHAPTER 2: Conceptual and Logical Diagrams

42 SAP Sybase PowerDesigner

Example
In the information system for a publishing company, the last names for authors and customers
are both important pieces of business information. The data item LAST NAME is created to
represent this information. It is attached to the entities AUTHOR and CUSTOMER, and
becomes entity attributes of those entities.

Another piece of information is the date of birth of each author. The data item BIRTH DATE is
created but, as there is no immediate need for this information in the model, it is not attached to
any entity.

Creating a Data Item
You can create a data item from the Browser or Model menu. Data items are automatically
created when you create entity attributes.

• Select Model > Data Items to access the List of Data Items, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Data Item.
• Create an entity attribute (see Attributes (CDM/LDM) on page 50). A data item will be

automatically created.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Data Item Properties
To view or edit a data item's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field,
or add stereotypes to the list by specifying them in an extension file.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 43

Property Description

Data type/
Length/ Preci-
sion

Specifies the form of data to be stored, such as numeric, alphanumeric, or Boolean,
and, where appropriate, the maximum number of characters or numerals that can be
stored, and the maximum number of places after the decimal point. Click the
ellipsis button to choose from the list of standard data types (see PowerDesigner
Standard Data Types on page 165).

Domain Specifies the domain associated with the object (see Domains (CDM/LDM/PDM)
on page 162). Use the tools to the right of this field to create or browse to a domain,
or to open the property sheet of the selected domain.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Standard Checks - Specifies constraints to control the range and format of permitted data
(see Setting Data Profiling Constraints on page 94)

• Additional Checks - Displays an editable SQL statement, initialized with the standard
checks, which can be used to generate more complex constraints (see Specifying
Advanced Constraints on page 97).

• Rules - Lists the business rules associated with the object (see Business Rules (CDM/
LDM/PDM) on page 184).

Controlling Uniqueness and Reuse of Data Items
You can control naming restraints and reuse for data items with CDM model options, by
selecting Tools > Model Options .

Option When selected When cleared

Unique
code

Each data item must have a unique code.

If you try to select this option and some
existing data items are already sharing a
code, the following error will be dis-
played:

Unique Code option could not be selec-
ted because two data items have the
same code: data_item_code

To be able to select the option, you must
first assign unique codes to all data
items.

Multiple data items can have the same code,
and you differentiate them by the entities that
use them. The entities are listed in the Used
By column of the list of data items.

Note: To make an item visible in a list, click
the Customize Columns and Filter tool in the
list toolbar, select the appropriate check box
from the list of filter options that is displayed,
and click OK.

Allow re-
use

One data item can be an entity attribute
for multiple entities.

Each data item can be an entity attribute for
only one entity

CHAPTER 2: Conceptual and Logical Diagrams

44 SAP Sybase PowerDesigner

For more information about CDM model options, see Setting CDM/LDM Model Options on
page 10.

Entities (CDM/LDM)
An entity represents an object about which you want to store information. For example, in a
model of a major corporation, the entities created may include Employee and Division.

When you generate a PDM from a CDM or LDM, entities are generated as tables.

Creating an Entity
You can create an entity from the Toolbox, Browser, or Model menu.

• Use the Entity tool in the Toolbox.
• Select Model > Entities to access the List of Entities, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Entity.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Entity Properties
To view or edit an entity's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the = but-
ton to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field,
or add stereotypes to the list by specifying them in an extension file.

Number Specifies the estimated number of occurrences in the physical database for the entity
(the number of records).

Generate Specifies that the entity will generate a table in a PDM. When modeling in the Barker
notation (see Supported CDM/LDM Notations on page 23), only leaf subtypes can
be generated as PDM tables, and so this option is disabled on Barker supertype
property sheets.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 45

Property Description

Parent Entity [read-only] Specifies the parent entity. Click the Properties tool at the right of the
field to open the parent property sheet.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

The following tabs are also available:

• Attributes - lists the attributes associated with the entity (see Attributes (CDM/LDM) on
page 50).

• Identifiers - lists the attributes associated with the entity (see Identifiers (CDM/LDM) on
page 52).

• Rules - lists the business rules associated with the entity (see Business Rules (CDM/LDM/
PDM) on page 184).

• Subtypes – [Barker only] lists the subtypes that inherit from the entity.

Copying Entities
You can make a copy of an entity within the same model or between models. When you copy
an entity, you create a new entity with a new name and code, attributes, and identifiers. Model
options control whether you create new data items or reuse the data items that are attached to
the original entity.

1. Select an entity in the CDM/LDM, and then select Edit > Copy (or press Ctrl+C).

2. Select the diagram or model to where you want to copy the entity and select Edit > Paste
(or press Ctrl+V).

The entity is copied and the new entity is displayed in the Browser and diagram.

Note: When copying an entity to the same model, a new entity with a new name and code,
attributes, and identifiers is always created, but the creation of new data items is controlled
by data item model options (see Setting CDM/LDM Model Options on page 10). Select:
• Allow reuse - to attach the original data items to the new entity attributes. If this option

is not selected, the original data items will be copied and these copies will be attached
to the new entity attributes.

• Unique code - to force all data items to have unique codes (though two or more data
items can have the same name). If neither this option nor Allow reuse is selected, then
duplicate data items will be created with the same names and codes.

CHAPTER 2: Conceptual and Logical Diagrams

46 SAP Sybase PowerDesigner

Displaying Attributes and Other Information on an Entity Symbol
To set display preferences for entities, select Tools > Display Preferences, and select the
Entity sub-category in the left-hand Category pane.

Entity
By default the following properties can be displayed on entity symbols:

Preference Display description

Attributes Specifies whether Attributes are displayed on entity symbols. If selected, you can
choose between displaying:

• All attributes - All attributes:

• Primary attributes - Only primary identifier attributes:

• Identifying attributes - All identifier attributes:

• Display limit - Number of attributes shown depends on defined value. For
example, if set to 5:

Identifiers All identifier attributes for the entity are listed at the bottom of the entity symbol:

Stereotype Stereotype of the entity.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 47

Preference Display description

Comment Comment of the entity. When selected, all other check boxes are deselected,
except for Stereotype:

Entity Attributes
By default the following properties can be displayed for entity attributes:

Preference Display description

Data type Data type for each entity attribute:

Domain or data
type

Domain for each entity attribute. You can only display domains when the Data
type check box is selected.

CHAPTER 2: Conceptual and Logical Diagrams

48 SAP Sybase PowerDesigner

Preference Display description

Domain Domain of an attribute in an entity. This display option interacts with the selection
for Data types. As a result, there are four display options:

• Data types - Displays only the data type, if any:

• Domains - Displays only the domain, if any:

• Data types and Domain - Displays both data type and domain, if any:

• Data types and Replace by domains - Displays either data type or domain, if
any, and domain if both are present:

Mandatory <M> indicators are displayed next to each mandatory attribute:

Identifier indica-
tors

<pi> indicators are displayed next to primary identifiers and <ai> indicators next
to non-primary identifiers:

Stereotype Displays the stereotype of the entity attributes

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 49

Note: For information about selecting other properties to display, see Core Features Guide >
Modeling with PowerDesigner > Diagrams, Matrices, and Symbols > Display Preferences.

Attributes (CDM/LDM)
In a CDM, attributes are data items attached to an entity, association, or inheritance. In an
LDM, there are no data items, and so attributes exist in entities without a conceptual origin.

When you generate a PDM from a CDM or LDM, entity attributes are generated as table
columns.

Creating an Attribute
You can create an entity attribute from the Attributes tab in the property sheet of an entity,
association, or inheritance.

You can use the following tools, available on the Attributes tab:

Tool Description

Add a Row – Creates a new attribute and associated data item.

If you have enabled the Allow Reuse model option (see Setting CDM/LDM Model Options
on page 10), the new data item can be used as an attribute for other objects.

If you have enabled the Allow Reuse and Unique Code model options and you type the
name of an existing data item, it will be automatically reused.

Add Data Item (CDM)/Add Attributes (LDM) - Opens a Selection window listing all the
data items/attributes available in the model. Select one or more data items/attributes in the
list and then click OK to make them attributes to the object.

If the data item/attribute has not yet been used, it will be linked to the object. If it has already
been used, it will be copied (with a modified name if you have enabled the Unique code
model option) and the copy attached to the object.

Reuse Data Item (CDM) - Opens a Selection window listing all the data items/attributes
available in the model. Select one or more data items/attributes in the list and then click OK
to make them attributes to the object.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Attribute Properties
To view or edit an attribute's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 2: Conceptual and Logical Diagrams

50 SAP Sybase PowerDesigner

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field,
or add stereotypes to the list by specifying them in an extension file.

Entity/ Associ-
ation/ Inheri-
tance

[read-only] Specifies the parent object. Click the tool to the right of the field to open
its property sheet.

Data Item [CDM only, read-only] Specifies the related data item (see Data Items (CDM) on
page 42). Click the tool to the right of the field to open its property sheet.

Inherited from [LDM only, read-only] Specifies the parent entity from which the attribute is mi-
grated through an inheritance.

Data type/
Length/ Preci-
sion

Specifies the form of data to be stored, such as numeric, alphanumeric, or Boolean,
and, where appropriate, the maximum number of characters or numerals that can be
stored, and the maximum number of places after the decimal point. Click the ellipsis
button to choose from the list of standard data types (see PowerDesigner Standard
Data Types on page 165).

Domain Specifies the domain associated with the object (see Domains (CDM/LDM/PDM)
on page 162). Use the tools to the right of this field to create or browse to a domain,
or to open the property sheet of the selected domain.

Primary Iden-
tifier

[entity attributes only] Specifies that the attribute is the primary identifier of the
entity.

Displayed [entity and association attributes] Displays the attribute in the object symbol.

Mandatory Specifies that every object occurrence must assign a value to the attribute. Identifiers
(see Identifiers (CDM/LDM) on page 52) are always mandatory.

Foreign identi-
fier

[LDM only, read-only] Specifies that the attribute is the foreign identifier of the
entity.

The following tabs are also available:

• Standard Checks - Specifies constraints to control the range and format of permitted data
(see Setting Data Profiling Constraints on page 94)

• Additional Checks - Displays an editable SQL statement, initialized with the standard
checks, which can be used to generate more complex constraints (see Specifying
Advanced Constraints on page 97).

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 51

• Rules - Lists the business rules associated with the object (see Business Rules (CDM/
LDM/PDM) on page 184).

Deleting Attributes (CDM)
When you delete an attribute, model options determine whether or not the corresponding data
items are also deleted:

Model options selected Result of deleting an attribute

Unique Code and Allow Reuse Does not delete corresponding data item

Unique Code only Does not delete corresponding data item

Allow Reuse only Deletes corresponding data item if it is not used by another entity

None Deletes corresponding data item

Identifiers (CDM/LDM)
An identifier is one or many entity attributes, whose values uniquely identify each occurrence
of the entity.

Each entity must have at least one identifier. If an entity has only one identifier, it is designated
by default as the primary identifier.

When you generate a PDM from a CDM or LDM, identifiers are generated as primary or
alternate keys.

Creating an Identifier
You can create an identifier from the property sheet of an entity.

• Open the Attributes tab in the property sheet of an entity, select one or more attributes, and
click the Create Identifier tool. The selected attributes are associated with the identifier and
are listed on the attributes tab of its property sheet.

• Open the Identifiers tab in the property sheet of an entity, and click the Add a Row tool.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Identifier Properties
To view or edit an indentifier's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 2: Conceptual and Logical Diagrams

52 SAP Sybase PowerDesigner

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field,
or add stereotypes to the list by specifying them in an extension file.

Entity Specifies the name of the entity to which the identifier belongs.

Primary identi-
fier

Specifies that the identifier is a primary identifier.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

The following tabs are also available:

• Attributes - lists the attributes (see Attributes (CDM/LDM) on page 50) associated with
the identifier: Click the Add Attributes tool to add an attribute.

Relationships (CDM/LDM)
A relationship is a link between entities. For example, in a model that manages human
resources, the Member relationship links the Employee and Team entities and expresses
that each employee works in a team, and each team has employees.

For example, the employee Martin works in the Marketing team is one occurrence of the
Member relationship.

When you generate a PDM from a CDM or LDM, relationships are generated as references.

Note: Relationships are used to link entities in the ER, Barker, and IDEF1X methodologies,
while Merise uses associations (see Associations and Association Links (CDM) on page
62). PowerDesigner lets you use relationships or associations exclusively, or combine the
two methodologies in the same model. The following examples use the ER format. For more
information about the other notations, see Supported CDM/LDM Notations on page 23.

A one-to-many relationship links one instance of the first entity to multiple instances of the
second entity. Additional properties can make one or both sides of this relationship mandatory
and define identification rules:

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 53

One-to-many relationship Description

Each division may have zero or more
employees

Each employee may belong to zero or
one division

Each division must have one or more
employees

Each employee may belong to zero or
one division

Each division may have zero or more
employees

Each employee must belong to one and
only one division

Each division must have one or more
employees

Each employee must belong to one and
only one division

Each division may have zero or more
employees

Each employee must belong to one and
only one division

Each employee is identified uniquely by
division number and employee number

Each division must have one or more
employees

Each employee must belong to one and
only one division

Each employee is identified uniquely by
division number and employee number

A one-to-one relationship links one instance of the first entity with one instance of the second
entity:

CHAPTER 2: Conceptual and Logical Diagrams

54 SAP Sybase PowerDesigner

One-to-one relationship Description

Each team works on zero or one project

Each project is managed by zero or one
team

Each team works on one and one project
only

Each project is managed by zero or one
team

Each team works on zero or one project

Each project is managed by one and one
team only

A many-to-many relationship links multiple instances of the first entity to multiple instances
of the second entity. This type of relationship is not permitted, by default, in the LDM (see
Enabling Many-to-many Relationships in an LDM on page 60):

Many-to-many relationship Description

Each division may have zero or more
employees

Each employee may belong to zero or
more divisions

Each division must have one or more
employees

Each employee may belong to zero or
more divisions

Each division may have zero or more
employees

Each employee must belong to one or
more divisions

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 55

Many-to-many relationship Description

Each division must have one or more
employees

Each employee must belong to one or
more divisions

Creating a Relationship
You can create a relationship from the Toolbox, Browser, or Model menu.

• Use the Relationship tool in the Toolbox. Click inside the first entity to be linked and,
while continuing to hold down the mouse button, drag the cursor to the second entity.
Release the mouse button inside the second entity.

• Select Model > Relationships to access the List of Relationships, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Relationship.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Relationship Properties
To view or edit a relationship's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Entity1

Entity2

Specifies the two entities linked by the relationship. Use the tools to the right of the
list to create, browse for, or view the properties of the currently selected entity.

CHAPTER 2: Conceptual and Logical Diagrams

56 SAP Sybase PowerDesigner

Property Description

Generate Specifies that the relationship should be generated as a reference when you gen-
erate a PDM.

Cardinalities Contains data about cardinality as the number of instances of one entity in relation
to another entity.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Cardinalities Tab
The Cardinalities tab allows you to specify the nature of the relationship between the two
entities. The following properties are available:

Property Description

Cardinality Specifies the number of instances (none, one, or many) of an entity in relation to
another entity. You can choose from the following values:

• One-to-one (<1..1>) - One instance of entity A can correspond to only one
instance of entity B.

• One-to-many (<1..n>) - One instance of entity A can correspond to more than
one instance of entity B.

• Many-to-one (<n..1>) - More than one instance of entity A can correspond to the
same one instance of entity B.

• Many-to-many (<n..n>) - More than one instance of entity A can correspond to
more than one instance of entity B. To use n..n relationships in an LDM, see
Enabling Many-to-many Relationships in an LDM on page 60.

For information about the termination points of the relationships in each of the
supported notations, see Supported CDM/LDM Notations on page 23.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 57

Property Description

Dominant role [one-to-one relationships only] Specifies one direction of the relationship as dom-
inant. If you define a dominant direction, the one-to-one relationship generates one
reference in a PDM, with the dominant entity as the parent table. If you do not define
a dominant direction, the one-to-one relationship generates two references.

In the following example, the author is the dominant entity:

In a PDM, this relationship generates a reference with Author as the parent table, and
its primary key migrated to the Picture table as a foreign key:

In addition, this tab contains a groupbox for each direction of the relationship, containing the
following properties:

Property Description

Role name Text that describes the relationship of EntityA to EntityB, and which is used to
generate the assertion statements displayed at the top of this tab. You should use the
infinitive phrase that describes the relationship of one entity to the other. For ex-
ample, Each Order may contain one or more line., and

Each line must belong to one and only one Order.
To modify the sentences generated from your role names, edit your model's assertion
template (see Assertion Template on page 12).

Dependent Specifies that the entity is dependent on and partially identified by the other entity.

In the following example, the task entity is dependent on the project entity. Each task
is a part of a project and each project can contain zero or more tasks:

CHAPTER 2: Conceptual and Logical Diagrams

58 SAP Sybase PowerDesigner

Property Description

Mandatory Specifies that each instance of the entity requires at least one instance of the other
entity.

For example, the subcontract relationship is optional from customer to project, but
mandatory from project to customer. Each project must have a customer, but each
customer does not have to have a project.

Implied by dependent

Cardinality Specifies the maximum and minimum number of instances of EntityA in relation to
EntityB (if mandatory, at least 1). You can choose from the following values:

• 0..1 – Zero to one instances

• 0..n – Zero to many instances

• 1..1 – Exactly one instance

• 1..n – one to many instances

Joins Tab (LDM)
The Joins tab lists the joins defined between parent and child entity attributes. Joins can link
primary, alternate, or foreign identifiers, or any user-specified attributes.

On this tab, you can either:

• Select an identifier from the parent entity in the Parent field on which to base the join to
autopopulate the list with its associated parent and child attributes. If necessary, you can
modify the specified child attributes.

• Specify <None> in the Parent field and specify your own attribute pairs on which to base
the join using the following tools:

Tool Description

Reuse Attributes - Create a join by matching parent and child attributes that share the
same code.

Migrate Attributes - First specify attributes in the Parent Attribute column and then
click this tool to migrate them to foreign identifier attributes in the child table. If the
attributes do not exist in the child table, they are created.

Cancel Migration - Remove any attributes migrated to the child table.

Insert a Row - Inserts a row before the selected row in the list to specify another attribute
to join on.

Add a Row - Adds a row at the end of the list to specify another attribute to join on.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 59

Enabling Many-to-many Relationships in an LDM
In an LDM, many-to-many relationships are, by default, not permitted and are represented
with an intermediary entity. If you allow many-to-many relationships, you can select the
many-to-many value in the cardinalities tab.

1. Select Tools > Model Options.

2. Select the Allow n-n relationships check box in the Relationship groupbox, and then click
OK to return to the model.

Note: When generating an LDM from a CDM, you can authorize the generation of many-
to-many relationships by clicking the Configure Model Options button on the General
tab of the generation dialog, and selecting the Allow n-n relationships option.

Creating a Reflexive Relationship
A reflexive relationship is a relationship between an entity and itself.

In the following example, the reflexive relationship Supervise expresses that an employee
(Manager) can supervise other employees.

Note: To obtain clean lines with rounded corners when you create a reflexive relationship,
select Display Preferences > Format > Relationship and modify the Line Style with the
appropriate type from the Corners list.

1. Click the Relationship tool in the Toolbox.

2. Click inside the entity symbol and, while continuing to hold down the mouse button, drag
the cursor a short distance within the symbol, before releasing the button.

A relationship symbol loops back to the same entity.

Note: In the Dependencies page of the entity, you can see two identical occurrences of the
relationship, this is to indicate that the relationship is reflexive and serves as origin and
destination for the link

CHAPTER 2: Conceptual and Logical Diagrams

60 SAP Sybase PowerDesigner

Defining a Code Option for Relationships
You can control naming restraints for relationships so that each relationship must have a
unique code.

If you do not select Unique Code, two relationships can have the same code, and you
differentiate them by the entities they link.

The following error message is displayed when the option you choose is incompatible with the
current CDM:

Error message Solution

Unique Code option could not be selected because
at least two relationships have the same code: rela-
tionship_code.

Change the code of one relationship

1. Select Tools > Model Options to open the Model Options dialog box:

2. Select or clear the Unique Code check box in the Relationship groupbox, and then click
OK to return to the model.

Changing a Relationship into an Associative Entity
You can transform a relationship between two entities into an associative entity linked by two
relationships, and then attach entity attributes to the associative entity that you could not attach
to the relationship.

1. Right-click a relationship symbol and select Change to Entity.

The original relationship is split in two and an associative entity is created between the two
new relationships, taking the name and code of the original relationship.

2. Open the property sheet of the associative entity or one of the new relationships to modify
their properties as appropriate.

Identifier Migration Along Relationships
Migrations are made instantaneously in an LDM or during generation if you generate a PDM
from a CDM.

Relationship type Migration

Dependent one-to-many Foreign identifiers become attributes of the primary identifier of the
child entity.

Many-to-many No attributes are migrated.

Dominant one-to-one Primary identifier migrate from the dominant attribute.

Mandatory one-to-many If the child to parent role is mandatory, migrated attributes are man-
datory.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 61

Associations and Association Links (CDM)
In the Merise modeling methodology an association is used to connect several entities that
each represents clearly defined objects, but are linked by an event, which may not be so clearly
represented by another entity.

Each instance of an association corresponds to an instance of each entity linked to the
association.

When you generate a PDM from a CDM, associations are generated as tables or references.

In the following example, three entities VIDEOK7, CLIENT, and STORE contain video
cassette, client, and store information. They are linked by an association which represents a
video cassette rental (K7RENTAL). The K7RENTAL association also contains the attributes
DATE and STAFF_ID, which give the date of the rental, and the identity of the staff member
who rented out the video cassette.

When you generate a PDM, K7RENTED is generated as a table with five columns,
STORE_ID,K7_ID, CLIENT_ID, DATE, and STAFF_ID.

CHAPTER 2: Conceptual and Logical Diagrams

62 SAP Sybase PowerDesigner

You can use associations exclusively in your CDM, or use both associations and relationships.

Association Links
An association is connected to an entity by an association link, which symbolizes the role and
the cardinality between an association and an entity.

Creating an Association with Links
The easiest way to create an association between entities is to use the Association Link tool,
which will create the association and the necessary links as well.

1. Click the Association Link tool in the Toolbox.

2. Click inside the first entity and while continuing to hold down the mouse button, drag the
cursor to a second entity. Release the mouse button.

An association symbol is created between the two entities.

Creating an Association Without Links
You can create an association without links from the Toolbox, Browser, or Model menu.

• Use the Association tool in the Toolbox..
• Select Model > Associations to access the List of Associations, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > Association.

Once you have created the association, you can link it to the relevant entities by using the
Association Link tool.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Association Properties
To view or edit an association's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 63

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the = but-
ton to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field,
or add stereotypes to the list by specifying them in an extension file.

Number Specifies the estimated number of occurrences in the physical database for the
association (the number of records).

Generate Specifies that the association will generate a table in a PDM.

Attributes Specifies the data item attached to an association.

Rules Specifies the business rules associated with the association.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

Association Link Properties
To view or edit an association link's properties, double-click its diagram symbol or Browser or
list entry. The property sheet tabs and fields listed here are those available by default, before
any customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Entity Specifies the entity connected by the association link. Use the tools to the right of the
list to create, browse for, or view the properties of the currently selected entity.

Association Specifies the association connected by the association link.

Role Specifies the label indicating the role of the association link.

Identifier Indicates if the entity is dependent on the other entity.

CHAPTER 2: Conceptual and Logical Diagrams

64 SAP Sybase PowerDesigner

Property Description

Cardinality Specifies the number of occurrences (one or many) that one entity has relative to
another. You define the cardinality for each association link between the association
and the entity. You can choose between:

• 0,1 - There can be zero or one occurrence of the association in relation to one
instance of the entity. The association is not mandatory

• 0,n - There can be zero or many occurrences of the association in relation to one
instance of the entity. The association is not mandatory

• 1,1 - One occurrence of the entity can be related to only one occurrence of the
association. The association is mandatory

• 1,n - One occurrence of the entity can be related to one or many occurrences of
the association. The association is mandatory

You can change the default format of cardinalities from the registry:

HKEY_CURRENT_USER\Software\Sybase\PowerDesigner <ver-
sion>\ModelOptions\Conceptual Options
CardinalityNotation=1 (0..1) or 2 (0,1)

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

Creating a Reflexive Association
A reflexive association is a relationship between an entity and itself.
1. Click the Association Link tool in the Toolbox.

2. Click inside the entity symbol and, while continuing to hold down the mouse button, drag
the cursor a short distance within the symbol, before releasing the button.

3. Drag the resulting association symbol away from entity to make clear its two links to the
entity:

In the example above, the reflexive association Manager expresses that an employee
(Manager) can manage other employees.

Defining a Dependent Association
In a dependent association, one entity is partially identified by another. Each entity must have
an identifier. In some cases, however, the attributes of an entity are not sufficient to identify an

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 65

occurrence of the entity. For these entities, their identifiers incorporate the identifier of another
entity with which they have a dependent association.

An entity named Task has two entity attributes, TASK NAME and TASK COST. A task may
be performed in many different projects and the task cost will vary with each project.

To identify each occurrence of TASK COST the unique Task entity identifier is the compound
of its Task name entity attribute and the Project number identifier from the Project entity.

When you generate a PDM, the TASK table contains the PROJECT NUMBER column as a
foreign key, which is also a primary key column. The primary key therefore consists of both
PROJECT NUMBER and TASK NAME columns.

Note: The same association can not have two identifier association links.

1. Double-click an association link symbol to display the association link property sheet.

2. Select the Identifier check box and then click OK to return to the model.

The cardinality of the association link is enclosed in parenthesis to indicate that the
association link is an identifier.

Changing an Association into an Associative Entity
You can transform an association into an associative entity linked by two associations. The
associative entity gets the name and code of the association. The two new associations handle
cardinality properties.

Two entities PROJECT MANAGER and CONTRACTOR are linked by the association
WORKS ON PROJECT WITH:

You can represent this association with an associative entity:

CHAPTER 2: Conceptual and Logical Diagrams

66 SAP Sybase PowerDesigner

The two new associations can be represented as follows:

Right-click an association symbol, and select Change to Entity from the contextual menu.

An associative entity that is linked to two associations replaces the original association. The
associative entity takes the name of the original association.

Creating an Association Attribute
The tools used for creating association attributes on this tab are the same as those for creating
entity attributes.

For more information, see Creating an attribute on page 50.

Inheritances (CDM/LDM)
An inheritance allows you to define an entity as a special case of a more general entity. The
general, or supertype (or parent) entity contains all of the common characteristics, and the
subtype (or child) entity contains only the particular characteristics.

In the example below, the Account entity represents all the bank accounts in the information
system. There are two subtypes: checking accounts and savings accounts.

The inheritance symbol displays the inheritance status:

IDEF1X E/R and Merise Description

Standard

— Mutually exclusive inheritance

Complete inheritance

— Mutually exclusive and complete inheritance

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 67

Note: There is no separate inheritance object in the Barker notation (see Supported CDM/
LDM Notations on page 23), as inheritances are represented by placing one entity symbol on
top of another. Barker inheritances are always complete and mutually exclusive, and the
supertype lists its subtypes on the Subtypes tab (see Entity Properties on page 45). Only leaf
subtypes can be generated as PDM tables, and the Generate option is disabled on Barker
supertype property sheets.

Creating an Inheritance
You can create an inheritance from the Toolbox, Browser, or Model menu.

• Use the Inheritance tool in the diagram Toolbox (see Creating an Inheritance with the
Inheritance Tool on page 68).

• Select Model > Inheritances to access the List of Inheritances, and click the Add a Row
tool. You will be required to specify a parent entity.

• Right-click the model or package in the Browser, and select New > Inheritance. You will
be required to specify a parent entity.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Creating an Inheritance with the Inheritance Tool
You can use the inheritance tool to create inheritances between entities and to join additional
children to an inheritance.

1. Select the Inheritance tool in the Toolbox.

2. Click and hold inside the child entity and then drag to the parent entity and release the
mouse button.

The link is created between the two entities with a half-circle symbol in the middle with the
arrow pointing to the parent entity.

3. [optional] To add further child entities to the inheritance link, click and hold inside the
child entity and then drag to the inheritance half circle and release the mouse button:

CHAPTER 2: Conceptual and Logical Diagrams

68 SAP Sybase PowerDesigner

4. [optional] Double-click the half circle or one of the links to open the inheritance property
sheet, and enter any appropriate properties.

Inheritance Properties
To view or edit an inheritance's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the = but-
ton to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field,
or add stereotypes to the list by specifying them in an extension file.

Parent Specifies the name of the parent entity. Use the tools to the right of the list to create,
browse for, or view the properties of the currently selected entity.

Mutually ex-
clusive chil-
dren

Specifies that only one child can exist for one occurrence of the parent entity.

Complete Specifies that all instances of the parent entity (surtype) must belong to one of the
children (subtypes). For example, entity Person has 2 sub-types Male and Female;
each instance of entity Person is either a male or a female.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 69

Generation Tab
This tab allows you to specify how the inheritance structure will be generated to a PDM,
including which attributes will be inherited.

Property Description

Generation
Mode

Specifies which parts of the inheritance will be generated. You can specify one or
both of the following:

• Generate parent - Generates a table corresponding to the parent entity. If one or
more child entities are not generated, the parent will take on their attributes and
references.

• Generate children - Generates a table corresponding to each child entity. The
primary key of each child table is the concatenation of the child entity identifier
and the parent entity identifier. You must additionally choose between:

• Inherit all attributes – Each table inherits all the entity attributes of the
parent entity

• Inherit only primary attributes - Each table inherits only the identifier of
the parent entity

Note: For LDM inheritances, primary identifiers of a parent entity always migrate to
all child entities, even if the children are not selected for generation, and any changes
you make on this tab will have an immediate effect on the inheritance of attributes in
the LDM.

Note: You can control the generation of individual child tables using the Generate
option in the property sheet of each child entity (see Entity Properties on page 45).

CHAPTER 2: Conceptual and Logical Diagrams

70 SAP Sybase PowerDesigner

Property Description

Specifying at-
tributes

In the case of parent-only generation, you can choose to define a specifying attribute,
an entity attribute that is defined for a parent entity which differentiates occurrences
of each child. For information about the tools on this tab, see Creating an Attribute
on page 50.

In the example below, the TITLE entity has two non-generated children, NON-
PERIODICAL and PERIODICAL, and a specifying entity attribute PERI-
ODICAL is defined for the inheritance link to differentiate between the two child

entities.

In the PDM, the child entity attributes will generate columns in the table TITLE, and
the specifying entity will generate a boolean PERIODICAL column, which indi-
cates whether an instance of TITLE is a periodical.

The following tabs are also available:

• Children - lists the child entities of the inheritance. Use the Add Children and Delete
tools to modify the contents of the list.

Making Inheritance Links Mutually Exclusive
When an inheritance link is mutually exclusive, one occurrence of the parent entity cannot be
matched to more than one child entity. This information is for documentation only and has no
impact in generating the PDM.

To make an inheritance link mutually exclusive, open the inheritance property sheet and select
the Mutually Exclusive Children check box. Then click OK to return to the diagram.

The mutually exclusive inheritance link displays an X on its half-circle symbol.

In the diagram below, the inheritance link is mutually exclusive, meaning that an account is
either checking or savings, but never both.

CHAPTER 2: Conceptual and Logical Diagrams

Data Modeling 71

CHAPTER 2: Conceptual and Logical Diagrams

72 SAP Sybase PowerDesigner

CHAPTER 3 Physical Diagrams

A physical data diagram provides a graphical view of your database structure, and helps you
analyze its tables (including their columns, indexes, and triggers), views, and procedures, and
the references between them.

Note: To create a physical diagram in an existing PDM, right-click the model in the Browser
and select New > Physical Diagram. To create a new model, select File > New Model, choose
Physical Data Model as the model type and Physical Diagram as the first diagram, and then
click OK.

In the following example, the Employee table is shown in relation to the Team, Division,
Material, Task, and Project tables:

Data Modeling 73

Physical Diagram Objects
PowerDesigner supports all the objects necessary to build physical diagrams.

Object Tool Symbol Description

Table Collection of rows (records) that have associated col-
umns (fields). See Tables (PDM) on page 76.

Column [none] [none] Data structure that contains an individual data item
within a row (record), model equivalent of a database
field. See Columns (PDM) on page 91.

Primary key [none] [none] Column or columns whose values uniquely identify
each row in a table, and are designated as the primary
identifier of each row in the table. See Keys (PDM) on
page 105.

Alternate key [none] [none] Column or columns whose values uniquely identify
each row in a table, and which is not a primary key. See
Keys (PDM) on page 105.

Foreign key [none] [none] Column or columns whose values depend on and mi-
grate from a primary or alternate key in another table.
See Keys (PDM) on page 105.

Index [none] [none] Data structure associated with one or more columns in a
table, in which the column values are ordered in such a
way as to speed up access to data. See Indexes (PDM)
on page 108.

Default [none] [none] [certain DBMSs] A default value for a column. See
Defaults (PDM) on page 160.

Domain [none] [none] Defines valid values for a column. See Domains
(CDM/LDM/PDM) on page 162.

Sequence [none] [none] [certain DBMSs] Defines the form of incrementation
for a column. See Sequences (PDM) on page 169.

Abstract data
type

[none] [none] [certain DBMSs] User-defined data type. See Abstract
Data Types (PDM) on page 171.

Reference Link between a primary or an alternate key in a parent
table, and a foreign key of a child table. Depending on
its selected properties, a reference can also link col-
umns that are independent of primary or alternate key
columns. See References (PDM) on page 174.

CHAPTER 3: Physical Diagrams

74 SAP Sybase PowerDesigner

Object Tool Symbol Description

View Data structure that results from a SQL query and that is
built from data in one or more tables. See Views (PDM)
on page 112.

View Reference Link between a table and a view. See View References
(PDM) on page 182.

Trigger [none] [none] A segment of SQL code associated with a table or a
view. See Triggers (PDM) on page 119.

Procedure Precompiled collection of SQL statements stored under
a name in the database and processed as a unit. See
Stored Procedures and Functions (PDM) on page
140.

Database [none] [none] The database of which the PDM is a representation. See
Database Properties (PDM) on page 8.

Storage [none] [none] A partition on a storage device. See Configuring Ta-
blespaces and Storages on page 198.

Tablespace [none] [none] A partition in a database. See Configuring Tablespaces
and Storages on page 198.

User [none] [none] A person who can log in or connect to the database. See
Users, Groups, and Roles (PDM) on page 149.

Role [none] [none] A predefined user profile. See Users, Groups, and
Roles (PDM) on page 149.

Group [none] [none] Defines privileges and permissions for a set of users.
See Users, Groups, and Roles (PDM) on page 149.

Synonym [none] [none] An alternative name for various types of objects. See
Synonyms (PDM) on page 157.

Web service [none] [none] Collection of SQL statements stored in a database to
retrieve relational data in HTML, XML, WSDL or
plain text format, through HTTP or SOAP requests. See
Web Services (PDM) on page 201.

Web operation [none] [none] Sub-object of a Web service containing a SQL state-
ment and displaying Web parameters and result col-
umns. See Web Operations (PDM) on page 204.

CHAPTER 3: Physical Diagrams

Data Modeling 75

Tables (PDM)
A table is used to store data in a set of columns. Each record in the table is represented as a row,
which is uniquely identified by the values in its primary key column or columns.

Tables are generally defined using the following sub-objects:

• Columns - are named properties of a table that describe its characteristics (see Columns
(PDM) on page 91).

• Primary Keys - Uniquely identify rows through the values in the column or columns with
which they are associated (see Primary, Alternate, and Foreign Keys (PDM) on page 105).
Each key can generate a unique index or a unique constraint in a target database.

• Indexes - Help improve search times by ordering the values in the column or columns with
which they are associated (see Indexes (PDM) on page 108).

• Triggers - SQL code invoked automatically whenever there is an attempt to modify data in
the tables (see Triggers (PDM) on page 119).

Tables are linked together by references (see References (PDM) on page 174).

Creating a Table
You can create a table from the Toolbox, Browser, or Model menu.

• Use the Table tool in the Toolbox.
• Select Model > Tables to access the List of Tables, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Table.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Table Properties
To view or edit a table's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/
Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to non-tech-
nical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a com-
ment to provide more detailed information about the object. By default the code is
generated from the name by applying the naming conventions specified in the model
options. To decouple name-code synchronization, click to release the = button to the
right of the Code field.

CHAPTER 3: Physical Diagrams

76 SAP Sybase PowerDesigner

Property Description

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field, or
add stereotypes to the list by specifying them in an extension file.

Owner Specifies the user who is the owner of the object. This is usually its creator. Use the tools
to the right of the list to create, browse for, or view the properties of the currently
selected user.

Number Specifies the estimated number of records in the table, which is used to estimate
database size. This field is automatically populated during reverse engineering if you
select the Statistics option (see Reverse Engineering from a Live Database on page
314).

You can enter your own value in this field, or refresh its statistics (along with those for
all of the table's columns) at any time by right-clicking the table and selecting Update
Statistics. To update the statistics for all tables, select Tools > Update Statistics (see
Reverse Engineering Database Statistics on page 321).

Generate Selects the table for generation to the database.

Dimension-
al type

Specifies the type of the table for purposes of creating star or snowflake schemas
containing fact tables and dimensions. You can choose between:

• Fact - see Facts (PDM) on page 219
• Dimension - see Dimensions (PDM) on page 222
• Exclude - PowerDesigner will not consider the table when identifying or generat-

ing multidimensional objects.

You can instruct PowerDesigner to complete this field for you (see Identifying Fact and
Dimension Tables on page 217). PowerDesigner's support for the generation of Busi-
nessObjects universes (see Generating a BusinessObjects Universe on page 301) and
of facts and dimensions in a multidimensional diagram (see Generating Cubes on page
217) depends on the value of this field.

Type [if your DBMS supports various types of table] Specifies the type of the table. You can
choose between:

• Relational - Standard tables.
• Object - Tables based on abstract data types (see Linking a Table to an Abstract

Data Type on page 79).
• XML - Tables storing XML documents (see Creating an XML Table or View on

page 79).

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

Lifecycle Tab
The Lifecycle tab is available if data lifecycle modeling (see Lifecycles (PDM) on page 189)
is supported for your DBMS. These properties can be set for all the tables governed by the
lifecycle on the lifecycle property sheet Tables tab (seeLifecycle Properties on page 193).

CHAPTER 3: Physical Diagrams

Data Modeling 77

Property Description

Lifecycle Specifies the lifecycle with which the table is associated. Select a lifecycle from the list
or click the tools to the right of this field to create a new lifecycle or open the property
sheet of the currently selected one.

Start date Specifies the start date from which to generate the first partition. Click the Generate
Partitions tool to the right of this field to create partitions for the table, based on the
partition range and start date.

Partition
range

[read only] Specifies the duration of the partitions that will be created for the table. This
value is controlled by the lifecycle (see Lifecycle Properties on page 193).

Row
growth rate
(per year)/
Initial Rows

Specifies an estimate of the increase of the size of the table per year, and the number of
rows to start from as a basis for the calculation of cost savings. Click the Estimate Cost
Savings tool to the right of this field to perform the calculation.

Cost Sav-
ings

This groupbox lists the cost savings that accrue to the storage of this table's data through
its association with the lifecycle. Each line in the grid represents one year of savings,
which are shown as a monetary value and as a percentage of the cost of storing the data
statically outside of a lifecycle.

The following tabs are also available:

• Columns - Lists the columns associated with the table (see Columns (PDM) on page
91). The following tools are available on this tab:

Tool Description

 Insert a Row / Add a Row - Creates a column above the selected column or at
the end of the list.

 Add Columns / Replicate Columns - Copies or replicates columns from an-
other table (see Copying or Replicating a Column from Another Table on page
104).

Create Index - Creates an index associated with the selected columns (see
Creating Standard, Key, or Function-Based Indexes on page 109).

Create Key - Creates a (by default, alternate) key associated with the selected
columns (see Creating Alternate Keys on page 107).

• Indexes - Lists the indexes associated with the table (see Indexes (PDM) on page 108).
• Keys - Lists the keys associated with the table (see Primary, Alternate, and Foreign Keys

(PDM) on page 105).
• Triggers - Lists the triggers associated with the table (see Triggers (PDM) on page

119).

CHAPTER 3: Physical Diagrams

78 SAP Sybase PowerDesigner

• Procedures - Lists the procedures associated with the table (see Stored Procedures and
Functions (PDM) on page 140).

• Security Procedures - [data lifecycle modeling only] Lists the procedures which control
access to the table (see Stored Procedures and Functions (PDM) on page 140).

• Check - Specifies the constraints associated with the table (see Setting Data Profiling
Constraints on page 94).

• Physical Options - Lists the physical options associated with the table (see Physical
Options (PDM) on page 88).

• Preview - Displays the SQL code associated with the table (see Previewing SQL
Statements on page 285).

Linking a Table to an Abstract Data Type
If your DBMS supports it, PowerDesigner allows you to base tables on abstract data types
(ADT), where the table uses the properties of the ADT and the ADT attributes become table
columns. To link a table to an ADT, open the table property sheet to the General tab, and select
the ADT (of type Object, SQLJ Object, or Structured type) in the Based On field.

For detailed information about working with abstract data types, see Abstract Data Types
(PDM) on page 171.

Creating an XML Table or View
If your DBMS supports it, PowerDesigner allows you to create XML tables and views. An
XML table does not contain columns, and instead stores an XML document. You must
associate the table with a registered XML schema to validate the XML document stored in the
table, and can specify a root element for the structure stored in your table.

When you select the XML in the Type field, the Column tab is removed and the following
properties are added to the General tab:

Property Description

Schema Enter the target namespace or name of an XML model (see XML Modeling) or use
the Select tool to the right of the field to connect to the database and select a registered
schema. The schema must be registered in the database to be used for validating XML
documents.

Element Allows you to specify a root element in the XML document. You can enter an element
name or click the Select tool to the right of the field to select an element from an XML
model open in the workspace or from the schema registered in the database

If you select an element from a PowerDesigner XML model, the Schema property is
set to the XML model target namespace.

CHAPTER 3: Physical Diagrams

Data Modeling 79

Specifying Table Constraints
The table Check tab is initialized with the PowerDesigner %RULES% variable to generate
validation rules specified on the Rules tab. You can edit the code on this tab by entering an
appropriate SQL expression to supplement, modify, or replace these constraints.

You can override the default Constraint name. To revert to the default name, click to reset the
User-Defined button to the right of the field:

For information about business rules, see Business Rules (CDM/LDM/PDM) on page 184.
For information about setting column constraints, see Setting Data Profiling Constraints on
page 94.

Denormalizing Tables and Columns
Database normalization consists in eliminating redundancy and inconsistent dependencies
between tables. While normalization is generally considered the goal of database design,
denormalization, the deliberate duplication of certain data in order to speed data retrieval, may
sometimes be more desirable.

PowerDesigner supports denormalization through:

• Horizontal partitioning - dividing a table into multiple tables containing the same columns
but fewer rows.

• Vertical partitioning - dividing a table into multiple tables containing the same number of
rows but fewer columns.

• Table collapsing - merging tables in order to eliminate the join between them.
• Column denormalization - repeating a column in multiple tables in order to avoid creating

a join between them.

Horizontal and vertical partitioning involve tradeoffs in terms of performance and complexity.
Though they can improve query response time and accelerate data backup and recovery, they
require additional joins and unions to retrieve data from multiple tables, more complex queries
to determine which table contains the requested data, and additional metadata to describe the
partitioned table. Column denormalization can simplify queries but requires more
maintenance and storage space as data is duplicated.

When deciding whether to denormalize, you should analyze the data access requirements of
the applications in your environment and their actual performance characteristics. Often, good
indexing and other solutions may more effectively address performance problems.
Denormalization may be appropriate when:

• Critical queries rely upon data from more than one table.
• Many calculations need to be applied to columns before queries can be successfully

answered.
• Tables need to be accessed in different ways by different kinds of users simultaneously.
• Certain columns are queried extremely frequently.

CHAPTER 3: Physical Diagrams

80 SAP Sybase PowerDesigner

Horizontal Partitions
Horizontal partitioning consists in segmenting a table into multiple tables each containing a
subset of rows and the same columns in order to optimize data retrieval. You can use any
column, including primary keys, as partitioning criteria.

1. Select Tools > Denormalization > Horizontal Partitioning, or right-click a table in the
diagram and select Horizontal Partitioning to open the Horizontal Partitioning Wizard.

2. Select the table to partition, specify whether you want to keep the original table after
partitioning, and then click Next.

3. Create as many partition tables as necessary using the Insert and Add a Row tools
(specifying an appropriate name for each, which must be unique in the model), and then
click Next.

4. Click the Add Columns tool to select one or more discriminant columns to use as partition
criteria (these columns will be excluded from the partitions), and then click Next.

5. Specify a name and code for the transformation object that will be created to preserve
information about the partitioning, and then click Finish to create a table for each
partition, taking the name of the partition. All references to the original table are created on
each partition table.

In this example, the table Annual Sales, which contains a very large amount of data is
horizontally partitioned on the Year column:

Before After

Note: Horizontal partitionings created in a PDM generated from another model are
preserved when applying changes from the original model. The absence of discriminant
columns in the target PDM is respected in the Merge dialog (see Core Features Guide >
Modeling with PowerDesigner > Comparing and Merging Models), and changes in the
source model are selected, by default, to be cascaded as appropriate to all partition tables.

Vertical Partitions
Vertical partitioning consists in segmenting a table into multiple tables each containing a
subset of columns and the same number of rows as the partitioned table. The partition tables
share the same primary key.

1. Select Tools > Denormalization > Vertical Partitioning, or right-click a table in the
diagram and select Vertical Partitioning to open the Vertical Partitioning Wizard.

2. Select the table to partition, specify whether you want to keep the original table after
partitioning, and then click Next.

CHAPTER 3: Physical Diagrams

Data Modeling 81

3. Create as many partition tables as necessary using the Insert and Add a Row tools
(specifying an appropriate name for each, which must be unique in the model), and then
click Next.

4. Drag columns from under the original table in the Available columns pane, to the
appropriate partition table in the Columns distribution pane, (or select source and target
tables and use the Add and Remove buttons), and then click Next.

5. Specify a name and code for the transformation object that will be created to preserve
information about the partitioning, and then click Finish to create a table for each
partition, taking the name of the partition. All references to the original table are created on
each partition table.

In this example, the table Customer, is divided into two tables, each of which details one
type of information about the customer:

Before After

Note: Vertical partitionings created in a PDM generated from another model are preserved
when applying changes from the original model. The columns absent from each partition
table in the target PDM are shown but not selected in the Merge dialog (see Core Features
Guide > Modeling with PowerDesigner > Comparing and Merging Models). Any changes
in the source model are proposed, where appropriate, to each of the partition tables, and
you should deselect the change for those partitions to which you do not want to apply it.

Table Collapsings
Table collapsing consists in merging tables in order to eliminate joins and to improve query
performance. You can collapse tables related to each other with a reference or tables with
identical primary keys.

1. Select Tools > Denormalization > Table Collapsing, or right-click a reference between
the tables to collapse and select Table Collapsing to open the Table Collapsing Wizard.

2. Specify a name and code for the table to be created, and then click Next.

3. Click the Add Tables tool to select tables to collapse into the new table, specify whether
you want to keep the original tables after collpsing, and then click Next.

4. Specify a name and code for the transformation object that will be created to preserve
information about the collapsing, and then click Finish to collapse the selected tables into
a single unified table (with graphical synonyms replacing each original table symbol in the
diagram to minimize disruption of references.

CHAPTER 3: Physical Diagrams

82 SAP Sybase PowerDesigner

In this example, the tables Customer and Order are collapsed together to eliminate the
join and optimize data retrieval. The result is a single table (with 2 synonym symbols) with
the primary key of the child table:

Before After

5. [optional] Delete one of more of the synonymns. References will redirect to the remaining
symbol.

Column Denormalization
Column denormalization consists in replicating columns from one table to another to reduce
the number of joins needed for frequently called queries. Though it can provide improved
performance, column denormalization requires more maintenance and disk space as the data
in the replicated column is stored twice.

1. Select Tools > Denormalization > Column Denormalization, or right-click the table to
which you want to replicate columns and select Column Denormalization to open the
Column Denormalization Wizard.

2. Specify the table to which you want to replicate columns, and then click Next.

3. Select one or more columns, and then click Finish to replicate them to the selected table.

Note: Replicas are, by default, read-only copies of objects. Any changes made to the
original column are automatically propagated to the replica. This synchronization is
controlled by a replication object for each replica, a list of which is available by selecting
Model > Replications. To revert a column denormalization, simply delete the duplicated
column from the target table property sheet. For detailed information about working with
replicas and replications, see Core Features Guide > Linking and Synchronizing Models >
Shortcuts and Replicas.

In this example, to obtain the division name on the pay slip of each employee without
requiring a link to the Division table, the DivisionName column is replicated to the
PaySlip table:

CHAPTER 3: Physical Diagrams

Data Modeling 83

Before After

Denormalization Object Properties
A denormalization transformation object is automatically created when you partition a table
using the Horizontal or Vertical Partitioning Wizard or collapse tables with the Table
Collapsing Wizard. To access the property sheet of this object, select Model >
Transformations to open the List of Transformations, select the appropriate
denormalization, and then click the Properties tool.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the
naming conventions specified in the model options. To decouple name-code
synchronization, click to release the = button to the right of the Code field.

Partitioned table [partitionings only] Specifies the name of the table used to create the table
partitions.

Discriminant Col-
umns

[horizontal partitionings] Specifies the name and code of the columns used as
partition criteria.

Target table [collapsings] Specifies the name of the table resulting from the collapsing of
the tables.

The following tabs are also available:

• Partitions - [partitionings] Lists the tables associated with the partitioning. You can create
or delete partition tables, and edit their properties. If you delete a partition, you are
prompted to specify whether you want to delete the corresponding table.

• Partition Columns - [vertical partitionings] Displays the distribution of columns between
the partition tables. You can drag and drop columns between tables.

CHAPTER 3: Physical Diagrams

84 SAP Sybase PowerDesigner

• Source Tables - [table collapsings] Lists the tables that were collapsed. These tables will
no longer exist unless you selected to keep them in the wizard.

Removing Partitionings and Table Collapsings
You can remove partitionings or table collapsings and either keep or remove the associated
tables.

Select Model > Transformations to open the List of Transformations. The following tools are
available for removing transformations:

Tool Description

Delete - Removes the denormalization but retains any tables created by it.

Cancel [if the denormalization object is based upon a table generated from another
model] Removes the denormalization and any tables created by it. You can recover the
original table by regenerating it from the source model.

Note: You cannot move or paste a denormalization object to another model or package.

PowerBuilder DataWindow Extended Attributes
When designing tables to be used in a SAP® Sybase® PowerBuilder® DataWindow, you can
manage the extended attributes which PowerBuilder uses to store application-based
information, such as label and heading text for columns, validation rules, display formats, and
edit styles.

PowerDesigner supports the modeling of this information through an extension file. To enable
the PowerBuilder extensions in your model, select Model > Extensions, click the Attach an
Extension tool, select the PowerBuilder file (on the General Purpose tab), and click OK
to attach it.

When this extension file is attached, additional properties for two PowerBuilder system tables
(PBCatTbl for tables and PBCatCol for columns) are available on the PowerBuilder tab of
tables and columns:

CHAPTER 3: Physical Diagrams

Data Modeling 85

To import the PowerBuilder extended attributes contained in your database to your PDM,
select Tools > PowerBuilder > Reverse Extended Attributes, click the Connect to a Data
Source tool, select a machine or file data source and click Connect. Select the tables you want
to reverse-engineer, and click OK.

To update the PowerBuilder extended attribute system tables in your database, select Tools >
PowerBuilder > Generate Extended Attributes, click the Connect to a Data Source tool,
select a machine or file data source and click Connect. Select the tables you want to generate,
and click OK. Reversed extended attributes are compared with the translated default values in
the PowerBuilder extension file. If these attributes match, the reversed value is replaced by the
default value from the extension file.

Displaying Column, Domain, and Data Type Information on a Table
Symbol

To set display preferences for tables, select Tools > Display Preferences, and select the Table
sub-category in the left-hand Category pane.

Columns
Keys and indexes are represented by indicators in the table symbol. Each key and index
indicator is assigned a number. You can use these numbers to keep track of the different groups
of alternate keys, foreign keys, and indexes in your model.

CHAPTER 3: Physical Diagrams

86 SAP Sybase PowerDesigner

By default, the following information about columns can be displayed on table symbols.

Preference Displays Example

Data types Data type for each column

Replace by do-
mains

Domain codes for each col-
umn attached to a domain

Domains Domain of an attribute in the
table. This display option in-
teracts with the selection for
Data types. As a result, there
are four display options

See the Display Domain and Data Type section
below for options and examples.

Key Indicators <pk>, <fk>, and <ak> indica-
tors next to primary key, for-
eign key, and alternate key col-
umns respectively. When the
Keys preference is also selec-
ted, the key names are listed at
the bottom of the table symbol

Index indicators <i(n)> indicator next to in-
dexed columns. When the In-
dexes preference is also selec-
ted, the index names and cor-
responding numbers are listed
at the bottom of the table sym-
bol

NULL/NOT
NULL

Column indicator: null, not
null, identity, or with default
(DBMS-dependent)

Display Domain and Data Type
You can display the domain of an attribute in the symbol of a table. There are four display
options available:

CHAPTER 3: Physical Diagrams

Data Modeling 87

Preference Displays Example

Data types Only the data type, if it exists

Domains Only the domain, if it exists

Data types and
Domains

Both data type and domain, if
they exist

Data types and
Replace by do-
mains

If domain exists and data type
does not exist, then displays do-
main.

If domain does not exist and
data type exists, then displays
data type.

Note: For information about selecting other properties to display, see Core Features Guide >
Modeling with PowerDesigner > Diagrams, Matrices, and Symbols > Display Preferences.

Physical Options (PDM)
Physical options are DBMS-specific parameters that specify how an object is optimized or
stored in a database, and are included at the end of the object's Create statement. Physical
options are defined in the DBMS definition file, and may be available for tables, columns,
indexes, tablespaces, and other objects. You can specify default physical options for all objects
of a particular type and for individual objects (overriding the default, if one is specified).

There are two different interfaces for specifying physical options for individual objects, both
of which are accessible through tabs on the object's property sheet. Changes made on either of
these tabs will be reflected on the other:
• Physical Options (Common) – this tab is displayed by default (along with the Partition

tab, if applicable), and lists the most commonly-used physical options as a standard
property sheet tab. Select or enter values for the appropriate options and click OK

• Physical Options – this tab is hidden by default, and lists all the available physical options
for the object in a tree format. To display this tab, click the Property Sheet Menu button and
select Customize Favorite Tabs > Physical Options (All). Follow the procedure in
Defining Default Physical Options on page 89, to specify options and set values for
them.

Physical options can vary widely by DBMS. For example, in Oracle, you specify the
tablespace where the table is stored with the Tablespace keyword, while in SAP® Sybase®

CHAPTER 3: Physical Diagrams

88 SAP Sybase PowerDesigner

SQL Anywhere®, you use In. When you change DBMS, the physical options selected are
preserved as far as possible. If a specific physical option was selected, the default value is
preserved for the option in the new DBMS. Unselected physical options are reset with the new
DBMS default values.

For detailed information about the syntax of physical options and how they are specified, see
Customizing and Extending PowerDesigner > DBMS Definition Files > Physical Options.

Note: In Oracle, the storage composite physical option is used as a template to define all
the storage values in a storage entry to avoid having to set values independently each time you
need to re-use them same values in a storage clause. For this reason, the Oracle physical option
does not include the storage name (%s).

Defining Default Physical Options
You can define default physical options for all the objects of a particular type in the model.

1. Select Database > Default Physical Options to open the Default Physical Options dialog.
There is a tab for each kind of object that supports physical options.

The Table tab opens by default. The Syntax sub-tab in the left pane lists the physical
options available in the DBMS, and the Items sub-tab in the right pane lists the physical
options that have been selected for the object.

The following tools are available for adding and removing physical options to an object:

CHAPTER 3: Physical Diagrams

Data Modeling 89

Tool Action when clicked

Adds physical option selected in Syntax tab (left pane) to Items tab (right pane)

Aligns a selected physical option in the Items tab with the corresponding physical
option in the Syntax tab

Removes physical option selected in Items tab

2. To add a default option for the object, select it in the Syntax pane and click the Add tool to
copy it to the Items pane. To add only a sub-parameter for the option, expand the option in
the Syntax pane, select the required parameter and then click the Add tool.

3. To set a default value for a physical option parameter, select it in the Items pane and enter
or select the appropriate value in the field below the pane. The entered value will then be
displayed against the parameter in the Items list.

4. Repeat the above steps as many times as necessary to specify all your required physical
options. By default, these options will be applied to all tables created subsequently in the
model. To apply them to existing tables, click the Apply to button to select the tables to
which you want to apply the options, and then click OK.

5. Select the other tabs to specify physical options for other object types. (Note that the Apply
to button is not available on the Database tab).

6. Click OK to close the dialog and return to your model.

To override the default physical options for a particular object, set the appropriate values
on the the object's Physical Options (Common) or Physical Options tab

You can view the physical options set for an object in its Preview tab.

CHAPTER 3: Physical Diagrams

90 SAP Sybase PowerDesigner

Note: The default physical options are stored in your model file.

Columns (PDM)
A column is a set of values of a single type in a table. Each row of the table contains one
instance of each column. Each table must have at least one column, which must have a name
and code and to which you can assign a data type, either directly, or via a domain.

Creating a Column
You can create a column from the property sheet of, or in the Browser under, a table.

• Open the Columns tab in the property sheet of a table, and click the Add a Row or Insert a
Row tool

• Right-click a table in the Browser, and select New > Column

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Column Properties
To view or edit a column's properties, double-click its Browser or list entry. The property sheet
tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Physical Diagrams

Data Modeling 91

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Table Specifies the table which contains the column.

Data type/
Length/ Preci-
sion

Specifies the form of data to be stored, such as numeric, alphanumeric, or Boo-
lean, and, where appropriate, the maximum number of characters or numerals that
can be stored, and the maximum number of places after the decimal point. Click
the ellipsis button to choose from the list of standard data types (see PowerDe-
signer Standard Data Types on page 165).

To review the data types permitted by your DBMS, select Database > Edit Cur-
rent DBMS and navigate to Script > DataType > PhysDataType). The fol-
lowing variables specify length and precision requirements:

• %n - length

• %s - length with precision

• %p - decimal precision

For example, the data type char(%n) , requires you to specify a length.

Domain Specifies the domain associated with the object (see Domains (CDM/LDM/PDM)
on page 162). Use the tools to the right of this field to create or browse to a domain,
or to open the property sheet of the selected domain.

Primary key Specifies that the values in the column uniquely identify table rows (see Creating
Primary Keys on page 105).

Foreign key Specifies that the column depends on and migrates from a primary key column in
another table (see Creating Foreign Keys on page 107).

Sequence [if supported by your DBMS] Specifies the sequence associated with the column
(see Sequences (PDM) on page 169).

Displayed Specifies that the column can be displayed in the table symbol.

With default [if supported by your DBMS] Specifies that the column must be assigned a value
that is not null.

CHAPTER 3: Physical Diagrams

92 SAP Sybase PowerDesigner

Property Description

Mandatory [if supported by your DBMS] Specifies that a non-null value must be assigned.

Identity [if supported by your DBMS] Specifies that the column is populated with values
generated by the database. Identity columns are often used as primary keys.

Computed [if supported by your DBMS] Specifies that the column is computed from an
expression using values from other columns in the table (see Creating a Computed
Column on page 102).

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Detail Tab
The Detail tab contain the following properties:

Property Description

Column fill pa-
rameters

The fields in this groupbox model the size and distinctness of data values that you
expect to store in the column and are used in conjunction with test data profiles
(see Populating Columns with Test Data on page 98). You can specify:

• Null values - [Default: 0%] Specifies the percentage of values to leave empty.

• Distinct values - [Default: 100%] Specifies the percentage of values that must
be unique

• Average Length - [read only] Used for estimating the size of the database (see
Estimating Database Size on page 306). The default value is the maximum
length for the data type defined for the column.

You can enter values by hand or obtain them from your database by selecting the
Statistics option in the Reverse Engineering dialog (see Reverse Engineering
from a Live Database on page 314).

To refresh the values in these fields for all a table's columns at any time, right-click
the table symbol or its entry in the Browser and select Update Statistics. To
update the column statistics for all the tables in a model, select Tools > Update
Statistics (see Reverse Engineering Database Statistics on page 321).

Profile Specifies a test data profile to use to generate test data (see Populating Columns
with Test Data on page 98). Use the tools to the right of this field to create or
browse to a profile, or to open the property sheet of the selected profile.

Computed Ex-
pression

Specifies an expression used to compute data for the column (see Creating a
Computed Column on page 102).

The following tabs are also available:

CHAPTER 3: Physical Diagrams

Data Modeling 93

• Standard Checks - Specifies constraints to control the range and format of permitted data
(see Setting Data Profiling Constraints on page 94)

• Additional Checks - Displays an editable SQL statement, initialized with the standard
checks, which can be used to generate more complex constraints (see Specifying
Advanced Constraints on page 97).

• Rules - Lists the business rules associated with the object (see Business Rules (CDM/
LDM/PDM) on page 184).

Setting Data Profiling Constraints
PowerDesigner allows you to define data profiling constraints to control the range and format
of data allowed in your database. You can specify constraints on the Standard Checks and
Additional Checks tabs of table columns in your PDM, entity attributes in your CDM or
LDM, and domains. You can also specify data quality rules on the Rules tab of PDM tables
and columns, CDM/LDM entities and attributes, and domains.

The following constraints are available on the Standard Checks tab of PDM columns, CDM/
LDM entity attributes, and CDM/LDM/PDM domains:

Property Description

Values Specifies the range of acceptable values. You can set a:

• Minimum - The lowest acceptable numeric value
• Maximum - The highest acceptable numeric value
• Default - The value assigned in the absence of an expressly entered value.

For the PDM, you can directly enter a default value or select a keyword
(defined in the Script\Sql\Keywords\ReservedDefault
entry of the DBMS definition file) from the list. Default objects (see De-
faults (PDM) on page 160) are also available for selection if your DBMS
supports them.

Characteristics These properties are for documentation purposes only, and will not be gener-
ated. You can choose a:

• Format - A number of standard formats are available in the list. You can
enter a new format directly in the field or use the tools to the right of the
field to create a data format for reuse elsewhere.

• Unit - A standard measure.
• No space - Space characters are not allowed.
• Cannot modify - The value cannot be updated after initialization.

CHAPTER 3: Physical Diagrams

94 SAP Sybase PowerDesigner

Property Description

Character case Specifies the acceptable case for the data. You can choose between:

• Mixed case [default]
• Uppercase
• Lowercase
• Sentence case
• Title case

List of values Specifies the various values that are acceptable.

When specifying strings in the list of values, single or double quotation marks
(depending on the DBMS) will be added around the values in the generated
script unless:

• You surround the value by the appropriate quotation marks.
• You surround the value by tilde characters.
• The value is a keyword (such as NULL) defined in the DBMS.
• PowerDesigner does not recognize your data type as a string.

The following examples show how string values are generated for a DBMS that
uses single quotation marks:

• Active - generates as 'Active'
• 'Active' - generates as 'Active'
• "Active" - generates as '"Active"'
• ~Active~ - generates as Active
• NULL - generates as NULL
If you have specified a non-automatic test data profile, you can use the values
defined in the profile to populate the list by clicking the Update from Test
Data Profile tool.

Select the Complete check box beneath the list to exclude all other values not
appearing in the list.

Specifying Constraints Through Business Rules
In addition to the constraints specified on the Standard Checks tab, you can specify business
rules of type Validation or Constraint to control your data. Both types of rule contain
SQL code to validate your data, and you can attach them to tables and table columns in your
PDM, entities and entity attributes in your CDM or LDM, and domains.

You can use the following PowerDesigner variables when writing your rule expression:

Variable Value

%COLUMN% Code of the column to which the business rule applies

CHAPTER 3: Physical Diagrams

Data Modeling 95

Variable Value

%DOMAIN% Code of the domain to which the business rule applies

%TABLE% Code of the table to which the business rule applies

%MINMAX% Minimum and maximum values for the column or domain

%LISTVAL% List values for the column or domain

%RULES% Server validation rules for the column or domain

To attach a business rule (see Business Rules (CDM/LDM/PDM) on page 184) to a table,
column, entity, attribute, or domain, open the object's property sheet, select the Rules tab, and
click the Add Objects tool.

At generation time, business rules of type validation are concateneated together into a
single constraint, while rules of type Constraint will be generated as separate constraints
if your DBMS supports them.

Creating Data Formats For Reuse
You can create data formats to reuse in constraints for multiple objects by clicking the New
button to the right of the Format field on the Standard Checks tab. Data formats are
informational only, and are not generated as constraints.

Note: To create multiple data formats, use the List of Data Formats, available by selecting
Model > Data Formats.

Data Format Properties
To view or edit a data format's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

CHAPTER 3: Physical Diagrams

96 SAP Sybase PowerDesigner

Property Description

Type Specifies the type of the format. You can choose between:

• Date/Time

• String

• Regular Expression

Expression Specifies the form of the data to be stored in the column; For example, 9999.99
would represent a four digit number with two decimal places.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Specifying Advanced Constraints
The Additional Checks tab is initialized with PowerDesigner variables to generate the data
profiling constraints specified on the Standard Checks tab and the validation rules specified
on the Rules tab. You can edit the code on this tab by entering an appropriate SQL expression
to supplement, modify, or replace these constraints.

For columns, you can override the default Constraint name. To revert to the default name,
click to reset the User-Defined button to the right of the field:

CHAPTER 3: Physical Diagrams

Data Modeling 97

The following variables are inserted by default:

• %MINMAX% - Minimum and maximum values specified on the Standard Checks tab
• %LISTVAL% - List of values specified on the Standard Checks tab
• %CASE% - Character case specified on the Standard Checks tab
• %RULES% - Constraint and validation rules specified on the Rules tab

Populating Columns with Test Data
You can use test data to quickly fill your database with large amounts of data in order to test its
performance and estimate its size. You can also use test data as the basis for data profiling.
PowerDesigner allows you to create test data profiles, which generate or provide lists of data
items and are assigned to columns or domains. You can create test data profiles that contain
number, character, or date/time data.

For example, you could create a test data profile called Address that specifies character data
appropriate to represent addresses, and then associate that profile with the columns Employee
Location, Store Location, and Client Address.

If you associate a test data profile with a domain, its data will be generated to all columns that
are attached to the domain. If you specify a data profile as the default for its type, its data will
be generated to all columns that are not associated with another profile.

To generate test data with or without test data profiles, see Generating Test Data to a Database
on page 304

You can create a test data profile in any of the following ways:

• Select Model > Test Data Profiles to access the List of Test Data Profiles, and click the
Add a Row tool

• Right-click the model (or a package) in the Browser, and select New > Test Data Profile

Note: You can import and export test data profiles to reuse them across multiple models by
using the commands under the: Tools > Test Data Profile menu. The *.xpf file format can
contain one or more test data profiles.

Test Data Profile Properties
To view or edit a test data profile's properties, double-click its Browser or list entry. The
property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Physical Diagrams

98 SAP Sybase PowerDesigner

Property Description

Name/
Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to non-tech-
nical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a com-
ment to provide more detailed information about the object. By default the code is
generated from the name by applying the naming conventions specified in the model
options. To decouple name-code synchronization, click to release the = button to the
right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field, or
add stereotypes to the list by specifying them in an extension file.

Class Specifies the kind of data to be generated from the profile. You can choose between:

• Number - to populate numerical columns

• Character - to populate text columns

• Date & Time - to populate date columns

Generation
source

Specifies from where PowerDesigner will draw the data to populate the columns as-
sociated with the profile. You can choose between:

• Automatic - PowerDesigner generates the data based on the parameters you set on
the Detail tab.

• List - PowerDesigner draws the data from the list you define on the Details tab.

• Database - PowerDesigner draws the data using a query from a live database
connection that you specify on the Details tab.

• File - PowerDesigner draws the data from the CSV file that you specify on the
Details tab.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

Detail Tab (Automatic Number Data)
If you have selected to automatically generate number data on the General tab, you must
define the following properties on the Detail tab:

Property Description

Type Specifies whether the data is to be generated randomly or sequentially.

Range Specifies the range of numbers to generate from and, if a sequential type is specified,
the step value to use when traversing the range.

Decimal
numbers

Specifies that the numbers to be generated are decimal, and the number of digits after
the decimal point to generate.

CHAPTER 3: Physical Diagrams

Data Modeling 99

Detail Tab (Automatic Character Data)
If you have selected to automatically generate character data on the General tab, you must
define the following properties on the Detail tab:

Property Description

Valid char-
acters

Specifies the characters that can be generated (by default, all alphanumeric characters
and spaces), separated by commas. You can specify:

• Single characters or strings of characters - surrounded by double quotes. For ex-
ample, "a", "bcd", "e".

• Character intervals - in which the boundary characters are surrounded by single
quotes and separated by a dash. For example, 'a'-'z', 'A'-'Z'

To allow any character, select the All checkbox.

Invalid
characters

Specifies the characters that cannot be generated, using the same syntax as for the valid
characters. To disallow accented characters, select the No accents checkbox.

Mask Specifies the mask characters used to tell users what kind of character they must enter in
a given context. By default the test data profile uses the following mask characters:

• A - Letter

• 9 - Number

• ? - Any character

Case Specifies the case in which to generate the data. If you select Lower or Mixed case,
select the First Uppercase checkbox to require that each word begin with a capital
letter.

Length Specifies the length of character strings to generate. You can specify either an exact
required length or a range.

Detail Tab (Automatic Date & Time Data)
If you have selected to automatically generate date and time data on the General tab, you must
define the following properties on the Detail tab:

Property Description

Date range Specifies the upper and lower limits of the date range within which data can be gen-
erated.

Time range Specifies the upper and lower limits of the time range within which data can be gen-
erated.

Step Specifies step values for use when traversing the date and time ranges, if sequential
values are generated.

CHAPTER 3: Physical Diagrams

100 SAP Sybase PowerDesigner

Property Description

Values Specifies whether the values are to be generated randomly or sequentially.

Note: The format in which date and time data is generated can be controlled by DBMS items
in the Script/Sql/Format category (see Customizing and Extending PowerDesigner >
DBMS Definition Files > Script/Sql Category.

Detail Tab (List Data)
If you have selected to provide list data on the General tab, enter as many value-label pairs as
necessary on the Detail tab.

Detail Tab (Database Data)
If you have selected to provide data from a database on the General tab, you must define the
following properties on the Detail tab:

Property Description

Data
Source

Specifies the data source from which to draw data for the profile. Click the Select a Data
Source tool to the right of this field to open a separate dialog on which you can specify
your connection parameters.

Login and
Password

Specifies the login and password to use when connecting to the data source.

Table, Col-
umn, and
Query

Specifies the table and column from which the data will be drawn. By default, a query
selecting distinct values from the column is used.

Detail Tab (File Data)
If you have selected to provide data from a file on the General tab, you must define the
following properties on the Detail tab:

Property Description

File Specifies the file from which to draw data for the profile.

Type Specifies whether the values are to be drawn randomly or sequentially.

Assigning Test Data Profiles to Columns
You can associate a test data profile directly to a column or to a domain.

Note: To assign a test data profile to a domain (see Domains (CDM/LDM/PDM) on page 162,
open the domain property sheet and select the appropriate test data profile in the Profile list on
the General tab. A test data profile assigned to a domain will generate test data for all the
columns attached to the domain.

CHAPTER 3: Physical Diagrams

Data Modeling 101

1. Open the property sheet of a column and click the Detail tab.

2. Select the appropriate test data profile.

3. [optional] Adjust the following properties in the Column fill parameters group box as
appropriate:

• Null values - [Default: 0%] Specifies the percentage of values to leave empty.
• Distinct values - [Default: 100%] Specifies the percentage of values that must be

unique. For example, if you set this field to 100 % for one column and to 80% for a
second column, and then generate the table with 10 rows, all 10 rows in the first column
will have different values, while 2 values in the second column will be repeated. This is
a maximum value, and can change depending on the referential integrity parameters of
primary key columns. Alternately, you can enter a specific value without a percentage
sign, to indicate the exact number of column rows that should contain unique entries.

Note: If you use a test data profile with a list generation source to a column with a given
percentage of distinct values, PowerDesigner uses the values from the test data profile
list. If there are not enough values declared in the list, a warning message is displayed
in the Output window to inform you that the distinct value parameter cannot be
enforced due to lack of distinct values in the list of values.

• Average Length - [read only] Used for estimating the size of the database (see
Estimating Database Size on page 306). The default value is the maximum length for
the data type defined for the column.

Note: These properties on the column property sheet General may override values entered
in the Column fill parameters groupbox:
• Mandatory (M) - Specifies that the column must contain a value and sets Null values

to 0%.
• Unique (U) - Specifies the column must contain a unique value and sets Null value to

0% and Distinct values to 100%.
• Foreign (F) - The column is a foreign key column and takes the values of the

corresponding primary key column in the parent table.

4. Click OK to close the column property sheet and return to the model.

Note: To quickly assign test data profiles to multiple columns, use the List of Columns or
the Columns tab of a table property sheet. If the Test Data Profile column is not visible in
your list, use the Customize Columns and Filter tool to display it.

5. [optional] Generate your test data (see Generating Test Data to a Database on page 304).

Creating a Computed Column
Computed columns are columns whose content is computed from values in other columns in
the table. Computed columns are not supported by all DBMSs.

1. Open the table property sheet and click the Columns tab.

CHAPTER 3: Physical Diagrams

102 SAP Sybase PowerDesigner

2. Click the Add a Row tool, and then click the Properties tool to open the property sheet for
the new column.

3. On the General tab, select the Computed checkbox, and then click the Detail tab.

Simple computed expressions can be entered directly in the Computed expression field.
For more complex expressions, click the Edit tool to the right of the field to access the SQL
Editor (see Writing SQL Code in PowerDesigner on page 281).

In the following example a column must be filled with the total sales of widgets computed
by multiplying the number of widgets by the widget price:

4. Click OK to return to the column property sheet.

The expression is displayed in the Computed Expression pane.

Attaching a Column to a Domain
You can attach a column to a domain, and have the domain specify the data type, check
parameters, and business rules for the column. Domains can help with data consistency across
columns storing similar types of data.

1. Double-click a table to open its property sheet, and click the Columns tab.

2. Select the required column and then click the Properties tool to open its property sheet.

CHAPTER 3: Physical Diagrams

Data Modeling 103

3. Select a domain from the Domain list and then click OK.

For detailed information about working with domains, see Domains (CDM/LDM/PDM)
on page 162.

Copying or Replicating a Column from Another Table
You can reuse existing columns from other tables by copying or replicating them using the
tools on the table property sheet Columns tab or by drag and drop. If your table already
contains a column with the same name or code as the copied column, the copied column is
renamed.

Copying a column creates a simple copy that you can modify as you wish. Replicating a
column creates a synchronized copy which remains synchronized with any changes made to
the original column (see Core Features Guide > Linking and Synchronizing Models >
Shortcuts and Replicas).

1. Open the property sheet of the table you want to copy or replicate the columns to, and click
the Columns tab.

2. Click the Add Columns or Replicate Columns to open a selection box listing the
columns attached to all other tables in the model.

3. Select one or more columns in the list and then click OK to copy or replicate them to the
table.

4. Click OK to close the table property sheet and return to your model.

Note: To copy or replicate a column from one table to another in the diagram or browser,
select the column in the table symbol or its Browser entry, and then right-click and hold
while dragging the column to over the second table symbol or its Browser entry. Release
and select Copy Here or Replicate Here.

CHAPTER 3: Physical Diagrams

104 SAP Sybase PowerDesigner

Primary, Alternate, and Foreign Keys (PDM)
A key is a column, or a combination of columns, that uniquely identifies a row in a table. Each
key can generate a unique index or a unique constraint in a target database.

You can create the following types of keys:

• Primary keys - Contain one or more columns whose combined values uniquely identify
every row in a table. Each table can have only one primary key.

• Alternate keys - Contain one or more columns whose combined values uniquely identify
every row in a table.

• Foreign keys - Contain one or more columns whose values match a primary or alternate
key in some other table.

In the following example, the TITLE table has a primary, alternate and foreign key:

• The primary key, TITLE_ID contains the column TITLE ISBN, and uniquely identifies
each book in the table.

• The alternate key, TITLE_NAME, contains the columns TITLE NAME and TITLE
TYPE, and enforces a constraint that no two titles of the same type can have the same
name.

• The foreign key contains the column PUBLISHER ID and references the primary key
column in the Publisher table.

Creating Primary Keys
A primary key is the primary identifier for a table, and is attached to one or more columns
whose combined values uniquely identify every row in the table. Every table must have a
primary key.

1. Open the property sheet of the table and click the Columns tab, which lists all the columns
defined for the table (see Columns (PDM) on page 91).

2. Select the check box in the P column for one or more columns in the list to associate them
with the primary key.

3. [optional] Click the Keys tab and rename the key or select it and click the Properties tool
to open its property sheet.

CHAPTER 3: Physical Diagrams

Data Modeling 105

4. Click OK to close the property sheet and return to the diagram.

In the following example, Employee number is the primary key for the table
Employee, and each employee must have a unique employee number:

Rebuilding Primary Keys
Rebuilding primary keys in a physical diagram updates primary keys for tables by creating
primary keys for tables that have no key and a single unique index. Rebuilding primary keys is
useful when not all of the primary keys could be reverse engineered from a database, or if you
did not select the rebuild option for primary keys during reverse engineering.

1. Select Tools > Rebuild Objects > Rebuild Primary Keys to open the Rebuild Primary
Keys dialog box, which lists all the tables in the current model.

Note: To rebuild the primary keys in package, select the package from the list at the top of
the tab. To rebuild the primary keys in a sub-package, click the Include Sub-Packages
tool, and then select a sub-package from the dropdown list.

2. Select the tables containing the primary keys that you want to rebuild and then click
OK.

CHAPTER 3: Physical Diagrams

106 SAP Sybase PowerDesigner

Creating Alternate Keys
An alternate key is a key associated with one or more columns whose values uniquely identify
every row in the table, but which is not the primary key. For example, where the primary key
for a table may be the employee id, the alternate key might combine the first, middle, and last
names of the employee. Each alternate key can generate a unique index or a unique constraint
in a target database.

1. Open the property sheet of a table and select the Columns tab.

2. Select the column or columns to associate with the alternate key and click the Create Key
tool.

The new key property sheet opens.

3. Enter a name for the key. Alternate keys are conventionally named AKx_ColumnCodes
(for example AK1_CUSNAME).

4. [optional] Modify the default Constraint Name.

5. Click OK to complete the creation of your alternate key and return to the table property
sheet.

Note: You can also create an alternative key using the Add a Row tool on the table
property sheet Keys tab, click the Properties tool to open its property sheet, and select the
Columns tab to manually associate columns with the key.

Creating Foreign Keys
A foreign key is a primary or alternate key migrates from another table. Foreign keys are
generally migrated automatically when you draw a reference from a child to a parent table.

The columns that are defined in a foreign key can also be user-specified at creation and
changed at any time from the Joins tab of the reference property sheet (see References (PDM)
on page 174). For information about auto-migration of foreign keys, see Automatic Reuse
and Migration of Columns on page 178.

Key Properties
To view or edit a key's properties, double-click its Browser or list entry. The property sheet
tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Physical Diagrams

Data Modeling 107

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Table Specifies the name of the table where the key is defined.

Constraint name Specifies the name of the key constraint. A primary key constraint is a named
check that enforces the uniqueness and the presence of values in a primary key
column. PowerDesigner automatically creates a default constraint name for a
key, which you can modify. To return to the default click to release the User-
Defined button. You can use the following variables:

• %AK% and %AKNAME% - Code and name of the alternate key.
• %TABLE%, %PARENT%, %CHILD% - Code of the table, the parent

table, and the child table.
• %REFRCODE% and %REFRNAME% - Code and name of the reference.

For a complete list of PDM variables, see Customizing and Extending Pow-
erDesigner > DBMS Definition Files > PDM Variables and Macros

Primary key Specifies that the key is the primary key of the table. There can be only one
primary key in a table, so selecting this key as the primary key will deselect any
existing primary key.

Cluster Specifies that the key constraint is a clustered constraint (for those DBMSs that
support clustered indexes).

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Columns - Lists the columns associated with the key. Use the Add Columns tool to
associate additional columns with the key.

Indexes (PDM)
An index is a data structure associated with one or more columns ordered by the column
values. Indexes are typically created for columns that you are frequently searched on to

CHAPTER 3: Physical Diagrams

108 SAP Sybase PowerDesigner

improve response times. Most types of index are more effective when applied to columns with
high cardinality.

For example, in an Author table, you might create an index for the primary key ID and
another for the LastName column, as it is regularly searched on, but you will probably not
create an index for the BirthCity column, as it is not often searched on.

Note: PowerDesigner supports the creation of indexes for materialized views, if your DBMS
allows them (see Materialized Views on page 117).

Creating Standard, Key, or Function-Based Indexes
You can create indexes by selecting columns on a table property sheet Columns tab and
clicking the Create Index tool.

1. Open the property sheet of a table and select the Columns tab.

2. Select the column or columns on which to base the index and click the Create Index tool.

The index is created and its property sheet opens.

3. Enter a name for the index and then click the Columns tab.

4. PowerDesigner supports the creation of the following types of index:

• Standard indexes are associated with one or more columns containing high-cardinality
values that are frequently searched on. Use the arrow buttons at the bottom of the list to
reorder the columns in order of descending cardinality.

• Key indexes are associated with a primary, foreign, or alternate key and based on the
same columns as the key. Select the appropriate key from the Columns definition field
above the list to empty the list and replace it with the columns associated with the key.

Note: Key indexes are conventionally named after the table with a _PK, _FK, or AK
suffix (for example, Project_AK).

• Function-based indexes [if supported by the DBMS] are populated with values derived
from a function or expression based on one or more columns, and provide an efficient
mechanism for evaluating statements that contain functions in their WHERE clauses.
Click the Add a Row tool, then click in the Expression column and click the ellipsis
button to open the SQL Editor to specify an expression.

5. Select an ascending or descending sort order for each column using the list's Sort column.

6. Click OK to complete the creation of your index and return to the table property sheet.

Note: You can alternatively create an index using the Add a Row tool on the table property
sheet Indexes tab, click the Properties tool to open its property sheet, and select the
Columns tab to manually associate columns with the index.

CHAPTER 3: Physical Diagrams

Data Modeling 109

Index Properties
To view or edit an index'sproperties, double-click its Browser or list entry. The property sheet
tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Owner [if supported by the DBMS] Specifies the user who is the owner of the object.
This is usually its creator. Use the tools to the right of the list to create, browse for,
or view the properties of the currently selected user.

Table Specifies the table to which the index belongs.

Type Specifies the type of index (if supported by your DBMS). For information about
SAP® Sybase® IQ index types, see Indexes (IQ) on page 531.

Unique Specifies that the index cannot contain duplicate values.

Cluster Specifies that the index is a clustered index. A table cannot have more than one
clustered index.

Note: Clusters in Oracle 11 and higher are modeled as extended objects with a
<<Cluster>> stereotype (see Clusters (Oracle) on page 474).

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Columns - Lists the columns with which the index is associated (see Creating Standard,
Key, or Function-Based Indexes on page 109). Use the following tools to specify columns:

Tool Description

N/A Columns definition - Select the appropriate key to empty the list and replace it
with the columns associated with the key.

CHAPTER 3: Physical Diagrams

110 SAP Sybase PowerDesigner

Tool Description

Add Columns - Choose columns from the table to add to the list.

 Add / Insert a Row [if your DBMS supports function-based indexes] - Create a
new row, then click in the Expression column and click the ellipsis button to
open the SQL Editor to specify an expression. For example, to define an index to
convert all names to lowercase to simplify searching, you could enter an ex-
pression such as:

lower(SURNAME)

Rebuilding Indexes
You can rebuild indexes at any time to reflect any changes that you have made to primary keys,
foreign keys, or alternate keys in your model.

1. Select Tools > Rebuild Objects > Rebuild Indexes, and enter the appropriate options:

Option Description

Primary key Rebuilds primary key indexes. The field displays the naming convention for
primary key indexes, which is by default %TABLE%_PK. You can use the
following variables:
• %TABLE% - Generated code of the table. The generated code of a vari-

able is the code defined in the object property sheet, but may be truncated
if it contains characters not supported by the DBMS.

• %TNAME%, %TCODE%, %TLABL% - Table name, code, and comment.

Other keys Rebuilds alternate key indexes. The field displays the naming convention for
alternate key indexes, which is by default %AKEY%_AK.

Foreign key in-
dexes

Rebuilds foreign key indexes. The field displays the naming convention for
foreign key indexes, which is by default %REFR%_FK. You can use the
following variables:
• %REFR%, %PARENT%, %CHILD% - Generated code of the reference,

parent, and child table.
• %PNAME%, %PCODE%, %PQUALIFIER% - Parent table name, code,

and qualifier.
• %CNAME%, %CCODE%, %CQUALIFIER% - Child table name or code,

and qualifier.
• %REFRNAME%, %REFRCODE% - Reference name or code.

Foreign key
threshold

Specifies the minimum number of estimated records in a table (specified in
the Number field in the table property sheet) that are necessary before a
foreign key index can be created. If the Number field is empty, foreign key
indexes are generated.

CHAPTER 3: Physical Diagrams

Data Modeling 111

Option Description

Mode Specifies the type of rebuild. You can select:
• Delete and Rebuild – Delete and rebuild all indexes attached to primary,

alternate, and foreign keys.
• Add missing indexes – Preserve existing key indexes and add any missing

key indexes.

2. [optional] Click the Selection tab to specify which tables you want to rebuild indexes for.

3. Click OK. If you selected the Delete and Rebuild mode, a confirmation box asks you to
confirm your choice. Click Yes to confirm the deletion and rebuild of the selected indexes.

Views (PDM)
A view is a query that provides access to all or a subset of the data in a table or multiple tables
connected by joins. Views do not copy the data from their underlying tables and are updated
when data in those tables changes. Views can reference other views, can order or filter data as
necessary, and may be indistinguishable from tables for users accessing them.

Creating a View
You can create a view populated with columns from selected tables and other views via the
Tools menu. Alternately, you can create an empty view from the Toolbox, Browser, or Model
menu. .

1. [optional] Select one or more tables and views in the diagram. You can select multiple
objects by holding down the Shift key while you select them.

2. Select Tools > Create View.

If you have not selected any tables or views, then a selection box opens, allowing you to
select the objects to be included in the view. Select the appropriate objects and then click
OK.

A view symbol is created in the diagram, displaying all the columns in each of the tables
and views selected for the view. The names for the tables and views appear at the bottom of
the view symbol.

CHAPTER 3: Physical Diagrams

112 SAP Sybase PowerDesigner

3. [optional] Edit the view's query to remove unwanted columns or otherwise modify the
view (see View Queries on page 115).

Alternatively, you can create an empty view, which you should complete by specifying a
query (see View Queries on page 115) in the following ways:
• Use the View tool in the Toolbox.
• Select Model > Views to access the List of Views, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > View.

View Properties
To view or edit a view's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Type Specifies the type of the view, where supported by your DBMS (see Materialized
Views on page 117 and Creating an XML Table or View on page 79).

Owner Specifies the user who is the owner of the object. This is usually its creator. Use
the tools to the right of the list to create, browse for, or view the properties of the
currently selected user.

CHAPTER 3: Physical Diagrams

Data Modeling 113

Property Description

Usage Specifies how the view will be used. You can choose between:

• Query only - Consultation only. The view cannot update tables.
• Updatable - Consultation and update of underlying tables.
• With Check options - Implements controls on view insertions.

Dimensional type Specifies the type of the view for purposes of creating star or snowflake schemas
containing fact tables and dimensions. You can choose between:

• Fact - see Facts (PDM) on page 219
• Dimension - see Dimensions (PDM) on page 222
• Exclude - PowerDesigner will not consider the view when identifying or

generating multidimensional objects.

You can instruct PowerDesigner to complete this field for you (see Identifying
Fact and Dimension Tables on page 217). PowerDesigner's support for the
generation of BusinessObjects universes (see Generating a BusinessObjects
Universe on page 301) and of facts and dimensions in a multidimensional dia-
gram (see Generating Cubes on page 217) depends on the value of this field.

Generate Selects the view for generation to the database.

User-defined By default, the view query is updated to reflect changes to model objects on
which it is based. Selecting this option freezes the view and protects your manual
changes.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Columns - Lists the columns in the view based on the SELECT orders from the queries.
You can modify column properties in this list but to add or remove columns, you must
modify the appropriate view query. View column properties are initialized from the
properties of their source columns. The read-only Expression column specifies the
qualified name of the view column.

• Indexes - [materialized views] Lists the indexes defined on the materialized view (see
Indexes (PDM) on page 108).

• SQL Query - Displays the SQL code for all the queries associated with the view. You can
edit this code directly in this tab or access the property sheets of individual queries (see
View Queries on page 115).

• Triggers - [if supported by your DBMSs] Lists the triggers associated with the view (see
Triggers (PDM) on page 119. You can define a trigger to fire when one or more attributes
of a table view column are modified.

• Preview - Displays the SQL code to be generated for the view (see Previewing SQL
Statements on page 285).

CHAPTER 3: Physical Diagrams

114 SAP Sybase PowerDesigner

View Queries
You can edit queries associated with a view from the SQL Query tab of the view property
sheet.

Any number of queries may be associated with a view, and the totality of their SQL statements
is shown in this tab, linked by any of the standard SQL constructs, such as Union, etc.

You can edit the code shown in the SQL Query tab:

• Directly in the tab.
• Click the Edit with SQL Editor tool to edit the code in the PowerDesigner SQL Editor

(see Writing SQL Code in PowerDesigner on page 281).
• Click the Edit with tool (CTRL+E) to open the code in your favorite editor.

Any edits you make in this tab will propagate to the property sheets of the associated
individual queries, which are available from the Query list at the bottom of the tab. Use the
tools to the right of this list to create a new query (with the appropriate linking construct),
delete the selected query, or open the property sheet of the selected query.

The following SQL constructs are available (if supported by your DBMS) for linking queries:

CHAPTER 3: Physical Diagrams

Data Modeling 115

Construct Result Example

Union [default] Displays all the data retrieved by both the queries, ex-
cept where results are repeated.

SELECT 1: ABC SE-
LECT 2: BCD Result:
ABCD

Union All Displays all the data retrieved by both the queries, in-
cluding repeated results.

SELECT 1: ABC SE-
LECT 2: BCD Result:
ABCBCD

Intersect Displays only the data retrieved by both the queries. SELECT 1: ABC SE-
LECT 2: BCD Result:
BC

Minus Displays only the data retrieved by one or other of the
queries, but not by both.

SELECT 1: ABC SE-
LECT 2: BCD Result:
AD

The following tabs are available:

• SQL tab - displays the SQL code for the query. You can edit the query directly in this tab or
in PowerDesigner's built-in SQL Editor (see Writing SQL Code in PowerDesigner on page
281) by clicking the Edit with SQL Editor tool or in an external editor by clicking the
Edit with tool (CTRL+E). Any edits you make in this tab will propagate to the query's
other tabs and the SQL Query tab of the parent view, as changes made in other tabs will
propagate here and to the parent view.

• Tables tab - lists the tables in the FROM clause.You can add or delete tables in the list, and
reorder the list using the arrows at the bottom of the tab. For each line, select a table or click
the elipsis button to enter a more complex expression in the SQL Editor and, optionally,
enter an alias in the Alias column. For the second and subsequent lines in the list you can
specify an appropriate join condition keyword, and then specify the join condition.

• Columns tab - lists the columns in the SELECT clause. You can add or delete columns in
the list, specify aliases for them, and reorder the list using the arrows at the bottom of the
tab.

• Where tab - lists the expressions in the WHERE clause.You can add or delete expressions
in the list, and reorder the list using the arrows at the bottom of the tab. For each line, select
a column in each of the two Expression columns (or click the ellipsis button to specify a
more complex expression), and select the appropriate operator between them. You can
optionally enter a prefix and suffix.

• Group By tab - lists the columns in the GROUP BY clause. You can add or delete columns
in the list, and reorder the list using the arrows at the bottom of the tab.

• Having tab - lists the expressions in the HAVING clause. You can add or delete
expressions in the list, and reorder the list using the arrows at the bottom of the tab. For
each line, select a column in each of the two Expression columns (or click the ellipsis

CHAPTER 3: Physical Diagrams

116 SAP Sybase PowerDesigner

button to specify a more complex expression), and select the appropriate operator between
them. You can optionally enter a prefix and suffix.

• Order By tab - lists the columns in the ORDER BY clause. You can add or delete columns
in the list, and reorder the list using the arrows at the bottom of the tab. For each line, select
a column (or click the ellipsis button to specify a more complex expression), and select
ASC or DESC for the sort direction.

Materialized Views
A materialized view is a table containing the results of a query. PowerDesigner supports
materialized views for the DB2, HP Neoview, Netezza, Oracle, and Sybase SQL Anywhere
DBMS families.

Materialized views are supported in the following ways:

• DB2 - Select materialized query table (or for earlier versions, summary
table) in the Type list on the General tab of a view property sheet.

• HP Neoview - Use the List of Materialized Views (available from Model > Materialized
Views).

• Netezza - Use the List of Materialized Views (available from Model > Materialized
Views).

• Oracle - Use the List of Materialized Views (available from Model > Materialized
Views).

• SQL Anywhere - Select Materialized View in the Type list on the General tab of a
view property sheet to display the DB space field, and specify the dbspace in which to
create the materialized view. The default is the current dbspace.

Showing View Dependencies using Traceability Links
You can use traceability links to make the relationships between views and tables clearer.
These links are not interpreted and checked by PowerDesigner.

In the following example, the Book Sales view is shown as depending on the Title and
Sale tables via two traceability links with their type set to depends on:

CHAPTER 3: Physical Diagrams

Data Modeling 117

For detailed information about traceability links, see Core Features Guide > Linking and
Synchronizing Models > Getting Started with Linking and Syncing > Creating Traceability
Links.

Defining a Generation Order for Views
You can define the order of the generation of views by using traceability links with a type of
DBCreateAfter. The view from which you start the traceability link is dependent on the
view you link it to, and this influent view will be generated before the dependent view.

For example you create the view DEPARTMENT STORE from the table STORE, and then
another view called COMPUTER COUNTER from the view DEPARTMENT STORE to show
only part of the department store offer.

By default, views are generated in alphabetical order, so the generation of COMPUTER
COUNTER will fail since the view DEPARTMENT STORE on which it depends is not yet
generated. To bypass this problem, you should create a traceability link of type
<<DBCreateAfter>> from COMPUTER COUNTER to DEPARTMENT STORE to ensure
that DEPARTMENT STORE is generated before COMPUTER COUNTER:

CHAPTER 3: Physical Diagrams

118 SAP Sybase PowerDesigner

Note: There is a model check to warn you if you create a reflexive or circular set of traceability
links of type DBCreateAfter. If you generate without correcting this error, views will be
generated in alphabetical order, without taking into account the generation order.

1. Select the Traceability Links tool in the toolbox.

2. Click inside the dependent view and, while holding down the mouse button, drag the
cursor into the influent view. Release the mouse button.

3. Double-click the traceability link to open the property sheet of the dependent object at the
Traceability Links tab.

The influent view is displayed in the Linked Object column.

4. Click in the Link Type column, click the down arrow and select DBCreateAfter.

5. Click OK to close the property sheet and return to your model.

Note: You can, alternatively, create DBCreateAfter traceability links directly on the
Traceability Links tab (see Defining a Generation Order for Stored Procedures on page
137). For detailed information about traceability links, see Core Features Guide > Linking
and Synchronizing Models > Getting Started with Linking and Syncing > Creating
Traceability Links.

Triggers (PDM)
A trigger is a segment of SQL code associated with a table or a view, which is invoked
automatically whenever there is an attempt to modify data in the associated table or view with

CHAPTER 3: Physical Diagrams

Data Modeling 119

an insert, delete, or update command. A DBMS trigger is not associated with any table or view,
and fires on modifications to the database structure itself, such as the creation or dropping of a
table or events like startup, shutdown, login etc. You can use triggers to enforce referential
integrity (where declarative constraints are not sufficient) and to implement sequences for
columns.

In the PowerDesigner interface, table and view triggers are called simply triggers, while DDL
or database triggers are called DBMS triggers. View and DBMS triggers are not supported by
all DBMSs.

PowerDesigner provides trigger templates to generate triggers (see Trigger Templates on page
127) and template items, which are reusable blocks of SQL script that can be inserted into
triggers or trigger templates (see Trigger Template Items on page 128) and you can modify
these templates and items and create your own.

Creating a Table or View Trigger
You can create a trigger for a table from its property sheet and base it on a PowerDesigner
template, or on a template of your own, or write it from scratch.

1. Open the table or view property sheet, and then click the Triggers tab.

2. Click the Add a Row tool to create a new trigger, enter a name and code, and then click the
Properties tool to open its property sheet.

3. Click the Definition tab, and select a trigger template (see Trigger Templates on page 127)
from the Template list. The time and event fields will be set and the template code copied
into the definition editor.

CHAPTER 3: Physical Diagrams

120 SAP Sybase PowerDesigner

Note: You can create a trigger by entering code by hand, but we recommend that you use a
template as this will simplify reuse of your code and make your triggers more portable.

4. [optional] Modify the trigger definition code. You can insert trigger template items (see
Trigger Template Items on page 128), use PDM variables and macros and various other
tools available from the toolbar (see Writing SQL Code in PowerDesigner on page 281).

If you edit the code, then the trigger will be marked as user-defined and will be excluded
from most forms of rebuilding (see Rebuilding Triggers on page 125).

5. Click OK to return to your model.

Creating Triggers from References
You can create triggers to enforce referential integrity individually or instruct PowerDesigner
to create them by default.

1. Create a reference between two tables, and then double click the reference symbol to open
its property sheet.

2. Click the Integrity tab, and then select Trigger from the Implementation list.

3. Specify the form of Update and Delete constraints using the radio buttons (see Reference
Properties on page 175), and then click OK to return to the diagram.

4. If you have set the Automatically rebuild triggers model option (see Reference Model
Options on page 15,) then triggers will have been created automatically in the parent and
child tables. To verify this open the table property sheet and click the Triggers tab. If the
triggers are not present, you will need to rebuild your triggers manually (see Rebuilding
Triggers on page 125).

Note: To instruct PowerDesigner to implement referential integrity between tables using
triggers by default whenever you create a reference, select Tools > Model Options, click
Model Settings > Reference in the Category list, select Trigger in the Default
implementation list.

Creating a DBMS Trigger
DBMS triggers are not associated with any table or view. You create them directly under the
model.

You can create a DBMS trigger in any of the following ways:

• Select Model > Triggers > DBMS Triggers to access the List of DBMS Triggers, and
click the Add a Row tool

• Right-click the model (or a package) in the Browser, and select New > DBMS Trigger

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 3: Physical Diagrams

Data Modeling 121

Trigger and DBMS Trigger Properties
To view or edit a trigger's properties, double-click its Browser or list entry. The property sheet
tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Owner Specifies the user who is the owner of the object. This is usually its creator. Use the
tools to the right of the list to create, browse for, or view the properties of the
currently selected user.

Table [Table or view triggers only] Specifies the table to which the trigger belongs.

Scope [DBMS triggers only] Specifies the scope of the DBMS trigger. You can choose
either Schema or Database, and this choice will control the types of events that you
can select in the DBMS trigger definition.

Generate Specifies to generate the trigger.

User-defined [Read-only] Specifies that the trigger definition has been modified. You modify a
trigger definition when you change the trigger template script in the Definition tab
of the trigger

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Definition Tab
This tab allows you to enter code for the trigger. For information about the tools available on
the toolbar, see Writing SQL Code in PowerDesigner on page 281. The following properties
are available:

CHAPTER 3: Physical Diagrams

122 SAP Sybase PowerDesigner

Property Description

Template Specifies the template on which the trigger is based (see Trigger Templates on
page 127). The User-defined button is automatically depressed when you modify
the definition of a trigger. Click the button to release it and restore the template
trigger definition.

Time Specifies when the trigger will fire in relation to the associated event. The content
of the list depends on the values defined in the trigger template and in the Time
entry in the Trigger category of the DBMS.

Event Specifies the event that will cause the trigger to fire. Click the ellipsis tool to the
right of this field to select multiple events (see Defining Triggers with Multiple
Events on page 125)

For table and view triggers, this field is a list, the content of which depends on the
values defined in the trigger template and in the Event entry in the Trigger category
of the DBMS. You can add your own events to this entry and they will appear in
this list.

For DBMS triggers, this field allows you to enter any text.

Order [table and view triggers only] Specifies the firing order of trigger.

The following tabs are also available:

• Template Items - lists the trigger template items available for use in the trigger definition
(see Trigger Template Items on page 128).

• Preview - displays the SQL code that will be generated for the trigger (see Previewing
SQL Statements on page 285).

Trigger Naming Conventions
The pre-defined trigger templates that ship with PowerDesigner indicate naming conventions
for the trigger scripts that it generates. The naming convention consists of a prefix indicating
the trigger type followed by the table code.

The default naming conventions include a variable (%L:TABLE). The name of the resulting
trigger script replaces this variable with a lower-case table code. For example, a resulting
trigger script may have the name ti_employee.

You can change the trigger naming convention in PowerDesigner pre-defined DBMS trigger
templates from the Trigger Templates tab of the DBMS property sheet.

1. Select Database > Edit Current DBMS to open the DBMS definition file in the Resource
Editor, and then click the Trigger Template tab.

2. Click a trigger template in the list, and then click the Properties tool to open its property
sheet.

CHAPTER 3: Physical Diagrams

Data Modeling 123

3. Type a new trigger name in the Trigger Name text box at the bottom of the tab.

For example, mytempl_%TABLE%

4. Click OK in each of the dialog boxes.

Calling a Related Procedure in a Trigger Template
Some target databases do not accept code within a trigger statement. For these databases, a
trigger template can call a related procedure as a parameter, which is defined in a procedure
template. In these cases, procedure templates are listed in the list of trigger templates.

Example
Informix does not accept code in trigger templates. The template InsertTrigger calls the
procedure in the form of the variable %PROC%, as follows:

-- Insert trigger "[%QUALIFIER%]%TRIGGER%" for table "[%QUALIFIER%]
%TABLE%"
create trigger [%QUALIFIER%]%TRIGGER% insert on [%QUALIFIER%]%TABLE%
referencing new as new_ins
 for each row (execute procedure %PROC%(.FKCOLN("new_ins.%COLUMN%",
"", ",", "));")
/

The template InsertProc defines the procedure, as follows:

-- Insert procedure "%PROC%" for table "[%QUALIFIER%]%TABLE%"
create procedure %PROC%(.FKCOLN("new_%.14L:COLUMN% %COLTYPE%", "",
",", ")")
 .DeclInsertChildParentExist
 .DeclInsertTooManyChildren
 define errno integer;
 define errmsg char(255);
 define numrows integer;

 .InsertChildParentExist
 .InsertTooManyChildren

end procedure;
/

Indicating Trigger Order for Multiple Triggers
Some DBMSs allow you to have multiple triggers for the same insert, update, or delete event at
the same time. You can indicate the order in which each trigger within the group fires.

In the following example, a company is considering candidates for various positions, and must
ensure that new employees are offered a salary that is within the range of others working in the
same field, and less than their prospective manager.

The EMPLOYEE table contains two BeforeInsert triggers to perform these tests:

create trigger tibTestSalry1 before insert order 1 on EMPLOYEE
referencing new as new_ins for each row

CHAPTER 3: Physical Diagrams

124 SAP Sybase PowerDesigner

begin

 [Trigger code]

end

create trigger tibTestSalry2 before insert order 2 on EMPLOYEE
begin

 [Trigger code]

end

1. Open the trigger property sheet and click the Definition tab.

2. Select a number from the Order list to indicate the position in which the trigger fires.

3. Click OK to return to your model.

Defining Triggers with Multiple Events
Some DBMSs support multiple events on triggers. If such is the case, the Ellipsis button to the
right of the Event box on the trigger definition tab is available.

You can click the Ellipsis button to open the Multiple Events Selection box. If you select
several events and click OK, the different events will be displayed in the Event box, separated
by the appropriate delimiter.

Rebuilding Triggers
PowerDesigner can rebuild triggers to ensure that they are attached to all tables joined by
references to ensure referential integrity. You can instruct PowerDesigner to automatically
rebuild triggers whenever a relevant change is made and you can manually rebuild triggers at
any time.

The Rebuild Triggers function creates new triggers based on template items that correspond to
trigger referential integrity defined for references and sequence implementation for columns.

To instruct PowerDesigner to automatically rebuild triggers, select Tools > Model Options,
click Model Settings > Trigger, select Automatically rebuild triggers, and click OK.
PowerDesigner rebuilds all triggers and will, from now on, rebuild triggers whenever you
make a relevant change in the model.

To rebuild triggers manually:

1. Select Tools > Rebuild Objects > Rebuild Triggers

2. Specify a rebuild mode. You can choose between:

• Delete and Rebuild – all triggers attached to templates are deleted and rebuilt,
including those to which you have made modifications

CHAPTER 3: Physical Diagrams

Data Modeling 125

• Preserve – only those triggers attached to templates that have not been modified are
deleted and rebuilt. Any triggers that you have modified are preserved.

3. The Trigger selection box shows an expandable tree view of trigger types. Expand the tree
and select the types to rebuild. There are three levels in this tree:

• All trigger types supported by the current DBMS
• All trigger templates corresponding to the trigger types
• All template items defined for each trigger template

For example, in the list below, the two template items InsertChildParentExist
and InsertTooManyChildren are used in the BeforeInsertTrigger template
that is, in turn, used in all triggers with a time of Before and an event type of
Insert:

4. [optional] Click the Error Messages tab to define the types of error messages to generate
(see Generating a User-Defined Error Message on page 139).

5. [optional] Click the Selection tab to specify which tables to rebuild the triggers for.

6. Click OK to begin the rebuild process.

Progress is shown in the Output window. You can view the triggers that have been created
from the Triggers tab of the table property sheet, or from the List of Triggers.

Note: If you change the target DBMS family, for example from Sybase to Oracle or IBM
DB2, triggers are automatically rebuilt.

For information about rebuilding dependencies between triggers and other objects, see
Tracing Trigger and Procedure Dependencies on page 142.

CHAPTER 3: Physical Diagrams

126 SAP Sybase PowerDesigner

Trigger Templates
PowerDesigner trigger templates allow you to write trigger code in a modular reusable
fashion. We provide basic templates for before, after, and with insert, update, and
delete events and for other types of triggers where supported by the DBMS. You can
modify the code specified in these templates or create your own templates in the DBMS
definition file or in your model.

To apply a trigger template to your trigger definition, select the template from the list on the
trigger property sheet Definition tab (see Trigger and DBMS Trigger Properties on page
122).

To review or modify the provided trigger templates, select Database > Edit Current DBMS,
and then click the Trigger Templates tab. You cannot delete or rename these templates.

Warning! The resource files provided with PowerDesigner inside the Program Files
folder cannot be modified directly. To create a copy for editing, use the New tool on the
resource file list, and save it in another location. To include resource files from different
locations for use in your models, use the Path tool on the resource file list.

To create a new template, click the Create from Trigger Template tool (to copy the code of an
existing template to your new template) or the Add a Row tool (to start from scratch).

Note: You can, alternatively, create trigger templates in your model by selecting Model >
Triggers > Trigger Templates, but these templates will not be accessible from other models.

Trigger Template Properties
The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

DBMS Specifies the parent DBMS.

Applies to [for DBMSs supporting multiple types of triggers] Specifies whether the tem-
plate can be applied to table, view, or DBMS triggers.

Trigger time Specifies when triggers based on the template will fire in relation to their
associated event.

Trigger event Specifies the event that will cause the firing of triggers based on the template.

CHAPTER 3: Physical Diagrams

Data Modeling 127

Property Description

Trigger name Specifies the conventions for naming triggers based on the template.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Definition - Contains a field for entering the trigger code for the template.You can use
trigger template items, PDM variables and macros and other tools available from the
toolbar (see Writing SQL Code in PowerDesigner on page 281).

• Template Items - Lists the template items (see Trigger Template Items on page 128) that
are defined in the trigger template and that will be generated when a trigger is generated
from the template.

Note: If you delete a template item from this list, it is not deleted from the template
definition, but is excluded from generation when rebuilding triggers. PowerDesigner-
provided template items listed on this tab are generated in a trigger if they match the trigger
implemented referential integrity defined for a reference attached to the table. User-
created template items are always generated regardless of trigger referential integrity
constraints.

Trigger Template Items
Trigger template items are named reusable blocks of script that can be inserted into triggers or
trigger templates. In a generated trigger script, a template item calls a macro that implements a
trigger referential integrity constraint or does any other updating work on tables in the
database.

To insert a trigger template item into your trigger or template definition, click the Add Trigger
Item from Model or Add Trigger Item from DBMS tool, select the items from the list and
click OK. The item is inserted with a dot followed by its name, and is also added to the list on
the Template Items tab. For example, the following script contains two template items
InsertChildParentExist and InsertTooManyChildren:

/* Before insert trigger "%TRIGGER%" for table "[%QUALIFIER%]%TABLE
%" */
create trigger %TRIGGER% before insert order %ORDER% on [%QUALIFIER
%]%TABLE%
referencing new as new_ins for each row
begin
 declare user_defined_exception exception for SQLSTATE '99999';
 declare found integer;
 .InsertChildParentExist
 .InsertTooManyChildren
end
/

CHAPTER 3: Physical Diagrams

128 SAP Sybase PowerDesigner

Note: Certain DBMSs require that a cursor and variables are declared for each template item
before the template item name is used in the script. You can use the following format to declare
a template item:
.Decltemplate item name

For example, the trigger definition for Oracle 8 declares and then inserts
the .InsertChildParentExist template item:

-- Before insert trigger "[%QUALIFIER%]%TRIGGER%" for table
"[%QUALIFIER%]%TABLE%"
create trigger [%QUALIFIER%]%TRIGGER% before insert
on [%QUALIFIER%]%TABLE% for each row
declare
 integrity_error exception;
 errno integer;
 errmsg char(200);
 dummy integer;
 found boolean;
 .DeclInsertChildParentExist
begin
 .InsertChildParentExist
-- Errors handling
exception
 when integrity_error then
 raise_application_error(errno, errmsg);
end;
/

To review or modify the provided trigger template items, select Database > Edit Current
DBMS, and then click the Trigger Template Items tab. You cannot delete or rename these
items.

Warning! The resource files provided with PowerDesigner inside the Program Files
folder cannot be modified directly. To create a copy for editing, use the New tool on the
resource file list, and save it in another location. To include resource files from different
locations for use in your models, use the Path tool on the resource file list.

To create a new template item, click the Create from DBMS Trigger Item tool (to copy the
code of an existing item to your new item) or the Add a Row tool (to start from scratch).

Note: You can, alternatively, create trigger template items in your model by selecting Model >
Triggers > Trigger Template Items, but these templates will not be accessible from other
models.

Trigger Template Item Properties
The General tab contains the following properties:

CHAPTER 3: Physical Diagrams

Data Modeling 129

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the = but-
ton to the right of the Code field.

DBMS Specifies the parent DBMS.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

The following tabs are also available:

• Definition - Contains a field for entering the trigger code for the item.You can use PDM
variables and macros and other tools available from the toolbar (see Writing SQL Code in
PowerDesigner on page 281).

• Declaration - Contains a field for entering the declaration for the item in trigger scripts.

PowerDesigner Pre-Defined Trigger Template Items
PowerDesigner provides pre-defined template items for the trigger templates defined in each
DBMS. The Rebuild Triggers function uses both pre-defined and user-defined trigger
templates to automatically create triggers for selected tables.

In the pre-defined trigger templates, each pre-defined template item corresponds to a
referential integrity constraint. Although a pre-defined template item is defined in a trigger
template, it is only generated in a trigger script if it implements the trigger referential integrity
defined for a reference. The item is available for generation if it is present on the Template
Items tab of a trigger property sheet and will be generated if it is present on the Template
Items tab of a trigger template property sheet.

Insert Constraints
The template items below implement referential integrity in insert trigger templates.

Template item Integrity constraint Description

DeclInsertChildParentExist
InsertChildParentExist

Mandatory parent Parent must exist when
inserting a child

DeclInsertTooManyChildren
InsertTooManyChildren

Cannot exceed maxi-
mum cardinality con-
straint

Cannot insert a child if
maximum cardinality
has been reached

CHAPTER 3: Physical Diagrams

130 SAP Sybase PowerDesigner

Template item Integrity constraint Description

DeclInsertSequenceColumn
InsertSequenceColumn

Select value in sequence
list for column

Select a value for the
column from a list of
sequences

Update Constraints
The template items below implement referential integrity in update trigger templates.

Template item Integrity con-
straint

Description

DeclUpdateChildParentExist
UpdateChildParentExist

Mandatory parent Parent must exist when
updating a child

DeclUpdateChildChangeParent
UpdateChildChangeParent

Change parent not
allowed

Cannot modify parent
code in child

DeclUpdateParentRestrict
UpdateParentRestrict

Restrict on update Cannot modify parent if
child exists

DeclUpdateParentCascade
UpdateParentCascade

Cascade on update Modify parent code in
all children

DeclUpdateChangeColumn
UpdateChangeColumn

Non-modifiable col-
umn

Cannot modify column

DeclUpdateParentSetNull
UpdateParentSetNull

Set null on update Set parent code to null
in all children

DeclUpdateParentSetDefault
UpdateParentSetDefault

Set default on update Set parent code to de-
fault in all children

DeclUpdateTooManyChildren
UpdateTooManyChildren

Cannot exceed max-
imum cardinality
constraint

Cannot update a child if
maximum cardinality
has been reached

Delete Constraints
The template items below implement referential integrity in delete trigger templates.

CHAPTER 3: Physical Diagrams

Data Modeling 131

Template item Integrity con-
straint

Description

DeclDeleteParentRestrict
DeleteParentRestrict

Restrict on delete Cannot delete parent if
child exists

DeclDeleteParentCascade
DeleteParentCascade

Cascade on delete Delete parent code in all
children

DeclDeleteParentSetNull
DeleteParentSetNull

Set null on delete Delete in parent sets
child to null

DeclDeleteParentSetDefault
DeleteParentSetDefault

Set default on delete Delete in parent sets
child to default

Constraint Messages
You can insert the following template items in any trigger template. They generate error
messages that indicate the violation of an integrity constraint.

Template item Description

UseErrorMsgText Error handling without a message table

UseErrorMsgTable Error handling with a message table

Creating SQL/XML Queries with the Wizard
You can use the SQL/XML Wizard to insert a SQL/XML query in the definition of a trigger,
stored procedure, or function to store or retrieve data, in an XML format, from relational
databases supporting SQL/XML. The wizard, allows you to select tables and views from a
PDM to build a mapped XML model. This XML model (which does not appear in the
workspace) is used to generate SQL/XML queries from global elements.

1. Open the trigger property sheet, click the Definition tab and position the cursor in the
trigger definition where you want to insert the SQL/XML query:

CHAPTER 3: Physical Diagrams

132 SAP Sybase PowerDesigner

2. Click the SQL/XML Wizard tool to launch the wizard at the Tables and Views Selection
page:

3. Select the tables and views that you want to include in your query and click Next to go to
the XML Hierarchy Design page:

CHAPTER 3: Physical Diagrams

Data Modeling 133

On this tab, you construct the XML hierarchy that you want to generate:

• The left-hand pane lists the tables and views that you have selected
• The right-hand pane displays the XML hierarchy to be generated, containing a default

root element.

4. You can build your XML hierarchy using the following techniques:

• Specify whether columns will be generated as elements or attributes by using the radio
buttons above the panes.

• Drag and drop a table, view, or column onto a node in the XML hierarchy. You must
respect the PDM hierarchy: You cannot create an XML hierarchy between two
elements if there is no reference between their corresponding tables, and a parent table
cannot be placed beneath one of its children.

• Right-click a table, view, or column and select Add from the contextual menu to add it
to the last selected node in the XML hierarchy.

• Rename an element or attribute by clicking its node and typing a new name.
• Create new elements and attributes not in the PDM, and Sequence, Choice and All

group particles, by right-clicking an XML node and selecting New→object from the
contextual menu.

• Delete an XML node by right-clicking it and selecting Delete from the contextual
menu.

5. When you have finished building your hierarchy, click Next to go to the Query tab:

CHAPTER 3: Physical Diagrams

134 SAP Sybase PowerDesigner

6. Review your query and click Back, if necessary, to make revisions in your hierarchy. When
you are satisfied, click Finish to close the wizard and insert the SQL/XML query in the
trigger definition

CHAPTER 3: Physical Diagrams

Data Modeling 135

7. [optional] Add code to complete the SQL/XML query:

8. Click OK to close the trigger property sheet:

Generating Triggers and Procedures
You can create or modify database triggers to a script or to a live database connection.

1. Select Database > Generate Database to open the Database Generation window, and
specify the standard options, including whether you want to generate to a script or to a live
database connection.

For detailed information about using this window, see the Generating a Database on page
290.

2. Select "Triggers & Procedures (with Permissions)" from the Settings set list in the Quick
Launch groupbox at the bottom of the window. This settings set specifies standard options
for generating triggers and procedures.

or:

Click the Options tab and click on Trigger in the left-hand pane to display the trigger
generation options. Change the default options as appropriate.

For detailed information about settings sets, see Quick Launch Selection and Settings Sets
on page 297.

CHAPTER 3: Physical Diagrams

136 SAP Sybase PowerDesigner

3. [optional] Click the Selection tab and select the Table or Procedure subtab at the bottom of
the tab. Select the tables or procedures that you want to generate for. Note that if you want
to generate a trigger script for tables owned by a particular owner, you can select an owner
from the Owner list.

4. Click OK to begin the generation.

Defining a Generation Order for Stored Procedures
You can define the order of the generation of stored procedures by using traceability links with
a type of DBCreateAfter. The procedure from which you start the traceability link is
dependent on the procedure you link it to, and this influent procedure will be generated before
the dependent procedure.

For example, a publisher may decide to sell certain books at a reduced rate (15%) when a
customer's order is above 10 000$. The GENERAL CHECK stored procedure verifies orders
globally by checking availability, the order amount, if a discount rate is required, and so on.
This procedure calls the DISCOUNT CALC procedure to calculate the 15% discount rate.
Consequently, DISCOUNT CALC must be generated before GENERAL CHECK, and you can
enforce this by creating a traceability link of type DBCreateAfter from GENERAL
CHECK to DISCOUNT CALC.

Note: There is a model check to warn you if you create a reflexive or circular set of traceability
links of type DBCreateAfter. If generate without correcting this error, procedures will be
generated in alphabetical order, without taking into account the generation order.

1. Open the property sheet of the dependent stored procedure and click the Traceability
Links tab.

2. Click the Add Objects tool, click the Procedure sub-tab in the Add Object selection
dialog, select the influent stored procedure, and click OK.

3. Click in the Link Type column, click the down arrow and select DBCreateAfter.

CHAPTER 3: Physical Diagrams

Data Modeling 137

4. Click OK to close the property sheet and return to your model.

Note: You can also create DBCreateAfter traceability links using the Traceability
Links tool (see Defining a Generation Order for Views on page 118). For detailed
information about traceability links, see Core Features Guide > Linking and
Synchronizing Models > Getting Started with Linking and Syncing > Creating
Traceability Links.

Creating User-Defined Error Messages
You can create a message table in your database to store user-defined error messages. When
you select trigger generation parameters, you can choose to generate an error message from
this table.

1. Create a table with columns to store the following information:

Column to store... Description

Error number Number of the error message that is referenced in the trigger script

Message text Text of message

2. Generate the table in your database.

3. Select Database > Execute SQL.

4. Select a data source, fill in connection parameters, and click Connect.

An SQL query editor box is displayed.

CHAPTER 3: Physical Diagrams

138 SAP Sybase PowerDesigner

5. Enter an SQL statement to insert a message number and text in the appropriate columns.
For example:

insert into table values (error number,'error message')
insert into ERR_MSG values (1004,'The value that you are
trying to insert does not exist in the referenced table')

6. Click Execute.

A message box tells you that the command has been successfully executed.

7. Click OK to return to the SQL query dialog.

8. Click Close.

Generating a User-Defined Error Message
You can choose to generate a user-defined error message from the trigger generation
parameters box.

1. Select Tools > Rebuild Objects > Rebuild Triggers.

2. Click the Error Messages tab, and select the User-defined radio button.

3. Enter the name of the table that contains the error message, the name of the column that
contains the error number, and the name of the column that contains the error message
text.

4. Click the General tab and select the mode and triggers to create.

5. Click the Selection tab and select the tables for which you want to create triggers.

For more information on rebuilding triggers, see Rebuilding Triggers on page 125.

CHAPTER 3: Physical Diagrams

Data Modeling 139

6. Click OK.

The trigger rebuilding process is shown in the Output window.

7. Select Database > Generate Database, select generation parameters as required (see
Generating Triggers and Procedures on page 136), and click OK.

Stored Procedures and Functions (PDM)
You can define stored procedures and functions for any DBMS that supports them.

A stored procedure is a precompiled collection of SQL statements stored under a name and
processed as a unit. Stored procedures are stored within a database; can be executed with one
call from an application; and allow user-declared variables, conditional execution, and other
programming features.

The use of stored procedures can be helpful in controlling access to data (end-users may enter
or change data but do not write procedures), preserving data integrity (information is entered
in a consistent manner), and improving productivity (statements in a stored procedure only
need to be written one time).

A user-defined function is a form of procedure that returns a value to the calling environment
for use in queries and other SQL statements.

Creating a Stored Procedure or Function
You can create a stored procedure or function from a table property sheet or from the Toolbox,
Browser, or Model menu.

• Use the Procedure tool in the diagram Toolbox
• Open the Procedures tab in the property sheet of a table, and click the Add a Row tool
• Select Model > Procedures to access the List of Procedures, and click the Add a Row

tool
• Right-click the model or package in the Browser, and select New > Procedure

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

You can create a procedure based on one of the PowerDesigner templates or on a template of
your own.

1. Double-click a table symbol to open its property sheet, and then click the Procedures tab.

2. Click the Add a Row tool to create a new procedure, and type a name and code.

3. Click Apply to commit the creation of the new procedure, and then click the Properties tool
to open its property sheet.

4. Click the Definition tab:

CHAPTER 3: Physical Diagrams

140 SAP Sybase PowerDesigner

5. [optional] Select a procedure template from the Template list (see Procedure Templates
(PDM) on page 148).

6. Modify the procedure definition code. You can use PDM variables and macros and various
other tools available from the toolbar (see SQL Editor Tools on page 281).

7. You can also modify the procedure's other properties. For a full list of the properties
available, see Procedure Properties on page 141.

8. Click OK in each of the dialog boxes.

Note: When using the PowerDesigner Eclipse plug-in, you can right-click a procedure in the
Browser or diagram and select Edit in SQL Editor from the contextual menu to open it in the
Eclipse SQL Editor. You can optionally connect to your database in order to obtain auto-
completion for table names. The procedure definition is added to the Generated SQL Files list
in the Workspace Navigator.

Procedure Properties
To view or edit a procedure's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Physical Diagrams

Data Modeling 141

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Owner Specifies the name of the procedure owner.

Table Specifies the table to which the procedure is attached. Use the tools to the right of
the list to create, browse for, or view the properties of the currently selected table.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Definition - allows you to enter the SQL code for the procedure. For information about the
tools available, see SQL Editor Tools on page 281.

Tracing Trigger and Procedure Dependencies
When you write a trigger or procedure, PowerDesigner automatically creates dependencies to
any table, view, procedure, or database package referenced in the code. These dependencies
are taken into account when performing an impact analysis prior to deleting the trigger or
procedure or objects on which they depend. For procedures, if the procedure has a symbol in
your diagram, then any dependencies will be shown graphically by way of arrows linking the
procedure to these objects.

The diagram below shows a procedure, ProcChangeLocation, which is dependent on a
number of other objects:

CHAPTER 3: Physical Diagrams

142 SAP Sybase PowerDesigner

Its Traceability Links tab lists the objects upon which it depends, and the link type of
DBCreateAfter (computed) shows that PowerDesigner has determined that it can
only be created after these objects:

The Employee table Dependencies tab shows that ProcChangeLocation is dependent
upon it, and if you were to perform an impact analysis prior to deleting the Employee table,
you would be warned of the procedure's dependency on it.

CHAPTER 3: Physical Diagrams

Data Modeling 143

Creating Procedure Dependencies Manually
Since procedures have diagram symbols, you can manually add dependencies for them using
the Traceability Links tool in the toolbox.

In the diagram below, ProcChangeLocation has a dependency on a new procedure,
ProcOccupancy:

CHAPTER 3: Physical Diagrams

144 SAP Sybase PowerDesigner

Since ProcOccupancy is not directly referenced in ProcChangeLocation, you must
manually set the type of the link to DBCreateAfter on the Traceability Links tab of the
ProcChangeLocation property sheet:

CHAPTER 3: Physical Diagrams

Data Modeling 145

Rebuilding Trigger and Procedure Dependencies
Trigger and procedure dependencies are rebuilt automatically after the following actions:

• Importing a PDM created with a former version of PowerDesigner
• Reverse engineering a database into a PDM
• Merging PDMs

You can also manually rebuild trigger and procedure dependencies at any time.

1. Select Tools > Rebuild Objects > Rebuild Triggers and Procedures Dependencies to
open the Procedures Dependencies window.

2. Specify a rebuild mode for each of Procedures and Triggers. You can choose between the
following options:

• Delete and Rebuild – all triggers and/or procedures attached to templates are deleted
and rebuilt, including those to which you have made modifications

• Preserve – only those triggers and/or procedures attached to templates that have not
been modified are deleted and rebuilt. Any triggers and/or procedures that you have
modified are preserved.

3. [optional] Click the Selection tab and specify the tables, views, procedures, and (for
Oracle only) database packages for which you want to rebuild dependencies. By default all
are selected.

4. Click OK to begin the rebuild process.

CHAPTER 3: Physical Diagrams

146 SAP Sybase PowerDesigner

Attaching a Stored Procedure to a Table
You can attach a stored procedure to a table when your current DBMS supports stored
procedures. This feature lets you update the table or retrieve information from this table.

For example, the stored procedure TABLE_ADDROW can be attached to a table in which you
need to insert rows.

When you generate an OOM from a PDM, the procedures attached to a table become
operations with the <<procedure>> stereotype in the generated class. By attaching procedures
to tables, you are able to define class operations in the generated OOM.

When you generate a PDM from an OOM, class operations with the <<procedure>>
stereotype become stored procedures attached to the generated table. The operation body is
generated as a comment in the procedure definition.

You can attach a table to a procedure from the property sheet of a procedure or the property
sheet of a table.

1. Open the table property sheet and click the Procedures.

2. Click the Add Objects tool to open a selection box, choose the the stored procedure you
want to attach to the table and click OK.

The stored procedure is displayed in the list of stored procedures.

CHAPTER 3: Physical Diagrams

Data Modeling 147

3. Click OK.

Rebuilding Procedures Attached to Tables
You can rebuild procedures attached to tables at any time.

1. Select Tools > Rebuild Objects > Rebuild Table Stored Procedures to open the Rebuild
Table Stored Procedures window.

2. Specify a rebuild mode. You can choose between the following options:

• Delete and Rebuild – all procedures attached to tables are deleted and rebuilt
• Add missing table stored procedures – adds procedures to any selected tables that do

not presently have them.

3. [optional] Click the Selection tab to specify for which tables you want to rebuild stored
procedures.

4. Click OK to begin the rebuild process.

Procedure Templates (PDM)
PowerDesigner procedure templates allow you to write table procedures in a modular reusable
fashion. We provide basic templates for insert, select, update, and delete
procedures. You can modify the code specified in these templates or create your own
templates in the DBMS definition file.

To apply a procedure template to your procedure definition, select the template from the list on
the procedure property sheet Definition tab (see Procedure Properties on page 141).

CHAPTER 3: Physical Diagrams

148 SAP Sybase PowerDesigner

To review or modify the provided procedure templates, select Database > Edit Current
DBMS, and then click the Procedure Templates tab. You cannot delete or rename these
templates.

Warning! The resource files provided with PowerDesigner inside the Program Files
folder cannot be modified directly. To create a copy for editing, use the New tool on the
resource file list, and save it in another location. To include resource files from different
locations for use in your models, use the Path tool on the resource file list.

To create a new template, click the Add a Row tool.

Procedure Template Properties
The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

DBMS Specifies the parent DBMS.

Function Specifies whether the template defines procedures or functions.

Procedure Name Specifies the conventions for naming procedures based on the template.

Linked to table Specifies whether the resulting procedure will be linked to a table.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Definition - Contains a field for entering the procedure code for the template.You can use
PDM variables and macros and other tools available from the toolbar (see Writing SQL
Code in PowerDesigner on page 281).

Users, Groups, and Roles (PDM)
A user is a database object that identifies a person who can login or connect to the database.
Groups and roles are used to simplify the granting of rights to users, as privileges and
permissions granted to a group or role are inherited by users who belong to that group or
incarnate that role.

Not all DBMSs support each of the concepts of user, role, and group.

CHAPTER 3: Physical Diagrams

Data Modeling 149

Note: For many DBMSs, users can have an implicit schema, and PowerDesigner can reverse-
engineer create statements contained within a schema. For SQL Server 2005 and higher,
where users can have multiple schemas, PowerDesigner reverse-engineers schemas as
separate objects (see Schemas (SQL Server) on page 432).

Creating a User, Group, or Role
You can create a user, group, or role from the Browser or Model menu. You can also create a
user from the Owner field of various objects.

• Select Model > Users and Roles > Type to access the appropriate model object list, and
click the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Type.
• [users] Click the Create tool to the right of the Owner field on the General tab of a table

(see Table Properties on page 76) or other object that allows you to specify an owner.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

User, Group, and Role Properties
To view or edit a user, group, or role's properties, double-click its Browser or list entry. The
property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Password [users and groups] Password used for database connection.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

CHAPTER 3: Physical Diagrams

150 SAP Sybase PowerDesigner

• Privileges - lists the system privileges granted to the user (see Granting System Privileges
on page 151).

• Permissions - lists the operations that the user is permitted to perform on various database
objects (see Granting Object Permissions on page 154).

• Users - [groups and roles] Lists the users belonging to the group or role.
• Groups - [groups and roles] Lists the groups belonging to the group or role.
• Roles - [roles] Lists the roles belonging to the role.

Assigning an Owner to an Object
The database user who creates an object (table, view, stored procedure, etc) is the owner of the
object and is automatically granted all permissions on it. In a PDM, you can specify the owner
of an object by attaching a user to it. Each object can have only one owner. Where other users
must access the object, you can restrict object modifications to the owner and grant Select
or other permissions for the other users.

Note: To automatically assign a default owner for any type of object that supports the concept
of ownership, select Tools > Model Options, choose the appropriate object type in the left-
hand pane, and select the appropriate user in the Default owner field (see Other Object Model
Options on page 16).

1. Open the property sheet of the object to the General tab.

2. Select a user in the Owner field. To create a new user, click the Create tool to the right of
this field.

3. Click OK to return to your model.

Note: When generating to your database (see Generating a Database from a PDM on page
290), you can restrict the tables and other objects generated to only those belonging to a
particular owner, by selecting the owner on the Database Generation dialog Selection tab.

Granting System Privileges
System privileges are granted to users, groups, and roles to give them the right to perform
particular types of action in the database. By default, a user belonging to a group or having a
role inherits the group or role privileges and these inherited privileges are identifies as such in
the Privileges tab of the user property sheet. A user with an administrative profile is also
allowed to revoke a privilege.

System privileges are used in association with object permissions (see Granting Object
Permissions on page 154) to evaluate the rights of a user, group, or role. For example, even if a
user has the Modify privilege, he cannot modify an object on which he has no Update
permission.

Note: In some DBMSs, system privileges are called permissions. In PowerDesigner, the term
privilege is reserved for any right granted to a user, a group, or a role. Permissions are defined
for objects.

CHAPTER 3: Physical Diagrams

Data Modeling 151

1. Open the property sheet of a user, role, or group, and click the Privileges tab.

2. [optional] Click the Show/Hide All Inherited Privileges tool to show privileges that have
been inherited from a group. Inherited privileges are red, while privileges directly granted
to the user are blue.

3. Click the Add Objects tool to choose one or more of the privileges available in the DBMS,
and click OK to grant them to the user, role, or group:

System privileges are defined in the DBMS definition file. To review and edit the list of
available privileges, select Database > Edit Current DBMS, select the item Script >
Objects > Privilege > System, and edit the list as appropriate. The Privilege category also
contains entries that define the syntax for the necessary SQL statements for granting and
revoking privileges. For more information, see Customizing and Extending
PowerDesigner > DBMS Definition Files > Script/Objects Category.

4. [optional] To change the state of a privilege (whether granted directly, or inherited from a
group), click in the State column to cycle through the available states, or click on the
appropriate tools in the Privilege state group box at the bottom of the tab:

Privilege Description

Grant – [default] Assigns the privilege to the user.

Inherited/None - Reverts the cell to the inherited state.

Revoke – Revokes the privilege inherited from a group or role for the current user
or group.

Grant with admin option - Assigns the privilege to the user, and allows the
recipient to pass on the privilege to other users, groups, or roles. For example, you
assign the CREATE TABLE privilege for user Designer_1 and then click the
Grant With Admin Option button to permit Designer_1 to grant this privilege to
other users.

CHAPTER 3: Physical Diagrams

152 SAP Sybase PowerDesigner

5. When the privileges are correct, click OK to return to the model.

Generating Privileges
You can generate privileges to a script or to a live database connection.

1. Select Database > Generate Database to open the Database Generation window, and
specify the standard options, including whether you want to generate to a script or to a live
database connection.

For detailed information about using this window, see Generating a Database on page
290.

2. Select "Users & Groups (with privileges)" from the Settings set list in the Quick Launch
groupbox at the bottom of the window. This settings set specifies standard options for
generating privileges.

or:

Click the Options tab and click on User in the left-hand pane to display the user generation
options. Change the default options as appropriate.

For detailed information about settings sets, see Quick Launch Selection and Settings Sets
on page 297.

3. [optional] Click the Selection tab and select the Users sub-tab at the bottom of the tab.
Select the users that you want to generate for.

4. Click OK to begin the generation.

CHAPTER 3: Physical Diagrams

Data Modeling 153

Granting Object Permissions
Object permissions are granted to users, groups, and roles to give them the right to perform
operations on particular database objects. PowerDesigner allows you to define permissions on
tables, views, columns, procedures, packages, and other objects depending on your DBMS.

System privileges are used in association with object permissions (see Granting System
Privileges on page 151) to evaluate the rights of a user, group, or role.

Note: The owner of an object (see Assigning an Owner to an Object on page 151)
automatically has permission to carry out any operation on that object. These permissions do
not appear in the Permissions tab of the object property sheet but they are implemented during
generation and reverse engineering.

1. Open the property sheet of a user, role, or group, and click the Permissions tab. A sub-tab
is displayed for each type of object supporting permissions. The columns in the list on each
tab show the permissions available for a given type of object in the current DBMS (for
example, Select, Insert, Alter, Delete, Update, etc).

The permissions available for each type of object are defined in the DBMS definition file.
To review and edit the list of available permissions, select Database > Edit Current
DBMS, select the item Script > Objects > object_type > Permission, and edit the list as
appropriate. The syntax for inserting permissions in your scripts is defined in the Script >
Objects > Permission category. For more information, see Customizing and Extending
PowerDesigner > DBMS Definition Files > Script/Objects Category.

Note: You can assign permissions for multiple users, groups, and roles to an object on the
Permissions tab of its property sheet.

2. Click the Add Objects tool to choose one or more objects of the present type, and click
OK to add them to the list to assign permissions. If the user belongs to a group with
permissions on the added objects, these permissions appear in red in the list.

3. [optional] Click the Show All Inherited Permissions or Hide Inherited Permissions
tool to show or hide permissions that have been inherited from a group. Inherited
permissions are red, while permissions directly granted to the user are blue.

4. [optional] To change the state of a permission (whether granted directly, or inherited from
a group), click in the appropriate column to cycle through the available states, or click on
the appropriate tools in the Permission state group box at the bottom of the tab:

Permission Description

Grant – Assigns the permission to the user.

Inherited/None - Reverts the cell to the inherited state.

Revoke – Revokes the permission inherited from a group or role for the current
user or group.

CHAPTER 3: Physical Diagrams

154 SAP Sybase PowerDesigner

Permission Description

Grant with admin option - Assigns the permission to the user, and allows the
recipient to pass on the permission to other users, groups, or roles.

Revoke with cascade – Revokes the permission inherited from a group or role
for the current user or group and revokes any permission granted by the user.

5. [optional] For tables, you can specify permissions on individual columns (see Defining
Column Permissions on page 155).

6. When the permissions are correct, click OK to return to the model.

Defining Column Permissions
You can fine tune the permissions on a table by specifying permissions on a column-by-
column basis. The available column permissions are specified in the DBMS resource file.
Note that any new or modified permission may not be supported during generation or reverse-
engineering.

1. Open the property sheet of a table, user, role, or group, and click the Permissions tab. For a
table, select a user, group or role in the list to whom you want to grant column permissions.
For a user, group or role, select a table in the list for which you want to specify permissions.

2. Click the ellipsis button to the right of the Columns field to open the Column Permissions
dialog. The columns in the list show the permissions available for each of the table's
columns.

CHAPTER 3: Physical Diagrams

Data Modeling 155

3. To change the state of a permission (whether granted directly, or inherited from a group),
click in the appropriate column to cycle through the available states, or click on the
appropriate tools in the Permission state group box at the bottom of the tab.

4. Click OK to close the dialog and return to the property sheet. The cells for which specific
permissions have been set for columns now contain ellipsis symbols. Click on one of these
symbols to display the associated column permissions information in the Columns field:

5. Click OK to close the property sheet and return to the model.

CHAPTER 3: Physical Diagrams

156 SAP Sybase PowerDesigner

Assigning a User to a Group or Role
Once you have created a group or role, you can assign users to it.

1. Select Model > Users and Roles > Groups or Roles to open the appropriate list.

2. Select a group or role in the list, click the Properties tool to open its property sheet and
then click the Users tab.

3. Click the Add Objects tool to open a selection box listing the users available in the model.

4. Select one or more users and click OK to insert them into the group.

5. Click OK to return to the model.

Synonyms (PDM)
Synonyms are alternative names for various types of database object, which can be used to
mask the name and owner of the object, provide location transparency for remote objects of a
distributed database, and simplify SQL statements for database users.

For example, if the table SALES_DATA is owned by the user JWARD, you could define a
synonym Sales for it to hide the ownership and simplify the required SQL select statement:

CHAPTER 3: Physical Diagrams

Data Modeling 157

Standard Statement Statement with Synonym

SELECT * FROM jward.sales_data SELECT * FROM sales

You can create multiple synonyms for a base object (table, view, etc.), but each synonym can
have only one base object. You can view the synonyms defined for a particular base object on
the Dependencies tab of its property sheet. If you delete the base object of a synonym, the
synonym is deleted as well.

Note: PowerDesigner supports the generation and reverse-engineering of synonyms. When
you reverse-engineer synonyms, the link with the base object is preserved if both objects are
reverse engineered and if the base object is displayed before the synonym in the script. You can
reverse a synonym without its base object, but then you should define a base object for it in
your model.

Creating a Synonym
You can create synonyms from the Model menu.

1. Select Model > Synonyms to open the List of Synonyms.

2. Click the Create Synonyms tool to open a selection box listing all the available objects in
the model on various sub-tabs, select one or more objects, and click OK to create
synonyms for them in the list.

Note: By default, synonyms are created with the same name as their base objects.

3. Click in the Name column and enter a new name for the synonym. Alternatively, click the
Properties tool to open the property sheet of the synonym and edit its name and other
properties there.

4. Click OK to return to your model.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Synonym Properties
To view or edit a synonym's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Physical Diagrams

158 SAP Sybase PowerDesigner

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Owner Specifies the user who is the owner of the object. This is usually its creator. Use
the tools to the right of the list to create, browse for, or view the properties of the
currently selected user.

Base Object Specifies the name of the object that is aliased by the synonym. Click the Select
tool to the right of the field to select an object from among the PDMs of the same
DBMS family open in the workspace.

Visibility Specifies whether the synonym is public (accessible to all users) or private
(available only to its owner).

Type [if your DBMS supports synonyms and aliases] Specifies whether to create a
synonym or an alias, both of which are modeled in the same way in PowerDe-
signer.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Creating a View from a Synonym
You can create views from synonyms in the same way as for tables. The view query displays
the content of the object aliased by the synonym.

1. Ensure that no objects are selected in the diagram and select Tools > Create View to open a
selection box listing all the available objects in the model.

2. Click the Synonyms tab and select one or more synonyms to add to the view.

3. Click OK. The view is created in the diagram.

For example, the ORDERS_PROD_DEPT table has a synonym ORDERS:

If you create a view for the ORDERS synonym, the view query displays the select order of
the table content:

CHAPTER 3: Physical Diagrams

Data Modeling 159

For more information about views, see Views (PDM) on page 112.

Defaults (PDM)
Default objects are named values that can be assigned to columns or domains. Defaults are
available for selection from the Default list on the Check Parameters tab of column and
domain property sheets. Defaults are not supported by all DBMSs.

For example, if you must set a default value for all columns of type city, you can create a
default object citydflt to assign the value London to it. To review how the default will be
generated to your database, click the Preview tab:
create default CITYDFLT
 as 'London'

Creating a Default
You can create a default from the Browser or Model menu.

• Select Model > Defaults to access the List of Defaults, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Default.

Note: You can also convert default values assigned to column and domains into default objects
for reuse through rebuilding (see Rebuilding Defaults on page 162).

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 3: Physical Diagrams

160 SAP Sybase PowerDesigner

Default Properties
To view or edit a default's properties, double-click its Browser or list entry. The property sheet
tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the = button
to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field, or
add stereotypes to the list by specifying them in an extension file.

Owner Specifies the user who is the owner of the object. This is usually its creator. Use the
tools to the right of the list to create, browse for, or view the properties of the currently
selected user.

Value Specifies the value that will be generated for the default object.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

The following tabs are also available:

• Preview - Displays the SQL code associated with the default (see Previewing SQL
Statements on page 285).

Assigning a Default to a Column or a Domain
You can select a default from the Default list on the Check Parameters tab of a column or
domain property sheet.

1. Open the property sheet of a column or a domain, and click the Standard Checks tab (see
Setting Data Profiling Constraints on page 94).

2. Select a default in the Default list in the Value groupbox.

You can, alternatively, enter a default value in the listbox. The value entered is assigned as
a default value for the column or domain, but a default object is not created in the model,
and the default cannot be reused elsewhere. If you enter a name that is already in the list,
the relevant default object is attached to the column or domain.

CHAPTER 3: Physical Diagrams

Data Modeling 161

Note: You can create default objects for reuse from default values, through the Rebuild
Default command (see Rebuilding Defaults on page 162).

3. Click OK to return to your model.

Rebuilding Defaults
You can generate default objects from default values entered into the Default list on the Check
Parameters tab of a column or domain property sheet. The new default objects replace the
previously entered values, and can be reused with other columns and domains.

Note: If your model's DBMS does not support default objects and you have assigned default
values to domains then, if you change to a DBMS that does support default objects, an object
will be created for each value. Default values assigned to columns will not be converted into
objects. When changing from a DBMS that supports default objects to one that does not,
default objects are converted into default values.

1. Select Tools > Rebuild Objects > Rebuild Defaults, and enter the appropriate options:

Option Description

Domains / Col-
umns

Specifies the naming conventions for defaults applied to domains and col-
umns respectively, which are both, by default, D_%.U:VALUE%. You can
specify different names for each type of default, and use the following vari-
ables:
• %DOMAIN%, %COLUMN%, %TABLE% - Code of the domain, column,

or table using the default.

Mode Specifies the type of rebuild. You can select either or both of:
• Reuse default with identical value – Creates a single default for each

value, even if the value is found in multiple columns and domains. If you
deselect this option, multiple defaults may be created with the same value.

• Delete and rebuild – Delete and rebuild all existing default objects.

2. [optional] Click the Selection tab to specify which domains and tables to search for
defaults to rebuild.

3. Click OK. If you selected the Delete and Rebuild mode, a confirmation box asks you to
confirm your choice. Click Yes to confirm the deletion and rebuild of the selected defaults.

Domains (CDM/LDM/PDM)
Domains allow you to group together a data type, length, precision, mandatoriness, check
parameters, and business rules to standardize their application to a set of columns and entity
attributes. You can define domains for columns of type ID, name, address, or any other kind of
data whose use you want to standarize across multiples columns or attributes in your model.

CHAPTER 3: Physical Diagrams

162 SAP Sybase PowerDesigner

Creating a Domain
You can create a domain from the Browser or Model menu.

• Select Model > Domains to access the List of Domains, and click the Add a Row tool
• Right-click the model (or a package) in the Browser, and select New > Domain

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Domain Properties
To view or edit a domain's properties, double-click its Browser or list entry. The property sheet
tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Owner [PDM] Specifies the user who is the owner of the object. This is usually its
creator. Use the tools to the right of the list to create, browse for, or view the
properties of the currently selected user.

Data type/
Length/ Precision

Specifies the form of data to be stored, such as numeric, alphanumeric, or Boo-
lean, and, where appropriate, the maximum number of characters or numerals
that can be stored, and the maximum number of places after the decimal point.
Click the ellipsis button to choose from the list of standard data types (see
PowerDesigner Standard Data Types on page 165).

To review the data types permitted by your DBMS, select Database > Edit
Current DBMS and navigate to Script > DataType > PhysDataType). The
following variables specify length and precision requirements:

• %n - length

• %s - length with precision

• %p - decimal precision

For example, the data type char(%n) , requires you to specify a length.

CHAPTER 3: Physical Diagrams

Data Modeling 163

Property Description

Mandatory [if supported by your DBMS] Specifies that a non-null value must be assigned.

Identity [if supported by your DBMS] Specifies that the column is populated with values
generated by the database. Identity columns are often used as primary keys.

With default [PDM] [if supported by your DBMS] Specifies that the column is populated with
values generated by the database. Identity columns are often used as primary
keys.

Profile [PDM] Specifies a test data profile to use to generate test data (see Populating
Columns with Test Data on page 98). Use the tools to the right of this field to
create or browse to a profile, or to open the property sheet of the selected profile.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Standard Checks - Specifies constraints to control the range and format of permitted data
(see Setting Data Profiling Constraints on page 94)

• Additional Checks - Displays an editable SQL statement, initialized with the standard
checks, which can be used to generate more complex constraints (see Specifying
Advanced Constraints on page 97).

• Rules - Lists the business rules associated with the object (see Business Rules (CDM/
LDM/PDM) on page 184).

CHAPTER 3: Physical Diagrams

164 SAP Sybase PowerDesigner

PowerDesigner Standard Data Types
To open the list of Standard Data Types, click the ellipsis button to the right of the Data Types
field on the General tab of a column, entity attribute, data item, or domain property sheet.

Numeric Data Types
The following numeric data types are available:

Standard data
type

DBMS-specific
physical data type

Content Length

Integer int / INTEGER 32-bit integer —

Short Integer smallint / SMALLINT 16-bit integer —

Long Integer int / INTEGER 32-bit integer —

Byte tinyint / SMALLINT 256 values —

Number numeric / NUMBER Numbers with a fixed decimal
point

Fixed

Decimal decimal / NUMBER Numbers with a fixed decimal
point

Fixed

Float float / FLOAT 32-bit floating point numbers Fixed

CHAPTER 3: Physical Diagrams

Data Modeling 165

Standard data
type

DBMS-specific
physical data type

Content Length

Short Float real / FLOAT Less than 32-bit point decimal
number

—

Long Float double precision / BINA-
RY DOUBLE

64-bit floating point numbers —

Money money / NUMBER Numbers with a fixed decimal
point

Fixed

Serial numeric / NUMBER Automatically incremented num-
bers

Fixed

Boolean bit / SMALLINT Two opposing values (true/false;
yes/no; 1/0)

—

Character Data Types
The following character data types are available:

Standard data
type

DBMS-specific
physical data type

Content Length

Characters char / CHAR Character strings Fixed

Variable Charac-
ters

varchar / VARCHAR2 Character strings Maximum

Long Characters varchar / CLOB Character strings Maximum

Long Var Charac-
ters

text / CLOB Character strings Maximum

Text text / CLOB Character strings Maximum

Multibyte nchar / NCHAR Multibyte character strings Fixed

Variable Multi-
byte

nvarchar / NVARCHAR2 Multibyte character strings Maximum

Time Data Types
The following time data types are available:

Standard data
type

DBMS-specific
physical data type

Content Length

Date date / DATE Day, month, year —

Time time / DATE Hour, minute, and second —

CHAPTER 3: Physical Diagrams

166 SAP Sybase PowerDesigner

Standard data
type

DBMS-specific
physical data type

Content Length

Date & Time datetime / DATE Date and time —

Timestamp timestamp / TIMESTAMP System date and time —

Other Data Types
The following other data types are available:

Standard data
type

DBMS-specific
physical data type

Content Length

Binary binary / RAW Binary strings Maximum

Long Binary image / BLOB Binary strings Maximum

Bitmap image / BLOB Images in bitmap format (BMP) Maximum

Image image / BLOB Images Maximum

OLE image / BLOB OLE links Maximum

Other — User-defined data type —

Undefined undefined Undefined. Replaced by the de-
fault data type at generation.

—

Controlling Non-Divergence from a Domain
You can specify which of the properties of your domains must be applied to the columns or
entity attributes associated with the domain, and which propeties are permitted to diverge.

1. Select Tools > Model Options to open the Model Options dialog box. In a PDM, click the
Column and Domain sub-category in the left-hand Category pan:

CHAPTER 3: Physical Diagrams

Data Modeling 167

2. Select the checkboxes of the column or entity attribute properties that you want to prevent
from diverging from those defined in the domain:

• Data type - Data type, length, and precision.
• Check (see Setting Data Profiling Constraints on page 94).
• Rules (see Business Rules (CDM/LDM/PDM) on page 184).
• Mandatory – Mandatory property of the column or attribute.
• [PDM] Profile (see Populating Columns with Test Data on page 98).

3. Click OK to close the dialog and return to your model.

You are prompted to apply domain properties to columns or attributes currently attached to
the domain. If you click OK, the properties of these objects are modified in order to be
consistent with the properties of their domain.

If you subsequently modify properties of the domain that are not selected for enforcement,
you will be prompted to apply your changes to the columns or attributes attached to the
domain. To choose not to apply your changes, deselect the appropriate checkbox.
Properties that are enforced may not be deselected and if you only modify enforced
properties, then this dialog will not be displayed.

CHAPTER 3: Physical Diagrams

168 SAP Sybase PowerDesigner

Note: Properties specified as non-divergent are read-only in lists and property sheets for
associated columns and attributes. If you want to modify a non-divergent column or
attribute property, you must detach the column or attribute from its domain.

Sequences (PDM)
Sequences are auto-incremented columns that allow you to define complex incrementations.
Sequences are available for selection from the Sequence list on the General tab of column
property sheets. Sequences are not supported by all DBMSs.

Note: If you generate a CDM or OOM from your PDM, then the data types of table columns
attached to sequences are converted to serial numerical data types for entity properties or class
attributes with the format NO%n, where n indicates the length of the data type.

Creating a Sequence
You can create a sequence from the Browser or Model menu.

Note: If your model's DBMS does not support sequences and contains auto-incremented
columns then, if you change to a DBMS that does support sequences, one will be created for
each auto-incremented column. When changing from a DBMS that supports sequences to one
that does not, sequences are converted into auto-incremented columns.

1. Select Model > Sequences to open the List of Sequences, and click the Add a Row tool.
Then click the Properties tool to open the property sheet of the new sequence.

Alternatively, you can create a sequence by right-clicking the model (or a package), and
selecting New > Sequence.

2. Enter an appropriate name for the sequence and then click the Physical Options or
Physical Options (Common) tab and enter any DBMS-specific options.

CHAPTER 3: Physical Diagrams

Data Modeling 169

The following example shows a sequence created in Sybase SQL Anywhere to represent
the months in a year when quarterly reports are published.

For information about working with physical options, see Physical Options (PDM) on
page 88.

3. Click OK to save the sequence and return to your model.

Assigning a Sequence to a Column
You can select a sequence from the Sequence list on the General tab of a column property
sheet. You must enable sequences with the Rebuild Triggers command.

1. Open the property sheet of a column with a numeric data type, and select a sequence in the
Sequence list on the General tab.

2. Click OK to save the change and return to your model.

3. Select Tools > Rebuild Objects > Rebuild Triggers to open the Rebuild Triggers dialog
(see Rebuilding Triggers on page 125).

4. Click the Selection tab and select the tables containing the column to which you have
assigned the sequence.

5. Click OK to rebuild the triggers and enable the sequence on the column.

CHAPTER 3: Physical Diagrams

170 SAP Sybase PowerDesigner

Sequence Properties
To view or edit a sequence's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Owner Specifies the user who is the owner of the object. This is usually its creator. Use the
tools to the right of the list to create, browse for, or view the properties of the
currently selected user.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Physical Options / Physical Options (Common) - lists the physical options (see Physical
Options (PDM) on page 88) that control the incrementation of the sequence. For
information about these options, see your DBMS documentation.

Abstract Data Types (PDM)
An abstract data type (ADT) is a user-defined data type which can encapsulate a data set and
functions that can be performed on the data. Abstract data types are not supported by all
DBMSs.

For example you could create an abstract data type for the Gregorian calendar to read and write
roman numerals and convert dates between the Julian and Gregorian calendars.

If your model contains abstract data types of type JAVA, you can link them to Java classes in
an OOM to model and review the Java class properties (see Linking an Abstract Data Type to a
Java Class on page 174).

CHAPTER 3: Physical Diagrams

Data Modeling 171

Creating an Abstract Data Type
You can create an abstract data type from the Browser or Model menu.

1. Select Model > Abstract Data Types to open the List of Abstract Data Types, and click
the Add a Row tool. Then click the Properties tool to open the property sheet of the new
type.

Alternatively, you can create an abstract data type by right-clicking the model (or a
package), and selecting New > Abstract Data Type.

2. Select the type for the ADT in the Type list on the General tab. Depending on your DBMS,
you can choose from:

• Array - Fixed length collection of elements. For example, VARRAY (Oracle 8 and
higher).

• List - Open collection of objects. For example, TABLE (Oracle 8 and higher).

• Java - Java class. For example, JAVA (Sybase SQL Anywhere and SAP® Sybase®

Adaptive Server® Enterprise).
• Object - Contains lists of attributes and procedures. For example, OBJECT or SQLJ

OBJECT (Oracle 8 and higher).

• Structured - Contains a list of attributes. For example, NAMED ROW TYPE (Informix
9.x and higher).

3. [for object and structured types] Click the Attributes tab and create any appropriate
attributes.

4. [for object types] Click the Procedures tab and create any appropriate procedures.

5. Click OK to return to your model.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Abstract Data Type Properties
To view or edit an abstract data type's properties, double-click its Browser or list entry. The
property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Physical Diagrams

172 SAP Sybase PowerDesigner

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the = button
to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field, or
add stereotypes to the list by specifying them in an extension file.

Type Specifies the kind of the abstract data type (see Creating an Abstract Data Type on
page 172), which will change the other properties that are available.

Owner Specifies the user who is the owner of the object. This is usually its creator. Use the
tools to the right of the list to create, browse for, or view the properties of the currently
selected user.

Authorization [objects] Specifies the Invoker Right attribute used for DDL generation.

Supertype [objects] Specifies the parent type from which the type is derived, and from which it
can inherit the procedures.

Final/Ab-
stract

[objects] Mutually exclusive. If Final, the abstract data type cannot be used as
supertype by another abstract data type. If Abstract, the abstract data type cannot be
instantiated.

Data type/
Length/Preci-
sion

[tables, varrays] Specify the data type of the abstract data type.

Size [arrays] Specifies the size of the abstract data type array.

Java class/
Java data

[SQLJ objects] Specify the name of an external Java class to which the SQLJ object
points (see Linking an Abstract Data Type to a Java Class on page 174) and the
mapping interface (CustomDatum, OraData or SQLData).

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

The following tabs are also available:

• Attributes - [object and structured types] Use the Add a Row tool to create appropriate
attributes, specifying a Name, Code, Data Type, and, if appropriate, select the
Mandatory (M) check box.

CHAPTER 3: Physical Diagrams

Data Modeling 173

• Procedures - [object types] Use the Add a Row tool to create appropriate procedures,
specifying a Name and Code, and, if appropriate, selecting the Final (F), Static (S) and/or
Abstract (A) check boxes.

Note: An object abstract data type with a supertype can inherit non-final procedures. Use
the Inherit Procedure tool to select a non-final procedure from a parent abstract data
type.

Linking an Abstract Data Type to a Java Class
You can link an abstract data type in a PDM to a Java class in an OOM open in the Workspace
to access the properties of the Java class within the PDM.

Note: If you reverse engineer Java classes from a database into an OOM (see Object-Oriented
Modeling) before reverse-engineering the tables and other database objects into a PDM, then
the Java classes that are reverse engineered into the PDM are created as abstract data types of
type JAVA and linked to the appropriate classes in the OOM (if it remains open in the
Workspace).

1. Create an abstract data type and select Java from the Type list.

2. Click the Select tool to the right of the Class field to open a selection dialog listing all the
Java classes that are available for linking.

3. Select a Java class and click OK to link it to the abstract data type. The class name is
displayed in the abstract data type property sheet Class field. Click the Properties tool to
the right of this field to open the Java class property sheet.

References (PDM)
A reference is a link between a parent table and a child table, which defines a referential
integrity constraint between column pairs for a primary or alternate key and a foreign key, or
between user-specified columns. Each column pair is linked by a join, and each reference can
contain one or more joins. Each value in the child table column is equal to the value in the
parent table column.

In the following example, the STORE parent table is linked to the SALE child table by a
reference containing a join which links the primary key column STORE ID (the referenced
column) to the foreign key column STORE ID (the referencing column).

CHAPTER 3: Physical Diagrams

174 SAP Sybase PowerDesigner

Creating a Reference
You can create a reference that links a primary key, or alternate key, to a foreign key, or user-
specified columns in both parent and child tables.

You can create a reference in any of the following ways:

• Use the Reference tool in the Toolbox.
• Select Model > References to access the List of References, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > Reference.

Note: You can control whether the creation of a reference automatically creates a join between
a primary key in the parent table to a foreign key in the parent table (default) or whether the join
columns are left undefined with the Default link on creation model option (see Automatic
Reuse and Migration of Columns on page 178).

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Reference Properties
To view or edit a reference's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Parent table/
Child table

Specify the parent table (which contains the primary or alternate key or a user-
selected column) and the child table (which contains the foreign key or a user-
selected column) linked by the reference. Use the tools to the right of the Parent
table field to create, browse for, or view the properties of the currently selected
table.

CHAPTER 3: Physical Diagrams

Data Modeling 175

Property Description

Parent role/ Child
role

Specify the roles of the parent and child tables in the reference (for example
Contains and Is contained by.

Generate Specifies to generate the reference in the database.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Joins Tab
The Joins tab lists the joins defined between parent and child table columns. Joins can link
primary or alternate and foreign keys, or any user-specified columns.

Note: You can control the default joins created using the Default link on creation and Auto-
migrate columns model options (see Automatic Reuse and Migration of Columns on page
178).

On this tab, you can either:

• Select a key from the parent table in the Parent key field on which to base the join to
autopopulate the list with its associated parent and child columns. If necessary, you can
modify the specified child columns.

• Specify <None> in the Parent key field and specify your own column pairs on which to
base the join using the following tools:

Tool Description

Reuse Columns - Create a join by matching parent and child columns that share the
same code and data type.

Migrate Columns - First specify columns in the Parent Table Column column and
then click this tool to migrate them to foreign key columns in the child table. If the
columns do not exist in the child table, they are created.

Cancel Migration - Remove any columns migrated to the child table.

 Insert/Add a Row - Inserts a row before the selected row in the list or at the end of the
list to specify another column to join on.

Note: Select the Auto arrange join order check box to sort the list by the key column order or
deselect it to re-arrange the columns using the arrow buttons. If this option is not available, to
enable it, add the EnableChangeJoinOrder item to the Reference category in the
DBMS definition file and set the value to YES (see Customizing and Extending
PowerDesigner > DBMS Definition Files).

CHAPTER 3: Physical Diagrams

176 SAP Sybase PowerDesigner

Integrity Tab
Referential integrity governs data consistency between primary or alternate keys and foreign
keys by dictating what happens when you update or delete a value or delete a row in the parent
table. The Integrity tab contains the following properties:

Property Description

Constraint name Specifies the name of the referential integrity constraint. Maximum length is
254 characters. If you edit this name, the User-defined button will be de-
pressed. To return to the default name, click to release this button.

Implementation Specifies how referential integrity will be implemented. You can choose be-
tween:

• Declarative- Referential integrity constraints are defined for particular
references. When the reference is generated the target DBMS evaluates
the reference validity and generates appropriate error messages.

• Trigger - Referential integrity constraints are implemented by triggers
based on the integrity constraints defined in the reference property sheet.
The trigger evaluates reference validity and generates appropriate user-
defined error messages.

Cardinality Indicates the minimum and maximum number of instances in a child table
permitted for each corresponding instance in the parent table. The following
values are available by default:

• 0..* - A parent can have zero or more children.

• 0..1 - A parent can have zero or one children.

• 1..* - A parent can have one or more children.

• 1..1 – A parent must have exactly one child

Alternately, you can enter your own integer values in one of the following
formats (using * or n to represent no limit):

• x..y - A parent can have between x and y children. For example: 2..n
– There must be at least 2 children.

• x - A parent can have exactly x children. For example: 10 - There must be

exactly 10 children.

• x..y, a..b - A parent can have between x and y or between a and b

children. For example: 1..2, 4..n – There must be one, two, four or

more children.

CHAPTER 3: Physical Diagrams

Data Modeling 177

Property Description

Update/Delete con-
straint

Specifies how updating a key value in the parent table will affect the foreign
key value in the child table. Depending on the implementation and DBMS,
you can choose between:

• None - No effect on the child table.

• Restrict - Values in the parent table cannot be updated or deleted if one or
more matching child values exists.

• Cascade - Updates or deletions of parent table values are cascaded to
matching values in the child table.

• Set null - Updates or deletions of parent table values set matching values
in the child table to NULL.

• Set default - Updates or deletions of parent table values set matching
values in the child table to the default value.

Mandatory parent Specifies that each foreign key value in the child table must have a corre-
sponding key value, in the parent table.

Change parent al-
lowed

Specifies that a foreign key value can change to select another value in the
referenced key in the parent table.

Check on commit [SQL Anywhere® only] Verifies referential integrity only on commit, instead
of after row insertion. You can use this feature to control circular dependen-
cies.

Cluster Specifies that the reference constraint is a clustered constraint (for those
DBMSs that support clustered indexes).

Automatic Reuse and Migration of Columns
When you create a reference, PowerDesigner can automatically reuse an appropriate existing
column in the child table as the foreign key column and migrate the primary key column in the
parent table to create a foreign key column in the child table.

1. Select Tools > Model Options to open the Model Options dialog box and select the
Reference sub-category in the left-hand Category pane.

2. Select the following options as appropriate:

CHAPTER 3: Physical Diagrams

178 SAP Sybase PowerDesigner

Option Function

Auto-reuse col-
umns

Enables the reuse of columns in a child table as foreign key columns when
creating references if the following conditions are satisfied:
• The child column has the same code as the migrating primary key

column.
• The child column is not already a foreign key column. If you want to

reuse a child table column that is already a foreign key column, you
must do this manually from the Joins tab of the reference property
sheet.

• Data types are compatible.

Auto-migrate col-
umns

Enables the automatic migration of primary key columns from the parent
table as foreign key columns to the child table when creating references.
Select the following column property checkboxes as appropriate to specify
parent column properties to migrate:
• Domains (see Domains (CDM/LDM/PDM) on page 162)
• Check (see Setting Data Profiling Constraints on page 94).
• Rules (see Business Rules (CDM/LDM/PDM) on page 184).
• Last position - Adds migrated columns at the end of the table column

list. If this option is not selected, migrated columns are inserted between
key columns and other columns which implies that a child table must be
dropped and recreated each time you add a reference and modify an
existing database.

Note: During intermodel generation, whether or not this option is selected,
any selected column property is migrated from the PK to the FK.

Default link on cre-
ation

Specifies whether reference joins are automatically created:
• Primary key – Automatically create joins between the parent table

primary key and a child table foreign key. If the Auto-migrate columns
option is not selected then you must manually specify foreign key col-
umns on the reference Joins tab.

• User-defined – Does not create joins. You must manually select col-
umns on the reference Joins tab.

3. Click OK to close the dialog and return to your model.

The following table shows the results of migrating and reusing primary key columns to a child
table that contains a matching child table column, and where that child table column is already
a foreign key column for another table:

CHAPTER 3: Physical Diagrams

Data Modeling 179

Options
Selected

Matching Child Table Column
Exists

Matching Child Table Column Is
Already a FK Column

[Original
tables be-
fore migra-
tion]

The child table contains a matching col-
umn for one of the primary key columns:

The child table contains a matching col-
umn that is already a foreign key column
for another table:

[default]
Auto-reuse
and Auto-
migrate

Col_1 is reused and Col_2 is created: T1_Col_1 and Col_2 are created:

Auto-mi-
grate only

T1_Col_1 and Col_2 are created: T1_Col_1 and Col_2 are created:

Auto-reuse
only

Col_1 is reused but Col_2 is not created: No columns are reused or created:

Neither No column is reused or created No columns are reused or created:

Note:

• By default, only the properties of the primary key column are migrated to the foreign key.
If the primary key column is attached to a domain, the domain will not be migrated to the
new foreign key column unless the Enforce non-divergence model option is selected (see
Controlling Non-Divergence from a Domain on page 167).

• If you have selected the Auto-migrate columns model option and you modify a reference
attach point then you will migrate primary keys in the parent table to foreign keys in the
child table, delete unused foreign key columns, and modify the reference join. If you delete
the parent primary key column then you will delete the corresponding foreign key and
reference join.

CHAPTER 3: Physical Diagrams

180 SAP Sybase PowerDesigner

For more information about other reference model options, see Reference Model Options on
page 15.

Rebuilding References
You can rebuild references at any time to create default references between PK columns in one
table and columns with identical code and data type in another table. Rebuilding is not
possible between two tables with PK columns. Rebuilding references can be useful following
the reverse engineering of a database in which not all the references could be reverse
engineered.

1. Select Tools > Rebuild Objects > Rebuild References, and specify a mode.

• Delete and Rebuild - All existing references are deleted, and new references built based
on matching key columns.

• Preserve - All existing references are kept, and new references are built based on new
matching key columns.

2. [optional] Click the Selection tab to specify which tables you want to rebuild references
for. By default, all tables are selected.

To rebuild references between tables in a package, select the package from the list at the
top of the tab. To rebuild references between tables in a sub-package, select the Include
Sub-Packages tool next to the list, and then select a sub-package from the dropdown list.

3. Click OK. If you selected the Delete and Rebuild mode, a confirmation box asks you to
confirm your choice. Click Yes to confirm the deletion and rebuild of the selected
references.

Displaying Information on Reference Symbols
You can display the cardinality, referential integrity, join, table roles and other properties on
the source and destination ends and in the center of a reference. To set display preferences for
references, select Tools > Display Preferences, and select the Reference sub-category in the
left-hand Category pane.

The notation for referential integrity and constraints on reference symbols is as follows:

Referential integrity Constraint Types

• upd(constraint) - Update

• del(constraint) - Delete

• cpa - Change Parent Allowed

• () - None

• (R) - Restrict

• (C) - Cascade

• (N) - Set null

• (D) - Set default

The Cardinality attribute displays the minimum and maximum number of instances in a child
table that can appear for each corresponding instance in the parent table as follows:
min..max

CHAPTER 3: Physical Diagrams

Data Modeling 181

In this example, the source of the reference symbol shows a cardinality of 1..n (one or more
children is acceptable), and the child table role (Does) and the destination of the reference
shows the parent table role (Is Done By). The center of the symbol shows the two primary
keys that form the join, as well as the referential integrity (updates and deletions are restricted
and change parent is allowed:

For information about changing the notation of references, see Setting PDM Model Options
on page 13. For detailed information about working with display preferences, see Core
Features Guide > Modeling with PowerDesigner > Diagrams, Matrices, and Symbols >
Display Preferences.

View References (PDM)
A view reference is a link between a parent table or view and a child table or view, which
defines the joins between the parent and child columns. View references are not generated to
the database

If you create a new view from existing views, the joins defined on these views influence the
WHERE statement in the SQL query of the new view.

In this example, French_Store is a view of the Store table with a view reference defining
a join between Store_ID in the table and STORE_STORE_ID in the view.
Customer_Orders is a view of the Orders table with a view reference defining a join
between Order_No in the table and ORDER_ORDER_N in the view:

You can create a view reference between the two views to define a join between
Customer_Order.ORDER_ORDER_STORE and
French_Store.STORE_STORE_ID:

CHAPTER 3: Physical Diagrams

182 SAP Sybase PowerDesigner

If you were then to create a view from the French_Store and Customer_Order views,
the SELECT order of the new view will take into account the join defined between the views to
retrieve only those orders sent to French stores.

Creating a View Reference
You can create a view reference between two views or between a table and a view. A view
reference cannot link two tables.

You can create a view reference in any of the following ways:

• Use the Reference tool in the Toolbox.
• Select Model > View References to access the List of View References, and click the Add

a Row tool.
• Right-click the model (or a package) in the Browser, and select New > View Reference.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 3: Physical Diagrams

Data Modeling 183

View Reference Properties
To view or edit a view reference's properties, double-click its diagram symbol or Browser or
list entry. The property sheet tabs and fields listed here are those available by default, before
any customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Parent/ Child Specify the parent and child tables or views linked by the reference. Use the tools
to the right of the list to create, browse for, or view the properties of the currently
selected table or view.

Parent role Specify the roles of the parent and child tables or views in the reference.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Joins Tab
The Joins tab lists the joins defined between parent and child table or views columns. You can
specify column pairs on which to base the join using the following tools:

Tool Description

Reuse Columns - Create a join by matching parent and child columns that share the same
code and data type.

 Insert/Add a Row - Inserts a row before the selected row in the list or at the end of the list to
specify another column to join on.

Business Rules (CDM/LDM/PDM)
A business rule can represent a government-imposed law, a customer requirement, or an
internal guideline. They may start as simple observations, such as "customers call toll-free
numbers to place orders", and develop into more detailed expressions during the design

CHAPTER 3: Physical Diagrams

184 SAP Sybase PowerDesigner

process such as what information a customer supplies when placing an order or how much a
customer can spend based on a credit limit.

Business rules complement your diagrams with information that is not easily represented
graphically, and can help guide the creation of a model. For example, the rule "an employee
belongs to only one division" can help you define the link between an employee and a division.
Business rules are generated as part of intermodel generation and can be further specified in
the generated model.

There are three ways to use business rules in a data model:

• Apply a business rule to a model object as part of its definition (see Attaching a Business
Rule to a Model Object on page 187).

• [PDM only] Create a server expression that can be generated to a database (see Creating
and Attaching a Constraint Rule on page 187).

• [PDM only] Insert a business rule expression in a trigger or stored procedure using
the .CLIENTEXPRESSION or .SERVEREXPRESSION macros (see Customizing and
Extending PowerDesigner > DBMS Definition Files > PDM Variables and Macros).

When creating business rules, you may find it helpful to ask the following kinds of question:

• Do any mandatory regulations impact my system?
• How can I clearly and concisely define the specifications for my project?
• Do any constraints limit my options?
• Is this rule a definition, fact, formula, or avalidation rule?

Creating a Business Rule
You can create a business rule from the Browser or Model menu, or from the Rules tab of an
object property sheet.

• Select Model > Business Rules to access the List of Business Rules, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Business Rule.
• Open the property sheet of the object to which you want to apply the rule, click the Rules

tab, and click the Create an Object tool.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Business Rule Properties
To view or edit a business rule's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 3: Physical Diagrams

Data Modeling 185

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Type Specifies the nature of the business rule. You can choose between:

• Constraint – a check constraint on a value. For example, "The start date should
be inferior to the end date of a project." In a PDM, constraint rules attached to
tables or columns are generated. If the DBMS supports multiple constraints,
constraint rules are generated as separate constraint statements with the name
of the rule.

• Definition – a property of the element in the system. For example; "A customer
is a person identified by a name and an address".

• Fact – a certainty in the system. For example, "A client may place one or more
orders".

• Formula – a calculation. For example, "The total order is the sum of all the
order line costs".

• Requirement – a functional specification. For example, "The model is de-
signed so that total losses do not exceed 10% of total sales".

• Validation – a constraint on a value. For example, "The sum of all orders for a
client must not be greater than that client's allowance". In a PDM, validation
rules attached to tables or columns are generated as part of the primary con-
straint for the table or column.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Expression - As you develop your model and analyze your business problem, you can
complete the rule by adding a technical expression. The syntax of expressions depends on
the target database, and each rule can include two types of expression:
• Server - Can be generated to a database. You can generate server expressions as check

parameters if they are attached to tables, domains, or columns
• Client - Used mainly for documentation purposes. However, you can insert both types

of expression into a trigger or a stored procedure

CHAPTER 3: Physical Diagrams

186 SAP Sybase PowerDesigner

Attaching a Business Rule to a Model Object
You can attach a business rule to a model object from the object's property sheet.

1. Open the object's property sheet and click the Rules tab.

2. Click the Add Objects tool to open a list of available business rules.

3. Select one or more business rules and click OK.

The business rules are attached to the object and appear on the list of business rules for the
object.

Note: When you attach a business rule to an object, it is marked as used in the model. You
can review which rules are used by opening the List of Business Rules and consulting the U
(Used) column.

4. Click OK to return to the model diagram.

Creating and Attaching a Constraint Rule
Validate and constraint business rules have their expressions generated as constaints for
DBMSs where this is supported. Validate rules can be reused by multiple objects, but
constraint rules can only be used once, and will be generated as a separate constraint for
DBMSs that support multiple constraints.

Support for the generation of constraint rules to your database is controlled by the following
items in the General category of your DBMS definition file:

• EnableCheck - Permits the generation of constraints to the database.
• EnableMultiCheck - Permits the generation of check parameters (see Setting Data

Profiling Constraints on page 94) and validation business rules as a single constraint,
followed by the generation of each constraint business rule as a separate constraint in the
order in which they are attached to the table. If this option is not enabled, then check
parameters and all constraint and validation rules are concatenated into a single constraint
expression.

• UniqueConstName - Requires that all validate and constraint rules have unique codes.

You can preview the constraints that will be generated on the Preview tab of the table property
sheet.

When reverse engineering, the constraint order is respected, with the first constraint retrieved
to the Check tab of the table property sheet, and each subsequent constraint retrieved as a
constraint business rule attached to the table

1. Create a business rule, enter a name and code, select Constraint in the Type list, and then
click the Expression tab

2. Enter an expression on the Server sub-tab:

CHAPTER 3: Physical Diagrams

Data Modeling 187

3. Click OK to save your changes and return to the model.

4. Open a table or column property sheet and click the Rules tab.

5. Click the Add Objects tool to open a list of available business rules, select your constraint
business rule from the selection list and click OK to attach it.

6. [optional] Click Apply to confirm the attachment of the rule and then click the table
property sheet Preview tab to verify that the constraint has been created in the script.

In the following example, multiple constraints are defined on the Project table:
• Check parameter (in the Check tab of the table) - Verifies that the customer number is

different from the employee number.
• Validation business rules - PROJ_NUM to check that the column project number is not

null and EMP_NUM to check that the employee number is not null.

• Constraint business rule - DATE_CONSTY to check that the start date of the project is
inferior to the end date of the project.

CHAPTER 3: Physical Diagrams

188 SAP Sybase PowerDesigner

Lifecycles (PDM)
A lifecycle allows you to model the movement of data from expensive, rapid storage, through
various forms of cheaper slower storage as the data ages and access requirements diminish.
The period during which data remain in each kind of storage are modeled as phases, which are
associated with tablespaces.

Note: Data lifecycle modeling is supported for Sybase IQ v15.0 and higher.

You can attach any number of tables to a lifecycle, and create multiple lifecycles to provide
different speeds and/or methods for data aging. Each table can only be associated with one
lifecycle. A lifecycle can be:

• Age-based - Data moves through the lifecycle in named partitions, remaining in each
phase only for the specified retention period. The partitions move through the lifecycle in a
predictable fashion and will become candidates for purging at the end of the lifecycle's
total retention period.

• Access-based - Tables (and any associated indexes) move through the lifecycle based on
the permitted idle time for each phase, which specifies how long a table can remain in the
phase without being accessed. Tables must remain in the lifecycle for (as a minimum) the
total retention period, and their movement to the end of the lifecycle can be delayed
indefinitely if the data they contain continue to be accessed.

The following diagram illustrates an age-based lifecycle covering a period of five years, which
is divided into three phases:

CHAPTER 3: Physical Diagrams

Data Modeling 189

• Phase 1 (3 months) - high performance (tier-1) storage for new data that is frequently
accessed.

• Phase 2 (9 months) - nearline (tier-2) storage for data from the last year.
• Phase 3 (48 months) - historical (tier-3) storage for data that is infrequently accessed but

which must be retained.

The data is packaged in partitions (P1, P2, and P3), which each contain one month of data:

PowerDesigner can generate all the necessary scripts to automate all this data movement. In
the example above, scripts will be generated for every month of the lifecycle. At the point
illustrated in the picture, the scripts will:

• Move partition P1 from the tablespace associated with Phase 1 to the tablespace associated
with Phase 2.

• Create a new partition, P4, to begin collecting new table rows in the tablespace associated
with Phase 1.

As the data ages, scripts will additionally treat the movement of data aged more than one year
from the tablespace associated with Phase 2 to the tablespace associated with Phase 3.

Once a lifecycle is put in place, you can generate scripts to perform data movement
indefinitely. Additional scripts are generated to regularly purge data that arrive at the end of
their lifecycle.

Modeling a Lifecycle
To correctly model a lifecycle you must define the lifecycle and its phases, and then associate
your tables to it.

1. Create a lifecycle in any of the following ways:

• Select Model > Lifecycles (or Database > Information Lifecycle Management >
List of Lifecycles) to access the List of Lifecycles, and click the Add a Row tool.

• Right-click the model in the Browser, and select New > Lifecycle. Note that lifecycles
can only be created at the model level and not within packages.

2. Click the Properties tool to open the lifecycle property sheet and specify a name for the
lifecycle.

3. Click the Definition tab, and select the policy type:

CHAPTER 3: Physical Diagrams

190 SAP Sybase PowerDesigner

• Age-based - Data moves through the lifecycle in named partitions, based on the time
since the data was created. Specify a Start date and the Total retention period (the
length of time covered by the lifecycle).

• Access-based - Tables move through the lifecycle based on the time since the table was
last accessed. Specify a Total retention period, which is treated as the minimum total
period of time that a table's data must remain in the lifecycle.

4. Click the Create Phase tool to create as many phases as you need. Lifecycles often contain
three phases to manage the movement of data from high performance, through nearline, to
historical storage.

Note: Your phase will display a yellow warning overlay until it is completely defined.

5. Click on each phase in turn to open its property sheet (see Phases (PDM) on page 195).
Specify a name, retention period (or, for access-based lifecycles, idle period) and
tablespace to represent the physical storage in which the data is stored during this
phase.

For age-based lifecycles, you can assign data from an external database to the first phase of
your lifecycle and have that data loaded to your warehouse database for the second phase
(see Archiving Data From External Databases on page 198).

6. Open the property sheet for each of your tablespaces (see Tablespace and Storage
Properties on page 200) and enter any appropriate properties, including a value for the
cost per GB to be used when calculating cost savings.

When you have completed the definition of your phases and tablespaces, return to the
lifecycle property sheet and verify that the warning overlays on the phase buttons are no
longer present.

7. [age-based lifecycles] Enter a partition range to specify the length of time covered by each
table partition governed by the lifecycle. For example, a partition range of one month
means that each partition will contain one month's data.

8. In the Managed tables groupbox, select the tables you want to associate with the lifecycle.
For each table, specify the start date on which you want it to become subject to the
lifecycle, and enter an estimate for the initial number of rows and a percentage growth rate
to permit the calculation of cost savings.

9. [age-based lifecycles] You must, for each table, specify a column with a date datatype as
the partition key used to determine to which partition a row must be assigned. The partition
key can alternately be assigned on the Sybase IQ tab of the table property sheets.

10. [optional] Select the Cost savings analysis checkbox and then click the Refresh Cost
Savings Analysis tool to display a summary of the cost savings to be obtained by
managing your data with the lifecycle.

You can also view the detail of the cost savings by year for a single table on the Lifecyle tab
of the table property sheet (see Table Properties on page 76).

Note: If you intend to model multiple lifecycles, and/or want to confirm that all of your
tables are associated with a lifecycle, you may find it useful to visualize these associations

CHAPTER 3: Physical Diagrams

Data Modeling 191

in the form of a dependency matrix. To view the Lifecycle/Table Matrix, select Database >
Information Lifecycle Management > View Lifecycle/Table Matrix.

Generating Data Archiving Scripts to Implement your Lifecycle
Once you have modeled your lifecycles, you can instruct PowerDesigner to generate scripts to
automate the creation, movement, and purging of data through your lifecycle phases.

Before you generate your data movement scripts, ensure that you have completed all the steps
listed in Modeling a Lifecycle on page 190.

1. Select Database > Information Lifecycle Management > Generate Data Archiving
Scripts to open the Generate dialog.

2. Specify a directory in which to generate the scripts, and, optionally, select to check your
model before generation.

3. Click the Selection tab, and select the tables for which you want to generate data archiving
scripts.

4. [for age-based lifecycles] Click the Options tab, specify the start and end date for the
period for which you want to generate scripts. You can generate scripts for all or part of the
period covered by your lifecycle, and also to cleanup data created before the start date of
your lifecycle.

Note: For age-based lifecycles used to archive data from an external database, if you
specify a generation start date before the start date of a table associated with the lifecycle,
additional scripts will be generated to advance immediately older data created between the
generation start date and the table lifecycle start date to the appropriate stages of the
lifecycle.

5. [for age-based lifecycles] On the Options tab, specify the method for creating partitions.
You can choose between creating partitions:
• Individually, when the previous partition ends
• All at the beginning (default)

6. Click OK to begin the generation.

The scripts are generated in the specified directory and listed in the Results pane.

The following scripts are generated for age-based lifecyles, and should be run on the date
specified in the order specified by their numerical prefix. You can run the scripts manually
or use Sybase Control Center to automate this process:
• IQ.CreateRemoteServerAndLogin.date.sql - if you are achiving data

stored in an external database.
• One or more folders named yyyymmdd for each date on which scripts must be run

containing one or more of the following scripts:
• 01.IQ.CreateAndMovePartition.date.sql - one script per date on

which a data movement action is required between the start and end dates you
specify. For example, if you specify a start date of 01/01/2009 and an end date of
12/31/2009, a partition range of one month, and to create the partitions

CHAPTER 3: Physical Diagrams

192 SAP Sybase PowerDesigner

individually, then twelve scripts will be generated. The scripts should be run on the
dates included in their filenames.

• 02.IQ.PurgePartition.date.sql - one script per date on which a data
purge action is required for partitions arriving at the end of the lifecycle.

• 03.DB.DeleteSourceData.date.sql - if there is data to be purged in an
external database.

• OldData - if you have specified a generation start date earlier than your table start
dates, this folder will be created and will contain dated subfolders containing scripts to
create, move, and purge older data.

The following scripts are generated for access-based lifecyles:
• CreateProcedures.sql - creates procedures to test the idle time during which

tables have not been accessed and to move and/or delete them on demand. This script
should be run immediately to prepare the database for data movements called for by an
access-based lifecycle

• MoveData.sql - calls the procedures to test for and implement data movement
based upon the specified idle times using the current date on the IQ server. This script
should be scheduled to run regularly.

• DeleteData.sql - calls the procedure to test for and implement data purging based
upon the specified idle times and the specified minimum retention period using the
current date on the IQ server. You can schedule this script to run regularly or run it by
hand as needed.

Lifecycle Properties
To view or edit a lifecycle's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the
= button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

CHAPTER 3: Physical Diagrams

Data Modeling 193

Definition Tab
This tab contains all the properties necessary to define your lifecycle. The Policy group box
contains the following properties:

Property Description

Policy type Specifies the criteria used to advance data through the lifecycle. You can choose be-
tween:

• Age-based - where data are moved from phase to phase in named partitions de-
pending on the time since their creation.

• Access-base - where tables are moved from phase to phase depending on the time
since the data in the tables were last accessed.

Start date [age-based lifecycles only] Specifies the date from which you want the lifecycle to
manage data movement.

Total reten-
tion

Specifies the total length of time during which data is controlled by the lifecycle. For
example, if you specify a total retention of 5 years, the lifecycle will manage the
movement of each record from the moment of its creation until it has existed for 5
years.

For age-based lifecycles, the total retention time must be equal to the sum of all the
retention times of all the phases contained within the lifecycle.

For access-based lifecycles, the total retention time is used as the minimum total time
that the data must remain in the lifecycle.

Phases Lists the phases (see Phases (PDM) on page 195) associated with the lifecycle. You can
create phases using the Create a New Phase tool. Click on a phase to open its property
sheet.

Note: Your phase will display a yellow warning overlay until it is completely defined.

Partition
range

[age-based lifecycles only] Specifies the period of data to be contained in partitions for
tables governed by the lifecycle. For example, a partition range of one month means
that each partition will contain one month's data.

The Managed Tables group box lists the tables whose data are managed by the lifecycle. Use
the Add Objects and Create an Object tools to populate the list. If the lifecycle is used to
archive data in an external database, the choice of tables to attach is limited to the tables in the
external database, and the selected tables are generated to the warehouse PDM if they were not
already present.

The following properties must be completed for each table in order to correctly generate data
archiving scripts:

• Name and Code - to identify the table.

CHAPTER 3: Physical Diagrams

194 SAP Sybase PowerDesigner

• Start Date - [optional] Specifies the start date from which to generate the first partition.
• Initial Rows and Growth Rate - Specifies the number of rows that the table will start with,

and the percentage growth per year
• Partition Key - [age-based lifecycles] Specifies the column to use to determine to which

partition a row is assigned.

Click the Generate Data Archiving Script button to generate scripts to implement your
lifecycle (see Generating Data Archiving Scripts to Implement your Lifecycle on page 192).

Select the Cost Saving Analysis checkbox and then click the Refresh Cost Savings Analysis
tool to display a list of the cost savings to be obtained by managing data with the lifecycle. Use
the tools above the list to export the cost savings data to Excel or to print it.

Phases (PDM)
A phase defines the period of time that data governed by a lifecycle will be retained by a
particular tablespace.

Creating a Phase
You create phases on the Definition tab of a lifecycle using the Create Phase tool.

Phase Properties
To view or edit a phase's properties, double-click its Browser or list entry. The property sheet
tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator. The General tab contains the following properties:

Property Description

Name/
Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to non-tech-
nical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a com-
ment to provide more detailed information about the object. By default the code is
generated from the name by applying the naming conventions specified in the model
options. To decouple name-code synchronization, click to release the = button to the
right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field, or
add stereotypes to the list by specifying them in an extension file.

Retention/
Time unit

[age-based] Specifies the length of time that data will be retained in this phase.

Idle period/
Time unit

[access-based] Specifies the minimum length of time that the table must remain un-
accessed before it is moved to the next phase.

CHAPTER 3: Physical Diagrams

Data Modeling 195

Property Description

Source Specifies where the data to populate the phase is located. The default is the current
(warehouse) database. For the first phase only in an age-based lifecycle, you can
specify instead an external database (see Archiving Data From External Databases on
page 196), in which case you must also specify a data source to link to the PDM that
models the external database.

Tablespace [Current database only] Specifies the tablespace with which the phase is associated.
Select a tablespace from the list or click the tools to the right of this field to create a new
tablespace or open the property sheet of the currently selected one.

Data
Source

[External database only] Specifies the data source used to connect to the external
database. Click the Create tool to the right of this field to launch the Data Source
Wizard (see Linking an External Database via the Data Source Wizard on page 198) to
create a data source and apply the appropriate tables to the lifecycle.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

Archiving Data From External Databases
When developing an age-based lifecycle policy, you can assign data from an external database
modeled in another PDM to the first phase. At the end of the first phase the data will be loaded
from the external database to your warehouse.

In order to model external database data archiving, you must:

1. Create a PDM to model the external database.
2. Create a PDM to model the data warehouse.
3. Link the second PDM to the first through a data source.
4. Specify access parameters for the warehouse database and the external database on the

Database Connection and Data Movement (Lifecycle) tabs of the data source.
5. Create mappings between the external tables that contain the data to be archived and the

warehouse tables to which this data will be loaded.
6. Create a lifecycle in the warehouse PDM and create the first phase.
7. Set the Source of the first phase to External Database and specify the data source

through which you have connected the external database PDM.
8. Select the tables to attach to the lifecycle.

PowerDesigner provides various tools to help you create parts of this archiving environment:

• PDM-PDM model generation - can create the data warehouse PDM, the data source and
mappings (see Linking an External Database by Generation on page 197)

CHAPTER 3: Physical Diagrams

196 SAP Sybase PowerDesigner

• The Mapping Editor - can help you create (or modify) the mappings between the external
database and warehouse PDM tables (see Linking an External Database through the
Mapping Editor on page 197)

• The Data Source Wizard - can create the data source and table mapping, set the lifecycle
source for the first phase and attach tables to the lifecycle (see Linking an External
Database via the Data Source Wizard on page 198)

Linking an External Database by Generation
You can use the model generation mechanism to generate tables from your external database
to your warehouse PDM and create the required data source and mappings in your warehouse
PDM.

1. Create a PDM to model the external database containing the tables to be archived by the
lifecycle.

2. Select Tools > Generate Physical Data Model to open the PDM Generation Options
dialog.

3. On the General tab, choose whether you will create a new PDM to represent your
warehouse database or add the tables to be generated to an existing warehouse PDM.

4. On the Detail tab, ensure that the Generate mappings option is selected.

These mappings are used in the subsequent generation of the lifecycle to route the data to
be archived in the warehouse.

5. On the Selection tab, select the tables that contain the data you want to archive via the
lifecycle.

6. Click OK to begin the generation.

If you are adding the tables to an existing warehouse PDM, the Merge Models dialog will
open, allowing you to review the changes that will be made to it before clicking OK to
continue with the generation.

The selected tables are generated to the warehouse PDM, along with a data source object
and the appropriate mappings.

Note: For detailed information about model generation, see Chapter 7, Generating Other
Models from a Data Model on page 323. For information about using the Merge Models
dialog, see Core Features Guide > Linking and Synchronizing Models > Generating
Models and Model Objects.

Linking an External Database through the Mapping Editor
You can use the Mapping Editor to manually create (or modify) mappings between the
external database and warehouse tables that will be used to archive the data governed by the
lifecycle. This method can be useful when you have PDMs to represent your external and
warehouse databases and will be using non-standard mappings to load your data.

To open the Mapping Editor from your warehouse PDM, select Tools > Mapping Editor. If
you have no data sources defined in the model, the Data Source Wizard will open, and you

CHAPTER 3: Physical Diagrams

Data Modeling 197

should use it to define a data source pointing to the external database PDM, which will then be
opened in the Mapping Editor.

Note: For detailed information about using the Mapping Editor (and the Data Source Wizard)
see Core Features Guide > Linking and Synchronizing Models > Object Mappings.

Linking an External Database via the Data Source Wizard
The Data Source Wizard guides you through creating an external database data source in your
model, and to attach it and the tables to be managed to the first phase of your lifecycle

1. Create an age-based lifecycle policy (see Creating a Lifecycle on page 190), add a first
phase to it, and open the property sheet for this phase.

2. Set the retention period for the phase and set the Location property to External
database.

3. Click the Create tool to the right of the data source field to open the Data Source Creation
Wizard.

4. On the first page, select the PDM that represents your external database and then click
Next.

5. On the second page, select the tables that you want to associate with the lifecycle.

6. Click Finish to associate the selected tables with the lifecycle.

The wizard creates a data source in the warehouse PDM and associates it with the first
phase of the lifecycle. The selected tables are generated to the warehouse PDM if they
were not already present, and appropriate mappings are created between the tables in the
external database and those in the warehouse PDM.

Tablespaces and Storages (PDM)
Tablespaces and storages are generic objects used to represent physical locations (in named
partitions) of tables and indexes in a database or storage device.

• a tablespace is a partition in a database
• a storage is a partition on a storage device

For some DBMSs, a tablespace can use a specified storage in its definition.

The following table lists the DBMSs that use concepts that are represented by tablespaces and
storages in PowerDesigner:

DBMS Tablespace represents... Storage represents...

ADABAS NA NA

IBM DB2 UDB Com-
mon Server

tablespace

create tablespace
buffer pool

create bufferpool

CHAPTER 3: Physical Diagrams

198 SAP Sybase PowerDesigner

DBMS Tablespace represents... Storage represents...

IBM DB2 UDB for OS/
390

table space

create tablespace
storage group

create stogroup

Informix NA NA

Ingres NA NA

InterBase NA NA

Microsoft Access NA NA

Microsoft SQL Server NA filegroup

alter database add
filegroup...

MySQL NA NA

Oracle tablespace

create tablespace
storage structure (not physical
storage)

PostgreSQL NA NA

Sybase ASA database space

create dbspace
NA

Sybase ASE NA segment

sp-addsegment

Sybase AS IQ database space

create dbspace
NA

Teradata NA NA

Note: When tablespace or storage options are not applicable for a DBMS, the corresponding
model menu item is not available.

Creating a Tablespace or Storage
You can create a tablespace or storage from the Browser or Model menu.

• Select Model > Tablespaces (or Storages) to access the appropriate list, and click the Add
a Row tool

• Right-click the model (or a package) in the Browser, and select New > Tablespace (or
Storage)

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 3: Physical Diagrams

Data Modeling 199

Tablespace and Storage Properties
To view or edit a tablespace or storage's properties, double-click its Browser or list entry. The
property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the
= button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Cost tab
The Cost tab is available if data lifecycle modeling (see Lifecycles (PDM) on page 189) is
supported by your DBMS.

Property Description

Cost (per
GB)

Specifies the cost per GB of the storage represented by the tablespace

Currency Displays the currency to use for the cost per GB of storage. You can change the currency
by selecting Tools > Model Options and choosing a currency from the list on the Model
Settings page.

Other tabs
The following tabs are also available:

• Physical Options - lists all the physical options that can be applied to the tablespace or
storage (see Physical Options on page 88).

• Physical Options (Common) - lists the most commonly used physical options that can be
applied to the tablespace or storage.

Note: For detailed information about tablespace and storage options for a particular DBMS,
see its reference manual.

CHAPTER 3: Physical Diagrams

200 SAP Sybase PowerDesigner

Web Services (PDM)
Web services are applications stored on web servers that are accessed through standard web
protocols (HTTP, SOAP) and data formats (HTML, XML...), whatever the systems and
programming languages. PowerDesigner supports modeling for both the SOAP protocol, in
which queries are encapsulated into services, and HTTP, where operations are invoked
directly.

If you use web services to query databases, you no longer need database drivers. The
following example shows the result of an HTTP request for a database web service:

Web services comprise a set of operations, each of which contains a SQL query for retrieving
data from a database. Web parameters are the parameters which appear in the SQL statements,
and result columns display the results. These objects have no symbols, and appear only in the
Browser. Web services can be modeled for the following DBMSs:
• Sybase Adaptive Server Anywhere 9 and over
• Sybase Adaptive Server Enterprise 15 and over
• Sybase IQ12.6 and over
• IBM DB2 v8.1 and over - Document Access Definition Extension (DADX) files specify

Web services through a set of operations defined by SQL statements or Document Access
Definition (DAD) files, which specify the mapping between XML elements and DB2
tables (see Generating Web Services for IBM DB2 on page 209 and XML Modeling >
Working with XML and Databases > Generating a DAD File for IBM DB2.

You can test a Web service of type DISH or SOAP from within your model by right-clicking its
Browser entry and selecting Show WSDL. You can test a web service operation belonging to a

CHAPTER 3: Physical Diagrams

Data Modeling 201

Web service of another type by right-clicking the operation and selecting Test Web Service
Operation. Review the generated URL and then click OK to display the WSDL file (for
SOAP) or results (for RAW) in your Web browser.

You can import a Web service as a service provider into a Business Process Model (BPM) to
define the links between a concrete implementation of service interfaces and operations and
their abstract definition (see Business Process Modeling > Service Oriented Architecture
(SOA) > Service Providers (BPM)).

Creating a Web Service
You can create a web service from the Browser or Model menu.

• Select Model > Web Services to access the List of Web Services, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Web Service.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Web Service Properties
To view or edit a web service's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

In URIs, the name of the web service is used to access the web service, and
should not start with a slash nor contain two consecutive slashes.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

CHAPTER 3: Physical Diagrams

202 SAP Sybase PowerDesigner

Property Description

Local path Specifies the name prefixing the web service, which is by default, the name of
the web service. When several web services concern the same table, their local
path usually starts with the name of the table, followed by a slash and a specific
name identifying the query (e.g. Customer/List, Customer/Name). PowerDe-
signer treats HTTP web operations which share a local path as belonging to the
web service with that local path name. If you enter a path, the User-Defined
tool is depressed. Click the tool to release it and recover the original path.

Service type [ASA, ASE, and IQ only] Specifies the type of web service. A web service
invoked via an HTTP request can have a RAW, HTML or XML type. A web
service invoked in a SOAP request can have a SOAP or a DISH type:

• DISH - [ASA and IQ only] acts as a proxy for a group of SOAP services and
generates a WSDL (Web Services Description Language) file for each of
its SOAP services. When you create a DISH service, you must specify a
Name prefix on the Sybase tab (see Chapter 19, SAP Sybase SQL Any-
where on page 541) for all the SOAP services to which the DISH service
applies. PowerDesigner treats SOAP web services as Web operations (see
Web Operations (PDM) on page 204) of DISH web services.

• HTML – [ASA and IQ only] the result of the SQL statement or procedure is
formatted as an HTML document (with a table containing rows and col-
umns).

• RAW - the result of the SQL statement or procedure is sent without any
additional formatting.

• SOAP - [ASE only] generates a WSDL file.

• XML - the result of the SQL statement or procedure is sent in XML. By
default, the result is converted into XML RAW format.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Security Tab
This tab is available for ASA/SQL Anywhere and IQ only, and displays the following
properties:

Property Description

Secured connection If selected, only HTTPS connections are accepted. If cleared, both HTTP and
HTTPS connections are accepted

Required authoriza-
tion

If selected, all users must provide a name and a password. When cleared, a
single user must be identified

CHAPTER 3: Physical Diagrams

Data Modeling 203

Property Description

Connection User When authorization is required, you can select <None> or a list of user names.
When authorization is not required, you must select a user name. Default value
is <None>, which means all users are granted access

The following tabs are also available:

• Operations - Lists the Web operations associated with the Web service (see Web
Operations (PDM) on page 204).

• Sybase - [ASA/SQL Anywhere, ASE, and IQ] Includes Sybase-specific properties (see
Chapter 19, SAP Sybase SQL Anywhere on page 541)

• Namespaces - [IBM DB2] Lists the namespaces associated with the Web service,
including their prefix, URI and a comment. An XML Schema can be specified where
elements and data types used in web parameters and result columns are defined.

Web Operations (PDM)
A web operation allows you to define the SQL statement of a web service and to display its
parameters and result columns.

Creating a Web Operation
You can create a Web operation in the following ways:

• Open the Operations tab in the property sheet of a web service, and click the Add a Row
tool.

• Right-click a web service in the Browser, and select New > Web Operation.

Web Operation Properties
To view or edit a web operation's properties, double-click its Browser or list entry. The
property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator. The General tab contains the
following properties:

CHAPTER 3: Physical Diagrams

204 SAP Sybase PowerDesigner

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the = but-
ton to the right of the Code field.

In URIs, the name of the web operation comes after the name of the web service
followed by a slash, and should not start with a slash nor contain two consecutive
slashes.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field,
or add stereotypes to the list by specifying them in an extension file.

Web Service Code of the web service containing the web operation. Click the Properties tool to
open the web service property sheet

Owner [ASE 15 only] Specifies the owner of the operation.

Operation
Type

[IBM DB2 only] Specifies the type of operation. You can choose from the following:

• call - invokes a stored procedure with parameters and result columns for the web
operation

• query - retrieves relational data using the SQL select statement in the Imple-
mentation tab

• retrieveXML - retrieves an XML document from relational data. The mapping
of relational data to XML data is defined by a DAD file with SQL or RDB as
MappingType

• storeXML - stores an XML document as relational data. The mapping of XML
data to relational data is defined by a DAD file, with RDB as MappingType

• update - executes the SQL update statement with optional parameters. Param-
eters can be created from the Parameters tab in the web operation property sheet

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

The following tabs are also available:

• Implementation - Contains the SQL statement of the Web operation to select which data
you want to retrieve from the database. For DISH web services, SQL statements are
defined in the SOAP web services bearing their prefix name. For information about the
tools on this tab, see Writing SQL Code in PowerDesigner on page 281.

CHAPTER 3: Physical Diagrams

Data Modeling 205

• Security - [SQL Anywhere/IQ] Displays the following properties:

Property Description

Secured con-
nection

Requires an HTTPS connection.

Required au-
thorization

Requires users to provide a name and a password.

Connection
User

When authorization is required, you can select the default <None> (all users

are granted access), or a list of user names. When authorization is not required,
you must select a user name.

• Parameters - Lists the parameters associated with the Web operation, which are part of the
SQL statement defined on the Implementation tab (see Web Parameters (PDM) on page
206).

• Result Columns - Lists the result columns associated with the Web operation (see Web
Result Columns (PDM) on page 208).

• Sybase - [ASE] Displays Sybase-specific options (see Chapter 15, SAP Sybase Adaptive
Server Enterprise on page 479).

Web Parameters (PDM)
Web parameters are part of the SQL statement defined in the Implementation tab of a web
operation property sheet, and are listed on its Parameters tab.

Creating a Web Parameter
You can create a Web parameter in the following ways:

CHAPTER 3: Physical Diagrams

206 SAP Sybase PowerDesigner

• Open the Parameters tab in the property sheet of a Web operation, and click the Add a
Row tool. Alternatively, use the Add Parameters from SQL Implementation tool
(ASA, ASE, and IQ only) to display the parameters resulting from the reverse engineering
of the web service.

• Right-click a web operation in the Browser, and select New > Web Parameter.

Web Parameter Properties
To view or edit a web parameter's properties, double-click its Browser or list entry. The
property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator. The General tab contains the
following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the = but-
ton to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field,
or add stereotypes to the list by specifying them in an extension file.

Web operation Name of the web operation containing the web parameter.

Parameter type Select in if you want the web parameter to be an input parameter. Select in/out if you
want the web parameter to be both an input and output parameter. Select out if you
want the web parameter to be an output parameter.

Default value [ASE only] Specifies a default value for the parameter.

Data type [For IBM DB2] Select an XML schema data type from the list, or click the Select
Object tool to open a selection dialog box where you select a global element in an
XML model open in the workspace.

[For ASE] Select a datatype from the list.

Is element [IBM DB2 only] Checked and greyed when a global element is attached to a web
parameter.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

CHAPTER 3: Physical Diagrams

Data Modeling 207

Web Result Columns (PDM)
Result columns are part of the SQL statement defined in the Implementation tab of a web
operation property sheet, and are listed on its Result Columns tab. They belong to a table in
the target database.

Creating a Web Result Column
You can create a Web result column in the following ways:

• Open the Result Columns tab in the property sheet of a Web operation, and click the Add
a Row tool. Alternatively, use the Add Result Columns from Executing SQL Statement
tool to display the result columns resulting from the execution of the SQL statement in the
database.

• Right-click a web operation in the Browser, and select New > Result Column.

Web Result Column Properties
To view or edit a result column's properties, double-click its Browser or list entry. The
property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator. The General tab contains the
following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the code
is generated from the name by applying the naming conventions specified in the
model options. To decouple name-code synchronization, click to release the = but-
ton to the right of the Code field.

Data Type [IBM DB2] Select an XML schema data type from the list, or click the Select Object
tool to select a global element in an XML model open in the workspace.

Is element [IBM DB2] Checked and greyed when a global element is attached to a result
column.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple key-
words, separate them with commas.

Generating Web Services for Sybase ASA, ASE, and IQ
You can generate database web services to a script or to a live database connection.

1. Select Database > Generate Database to open the Database Generation dialog, and
specify the standard options, including whether you want to generate to a script or to a live
database connection (see Generating a Database from a PDM on page 290).

CHAPTER 3: Physical Diagrams

208 SAP Sybase PowerDesigner

2. [optional] Click the Options tab and click Web Service in the left-hand pane to display the
web service generation options. Change the default options as appropriate.

3. [optional] Click the Selection tab and select the Web Services subtab at the bottom of the
tab. Select the web services that you want to generate.

4. Click OK to begin the generation.

Note: For web services generated to a live database connection, you may have to refresh
the Web Services folder before they appear.

Generating Web Services for IBM DB2
For IBM DB2 Web services, PowerDesigner can generate Document Access Definition
Extension (DADX) files.

To enable the DADX generation extensions in your model, select Model > Extensions, click
the Attach an Extension tool, select the DADX file (on the General Purpose tab), and click
OK to attach it.

1. Select Tools > Extended Generation to open the Generation dialog with DADX selected
in the Targets tab.

2. Click the Select a Path tool to the right of the Directory field, and specify a path for the
DADX files.

3. Click the Selection tab, and select the web services for which you want to generate a
DADX file.

CHAPTER 3: Physical Diagrams

Data Modeling 209

4. Click OK to begin generation.

When generation is complete, the Result dialog displays the paths of the DADX files.

5. [optional] Select the path of a DADX file and click Edit to display the DADX file in the
editor window.

CHAPTER 3: Physical Diagrams

210 SAP Sybase PowerDesigner

6. Click Close in the Result dialog box.

You can now use the DADX files for SOAP requests in IBM DB2 UDB web services
Object Runtime Framework (WORF).

CHAPTER 3: Physical Diagrams

Data Modeling 211

Reverse Engineering Web Services
You can reverse engineer Web services from a Sybase ASA, ASE, and IQ database to a PDM.
You can reverse engineer web services into a new or existing PDM from a script or live
database connection via the Database Reverse Engineering dialog box.

For general information about database reverse engineering, see Reverse Engineering a
Database into a PDM on page 312. The following list shows how Web service objects in these
databases are treated in PowerDesigner:

• Database HTTP web services with a common local path are grouped as PowerDesigner
web operations of an HTTP web service with the specified local path:

Software Web service name Type Web operation name

Database Customers/Name HTML —

PowerDesigner Customers HTML Name

• Database HTTP web services without a common local path are grouped as PowerDesigner
web operations of an HTTP web service named raw, xml or html:

Software Web service name Type Web operation name

Database Customers HTML —

PowerDesigner html HTML Customers

• Database SOAP web services with a prefix name are considered as PowerDesigner web
operations of a DISH web service with the prefix name:

Software Web service name Type Web operation name

Database DishPrefix/Name SOAP —

PowerDesigner Customers (with Dish-
Prefix as prefix)

DISH Name

• Database SOAP web services without a prefix name are considered as PowerDesigner web
operations of a DISH web service without a prefix name:

Software Web service name Type Web operation name

Database Customers SOAP —

PowerDesigner WEBSERVICE_1 DISH Customers

• Database DISH web services with or without a prefix name are considered identically in
PowerDesigner:

Software Web service name Type Web operation name

Database Customers DISH —

CHAPTER 3: Physical Diagrams

212 SAP Sybase PowerDesigner

Software Web service name Type Web operation name

PowerDesigner Customers (with or
without DishPrefix as
prefix)

DISH —

CHAPTER 3: Physical Diagrams

Data Modeling 213

CHAPTER 3: Physical Diagrams

214 SAP Sybase PowerDesigner

CHAPTER 4 Multidimensional Diagrams

A multidimensional data diagram provides a graphical view of your datamart or data
warehouse database, and helps you identify the facts and dimensions that will be used to build
its cubes.

Note: Multi-dimensional diagrams are generally generated from a physical diagram (see
Generating Cubes on page 217). To manually create a multidimensional diagram in an
existing PDM, right-click the model in the Browser and select New > Multidimensional
Diagram. To create a new model, select File > New Model, choose Physical Data Model as
the model type and Multidimensional Diagram as the first diagram, and then click OK.

Numeric values or measures such as sales total, budget, and cost, are the facts of the business,
while the areas covered by the business, in terms of geography, time, people and products, are
the dimensions of the business. A multidimensional diagram shows the facts, surrounded by
their dimensions, which will be used to populate cubes for enterprise information
management, query and analysis tool and enterprise reporting. In the following example, the
Sales fact is surrounded by the Product, Time, Customer, and Store dimensions to allow sales
data to be analyzed by any of these criteria:

Data Modeling 215

PowerDesigner maps facts and dimensions to their original operational database tables to
enable population of the cubes (see Operational to Warehouse Data Mappings on page
227).

Multidimensional Diagram Objects
PowerDesigner supports all the objects necessary to build multidimensional diagrams.

Object Tool Symbol Description

Fact Group of measures related to aspects of the busi-
ness and used to carry out a decision support in-
vestigation. See Facts (PDM) on page 219.

Dimension Axis of investigation of a cube (time, product, ge-
ography). See Dimensions (PDM) on page 222.

Attribute [none] [none] Used to qualify a dimension. For example, attribute
Year qualifies the Date dimension. See Fact and
Dimension Attributes (PDM) on page 223.

Measure [none] [none] Variable linked to a fact, used as the focus of a
decision support investigation. See Measures
(PDM) on page 220.

Hierarchy [none] [none] Organizational structure that describes a traversal
pattern though a dimension. See Hierarchies
(PDM) on page 225.

Association Association that relates a fact to a dimension. See
Associations (PDM) on page 226.

CHAPTER 4: Multidimensional Diagrams

216 SAP Sybase PowerDesigner

Identifying Fact and Dimension Tables
When designing a data warehouse, you will need to identify which of your tables and views
represent facts (containing numerical values such as sales, revenue, or budget figures), and
which dimensions (providing ways of aggregating these figures, such as by region, date,
customer, or product). PowerDesigner can retrieve the multidimensional type of a table by
analyzing the references attached to it, where child tables or views are identified as candidate
facts and parent tables or views are identified as candidate dimensions.

1. Select Tools > Multidimension > RetrieveMultidimensional Objects to open the
Multidimensional Objects Retrieval Wizard.

2. Specify the objects to be retrieved. By default both Facts and Dimensions will be retrieved.

Note: If you are working with Sybase AS IQ v12.0 or higher, you can also select to
automatically rebuild join indexes after retrieving multidimensional objects. For more
information, see Join Indexes (IQ/Oracle) on page 534.

3. [optional] Click the Selection tab to specify which tables to consider as candidates for fact
or dimension tables. By default, all tables except those that have their Dimensional type
set to Exclude are selected (see Table Properties on page 76).

4. Click OK to retrieve the multidimensional objects.

The selected tables are assigned a multidimensional type, and a type icon is displayed in
the upper left corner of each table's symbol:

Fact table Dimension table

5. [optional] Review the types identified by PowerDesigner and, if necessary, modify them
by changing the value of the Dimensional type field on the General tab of the table or
view property sheet.

Generating Cubes
PowerDesigner can generate facts and dimensions from your operational tables to create a
multidimensional diagram representing a cube. The generation will create mappings between
your operational and warehouse objects as the basis for extraction scripts or in preparation for
generating a BusinessObjects universe.

You can prepare and preview the multidimensional types of your operational tables and views
before launching this wizard either manually by setting the Dimensional type value (see
Table Properties on page 76) or have PowerDesigner retrieve them (see Identifying Fact and

CHAPTER 4: Multidimensional Diagrams

Data Modeling 217

Dimension Tables on page 217). You can generate a BusinessObjects universe at any time (see
Generating a BusinessObjects Universe on page 301).

1. Select Tools > Multidimensional Objects > Generate Cube to open the wizard.

2. Select the package where you want to create the multidimensional diagram, and then click
Next. For DBMSs, such as SAP HANA®, which require that you create your
multidimensional objects in a package, PowerDesigner will force the creation of a new
package if none exist.

3. Select the operational tables from which to build your facts and dimensions, and then click
Next. By default, PowerDesigner selects all the tables in your model.

4. Select the operational tables from which to build your facts, and then click Next. By
default, PowerDesigner selects tables with only outgoing references as facts.

5. Select the operational tables from which to build dimensions around each of your facts,
and then click Next. By default, PowerDesigner selects all the tables with direct or indirect
references from your fact tables and will merge second and higher order references into the
dimensions created from first order references.

6. Select fact table columns as measures or attributes of your facts, and then click Next. By
default, PowerDesigner selects non-key numeric columns as measures and all other
columns as attributes. You can drag and drop columns between the Candidates, Measures,
and Attributes trees as necessary

7. Review the list of facts that will be generated, and click Finish to begin the generation.

The Generate Cubes Wizard creates a multidimensional object containing facts and
dimensions to represent your cubes:

CHAPTER 4: Multidimensional Diagrams

218 SAP Sybase PowerDesigner

Modifying Cubes
PowerDesigner can update your facts and dimensions in a multidimensional diagram
representing a cube to reflect changes made to your operational tables or simply to add or
remove dimensions, measures, or attributes.

1. Select the cube fact in the multidimensional diagram you want to update, and then select
Tools > Modify Cube to open the wizard.

2. Select the operational tables from which to build dimensions around your facts, and then
click Next. By default, PowerDesigner selects only those tables that you have previously
selected as dimensions.

3. Select fact table columns as measures or attributes of your facts, and then click Next. By
default, PowerDesigner reproduces your previous choices and you can drag and drop
columns between the Candidates, Measures, and Attributes trees as necessary.

4. Review the objects that will be generated, and click Finish to begin the generation.

The wizard updates your multidimensional diagram to reflect your new choices.

Facts (PDM)
Facts define the focus of the data to be analyzed and how it is calculated. Examples of facts are
sales, costs, employee hours, revenue, budget. Facts contain a list of measures, which
represent the actual numerical data, and are surrounded by dimensions, which control how
that data will be analyzed.

Creating a Fact
Facts are generally generated from operational database tables or views. You can also
manually create facts from the Toolbox, Browser, or Model menu.

• Use the Fact tool in the Toolbox.
• Select Model > Facts to access the List of Facts, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Fact.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

CHAPTER 4: Multidimensional Diagrams

Data Modeling 219

Fact Properties
To view or edit a fact's properties, double-click its diagram symbol or Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Mapped to Specifies the operational database table or view to which the fact is mapped. Click
the Properties tool to open the source table property sheet. To map a manually-
created fact to its source, open the Mapping Editor and drag and drop the table or
view from the Source pane onto the fact in the Target pane (see Operational to
Warehouse Data Mappings on page 227).

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Attributes - specifies attributes that are used by the fact for joins to dimensions or as the
basis of calculated measures (see Fact and Dimension Attributes (PDM) on page 223).

• Measures - lists the measures manipulated by the fact (see Measures (PDM) on page
220).

• Measures - lists the dimensions linked to the fact in the cube (see Dimensions (PDM) on
page 222).

• Mapping - specifies the mapping between the fact and the source operational database
table or view (see Operational to Warehouse Data Mappings on page 227).

Measures (PDM)
Measures are mapped to numerical columns in fact tables and aggregate the values in the
columns along the selected dimensions. For example, when a user chooses to view the sales in
Texas in 2012 Q1, the calculation is performed via the Sales measure using a Sum aggregation.
Measures can also be based on operations or calculations or derived from other measures.

CHAPTER 4: Multidimensional Diagrams

220 SAP Sybase PowerDesigner

Creating a Measure
Measures are generally generated from numerical columns in operational database tables. You
can also manually create measures from the property sheet of, or in the Browser under, a fact.

• Open the Measures tab in the property sheet of a fact, and click the Add a Row tool.
• Right-click a fact in the Browser, and select New > Measure.

Measure Properties
To view or edit a measure's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Parent Specifies the parent fact of the measure. Click the Properties tool to open the fact
property sheet.

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Type Specifies how the value of the measure is determined. In each case, specify the
aggregation function to be applied to values and then choose from:

• Standard - the measure is mapped to the operational table column speci-

fied in the Mapped to field. To map a manually-created measure to its source,
open the Mapping Editor and drag and drop the column from the Source pane
onto the measure in the Target pane (see Operational to Warehouse Data
Mappings on page 227).

• Calculated - the measure is calculated from an expression specified in

the Formula expression field. Enter the expression directly or click the Edit
with SQL Editor tool (see Writing SQL Code in PowerDesigner on page
281).

• Restricted - the measure is derived from the measure specified in the

Base measure field, and constrained by the values specified for each of the
fact or dimension attributes added to the list.

CHAPTER 4: Multidimensional Diagrams

Data Modeling 221

Property Description

Hidden Specifies that the measure will not be visible to business users consulting the
cube.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Dimensions (PDM)
A dimension is an axis of analysis in a multidimensional structure. Typical dimensions for a
sales database include time, region, department, and product.

A dimension is made of an ordered list of attributes that share a common semantic meaning in
the domain being modeled. For example a Time dimension often contains attributes that allow
you to analyze data by year, quarter, month, and week:

A dimension may have one or more hierarchies representing different ways of traversing the
list of attributes.

Creating a Dimension
Dimensions are generally generated from operational database tables or views. You can also
manually create a dimension from the Toolbox, Browser, or Model menu.

• Use the Dimension tool in the Toolbox.
• Select Model > Dimensions to access the List of Dimensions, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > Dimension.

For general information about creating objects, see Core Features Guide > Modeling with
PowerDesigner > Objects.

Dimension Properties
To view or edit a dimension's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 4: Multidimensional Diagrams

222 SAP Sybase PowerDesigner

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Mapped to Specifies the operational database table or view to which the dimension is
mapped. Click the Properties tool to open the source table property sheet. To
map a manually-created dimension to its source, open the Mapping Editor and
drag and drop the table or view from the Source pane onto the dimension in the
Target pane (see Operational to Warehouse Data Mappings on page 227).

Default Hierarchy Specifies the dimension hierarchy used by default for a cube to perform its
consolidation calculations. The hierarchy used by the cube is defined on the
cube dimension association

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Attributes - lists the attributes that qualify the dimension (see Fact and Dimension
Attributes (PDM) on page 223).

• Hierarchies - lists the hierarchies used to organize the dimension attributes (see
Hierarchies (PDM) on page 225).

• Mapping - defines the mapping between the current dimension and a table or a view in a
data source.

Fact and Dimension Attributes (PDM)
Fact attributes are used by the fact for joins to dimensions or as the basis of calculated
measures. Dimension attributes provide data points around which the data in a fact can be
interrogated.

Creating an Attribute
Fact and dimension attributes are generally generated from operational database table
columns. You can also manually create attributes as follows:

• Open the Attributes tab in the property sheet of a fact or dimension, and click the Add a
Row or Insert a Row tool. The Add Attributes tool allows you to reuse an attribute from
another fact or dimension.

• Right-click a fact or dimension in the Browser, and select New > Attribute.

CHAPTER 4: Multidimensional Diagrams

Data Modeling 223

Attribute Properties
To view or edit an attribute's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

Property Description

Parent Specifies the parent fact or dimension of the attribute.

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Type Specifies how the value of the attribute is determined:

• Standard - the attribute is mapped to the operational table column

specified in the Mapped to field. To map a manually-created attribute to its
source, open the Mapping Editor and drag and drop the column from the
Source pane onto the attribute in the Target pane (see Operational to
Warehouse Data Mappings on page 227).

• Calculated - the attribute is calculated from an expression specified

in the Formula expression field. Enter the expression directly or click the
Edit with SQL Editor tool (see Writing SQL Code in PowerDesigner on
page 281).

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Dimension attributes include the following tab:

• Detail Attributes - Lists other dimension attributes that are use to further define the
attribute. Click the Add Detail Attributes tool to select attributes defined on the current
dimension to further define the attribute.
In the following example, attributes Cust_Name and Cust_Address are used as detail
attributes for Cust_ID:

CHAPTER 4: Multidimensional Diagrams

224 SAP Sybase PowerDesigner

Hierarchies (PDM)
A hierarchy defines a path for navigating through the attributes in a dimension when drilling
down or rolling up through the data. For example, a time dimension with the attributes Year,
Quarter, Month, Week, Day may have a default hierarchy listing all these periods in order and
a second hierarchy which includes only Year, Month, and Week.

Creating a Hierarchy
You can create a hierarchy from the property sheet of, or in the Browser under, a dimension.

• Open the Attributes tab in the property sheet of a dimension, select the attributes you want
to include in your dimension and then click the Create Hierarchy tool.

• Open the Hierarchies tab in the property sheet of a dimension, click the Add a Row tool,
then click the Properties tool and add your attributes manually.

• Right-click a dimension in the Browser, and select New > Hierarchy.

Hierarchy Properties
To view or edit a hierarchy's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 4: Multidimensional Diagrams

Data Modeling 225

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Dimension Specifies the parent dimension of the hierarchy.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Attributes - lists the attributes associated with the hierarchy in ascending order of
specificity (see Fact and Dimension Attributes (PDM) on page 223).

Associations (PDM)
An association connects a fact to the dimension that defines it.

For example, the Sale fact is linked to the Time dimension by the Sale - Time
association to analyze sales through the time dimension.

There can be only one association between a fact and a dimension.

Creating an Association
Associations are generally generated from operational database references. You can manually
create associations from the Toolbox, Browser, or Model menu.

• Use the Association tool in the Toolbox.

CHAPTER 4: Multidimensional Diagrams

226 SAP Sybase PowerDesigner

• Select Model > Associations to access the List of Associations, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Association.

Association Properties
To view or edit an association's properties, double-click its diagram symbol or Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Fact Specifies the fact at the origin of the association. Use the tools to the right of the list
to create, browse for, or view the properties of the currently selected fact.

Dimension Specifies the destination dimension of the association. Use the tools to the right of
the list to create, browse for, or view the properties of the currently selected
dimension.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Reference Specifies the reference upon which the association is based. Click the Properties
tool to view the properties of the selected reference.

Hierarchy Specifies the default hierarchy used by the cube for the consolidation calculation.
Click the Properties tool to view the properties of the selected hierarchy.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Operational to Warehouse Data Mappings
Data warehousing requires the extraction, transformation, and loading of data from
operational systems to a data warehouse database. You can create mappings between
operational and data warehouse data and from the data warehouse data and OLAP cubes. To
review or edit these mappings, open your multidimensional diagram, and then select Tools >
Mapping Editor.

You can model operational and data warehouse data structures in PDMs, and specify
mappings between the operational data sources and the data warehouse to generate extraction
scripts to populate the data warehouse with operational data. In this kind of relational-to-
relational mapping, operational tables are mapped to data warehouse tables with a type of fact
or dimension, and operational columns are mapped to warehouse columns.

CHAPTER 4: Multidimensional Diagrams

Data Modeling 227

The Generate Cube wizard automatically creates mappings between source tables and facts
and dimensions and you can modify these or manually create mappings between these objects:

The Select sub-tab displays the SQL statement used to select data in the data source. The
Generate Cube Data wizard uses this SQL statement to fill the text files used to populate cubes
in an OLAP database.

Generating Data Warehouse Extraction Scripts
You can model operational and data warehouse data structures in PDMs, and specify
mappings between the operational data sources and the data warehouse to generate extraction
scripts to populate the data warehouse with operational data.

In this kind of relational-to-relational mapping, operational tables are mapped to data
warehouse tables with a type of fact or dimension, and operational columns are mapped to
warehouse columns.You can generate a script file for each data source, you can also select the
tables in the data source which select orders will be generated in the script file. The
extraction scripts list all the select orders defined in the table mappings.

1. In the Physical Diagram, select Database > Generate Extraction Scripts:

CHAPTER 4: Multidimensional Diagrams

228 SAP Sybase PowerDesigner

2. Specify a destination directory for the generated file, and select the Check Model option if
you want to verify the PDM syntax before generation.

3. [optional] Click the Options tab and specify any appropriate options:

Option Description

Title Specifies to insert the database header and the name of the tables before each
select query.

Encoding Specifies the encoding format. You should select the format that supports the
language used in your model and the database encoding format.

Character
Case

Specifies the case to use in the generated file.

No Accent Specifies to remove any accents from generated characters.

4. [optional] Click the Selection tab, and select the tables for which you want to generate
extraction scripts.

5. Click OK to generate the script files in the specified directory. The name of the script is
identical to the name of the data source.

Generating Cube Data
You can map physical tables (including those of type dimension or fact) to cube dimensions or
cube measures in OLAP databases, and use these mappings to generate cube data in text files
to be loaded by OLAP engines. When you use the Rebuild Cubes command to create cubes

CHAPTER 4: Multidimensional Diagrams

Data Modeling 229

and dimensions from fact and dimension tables, mappings between source tables and OLAP
objects are automatically created.

In a PDM multidimensional diagram, each fact is associated with a query. There is one fact per
mapping and per data source. The query defined on a fact is used to extract data from a data
warehouse or operational database to populate the cubes in the OLAP database. The link
between the data warehouse database and the OLAP database is a relational to
multidimensional mapping.

1. In the multidimensional diagram, select Tools > Generate Cube Data.

2. Specify a destination directory for the generated file, and select any appropriate options in
the Options tab:

Option Description

Header Specifies to include the name of the attribute at the beginning of the generated
text file

Extension Specifies the extension of the generated text file.You can choose either .txt
and .csv.

Separator Specifies the separator to use between columns. The default is , (comma).

Delimiter Specifies the character to delimit string values. The default is " (double-quote).

Encoding Specifies the encoding format. You should select the format that supports the
language used in your model and the database encoding format.

CHAPTER 4: Multidimensional Diagrams

230 SAP Sybase PowerDesigner

Option Description

Character
Case

Specifies the case to use in the generated file.

No Accent Specifies to remove any accents from generated characters.

3. Select the facts and data sources for which you want to generate a file from the sub- tabs in
the Selection tab.

4. Click OK.

The generated files are stored in the destination directory you have defined.
PowerDesigner produces one file for each selected fact and each selected data source,
named by concatenating the names of the fact and the data source, and containing the
following fields:

Field Details

Dimension Lists the attributes of the cube

Member Lists the attribute values

Data fields Contains the values stored in the fact measures

CHAPTER 4: Multidimensional Diagrams

Data Modeling 231

CHAPTER 4: Multidimensional Diagrams

232 SAP Sybase PowerDesigner

CHAPTER 5 Checking a Data Model

The data model is a very flexible tool, which allows you quickly to develop your model
without constraints. You can check the validity of your Data Model at any time.

A valid Data Model conforms to the following kinds of rules:

• Each object name in a data model must be unique
• Each entity in a CDM must have at least one attribute
• Each relationship in a LDM must be attached to at least one entity
• Each index in a PDM must have a column

Note: We recommend that you check your data model before generating another model or a
database from it . If the check encounters errors, generation will be stopped. The Check model
option is enabled by default in the Generation dialog box.

You can check your model in any of the following ways:

• Press F4, or
• Select Tools > Check Model, or
• Right-click the diagram background and select Check Model from the contextual menu

The Check Model Parameters dialog opens, allowing you to specify the kinds of checks to
perform, and the objects to apply them to. The following sections document the Data Model
-specific checks available by default. For information about checks made on generic objects
available in all model types and for detailed information about using the Check Model
Parameters dialog, see Core Features Guide > Modeling with PowerDesigner > Objects >
Checking Models.

Abstract Data Type Checks (PDM)
PowerDesigner provides default model checks to verify the validity of abstract data types.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Data Modeling 233

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Abstract Data
Type code maxi-
mum length

The code of the ADT is longer than the maximum allowed by the DBMS.

• Manual correction: Reduce the length of the code
• Automatic correction: Reduces the code to a permissible length

Instantiable ob-
ject type must
have attributes
and no abstract
procedures

If an abstract data type of type Object (or SQLJ Object) is instantiable (Abstract
option not checked), then it must have attributes and no abstract procedure.

• Manual correction: Define at least one attribute in the ADT Attributes tab and
clear the Abstract option in the procedures property sheet

• Automatic correction: None

Abstract object
type must not
have tables based
on it

If an abstract data type of type Object (or SQLJ Object) is not instantiable
(Abstract option checked), then it must not have tables based on it.

• Manual correction: Set the Based on property to <None> in the tables prop-
erty sheet

• Automatic correction: None

Abstract Data Type Procedure Checks (PDM)
PowerDesigner provides default model checks to verify the validity of abstract data type
procedures.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

234 SAP Sybase PowerDesigner

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Abstract Data
Type procedure
code maximum
length

The code of the ADT procedure is longer than the maximum allowed by the
DBMS.

• Manual correction: Reduce the length of the code
• Automatic correction: Reduces the code to a permissible length

Procedure cannot
have the same
name as an attrib-
ute

An abstract data type procedure cannot have the same name as an attribute.

• Manual correction: Change the name of the ADT procedure
• Automatic correction: None

Abstract data type
procedure defini-
tion empty

An abstract data type procedure must have a definition.

• Manual correction: Create an ADT procedure definition in the Definition tab
of the ADT procedure property sheet

• Automatic correction: None

Inconsistent re-
turn type

If the abstract data type procedure is a function, a map or an order, you should
define a return data type for the function, map or order.

• Manual correction: Select a return data type in the Return data type list
• Automatic correction: None

Association Checks (CDM)
PowerDesigner provides default model checks to verify the validity of associations.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

Data Modeling 235

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Number of links
>= 2

An association is isolated and therefore does not define a relationship between
entities.

• Manual correction: Define at least two links between the isolated association
and one or several entities.

• Automatic correction: None.

Number of links =
2 with an identifi-
er link

An identifier link introduces a dependency between two entities. An association
with this type of link must be binary.

• Manual correction: Delete the unnecessary links or clear the Identifier check
box for a link.

• Automatic correction: None.

Number of identi-
fier links <= 1

An identifier link introduces a dependency between two entities. There can only
be one identifier link between two entities otherwise a circular dependency is
created.

• Manual correction: Clear the Identifier check box for one of the links.
• Automatic correction: None.

Absence of prop-
erties with identi-
fier links

An association with an identifier link cannot have any properties.

• Manual correction: Move the association properties into the dependent entity
(the one linked to the association with an identifier link).

• Automatic correction: None.

Bijective associa-
tion between two
entities

There are bijective associations between two entities when a two-way one to one
association between the entities exist. This is equivalent to a merge of two enti-
ties.

• Manual correction: Merge the entities or modify the cardinality links.
• Automatic correction: None.

CHAPTER 5: Checking a Data Model

236 SAP Sybase PowerDesigner

Check Description and Correction

Maximal cardin-
ality links

An association with more than two links can only have links with a maximum
cardinality greater than one.

• Manual correction: Change the maximum cardinality of such links to be
greater than 1.

• Automatic correction: None.

Reflexive identi-
fier links

An identifier link introduces a dependency between two entities. An association
with this type of link cannot therefore be reflexive.

• Manual correction: Change the relationship between the entities or clear the
Identifier check box for a link.

• Automatic correction: None.

Name uniqueness
constraint be-
tween many-to-
many associa-
tions and entities

A many-to-many association and an entity cannot have the same name or code.

• Manual correction: Change the name or code of the many-to-many associ-
ation or the name or code of the entity. If you do not, PDM generation will
rename the generated table.

• Automatic correction: None.

Association Checks (PDM)
PowerDesigner provides default model checks to verify the validity of associations.

Check Description and Correction

Existence of hier-
archy

An association must have a hierarchy specified in order to perform the consoli-
dation calculation.

• Manual correction: Select a hierarchy in the Hierarchy list in the association
property sheet

• Automatic correction: None

CHAPTER 5: Checking a Data Model

Data Modeling 237

Column Checks (PDM)
PowerDesigner provides default model checks to verify the validity of columns.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Column code
maximum length

The column code length is limited by the maximum length specified in the
DBMS definition (MaxLen entry, in the Objects > Column category) or in the
naming conventions of the model options.

• Manual correction: Modify the column code length to meet this requirement
• Automatic correction: Truncates the code length to the maximum length

specified in the DBMS definition

Domain diver-
gence

Divergence is verified between columns, domains, and data types. Various
checks and attributes are also examined. One or more of the Enforce non diver-
gence model options must be selected.

• Manual correction: Select one or more of the Enforce non divergence model
options to enforce non divergence

• Automatic correction: Restores divergent attributes from domain to column
(domain values overwrite column values)

Column mandato-
ry

In some DBMS, the columns included in a key or a unique index should be
mandatory.

• Manual correction: Select the Mandatory check box in the column property
sheet

• Automatic correction: Makes the column mandatory

CHAPTER 5: Checking a Data Model

238 SAP Sybase PowerDesigner

Check Description and Correction

Detect inconsis-
tencies between
check parameters

The values entered in the check parameters tab are inconsistent for numeric and
string data types: default does not respect minimum and maximum values, or
default does not belong to list of values, or values in list are not included in
minimum and maximum values, or minimum is greater than maximum value.
Check parameters must be defined consistently.

• Manual correction: Modify default, minimum, maximum or list of values in
the check parameters tab

• Automatic correction: None

Precision > Maxi-
mum length

The data type precision should not be greater than the length. Note that some
DBMS accept a precision higher than the length.

• Manual correction: Make the data type length greater than the precision
• Automatic correction: None

Undefined data
type

A model should not contain columns with undefined data type, all columns
should have a defined data type.

• Manual correction: Select a data type in the column property sheet
• Automatic correction: None

Foreign key col-
umn data type and
constraint param-
eters divergence

Primary/alternate and foreign key columns involved in a join should have con-
sistent data types and constraint parameters.

• Manual correction: Modify foreign key data types and constraint parameters
to make them consistent

• Automatic correction: Parent column overwrites existing data type and con-
straint parameters in the foreign key column

Column with se-
quence not in a
key

Since a sequence is used to initialize a key, it should be attached to a column that
is part of a key. This applies to those DBMS that support sequences.

• Manual correction: Attach the sequence to a column that is part of a key
• Automatic correction: None

Auto-incremen-
ted column with
data type not nu-
meric

An auto-incremented column must have a numeric data type.

• Manual correction: Change the column data type
• Automatic correction: Changes data type to numeric data type

Auto-incremen-
ted column is for-
eign key

A foreign key column should not be auto-incremented.

• Manual correction: Deselect the Indentity check box in the column property
sheet

• Automatic correction: None

CHAPTER 5: Checking a Data Model

Data Modeling 239

Check Description and Correction

Missing compu-
ted column ex-
pression

A computed column should have a computed expression defined.

• Manual correction: Add a computed expression to the column in the Details
tab of the column property sheet

• Automatic correction: None

Invalid mapping
from source col-
umn

A column in a table managed by a lifecycle policy in which the first phase is
associated with an external database must not be mapped to more than one
column in the corresponding table in the external database.

• Manual correction: Remove the additional mappings.
• Automatic correction: None

Data type com-
patibility of map-
ped columns

A column in a table managed by a lifecycle policy in which the first phase is
associated with an external database must be mapped to a column with the same
data type in the corresponding table in the external database.

• Manual correction: Harmonize the data types in the source and target col-
umns.

• Automatic correction: None

Existence of map-
ping for mandato-
ry columns

A mandatory column in a table managed by a lifecycle policy in which the first
phase is associated with an external database must be mapped to a column in the
corresponding table in the external database.

• Manual correction: Map the mandatory column to a column in the external
database.

• Automatic correction: None

Cube Checks (PDM)
PowerDesigner provides default model checks to verify the validity of cubes.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

240 SAP Sybase PowerDesigner

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of asso-
ciation

A cube must have at least one association with a dimension.

• Manual correction: Create an association between the cube and a dimension
• Automatic correction: None

Existence of fact A cube must be associated to a fact.

• Manual correction: Click the Ellipsis button beside the Fact box in the cube
property sheet, and select a fact from the List of Facts

• Automatic correction: None

Duplicated asso-
ciation with the
same dimension

A cube cannot have more than one association with the same dimension.

• Manual correction: Delete one of the associations
• Automatic correction: None

Database Checks (PDM)
PowerDesigner provides default model checks to verify the validity of databases.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

CHAPTER 5: Checking a Data Model

Data Modeling 241

Check Description and Correction

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Database code
maximum length

The code of the database is longer than the maximum allowed by the DBMS.

• Manual correction: Reduce the length of the code
• Automatic correction: Reduces the code to a permissible length

Database not used The database you have created is not used in the model.

• Manual correction: Delete the database or apply the database as a physical
option to a table, an index, a key, a column, a storage, a tablespace or a view
(Options tab of the object property sheet)

• Automatic correction: None

Database Package Checks (PDM)
PowerDesigner provides default model checks to verify the validity of database packages.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

CHAPTER 5: Checking a Data Model

242 SAP Sybase PowerDesigner

Check Description and Correction

Database package
name and code
maximum length

The database package name and code length is limited by the maximum length
specified in the DBMS definition and in the naming conventions of the model
options.

• Manual correction: Modify the name/code length to meet this requirement
• Automatic correction: Truncates the name/code length to the maximum

length specified in the DBMS definition (at Objects > DB Package > Max-
Len)

Existence of
package sub-ob-
ject

A database package must have a number of sub-objects defined in order to be
correctly modeled.

• Manual correction: Create one or more of the relevant object on the appro-
priate tab of the database package property sheet:
• Procedures (or use existing stored procedures and duplicate them in the

database package)
• Cursors
• Variables
• Types
• Exceptions

• Automatic correction: None

Database Package Sub-Object Checks (PDM)
PowerDesigner provides default model checks to verify the validity of database package
cursors, exceptions, procedures, types, and variables.

Check Description and Correction

Name/Code contains
terms not in glossary

[if glossary enabled] Names and codes must contain only approved terms
drawn from the glossary.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - None.

Name/Code contains
synonyms of glossary
terms

[if glossary enabled] Names and codes must not contain synonyms of glos-
sary terms.

• Manual correction - Modify the name or code to contain only glossary
terms.

• Automatic correction - Replaces synonyms with their associated glos-
sary terms.

CHAPTER 5: Checking a Data Model

Data Modeling 243

Check Description and Correction

Name/Code unique-
ness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or

code.

Package sub-object
definition empty

[cursors, procedures, types] These sub-objects must have a definition.

• Manual correction: Create the definition in the Definition tab of the
sub-object's property sheet

• Automatic correction: None

Check for undefined
return types

[cursors, procedures] These sub-objects must have a return data type.

• Manual correction: Select a return data type in the subobject's property
sheet

• Automatic correction: None

Existence of parameter [cursors, procedures] These sub-objects must contain parameters for input
values.

• Manual correction: Create one or several parameters in the Parameters
tab of the sub-object's property sheet

• Automatic correction: None

Undefined data type [variables] Variables must have a data type.

• Manual correction: Select a data type in the variable property sheet
• Automatic correction: None

Data Format Checks (CDM/LDM/PDM)
PowerDesigner provides default model checks to verify the validity of data formats.

Check Description and Correction

Empty expression Data formats must have a value entered in the Expression field.

• Manual correction: Specify an expression for the data format.
• Automatic correction: None

CHAPTER 5: Checking a Data Model

244 SAP Sybase PowerDesigner

Data Item Checks (CDM)
PowerDesigner provides default model checks to verify the validity of data items.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Data item not
used

There are unused data items. These are useless for PDM generation.

• Manual correction: To use a data item, add it to an entity. If you do not need an
unused data item, delete it to allow PDM generation.

• Automatic correction: None.

Data item used
multiple times

There are entities using the same data items. This can be tolerated if you defined
this check as a warning.

• Manual correction: Take care to ensure consistency when defining data item
properties.

• Automatic correction: None.

Detect differences
between data item
and associated
domain

There is a divergence between data items and associated domains. This can be
tolerated if you defined this check as a warning.

• Manual correction: Ensure consistency when defining data item properties
• Automatic correction: Restores divergent attributes from domain to data

items (domain values overwrite data item values).

CHAPTER 5: Checking a Data Model

Data Modeling 245

Check Description and Correction

Detect inconsis-
tencies between
check parameters

The values entered in the check parameters page are inconsistent for numeric and
string data types: default does not respect minimum and maximum values, or
default does not belong to list of values, or values in list are not included in
minimum and maximum values, or minimum is greater than maximum value.
Check parameters must be defined consistently.

• Manual correction: Modify default, minimum, maximum or list of values in
the check parameters page

• Automatic correction: None.

Precision > maxi-
mum length

The data type precision should not be greater than or equal to the length.

• Manual correction: Make the data type length greater than or equal to the
precision.

• Automatic correction: None.

Undefined data
type

Undefined data types for data items exist. To be complete, a model should have
all its data items data types defined.

• Manual correction: While undefined data types are tolerated, you must select
data types for currently undefined data types before you can generate a PDM.

• Automatic correction: None.

Invalid data type Invalid data types for data items exist. To be complete, a model should have all its
data types for data items correctly defined.

• Manual correction: While tolerated, you must select valid data types for
currently non-valid data types to generate the PDM.

• Automatic correction: None.

Data Source Checks (PDM)
PowerDesigner provides default model checks to verify the validity of data sources.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

246 SAP Sybase PowerDesigner

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of
physical data
model

A data source must contain at least one physical data model in its definition.

• Manual correction: Add a physical data model from the Models tab of the
property sheet of the data source.

• Automatic correction: Deletes data source without physical data model.

Data source con-
taining models
differing DBMS
types

The models in a data source should share the same DBMS since they represent a
single database.

• Manual correction: Delete models with different DBMS or modify the
DBMS of models in the data source.

• Automatic correction: None

Unsupported
source models

Each lifecycle policy can only manage one external database, so any data sources
defined (and the models they reference) must all point to the same database.

• Manual correction: Remove any data sources pointing to other databases.
• Automatic correction: None

Default Checks (PDM)
PowerDesigner provides default model checks to verify the validity of defaults.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

Data Modeling 247

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Default code
maximum length

The default code length is limited by the maximum length specified in the DBMS
definition (MaxLen entry, in the Objects > Default category).

• Manual correction: Modify the default code length to meet this requirement
• Automatic correction: Truncates the default code length to the maximum

length specified in the DBMS definition

Default value
empty

You must type a value for the default, this value is used during generation.

• Manual correction: Type a value in the Value box of the default property
sheet

• Automatic correction: None

Several defaults
with same value

A model should not contain several defaults with identical value.

• Manual correction: Modify default value or delete defaults with identical
value

• Automatic correction: None

Dimension Checks (PDM)
PowerDesigner provides default model checks to verify the validity of dimensions.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

248 SAP Sybase PowerDesigner

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of at-
tribute

A dimension must have at least one attribute.

• Manual correction: Create an attribute in the Attributes tab of the dimension
property sheet

• Automatic correction: None

Existence of hier-
archy

A dimension must use at least one hierarchy.

• Manual correction: Create a hierarchy in the Hierarchies tab of the dimension
property sheet

• Automatic correction: None

Dimension have
duplicated hierar-
chies

Dimensions should not have duplicated hierarchies, that is to say hierarchies
organizing identical attributes.

• Manual correction: Remove one of the duplicated hierarchies
• Automatic correction: None

Dimension with-
out a default hier-
archy

A dimension should have a default hierarchy.

• Manual correction: Select a hierarchy in the Default Hierarchy list of the
dimension property sheet

• Automatic correction: None

Dimension map-
ping not defined

A dimension should be mapped to tables or views in an operational model in
order to be populated by data from this model.

• Manual correction: Map the dimension to a table or a view. You may need to
create a data source before you can create the mapping

• Automatic correction: Destroys the mapping for the dimension. This re-
moves the data source from the Mapping list in the dimension Mapping tab

Attribute map-
ping not defined

Attributes must be mapped to columns in the data source tables or views.

• Manual correction: Map the attributes to columns in the data source
• Automatic correction: None

CHAPTER 5: Checking a Data Model

Data Modeling 249

Check Description and Correction

Incomplete di-
mension mapping
for multidimen-
sional generation

All attributes, detail attributes and hierarchies of the dimension must be mapped
to tables and columns. You must map the dimension objects before generation.

• Manual correction: Map dimension objects to tables and columns
• Automatic correction: None

Domain Checks (CDM/LDM/PDM)
PowerDesigner provides default model checks to verify the validity of domains.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Domain code
maximum length

[PDM only] The domain code length is limited by the maximum length specified
in the DBMS definition (MaxLen entry, in the Objects > Domain category) or in
the naming conventions of the model options.

• Manual correction: Modify the domain code length to meet this requirement
• Automatic correction: Truncates the domain code length to the maximum

length specified in the DBMS definition

CHAPTER 5: Checking a Data Model

250 SAP Sybase PowerDesigner

Check Description and Correction

Detect Inconsis-
tencies between
check parameters

The values entered in the Check Parameters tab are inconsistent for numeric and
string data types. Default does not respect minimum and maximum values, or
default does not belong to list of values, or values in list are not included in
minimum and maximum values, or minimum is greater than maximum value.
Check parameters must be defined consistently.

• Manual correction: Modify default, minimum, maximum or list of values in
the check parameters tab

• Automatic correction: None

Precision > maxi-
mum length

The data type precision should not be greater than the length.

• Manual correction: Make the data type length greater than the precision
• Automatic correction: None

Undefined data
type

A model should not contain domains with undefined data type, all domains
should have a defined data type.

• Manual correction: Select a data type from the domain property sheet
• Automatic correction: None

Invalid data type [CDM/LDM only] Invalid data types for domains exist. To be complete, a model
should have all its domain data types correctly defined.

• Manual correction: While tolerated, you must select valid data types for
currently non-valid data types to generate the PDM.

• Automatic correction: None.

Entity Attribute Checks (CDM/LDM)
PowerDesigner provides default model checks to verify the validity of entity attributes.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

CHAPTER 5: Checking a Data Model

Data Modeling 251

Check Description and Correction

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Detect differences
between attribute
and associated
domain

[LDM only] There is a divergence between attributes and associated domains.
This can be tolerated if you defined this check as a warning.

• Manual correction: Ensure consistency when defining attribute properties
• Automatic correction: Restores divergent attributes from domain to attrib-

utes (domain values overwrite attribute values).

Detect inconsis-
tencies between
check parameters

[LDM only] The values entered in the Check Parameters page are inconsistent for
numeric and string data types. Default does not respect minimum and maximum
values, or default does not belong to list of values, or values in list are not included
in minimum and maximum values, or minimum is greater than maximum value.
Check parameters must be defined consistently.

• Manual correction: Modify default, minimum, maximum or list of values in
the check parameters page

• Automatic correction: None.

Precision > maxi-
mum length

[LDM only] The data type precision should not be greater than or equal to the
length.

• Manual correction: Make the data type length greater than or equal to the
precision.

• Automatic correction: None.

Undefined data
type

[LDM only] Undefined data types for attributes exist. To be complete, a model
should have all its attributes data types defined.

• Manual correction: While undefined data types are tolerated, you must select
data types for currently undefined data types before you can generate a PDM.

• Automatic correction: None.

Invalid data type [LDM only] Invalid data types for attributes exist. To be complete, a model
should have all its data types for attributes correctly defined.

• Manual correction: While tolerated, you must select valid data types for
currently non-valid data types to generate the PDM.

• Automatic correction: None.

CHAPTER 5: Checking a Data Model

252 SAP Sybase PowerDesigner

Entity Identifier Checks (CDM/LDM)
PowerDesigner provides default model checks to verify the validity of entity identifiers.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of enti-
ty attribute

At least one attribute must exist for an entity identifier.

• Manual correction: Add an attribute to the entity identifier or delete the
identifier.

• Automatic correction: None.

Identifier inclu-
sion

An identifier cannot include another one.

• Manual correction: Delete the identifier that includes an existing identifier.
• Automatic correction: None.

Primary identifier
in child entity

[Barker notation] Primary identifiers are no permitted in child entities

• Manual correction: Move the primary identifier to the parent entity.
• Automatic correction: None

CHAPTER 5: Checking a Data Model

Data Modeling 253

Entity Checks (CDM/LDM)
PowerDesigner provides default model checks to verify the validity of entities.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Entity name and
code maximum
length

The entity name and code length is limited to a maximum length of 254 char-
acters specified in the naming conventions of the model options.

• Manual correction: Modify the entity name/code length to meet this require-
ment.

• Automatic correction: Truncates the entity name/code length to the maxi-
mum length specified in the naming conventions.

Existence of at-
tributes

An entity must always contain at least one attribute.

• Manual correction: Add an attribute to the entity or delete the entity.
• Automatic correction: None.

Number of serial
types > 1

An entity cannot have more than one serial type attribute. Serial types are auto-
matically calculated values.

• Manual correction: Change the types of the appropriate entity attributes to
have only one serial type attribute.

• Automatic correction: None.

Existence of iden-
tifiers

An entity must contain at least one identifier.

• Manual correction: Add an identifier to the entity or delete the entity.
• Automatic correction: None.

CHAPTER 5: Checking a Data Model

254 SAP Sybase PowerDesigner

Check Description and Correction

Existence of rela-
tionship or associ-
ation link

An entity must have at least one relationship or association link.

• Manual correction: Add a relationship or an association link to the entity or
delete the entity.

• Automatic correction: None.

Redundant inheri-
tance

An entity inherits from another entity more than once. This is redundant and adds
nothing to the model.

• Manual correction: Delete redundant inheritances
• Automatic correction: None.

Multiple inheri-
tance

An entity has multiple inheritance. This is unusual but can be tolerated if you
defined this check as a warning.

• Manual correction: Make sure that the multiple inheritance is necessary in
your model.

• Automatic correction: None.

Parent of several
inheritances

An entity is the parent of multiple inheritances. This is unusual but can be tol-
erated if you defined this check as a warning.

• Manual correction: Verify if the multiple inheritances could not be merged.
• Automatic correction: None.

Redefined pri-
mary identifier

Primary identifiers in child entities must be the same as those in their parents.

• Manual correction: Delete those primary identifiers in the child entities that
are not in the parent entity.

• Automatic correction: None.

Fact Checks (PDM)
PowerDesigner provides default model checks to verify the validity of facts.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

Data Modeling 255

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of
measure

A fact must have at least one measure.

• Manual correction: Create a measure in the Measures tab of the fact property
sheet

• Automatic correction: None

Fact mapping not
defined

A fact must be mapped to tables or views in an operational model in order to be
populated by data from this model.

• Manual correction: Map the fact to tables or views. You may need to create a
data source before you can create the mapping

• Automatic correction: Destroys the mapping for the fact. This removes the
data source from the Mapping list in the fact Mapping tab

Measure mapping
not defined

Fact measures must be mapped to columns in the data source tables or views.

• Manual correction: Map the fact measure to columns in the data source
• Automatic correction: Destroys the mapping for the measure. This removes

the measures that are not mapped to any object in the Measures Mapping tab
of the fact Mapping tab

CHAPTER 5: Checking a Data Model

256 SAP Sybase PowerDesigner

Fact Measure and Dimension Hierarchy and Attribute
Checks (PDM)

PowerDesigner provides default model checks to verify the validity of fact measures and
dimension hierarchies and attributes.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of at-
tribute

[hierarchies only] A dimension hierarchy must have at least one attribute.

• Manual correction: Add an attribute to the hierarchy from the Attributes tab
of the hierarchy property sheet

• Automatic correction: None

Horizontal and Vertical Partitioning and Table Collapsing
Checks (PDM)

PowerDesigner provides default model checks to verify the validity of horizontal and vertical
partitioning and table collapsing objects.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

Data Modeling 257

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of par-
tition

[horizontal and vertical partitionings] A partitioning object cannot be empty, it
must contain at least one partition.

• Manual correction: Delete the partitioning object or create at least one par-
tition in its property sheet

• Automatic correction: Deletes empty horizontal partitioning object

Existence of tar-
get table

[collapsings] A table collapsing must have a table as result of the collapsing.

• Manual correction: Delete the table collapsing object
• Automatic correction: None

Unavailable tar-
get table

A partition or collapsing object requires a table to act upon.

• Manual correction: Delete the partitioning or collapsing with no correspond-
ing table

• Automatic correction: Deletes the partitioning or collapsing with no corre-
sponding table

Index and View Index Checks (PDM)
PowerDesigner provides default model checks to verify the validity of indexes and view
indexes.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

258 SAP Sybase PowerDesigner

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Index code maxi-
mum length

The index code length is limited by the maximum length specified in the DBMS
definition (MaxLen entry, in the Objects > Index category) or in the naming
conventions of the model options.

• Manual correction: Modify the index code length to meet this requirement
• Automatic correction: Truncates the index code length to the maximum

length specified in the DBMS definition

Existence of in-
dex column

An index must have at least one index column.

• Manual correction: Add an index column from the Column tab of the index
property sheet or delete the index

• Automatic correction: Deletes the index without column

Undefined index
type

[indexes] An index type must be specified.

• Manual correction: Specify a type in the index property sheet or delete the
index with no type

• Automatic correction: None

Index column
count

The current DBMS does not support more than the number of index columns
specified in the MaxColIndex entry of the current DBMS.

• Manual correction: Delete one or more columns in the index property sheet.
You can create additional indexes for these columns

• Automatic correction: None

Uniqueness for-
bidden for HNG
index type

[indexes] An index of HNG (HighNonGroup) type cannot be unique.

• Manual correction: Change the index type or set the index as non unique
• Automatic correction: None

Index inclusion An index should not include another index.

• Manual correction: Delete the index that includes an existing index
• Automatic correction: None

CHAPTER 5: Checking a Data Model

Data Modeling 259

Inheritance Checks (CDM/LDM)
PowerDesigner provides default model checks to verify the validity of inheritances.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of in-
heritance link

An inheritance must have at least one inheritance link, from the inheritance to the
parent entity.

• Manual correction: Define the inheritance link or delete the inheritance.
• Automatic correction: None.

Incomplete inher-
itance with un-
generated ances-
tor

[LDM only] If an inheritance is incomplete, the parent should be generated
because you can lose information.

• Manual correction: Generate parent entity or define the inheritance as com-
plete.

• Automatic correction: None.

CHAPTER 5: Checking a Data Model

260 SAP Sybase PowerDesigner

Join Index Checks (PDM)
PowerDesigner provides default model checks to verify the validity of join indexes and bitmap
join indexes.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of base
table

Join index must have a base table.

• Manual correction: Select a base table in the join index property sheet
• Automatic correction: None

Reference with-
out parent key

Each reference associated with a join index must have a parent key.

• Manual correction: Set the parent key on the Joins tab of the reference prop-
erty sheet.

• Automatic correction: None

Join Index tables
owners

The tables associated to a join index must have the same owner.

• Manual correction: Modify the join index owner or the table owner
• Automatic correction: None

Join index refer-
ences connection

Join index references must be connected to selected table on a linear axis.

• Manual correction: Delete or replace references in the join index
• Automatic correction: None

CHAPTER 5: Checking a Data Model

Data Modeling 261

Check Description and Correction

Duplicated join
indexes

Join indexes cannot have the same set of references.

• Manual correction: Delete one of the duplicated join indexes
• Automatic correction: None

Key Checks (PDM)
PowerDesigner provides default model checks to verify the validity of keys.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Key code length The key code length is limited by the maximum length specified in the DBMS
definition (MaxConstLen entry, in the Object > Key category).

• Manual correction: Modify the key code length to meet this requirement
• Automatic correction: Truncates the key code length to the maximum length

specified in the DBMS definition

Key column ex-
ists

Each key must have at least one column.

• Manual correction: Add a column to the key from the Column tab of the key
property sheet

• Automatic correction: Deletes key without column

Key inclusion A key cannot include another key (on some columns, regardless of their order).

• Manual correction: Delete the key that includes an existing key
• Automatic correction: None

CHAPTER 5: Checking a Data Model

262 SAP Sybase PowerDesigner

Check Description and Correction

Multi-column key
has sequence col-
umn

Since the column initialized by a sequence is already a key, it should not be
included in a multi-column key.

• Manual correction: Detach the sequence from a column that is already part of
a multi-column key

• Automatic correction: None

Lifecycle and Lifecycle Phase Checks (PDM)
PowerDesigner provides default model checks to verify the validity of lifecycles and phases.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Existence of pha-
ses

[lifecycle] A lifecycle must contain phases.

• Manual correction: Add phases to the lifecycle (on the Phases tab)
• Automatic correction: None

Incorrect total re-
tention setting

[lifecycle] The total retention for the lifecycle must equal the retentions of all the
phases.

• Manual correction: Adjust the total retention or the retentions of individual
phases as appropriate.

• Automatic correction: Adjust the total retention to equal the retentions of all
the phases.

CHAPTER 5: Checking a Data Model

Data Modeling 263

Check Description and Correction

Invalid partition
range setting

[lifecycle] The partition range must be no longer than the shortest phase reten-
tion.

• Manual correction: Reduce the partition range so that it is equal to the short-
est phase retention.

• Automatic correction: Reduces the partition range so that it is equal to the
shortest phase retention.

Existence of ta-
blespace

[phase] Specified tablespace does not exist.

• Manual correction: Specify another tablespace.
• Automatic correction: None

Invalid tablespace
setting

[phase] The tablespace cannot be a catalog store.

• Manual correction: Deselect the catalog store property on the tablespace
property sheet.

• Automatic correction: Deselects the catalog store property.

Phase tablespace
uniqueness

[phase] Each phase must be associated with a different tablespace.

• Manual correction: Move one or more phases to another tablespace.
• Automatic correction: None

Consistency of
cost currency set-
ting

[phase] The same currency must be used for all tablespaces.

• Manual correction: Harmonize the currency settings.
• Automatic correction: Applies the currency specified in the model options to

all tablespaces.

Invalid retention
setting

[phase] Age-based lifecyle phases must have a retention period greater than 0.

• Manual correction: Set the retention period to greater than 0.
• Automatic correction: Sets the retention period to 1.

Invalid idle period
setting

[phase] Access-based lifecyle phases must have an idle period greater than 0.

• Manual correction: Set the idle period to greater than 0.
• Automatic correction: Sets the idle period to 1.

Existence of data
source

[phase] A lifecycle phase associated with an external database must have a data
source specified.

• Manual correction: Specify a data source for the phase.
• Automatic correction: None

CHAPTER 5: Checking a Data Model

264 SAP Sybase PowerDesigner

Check Description and Correction

Invalid lifecycle
management
scope

[phase] Only the first phase in a lifecycle can have an external source. Subsequent
phases must have the source set to the current database.

• Manual correction: Set the phase source to the current database.
• Automatic correction: None

Package Checks (CDM/LDM/PDM)
PowerDesigner provides default model checks to verify the validity of packages.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Circular referen-
ces

[PDM only] A circular reference occurs when a table refers to another table, and
so on until a loop is created between tables. A package cannot contain circular
references.

• Manual correction: Resolve the circular reference by correcting the refer-
ence, deleting its source, or clearing the Mandatory parent or Check on
commit option

• Automatic correction: None

CHAPTER 5: Checking a Data Model

Data Modeling 265

Check Description and Correction

Constraint name
uniqueness

[PDM only] A constraint name is a unique identifier for the constraint definition
of tables, columns, primary and foreign keys in the database. You define the
constraint name in the following tabs:

• Check tab of the table property sheet
• Additional Check tab of the column property sheet
• General tab of the key property sheet

A constraint name must be unique in a model.

• Manual correction: Modify the duplicated constraint name in the corre-
sponding tab

• Automatic correction: Modifies the duplicated constraint name of a selected
object by appending a number to its current name

Constraint name
maximum length

[PDM only] The constraint name length cannot be longer than the length speci-
fied in the DBMS definition: either in the MaxConstLen entry, in the Object
category, or in each object category.

• Manual correction: Modify the constraint name to meet this requirement
• Automatic correction: Truncates the constraint name to the maximum length

specified in the DBMS definition

Circular depend-
encies

[PDM only] Traceability links of type <<DBCreateAfter>> can be used
to define a generation order for stored procedures and views. These links should
not introduce circular dependencies in the model.

• Manual correction: Remove the link.
• Automatic correction: None

Circular depend-
ency

[CDM/LDM only] A circular dependency occurs when an entity depends on
another and so on until a dependency loop is created between entities. A package
cannot contain circular dependencies.

• Manual correction: Clear the Dependent check box for the link or delete an
inheritance link.

• Automatic correction: None.

Circularity with
mandatory links

[CDM/LDM only] A circular dependency occurs when an entity depends on
another and so on until a dependency loop is created between entities through
mandatory links.

• Manual correction: Clear the Mandatory parent check box or delete a de-
pendency on a relationship.

• Automatic correction: None.

CHAPTER 5: Checking a Data Model

266 SAP Sybase PowerDesigner

Check Description and Correction

Shortcut code
uniqueness

Shortcuts codes must be unique in a namespace.

• Manual correction: Change the code of one of the shortcuts
• Automatic correction: None

Shortcut poten-
tially generated as
child table of a
reference

[CDM/LDM only] The package should not contain associations or relationships
with an external shortcut as child entity. Although this can be tolerated in the
CDM, the association or relationship will not be generated in a PDM if the
external shortcut is generated as a shortcut.

• Manual correction: Modify the design of your model in order to create the
association or relationship in the package where the child entity is defined.

• Automatic correction: None.

Procedure Checks (PDM)
PowerDesigner provides default model checks to verify the validity of procedures.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Procedure code
maximum length

The procedure code length is limited by the maximum length specified in the
DBMS definition (MaxLen entry, in the Objects > Procedure category).

• Manual correction: Modify the procedure code length to meet this require-
ment

• Automatic correction: Truncates the procedure code length to the maximum
length specified in the DBMS definition

CHAPTER 5: Checking a Data Model

Data Modeling 267

Check Description and Correction

Procedure defini-
tion body empty

A procedure definition should have a body to specify its functionality.

• Manual correction: Specify a procedure body from the Definition tab of the
procedure property sheet

• Automatic correction: None

Existence of per-
mission

Permissions are usage restrictions set on a procedure for a particular user, group
or role.

• Manual correction: Define permissions on the procedure for users, groups
and roles

• Automatic correction: None

Reference and View Reference Checks (PDM)
PowerDesigner provides default model checks to verify the validity of references and view
references.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Reflexive and
mandatory refer-
ence

[references only] A reflexive reference exists should not have a mandatory parent
which could lead to inconsistent joins.

• Manual correction: Correct the reference by clearing the Mandatory parent
check box

• Automatic correction: None

CHAPTER 5: Checking a Data Model

268 SAP Sybase PowerDesigner

Check Description and Correction

Existence of ref-
erence join

A reference must have at least one reference join.

• Manual correction: Create a reference join for the reference or delete the
reference

• Automatic correction: Deletes reference without join

Reference code
maximum length

[references only] The reference code length is limited by the maximum length
specified in the DBMS definition (MaxConstLen entry, in the Object > Refer-
ence category) or in the naming conventions of the model options.

• Manual correction: Modify the reference code length to meet this require-
ment

• Automatic correction: Truncates the reference code length to the maximum
length specified in the DBMS definition

Incomplete join [references only] Joins must be complete.

• Manual correction: Select a foreign key column or activate the primary key
column migration

• Automatic correction: None

Join order [references only] The join order must be the same as the key column order for
some DBMS.

• Manual correction: If required, change the join order to reflect the key col-
umn order

• Automatic correction: The join order is changed to match the key column
order

Relationship Checks (CDM/LDM)
PowerDesigner provides default model checks to verify the validity of relationships.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

Data Modeling 269

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Reflexive de-
pendency

A dependency means that one entity is defined through a relationship with an-
other. A dependent relationship cannot therefore be reflexive.

• Manual correction: Change or delete the reflexive dependency.
• Automatic correction: None.

Reflexive manda-
tory

A reflexive mandatory relationship exists.

• Manual correction: Deselect the Mandatory check boxes for the relationship
to be non-mandatory.

• Automatic correction: None.

Bijective relation-
ship between two
entities

There is a bijective relationship between two entities when there is a two-way one
to one relationship between the entities. This is equivalent to a merge of two
entities.

• Manual correction: Merge the entities or modify the relationship.
• Automatic correction: None.

Name uniqueness
constraint be-
tween many-to-
many relation-
ships and entities

A many-to-many relationship and an entity cannot have the same name or code.

• Manual correction: Change the name or code of the many-to-many relation-
ship or the name or code of the entity. If you do not, PDM generation will
rename the generated table.

• Automatic correction: None.

Consistency be-
tween dominant
and dependent re-
lationships

A dependent relationship between entities cannot also be a dominant relation-
ship.

• Manual correction: Select the Dominant check box on the other (correct) side
of the relationship.

• Automatic correction: None.

CHAPTER 5: Checking a Data Model

270 SAP Sybase PowerDesigner

Check Description and Correction

Identifier link
from child entity

[Barker notation CDM only] A child entity may not be dependant on any entity
other than its parents.

• Manual correction: Remove the dependant relationship with the non-parent.
• Automatic correction: None

'Many-many' re-
lationships

[LDM only] 'Many-to-many' relationships are not permitted.

• Manual correction: Create an intermediary entity, which contains the pri-
mary identifiers of the previous 'many-to-many' entities.

• Automatic correction: None.

Sequence Checks (PDM)
PowerDesigner provides default model checks to verify the validity of sequences.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Sequence code
maximum length

The code of the sequence is longer than the maximum allowed by the DBMS.

• Manual correction: Reduce the length of the code
• Automatic correction: Reduces the code to a permissible length

CHAPTER 5: Checking a Data Model

Data Modeling 271

Synonym Checks (PDM)
PowerDesigner provides default model checks to verify the validity of synonyms.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Synonym name
and code maxi-
mum length

The synonym name and code length is limited by the maximum length specified
in the DBMS definition (MaxLen entry, in the Objects > Synonym category) and
in the naming conventions of the model options.

• Manual correction: Modify the name/code length to meet this requirement
• Automatic correction: Truncates the name/code length to the maximum

length specified in the DBMS definition

Existence of the
base object

A synonym must correspond to a model object. By default, when you create
synonyms from the List of Synonyms using the Add a Row tool, they are not
attached to any base object.

• Manual correction: Select a base object from the synonym property sheet
• Automatic correction: Deletes the synonym

CHAPTER 5: Checking a Data Model

272 SAP Sybase PowerDesigner

Table and View Checks (PDM)
PowerDesigner provides default model checks to verify the validity of tables and views.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Name and code
length

The table and view name and code length is limited by the maximum length
specified in the DBMS definition (MaxLen entry, in the Objects > Table and
View categories) and in the naming conventions of the model options.

• Manual correction: Modify the name/code length to meet this requirement
• Automatic correction: Truncates the name/code length to the maximum

length specified in the DBMS definition

Constraint name
conflicts with in-
dex name

[tables only] A constraint name of the table cannot be the same as an index name.

• Manual correction: Change the name of the table constraint
• Automatic correction: None

Existence of col-
umn, reference,
index, key

[tables only] A table should contain at least one column, one index, one key, and
one reference.

• Manual correction: Add missing item to the definition of the table
• Automatic correction: None

Number of auto-
incremented col-
umns

[tables only] Auto-incremented columns contain automatically calculated val-
ues. A table cannot contain more than one auto-incremented column.

• Manual correction: Delete all but one auto-incremented column
• Automatic correction: None

CHAPTER 5: Checking a Data Model

Data Modeling 273

Check Description and Correction

Table index defi-
nition uniqueness

[tables only] Identical indexes are indexes with the same columns, order and
type. A table cannot have identical indexes.

• Manual correction: Delete index or change its properties
• Automatic correction: None

Table mapping
not defined

[tables only] When a table belongs to a model containing one or several data
sources, it must be mapped to tables or views in the data source in order to
establish a relational to relational mapping.

• Manual correction: Map the current table to one or several tables or views in
the model belonging to the data source

• Automatic correction: Destroys the mapping for the table. This removes the
data source from the Mapping list in the table Mapping tab

Column mapping
not defined

[tables only] When a column belong to a table in a model containing one or
several data sources, it should be mapped to columns in the data source in order to
establish a relational to relational mapping.

• Manual correction: Map the current column to one or several columns in the
models belonging to the data source

• Automatic correction: Destroys the mapping for the column. This removes
the columns that are not mapped to any object in the Columns Mapping tab of
the table Mapping tab

Existence of per-
mission

Permissions are usage restrictions set on a table or view for a particular user,
group or role.

• Manual correction: Define permissions on the table or view for users, groups
and roles

• Automatic correction: None

Existence of par-
tition key

[tables only] A table managed by an age-based lifecycle policy must have a
column specified as its partition key.

• Manual correction: Specify a column as the partition key.
• Automatic correction: None

Invalid start date
setting

[tables only] A table managed by an age-based lifecycle policy must not have a
start date earlier than the start date of the lifecycle.

• Manual correction: Change one or other date so that the table start date is
equal to or later than the lifecycle start date.

• Automatic correction: Changes the table start date to the lifecycle start date.

CHAPTER 5: Checking a Data Model

274 SAP Sybase PowerDesigner

Check Description and Correction

Missing lifecycle
policy

[tables only] A table managed by a lifecyle must not reference tables not man-
aged by a lifecycle.

• Manual correction: Add the referenced tables to the lifecycle.
• Automatic correction: None

Invalid mapping
from source table

[tables only] In a lifecycle where the first phase references an external database,
each archive table must be mapped to exactly one external table.

• Manual correction: Remove the additional mappings.
• Automatic correction: None

Partial column
mapping of
source table

[tables only] In a lifecycle where the first phase references an external database,
all columns in each source table must be mapped to columns in the same archive
table.

• Manual correction: Create the missing mappings.
• Automatic correction: None

Existence of par-
tition key map-
ping

[tables only] In a lifecycle where the first phase references an external database,
the partition key column in the archive table must be mapped to a column in the
source table.

• Manual correction: Create the missing mapping.
• Automatic correction: None

Tablespace out-
side lifecycle

[tables only] A table managed by a lifecycle must be assigned to a tablespace
associated with the lifecycle.

• Manual correction: Assign the table to a tablespace associated with the life-
cycle.

• Automatic correction: If the table is not assigned to any tablespace it will be
assigned to the tablespace associated with the first phase of the lifecycle.

Tablespace and Storage Checks (PDM)
PowerDesigner provides default model checks to verify the validity of tablespaces and
storages.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

CHAPTER 5: Checking a Data Model

Data Modeling 275

Check Description and Correction

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Code maximum
length

The code of the tablespace or storage is longer than the maximum allowed by the
DBMS.

• Manual correction: Reduce the length of the code
• Automatic correction: Reduces the code to a permissible length

Not used The tablespace or storage you have created is not used in the model.

• Manual correction: Delete the tablespace or storage or apply it as a physical
option to a table, an index, a key, a column, a storage or a view (Options tab of
the object property sheet)

• Automatic correction: None

Trigger and DBMS Trigger Checks (PDM)
PowerDesigner provides default model checks to verify the validity of triggers and DBMS
triggers.

Check Description and Correction

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Trigger code
maximum length

The trigger code length is limited by the maximum length specified in the DBMS
definition (MaxLen).

• Manual correction: Modify the trigger code length to meet this requirement
• Automatic correction: Truncates the trigger code length to the maximum

length specified in the DBMS definition

CHAPTER 5: Checking a Data Model

276 SAP Sybase PowerDesigner

Check Description and Correction

Invalid event The event specified in the DBMS trigger definition must be available in its chosen
scope.

• Manual correction: Modify the trigger code to reference an event in the
chosen scope.

• Automatic correction: None

User, Group, and Role Checks (PDM)
PowerDesigner provides default model checks to verify the validity of users, groups, and
roles.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Code maximum
length

The code length is limited by the maximum length specified in the DBMS def-
inition (MaxLen entry, in the Objects > User and Group categories).

• Manual correction: Modify the code length to meet this requirement
• Automatic correction: Truncates the code length to the maximum length

specified in the DBMS definition

Existence of user [groups, roles] A group is created to factorize privilege and permission granting
to users. A group without user members is useless.

• Manual correction: Add users to group or delete group
• Automatic correction: Deletes unassigned group

CHAPTER 5: Checking a Data Model

Data Modeling 277

Check Description and Correction

Password empty [users, groups] Users and groups must have a password to be able to connect to
the database.

• Manual correction: Define a password for the user or group
• Automatic correction: None

View Checks (PDM)
PowerDesigner provides default model checks to verify the validity of views.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

View code maxi-
mum length

The view code length is limited by the maximum length specified for the table
code length.

• Manual correction: Modify the view code length to meet this requirement
• Automatic correction: Truncates the view code length to the maximum

length specified in the DBMS definition

Existence of per-
mission

Permissions are usage restrictions set on a view for a particular user, group or
role.

• Manual correction: Define permissions on the view for users, groups and
roles

• Automatic correction: None

CHAPTER 5: Checking a Data Model

278 SAP Sybase PowerDesigner

Web Service and Web Operation Checks (PDM)
PowerDesigner provides default model checks to verify the validity of Web services and Web
operations.

Check Description and Correction

Name/Code con-
tains terms not in
glossary

[if glossary enabled] Names and codes must contain only approved terms drawn
from the glossary.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - None.

Name/Code con-
tains synonyms of
glossary terms

[if glossary enabled] Names and codes must not contain synonyms of glossary
terms.

• Manual correction - Modify the name or code to contain only glossary terms.
• Automatic correction - Replaces synonyms with their associated glossary

terms.

Name/Code
uniqueness

Object names must be unique in the namespace.

• Manual correction - Modify the duplicate name or code.
• Automatic correction - Appends a number to the duplicate name or code.

Code maximum
length

Web service and Web operation code lengths are limited by the maximum length
specified in the DBMS definition (Maxlen entry, in the Objects > Web Service
and Web Operation categories).

• Manual correction: Modify the code length to meet this requirement
• Automatic correction: Truncates the code length to the maximum length

specified in the DBMS definition

CHAPTER 5: Checking a Data Model

Data Modeling 279

CHAPTER 5: Checking a Data Model

280 SAP Sybase PowerDesigner

CHAPTER 6 Generating and Reverse-
Engineering Databases

PowerDesigner provides full support for round trip generation and reverse-engineering
between a PDM and a database.

Writing SQL Code in PowerDesigner
The objects that you create in your model display the SQL code that will be generated for them
on the Preview tab of their property sheets. Certain objects provide editors on other tabs to
allow you to modify the SQL statements.

For example, you may need to write SQL code in order to:

• Specify a view query (see View Queries on page 115).
• Write a procedure or trigger (see Triggers (PDM) on page 119).
• Define a computed column (see Creating a Computed Column on page 102).
• Insert scripts at the beginning and/or end of database or table creation (see Customizing

Scripts on page 298).

The following tools are available in the PowerDesigner SQL editors:

Tool Description

 Add Trigger Item From Model / DBMS - [triggers and trigger templates only]
Opens a dialog box to list trigger template items defined in the model or in the
DBMS definition file for insertion in the trigger definition (see Trigger Template
Items on page 128).

 Operators / Functions - List logical operators and group, number, string, date,
conversion and other functions for insertion in the SQL code. Operators and
functions are DBMS-specific and these lists are populated from entries in the
Script\Sql\Keywords category (see Customizing and Extending Pow-
erDesigner > DBMS Definition Files > Script/Sql Category).

 Macros / Variables - List PDM macros and variables for insertion in the SQL
code (see Customizing and Extending PowerDesigner > DBMS Definition Files
> PDM Variables and Macros). You can also use formatting variables to force
values to lower-case or upper-case or to truncate the length of values characters.

Edit with SQL Editor - Opens the full SQL Editor dialog which gives access to
model objects for insertion in the SQL code.

Data Modeling 281

Tool Description

SQL/XML Wizard - Opens the SQL/XML Wizard to build a SQL/XML query
from a table or a view for insertion in the SQL code (see Creating SQL/XML
Queries with the Wizard on page 132).

Insert SQL/XML Macro - Opens a dialog box to select a global element from an
XML model open in the workspace (and which must have the SQL/XML ex-
tension file attached) for insertion in the SQL code.

In addition to these tools, the pop-out SQL Editor lists PDM object types in the upper left pane
and the available objects of the selected type in the upper right pane. Double-click an object to
insert it into your code in the lower pane:

You can use the PowerDesigner Generation Template Language (GTL) and PDM variables
and macros to reference objects and object properties and iterate over collections when
writing SQL statements. While you can perform many tasks using the PDM variables and
macros, GTL is more powerful, as it allows you to access any information about any object in
the model.

In the following example, a trigger is written using the PDM variables and macros and
attached to the Example table, to write the contents of any insertion to HistoryTable.

CHAPTER 6: Generating and Reverse-Engineering Databases

282 SAP Sybase PowerDesigner

The same trigger can be written using GTL:

In each case, the trigger code to be generated is the same, and can be viewed by clicking the
Preview tab:

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 283

For detailed information about working with GTL, see Customizing and Extending
PowerDesigner > Customizing Generation with GTL . For lists of the available variables and
macros, see Customizing and Extending PowerDesigner > DBMS Definition Files > PDM
Variables and Macros.

CHAPTER 6: Generating and Reverse-Engineering Databases

284 SAP Sybase PowerDesigner

Previewing SQL Statements
Click the Preview tab in the property sheet of the model, packages, tables, and various other
model objects in order to view the code that will be generated for it.

The text in the script preview is color coded as follows:

Text color Represents

Blue SQL reserved word

Black Statement body

Red Variable

Green Comment

The following tools are available on the Preview tab toolbar:

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 285

Tools Description

Editor Menu [Shift+F11] - Contains the following commands:

• New [Ctrl+N] - Reinitializes the field by removing all the existing content.
• Open... [Ctrl+O] - Replaces the content of the field with the content of the se-

lected file.
• Insert... [Ctrl+I] - Inserts the content of the selected file at the cursor.
• Save [Ctrl+S] - Saves the content of the field to the specified file.
• Save As... - Saves the content of the field to a new file.
• Select All [Ctrl+A] - Selects all the content of the field.
• Find... [Ctrl+F] - Opens a dialog to search for text in the field.
• Find Next... [F3] - Finds the next occurence of the searched for text.
• Find Previous... [Shift+F3] - Finds the previous occurence of the searched for

text.
• Replace... [Ctrl+H] - Opens a dialog to replace text in the field.
• Go To Line... [Ctrl+G] - Opens a dialog to go to the specified line.
• Toggle Bookmark [Ctrl+F2] Inserts or removes a bookmark (a blue box) at the

cursor position. Note that bookmarks are not printable and are lost if you refresh
the tab, or use the Show Generation Options tool

• Next Bookmark [F2] - Jumps to the next bookmark.
• Previous Bookmark [Shift+F2] - Jumps to the previous bookmark.

Edit With [Ctrl+E] - Opens the previewed code in an external editor. Click the down
arrow to select a particular editor or Choose Program to specify a new editor. Editors
specified here are added to the list of editors available at Tools > General Options >
Editors.

Save [Ctrl+S] - Saves the content of the field to the specified file.

Print [Ctrl+P] - Prints the content of the field.

Find [Ctrl+F] - Opens a dialog to search for text.

 Cut [Ctrl+X], Copy [Ctrl+C], and Paste [Ctrl+V] - Perform the standard clipboard
actions.

 Undo [Ctrl+Z] and Redo [Ctrl+Y] - Move backward or forward through edits.

Refresh [F5] - Refreshes the Preview tab.

You can debug the GTL templates that generate the code shown in the Preview tab. To
do so, open the target or extension resource file, select the Enable Trace Mode option,
and click OK to return to your model. You may need to click the Refresh tool to
display the templates.

CHAPTER 6: Generating and Reverse-Engineering Databases

286 SAP Sybase PowerDesigner

Tools Description

Select Generation Targets [Ctrl+F6] - Lets you select additional generation targets
(defined in extensions), and adds a sub-tab for each selected target. For information
about generation targets, see Customizing and Extending PowerDesigner > Extension
Files > Generated Files (Profile) > Generating Your Files in a Standard or Extended
Generation.

Show Generation Options [Ctrl+W] - Opens the Generation Options dialog, allow-
ing you to modify the generation options and to see the impact on the code.

Ignore Generation Options [Ctrl+D] - Ignores changes to the generation options
made with the Show Generation Options tool.

Ignore Generation Options
If you click the Ignore Generation Options tool, the preview ignores generation options
selected by using the Change generation options tool but uses a predefined set of options.

Selected tool Effect on generation
options

Effect on preview

Change generation options You can select generation op-
tions

Visible in Preview if options
are applicable

Ignore generation options Generation options currently
selected are overridden by pre-
defined set of options

Only predefined options are
visible in Preview

Change generation options + Ignore
generation options

You can select generation op-
tions

Changes ignored in Preview

The predefined set of generation options selects these items:

Generation Option Tab Selected items

Tables and Views All items except drop options

Keys and Indexes All items except options represented differently in some
DBMS. For example, if a database is auto indexed, the index
options corresponding to the keys are not selected

Database All items except drop options

Options All user-defined options are used

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 287

Connecting to a Database
PowerDesigner provides various methods for connecting to your database.

Before connecting to your database for the first time, you will have to configure a
PowerDesigner connection profile. Your choice will depend on the interface that you have
installed:

You have Configure a connection of type:

ODBC driver ODBC machine or file data source

DBMS client Native connection profile

JDBC driver JDBC connection profile

For detailed information about creating, configuring, and using connection profiles, see Core
Features Guide > Modeling with PowerDesigner > Getting Started with PowerDesigner >
Connecting to a Database.

1. Select Database > Connect to open the Connect to a Data Source window:

2. Select one of the following radio buttons, depending on your chosen method for
connecting to your database:

• ODBC machine data source
• ODBC file data source

CHAPTER 6: Generating and Reverse-Engineering Databases

288 SAP Sybase PowerDesigner

• Connection profile (for native, JDBC, ADO.NET, OLE DB or DirectConnect
connections)

You can use the tools to the right of the data source field to browse to a new connection
profile file or directory, and the Modify and Configure buttons to modify or configure your
data source connection.

3. Enter your user ID and password, and then click Connect. If prompted by your database,
you may need to enter additional connection parameters.

You stay connected until you disconnect or terminate the shell session.

You can display information about your connection at any time by selecting Database >
Connection Information. The amount of information available depends on your DBMS
and your connection profile.

To disconnect from a database, select Database > Disconnect.

Executing SQL Queries
You can send SQL queries to a database and display the results.

1. Select Database > Execute SQL.

If you are not already connected to a database, the Connect to Data Source window will
open. Choose your connection profile and click Connect to proceed to the Execute SQL
Query dialog.

2. Type one or more SQL statements in the window, and click Run to apply them to the
database.

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 289

The query results are displayed in the Results window.

Generating a Database from a PDM
PowerDesigner can generate sophisticated SQL scripts as files or for direct execution via a live
database connection.

Note: To generate to a SAP HANA® database, use the HANA wizard (see Exporting Objects
to the HANA Repository on page 504).

1. Select Database > Generate Database to open the Database Generation dialog box.

Note: To load a pre-configured selection or settings set (see Quick Launch Selection and
Settings Sets on page 297), select it in the appropriate list in the Quick launch group
box.

2. Enter a destination Directory and File Name for the script file.

3. Specify the type of generation (script or live database connection) to perform:

• Script generation - generate a script to be executed on a DBMS at a later time.
Optionally select One file only to create the generation script as a single file. By
default, a separate script file is created for each table.

• Direct generation – generate a script and execute it on a live database connection.
Optionally select Edit generation script to open the script in an editor for review or
editing before execution.

CHAPTER 6: Generating and Reverse-Engineering Databases

290 SAP Sybase PowerDesigner

4. [optional] Select the following options as appropriate:

Option Description

Check model Specifies that a model check is performed before script generation.

Automatic archive Creates an archive version of the PDM after generation to use to de-
termine changes during your next database modification (see Archive
PDMs on page 322).

5. [optional] To change the default generation options, click the Options tab (see Database
Generation Dialog Options Tab on page 293).

6. [optional] To change the format of your script, click the Format tab (see Database
Generation Dialog Format Tab on page 296).

7. [optional] To control which database objects will be generated, click the Selection tab:

You can save your selection via the Selection bar at the bottom of the tab (see Quick
Launch Selection and Settings Sets on page 297).

8. [optional] Click the Summary tab to view the summary of your settings and selections.
The summary is not editable, but you can search, save, print, and copy its contents.

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 291

9. [optional] Click the Preview tab to preview the SQL script to be generated. The script is
not editable, but you can search, save, print, and copy its contents.

10. Click OK to begin the generation.

CHAPTER 6: Generating and Reverse-Engineering Databases

292 SAP Sybase PowerDesigner

If you are generating a database script, the Output window shows the progress of the
generation process, and gives instructions for running the script. When generation is
complete, the Generated Files dialog opens listing the paths to the generated script files.
Click Edit to open the script in a text editor or Close to close the Result box.

Note: For information about the additional steps required to generate for MS Access, see
Generating a Microsoft Access Database on page 570).

If you are generating a database directly, and are not currently connected to a database, a
dialog box asks you to identify a data source and connection parameters (see Connecting
to a Database on page 288).

Note: Advanced users can further customize database generation by, for example, changing
the order in which objects are generated, adding scripts to run before or after generation, and
generating additional objects. For information about these and other advanced topics, see
Customizing and Extending PowerDesigner > DBMS Definition Files.

Database Generation Dialog Options Tab
The Options tab allows you to specify what script elements to generate for each object type.

By default, there is an entry in the left-hand pane under the meta-category "All Objects" for
each object type present in your model, and all the possible options are displayed in the right-
hand pane. If you click on an object type in the left-hand pane, then the options are restricted to
that object type.

Depending on the objects present in your model, some or all of the following options will be
available.

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 293

Parameter Description

Create <object> Generates the object.

When generating primary, alternate, or foreign keys or indexes, you can choose
between:

• Inside Table – keys or indexes are generated during table creation
• Outside - keys or indexes are generated with a separate SQL command,

generally using an ALTER command after the creation of the table

The generation of keys or indexes outside the table is possible only if the Create
entry exists in the Pkey, Key, Reference, and/or Index categories of your DBMS.

Drop <object> Deletes an existing object, before recreating it.

Note that when generating defaults, if the Create and Drop check boxes are
selected, the default objects will be created/dropped before domains and tables.
For more information on the default generation statement, see Customizing and
Extending PowerDesigner > DBMS Definition Files.

Begin script Inserts a customized script before creation of the object.

End script Inserts a customized script after creation of the object.

Physical options Generates physical options for the object.

Comment Generates a comment for the object.

Privilege [users, groups, and roles] Generates privileges for the user, group, or role.

Permission Generates the permission statement for a given user during creation of the object.

Check [domains, tables, and columns] Generates check parameters and validation rules
for domains, tables, and columns.

For table and columns, if this option is selected you can choose between:

• Inside Table - checks are generated during table creation
• Outside - checks are generated with a separate SQL command, generally

using an ALTER command after the creation of the table

The generation of checks outside the table is possible only if the AddTableCheck
entry exists in the Table category of your DBMS.

Open database [databases] Opens the database.

Close database [databases] Closes the database.

Default value [domains and columns] Specifies a default value for the domain or column.

Install JAVA class [abstract data types] Installs a Java class, which is stored on a server.

Remove JAVA
class

[abstract data types] Deletes an existing Java class, before installing a new Java
class.

CHAPTER 6: Generating and Reverse-Engineering Databases

294 SAP Sybase PowerDesigner

Parameter Description

User-defined type [columns] Generates a user-defined data type for the column.

Decl. Integrity [foreign keys] Generates declarative referential integrity for references specified
to be Declarative in their property sheets. You can specify any or all of the
following:

• Update constraint restrict
• Update constraint cascade
• Update constraint set null
• Update constraint set default
• Delete constraint restrict
• Delete constraint cascade
• Delete constraint set null
• Delete constraint set default

Index Filter [indexes] You can specify from none to all of:

• Primary key - Generates primary key indexes
• Foreign key - Generates foreign key indexes
• Alternate key - Generates alternate key indexes
• Cluster - Generates cluster indexes
• Others - Generates indexes for all key columns with a defined index

Trigger Filter [triggers] You can specify the creation of triggers:

• For insert
• For update
• For delete

Synonym Filter [synonyms] You can specify from none to all of:

• Table - Generates table synonyms
• View - Generates view synonyms
• Procedure - Generates procedure synonyms
• Synonym - Generates synonym synonyms
• Database Package - Generates database package synonyms
• Sequence - Generates sequence synonyms

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 295

Parameter Description

Force column list [views] Generates a view with a list of columns, even if this list is identical to the
corresponding columns in the SQL order. Allows you to generate the list of view
columns with the view creation order. By default, the list of view columns is
generated only if it is different from the list of columns of the view query. For
example, in the following view query:

select a, b from Table1
columns a and b are view columns by default. The default generation statement
is:

create view V1 as select a, b from Table1
If you select the Force column list option, the generation statement will become:

create view V1(a,b) as select a, b from Table1

You can save your option settings via the Settings set bar at the bottom of the tab. For more
information, see Quick launch selection and settings sets on page 297.

Database Generation Dialog Format Tab
The options on the Format tab allow you to control the format of database generation scripts.

Some of the following options may not be available, depending on your target database.

You can save your format settings via the Settings set bar at the bottom of the tab. For more
information, see Quick launch selection and settings sets on page 297.

CHAPTER 6: Generating and Reverse-Engineering Databases

296 SAP Sybase PowerDesigner

Option Result of selection

Database prefix Table and view names in the script are prefixed by the database name.

Identifier delimit-
er

Specifies the characters used to delimit identifiers (for example, table and view
names). Most DBMSs require a double-quote character ("), but some permit
other forms of delimiter.

Owner prefix Table and view names in the script are prefixed by their owner names. For those
DBMSs that support sequence owners, this option will also prefix sequence
names by their owner names.

Title Each section of the script includes commentary in the form of titles (for example,

Database Name: TUTORIAL
).

Generate name in
empty comment

For those DBMSs that support comments, this option allows to generate the name
in the comment when the comment box is empty. This option applies to tables,
columns, and views. The comment generated using the object name will be
reversed as a comment.

Encoding Specifies an encoding format. You should select a format that supports the lan-
guage used in your model and the database encoding format.

Character case Specifies the case to use in the script. You can choose between:

• Upper - all uppercase characters
• Lower - all lowercase characters
• Mixed - lowercase and uppercase characters

No accent Non-accented characters replace accented characters in script

Quick Launch Selection and Settings Sets
The Quick Launch groupbox at the bottom of the Database Generation dialog General tab
allows you to load pre-configured selections and settings sets for use when generating the
database.

• Selection - the ensemble of selections of database objects made on the Selection tab. To
save a selection, enter a name in the Selection bar at the bottom of the Selection tab and
then click the Save tool. The selection is saved as part of the model file.

• Settings Set - the ensemble of generation options (see Database Generation Dialog
Options Tab on page 293) and format options (see Database Generation Dialog Format
Tab on page 296)
To save a settings set, enter a name in the Settings set bar at the bottom of the Options or
Format tab and then click the Save tool, specify whether you want to save the settings set
inside the model or as an external file, and click OK.
To review your settings sets, click the Settings Set Manager tool to the right of the field on
the Options or Format tab:

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 297

The following tools are available:

Icon Use

Browse to the settings set directory.

Delete the selected settings set. Only available when an internally-saved settings set is
selected. You can only delete a settings set saved to an external file through Windows
Explorer.

Export the selected settings sets to an external file. Only available when an internally-
saved settings set is selected.

Import the selected settings sets to inside the model. Only available when an externally-
saved settings set is selected.

Note: Settings sets should not be copied and renamed outside of PowerDesigner. If you
want to create a variant of an existing settings set, then you should load it, make the
necessary changes, and then save it under a different name.

Customizing Scripts
You can customize scripts as follows:

• Insert scripts at the beginning and end of database creation script
• Insert scripts before and after a table creation command

Customizing a creation script allows you to add descriptive information about a generated
script, or manipulate the script in such a way that is not provided by PowerDesigner.

CHAPTER 6: Generating and Reverse-Engineering Databases

298 SAP Sybase PowerDesigner

The Script tab provides tools to help edit scripts:

Tool Description Keyboard shortcut

Editor context menu Shift+F11

Edit With. Opens the script in your preferred editor
(see Core Features Guide > Modeling with Power-
Designer > Customizing Your Modeling Environ-
ment > General Options > Text Editors)

Ctrl+E

Examples
If a development project archives all the database creation scripts that are generated, a header
script can be inserted before each creation script, which may indicate the date, time, and any
other information specific to the generated script.

If an organization requires that generated scripts are filed using a naming system which may
be independent from a script name, a header script could direct a generated script to be filed
under a different name than the name indicated in the creation script.

Access rights can be added as a footer to a table creation script.

Inserting Begin and End Scripts for Database Creation
In a database creation script, you can insert a Begin script before the command that creates the
database and an End script after the last command in the database creation script.

You can use the following variables in these scripts:

1. Select Model > Model Properties or right-click the diagram background and select
Properties.

2. Click the Create tool to the right of the Database field and click Yes in the confirmation
dialog to open the database property sheet.

3. Enter a name and code for the database and then click the Script tab.

4. Enter a Begin and/or End script as necessary on the appropriate subtab. You can use the
following variables in these scripts:

Variable Description

%DATABASE% Name of the current PDM

%DATE% Date of script generation

%DBMSNAME% Name of the DBMS for the target database

%NAMESCRIPT% Filename of script file

%PATHSCRIPT% Filename and path of script file

%STARTCMD% Command that runs the script

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 299

Variable Description

%AUTHOR% Author of the current model

For a complete list of the variables available and how to format them, see Customizing and
Extending PowerDesigner > DBMS Definition Files > PDM Variables and Macros.

5. Click OK to close the database property sheet and return to your model.

Inserting Begin and End Scripts for Table and Tablespace Creation
For each table and tablespace, you can insert a Begin script after the table title and an End
script after the table or tablespace creation command.

These scripts can appear in database creation scripts and database modification scripts.

1. Open the property sheet of the tablespace and click the Script tab.

2. Enter a Begin and/or End script as necessary on the appropriate subtab. You can use the
following variables in these scripts:

Variable Description

%DATABASE% Code of the current PDM

%DATE% Date of script generation

%DBMSNAME% Code of the DBMS for the target database

%NAMESCRIPT% Filename of script file

%PATHSCRIPT% Filename and path of script file

%STARTCMD% Command that runs the script

%TABLESPACE% Code of the tablespace

%OPTIONS% Physical options of the tablespace

%AUTHOR% Author of the current model

%COLNLIST% Column list

%DBMSNAME% Code of the DBMS for the target database

%OWNER% Table owner

%OWNERPREFIX% Owner prefix of table owner

%TABLE% Name or code of current table (based on display preferences)

%TCODE% Code of the current table

%TLABL% Label of the current table

%TNAME% Name of the current table

CHAPTER 6: Generating and Reverse-Engineering Databases

300 SAP Sybase PowerDesigner

For a complete list of the variables available and how to format them, see Customizing and
Extending PowerDesigner > DBMS Definition Files > PDM Variables and Macros.

3. Click OK to close the database property sheet and return to your model.

Generating a BusinessObjects Universe
PowerDesigner can generate a SAP® BusinessObjects™ universe from your PDM for editing
in the BusinessObjects Universe Design or Information Design tools, or for direct
consumption by the Web Intelligence rich client. Generating a universe from your PDM gives
you access to table, view, and column names and comments and more reliable cardinality
information than if you create a universe directly from your database.

Note: To use this feature, you must have SAP® BusinessObjects™ SBOP BI Platform Clients
4.0 SP04 Patch 3 (v14.0.4.819) or higher installed on your workstation. On Windows Vista or
Windows 7 machines, if PowerDesigner fails to recognize a valid BusinessObjects
installation, it may be necessary separately to launch the Universe Design tool one time with
administrator privileges to enable the BusinessObjects SDK.

1. [optional] Optimize your PDM for generation of a universe in the following ways:

• Specify auto-incrementing primary keys (see Creating Primary Keys on page 105)
together with one or more human-readable alternative keys (see Creating Alternate
Keys on page 107) to uniquely identify dimension rows.

• Identify fact and dimension tables either manually or by retrieval (see Identifying Fact
and Dimension Tables on page 217) and review the choices that PowerDesigner has
made:

• [optional] To completely control the format of your multidimensional objects, retrieve
facts and dimensions in a multidimensional diagram (see Generating Cubes on page
217), and edit them as necessary:

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 301

2. Select Tools > SAP BusinessObjects > Generate BusinessObjects Universe.

3. [optional] Click the Connect button to connect to the BusinessObjects CMS.

4. Select a data connection to allow BusinessObjects to connect to your database. If you have
not connected to the CMS, you can use an existing local connection from the
BusinessObjects connection list; otherwise choose from the list of secured connections.
You can, alternatively, click the Create button to create a new connection with the
BusinessObjects New Connection wizard.

Note: The user that you specify in this connection must have sufficient privileges and
permissions to read all of the database objects contained in the PDM you are creating your
universe from.

5. Click Next to select the objects to generate from your model. PowerDesigner will propose
objects to generate as follows:

• If facts and dimensions are present in your model, the facts are proposed for
generation.

• If no facts are present, but one or more tables have been specified as fact tables, then
these will be proposed for generation.

• If no facts or fact tables are present, then PowerDesigner will evaluate all the tables in
the model and propose those which could serve as fact tables for generation.

Note: By default, tables that have no links to other tables are excluded from the list. Select
the Include isolated tables option to add them for selection.

6. [when facts are not present] Click Next to select any appropriate generation options:

Option Description

Expand fact date
columns as time di-
mensions

[selected by default] Creates a time dimension with the standard Year,
Quarter, and Month attributes for each date column in each fact table.

Add Large Object
dimension details

[deselected by default] Specifies that dimension attributes are created for
columns of type blob (which commonly contain images, audio, or other
binary data). If this option is deselected, these columns will still appear in
the data foundation, but will not be visible in the business layer.

CHAPTER 6: Generating and Reverse-Engineering Databases

302 SAP Sybase PowerDesigner

Option Description

Use primary keys as
dimension identifi-
ers

Specifies whether dimension identifiers can or must be generated from the
primary keys of their source tables. You can choose from the following
settings:
• Force - Dimension identifiers must be generated from the primary keys

of their source tables.
• Allow - [default] PowerDesigner chooses the first available columns in

the following list to use as dimension identifiers:
• The first alternative key (all associated columns concatenated).
• The first unique index not identified as a primary key.
• The first column with a string data type, including primary keys

with a string data type.
• The first non-key column.
• The first key column.

• Disallow - Same as allow, but dimension identifiers cannot be gener-
ated from primary keys even if they have a string data type (for example
a primary key containing a GUID).

7. Click Next to review your choices and then click Finish to begin the universe generation.

When the universe is generated, you can:
• Open it in the Universe Design tool or import it into the Information Design tool (select

File > Convert UNV Universe) for further editing.

PowerDesigner generates a universe com-
prising a connection, data foundation, and
business layer. The business layer has one
folder for each fact containing:
• A dimension for each dimension associ-

ated with the fact in PowerDesigner. Di-
mension series, such as the Product di-
mension in our example are grouped
within their own subfolder. Dimensions
with more than one attribute list each at-
tribute beneath them.

• A measure for every numeric column in
the fact.

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 303

After the import is complete, open the data foundation view and select Actions >
Refresh Structure to obtain access to the richer selection of data types available in the
Information Design tool.

• [if you are connected to the CMS] Import it into the CMS for editing or consumption.
• Consume it directly in the Web Intelligence rich client:

Generating Test Data to a Database
PowerDesigner can generate sample data to your database tables to verify performance or to
help in estimating the amount of memory that the database will require. You can generate test
data for some or all of the tables in your PDM to an empty or existing database.

Note: The following objects are not taken into account when you generate test data:

• Alternate keys
• Foreign keys
• Business and validation rules
• Binary, sequential, OLE, text or image data types
• Trigger contents

1. [optional] Specify one or more test data profiles to define the range of data to be generated
or to draw data from a file or other database (see Populating Columns with Test Data on
page 98). If you do not define profiles, PowerDesigner will generate random data that is
appropriate to each data type.

Note: The format in which date and time data is generated with or without profiles can be
controlled by DBMS items in the Script/Sql/Format category (see Customizing
and Extending PowerDesigner > DBMS Definition Files > Script/Sql Category.

CHAPTER 6: Generating and Reverse-Engineering Databases

304 SAP Sybase PowerDesigner

2. Select Database > Generate Test Data to open the Test Data Generation dialog.

3. On the General tab, enter or select the appropriate parameters:

Option Description

Directory Specifies the directory in which the file will be saved.

File name Specifies the name of the test data file to generate. Select the One file only
checkbox to specify that a single file should be generated.

Generation type Specifies how the test data will be generated:
• Script generation
• Direct generation – to a live database connection.

Note: As triggers are not needed in this context and can block insertions
and considerably increase the time required to generate the database,
we recommend that you do not implement triggers or remove them
from your test database.

• Data file – as a set of values in a file.

Commit mode Specifies when the data will be committed:
• Auto - during script generation
• At end - after script generation
• By packet - at defined intervals during script generation

Data file format Specifies the format when generating a data file:
• CSV – comma-separated values
• Custom delimiter – specify a custom delimiter

Delete old data Deletes existing data before generating new data.

Check model Checks the PDM before generating the test database or script, and stops
generation if an error is found.

Automatic archive Creates an archive of any previous test data.

Default number of
rows

Specifies the default number of rows to generate for tables. This number can
be overrridden for individual tables on the Number of Rows tab.

Default number/
character/ date pro-
file

Specifies the default test data profiles (see Populating Columns with Test
Data on page 98) to use to generate data. We recommend that you create test
data profiles to accurately model your data and associate them with each of
your columns and domains as appropriate, but if you have not done so, then
these default profiles are used.

4. [optional] Click the Number of Rows tab to change the number of rows to be generated for
each table.

By default, PowerDesigner generates the number of rows that is specified in the Number
property in the table property sheet (see Table Properties on page 76) or, if no number is
specified, the default number specified on the General tab of this Test Data Generation
dialog.

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 305

5. [optional] Click the Format tab and modify the script formatting options as appropriate:

Option Result of selection

Owner prefix Specifies that an owner prefix is added.

Titles Specifies that each section of the script includes commentary in the form of
titles.

Encoding Specifies the encoding format to use for test data generation. You should
select the encoding format that supports the language used in your model
and the database encoding format.

Character case Specifies the character case to use. The following settings are available:

• Upper - all uppercase characters
• Lower - all lowercase characters
• Mixed - both uppercase and lowercase characters

No accent Non-accented characters replace accented characters in script.

6. [optional] Click the Selection tab and select which tables you want to generate test data
for. By default all tables are selected.

7. Click OK to start the generation.

If you are generating test data to a live database connection, then the Connect to a Data
Source dialog box opens. Select a data source, and then click Connect. If you are
generating a test data script, then a Result dialog box asks you if you want to Edit or Close
the newly generated file.

A message in the Output window indicates that the test data generation is completed.

Estimating Database Size
You can estimate the size of a database for all or some of the tables and other objects in your
model. You can estimate the initial size of the database or project its growth over a number of
years.

The estimate is based on the following elements:

• Estimated number of records in tables - Specify the number of rows (and their annual
projected growth rate) in a table in the Number and Row growth rate fields on the
General tab of its property sheet (see Table Properties on page 76).

• Table columns and their sizes - Specify the average size for variable length columns in the
Average length field on the Detail tab of its property sheet (see Column Properties on
page 91). If you do not specify an average length for variable length columns, then the
maximum length is used. It is particularly important to specify an average length for
strings or long binary data types, as a Binary Long OBject (BLOB), such as a picture, can
represent the largest portion of the space actually taken by a table.

CHAPTER 6: Generating and Reverse-Engineering Databases

306 SAP Sybase PowerDesigner

Note: To specify values for multiple tables or columns, select Model > Tables or Model >
Columns. If you do not see the appropriate property column, then add it using the
Customize Columns and Filter tool.

• Indexes in the model - including primary, alternate, and foreign key indexes (if supported)
and database-specific indexes such as IQ join indexes.

• Tablespaces in the model - the size of a tablespace is estimated as a total of all the tables and
all the indexes in the tablespace.

• DBMS and its storage options.

Note: The default estimation algorithms can be overridden in the DBMS definition file (see
Customizing and Extending PowerDesigner > DBMS Definition Files > Profile Category >
Modifying the Estimate Database Size Mechanism).

1. Select Database > Estimate Database Size to open the Database Size Estimation dialog.

2. Select the tables for which you want to estimate the size.

3. [optional] Click the Options tab and specify the number of years of growth that you want
to include in your estimate. By default, only the initial size of the database is calculated,
without allowing for any growth.

4. Click OK to begin the estimation.

Size estimates are generated to both the Result List and Output windows. The Database
Size tab of the Result List provides a list of objects which can be double-clicked to open
their property sheets, while the Database Size tab of the Output window prints a textual
list of objects with sizes and a total for the database:

Estimate of the size of the Database "Project Management"...

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 307

 Number Estimated size Object
---------- ------------------ ----------------------------
 1,000,000 136,224 KB Table 'Customer'
 Index 'Primary' (4,880 KB)
 1,000 48 KB Table 'Division'
 10,000 696 KB Table 'Employee'
 Index 'Primary' (48 KB)
 5,000 312 KB Table 'Material'
 10,000 96 KB Table 'Member'
 10,000 392 KB Table 'Participate'
 10,000 640 KB Table 'Project'
 Index 'Primary' (48 KB)
 10,000 464 KB Table 'Task'
 1,000 80 KB Table 'Team'
 10,000 96 KB Table 'Used'
---------- ------------------ ----------------------------
 139,048 KB Total estimated space

Database size estimation completed.
The number of records was not defined for 1 table(s).

A warning is given if any tables in the model do not have a number of a records defined.

Modifying a Database
You can modify an existing database schema by to reflect changes in your model. The PDM
(source model) and the existing database schema (target model) are merged using a database
synchronization window, which allows you to choose which objects are added, deleted, or
updated in the target.

Note: To update a HANA database, use the HANA wizard (see Exporting Objects to the
HANA Repository on page 504).

1. Select Database > Apply Model Changes to Database

CHAPTER 6: Generating and Reverse-Engineering Databases

308 SAP Sybase PowerDesigner

Note: To load a pre-configured settings set (see Quick Launch Selection and Settings Sets
on page 297), select it in the list at the bottom of the dialog.

2. Enter a destination Directory and File Name for the script file.

3. Specify the type of generation (script or live database connection) to perform:

• Script generation - generate a script to be executed on a DBMS at a later time.
Optionally select One file only to create the generation script as a single file. By
default, a separate script file is created for each table.

• Direct generation – generate a script and execute it on a live database connection.
Optionally select Edit generation script to open the script in an editor for review or
editing before execution.

4. Specify how PowerDesigner will determine the changes to apply. You can choose to
compare your model against:

• Archive model – Click the button to the right to browse to the archived model (see
Archive PDMs on page 322).

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 309

• Data source – Click the button to the right to connect to your data source.
• Script file – Select a script from the list or click the button to the right to browse to the

script.
• Model from repository – Select a model from the list and optionally click the button to

the right to browse to a version of it.

5. [optional] Select the following options as appropriate:

Option Description

Always use create state-
ments/

Use alter statements
when possible

Specify whether create statements should always be used to modify
database tables, or whether alter statements should be used where
possible.

Backup tables Specifies that any existing table will be copied to a temporary backup
during the modification, and then restored to the updated tables. If this
option is not selected, then all existing data will be erased. If you select
this option then you can also specify to :
• Drop temporary tables - Specifies that the temporary backup

tables are removed after script execution.
• Use physical options for temporary tables - Specifies that the

temporary backup tables are generated with their physical options.

Check model Specifies that a model check is performed before script generation.

Automatic archive Creates an archive version of the PDM after generation to use to de-
termine changes during your next database modification (see Archive
PDMs on page 322).

6. [optional] To change the default generation options, click the Options tab (see Database
Generation Dialog Options Tab on page 293).

7. [optional] To change the format of your script, click the Format tab (see Database
Generation Dialog Format Tab on page 296).

8. [optional] To control which database objects will be modified, click the Selection tab.

You can save your selection via the Selection bar at the bottom of the tab (see Quick
Launch Selection and Settings Sets on page 297).

9. Click OK to begin the update. If you are using a live database connection, then the Reverse
Engineering window will open, allowing you to select or clear check boxes in the target
model for objects that you want to include or remove from the source model. Make your
selections and then click OK to continue.

10. The Database Synchronization window will open. Select or clear check boxes in the target
model for objects that you want to include or remove from the model, and then click OK to
continue.

For more information about comparing and merging models, see Core Features Guide >
Modeling with PowerDesigner > Comparing and Merging Models.

CHAPTER 6: Generating and Reverse-Engineering Databases

310 SAP Sybase PowerDesigner

• If you are generating a script, a result box opens listing the file path of the generated
file. To open the script in a text editor, select the file in the result box and click the Edit
button.

• If you are generating a database directly, a Data Source connection box is displayed.
Type your connection details and click the Connect button. A message box shows the
progress of the generation process. At the end of generation click OK to close the box.

Displaying Data from a Database
You can connect to a database and display the data that corresponds to a PDM table, view, or
reference.

1. Right-click a table, view, or reference and select View Data.

If you are not already connected to a database, the Connect to Data Source window will
open. Choose your connection profile and click Connect to proceed.

2. A Query Results windows list all the database records corresponding to the selected table,
view, or reference.

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 311

Reverse Engineering a Database into a PDM
Reverse engineering is the process of generating a PDM (or certain PDM objects) from an
existing database schema. You can reverse engineer into a new PDM or an existing PDM from
one or more script files or from a live database. The database user that PowerDesigner uses to
connect must have public access to the database.

Note: To reverse-engineer from a HANA database, use the HANA wizard (see Importing
Objects from the HANA Repository on page 506).

Reverse Engineering from Scripts
PowerDesigner can reverse engineer a PDM for one or more SQL script files. The script will
normally be the script used to generate the database but can also include other scripts.

Warning! In general, only statements that create objects are reverse-engineered and alter
statements, except for those that add columns to a table, are not supported.

1. To reverse engineer a script into an existing PDM, select Database > Update Model from
Database.

or

To reverse engineer a script and create a new PDM, select File > Reverse Engineer >
Database to open the New Physical Data Model dialog. Specify a model name, choose a
DBMS from the list, and then click OK.

or

When working with the PowerDesigner Eclipse plug-in, select any SQL file in the
Navigator, right-click it and select Reverse Engineer from SQL File. You are given the
option to reverse into an existing or new PDM.

Note: To reverse-engineer an MS Access database, you must first prepare a .dat file (see
Reverse Engineering a Microsoft Access Database on page 570).

2. When the Database Reverse Engineering Options dialog opens, select Using script
files:

CHAPTER 6: Generating and Reverse-Engineering Databases

312 SAP Sybase PowerDesigner

The following tools are provided to help with script selection:

Tool Description

Add Files – Opens a dialog box to allow you to browse for scripts files. You can add as
many files as necessary.

Move Up – Moves the selected file(s) up one row. This tool is grayed if the selected
file(s) are at the top of the list.

Move Down - Moves the selected file(s) down one row. This tool is grayed if the
selected file(s) are at the bottom of the list.

Clear All - Deletes all files from the list.

Note: You can add as many script files as necessary to the list. If you are reversing more
than one script file, the order in which the files are reversed must respect any dependencies
among objects (for example, trigger creation scripts must come after table creation scripts,
and grant permission scripts must come after both table and user creation scripts.

3. [optional] Click the Options tab to specify any reverse engineering options (see Reverse
Engineering Options Tab on page 316).

Note: References and primary keys are not rebuilt by default. To enable rebuilding, select
the appropriate options on the Options tab.

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 313

4. [optional] Click the Target Models tab to specify any external shortcuts (see Reverse
Engineering Target Models Tab on page 319).

5. Click OK to begin reverse engineering.

If you are reverse engineering to an existing PDM, then the Merge Models dialog box
opens to allow you to control the merging of the new objects into your PDM (see Core
Features Guide > Modeling with PowerDesigner > Comparing and Merging Models).
When the process is complete, a confirmation message is given in the Output window.

Reverse Engineering from a Live Database
PowerDesigner can reverse engineer a PDM from a live database connection. You must
specify a data source and connection information. You can select to use administrator
permissions in order to be able to select the system tables that are reserved to a database
administrator.

1. To reverse engineer from a live database connection into an existing PDM, select
Database > Update Model from Database.

or

To reverse engineer from a live database connection and create a new PDM, select File >
Reverse Engineer > Database to open the New Physical Data Model dialog. Specify a
model name, choose a DBMS from the list, and then click OK.

2. In the Database Reverse Engineering Options dialog, select Using a data source:

CHAPTER 6: Generating and Reverse-Engineering Databases

314 SAP Sybase PowerDesigner

Note: A data source might be predefined, or you can enter the name of an existing data
source. In both cases, if you need to specify additional connection parameters, a database
connection dialog box opens when you click OK. Enter the necessary parameters and click
Connect to open the Database Reverse Engineering dialog.

3. Select your data source. You can either accept the selected data source (if one is present) or
click the Connect to a Data Source tool to select or define one. For detailed information
about working with data sources, see Core Features Guide > Modeling with
PowerDesigner > Getting Started with PowerDesigner > Connecting to a Database.

4. [optional] To reverse engineer tables reserved to the database administrator, select
Reverse using administrator's permissions.

5. [optional] Click the Options tab to specify any reverse engineering options (see Reverse
Engineering Options Tab on page 316).

Note: References and primary keys are not rebuilt by default. To enable rebuilding, select
the appropriate options on the Options tab.

6. [optional] Click the Target Models tab to specify any external shortcuts (see Reverse
Engineering Target Models Tab on page 319).

7. Click OK to open the Database Reverse Engineering dialog, which allows you to specify
the objects to reverse engineer (see Database Reverse Engineering Selection Window on
page 318). Only tables and triggers are selected by default.

8. Click OK to begin reverse engineering.

If you are reverse engineering to an existing PDM, then the Merge Models dialog box
opens to allow you to control the merging of the new objects into your PDM (see Core

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 315

Features Guide > Modeling with PowerDesigner > Comparing and Merging Models).
When the process is complete, a confirmation message is given in the Output window.

Reverse Engineering Options Tab
When you reverse engineer a database schema using script files or a data source, you can
define rebuild options after reverse engineering.

The rebuild options automatically perform the following tasks after reverse engineering:

Option Description

Automatically rebuild ref-
erences when no reference
is reversed

Rebuilds references (see Rebuilding References on page 181) when no
references are reverse engineered. A reference is created between each
column belonging to a primary key and a column, with identical name
and data type, that does not belong to a primary or a foreign key in
another table.

Automatically rebuild pri-
mary keys from unique in-
dexes when tables have no
key and only one unique
index

Rebuilds primary keys (see Rebuilding Primary Keys on page 106)
using unique indexes when tables have no key and only one unique
index.

Automatically reverse ta-
bles referenced by selected
tables

Reverse engineers the parents of the selected child tables in order to
complement the definition of these child tables.

Create symbols Creates a symbol for each reversed object in the diagram. If this option
is not selected, reversed objects are visible only in the browser.

Where there are a large number of objects with complex interactions,
PowerDesigner may create synonyms of objects to improve diagram
readability. For example, if a table has a large number of references,
PowerDesigner may create a synonym of the table in another location in
the diagram to reduce the length required for references.

Apply code to name con-
version to reversed objects

Applies the code to name conversion script specified in the model
options (see Core Features Guide > Modeling with PowerDesigner >
Objects > Naming Conventions).

File encoding Specifies the default file encoding of the files to reverse engineer. Click
the ellipsis to the right of the option to change the encoding (see Reverse
Engineering Encoding Format on page 317).

Block/ Command termina-
tor

Specify the end of block and end of command characters for the re-
versed script. By default, these value are defined in the DBMS defini-
tion file at Script\SQL\Syntax, and modifications made here
are saved in the Registry for reuse in other models. To restore the DBMS
value, click the Restore from DBMS tool.

CHAPTER 6: Generating and Reverse-Engineering Databases

316 SAP Sybase PowerDesigner

Option Description

Case sensitive database Specifies that the database is case sensitive and enables the case sen-
sitive option in the model.

Reverse Engineering Encoding Format
If the code you want to reverse engineer is written with Unicode or MBCS (Multibyte
character set), you should use the encoding parameters provided to you in the File Encoding
box.

If you want to change these parameters because you know which encoding is used within the
sources, you can select the appropriate encoding parameter by clicking the Ellipsis button
beside the File Encoding box. This opens the Text Input Encoding Format dialog box in which
you can select the encoding format of your choice.

The Text Input Encoding Format dialog box includes the following options:

Option Description

Encoding hint Encoding format to be used as hint when reversing the file.

Detection mode Indicates whether text encoding detection is to be attempted and specifies
how much of each file should be analyzed. When enabled, PowerDesigner
analyzes a portion of the text, and uses an heuristic based on illegal bytes
sequences and/or the presence of encoding-specific tags in order to detect the
appropriate encoding that should be used for reading the text.

The following settings are available:

• No detection - for use when you know what the encoding format is
• Quick detection - analyzes a small part of the file. For use when you think

that the encoding format will be easy to detect
• Full detection – analyzes the whole file. For use when you think that the

number of characters that determine the encoding format is very small

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 317

Option Description

On ambiguous detec-
tion

Specifies what action should be taken in case of ambiguity. The following
settings are available:

• Use encoding hint and display warning - the encoding hint format is used
and a warning message is displayed.

• Use encoding hint - the encoding hint format is used but no warning
message is displayed.

• Use detected encoding - the encoding format detected by PowerDesigner
is used

Abort on character
loss

Allows you to stop reverse engineering if characters cannot be identified and
are to be lost in current encoding

Here is an example on how to read encoding formats from the list:

Database Reverse Engineering Selection Window
When you reverse engineer a database from a live database connection, you can choose to
populate your PDM with a subset of the available objects by selecting them in the Database
Reverse Engineering Selection window.

CHAPTER 6: Generating and Reverse-Engineering Databases

318 SAP Sybase PowerDesigner

Click the subtabs to view the different types of objects. Certain object types have attributes, or
options, that appear below the object lists. Options that are not available for the selected object
type or DBMS are grayed. When you select tables containing triggers on the Table tab, the
triggers are selected on the Trigger tab.

You can restrict database objects to reverse engineer in the top area of the window by selecting
to filter by:

• Qualifier - such as a database or a partition that contains one or more tables. For example,
the DB2 DBMS authorizes the use of the qualifier field to select which databases are to be
reverse engineered from a list.

• Owner - normally the creator of a database object. To reverse engineer objects from
multiple owners, select All users. Only users that have creation rights are reverse
engineered.

Note: If the selected qualifier contains a large number of table owners, it may be faster to
click the Select Qualifier and Owner tool and enter a qualifier and/or owner in the dialog
box, as opening the Owner list may take a very long time.

You can save your selections for re-use by entering a selection name in the list at the bottom of
the window and clicking the Save tool to the right of the list. Selections are saved with a .sel
file extension, and are added to the list for subsequent use. You can change the folder in which
the files are saved by clicking the folder tool to the right of the list.

Reverse Engineering Target Models Tab
External shortcuts depend on their corresponding target objects located in different models.
When you need several models to design a single database, you can use shortcuts to share
objects between models. The Target Models tab displays the list of detected target models
containing target objects for shortcuts in the current model to reverse.

This tab is always visible, even if the model does not contain shortcuts, so that you can add
target models and create shortcuts instead of duplicating objects.

The following tools are available on this tab:

Tool Description

Change Target Model - Displays a standard Open dialog box to let you select another
file as target model

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 319

Tool Description

Open Model - Opens selected target model in current workspace

Add Models - Opens a selection list with the models opened in the current workspace.
This tool is particularly useful when you reverse engineer into a new model where the
target models are not defined

Delete - Deletes the target model and the shortcuts in the current model that reference
the deleted target model

When you reverse engineer a model, any target models should be open in your workspace. If
not, the following confirmation dialog box is displayed to let you open the target models:

If you are reverse engineering from a:

• Script - All the create statements in the script create objects, provided the script contains a
full definition of the object. When the script only uses an object and does not define it, this
object is sought among the target objects in the target models and an external shortcut is
created in the reversed model.

• Live data source - External shortcuts are created for all selected objects that already exist in
another target model. These existing objects are deselected by default in the Selection tab
of the Reverse Engineering dialog box, except for target objects corresponding to shortcuts
already existing in the reversed model.

Optimizing Live Database Reverse Engineering Queries
Live database reverse engineering has been optimized in order to improve performance. All
queries run according to an optimization process rule.

This process uses the following registry keys:

• RevOdbcMinCount defines a number of selected objects for reverse engineering. The
default number is 100

• RevOdbcMinPerct defines a percentage of selected objects for reverse engineering.
The default percentage is 10

These keys do not exist by default, you have to create and edit them in the Registry under:

Current User \Software\Sybase\PowerDesigner <version>\FolderOptions
\Physical Objects

CHAPTER 6: Generating and Reverse-Engineering Databases

320 SAP Sybase PowerDesigner

During reverse engineering, PowerDesigner compares the total number of current objects for
reverse engineering to the value of RevOdbcMinCount, and if the total number of listed
items is:

• lower than RevOdbcMinCount - then a global reverse query is executed.
• higher than RevOdbcMinCount - then the process uses key RevOdbcMinPerct, and

if the percentage of reversed items is :
• lower than RevOdbcMinPerct - then the same query is executed for each object.
• higher than RevOdbcMinPerct - then a global query is executed.

Reverse Engineering Database Statistics
You can reverse engineer statistics for an existing database, such as the number of distinct or
null values in a column or the average length of a character field. These can provide helpful
information when optimizing a design.

You can reverse engineer the statistics as part of the general reverse engineering process by
selecting the Statistics checkbox in the Database Reverse Engineering window (see Reverse
Engineering from a Live Database on page 314), or update them at any other time, using the
dedicated Update Statistics window.

1. Select Tools > Update Statistics to open the Update Statistics window (if PowerDesigner
is not presently connected to a database via a live database connection, you will be required
to connect):

2. On the General tab, select or clear the checkboxes to specify whether you want to update
statistics for tables and/or columns.

3. [optional] Click the Selection tab and select or clear checkboxes to specify for which tables
you want to update statistics:

CHAPTER 6: Generating and Reverse-Engineering Databases

Data Modeling 321

4. Click OK to begin the update. Progress appears in the Output window. For large updates, a
progress dialog box opens, allowing you to cancel the update at any time.

When the process is complete, you can view the updated statistics in the property sheets of
your tables and columns.

Archive PDMs
Archive PDMs provide a snapshot of the structure of your database at a point in time to allow
you to determine model changes since that time when updating your database. When
comparing your model directly with a database or script (and not with an archive PDM), some
differences (particularly around renamed objects) can be lost, leading to more drop/creates in
place of alter statements.

Archives are created by default when you generate or update your database (using the
Automatic Archive option), and can be created manually at any time by clicking File > Save
As, and selecting Archived PDM (bin) or Archived PDM (xml) in the Save As Type list.

CHAPTER 6: Generating and Reverse-Engineering Databases

322 SAP Sybase PowerDesigner

CHAPTER 7 Generating Other Models from a
Data Model

You can generate various types of PowerDesigner models from CDMs, LDMs, and PDMs.

Data Model CDM LDM PDM OOM XSM

CDM X X X X

LDM X X X

PDM X X X X X

1. Select Tools, and then one of the following to open the appropriate Model Generation
Options Window:

• Generate Conceptual Data Model... Ctrl+Shift+C
• Generate Logical Data Model... Ctrl+Shift+L
• Generate Physical Data Model... Ctrl+Shift+P
• Generate Object-Oriented Model... Ctrl+Shift+O
• Generate XML Model... Ctrl+Shift+M

2. On the General tab, select a radio button to generate a new or update an existing model,
and complete the appropriate options.

3. [optional – PDM-PDM generation only] Click the DBMS Preserve Options tab and set
any appropriate options.

Note: For detailed information about the options available on the various tabs of the
Generation window, see Core Features Guide > Linking and Synchronizing Models >
Generating Models and Model Objects.

4. [optional] Click the Detail tab and set any appropriate options. We recommend that you
select the Check model checkbox to check the model for errors and warnings before
generation.

5. [optional] Click the Target Models tab and specify the target models for any generated
shortcuts.

6. [optional] Click the Selection tab and select objects to generate.

7. Click OK to begin generation.

Data Modeling 323

Generating Other Models from a CDM
You can generate CDM objects to other model objects.

CDM OOM PDM

Entity Class - All entities with the Gen-
erate property selected are gen-
erated as persistent classes with
the Generate table per-
sistence mode. If an entity's
Generate property is not selec-
ted, the generated class has the
Migrate columns persis-
tence mode.

Table - If the entity is involved in an
inheritance, the inheritance Genera-
tion Mode setting (see Inheritance
Properties on page 69) affects whether
parents and children are generated.

Entity attribute Attribute Table column

Note: Two columns in the same table
cannot have the same name. If column
names conflict due to foreign key mi-
gration, PowerDesigner automatically
renames the migrated columns to the
first three letters of the original entity
name followed by the code of the at-
tribute.

Primary identifier - Primary or foreign key depending on
independent or dependent relationship

Identifier - Alternate key

Association Relationship or association -

Binary association with
attributes

Association class -

Inheritance Generalization -

Relationship - Reference

Generating PDM Table Keys from CDM Entity Identifiers
The type of key that is generated in the PDM depends on the cardinality and type of
dependency defined for a relationship in the CDM. Primary identifiers generate primary and
foreign keys. Other identifiers that are not primary identifiers generate alternate keys:

• A primary key is a column or columns whose values uniquely identify a row in a table.

CHAPTER 7: Generating Other Models from a Data Model

324 SAP Sybase PowerDesigner

• A foreign key is a column or columns that depend on and migrate from a primary key
column in another table.

• An alternate key is a column or columns whose values uniquely identify a row in a table,
and is not a primary key.

Independent One-to-many Relationships
In independent one-to-many relationships, the primary identifier of the entity on the one side
of the relationship is generated as a:

• Primary key in the table generated by the entity on the one side of the relationship
• Foreign key in the table generated by the entity on the many side of the relationship

The following CDM shows an independent relationship. Each division contains one or more
employees:

The following PDM will be generated:

Table Primary key Foreign key

Division Division number —

Employee Employee number Division number

Dependent One-to-many Relationships
In dependent relationships, the primary identifier of the nondependent entity is generated as a
primary/foreign key in the table generated by the dependent entity. The migrated column is
integrated into the primary key if it already exists.

The following CDM shows a dependent relationship. Each task must have a project number.

The following PDM will be generated:

CHAPTER 7: Generating Other Models from a Data Model

Data Modeling 325

Table Primary key Foreign key

Project Project number —

Task Project number/Task number Project number

Independent Many-to-many Relationships
In independent many-to-many relationships, the primary identifiers of both entities migrate to
a join table as primary/foreign keys. The CDM below shows an independent relationship.
Each employee can be a member of one or more teams, and each team can have one or more
employees as members.

The following PDM will be generated:

Table Primary key Foreign key

Team Team number —

Employee Employee number —

Member Team number/Employee number Team number/Employee number

Independent One-to-one Relationships
In independent one-to-one relationships, the primary identifier of one entity migrates to the
other generated table as a foreign key.

CHAPTER 7: Generating Other Models from a Data Model

326 SAP Sybase PowerDesigner

Generating Other Models from an LDM
You can generate LDM objects to other model objects.

LDM CDM PDM

Business rule Business rule Business rule

Domain Domain Domain

Entity Entity Table

Identifier Identifier Key

Entity attribute Entity attribute Column table

Inheritance Inheritance References

Relationship Relationship Reference

Generating Other Models from a PDM
You can generate PDM objects to other model objects.

PDM CDM LDM OOM XSM

Domain Domain Domain Domain Simple Type

Table Entity Entity Class Element

Table column Entity attribute Entity attribute Attribute Attribute or ele-
ment

Primary key Primary identifier Primary identifi-
er

Primary identifier -

Alternate key Identifier Identifier Identifier -

Foreign key - - - Keyref constraint

Stored-Proce-
dures

- - Operation -

View - - - Element

View column - - - Attribute

Index - - - Unique

Abstract data
type

- - - Complex type

CHAPTER 7: Generating Other Models from a Data Model

Data Modeling 327

PDM CDM LDM OOM XSM

Reference Relationship Relationship Association -

Note: If the code of the generated XML model objects does not correspond to the target
language naming conventions, you can define a code naming convention script to convert
object names into codes. For more information on conversion scripts, see Core Features Guide
> Modeling with PowerDesigner > Objects > Naming Conventions.

XML Specifics
Generation of column as attribute or element is controlled by generation option

Foreign keys - When a foreign key is not a composition, it is generated as a KeyRef constraint

Oracle 8 and Interbase Sequence Translation
When a CDM is generated from a PDM, the data type of the table column attached to a
sequence is translated to a serial data type in the CDM with the format NO%n, where %n is the
length of the data type (see Sequences (PDM) on page 169).

OOM Specifics
All tables are generated as persistent classes with the "Generate table" persistence mode.

All abstract data types are generated as persistent classes with the "Generate ADT"
persistence mode.

Table - Class. The cardinality of a class is translated from the number of estimated records in a
table

Table with migrated keys from only two other tables - Class linked with an association class
between the two classes generated by the two parent tables

Stored-Procedures and stored functions attached to selected table - If the parent table is
generated as a class, the stored procedure or the stored function is generated as an operation
attached to the class

Note: If the code of the generated OOM objects does not correspond to the target language
naming conventions, you can define a code naming convention script to convert object names
into codes. For more information, see Core Features Guide > Modeling with PowerDesigner >
Objects > Naming Conventions.

Customizing Data Type Mappings
When generating another PDM from your PDM, PowerDesigner maps the existing column
datatypes to appropriate data types in the new model. If the standard mappings are not
sufficient for you, you can use the Enhance Data Type Mapping extension to specify
alternative mappings, including on a column-by-column basis.

To review the conversions that PowerDesigner makes by default between the data types of a
database or other modeling target and its standard conceptual types (which are also used in the

CHAPTER 7: Generating Other Models from a Data Model

328 SAP Sybase PowerDesigner

CDM), select Tools > Resources > Type, select the appropriate file in the list and click the
Properties tool. Expand the Script > DataType (for DBMSs) or Settings > DataType (for
other resource files), and review each of the entries (which are described in their Comment
field):

1. Select Tools > Generate Physical Data Model, enter the appropriate generation options
(see Core Features Guide > Linking and Synchronizing Models > Generating Models and
Model Objects).

2. On the Detail tab, click the Enable Transformations button to display the Extensions
tab, and select the Enhance Data Type Mapping extension.

3. Click OK to start the generation. The Data Type Mappings dialog appears, with the
existing data types present in the model listed in the Original type column, and those that
PowerDesigner proposes in the new DBMS in the Target data type column:

CHAPTER 7: Generating Other Models from a Data Model

Data Modeling 329

4. You can change data type mappings in two ways:

• To change the mapping for all columns of a certain data type, select the desired new
data type from the list in the Target data type column.

• To change the mapping for one column only, click the Add Specific Column
Mapping button, select the column from the tree, click OK, choose the new data type
for the column, and click OK to add this mapping to the list.

5. When you have modified all the necessary data types, click Close and the generation will
continue, using your custom mappings where appropriate.

Note: You can also customize data type mappings when changing the DBMS of your
model with the Database > Change Current DBMS command. To do so, you must first
attach the Enhance Data Type Mapping extension, by selecting Model >
Extensions, clicking the Attach an Extension tool, select the extension, and clicking OK
to attach it to your model.

For more information about data types, see Customizing and Extending PowerDesigner >
DBMS Definition Files > Script/Data Type Category and Customizing and Extending
PowerDesigner > Object, Process, and XML Language Definition Files > Settings
Category: Object Language.

Customizing XSM Generation for Individual Objects
When generating an XSM from a PDM or OOM, you can specify global generation options to
generate tables/classes as elements with or without complex types and columns/attributes as
elements or attributes. You can override these options for individual objects by attaching the
PDM XML Generation or OOM XML Generation extension to your source model and
selecting from their XML generation options.

CHAPTER 7: Generating Other Models from a Data Model

330 SAP Sybase PowerDesigner

Note: The extension provides new property sheet tabs for setting generation options for
individual objects, but you can also set these options with or without the extension by selecting
Model > objects to open the appropriate object list, clicking the Customize Columns and
Filter tool, and selecting to display the XML Generation Mode column.

For example, if you want to generate the majority of your table columns to an XSM as XML
attributes, but want to generate certain columns as elements, you should:

• Modify the XML generation options for those columns that you want to generate as
elements.

• Select to generate columns as attributes on the Model Generation Options Detail tab.

1. Select Model > Extensions to open the List of Extensions, and click the Attach an
Extension tool.

2. On the General Purpose tab, select PDM XML Generation or OOM XML
Generation and click OK to attach the extension to your model and OK to close the
List of Extensions.

These extension files enable the display of the XML tab in all table and column or class
and attribute property sheets.

3. Open the property sheet of the table, column, class, or attribute whose generation you want
to customize, and click the XML tab.

4. Use the radio buttons to specify how you want to generate the object in an XSM.

• For tables and classes, you can specify to generate them as:
• Elements - the table/class is generated as an untyped element directly linked to its

columns/attributes generated as attributes or sub-elements.
• Elements with complex types - the table/class is generated as an element typed by a

complex type, generated in parallel, to contain the columns/attributes.
• Default - generation of the table/class is controlled by the option selected in the

XML Generation group box on the Model Generation Options Detail tab.
• For tables, you can additionally specify to generate keys as:

• Key - [default] The primary
key columns are generated and also KEY and KEYREF wherever the table is ref
erenced.

• ID attribute - The primary key columns are not generated and an ID attribute, id, is
generated to replace them.
Wherever the table is referenced, an IDREF attribute is generated to reference th
e appropriate element. If the reference role name is assigned, this attribute is
given this
name. Otherwise, the referenced table name is used and the standard renaming m
echanism is enforced.

• Key and ID attribute - In many cases the primary
key columns have significant data and you may want to generate them, as well as
an ID attribute.

CHAPTER 7: Generating Other Models from a Data Model

Data Modeling 331

In this case an ID attribute is generated for the element and IDREF is used syste
matically for any reference to the table:

The following rules apply to the generation of keys:
• If a Table generates an ID, all its child tables will generate an ID attribute.
• If a Table generates Key columns, all its child tables will generate Key columns.
• If a child table is flagged to generate PK only, ID Attribute will be automatically

 generated.
• If a table generates ID attribute, No Key nor KeyRef will be generated, and ALL

 references will generate IDREF attribute.. (Even if the table generates also Key
Columns)

• If a table generates ID attribute ONLY, All Foreign Key Columns referencing its
 Key columns will be systematically removed and replaced by an IDREF attribute

• For columns and attributes, you can specify to generate them as:
• Elements - [default] the column/attribute is generated as an sub-element of its

table/class element or complex type.
• Attributes - the column/attribute is generated as an attribute of its table/class

element or complex type.
• Default - generation of the column/attribute is controlled by the option selected in

the XML Generation group box on the Model Generation Options Detail tab.

5. Modify the XML generation options for any other objects that you want to generate in a
different manner.

6. Select Tools > Generate XML Model, ensure that the appropriate options are set in the
XML Generation group box on the Model Generation Options Detail tab, and start your
generation.

Configuring the Generated Model Options
When you configure the options of a CDM to generate, you may define options diverging from
the PDM options.

To avoid conflicts, PowerDesigner applies the following rule for default values of CDM
options: an option defined for the generated CDM should respect the equivalent option of the
PDM.

Equivalent Enforce non-divergence model options are available in both the PDM and CDM.

PDM option CDM option Result in generated CDM

Enforce non-di-
vergence

— Enforce non-divergence in model according to PDM op-
tions. Data items and attributes attached to the domain can-
not have divergent definitions

— Enforce non-di-
vergence

Enforce non-divergence in model according to CDM op-
tions defined using the Configure Model Options feature

CHAPTER 7: Generating Other Models from a Data Model

332 SAP Sybase PowerDesigner

Relationships Unique Code
(CDM) Unique Code for relationships is not selected by default in the CDM options.
However, if you select Unique Code for relationships in the CDM options, relationships are
renamed during the generation of a PDM to a CDM.

Options with no equivalent, like Enforce Profile in the PDM without any corresponding option
in a CDM, are generated using default values found in the registry.

Options with No Equivalent in the Models
(OOM) Options with no equivalent, like Enforce Profile in the PDM without any
corresponding option in an OOM, are generated using default values found in the registry.

CHAPTER 7: Generating Other Models from a Data Model

Data Modeling 333

CHAPTER 7: Generating Other Models from a Data Model

334 SAP Sybase PowerDesigner

CHAPTER 8 Migrating from ERwin to
PowerDesigner

You can easily import a model built with ERwin into PowerDesigner with no loss of metadata.
PowerDesigner allows complete flexibility through reliable linking and synchronization
between conceptual, physical and object-oriented model approaches, providing outstanding
model clarity and flexibility.

PowerDesigner supports the import of the following ERwin v3.x and higher model files,
though v4.x or higher files are recommended, as they contain more metadata:

• ERwin v3.x (.erx)
• ERwin v4.x (.xml)
• ERwin v7.x (.xml) – the ERwin model must be saved as Standard XML Format, and

you must uncheck Only save minimum amount of information in the ERwin Save as
XML File dialog box.

Note: Before importing, we recommend that you review your ERwin model to see if any
model object names are duplicated. It is good practice to avoid using duplicate names, and
PowerDesigner will automatically attach a suffix to any duplicate objects that it encounters
during the import process.

An ERwin logical model can be imported into either a PowerDesigner conceptual or logical
model (CDM or LDM), while an ERwin Physical Model is imported into a PowerDesigner
physical data model (PDM).

PowerDesigner cannot import the following ERwin objects:

• ERwin triggers and stored procedures (not directly possible, but see the process in Post-
Import on page 338)

• ERwin reports
• ER1 files
• ERwin data sources
• ERwin target clients

While PowerDesigner can import all your object display preferences and will retain color and
font information, it does not support multiple colors for columns in a single table. The default
column color will be used during the import.

Data Modeling 335

Importing Individual ERwin Files
PowerDesigner provides a wizard to help you import individual ERwin files.

1. Select File > Import > ERwin File.

2. Browse to the directory that contains the ERwin file, select it, and then click Open.

3. If the ERwin file contains only a physical model, you will be prompted to choose whether
to import references as triggers. Select Yes or No to begin the import.

Alternatively, if the ERwin file contains a logical model or a combined logical and
physical model, the ERwin model import dialog box opens:

The options available depend on the type of ERwin model that you are importing.
PowerDesigner supports data modeling at the conceptual, logical, and physical levels. The
full set of options is as follows:

• A conceptual data model can be created when you are importing an ERwin logical
model. It provides a platform-independent representation of a system, giving an
abstract view of its static data structures, and permitting real normalized data structures
with many-to-many and inheritance relationships.

• A logical data model can be created when you are importing an ERwin logical model. It
allows you to resolve many-to-many and super/sub-type relationships, de-normalize
your data structures, and define indexes, without specifying a particular RDBMS.

• A physical data model can be created when you are importing an ERwin physical
model. It is a representation of a real database and associated objects running on a
server with complete information on the structure of the physical objects, such as
tables, columns, references, triggers, stored procedures, views, and indexes.

Select the checkbox for each type of model that you want to create.

4. If your ERwin model contains a logical model, and you want to create a conceptual data
model, then you can choose to merge identical data items. This is a powerful metadata
management technique that is not available in the ERwin environment.

CHAPTER 8: Migrating from ERwin to PowerDesigner

336 SAP Sybase PowerDesigner

For example, your ERwin logical model may contain multiple entities that contain an
attribute "address". By default, PowerDesigner will create a separate data item for each of
these entity attributes. However if you select the Merge identical data items checkbox,
then a single data item will be created, and adjustments to it will automatically cascade
down to all the associated entity attributes.

5. If your ERwin model contains a physical model, then you can choose whether to
Implement referential integrity by triggers.

6. Click OK to begin the import. When the process is complete, the imported models will
appear in the Browser.

Importing Multiple ERwin Files
PowerDesigner provides a wizard to help you import multiple ERwin files.

1. Select File > Import > Multiple ERwin Files to open the ERwin model import dialog:

2. Use the Add Directory or Open Files tools to add .xml or .erx files to import to the
list.

3. Use the following checkbox columns (or the equivalent options at the bottom of the dialog)
to specify import options for the files.

CHAPTER 8: Migrating from ERwin to PowerDesigner

Data Modeling 337

• [C]onceptual Data Model - import the file as a CDM
• [M]erge identical data items - [CDMs only] create a single data item for all entity

attributes with the same name (eg "address")
• [L]ogical Data Model - import the file as an LDM
• [P]hysical Data Model - import the file as a PDM
• [I]mplement referential integrity by triggers - [PDMs only]

You can select to import a single ERwin file as multiple model types. To select multiple
files and set the same options for them, click and hold while dragging your cursor over the
far-left numbered column.

4. Specify a Destination Folder in which to create the PowerDesigner models.

5. Click OK to begin the import.

PowerDesigner will import each model and add it to your workspace. Note that to avoid
problems of memory allocation when importing many models, the PowerDesigner models
are closed by default. To open a model, simply double-click it.

Post-Import
You should perform a certain number of checks after import, and also be prepared for certain
differences in your models.

We recommend that you perform the following post-import checks:

• Import triggers - Triggers cannot be directly imported from ERwin. There are, however,
two methods for transferring your constraint trigger information to PowerDesigner:
• Automatically generate triggers - Select Tools > Rebuild Objects > Rebuild

Triggers. Creating triggers in this way ensures that they will be synchronized
automatically by PowerDesigner, but the actual code may be different from that which
you are used to in ERwin.

• Reverse engineer triggers - Generate the triggers from ERwin, and then reverse
engineer them into PowerDesigner. Creating triggers in this way ensures that they use
exactly the same code as before, but they will not be automatically synchronized by
PowerDesigner.

• Import procedures: Procedures cannot be directly imported from ERwin. You can,
however transfer them by generating the triggers from ERwin, and then reverse
engineering them into PowerDesigner.

• Set up object naming conventions - Select Tools > Model Options, expand the Naming
Convention category and select the object entry (see Core Features Guide > Modeling with
PowerDesigner > Objects > Naming Conventions).

• Select other model options - Select Tools > Model Options, and select the Model Settings
category or one of its children (see Setting CDM/LDM Model Options on page 10 and
Setting PDM Model Options on page 13)

CHAPTER 8: Migrating from ERwin to PowerDesigner

338 SAP Sybase PowerDesigner

The following are some differences that are commonly encountered when working with a
newly imported ERwin model:

• Why do I see errors in Check Model when my ERwin model was clean? - PowerDesigner
performs stricter checks than ERwin. For example, duplicate objects are not permitted in
PowerDesigner, and the existence of orphaned items will generate a warning.

• Why do some of my object symbols appear with numeric suffixes? - If an object is required
to appear more than once in a diagram (for, example, to improve readability),
PowerDesigner will create a graphical synonym to represent it. Thus, if the table
"Purchase" is displayed twice in a diagram, the two symbols will be labeled as "Purchase:
1" and "Purchase: 2".

PowerDesigner vs ERwin Terminology
PowerDesigner and ERwin use different terms to describe certain model objects.

The import process converts general model objects as follows:

ERwin PowerDesigner

Model Model

Stored display and subject area Diagram

Business rule Business rule

Domain Domain

Symbols (including symbol size and
position)

Symbols (including symbol size and position)

Description Description

Notes Annotation

Text block Text symbol

IE notation Entity/Relationship notation

IDEF1X notation IDEF1X notation

User-defined properties Imported as extended attributes stored in an extension file
called Imported Attributes and embedded in the
model. For information about working with extension files,
see Customizing and Extending PowerDesigner > Exten-
sion Files.

The import process converts ERwin logical model objects into conceptual data model (CDM)
objects as follows:

CHAPTER 8: Migrating from ERwin to PowerDesigner

Data Modeling 339

ERwin logical model PowerDesigner CDM

Attribute Data item, entity attribute

Key group Identifier

Entity Entity

Relationship Relationship

Subtype relationship Inheritance link

Subtype category Inheritance

The import process translates ERwin physical model objects into physical data model (PDM)
objects as follows:

ERwin physical model PowerDesigner PDM

Column Column

Key Key

Table Table

Relationship Reference

Index Index

View table View

Fact, dimension, outrigger Table

Target database Current DBMS

Valid value Check parameter

Tablespace Tablespace

Segment Storage

Getting Started Using PowerDesigner for Former ERwin
Users

This section lists some common tasks that former ERwin users will want to perform with
PowerDesigner.

Objects
How do I find objects? All the objects in the model are listed, organized by type, in the
Browser. PowerDesigner provides various methods for locating your objects:

CHAPTER 8: Migrating from ERwin to PowerDesigner

340 SAP Sybase PowerDesigner

• To find the symbol for an object in the Browser: Right-click the object in the Browser and
select Find in Diagram.

• To find the browser entry for an object symbol: Right-click the symbol in the diagram and
select Find in Browser.

• To search for an object: Type CTRL+F to open the Find Objects dialog box. Enter the text
to search for (you can use the asterisk as a wild card) and click Find Now. Right-click any
of the results choose whether to find it in the Browser or Diagram.

How do I edit objects? You can edit the name of an object by selecting its symbol in the
diagram and typing F2. To edit other object properties, double-click the symbol or the object
entry in the Browser and enter the necessary information in its property sheet.

How do I share objects? You can share objects between packages and models using shortcuts
and replications (see Core Features Guide > Linking and Synchronizing Models > Shortcuts
and Replicas).

Packages/Subject Areas
How do I create subject areas? In PowerDesigner, you can create multiple views of your model
by adding additional diagrams. You can also divide your model into smaller subdivisions
using packages.

• To add a diagram to your model: Right-click the diagram background and select Diagram
> New Diagram > [Diagram Type] .

• To convert a diagram into a package: Right-click the diagram background and select
Diagram > Convert to Package. The Convert Diagram to Package wizard will open,
permitting you to name the package and select objects to move into it. The package will
appear in the Browser with its own diagram and associated objects. For more information
about packages, see Core Features Guide > Modeling with PowerDesigner > The Browser
> Packages.

Reports
How do I create a report? PowerDesigner provides wizards to create two different types of
report:

• To create a report about a specific type of object: Select Report > List Report Wizard and
follow the wizard instructions.

• To create a report about multiple object types or the whole model: Select Report > Report
Wizard and follow the wizard instructions.

For more information about PowerDesigner reports, see Core Features Guide > Storing,
Sharing and Reporting on Models > Reports

Databases
How do I create or update a model from a database? Select File > Reverse Engineer >
Database and complete the dialog. When updating a model, a Merge dialog will open to allow
you to verify the changes to be made before committing them. For more information, see
Reverse Engineering a Database into a PDM on page 312.

CHAPTER 8: Migrating from ERwin to PowerDesigner

Data Modeling 341

How do I generate a database from my model? Select Database > Generate Database and
complete the dialog. For more information, see Generating a Database from a PDM on page
290.

How do I update a database from my model? Select Database > Apply Model Changes to
Database and complete the dialog. A Database Synchronization window will open to allow
you to verify the changes to be made before committing them. For more information, see
Modifying a Database on page 308.

Models
How do I compare or merge models? Select Tools > Compare Models or Tools > Merge
Model. For more information, see Core Features Guide > Modeling with PowerDesigner >
Comparing and Merging Models.

CHAPTER 8: Migrating from ERwin to PowerDesigner

342 SAP Sybase PowerDesigner

PART II

DBMS Definition Reference

The chapters in this part provide information specific to the DBMSs supported by
PowerDesigner.

Data Modeling 343

344 SAP Sybase PowerDesigner

CHAPTER 9 HP Neoview

To create a PDM with support for features specific to the HP Neoview DBMS family, select
the appropriate version in the DBMS field of the New Model dialog. To view these extensions
to the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

The following sections list the extensions provided for HP Neoview.

Note: We do not provide documentation for the properties on the Physical Options and
certain other tabs, though minimal information is available for them in the Resource Editor.
For information about these properties, consult your DBMS reference documentation.

Tables
The following extensions are available on the General tab:

Name Description

Set Specifies that the table is a SET table, and thus discards duplicate rows.

Scripting name: Set

Volatile Specifies that indexes associated with the table have lifespans limited to the
SQL session in which the index is created and are dropped when the session
ends.

Scripting name: Volatile

Columns
The following extensions are available on the Neoview tab:

Name Description

Identity Specifies that the column is an identity column.

Scripting name: Identity

Type Specifies the type of identity column. You can choose between:

• by default - allows both user-supplied and system-generated column values
for the identity column

• always - provides system-generated unique values and does not allow user-
supplied identity column values.

Scripting name: IdentityType

Data Modeling 345

Name Description

Start with Specifies the start value of the cycle range for the identity column.

Scripting name: StartWith

Increment Specifies the value by which each value is incremented to obtain the next value.

Scripting name: Increment

Minimum Specifies the minimum value of the data type of the identity column starting the
cycle range.

Scripting name: MinValue

Maximum Specifies the maximum value of the data type of the identity column starting
the cycle range.

Scripting name: MaxValue

Cycle Specifies that when the maximum value is reached for the identity column, the
values are restarted from the minimum. If this option is not selected, and error
will be raised.

Scripting name: Cycle

Unsigned Specify that the column is unsigned. By default, columns are signed.

Scripting name: Unsigned

Character set [character columns] Specifies the character set to use.

Scripting name: Charset

Upshift [character columns] Specifies that the contents are stored as uppercase.

Scripting name: Upshift

Mandatory Specifies that the column must not contain a null value.

Scripting name: Mandatory

Constraint name Specifies the name of the not null column constraint.

Scripting name: MandConstName

Indexes
The following extensions are available on the General tab:

CHAPTER 9: HP Neoview

346 SAP Sybase PowerDesigner

Name Description

Volatile Specifies that the index has a lifespan limited to the SQL session in which it is
created and is dropped when the session ends.

Scripting name: Volatile

Unique Specifies that the index is a unique index.

Scripting name: Unique

No populate Specifies that the index is not to be populated when it is created. The indexes
are created, but no data is written to the index, and it is marked offline.

Scripting name: NoPopulate

Partition Specifies the partitioning columns. If you do not specify the partitioning col-
umns, the default is the same partitioning column or columns as the base table
for a non-unique index, and all the columns in the index for a unique index.

Scripting name: HashPartitionColumns

References
The following extensions are available on the General tab:

Name Description

Enforced Specifies that the reference is checked.

Scripting name: Enforced

Materialized Views
The following extensions are available on the Neoview tab:

Name Description

Refresh type Specifies the method that will be used to update the materialized view.

Scripting name: RefreshType

Ignore [on request only] Instructs the refresh operation of a materialized view over
several base tables to ignore the changes to the listed base tables.

Scripting name: IgnoreChangesOn

Initialize Specifies when the materialized view gets its initial content, either upon cre-
ation or at the time of its first refresh.

Scripting name: Initialize

CHAPTER 9: HP Neoview

Data Modeling 347

Name Description

Clustering columns Specifies the order of rows within the physical file that holds the table, deter-
mines the physical organization of the table, and the ways you can partition the
table.

Scripting name: Clustering

Partition Specifies hash partitioning, which is the only partitioning scheme supported
for materialized views.

Scripting name: HashPartition

Partitioning keys Specifies the the partitioning keys of the materialized view.

Scripting name: PartitionColumnList

Commit each Specifies the number of rows that refresh processes from the log before com-
mitting a transaction and starting another one.

Scripting name: MVAttribute

Text Provides a textual view of the materialized view options. This field auto-up-
dates as you select options, and you edits you make here are reflected in the
options.

Scripting name: ViewOption

Materialized View Groups (Neoview)
Materialized view groups allow you to collect together materialized views (views with the
Type property set to Materialized view) that should be refreshed together.
PowerDesigner models materialized view groups as extended objects with a stereotype of
<<MVGroup>>.

Creating a Materialized View Group
You can create a materialized view group in any of the following ways:
• Select Model > Materialized View Groups to access the List of Materialized View

Groups, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Materialized View

Group.

Materialized View Group Properties
You can modify an object's properties from its property sheet. To open a materialized view
group property sheet, double-click its diagram symbol or its Browser entry in the Materialized
View Groups folder.

The following extended attributes are available on the Neoview tab:

CHAPTER 9: HP Neoview

348 SAP Sybase PowerDesigner

Name Description

Owner Specifies the group's owner.

Scripting name: Owner

The following tabs are also available:

• Materialized Views - lists the materialized views contained within the group.

CHAPTER 9: HP Neoview

Data Modeling 349

CHAPTER 9: HP Neoview

350 SAP Sybase PowerDesigner

CHAPTER 10 IBM DB2 for z/OS (formerly OS/
390)

To create a PDM with support for features specific to the IBM DB2 for z/OS DBMS family,
select the appropriate version in the DBMS field of the New Model dialog. To view these
extensions to the PowerDesigner metamodel in the Resource Editor, select Database > Edit
Current DBMS and expand the Profile node.

Note: The DBMS definition file for IBM DB2 v8 for OS/390 is deprecated.

The following table lists DB2 objects and their equivalents in PowerDesigner:

DB2 PowerDesigner

Bufferpool Storage

Database Partition Group Extended Object <<DatabasePartitionGroup>>

Distinct Type Domain

Function Procedure of "Function" type

Index Extension Extended Object <<IndexExtension>>

Method Abstract Data Type Procedure

Type Abstract Data Type

SuperView SubView of a View

The following sections list the extensions provided for DB2 for z/OS.

Note: We do not provide documentation for the properties on the Physical Options and
certain other tabs, though minimal information is available for them in the Resource Editor.
For information about these properties, consult your DBMS reference documentation.

Columns
The following extensions are available on the DB2 tab:

Name Description

Field proce-
dure name

Defines the procedure that will be used as generator/cryptor of values.

Scripting name: ExtFieldProcName

Data Modeling 351

Name Description

Character sub-
type

[v6.x and higher] Specifies a subtype for a character string column.

Scripting name: ExtSubtypeData

[up to v6.x] Specifies a subtype for a character string column (column with a
CHAR,VARCHAR,or LONG VARCHAR data type). The subtype can proceed
from the list defined in extended attribute type T_ForData.

Scripting name: ExtData

Generated val-
ue

[v7.x and higher] Indicates that DB2 generates values for the column using the
computed column function. If you select Always, the server will send an error
message if you try to type a value in the column. If you select By Default, the server
uses the computed column value or the value typed for the column.

Scripting name: ExtGeneratedAs

Implicitly hid-
den

[v9.x and higher] Specifies that the column is not visible in the result for SQL
statements unless you explicitly refer to the column by name.

Scripting name: ImplicitlyHidden

As security la-
bel

[v8 and higher] Specifies that the column will contain security label values. This also
indicates that the table is defined with multi-level security with row level granularity.

Scripting name: SecurityLabel

Domains
The following extensions are available on the DB2 tab:

Name Description

Character Sub-
type

[v6.x and higher] Specifies a subtype for a character string column.

Scripting name: ExtSubtypeData

References
The following extensions are available on the DB2 tab:

Name Description

Enforced [v8 and higher] Indicates whether or not the referential constraint is enforced by the
database manager during normal operations, such as insert, update, or delete.

Scripting name: Enforced

Sequences
The following extensions are available on the DB2 tab:

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)

352 SAP Sybase PowerDesigner

Name Description

Datatype Specifies a computed value for "As" option. Allows to select a data type in a
list.

Scripting name: AsDatatype

Length Specifies the length of the data type

Scripting name: AsDatatypeLength

Start with Specifies the first value for the sequence.

Scripting name: InitialStartWith

Increment by Specifies the interval between consecutive values of the sequence.

Scripting name: InitialIncrementBy

Cache Specifies the numerical value of the cache option.

Scripting name: CacheValue

No Cache Specifies a computed boolean value for order option.

Scripting name: NoCacheBool

Cycle Specifies a computed boolean value for cycle opion.

Scripting name: CycleBool

Order Specifies a computed boolean value for order option.

Scripting name: OrderBool

Minimum value Specifies the numerical value of the minvalue option.

Scripting name: LimitsMinvalueValue

Maximum value Specifies the numerical value of the maxvalue option.

Scripting name: LimitsMaxvalueValue

No minimum Specifies a computed boolean value for no minvalue option.

Scripting name: NoMinLimit

No maximum Specifies a computed boolean value for no maxvalue option.

Scripting name: NoMaxLimit

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)

Data Modeling 353

Trusted Contexts (DB2)
Using a trusted context in an application can improve security by placing accountability at the
middle-tier, reducing over granting of privileges, and auditing of end-user's activities.

Trusted contexts are supported for DB2 for z/OS v9.x and higher and DB2 for Common Server
v9.5 and higher. PowerDesigner models trusted contexts as extended objects with a stereotype
of <<TrustedContext>>.

Creating a Trusted Context
You can create a trusted context in any of the following ways:

• Select Model > Trusted Contexts to access the List of Trusted Contexts, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Trusted
Context.

Trusted Context Properties
You can modify an object's properties from its property sheet. To open a trusted context
property sheet, double-click its Browser entry in the Trusted Contexts folder.

The following extended attributes are available on the DB2 tab:

Name Description

Enable Specifies that the trusted context is created in the enabled state.

Scripting name: Enable

Authorization Specifies that the context is a connection that is established by the authorization
ID that is specified by authorization-name.

Scripting name: Authorization

Default role Specifies the default role that is assigned to a user in a trusted connection when
the user does not have a role in the trusted context.

If empty, then a No Default Role is assumed.

Scripting name: DefaultRole

As object owner [DB2 for z/OS only] Specifies that the role is treated as the owner of the objects
that are created using a trusted connection based on the trusted context.

Scripting name: WithRoleAsObjectOwner

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)

354 SAP Sybase PowerDesigner

Name Description

Default security
label

[DB2 for z/OS only] Specifies the default security label for a trusted connection
based on the trusted context.

Scripting name: DefaultSecurityLabel

Attributes Specifies one or more connection trust attributes that are used to define the trusted
context.

Scripting name: Attributes

With use for Specifies who can use a trusted connection that is based on the trusted context.

Scripting name: WithUseFor

Auxiliary Tables (DB2)
Auxiliary tables are used to store large object (LOB) data, such as graphics, video, etc, or to
store rarely-accessed data in order to improve the performance of the base table.

Auxiliary tables are supported for IBM DB2 for z/OS v9.x and higher. PowerDesigner models
auxiliary tables as extended objects with a stereotype of <<Auxiliary Table>>.

Creating an Auxiliary Table
You can create an auxiliary table in any of the following ways:

• Select Model > Auxiliary Table to access the List of Auxiliary Tables, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Auxiliary Table.

Auxiliary Table Properties
You can modify an object's properties from its property sheet. To open an auxiliary table
property sheet, double-click its Browser entry in the Auxiliary Tables folder.

The following extended attributes are available on the DB2 tab:

Name Description

Database Specifies the database in which the LOB data will be stored.

Scripting name: Database

Tablespace Specifies the table space in which the auxiliary table is created.

Scripting name: Tablespace

Table Specifies the table that owns the LOB column.

Scripting name: Table

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)

Data Modeling 355

Name Description

Column Specifies the name of the LOB column in the auxiliary table.

Scripting name: Column

Partition Specifies the partition of the base table for which the auxiliary table is to store the
specified column.

Scripting name: Partition

Tablespace Prefix (DB2)
In IBM databases for z/OS, the physical options for a table can specify the tablespace in which
a table resides, as well as the database name.

You declare a tablespace in a database and assign a table to a tablespace on the Physical
Options (Common) tabs of their property sheets.

If the tablespace is not declared in any database, then the tablespace is not prefixed by any
database name.

When you preview your table creation code, you can verify that the tablespace is prefixed by
the name of the database.

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)

356 SAP Sybase PowerDesigner

Materialized Query Tables (DB2)
Materialized query tables are supported for IBM DB2 for z/OS 10 and higher. PowerDesigner
models materialized query tables as views with a stereotype of <<Materialized query table>>.

Creating a Materialized Query Table
You can create a materialized query table in any of the following ways:

• Select Model > Materialized Query Tables to access the List of Materialized Query
Tables, and click the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Materialized
Query Table.

Materialized Query Table Properties
You can modify an object's properties from its property sheet. To open a materialized query
table property sheet, double-click its diagram symbol or its Browser entry in the Materialized
Query Tables folder.

The following extensions are available on the General tab:

Name Description

Result table Specifies whether the materialized view is a query table or result table.

Scripting name: WithNoData

Maintained by [Query table] Specifies how the data in the materialized query table is main-
tained.

Scripting name: MaintainedBy

Query optimization [Query table] Specifies whether this materialized query table can be used for
optimization.

Scripting name: QueryOptimization

Column default [Result table] Specifies whether or not to copy column defaults.

Scripting name: ColumnDefault

Identity [Result table] Specifies whether or not to copy identity column attributes.

Scripting name: Identity

The following tabs are also available:

• Partitions - lists the partitions contained within the materialized query table

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)

Data Modeling 357

Masks (DB2)
Masks are supported for IBM DB2 for z/OS 10 and higher. PowerDesigner models masks as
extended objects with a stereotype of <<Mask>>.

Creating a Mask
You can create a mask in any of the following ways:

• Select Model > Masks to access the List of Masks, and click the Add a Row tool.
• Right-click the model or package in the Browser, and select New > Mask.

Mask Properties
You can modify an object's properties from its property sheet. To open a mask property sheet,
double-click its Browser entry in the Masks folder.

The following extended attributes are available on the General tab:

Name Description

Column Specifies the column to which the mask applies. A mask must not already exist
for the column.

Scripting name: MaskColumn

Enabled Specifies if the column mask is to be enabled for column access control.

Scripting name: MaskEnabled

The following extended attributes are available on the Expression tab:

Name Description

Table correlation
name

Specifies a correlation name that can be used within CASE expression to des-
ignate the table.

Scripting name: TableCorrelation

Case expression Specifies a CASE expression that determines the value that is returned for the
column. The result of the CASE expression is returned in place of the column
value in a row.

Scripting name: CaseExpression

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)

358 SAP Sybase PowerDesigner

Row Permissions (DB2)
Auxiliary tables are supported for IBM DB2 for z/OS 10 and higher. PowerDesigner models
row permissions as extended objects with a stereotype of <<Row permission>>.

Creating a Mask
You can create a row permission in any of the following ways:

• Select Model > Row Permissions to access the List of Row Permissions, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Row
Permission.

Row Permission Properties
You can modify an object's properties from its property sheet. To open a row permission
property sheet, double-click its Browser entry in the Row Permissions folder.

The following extended attributes are available on the General tab:

Name Description

Table Specifies the table on which the row permission is created.

Scripting name: Table

Enabled Specifies that the row permission is to be enabled or disabled for row access
control.

Scripting name: RowPermissionEnabled

The following extended attributes are available on the Search condition tab:

Name Description

Correlation name Specifies a correlation name that can be used within search-condition to des-
ignate the table.

Scripting name: TableCorrelation

Search condition Specifies a condition that can be true, false, or unknown for a row of the table.
Search condition follows the same rules used by the search condition in a
WHERE clause of a subselect.

Scripting name: SearchCondition

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)

Data Modeling 359

CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)

360 SAP Sybase PowerDesigner

CHAPTER 11 IBM DB2 for Common Server

To create a PDM with support for features specific to the IBM DB2 for Common Server
DBMS family, select the appropriate version in the DBMS field of the New Model dialog. To
view these extensions to the PowerDesigner metamodel in the Resource Editor, select
Database > Edit Current DBMS and expand the Profile node.

Note: The DBMS definition file for IBM DB2 v8.x Common Server is deprecated.

For a list of DB2 objects and their equivalents in PowerDesigner, see Chapter 10, IBM DB2 for
z/OS (formerly OS/390) on page 351.

The following sections list the extensions provided for DB2 for Common Server.

Note: We do not provide documentation for the properties on the Physical Options and
certain other tabs, though minimal information is available for them in the Resource Editor.
For information about these properties, consult your DBMS reference documentation.

Tables
The following extensions are available on the DB2 tab:

Name Description

Ptcfree Indicates what percentage of each tab to leave as free space during load or reor-
ganization.

Scripting name: ExtTablePctFree

Data Identifies the tablespace in which the table will be created.

Scripting name: In

Cycle Specifies whether or not the number of data partitions with no explicit tablespace
can exceed the number of specified data partitions.

Scripting name: DisplayCycle

Long Identifies the table space in which the values of any long columns (LONG VAR-
CHAR, LONG VARGRAPHIC, LOB data types, distinct types with any of these as
source types, or any columns defined with user-defined structured types with values
that cannot be stored inline) will be stored.

Scripting name: InLongIn

Index Identifies the tablespace in which any indexes on the table will be created.

Scripting name: InIndexIn

Data Modeling 361

Columns
The following extensions are available on the DB2 tab:

Name Description

Lob option [up to v8.x] Specifies options for LOB data type columns.

Scripting name: ExtLobOption

For bit data Specifies that the content of the column is to be treated as bit (binary) data. This is
only applicable on columns with a character datatype.

Scripting name: ExtForBitData

Always Gener-
ate value

When set to True (generated always), indicates that DB2 will always generate a
value for the column when a row is inserted into the table or whenever the result
value of the generation expression may change.

When set to False (generated by default), indicates that DB2 will generate a value for
the column when a row is inserted into the table, unless a value is specified.

Scripting name: ExtGenAlways

As row change
timestamp

[v9.5 and higher] Specifies that the column is a timestamp column for the table. A
value is generated for the column in each row that is inserted, and for any row in
which any column is updated.

Scripting name: AsRowChangeTimestampClause

Expression Specifies that the definition of the column is based on an expression.

Scripting name: ExtGenExpr (up to v9.0: ExtGenExpr)

Compact Specifies COMPACT options for LOB data type columns.

Scripting name: Compact

Logged Specifies LOGGED options for LOB data type columns.

Scripting name: Logged

Inline length This option is only valid for a column defined using a structured type and indicates
the maximum byte size of an instance of a structured type to store inline with the rest
of the values in the row.

Scripting name: InlineLength

CHAPTER 11: IBM DB2 for Common Server

362 SAP Sybase PowerDesigner

Name Description

Compress Specifies that system default values (that is, the default values used for the data types
when no specific values are specified) are to be stored using minimal space. If the
VALUE COMPRESSION clause is not specified, a warning is returned and system
default values are not stored using minimal space.

Scripting name: CompressSystemDefault

Hidden Specifies whether or not the column is to be defined as hidden. The hidden attribute
determines whether the column is included in an implicit reference to the table, or
whether it can be explicitly referenced in SQL statements.

Scripting name: HiddenBool

Security label Identifies a security label that exists for the security policy that is associated with the
table.

Scripting name: SecurityLabel

References
The following extensions are available on the DB2 tab (v8.0 and higher):

Name Description

Enforced Indicates whether or not the referential constraint is enforced by the database man-
ager during normal operations, such as insert, update, or delete.

Scripting name: Enforced

Enable query
optimization

Specifies whether the constraint can be used for query optimization under appro-
priate circumstances.

Scripting name: QueryOptimization

Views
The following extensions are available on the DB2 tab (v9.x and higher):

Name Description

View is based
on a type

Specifies that the columns of the view are based on the attributes of the structured
type identified by type-name.

Scripting name: ADTView

Structured
type

Specifies the abstract data type that the view is based on.

Scripting name: ViewType

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 363

Name Description

Super view Specifies the view that the current view is a subview of. The superview must be an
existing view and must be defined using a structured type that is the immediate
supertype of the current view type.

Scripting name: SuperView

Identifier col-
umn

Defines the object identifier column for the typed view.

Scripting name: OIDColumn

Unchecked Defines the object identifier column of the typed view definition to assume unique-
ness even though the system cannot prove this uniqueness.

Scripting name: Unchecked

Additional op-
tions

Defines additional options that apply to columns of a typed view.

Scripting name: RootViewOptions

With row
movement

Specifies that an updated row is to be moved to the appropriate underlying table,
even if it violates a check constraint on that table.

Scripting name: WithRowMovement

Check option Specifies the constraint that every row that is inserted or updated through the view
must conform to the definition of the view.

Scripting name: CheckOption

Tablespaces
The following extensions are available on the DB2 tab:

Name Description

Type Specifies the tablespace type, as defined in the extended attribute type ExtTables-
paceTypeList.

Scripting name: ExtTablespaceType

Abstract Data Types
The following extensions are available on the DB2 tab (v9.x and higher):

CHAPTER 11: IBM DB2 for Common Server

364 SAP Sybase PowerDesigner

Name Description

Inline length Indicates the maximum size (in bytes) of a structured type column instance to store
inline with the rest of the values in the row of a table. Instances of a structured type or
its subtypes, that are larger than the specified inline length, are stored separately
from the base table row, similar to the way that LOB values are handled.

Scripting name: InlineLength

Without com-
parison

Indicates that there are no comparison functions supported for instances of the
structured type.

Scripting name: WithoutComparison

Cast (ref as
source) func-
tion

Defines the name of the system-generated function that casts a reference type value
for this structured type to the data type representation type. A schema name must not
be specified as part of function name (SQLSTATE 42601). The cast function is
created in the same schema as the structured type. If the clause is not specified, the
default value for function name is the name of the representation type.

Scripting name: RefAsSourceCastFunction

Cast (source as
ref) function

Defines the name of the system-generated function that casts a value with the data
type representation type to the reference type of this structured type. A schema name
must not be specified as part of the function name (SQLSTATE 42601). The cast
function is created in the same schema as the structured type. If the clause is not
specified, the default value for function name is the structured type name. A match-
ing function signature must not already exist in the same schema (SQLSTATE
42710).

Scripting name: SourceAsRefCastFunction

With function
access

Indicates that all methods of this type and its subtypes, including methods created in
the future, can be accessed using functional notation. This clause can be specified
only for the root type of a structured type hierarchy (the UNDER clause is not
specified) (SQLSTATE 42613). This clause is provided to allow the use of func-
tional notation for those applications that prefer this form of notation over method
invocation notation.

Scripting name: WithFunctionAccess

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 365

Name Description

Ref using Defines the built-in data type used as the representation (underlying data type) for
the reference type of this structured type and all its subtypes. This clause can only be
specified for the root type of a structured type hierarchy (UNDER clause is not
specified) (SQLSTATE 42613). The type cannot be a LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, or structured type, and
must have a length less than or equal to 32 672 bytes (SQLSTATE 42613). If this
clause is not specified for the root type of a structured type hierarchy, then REF
USING VARCHAR(16) FOR BIT DATA is assumed.

Scripting name: RepType

Length/ preci-
sion

Specifies the precision for representation type.

Scripting name: RepPrecision

Abstract Data Type Attributes
The following extensions are available on the DB2 tab (v9.x and higher) with the LOB data
type:

Name Description

Compact Specifies COMPACT options for LOB data type columns.

Scripting name: Compact

Logged Specifies LOGGED options for LOB data type columns.

Scripting name: Logged

Abstract Data Type Procedures
The following extensions are available on the DB2 tab (v9.x and higher):

Name Description

Inherit isola-
tion level

Specifies whether or not a lock request can be associated with the isolation-clause of
the statement when the method inherits the isolation level of the statement that
invokes the method. The default is INHERIT ISOLATION LEVEL WITHOUT
LOCK REQUEST.

Scripting name: IsolationLevel

Method is ex-
ternal

Indicates that the CREATE METHOD statement is being used to register a method,
based on code written in an external programming language.

Scripting name: ExternalMethod

CHAPTER 11: IBM DB2 for Common Server

366 SAP Sybase PowerDesigner

Name Description

External name Identifies the name of the user-written code which implements the method being
defined.

Scripting name: ExternalName

Transform
group

Indicates the transform group that is used for user-defined structured type transfor-
mations when invoking the method. A transform is required since the method def-
inition includes a user-defined structured type.

Scripting name: TransformGroup

Database Partition Groups (DB2)
Database partition groups are supported for DB2 for Common Server v9.x and higher.

A partition group is a logical layer that provides for the grouping of one or more database
partitions. A partition can belong to more than one partition group. When a database is created,
DB2 creates three default partition groups, which cannot be dropped.

Creating a Database Partition Group
You can create a database partition group in any of the following ways:

• Select Model > Database Partition Groups to access the List of Database Partition
Groups, and click the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Database Partition
Group.

Database Partition Group Properties
You can modify an object's properties from its property sheet. To open a database partition
group property sheet, double-click its diagram symbol or its Browser entry in the Database
Partition Groups folder.

The following extended attributes are available on the DB2 tab:

Property Description

Database par-
titions

Specifies the database partitions that are in the partition group.

When empty, the group includes all database partitions defined in the database at the
time of its creation.

Scripting name: DBPartitionNumList

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 367

Index Extensions (DB2)
Index extensions are supported for DB2 for Common Server v9.x and higher, and are used
with indexes on tables that have columns of a structured or distinct type.

The following options are available on the DB2 tab:

Property Description

Owner Specifies the index extension schema.

Scripting name: Owner

Parameters Specifies a list of parameters (with data types) that is passed to the index extension at
CREATE INDEX time to define the actual behavior of this index extension.

Scripting name: IndexExtensionParameters

Source key pa-
rameters

Specifies the parameter (and its data type) that is associated with the source key
column.

Scripting name: SourceKeyParameters

Key genera-
tion function

Specifies how the index key is generated using a user-defined table function. Mul-
tiple index entries may be generated for a single source key data value.

Scripting name: KeyGenerationFunction

Parameter Specifies parameters for the key generation function.

Scripting name: KeyGenerationFunctionParameters

Target key pa-
rameters

Specifies the target key parameters that are the output of the key generation function
specified on the GENERATE KEY USING clause.

Scripting name: TargetKeyParameters

Search meth-
ods

Specifies the list of method details of the index search. Each detail consists of a
method name, the search arguments, a range producing function, and an optional
index filter function.

Scripting name: SearchMethods

Security Policies (DB2)
Security policies define criteria that determine who has write and/or read access to individual
rows and columns of tables.

Every protected table must have exactly one security policy associated with it. Rows and
columns in that table can only be protected with security labels that are part of that security
policy and all access of protected data follows the rules of that policy. You can have multiple

CHAPTER 11: IBM DB2 for Common Server

368 SAP Sybase PowerDesigner

security policies in a single database but you cannot have more than one security policy
protecting any given table.

Security policies are supported for DB2 for Common Server v9.5 and higher. PowerDesigner
models security policies as extended objects with a stereotype of <<SecurityPolicy>>.

Creating a Security Policy
You can create a security policy in any of the following ways:

• Select Model > Security Policies to access the List of Security Policies, and click the Add
a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Security Policy.

Security Policy Properties
You can modify an object's properties from its property sheet. To open a security policy
property sheet, double-click its Browser entry in the Security Policies folder.

The following extended attributes are available on the General tab:

Property Description

Use group au-
thorization

Specifies that security labels and exemptions granted directly or indirectly to groups
are considered for any access attempt.

Scripting name: GroupAuthorization

Use role au-
thorization

Specifies that security labels and exemptions granted directly or indirectly to roles
are considered for any access attempt.

Scripting name: RoleAuthorization

Restrict Not
Authorized
Write Security
Label

Specifies the action that is to be taken when a user is not authorized to write the
explicitly specified security label that is provided in the INSERT or UPDATE
statement issued against a table that is protected with this security policy. A user's
security label and exemption credentials determine the user's authorization to write
an explicitly provided security label.

Scripting name: Restrict

The following tabs are also available:

• Components - lists the security label components associated with the security policy

Security Labels (DB2)
Security labels are database objects that describe a set of security criteria, and which are
granted to users to allow them to access protected data.

Every security label is part of exactly one security policy and includes one value for each
component in that security policy.

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 369

Security labels are supported for DB2 for Common Server v9.5 and higher. PowerDesigner
models security labels as extended objects with a stereotype of <<SecurityLabel>>.

Creating a Security Label
You can create a security label in any of the following ways:

• Select Model > Security Labels to access the List of Security Labels, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Security Label.

Security Label Properties
You can modify an object's properties from its property sheet. To open a security label
property sheet, double-click its Browser entry in the Security Labels folder.

The following extended attributes are available on the DB2 tab:

Property Description

Policy Specifies the security policy with which the label is associated.

Scripting name: Policy

The following tabs are also available:

• Components - lists the security label components associated with the security label.

Security Label Components (DB2)
Security label components are database objects that model your organization's security
structure.

A security label component represents a criteria to decide if a user should have access to a
given piece of data, such as how well trusted the user is, what department she is in, or whether
she is involved in a particular project.

Security label components are supported for DB2 for Common Server v9.5 and higher.
PowerDesigner models security label components as extended objects with a stereotype of
<<SecurityLabelComponent>>.

Creating a Security Label Component
You can create a security label component in any of the following ways:

• Select Model > Security Label Components to access the List of Security Label
Components, and click the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Security Label
Component.

CHAPTER 11: IBM DB2 for Common Server

370 SAP Sybase PowerDesigner

Security Label Component Properties
You can modify an object's properties from its property sheet. To open a security label
component property sheet, double-click its Browser entry in the Security Label Components
folder.

The following extended attributes are available on the DB2 tab:

Property Description

Component
type

Specifies the type of component. You can choose between:

• TREE: Each element represents a node in a tree structure

• ARRAY: Each element represents a point on a linear scale

• SET: Each element represents one member of a set

Scripting name: Type

Constant list Specifies one or more string constant values that make up the set of valid values for
the component. The order in which the array elements appear is significant, with the
first element ranking higher than the second element, and so on.

Scripting name: List

Event Monitors (DB2)
Event monitors show activity from start to finish, and often consist of both a start and end event
record. The most common uses for event monitors are for connections, locks, and statements.
PowerDesigner models event monitors as extended objects with a stereotype of
<<EventMonitor>>.

Creating an Event Monitor
You can create an event monitor in any of the following ways:

• Select Model > Event Monitors to access the List of Event Monitors, and click the Add a
Row tool.

• Right-click the model or package in the Browser, and select New > Event Monitor.

Event Monitor Properties
You can modify an object's properties from its property sheet. To open an event monitor
property sheet, double-click its diagram symbol or its Browser entry in the Event Monitors
folder.

The following extended attributes are available on the General tab:

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 371

Name Description

Workload manage-
ment event monitor

Specifies that the event monitor is used for workload management. Selecting
this option affects the types that are available in the Type field.

Scripting name: WlmEventMonitor

Type Specifies the type of event to record. Click the button to the right of the field to
select multiple types.

Scripting name: Type

Event condition [connections, transactions, or statements type] Defines a filter that determines
which connections cause a CONNECTION, STATEMENT or TRANSAC-
TION event to occur.

Scripting name: EventCondition

Details [deadlock type] Specifies that the event monitor is to generate a more detailed
deadlock connection event for each application that is involved in a deadlock.

Scripting name: DeadlocksDetails

The following extended attributes are available on the DB2 tab:

Name Description

Write to Specifies the location where the event monitor will record its information.

If you are writing to a table, you can additionally associate the event monitor
with one or more event monitor groups on the EVMGroup tab. Event monitor
groups identify the logical data group for which a target table is being defined,
and PowerDesigner models them as extended sub-objects with a stereotype of
<<EventMonitor>>.

Scripting name: WriteToObject

Blocked [table, file] Specifies that each agent that generates an event should wait for an
event buffer to be written out to disk if the agent determines that both event
buffers are full. This option should be selected to guarantee no event data loss.

Scripting name: Blocked

Buffer size [table, file] Specifies the size of the event monitor buffers (in units of 4K pages).
All event monitor file I/O is buffered to improve the performance of the event
monitors.

Scripting name: BufferSize

CHAPTER 11: IBM DB2 for Common Server

372 SAP Sybase PowerDesigner

Name Description

Path [file] The name of the directory in which the event monitor should write the
event files data. The path must be known at the server.

Scripting name: Path

Max files [file] Specifies that there is a limit on the number of event monitor files that will
exist for a particular event monitor at any time.

Scripting name: MaxFiles

Maximum file size [file] Specifies that there is a limit to the size of each event monitor file.

Scripting name: MaxFileSize

Append [file] Specifies that if event data files already exist when the event monitor is
turned on, then the event monitor will append the new event data to the existing
stream of data files.

Scripting name: Append

Pipe name [pipe] The name of the pipe to which the event monitor will write the data. The
naming rules for pipes are platform specific.

Scripting name: PipeName

Start Specifies that the event monitor must be activated manually or is to be auto-
matically activated whenever the database partition on which the event monitor
runs is activated.

Scripting name: Start

Scope Either the event monitor reports on all database partitions (global) or only on the
database partition that is running (local).

Scripting name: Scope

Database partition [pipe, file] Specifies the database partition on which the event monitor is to
run.

Scripting name: DBPartitionNum

Event Monitor Group Properties
You can create and manage event monitor groups from the EVMGroup tab of an event
monitor. PowerDesigner models event monitor groups as extended sub-objects with a
stereotype of <<EVMGroup>>.

The following extended attributes are available on the General tab:

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 373

Name Description

Group Identifies the logical data group for which a target table is being defined.

Scripting name: Group

Table Specifies the name of the target table.

Scripting name: Table

PCTDeactivate If a table is being created in a DMS table space, the PCTDEACTIVATE pa-
rameter specifies how full the table space must be before the event monitor
automatically deactivates.

Scripting name: PCTDeactivate

Tablespace Defines the table space in which the table is to be created

Scripting name: Tablespace

Trunc Specifies that the STMT_TEXT and STMT_VALUE_DATA columns are de-
fined as VARCHAR(n), where n is the largest size that can fit into the table
row.

Scripting name: Trunc

Inclusion criteria Specifies which elements will be included in the table.

Scripting name: Elements

Elements Identifies a monitor element that will be included in or excluded from moni-
toring

Scripting name: ElementList

Federated Systems (DB2)
A federated system consists of a DB2 instance that operates as a federated server, a database
that acts as the federated database, one or more data sources, and clients (users and
applications) that access the database and data sources. PowerDesigner provides support for
federated servers for DB2 for Common Server v9.0 and higher through nicknames, servers,
wrappers, and user mappings.

Nicknames (DB2)
A nickname is an identifier that an application uses to reference a data source object, such as a
table or view. In a federated system, you use can nicknames to access data source objects and

CHAPTER 11: IBM DB2 for Common Server

374 SAP Sybase PowerDesigner

improve the performance of queries on remote data sources. Nicknames are supported for
DB2 for Common Server v9.7 and higher.

Creating a Nickname
You can create a nickname in any of the following ways:

• Right-click the model node in the Browser and select New Nickname for External Table.
In the dialog, select a table from a PDM open in the workspace and click OK.
PowerDesigner will create a shortcut to the external table along with the necessary
nickname and server objects.

• Select Model > Nicknames to access the List of Nicknames, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Nickname.

Nickname Properties
You can modify an object's properties from its property sheet. To open a nickname property
sheet, double-click its Browser entry in the Nicknames folder.

The following extended attributes are available on the General tab:

Property Description

Server Specifies the server that contains the table the nickname is refering to (see Serv-
ers (DB2) on page 377). Use the tools to the right of the list to create, browse for,
or view the properties of the currently selected server.

Scripting name: Server

Remote schema Specifies the schema to which the table or view belongs. If left empty, the server
authorization name is used.

Scripting name: RemoteSchema

Remote table Specifies the remote table name.

Scripting name: RemoteTable

Relational defini-
tion

Selecting Yes displays the Relational Definition tab, which contains a field to
allow you to specify an appropriate definition in SQL.

Scripting name: RemoteTable

The following extended attributes are available on the Options tab:

Property Description

Code page Specifies the code page of the file at the data source. This option is valid only for
federated databases that use Unicode.

Scripting name: CODEPAGE

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 375

Property Description

Column delimiter Specifies a single character to use as the delimiter that separates columns in the
table-structured file.

Scripting name: COLUMN_DELIMITER

Data source Specifies the name of the script to invoke.

Scripting name: DATASOURCE

File path Specifies the fully qualified directory path and file name of the Excel spreadsheet
to access.

Scripting name: FILE_PATH

Key column Specifies the name of the column on which the file is sorted.

Scripting name: KEY_COLUMN

Namespaces Specifies the namespaces that are associated with the namespace prefixes that are
used in the XPATH and TEMPLATE options for each column.

Scripting name: NAMESPACES

No empty string Specifies whether the remote data source server can contain empty strings.

Scripting name: NO_EMPTY_STRING

Numeric string Specifies how to treat numeric strings. When set to Y for a column, the query
optimizer recognizes that the column contains no blanks that could interfere with
the sorting of the data in the column.

Scripting name: NUMERIC_STRING

Range Specifies the range of Excel cells to use.

Scripting name: RANGE

Remote object Specifies the name of the BioRS databank that is associated with the nickname.
This name determines the schema and the BioRS databank for the nickname.

Scripting name: REMOTE_OBJECT

SOAP action Specifies the URI SOAPACTION attribute from the Web Services Description
Language (WSDL) format.

Scripting name: SOAPACTION

Sorted Specifies whether the file at the data source is or is not sorted in ascending order.

Scripting name: SORTED

CHAPTER 11: IBM DB2 for Common Server

376 SAP Sybase PowerDesigner

Property Description

Streaming Specifies whether the source document should be separated into logical frag-
ments for processing.

Scripting name: STREAMING

Template Specifies the nickname template fragment to use to construct a SOAP request.

Scripting name: TEMPLATE

Timeout Specifies the maximum time, in minutes, to wait for a response from the data
source server.

Scripting name: TIMEOUT

Validate Specifies whether the source document is validated to ensure that it conforms to
an XML schema or document type definition (DTD) before data is extracted from
it.

Scripting name: VALIDATE

Validate data file For sorted files, this option specifies whether the wrapper verifies that the key
column is sorted in ascending order and checks for null keys.

Scripting name: VALIDATE_DATA_FILE

XPath Specifies the XPath expression that identifies the XML elements that represent
individual tuples.

Scripting name: XPATH

XML root Specifies the XML root element to add to the values of an XML column that
references an XML sequence.

Scripting name: XML_ROOT

Additional op-
tions

Can be used to specify any additional options.

Scripting name: OtherOptions

Servers (DB2)
The instance owner supplies a name to identify the data source, along with the type and version
of the data source, the database name for the data source (RDBMS only), and metadata that is
specific to the data source. This information is called a server definition. Data sources answer
requests for data and are servers in their own right. Servers are supported for DB2 for Common
Server v9.7 and higher.

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 377

Creating a Server

Note: A server can be created automatically when you create a nickname (see Nicknames
(DB2) on page 374) using the New Nickname for External Table command.

You can manually create a server in any of the following ways:

• Select Model > Servers to access the List of Servers, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Server.
• Use the Create tool next to the Server field on the General tab of a nickname or user

mapping property sheet (see Servers (DB2) on page 377).

Server Properties
You can modify an object's properties from its property sheet. To open a server property sheet,
double-click its Browser entry in the Servers folder.

The following extended attributes are available on the General tab:

Property Description

Authorization /
Password

Required only for DB2 family data sources. Specify the authorization ID and
password under which any necessary actions are performed at the data source
when the CREATE SERVER statement is processed. This authorization ID is

not used when establishing subsequent connections to the server.

Scripting name: Authorization, Password

Type / Version Specify the type and version of the data source.

Scripting name: Type, Version

Wrapper Specifies the wrapper (see Wrappers (DB2) on page 381) that the DB2 federated
server uses to interact with the server object. Use the tools to the right of the list to
create, browse for, or view the properties of the currently selected wrapper.

Scripting name: Wrapper

Model Specifies the PDM containing the structure of the database on the server being
referenced. Use the tools to the right of the list to browse for an object or view the
properties of the currently selected PDM.

Scripting name: Model

The following extended attributes are available on the Options tab:

CHAPTER 11: IBM DB2 for Common Server

378 SAP Sybase PowerDesigner

Property Description

Fold login / Fold
password

Specify the case of user IDs and passwords that the DB2 federated server sends to
the data source server for authentication, and whether they can be null.

Scripting name: FOLD_ID, FOLD_PW

Enable plan hints Specifies whether plan hints, which are statement fragments that provide extra
information for data source optimizers to help decide whether to use an index,
which index to use, or which table join sequence to use. This information can, for
certain query types, improve query performance.

Scripting name: PLAN_HINTS

Ignore user data
types

Specifies whether the DB2 federated server should determine the built-in type
that underlies a UDT without strong typing.

Scripting name: IGNORE_UDT

Push down Specifies whether the DB2 federated server will consider letting the data source
evaluate operations.

Scripting name: PUSHDOWN

Collating se-
quence

Specifies whether the data source uses the same default collating sequence as the
DB2 federated server, based on the NLS code set and the country information.

Scripting name: COLLATING_SEQUENCE

Date compatibili-
ty

Specifies whether the DATE compatibility semantics associated with the
TIMESTAMP(0) data type are applied to the connected database.

Scripting name: DATE_COMPAT

No trailing blanks Specifies whether data sources which have variable character data types pad the
length with trailing blanks.

Scripting name: VARCHAR_NO_TRAILING_BLANKS

Enforce save-
point

Specifies whether the DB2 federated server should enforce detecting or building
of application savepoint statements.

Scripting name: IUD_APP_SVPT_ENFORCE

CPU ratio / IO ra-
tio

Indicate how much faster or slower a data source's CPU and I/O system runs than
those of the the DB2 federated server.

Scripting name: CPU_RATIO, IO_RATIO

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 379

Property Description

Packet size Specifies the packet size of the Sybase interface file in bytes. If the data source
does not support the specified packet size, the connection will fail. Increasing the
packet size when each record is very large (for example, when inserting rows into
large tables) significantly increases performance.

Scripting name: PACKET_SIZE

Timeout Specifies the number of seconds the DB2 federated server will wait for a response
from Sybase Open Client for any SQL statement. The value of seconds is a
positive whole number in DB2 Universal Database's integer range.The timeout
value that you specify depends on which wrapper you are using. The default
behavior of the TIMEOUT option for the Sybase wrappers is 0, which causes
DB2 to wait indefinitely for a response.

Scripting name: TIMEOUT

Login timeout Specifies the number of seconds for the DB2 federated server to wait for a
response from Sybase Open Client to the login request.

Scripting name: LOGIN_TIMOUT

Communication
rate

Specifies the communication rate between the DB2 federated server and the data
source server in megabytes per second.

Scripting name: COMM_RATE

Database name Specifies the database that you want the the DB2 federated server to access on the
data source. For DB2, this value corresponds to a specific database within an
instance or, with DB2 for z/OS or OS/390, the database LOCATION value.

Not required for Oracle instances, which contain only one database.

Scripting name: DBNAME

Sybase OCI path Specifies the path and name of the Sybase Open Client interfaces file. On Win-
dows NT servers, the default is %DB2PATH%\interfaces.

Scripting name: IFILE

Node Specifies the name by which the data source is defined as an instance to its
RDBMS.

Scripting name: NODE

Additional op-
tions

Can be used to specify any additional options.

Scripting name: OtherOptions

CHAPTER 11: IBM DB2 for Common Server

380 SAP Sybase PowerDesigner

Wrappers (DB2)
Wrappers are mechanisms by which the federated server interacts with data sources. The
federated server uses routines stored in a library called a wrapper module to implement a
wrapper. Wrappers are supported for DB2 for Common Server v9.7 and higher.

Creating a Wrapper
You can create a wrapper in any of the following ways:

• Select Model > Wrappers to access the List of Wrappers, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Wrapper.
• Use the Create tool next to the Wrapper field on the General tab of a server property

sheet (see Servers (DB2) on page 377).

Wrapper Properties
You can modify an object's properties from its property sheet. To open a wrapper property
sheet, double-click its Browser entry in the Wrappers folder. The following extended
attributes are available on the Options tab:

Property Description

Library Specifies the name of the file that contains the wrapper library module.

Scripting name: Library

Fenced Specifies that the wrapper is fenced or trusted by DB2. A fenced wrapper operates
under some restrictions.

Scripting name: DB2_FENCED

Language / Class
or library

Specify the language and implementation of the user mapping plug-in. Valid
languages are Java (default) and C.

For a plug-in written in Java, you must specify a case-sensitive string for the class
name that corresponds to the user mapping repository class. For example,
UserMappingRepositoryLDAP.

For a plug-in written in C, you must specify any valid C library name.

Scripting name: DB2_UM_PLUGIN_LANG, DB2_UM_PLUGIN

Additional op-
tions

Can be used to specify any additional options.

Scripting name: OtherOptions

CHAPTER 11: IBM DB2 for Common Server

Data Modeling 381

User Mappings (DB2)
A user mapping is an association between an authorization ID on the federated server and the
information that is required to connect to the remote data source. User mappings are supported
for DB2 for Common Server v9.7 and higher.

Creating a User Mapping
You can create a user mapping in any of the following ways:

• Select Model > User Mappings to access the List of User Mappings, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > User Mapping.

User Mapping Properties
You can modify an object's properties from its property sheet. To open a user mapping
property sheet, double-click its Browser entry in the User Mappings folder.

The following extended attribute is available on the General tab:

Property Description

Server Specifies the name of the server object (see Servers (DB2) on page 377) for the
data source that the authorization-name can access. The server name is the local
name for the remote server that is registered with the federated database.

Scripting name: Server

The following extended attributes are available on the Options tab:

Property Description

Accounting string Specifies a DRDA accounting string. Valid values include any string that has 255
characters or fewer.

Scripting name: ACCOUNTING_STRING

Remote user ID /
password

Specify the remote user ID to which the local user ID is mapped, and its password
in the remote system. If you do not specify a password, the password used to
connect to the federated database is used.

Scripting name: REMOTE_AUTHID, REMOTE_PASSWORD

Use trusted con-
text

Specifies whether the user mapping is trusted.

Scripting name: USE_TRUSTED_CONTEXT

Additional op-
tions

Can be used to specify any additional options.

Scripting name: OtherOptions

CHAPTER 11: IBM DB2 for Common Server

382 SAP Sybase PowerDesigner

CHAPTER 12 Microsoft SQL Server

To create a PDM with support for features specific to the MS SQL Server DBMS family, select
the appropriate version in the DBMS field of the New Model dialog. To view these extensions
to the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

Note: The DBMS for SQL Server v7.x is deprecated.

The following sections list the extensions provided for MS SQL Server.

Note: In addition to the extensions listed below, PowerDesigner supports the following
features for SQL Server 2005 and higher:

• User Schemas – Use the schema stereotype to specify that a user is actually a schema,
belonging to another user (the "principal").

• WithOption – Use the withoptions type to enable access to additional physical options
when working with views.

• Support for multiple databases during live database reverse engineering.

Abstract Data Types
The following extensions are available on the Microsoft tab:

Name Description

Assembly Specifies the assembly to bind with the abstract data type.

Scripting name: Assembly

Abstract Data Type Attributes
The following extensions are available on the Microsoft tab:

Name Description

Nullable Specifies that the type column allows null value.

Scripting name: Nullable

Computed Specifies that the type column is computed.

Scripting name: Specifies that the type column is computed.

Identity Specifies that the new column is an identity column.

Scripting name: Identity

Data Modeling 383

Name Description

Expression Specifies an expression that defines the value of a computed column.

Scripting name: Expression

Persisted Specifies that the SQL Server Database Engine will physically store the com-
puted values in the table, and update the values when any other columns on which
the computed column depends are updated.

Scripting name: Persisted

Seed Specifies the value used for the very first row loaded into the table.

Scripting name: Seed

Increment Specifies the incremental value added to the identity value of the previous row
loaded.

Scripting name: Increment

Default Specifies the value provided for the column when a value is not explicitly sup-
plied during an insert.

Scripting name: Default

Row GUID Specifies that the new column is a row GUID column

Scripting name: RowGuidCol

Collation Specifies the collation for the column.

Scripting name: Collate

Columns
The following extensions are available on the Microsoft tab:

Name Description

Row global
unique identifier

[v2000 and higher] Indicates that the new column is a row global unique iden-
tifier column. Only one unique identifier column per table can be designated as
the ROWGUIDCOL column.

Scripting name: ExtRowGuidCol

Sparse [v2008 and higher] Specifies that the column is a sparse column. The storage of
sparse columns is optimized for null values. Sparse columns cannot be desig-
nated as NOT NULL.

Scripting name: Sparse

CHAPTER 12: Microsoft SQL Server

384 SAP Sybase PowerDesigner

Name Description

Filestream [v2008 and higher] Specifies that when the FILESTREAM storage attribute is
specified for a column, all values for that column are stored in a FILESTREAM
data container on the file system

Scripting name: Filestream

Do not validate
check constraints
during replication

Specifies that "NOT FOR REPLICATION" keywords are used to prevent the
CHECK constraint from being enforced during the distribution process used by
replication.

Scripting name: ExtCkcNotForReplication

Default constraint
name

Contains the name of the constraint that is used to apply a default value to the
column. If empty, the "constraint" keyword is not generated.

Scripting name: ExtDeftConstName

Not null con-
straint name

Contains the name of the constraint that is used to apply a mandatory property of
the column. If empty, the "constraint" keyword is not generated.

Scripting name: ExtNullConstName

Collation name [v2005 and higher] A single string that specifies the collation name for a SQL
collation.

Scripting name: ExtCollation

Identity seed and
increment

Is a string composed of two integer values separated by a comma.

First value is the seed value of the identity column, meaning the value to be
assigned to the first row in the table.

Second value is the increment to add to the seed value for successive rows in the
table.

Scripting name: ExtIdentitySeedInc

Identity value not
replicated

Indicates that the IDENTITY property should not be enforced when a replication
login inserts data into the table.

Scripting name: ExtIdtNotForReplication

XML schema col-
lection

[v2000 and higher] Applies only to the XML data type for associating an XML
schema collection with the type.

Scripting name: XMLSchemaCollection

CHAPTER 12: Microsoft SQL Server

Data Modeling 385

Name Description

Content type [v2005 and higher] - CONTENT:

Specifies that each instance of the XML data type in column_name can contain
multiple top-level elements. CONTENT applies only to the XML data type and
can be specified only if xml_schema_collection is also specified. If not specified,
CONTENT is the default behavior.

- DOCUMENT:

Specifies that each instance of the XML data type in column_name can contain
only one top-level element. DOCUMENT applies only to the XML data type and
can be specified only if xml_schema_collection is also specified.

Scripting name: ContentType

Cubes
The following extensions are available on the Microsoft tab:

Name Description

Options [v2000] You can choose between the following:

• PASSTHROUGH: causes the SELECT clause to be passed directly to the source
database without modification by PivotTable Service. If PASSTHROUGH is not
specified, PivotTable Service parses the query and formulates a set of queries
equivalent to the original that is optimized for the source database and index struc-
tures. This set of queries is often more efficient than the specified.

• DEFER_DATA: causes the query to be parsed locally and executed only when
necessary to retrieve data to satisfy a user request. DEFER_DATA is used to specify
that a local cube has to be defined in the ROLAP storage mode.

• ATTEMPT_DEFER: causes PivotTable Service to attempt to parse the query and
defer data loading if successful, or, if the query cannot be parsed, to process the
specified query immediately as if PASSTHROUGH had been specified.

• ATTEMPT_ANALYSIS: causes PivotTable Service to attempt to parse the query
and formulate an optimized set of queries. If the query cannot be parsed, PivotTable
Services processes the query immediately as if PASSTHROUGH had been speci-
fied.

Scripting name: Options

Storage
mode

[v2005 and higher] Specifies the storage mode for the cube.

Scripting name: StorageMode

Visible [v2005 and higher] Determines the visibility of the Cube.

Scripting name: Visible

CHAPTER 12: Microsoft SQL Server

386 SAP Sybase PowerDesigner

Dimensions
The following extensions are available on the Microsoft tab:

Name Description

Hidden [v2000] Indicates whether the dimension is hidden from clients.

Scripting name: IsHidden

Options [v2000] Dimension options to manage member uniqueness and specify their storage.
You can choose between:

• UNIQUE_NAME: Member names are unique within the dimension.

• UNIQUE_KEY: Member keys are unique within the dimension.

• NOTRELATEDTOFACTTABLE: Indicates that non-leaf members cannot be as-
sociated with fact table data.

• ALLOWSIBLINGSWITHSAMENAME: Determines whether children of a sin-
gle member in a hierarchy can have identical names.

Scripting name: Options

Subtype [v2000] Indicates the subtype of a dimension. You can choose between:

• PARENT_CHILD:Indicates that the dimension is a parent-child dimension.

• LINKED: Indicates that the cube is linked to another cube on a remote Analysis
server.

• MINING: Indicates that the dimension is based on the content of an OLAP data-
mining model that has been processed for a cube.

Scripting name: SubType

Template [v2000] Contains a template string that is used to generate captions for system-gen-
erated data members.

Scripting name: Template

CHAPTER 12: Microsoft SQL Server

Data Modeling 387

Name Description

Time [v2000] Indicates that a dimension refers to time (year, month, week, day, and so on).
You can choose between:

• TIME: Year, month, week, day, and so on. The only valid levels in a time dimen-
sion are those defined in the LevelTypes enumeration.

The following values post-fixed by an asterisk (*) are additional values that can be
used by the add-in but do not exist in the MDX syntax. You can choose between a
dimension that contains:

• ACCOUNT: (*) an account structure with parent-child relationships.

• BILLOFMATERIALS (*): a material/component breakdown. The parent-child
relationship implies a parent composed of its children.

• CHANNEL (*): a distribution channel.

• CURRENCY (*): currency information.

• CUSTOMERS (*): customer information. The lowest level represents individual
customers.

• GEOGRAPHY (*): a geographic hierarchy.

• ORGANIZATION (*): the reporting structure of an organization.

• PRODUCTS (*): product information. The lowest level represents individual
products.

• PROMOTION (*): marketing and advertising promotions.

• QUANTITATIVE (*): quantitative elements (such as example, income level,
number of children, and so on).

• RATES (*): different types of rates (for example, buy, sell, discounted. and so on).

• SCENARIO (*): different business scenarios.

Scripting name: TimeDef

Type [v2005 and higher] Provides information about the contents of the dimension.

Scripting name: Type

Storage
mode

[v2005 and higher] Determines the storage mode for the parent element.

Scripting name: StorageMode

Attribu-
teAllMem-
berName

[v2005 and higher] Contains the caption, in the default language, for the All member
of the dimension.

Scripting name: AttributeAllMemberName

WriteEna-
bled

[v2005 and higher] Indicates whether dimension writebacks are available (subject to
security permissions).

Scripting name: WriteEnabled

CHAPTER 12: Microsoft SQL Server

388 SAP Sybase PowerDesigner

Dimension Attributes
The following extensions are available on the Microsoft tab:

Name Description

Rollup ex-
pression

[v2000] Contains a Multidimensional Expressions (MDX) expression used to over-
ride the default roll-up mode.

Scripting name: CustomRollupExpr

Format key [v2000] Name of the column or expression that contains member keys.

Scripting name: FormatKey

Format
name

[v2000] Name of the column or expression that contains member names.

Scripting name: FormatName

Hide values [v2000] Options to hide level members. You can choose between:

• BLANK_NAME: Hides a level member with an empty name.

• PARENT_NAME: Hides a level member when the member name is identical to
the name of its parent.

• ONLY_CHILD_AND_BLANK_NAME: Hides a level member when it is the
only child of its parent and its name is null or an empty string.

• ONLY_CHILD_AND_PARENT_NAME: Hides a level member when it is the
only child of its parent and is identical to the name of its parent.

Scripting name: HideValues

Hidden [v2000] Indicates whether the level is hidden from client applications.

Scripting name: IsHidden

CHAPTER 12: Microsoft SQL Server

Data Modeling 389

Name Description

Options [v2000] Options about member uniqueness, ordering and data source. You can choose
between:

• UNIQUE: Indicates that the members of a level are unique.

• UNIQUE_NAME: Indicates that their member name columns uniquely identify
the level members.

• UNIQUE_KEY: Indicates that their member key columns uniquely identify the
level members.

• NOTRELATEDTOFACTTABLE: Indicates that the level members cannot be
associated with fact table data.

• SORTBYNAME: Indicates that level members are ordered by their names.

• SORTBYKEY: Indicates that level members are ordered by their keys.

• SORTBYPROPERTY <property names>: Indicates that members are ordered by
their property <property names>.

Scripting name: Options

Root values [v2000] Determines how the root member or members of a parent-child hierarchy are
identified. You can choose between:

• ROOT_IF_PARENT_IS_BLANK: Only members with a null, a zero, or an empty
string in their parent key column are treated as root members.

• ROOT_IF_PARENT_IS_MISSING: Only members with parents that cannot be
found are treated as root members.

• ROOT_IF_PARENT_IS_SELF: Only members having themselves as parents are
treated as root members.

• ROOT_IF_PARENT_IS_BLANK _OR_SELF_OR_MISSING: Members are
treated as root members if they meet one or more of the conditions specified by
ROOT_IF_PARENT_IS_BLANK, ROOT_IF_PARENT_IS_SELF, or
ROOT_IF_PARENT_IS_MISSING.

Scripting name: RootValues

CHAPTER 12: Microsoft SQL Server

390 SAP Sybase PowerDesigner

Name Description

Type [v2000 and higher] Identifies the specific type of level. You can choose between:

• ALL: Indicates the top (All) level of a dimension (the one that precalculates all the
members of all lower levels).

• YEAR: a level that refers to years (Time dimension only).

• QUARTER: a level that refers to (calendar) quarters (Time dimension only).

• MONTH: a level that refers to months (Time dimension only).

• WEEK: a level that refers to weeks (Time dimension only).

• DAY: a level that refers to days (Time dimension only).

• DAYOFWEEK: a level that refers to days of the week (Time dimension only).

• DATE: a level that refers to dates (Time dimension only).

• HOUR: a level that refers to hours (Time dimension only).

• MINUTE: a level that refers to minutes (Time dimension only).

• SECOND: Indicates that a level refers to seconds (Time dimension only).

Scripting name: Type

Member-
sWithData

[v2005 and higher] Determines whether to display data members for non-leaf mem-
bers in the parent attribute.

Scripting name: MembersWithData

OrderBy [v2005 and higher] Describes how to order the members contained in the attribute.

Scripting name: OrderBy

MemberNa-
mesUnique

[v2005 and higher] Determines whether member names under the parent element
must be unique.

Scripting name: MemberNamesUnique

IsAggregat-
able

[v2005 and higher] Specifies whether the values of the DimensionAttribute element
can be aggregated.

Scripting name: IsAggregatable

Attribute-
HierarchyEn-
abled

[v2005 and higher] Determines whether an attribute hierarchy is enabled for the
attribute.

Scripting name: AttributeHierarchyEnabled

Attribute-
HierarchyVi-
sible

[v2005 and higher] Determines whether the attribute hierarchy is visible to client
applications.

Scripting name: AttributeHierarchyVisible

CHAPTER 12: Microsoft SQL Server

Data Modeling 391

Databases
The following extensions are available on the Microsoft tab:

Name Description

Primary Specifies that the associated file specification list defines the primary file.

Scripting name: Primary

File Gets or sets the file specification.

Scripting name: FileListFileSpec

Filegroup Gets or sets the first filegroup name.

Scripting name: FilelistFilegroup

File (filegroup) Gets or sets the Filegroup specification.

Scripting name: FileGroupFileSpec

Log on Gets or sets the log file specification.

Scripting name: LogOnFileSpec

Collation name [v2000 and higher] Specifies the default collation for the database. Collation name
can be either a Windows collation name or a SQL collation name.

Scripting name: Collate

Attach Specifies that a database is attached from an existing set of operating system files.

Scripting name: ForAttach

With [v2005 and higher] Controls Service Broker options on the database.

Service Broker options can only be specified when the FOR ATTACH clause is
used.

• ENABLE_BROKER: Specifies that Service Broker is enabled for the speci-
fied database.

• NEW_BROKER: Creates a new service_broker_guid value in both sys.data-
bases and the restored database and ends all conversation endpoints with clean
up. The broker is enabled, but no message is sent to the remote conversation
endpoints.

• ERROR_BROKER_CONVERSATIONS: Ends all conversations with an er-
ror stating that the database is attached or restored. The broker is disabled until
this operation is completed and then enabled.

Scripting name: ForAttachWith

CHAPTER 12: Microsoft SQL Server

392 SAP Sybase PowerDesigner

Name Description

Attach rebuild
log

[v2005 and higher] Specifies that the database is created by attaching an existing
set of operating system files.

Scripting name: ForAttachRebuildLog

Database chain-
ing

[v2005 and higher] When ON is specified, the database can be the source or target
of a cross database ownership chain.

When OFF, the database cannot participate in cross database ownership chaining.
The default is OFF.

Scripting name: WithDbChaining

Trust worthy [v2005 and higher] When ON is specified, database modules (for example, views,
user-defined functions, or stored procedures) that use an impersonation context
can access resources outside the database.

When OFF, database modules in an impersonation context cannot access resour-
ces outside the database. The default is OFF.

Scripting name: WithTrustworthy

Snapshot of [v2005 and higher] Specifies the name of the new database snapshot.

Scripting name: AsSnapshotOf

Load [up to v2000] Indicates that the database is created with the "dbo use only" da-
tabase option turned on, and the status is set to loading.

Scripting name: ForLoad

For information about the extended attributes available on the Mirroring tab, see Database
mirroring on page 418.

Data Sources
The following extensions are available on the OLE DB tab:

Name Description

Data provider Specifies the data provider. You can choose between:

• .NET Framework Data Provider for Microsoft SQL Server

• .NET Framework Data Provider for Oracle

• Native Data Provider for OLE DB

Scripting name: DataProvider

Connection
string

Specifies the connection string.

Scripting name: ConnectionString

CHAPTER 12: Microsoft SQL Server

Data Modeling 393

The following extensions are available on the Configuration tab:

Name Description

Server name Specifies the server name.

Scripting name: ServerName

Authentication [only for SQL Server] Specifies the Windows Authentication and SQL Server
Authentication types.

Scripting name: AuthenticationType

User name Specifies the User name.

Scripting name: UserName

Password Specifies the password.

Scripting name: Password

Initial catalog [only for SQL Server and OLE DB] Specifies the Initial catalog.

Scripting name: InitialCatalog

Database File [only for SQL Server] Specifies a Microsoft SQL Server database file if you select
an MSSQL connection.

Scripting name: MSSQLDatabaseFile

Logical name [only for SQL Server] Specifies the logical name of the selected database file.

Scripting name: LogicalName

Data providers [only for OLE DB] Specifies the data provider.

Scripting name: DataProvider

Location [only for OLE DB] Specifies the location for OLEDB.

Scripting name: Location

Persist security
info

[only for OLE DB] Specifies that security information be persistent.

Scripting name: PersistSecurityInfo

Use Windows
NT Integrated
Security

[only for OLE DB] Specifies whether to use windows NT Integrated Security or
not.

Scripting name: UseNTIntegratedSecurity

Dimension Hierarchies
The following extensions are available on the Microsoft tab:

CHAPTER 12: Microsoft SQL Server

394 SAP Sybase PowerDesigner

Name Description

Hidden [v2000] Indicates whether the hierarchy is hidden from client applications.

Scripting name: IsHidden

AllMember-
Name

[v2005 and higher] Contains the caption in the default language for the All mem-
ber of a Hierarchy element.

Scripting name: AllMemberName

MemberName-
sUnique

[v2005 and higher] Determines whether member names under the parent element
must be unique.

Scripting name: MemberNamesUnique

AllowDuplicate-
Names

[v2005 and higher] Determines whether duplicate names are allowed in a Hier-
archy element.

Scripting name: AllowDuplicateNames

Fact Measures
The following extensions are available on the Microsoft tab:

Name Description

Format [v2000] Format used to display the values of the cube measure.

Scripting name: Format

Cube measure func-
tion type

[v2000] A value corresponding to the type of aggregate function used by the
cube measure.

Scripting name: Function

Hidden [v2000] Indicates whether the measure is visible to the client.

Scripting name: IsHidden

Member calculating
order

[v2000] Order in which the calculated member will be solved when calculated
members intersect each other.

Scripting name: SolveOrder

Source column data
type

[v2000] Returns an OLE DB enumeration constant that identifies the Source-
Column (in the fact table) data type.

Scripting name: Type

AggregateFunction [v2005 and higher] Defines the common prefix to be used for aggregation
names throughout the associated parent element.

Scripting name: AggregateFunction

CHAPTER 12: Microsoft SQL Server

Data Modeling 395

Name Description

BindingType [v2005 and higher] Defines the binding type for the measure.

Scripting name: BindingType

Visible [v2005 and higher] Determines the visibility of the Fact Measure.

Scripting name: Visible

FormatString [v2005 and higher] Describes the display format for a CalculationProperty or a
Measure element.

Scripting name: FormatString

Indexes

Note: For additional information about special SQL Server index types, see XML Indexes
(SQL Server) on page 415 and Spatial Indexes (SQL Server) on page 413.

The following extensions are available on the Microsoft tab:

Name Description

Filegroup Specifies the name of the filegroup.

Scripting name: FileGroup

Partition scheme [v2005 and higher] Specifies the name of the partition scheme.

Scripting name: PartitionScheme

Column [v2005 and higher] Specifies the partitioned column.

Scripting name: PartitionSchemeColumn

Fill factor Specifies a percentage that indicates how full the Database Engine should
make the leaf level of each index page during index creation or rebuild.

Scripting name: FillFactor

Max degree of par-
allelism

[v2005 and higher] Overrides the max degree of parallelism configuration
option for the duration of the index operation. Use MAXDOP to limit the
number of processors used in a parallel plan execution. The maximum is 64
processors.

Scripting name: MaxDop

Pad index Specifies index padding.

Scripting name: PadIndex

CHAPTER 12: Microsoft SQL Server

396 SAP Sybase PowerDesigner

Name Description

Statistics no recom-
pute

Specifies whether distribution statistics are recomputed.

Scripting name: StatisticsNoRecompute

Drop existing Specifies that the named, preexisting clustered, nonclustered, or XML index is
dropped and rebuilt.

Scripting name: DropExisting

Online [v2005 and higher] Specifies whether underlying tables and associated indexes
are available for queries and data modification during the index operation.

Scripting name: Online

Sort in temporary
database

[v2005 and higher] Specifies whether to store temporary sort results in tempdb.

Scripting name: SortInTempDB

Allow row locks [v2005 and higher] Specifies whether row locks are allowed.

Scripting name: AllowRowLocks

Allow page locks [v2005 and higher] Specifies whether page locks are allowed.

Scripting name: AllowPageLocks

Ignore dup key Specifies the error response to duplicate key values in a multiple row insert
operation on a unique clustered or unique nonclustered index.

Scripting name: IgnoreDupKey

If the index is not a cluster index, then the Include tab is displayed, allowing you to specify the
columns with which it is associated.

Keys
The following extensions are available on the Microsoft tab:

Name Description

Filegroup Specifies the name of the filegroup.

Scripting name: FileGroup

Fill Factor Specifies how full SQL Server should make each index page used to store the
index data.

Scripting name: FillFactor

References
The following extensions are available on the Microsoft tab:

CHAPTER 12: Microsoft SQL Server

Data Modeling 397

Name Description

Do not validate for-
eign key constraint
during replication

Specifies that "NOT FOR REPLICATION" keywords are used to prevent the
FOREIGN KEY constraint from being enforced during the distribution proc-
ess used by replication.

Scripting name: ExtFkNotForReplication

Storages
The following extensions are available on the Microsoft tab:

Name Description

Contains file-
stream

Specifies that the filegroup stores FILESTREAM binary large objects (BLOBs)
in the file system.

Scripting name: FileStream

Tables
The following extensions are available on the Microsoft tab:

Name Description

Do not validate
check constraints
during replication

Specifies that "NOT FOR REPLICATION" keywords are used to prevent the
TABLE CHECK constraint from being enforced during the distribution proc-
ess used by replication.

Scripting name: ExtCktNotForReplication

Table is partitioned Specifies that the table is partitioned.

Scripting name: PartitionedTable

Filegroup [unpartitioned tables] Specifies the name of the filegroup.

Scripting name: FileGroup

Text/Image [unpartitioned tables] Specifies the name of the filegroup where text and image
are stored.

Scripting name: TextImageOn

Filestream [unpartitioned tables] Specifies the name of the filegroup used for filestream.

Scripting name: FilestreamOnFilegroup

Compression [unpartitioned tables] Specifies the compression type of the table (none, row or
page).

Scripting name: TableCompression

CHAPTER 12: Microsoft SQL Server

398 SAP Sybase PowerDesigner

Name Description

Partition scheme [partitioned tables, v2005 and higher] Specifies the name of the partition
scheme. You must also specify the name of the partitioned column

Scripting name: PartitionScheme, PartitionSchemeColumn

Filestream partition
scheme

[partitioned tables, v2005 and higher] Specifies the name of the partition
scheme.

Scripting name: FilestreamPartitionScheme, FilestreamPartitionSchemeCol-
umn

Compression [partitioned tables] Specifies the partitions that use the compression.

Scripting name: DataCompression

Triggers
The following extensions are available on the Microsoft tab:

Name Description

Option Is a concatenation of the WITH ENCRYPTION (which is illegal for CLR

triggers, and which prevents the trigger from being published) and EXECUTE
AS (which specifies the security context under which the trigger is executed)

options.

Scripting name: Option

An additional property is available for CLR triggers (see CLR Procedures, Functions, and
Triggers (SQL Server) on page 406).

Users
The following extensions are available on the General tab (v2005 and higher):

Name Description

Implicit schema Specifies that the stored procedure sp_grantdbaccess will be used

instead of a create user statement during database generation.

Scripting name: ImplicitSchema

Default schema Specifies the first schema searched to resolve the names of objects for this user.
If the Implicit schema option is selected, then the default schema is initialized
to the name of the user.

Scripting name: DefaultSchema

Views
The following extensions are available on the Microsoft tab:

CHAPTER 12: Microsoft SQL Server

Data Modeling 399

Name Description

Encryption option Defines the encryption option of the view, respecting the view creation syntax.

Scripting name: WithOption

Horizontal Partitioning (SQL Server)
MS SQL Server 2005 and higher supports horizontal partitioning, a method for making large
tables and indexes more manageable by dividing them horizontally and spreading them across
more than one filegroup in a database. PowerDesigner supports horizontal partitioning
through the partition function and partition scheme objects.

To partition a table or an index, specify a partition scheme and column on the Microsoft tab of
its property sheet.

Partition Functions (SQL Server)
A partition function specifies how a table or index can be partitioned. PowerDesigner models
partition functions as extended objects with a stereotype of <<PartitionFunction>>.

Creating a Partition Function
You can create a partition function in any of the following ways:

• Select Model > Partition Functions to access the List of Partition Functions, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Partition
Function.

Partition Function Properties
You can modify an object's properties from its property sheet. To open a partition function
property sheet, double-click its diagram symbol or its Browser entry in the Partition Functions
folder.

The following extended attributes are available on the Microsoft tab:

Name Description

Input Parameter Type Specifies the data type of the column used for partitioning. All data types are
valid, except text, ntext, image, xml, timestamp, varchar(max), nvarch-
ar(max), varbinary(max), alias data types, or CLR user-defined data types.

Scripting name: InputParameterType

Length Specifies the length of input parameter data type.

Scripting name: InputParameterLength

CHAPTER 12: Microsoft SQL Server

400 SAP Sybase PowerDesigner

Name Description

Precision Specifies the precision of input parameter data type

Scripting name: InputParameterPrec

Interval Side Specifies to which side of each boundary value interval the boundary_value
[,...n] belongs. You can choose between:

• left [default]

• right

Interval values are sorted by the Database Engine in ascending order from
left to right.

Scripting name: IntervalSide

Boundary Values Specifies the boundary values for each partition of a partitioned table or
index. All values must be separated by commas.

Scripting name: BoundaryValues

Partition Schemes (SQL Server)
A partition scheme maps the partitions produced by a partition function to a set of user-defined
filegroups. PowerDesigner models partition schemes as extended objects with a stereotype of
<<PartitionScheme>>.

Creating a Partition Scheme
You can create a partition scheme in any of the following ways:

• Select Model > Partition Schemes to access the List of Partition Schemes, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Partition
Scheme.

Partition Scheme Properties
You can modify an object's properties from its property sheet. To open a partition scheme
property sheet, double-click its diagram symbol or its Browser entry in the Partition Schemes
folder.

The following extended attributes are available on the Microsoft tab:

CHAPTER 12: Microsoft SQL Server

Data Modeling 401

Name Description

Partition Function Specifies the partition function using the scheme. Partitions created by the
partition function are mapped to the filegroups specified in the partition
scheme.

Scripting name: PartitionFunction

All Partitions Specifies that all partitions map to the filegroup specified by the File Groups
property.

Scripting name: AllPartitions

File Groups Specifies the names of the filegroups to hold the partitions specified by the
partition function. If [PRIMARY] is specified, the partition is stored on the
primary filegroup. If ALL is specified, only one filegroup name can be
specified.

Scripting name: Filegroups

Common Language Runtime (CLR) Integration (SQL Server)
CLR integration (for SQL Server 2005 and higher) means that stored procedures, triggers, and
user-defined types, functions, and aggregate functions can be written for SQL Server in
any .NET language, such as VB .NET or C#.

PowerDesigner supports CLR integration with assemblies, aggregate functions, CLR types,
procedures, functions, and triggers.

CLR Assemblies (SQL Server)
An assembly is a DLL file used to deploy functions, stored procedures, triggers, user-defined
aggregates, and user-defined types that are written in one of the managed code languages
hosted by the Microsoft .NET Framework common language runtime (CLR), instead of in
Transact-SQL. PowerDesigner models assemblies as extended objects with a stereotype of
<<Assembly>>.

Creating an Assembly
You can create an assembly in any of the following ways:

• Select Model > Assemblies to access the List of Assemblies, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Assembly.

Assembly Properties
You can modify an object's properties from its property sheet. To open an assembly property
sheet, double-click its diagram symbol or its Browser entry in the Assemblies folder.

CHAPTER 12: Microsoft SQL Server

402 SAP Sybase PowerDesigner

The following extended attributes are available on the Microsoft tab:

Name Description

Authorization Specifies the name of a user or role as the owner of the assembly.

Scripting name: Authorization

File name Specifies the local path or network location where the assembly that is
being uploaded is located, and also the manifest file name that corresponds
to the assembly. Can be entered as a fixed string or an expression evaluating
to a fixed string.

Scripting name: FileName

Permission set Specifies a set of code access permissions that are granted to the assembly
when it is accessed by SQL Server. You can choose between:

• SAFE

• UNSAFE

• EXTERNAL_ACCESS

Scripting name: PermissionSet

Visibility Specifies that the assembly is visible for creating common language run-
time (CLR) functions, stored procedures, triggers, user-defined types, and
user-defined aggregate functions against it. You can choose between:

• On

• Off

Scripting name: Visibility

Unchecked data By default, ALTER ASSEMBLY fails if it must verify the consistency of
individual table rows. This option allows postponing the checks until a
later time by using DBCC CHECKTABLE.

Scripting name: UncheckedData

CLR Aggregate Functions (SQL Server)
An aggregate function performs a calculation on a set of values and returns a single value.
Traditionally, Microsoft SQL Server has supported only built-in aggregate functions, such as
SUM or MAX, that operate on a set of input scalar values and generate a single aggregate value
from that set. SQL Server integration with the Microsoft .NET Framework common language
runtime (CLR) now allows developers to create custom aggregate functions in managed code,
and to make these functions accessible to Transact-SQL or other managed code.
PowerDesigner models aggregate functions as extended objects with a stereotype of
<<Aggregate>>.

CHAPTER 12: Microsoft SQL Server

Data Modeling 403

Creating an Aggregate Function
You can create an aggregate function in any of the following ways:

• Select Model > Aggregates to access the List of Aggregates, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Aggregate.

Aggregate Function Properties
You can modify an object's properties from its property sheet. To open an aggregate function
property sheet, double-click its diagram symbol or its Browser entry in the Aggregates folder.

The following extended attributes are available on the Microsoft tab:

Name Description

Schema Specifies the name of a schema as the owner of the aggregate function.

Scripting name: Owner

Assembly Specifies the assembly to bind with the aggregate function.

Scripting name: Assembly

Class name Specifies the name of the class in the assembly that implements the ag-
gregate function.

If the class name is not specified, SQL Server assumes it is the same as the
aggregate name.

Scripting name: Class

Parameter name [v2005] Specifies the name of the input parameter.

Scripting name: InputParameterName

Type [v2005] Specifies the type of the input parameter. All scalar data types or
CLR user-defined types can be used, except text, ntext, and image.

Scripting name: InputParameterType

Return type Specifies the return type of the aggregate function. All scalar data types or
CLR user-defined types can be used as return type, except text, ntext, and
image.

Scripting name: ReturnType

Length Specifies the length of return data type.

Scripting name: ReturnTypeLength

CHAPTER 12: Microsoft SQL Server

404 SAP Sybase PowerDesigner

Name Description

Precision Specifies the precision of return data type.

Scripting name: ReturnTypePrec

For v2008 and higher, the Parameters tab allows you to list the name, type, length, and
precision of any parameters.

CLR User-Defined Types (SQL Server)
The introduction of user-defined types (UDTs) in SQL Server 2005 allows you to extend the
scalar type system of the server, enabling storage of CLR objects in a SQL Server database.
UDTs can contain multiple elements and can have behaviors, differentiating them from the
traditional alias data types which consist of a single SQL Server system data type.

Since UDTs are accessed by the system as a whole, their use for complex data types may
negatively impact performance, and complex data is generally best modeled using traditional
rows and tables. UDTs in SQL Server are well suited to date, time, currency, and extended
numeric types, geospatial applications, and encoded or encrypted data

PowerDesigner models user-defined types as abstract data types.

Creating a User-Defined Type
To create a user-defined type, you must have already created an assembly, and have an OOM
containing an appropriate class open in the workspace, in order to specify the supertype:

1. Select Model > Abstract Data Types to access the List of Abstract Data Types, and click
the Add a Row tool (or right-click the model or package in the Browser, and select New >
Abstract Data Type.

2. On the General Tab of its property sheet, select CLR from the list of Types.
3. Click the Select Object tool to the right of the Class field, in order to specify a supertype.
4. Click the Microsoft tab and select an assembly from the list to bind to the type.

User-Defined Type Properties
You can modify an object's properties from its property sheet. To open a user-defined type
property sheet, double-click its diagram symbol or its Browser entry in the Abstract Data
Types folder.

In addition to the standard abstract data type properties, a user-defined type has the following
additional properties available on the Microsoft tab:

Name Description

Assembly Specifies the assembly to bind with the abstract data type.

Scripting name: Assembly

CHAPTER 12: Microsoft SQL Server

Data Modeling 405

Name Description

Mandatory Specifies whether the type can hold a null value.

Scripting name: Mandatory

CLR Procedures, Functions, and Triggers (SQL Server)
In Microsoft SQL Server 2005, you can write user-defined procedures, functions, and triggers
in any Microsoft .NET Framework programming language. PowerDesigner models these
objects as standard procedures and triggers that use a CLR template, and are linked to a
method from an associated OOM.

Creating a CLR Procedure, Function, or Trigger
To create a CLR procedure, function, or trigger you must have already created an assembly,
and you must have an OOM open in the workspace, in order to specify an associated class
method:

1. Create a standard procedure or function and, on the Definition Tab of its property sheet,
select CLR Procedure, CLR Function, or CLR Trigger from the template list. A Class
method field will be displayed to the right of the template list.

2. Click the Select Method tool to the right of the Class method field, in order to specify the
associated method.

3. Click the Microsoft tab and select an assembly from the list to bind to the procedure or
function.

CLR Procedure, Function, and Trigger Properties
You can modify an object's properties from its property sheet. To open a CLR procedure,
function, or trigger property sheet, double-click its diagram symbol or its Browser entry in the
Procedures or Triggers folder.

The following extended attributes are available on the Microsoft tab:

Name Description

Assembly Specifies the assembly where the class method is defined.

Scripting name: Assembly

Encryption (SQL Server)
SQL Server 2005 and higher provide a security infrastructure that supports hierarchical
encryption and key management.

PowerDesigner supports encryption with certificates and asymmetric and symmetric keys.

CHAPTER 12: Microsoft SQL Server

406 SAP Sybase PowerDesigner

Certificates (SQL Server)
A public key certificate, usually just called a certificate, is a digitally-signed statement that
binds the value of a public key to the identity of the person, device, or service that holds the
corresponding private key. Certificates are issued and signed by a certification authority (CA).
The entity that receives a certificate from a CA is the subject of that certificate. PowerDesigner
models certificates as extended objects with a stereotype of <<Certificate>>.

Creating a Certificate
You can create a certificate in any of the following ways:

• Select Model > Certificates to access the List of Certificates, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Certificate.

Certificate Properties
You can modify an object's properties from its property sheet. To open a certificate property
sheet, double-click its diagram symbol or its Browser entry in the Certificates folder.

The following extended attributes are available on the Microsoft tab:

Name Description

Authorization [v2005] Specifies the name of a user as the owner of the certificate.

Scripting name: Authorization

Assembly [v2005] Specifies a signed assembly that has already been loaded into the
database.

Scripting name: Assembly

Assembly File [v2005] Specifies the complete path, including file name, to a DER enco-
ded file that contains the certificate. The path name can be a local path or a
UNC path to a network location. The file will be accessed in the security
context of the SQL Server service account. This account must have the
required file system permissions.

Scripting name: AssemblyFile

Executable [v2005] If the EXECUTABLE option is used, the file is a DLL that has
been signed by the certificate.

Scripting name: Executable

CHAPTER 12: Microsoft SQL Server

Data Modeling 407

Name Description

File Specifies the complete path, including file name, to the private key. The
private key path name can be a local path or a UNC path to a network
location. The file will be accessed in the security context of the SQL Server
service account. This account must have the necessary file system per-
missions.

Scripting name: PrivateKeyFile

Encryption password
(private key)

Specifies the password that will be used to encrypt the private key.

Scripting name: PrivateKeyEncryptionPassword

Decryption password Specifies the password required to decrypt a private key that is retrieved
from a file.

Scripting name: PrivateKeyDecryptionPassword

Subject Specifies the value of the subject field in the metadata of the certificate as
defined in the X.509 standard.

Scripting name: Subject

Encryption password [v2005] Use this option only if you want to encrypt the certificate with a
password.

Scripting name: EncryptionPassword

Start date Specifies the date on which the certificate becomes valid. If not specified,
StartDate will be set equal to the current date.

Scripting name: StartDate

Expiry date Specifies the date on which the certificate expires. If not specified, Expir-
yDate will be set to a date one year after StartDate.

Scripting name: ExpiryDate

Active for begin dialog Specifies that the certificate is available to the initiator of a Service Broker
dialog conversation.

Scripting name: ActiveForBeginDialog

Asymmetric Keys (SQL Server)
An asymmetric key is made up of a private key and the corresponding public key. Each key can
decrypt data encrypted by the other. Asymmetric encryption and decryption are relatively
resource-intensive, but they provide a higher level of security than symmetric encryption. An
asymmetric key can be used to encrypt a symmetric key for storage in a database.
PowerDesigner models asymmetric keys as extended objects with a stereotype of
<<AsymmetricKey>>.

CHAPTER 12: Microsoft SQL Server

408 SAP Sybase PowerDesigner

Creating an Asymmetric Key
You can create an asymmetric key in any of the following ways:

• Select Model > Asymmetric Keys to access the List of Asymmetric Keys, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Asymmetric
Key.

Asymmetric Key Properties
You can modify an object's properties from its property sheet. To open an asymmetric key
property sheet, double-click its diagram symbol or its Browser entry in the Asymmetric Keys
folder.

The following extended attributes are available on the Microsoft tab:

Name Description

Authorization Specifies the name of a user as the owner of the asymmetric key.

Scripting name: Authorization

Source type [v2008 and higher] Specifies the type of source (File, Executable file, Assembly
or Provider)

Scripting name: Source

Assembly Specifies the name of an assembly from which to load the public key.

Scripting name: Assembly

Assembly file Specifies the path of a file from which to load the key.

Scripting name: AssemblyFile

Provider [v2008 and higher] Specifies the name of the EKM (Extensible Key Manage-
ment) provider.

Scripting name: Provider

Executable [v2005] If the EXECUTABLE option is used, the file attribute specifies an
assembly file from which to load the public key, otherwise the file attribute
specifies the path of a strong name file from which to load the key pair.

Scripting name: Executable

Algorithm Specifies the algorithm used to encrypt the key.

Scripting name: Algorithm

Create disposition [v2008 and higher] Creates a new key or use an existing one.

Scripting name: CreateDisposition

CHAPTER 12: Microsoft SQL Server

Data Modeling 409

Name Description

Provider key
name

[v2008 and higher] Specifies the key name from the external provider.

Scripting name: ProviderKeyName

Encryption pass-
word

Specifies the password with which to encrypt the private key. If this clause is not
present, the private key will be encrypted with the database master key.

Scripting name: EncryptionPassword

Symmetric Keys (SQL Server)
A symmetric key is one key that is used for both encryption and decryption. Encryption and
decryption by using a symmetric key is fast, and suitable for routine use with sensitive data in
the database. PowerDesigner models symmetric keys as extended objects with a stereotype of
<<SymmetricKey>>.

Creating a Symmetric Key
You can create a symmetric key in any of the following ways:

• Select Model > Symmetric Keys to access the List of Symmetric Keys, and click the Add
a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Symmetric Key.

Symmetric Key Properties
You can modify an object's properties from its property sheet. To open a symmetric key
property sheet, double-click its diagram symbol or its Browser entry in the Symmetric Keys
folder.

The following extended attributes are available on the Microsoft tab:

Name Description

Authorization Specifies the name of a user or role as the owner of the key.

Scripting name: Authorization

Certificate Specifies the name of the certificate that will be used to encrypt the symmetric
key.

Scripting name: Certificate

Password Specifies a password from which to derive a TRIPLE_DES key with which to
secure the symmetric key. Password complexity will be checked. You should
always use strong passwords.

Scripting name: Password

CHAPTER 12: Microsoft SQL Server

410 SAP Sybase PowerDesigner

Name Description

Symmetric key Specifies a symmetric key to be used to encrypt the key that is being created.

Scripting name: SymmetricKey

Asymmetric key Specifies an asymmetric key to be used to encrypt the key that is being created.

Scripting name: AsymmetricKey

Key source Specifies a pass phrase from which to derive the key.

Scripting name: KeySource

Algorithm Specifies the algorithm used to encrypt the key

Scripting name: Algorithm

Identity value Specifies an identity phrase from which to generate a GUID for tagging data
that is encrypted with a temporary key.

Scripting name: IdentityValue

Full Text Search (SQL Server)
SQL Server 2005 and higher supports full-text queries against a table's plain character data.
PowerDesigner supports this feature through the full text catalog and full text index objects.

Full-Text Catalogs (SQL Server)
A full-text catalog contains zero or more full-text indexes. PowerDesigner models full-text
catalogs as extended objects with a stereotype of <<FullTextCatalog>>.

Creating a Full-Text Catalog
You can create a full-text catalog in any of the following ways:

• Select Model > Full-Text Catalogs to access the List of Full Text Catalogs, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Full-Text
Catalog.

Full-Text Catalog Properties
You can modify an object's properties from its property sheet. To open a full-text catalog
property sheet, double-click its diagram symbol or its Browser entry in the Full Text Catalogs
folder.

The following extended attributes are available on the Microsoft tab:

CHAPTER 12: Microsoft SQL Server

Data Modeling 411

Name Description

Authorization Specifies the name of a user or role as the owner of the full text catalog.

Scripting name: Authorization

File group Specifies the name of the SQL Server filegroup (or storage) of which the new
catalog will be part.

Scripting name: FileGroup

Path Specifies the root directory for the catalog.

Scripting name: Path

Accent sensitivity Specifies whether the catalog is accent sensitive for full text indexing.

Scripting name: AccentSensitivity

Default Specifies that the catalog is the default catalog.

Scripting name: Default

Full-Text Indexes (SQL Server)
A full-text index stores information about significant words and their location within a given
column. This information is used to quickly compute full-text queries that search for rows
with particular words or combinations of words. PowerDesigner models full-text indexes as
table indexes with an index type set to "Full Text".

Creating a Full-Text Index
To create a full-text index, you must have already created a catalog:

1. Create a standard index and, on the General tab, select FULLTEXT in the Type field.
2. Click the Microsoft tab and select a catalog from the list and then specify the type of

change tracking required.

Full-Text Index Properties
You can modify an object's properties from its property sheet. To open a full-text index
property sheet, double-click its Browser entry.

In addition to the standard index properties, a full-text index has the following additional
properties available on the Microsoft tab:

Name Description

Catalog Specifies the full text catalog where the full text index is defined.

Scripting name: FullTextCatalog

CHAPTER 12: Microsoft SQL Server

412 SAP Sybase PowerDesigner

Name Description

Change track-
ing

Specifies whether or not SQL Server maintains a list of all changes to the indexed
data. You can choose between:

• manual

• auto

• off

• off, no population

Scripting name: ChangeTracking

Spatial Indexes (SQL Server)
SQL Server 2008 and higher supports spatial data types and indexes. PowerDesigner supports
these new features through table indexes with the type set to SPATIAL.

Creating a Spatial Index
To create a spatial index:

1. Create a table containing a column of type geography or geometry.

2. Create a standard index and, on the General tab, select SPATIAL in the Type field. The
Columns tab is renamed to Spatial Options.

3. Click the Spatial Options tab, select your spatial column in the Indexed column field,
and complete the remaining properties.

Spatial Index Properties
You can modify an object's properties from its property sheet. To open a spatial index property
sheet, double-click its Browser entry. The following extended attributes are available on the
Spatial Options tab:

Name Description

Indexed column Specifies the spatial column on which the index is based

Scripting name: IndexedColumn

Tessellation scheme Specifies the tessellation scheme for the spatial index.

Scripting name: TesselationType

Bounding box Specifies a numeric four-tuple that defines the four coordinates of the bound-
ing box: the x-min and y-min coordinates of the lower, left corner, and the x-
max and y-max coordinates of the upper right corner.

Scripting name: BoundingBoxDefn

CHAPTER 12: Microsoft SQL Server

Data Modeling 413

Name Description

Cells per object Specifies the number of tessellation cells (any integer between 1 and 8192,
inclusive) per object that can be used for a single spatial object in the index by
the tessellation process.

Scripting name: CellsPerObject

Grids Specifies the density of the grid at each level of a tessellation scheme.

Scripting name: GridsDefn

Fill factor Specifies a percentage that indicates how full the Database Engine should
make the leaf level of each index page during index creation or rebuild.

Scripting name: FillFactor

Index padding Specifies index padding.

Scripting name: PadIndex

Max degree of paral-
lelism

Overrides the max degree of parallelism configuration option for the duration
of the index operation. Use MAXDOP to limit the number of processors (up to
64) used in a parallel plan execution.

Scripting name: MaxDop

Allow row locks Specifies whether row locks are allowed.

Scripting name: AllowRowLocks

Allow page locks Specifies whether page locks are allowed.

Scripting name: AllowPageLocks

Store sort result Specifies to store temporary sort results in tempdb.

Scripting name: SortInTempDB

Do not recompute
statistics

Specifies to recompute distribution statistics.

Scripting name: StatisticsNoRecompute

Drop if exist Specifies that the named, preexisting clustered, nonclustered, or XML index
is dropped and rebuilt.

Scripting name: DropExisting

CHAPTER 12: Microsoft SQL Server

414 SAP Sybase PowerDesigner

XML Indexes (SQL Server)
SQL Server 2005 provides improvements in indexing XML data. PowerDesigner supports
these new features through table indexes with the type set to XML.

Creating an XML Index
To create an XML index:

1. Create a standard index and, on the General tab, select XML in the Type field.
2. Click the Microsoft tab and specify any appropriate additional options.

XML Index Properties
You can modify an object's properties from its property sheet. To open an XML index property
sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

Name Description

Primary Specifies that this is the primary xml index.

Scripting name: XMLPrimary

Primary index Specifies the primary XML index to use in creating a secondary XML index.

Scripting name: PrimaryXMLIndex

Secondary XML in-
dex type

Specifies the type of the secondary XML index.

Scripting name: SecondaryXMLIndexType

Fill factor Specifies a percentage that indicates how full the Database Engine should
make the leaf level of each index page during index creation or rebuild.

Scripting name: FillFactor

Max degree of paral-
lelism

Overrides the max degree of parallelism configuration option for the duration
of the index operation. Use MAXDOP to limit the number of processors used
in a parallel plan execution. The maximum is 64 processors.

Scripting name: MaxDop

Pad index Specifies index padding.

Scripting name: PadIndex

Statistics no recom-
pute

Specifies whether distribution statistics are recomputed.

Scripting name: StatisticsNoRecompute

CHAPTER 12: Microsoft SQL Server

Data Modeling 415

Name Description

Drop existing Specifies that the named, preexisting clustered, nonclustered, or XML index
is dropped and rebuilt.

Scripting name: DropExisting

Sort in temporary da-
tabase

Specifies whether to store temporary sort results in tempdb.

Scripting name: SortInTempDB

Allow row locks Specifies whether row locks are allowed.

Scripting name: AllowRowLocks

Allow page locks Specifies whether page locks are allowed.

Scripting name: AllowPageLocks

XML Data Types (SQL Server)
SQL Server 2005 and higher allows you to store XML documents and fragments in a database.
PowerDesigner supports this feature through new column properties and the XML schema
collection object.

Using an XML Data Type in a Table Column
To specify a column for storing XML, you must have already created an XML schema
collection:

1. Create a standard column and, on the General tab, select XML in the Data type field.
2. Click the Microsoft tab, select an XML schema collection and content type.

XML Table Column Properties
You can modify an object's properties from its property sheet. To open an XML table column
property sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

Name Description

XML schema collec-
tion

Specifies an XML schema collection for the type.

Scripting name: XMLSchemaCollection

CHAPTER 12: Microsoft SQL Server

416 SAP Sybase PowerDesigner

Name Description

Content type Specifies the nature of the content to be stored in the column. You can
choose between:

• CONTENT – [default] the data can contain multiple top-level elements.

• DOCUMENT – the data can contain only one top-level element.

Scripting name: ContentType

XML Schema Collections (SQL Server)
An XML schema collection provides validation of and data type information about the XML
to be stored in the column. PowerDesigner models XML schema collections as extended
objects with a stereotype of <<XMLSchemaCollection>>.

Schemas provide information about the types of attributes and elements in the XML data type
instance, and the type information provides more precise operational semantics to the values.
For example, decimal arithmetic operations can be performed on a decimal value, but not on a
string value. Because of this, typed XML storage can be made significantly more compact
than untyped XML.

Creating an XML Schema Collection
You can create a XML schema collection in any of the following ways:

• Select Model > XML Schema Collections to access the List of XML Schema
Collections, and click the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > XML Schema
Collection.

XML Schema Collection Properties
You can modify an object's properties from its property sheet. To open a XML schema
collection property sheet, double-click its diagram symbol or its Browser entry in the XML
Schema Collections folder.

The following extended attributes are available on the Microsoft tab:

Name Description

Owner Specifies the name of a user, role, or schema as the owner of the schema
collection.

Scripting name: Owner

XML model Specifies a PowerDesigner XML model to link to the schema.

Scripting name: XMLModel

CHAPTER 12: Microsoft SQL Server

Data Modeling 417

Name Description

Content Specifies the content of the xml schema. By default this field contains the
%xmlModelContent% template, which represents the content of the linked
XML model.

Scripting name: Content

Database Mirroring (SQL Server)
SQL Server 2005 and higher supports database mirroring, in which the principal server sends,
in real-time, blocks of its database log records to the mirror instance which, in the event of
failover, can be made available within a few seconds.

PowerDesigner supports database mirroring with endpoints and extensions on the database
object.

Creating a Database for Mirroring
To create a database to model database mirroring:

1. Right-click the model in the Browser and select Properties.
2. On the General tab, click the Create tool to the right of the Database field.
3. Click the Mirroring tab and specify any appropriate properties.

Mirroring Properties
You can modify an object's properties from its property sheet. To open a database property
sheet, double-click its Browser entry.

The following extended attributes are available on the Mirroring tab:

Name Description

Enable mirroring Enables mirroring for the database.

Scripting name: EnableMirroring

Partner/ Witness Specifies the role that the database will play in the mirroring relationship.
You can choose between:

• Partner – the database is either a principal or mirror database.

• Witness – the database acts as a witness to a mirroring relationship. A
SET WITNESS clause affects both copies of the database, but can only
be specified on the principal server. If a witness is set for a session, a
quorum is required to serve the database, regardless of the SAFETY
setting.

Scripting names: Partner, Witness

CHAPTER 12: Microsoft SQL Server

418 SAP Sybase PowerDesigner

Name Description

Options Specifies mirroring options for the database. You can choose between:

• <None>

• server

• off

• failover

• force_service_allow_data_loss

• resume

• safety full

• safety off

• suspend

• timeout

Scripting name: MirrorOptions

Server For partner mirroring, specifies the server network address of an instance of
SQL Server to act as a failover partner in a new database mirroring session.

For witness mirroring, specifies an instance of the Database Engine to act as
the witness server for a database mirroring session.

Scripting name: MirrorServer

Time-out [if partner is selected] Specifies the time-out period in seconds. The time-
out period is the maximum time that a server instance waits to receive a
PING message from another instance in the mirroring session before con-
sidering that other instance to be disconnected.

Scripting name: TimeOut

End Points (SQL Server)
An end point encapsulates a transport protocol and a port number, and enables SQL Server to
communicate over the network. PowerDesigner models end points as extended objects with a
stereotype of <<EndPoint>>.

Creating an End Point
You can create an end point in any of the following ways:
• Select Model > End Points to access the List of End Points, and click the Add a Row

tool.
• Right-click the model (or a package) in the Browser, and select New > End Point.

End Point Properties
You can modify an object's properties from its property sheet. To open an end point property
sheet, double-click its Browser entry.

CHAPTER 12: Microsoft SQL Server

Data Modeling 419

The following extended attributes are available on the Microsoft tab:

Name Description

Owner Specifies the owner of the endpoint.

Scripting name: Owner

State Specifies the state of the endpoint at creation. You can choose between:

• started

• stopped

• disabled

Scripting name: State

Protocol: Name Specifies the transport protocol to be used by the endpoint. You can choose
between:

• http

• tcp

Scripting name: Protocol

Protocol: Argument Allows you to enter arguments for the chosen protocol.

Scripting name: ProtocolArgument

Language: Name Specifies the type of content to be sent. You can choose between:

• soap

• tsql

• service_broker

• database_mirroring

Scripting name: Language

Language: Argument Allows you to enter arguments for the chosen language.

Scripting name: LanguageArgument

Service Broker (SQL Server)
SQL Server 2005 and higher provides the service broker, which manages a queue of services.
Applications that use Service Broker communicate by sending messages to one another as part
of a conversation. The participants in a conversation must agree on the name and content of
each message.

PowerDesigner supports service broker through the following objects:

CHAPTER 12: Microsoft SQL Server

420 SAP Sybase PowerDesigner

• Message types - define the type of data that a message can contain.
• Contracts - define which message types an application uses to accomplish a particular

task.
• Queues - store messages.
• Event notifications - execute in response to a DDL statements and SQL Trace events by

sending information about these events to a Service Broker service.
• Services - are specific tasks or sets of tasks.

Message Types (SQL Server)
Message types define the type of data that a message can contain. You create identical message
types in each database that participates in a conversation.

Message types specify the type of XML validation that SQL Server performs for messages of
that type. For arbitrary or binary data, the message type can specify that SQL Server performs
no validation. PowerDesigner models message types as extended objects with a stereotype of
<<MessageType>>.

Creating a Message Type
You can create a message type in any of the following ways:

• Select Model > Message Types to access the List of Message Types, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Message Type.

Message Type Properties
You can modify an object's properties from its property sheet. To open a message type
property sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

Name Description

Authorization Specifies a database user or role as the owner of the message type. If the
current user is dbo or sa, this may be the name of any valid user or role.
Otherwise, it must be the name of the current user, a user that the current
user has IMPERSONATE permission for, or a role to which the current user
belongs. By default, the message type belongs to the current user.

Scripting name: Owner

CHAPTER 12: Microsoft SQL Server

Data Modeling 421

Name Description

Validation Specifies how the Service Broker validates the message body for messages
of this type. You can choose between:

• none [default] – no validation performed

• empty – message must contain no data

• well_formed_xml – message must contain well-formed XML

• valid_xml with schema collection – message must conform to the
specified XML schema

Scripting name: Validation

Schema Specifies the name of the schema to be used for validating the message
contents.

Scripting name: SchemaCollectionName

Contracts (SQL Server)
Contracts define the message types used in a Service Broker conversation and also determine
which side of the conversation can send messages of that type. Each conversation follows a
contract. The initiating service specifies the contract for the conversation when the
conversation begins. The target service specifies the contracts that the target service accepts
conversations for. PowerDesigner models contracts as extended objects with a stereotype of
<<Contract>>.

You create an identical contract in each database that participates in a conversation.

Creating a Contract
You can create a contract in any of the following ways:

• Select Model > Contracts to access the List of Contracts, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Contract.

Contract Properties
You can modify an object's properties from its property sheet. To open a contract property
sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

CHAPTER 12: Microsoft SQL Server

422 SAP Sybase PowerDesigner

Name Description

Authorization Specifies a database user or role as the owner of the contract. If the current
user is dbo or sa, this may be the name of any valid user or role. Otherwise, it
must be the name of the current user, a user that the current user has IM-
PERSONATE permission for, or a role to which the current user belongs. By
default, the contract belongs to the current user.

Scripting name: Owner

The MessageTypes tab lists the message types included in the contract via intermediary
"message contract" objects. You can reuse an existing message contract or create a new one,
using the tools on this tab.

Once you have added or created a message contract, double-click its entry to open its property
sheet.

Message Contracts (SQL Server)
Message contracts are intermediary objects that are used to include a single message in
multiple contracts. Message contracts are modeled as extended objects with a stereotype of
<<MessageContract>>.

Creating a Message Contract
You can create a message contract in any of the following ways:

• Use the tools on the MessageTypes tab of a contract property sheet (see Contracts on page
422).

• Select Model > Message Contracts to access the List of Message Contracts, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Message
Contract.

Message Contract Properties
You can modify an object's properties from its property sheet. To open a message contract
property sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

CHAPTER 12: Microsoft SQL Server

Data Modeling 423

Name Description

Sent by Specifies which endpoint can send a message of the indicated message type.
Contracts document the messages that services can use to have specific
conversations. Each conversation has two endpoints: the initiator endpoint,
the service that started the conversation, and the target endpoint, the service
that the initiator is contacting.

Scripting name: Sender

Message type Specifies the message type of the contract.

Scripting name: MessageType

Queues (SQL Server)
When a message arrives for a service, Service Broker places the message on the queue
associated with the service. PowerDesigner models queues as extended objects with a
stereotype of <<Queue>>.

Creating a Queue
You can create a queue in any of the following ways:

• Select Model > Queues to access the List of Queues, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Queue.

Queue Properties
You can modify an object's properties from its property sheet. To open a queue property sheet,
double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

Name Description

Owner Specifies the owner of the queue.

Scripting name: Owner

Status Specifies that the queue is available. This is the default.

If a queue is unavailable, no messages can be added to or removed from it.
If you create a queue as unavailable, then no messages can be added to it
until it is made available with an ALTER QUEUE statement.

Scripting name: Status

CHAPTER 12: Microsoft SQL Server

424 SAP Sybase PowerDesigner

Name Description

Retention Specifies that all messages sent or received on conversations using this
queue are retained in the queue until the conversations have ended. This
allows you to retain messages for auditing purposes, or to perform com-
pensating transactions if an error occurs.

The default is to not retain messages in the queue in this way.

Scripting name: Retention

Activation Specifies that a stored procedure is required to activate message processing
for the queue.

Scripting name: Activation

Status (activation) Specifies that Service Broker activates the associated stored procedure
when the number of procedures currently running is less than
MAX_QUEUE_READERS and when messages arrive on the queue faster
than the stored procedures receive messages.

This is the default.

Scripting name: ActivationStatus

Procedure Specifies the name of the stored procedure to activate to process messages
in this queue.

Scripting name: ActivationProcedureName

MaxQueueReaders Specifies the maximum number of instances of the activation stored pro-
cedure that the queue can start at the same time. Must be set to between 0
and 32767.

Scripting name: ActivationMaxQueueReaders

Execute as Specifies the user under which the activation stored procedure runs. SQL
Server must be able to check the permissions for this user at the time that
the queue activates the stored procedure. You can choose between:

• SELF - the stored procedure executes as the current user. (The database
principal executing this CREATE QUEUE statement.)

• OWNER - the stored procedure executes as the owner of the queue.

Scripting name: ActivationExecuteAs

File group Specifies the SQL Server filegroup on which to create the queue.

Scripting name: FileGroup

CHAPTER 12: Microsoft SQL Server

Data Modeling 425

Event Notifications (SQL Server)
An event notification sends information about a database or server event to a service broker
service. Event notifications are created only by using Transact-SQL statements.
PowerDesigner models event notifications as extended objects with a stereotype of
<<EventNotification>>.

Creating an Event Notification
You can create an event notification in any of the following ways:

• Select Model > Event Notifications to access the List of Event Notifications, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Event
Notification.

Event Notification Properties
You can modify an object's properties from its property sheet. To open an event notification
property sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

Name Description

Applies on Specifies the scope of the event notification. You can choose between:

• database – the notification fires whenever the specified event in the FOR
clause occurs anywhere in the instance of SQL Server.

• server - the notification fires whenever the specified event in the FOR
clause occurs in the current database.

• queue - the notification fires whenever the specified event in the FOR
clause occurs in the current queue. Can be specified only if FOR
QUEUE_ACTIVATION or FOR BROKER_QUEUE_DISABLED is
also specified.

Scripting name: AppliesOn

Queue Specifies the queue to which the event notification applies. Available only if
Applies on is set to "queue".

Scripting name: Queue

CHAPTER 12: Microsoft SQL Server

426 SAP Sybase PowerDesigner

Name Description

With fan in Instructs SQL Server to send only one message per event to any specified
service for all event notifications that:

• are created on the same event.

• are created by the same principal (as identified by SID).

• specify the same service and broker_instance_specifier.

• specify WITH FAN_IN.

Scripting name: WithFanIn

Events Specifies the name of the event type that causes the event notification to
execute. Can be a Transact-SQL DDL, SQL Trace, or Service Broker event
type.

Scripting name: Events

Service Specifies the target service that receives the event instance data. SQL Server
opens one or more conversations to the target service for the event notifi-
cation. This service must honor the same SQL Server Events message type
and contract that is used to send the message. See Services on page 427.

Scripting name: Service

Instance Specifies a service broker instance against which broker_service is re-
solved. Use 'current database' to specify the service broker instance in the
current database.

Scripting name: Instance

Services (SQL Server)
Services are specific tasks or set of tasks. Service Broker uses the name of the service to route
messages, deliver messages to the correct queue within a database, and enforce the contract for
a conversation. PowerDesigner models services as extended objects with a stereotype of
<<Service>>.

Creating a Service
You can create a service in any of the following ways:

• Select Model > Services to access the List of Services, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Service.

Service Properties
You can modify an object's properties from its property sheet. To open a service property
sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

CHAPTER 12: Microsoft SQL Server

Data Modeling 427

Name Description

Authorization Specifies the owner of the service.

Scripting name: Owner

Queue Specifies the queue that receives messages for the service. The queue must
exist in the same database as the service.

Scripting name: Queue

The Contracts tab lists the contracts with which the service is associated.

Routes (SQL Server)
Routes appear in the routing table for the database. For outgoing messages, Service Broker
determines routing by checking the routing table in the local database. For messages on
conversations that originate in another instance, including messages to be forwarded, Service
Broker checks the routes in msdb. PowerDesigner models routes as extended objects with a
stereotype of <<Route>>.

Creating a Route
You can create a route in any of the following ways:

• Select Model > Routes to access the List of Routes, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Route.

Route Properties
You can modify an object's properties from its property sheet. To open a route property sheet,
double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

Name Description

Owner Specifies the owner of the route.

Scripting name: Owner

Remote service [v2005] Specifies the name of the remote service to which the route points.

Scripting name: Service

Broker instance Specifies the database that hosts the target service.

Scripting name: BrokerInstance

Lifetime Specifies the amount of time, in seconds, that SQL Server retains the route
in the routing table.

Scripting name: Lifetime

CHAPTER 12: Microsoft SQL Server

428 SAP Sybase PowerDesigner

Name Description

Address Specifies the network address for the route. The next_hop_address specifies
a TCP/IP address in the following format:

TCP://{ dns_name | netbios_name | ip_address } : port_number

Scripting name: Address

Mirror address Specifies the network address for a mirrored database with one mirrored
database hosted at the next_hop_address. The next_hop_mirror_address
specifies a TCP/IP address in the following format:

TCP://{ dns_name | netbios_name | ip_address } : port_number

Scripting name: MirrorAddress

Remote Service Bindings (SQL Server)
Remote service bindings create a binding that defines the security credentials to use to initiate
a conversation with a remote service. PowerDesigner models remote service bindings as
extended objects with a stereotype of <<RemoteServiceBinding>>.

Creating a Remote Service Binding
You can create a remote service binding in any of the following ways:

• Select Model > Remote Service Bindings to access the List of Remote Service Bindings,
and click the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Remote Service
Binding.

Remote Service Binding Properties
You can modify an object's properties from its property sheet. To open a remote service
binding property sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

Name Description

Owner Specifies the owner of the binding.

Scripting name: Owner

Remote service Specifies the remote service to bind to the user identified in the WITH
USER clause.

Scripting name: RemoteService

CHAPTER 12: Microsoft SQL Server

Data Modeling 429

Name Description

User Specifies the database principal that owns the certificate associated with the
remote service identified by the TO SERVICE clause.

Scripting name: User

Anonymous Specifies that anonymous authentication is used when communicating with
the remote service.

Scripting name: Anonymous

Resource Governor (SQL Server)
Resource Governor, available in SQL Server 2008 and higher, lets you limit resource requests
by workloads for CPU time and memory to optimize their allocation.

PowerDesigner supports Resource Governor through the following objects:

• Workload groups – are containers for sets of similar session requests.
• Resource pools – represent the physical resources of the server.

Workload Groups (SQL Server)
A workload group serves as a container for session requests that are similar, to allow the
aggregate monitoring of resource consumption and the application of a uniform policy to all
the requests in the group. A group defines the policies for its members. PowerDesigner models
workload group sas extended objects with a stereotype of <<WorkloadGroup>>.

Creating a Workload Group
You can create a workload group binding in any of the following ways:

• Select Model > Workload groups to access the List of Workload Groups, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Workload
Group.

Workload Group Properties
You can modify an object's properties from its property sheet. To open a workload group
property sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

Name Description

Importance Specifies the relative importance of a request in the workload group.

Scripting name: Importance

CHAPTER 12: Microsoft SQL Server

430 SAP Sybase PowerDesigner

Name Description

Request maximum
memory

Specifies the maximum amount of memory that a single request can take
from the pool.

Scripting name: RequestMaxMemoryGrantPercent

Request maximum
CPU

Specifies the maximum amount of CPU time, in seconds, that a request can
use.

Scripting name: RequestMaxCpuTimeSec

Memory grant request
timeout

Specifies the maximum time, in seconds, that a query can wait for a memory
grant (work buffer memory) to become available.

Scripting name: RequestMemoryGrantTimeoutSec

Maximum degree of
parallelism

Specifies the maximum degree of parallelism (DOP) for parallel requests.

Scripting name: MaxDop

Maximum requests Specifies the maximum number of simultaneous requests that are allowed to
execute in the workload group.

Scripting name: GroupMaxRequests

Resource pool Associates the workload group with the specified resource pool.

Scripting name: ResourcePool

Resource Pools (SQL Server)
A resource pool represents the physical resources of the server. PowerDesigner models
resource pools as extended objects with a stereotype of <<ResourcePool>>.

Creating a Resource Pool
You can create a resource pool in any of the following ways:

• Select Model > Resource Pools to access the List of Resource pools, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Resource Pool.

Resource Pool Properties
You can modify an object's properties from its property sheet. To open a resource pool
property sheet, double-click its Browser entry.

The following extended attributes are available on the Microsoft tab:

CHAPTER 12: Microsoft SQL Server

Data Modeling 431

Name Description

CPU percent Min Specifies the guaranteed average CPU bandwidth for all requests in the
resource pool when there is CPU contention. The value is an integer, with a
default setting of 0.

Scripting name: MinCpuPercent

CPU percent Max Specifies the maximum average CPU bandwidth that all requests in re-
source pool will receive when there is CPU contention. The value is an
integer, with a default setting of 100.

Scripting name: MaxCpuPercent

Memory percent Min Specifies the minimum amount of memory reserved for this resource pool
that can not be shared with other resource pools. The value is an integer, with
a default setting of 0.

Scripting name: MinMemoryPercent

Memory percent Max Specifies the total server memory that can be used by requests in this re-
source pool. The value is an integer, with a default setting of 100.

Scripting name: MaxMemoryPercent

Schemas (SQL Server)
For SQL Server 2005 and higher, schemas are distinct namespaces, separate from the users
who created them, and can be transferred between users. PowerDesigner models schemas as
users with a stereotype of <<Schema>>.

Creating a Schema
You can create a schema in any of the following ways:

• Select Model > Users and Roles > Schemas to access the List of Schemas, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Schema.

Schema Properties
You can modify an object's properties from its property sheet. To open a schema property
sheet, double-click its diagram symbol or its Browser entry in the Schemas folder.

The following extended attributes are available on the General tab:

CHAPTER 12: Microsoft SQL Server

432 SAP Sybase PowerDesigner

Name Description

Owner Specifies the name of the database-level principal user that owns the sche-
ma. This user may own other schemas, any of which may be his default
schema.

Scripting name: SchemaOwner

Synonyms (SQL Server)
PowerDesigner supports synonyms for SQL Server 2005 and higher through the standard
synonym object.

Synonyms can be created for the following types of objects:

• Assembly (CLR) Stored Procedure
• Assembly (CLR) Table-valued Function
• Assembly (CLR) Scalar Function
• Assembly Aggregate (CLR) Aggregate Functions
• Replication-filter-procedure
• Extended Stored Procedure
• SQL Scalar Function
• SQL Table-valued Function
• SQL Inline-table-valued Function
• SQL Stored Procedure
• View
• Table

For general information about synonyms, see Synonyms (PDM) on page 157.

Analysis Services (SQL Server 2000)
The OLAP Services feature from SQL Server v7.0 is called Analysis Services in SQL Server
2000. To enable analysis services, select Tools > General Options, click the Add-ins
category, select the Microsoft Analysis Services add-in (PdMsOlap.dll), and then click OK to
install it and return to the model.

For information about analysis services in SQL Server 2005, see Microsoft SQL Server 2005
Analysis Services on page 438.

Analysis Services provide the following capabilities:

• The Analysis server that manages, stores multidimensional information and serves client
application requests for OLAP data. The server stores cube metadata (cube definition
specifications) in a repository. Completed cubes can be stored in a variety of storage

CHAPTER 12: Microsoft SQL Server

Data Modeling 433

modes: multidimensional database files (MOLAP), tables in a relational database
(ROLAP), or a hybrid of multidimensional database files and relational tables (HOLAP).

• A metadata repository that contains definitions of OLAP data objects such as cubes and
their elements.

• The PivotTable Service, which is an OLE DB for OLAP provider that connects client
applications to the Analysis server and manages offline cubes.

• An object model called Decision Support Objects (DSO), that provides support for the
Analysis Manager user interface and for custom applications that manage OLAP metadata
and control the server. DSO uses hierarchically arranged groups of objects to define basic
elements of OLAP data. PowerDesigner creates and manipulates DSO objects to manage
metadata for OLAP data.

Source data for multidimensional cubes resides in relational databases where the data has been
transformed into a star or snowflake schema typically used in OLAP data warehouse systems.
Analysis Services can work with many relational databases that support connections using
ODBC or OLE DB.

DSO uses hierarchically arranged groups of objects to define basic elements of Analysis
Services data storage, as implemented by the Analysis server:

CHAPTER 12: Microsoft SQL Server

434 SAP Sybase PowerDesigner

The following table lists the mappings between the objects contained within the DSO and
PowerDesigner PDM metamodels:

DSO Object PowerDesigner PDM Object

clsDatabase Model

(Each model corresponds to a DSO Database.)

clsDataSource Data source

ClsDatabaseDimension Dimension

(As in the DSO model, PowerDesigner dimensions are shared among
cubes.)

clsCube Cube

(Cubes managed by PowerDesigner are only local cubes.)

clsCube Fact

(A Fact corresponds to a DSO cube in order to store measures.)

clsCubeMeasure Measure

clsDatabaseDimension Dimension hierarchy

(Each dimension hierarchy is generated as a DSO Database Dimen-
sion. Attributes of a dimension hierarchy define levels of the corre-
sponding DatabaseDimension.)

clsDatabaseLevel clsCube-
Level

Dimension attribute

(Attributes of a dimension or dimension hierarchy define levels in a
database dimension.)

clsCubeDimension Cube dimension association

(In DSO, when the name of a Cube Dimension corresponds to the
name of a Database Dimension, the Cube Dimension is automatically
associated with the Database Dimension to be shared between cubes.)

Generating Cubes
The Microsoft Analysis Services add-in lets you generate cubes.

1. Select Tools > Microsoft Analysis Services > Generate Cubes to open the connection
dialog box.

CHAPTER 12: Microsoft SQL Server

Data Modeling 435

2. Enter a name for the server and database, and then click OK to open the Cube Selection
dialog box, which lists all the available cubes. The state column indicates if the cube has
already been generated. Cubes already generated are deselected by default.

3. Select the cubes you want to generate, and then click OK.

The selected cubes are generated. If a cube already exists in the database, it is dropped
before being recreated. If a dimension already exists, the selected cube reuses it. To be
fully generated, a cube must have a complete mapping to a table before being generated.

Reverse Engineering Cubes
The Microsoft Analysis Services add-in lets you reverse engineer cubes.

Before reverse engineering cubes, you must create one or more PDMs to modelise the tables
that will provide the data. PowerDesigner will create links from the retrieved cubes to these
tables.

1. Select Tools > Microsoft Analysis Services > Reverse Engineer Cubes to open the
connection dialog box.

2. Enter a name for the server and database, and then click OK to open the Source Model
Selection dialog box, which lists the models linked to the selected data source.

CHAPTER 12: Microsoft SQL Server

436 SAP Sybase PowerDesigner

3. Select the appropriate source models and then click OK to open the Cube Selection dialog
box, which lists all the available cubes. The state column indicates if the cube already
exists in the current model. Cubes already existing are deselected by default.

4. Select the cubes you want to reverse engineer, and then click OK.

CHAPTER 12: Microsoft SQL Server

Data Modeling 437

The selected cubes are created or updated in the current model. If a dimension or a cube
already exists, it is updated.

Analysis Services (SQL Server 2005)
PowerDesigner allows you to retrieve multiple dimension objects in a PDM in order to build
cubes, and to create a new multiple-dimension diagram. From this diagram, you can generate
cubes to a Microsoft SQL Server 2005 Analysis Server (SSAS).To enable analysis services,
select Tools > General Options, click the Add-ins category, select the Microsoft SQL Server
2005 Analysis Services add-in (PowerDesigner.AddIn.Pdm.SQLServer.dll), and then click
OK to install it and return to the model.

Note: In order to use the analysis services add-in to generate and reverse-engineer cubes, you
must have installed the SQL Server 2005 Management Tools client component.

Specifying a Data Source for Cubes
Before generating cubes, you must define a data source with an OLE DB connection that will
specify from where the cubes will be populated.

1. Create a data source in your PDM from the List of data sources or by right-clicking the
model in the browser and selecting New > Data Source from the contextual menu.

2. Select the OLE DB tab and specify the kind of data provider.

CHAPTER 12: Microsoft SQL Server

438 SAP Sybase PowerDesigner

3. Click the ellipsis tool to the right of the connection string field to open the provider-
specific configuration dialog.

4. Complete the parameters appropriately, click Apply to Connection String, and then Test
Connection. Then click Ok to return to the data source property sheet.

5. Click OK to return to your model.

When you have created the appropriate data sources, you can proceed with generating your
cubes.

Generating Cubes for Microsoft SQL Server 2005
The Microsoft SQL Server 2005 Analysis Services add-in enables the generation of cubes.

1. Select Tools > Microsoft SQL Server 2005 Analysis Services > Generate Cubes to
open the wizard.

CHAPTER 12: Microsoft SQL Server

Data Modeling 439

Click Next to continue.

2. Enter a server name, and select the database you want to generate to:

CHAPTER 12: Microsoft SQL Server

440 SAP Sybase PowerDesigner

Click Next to continue.

3. The Select Cubes page lists the cubes available in the model, along with whether they
currently exist in the database. Select the cubes you want to generate:

CHAPTER 12: Microsoft SQL Server

Data Modeling 441

Click Next to continue.

4. The Generate Cubes page lists the cubes to be generated:

CHAPTER 12: Microsoft SQL Server

442 SAP Sybase PowerDesigner

Click Finish to begin generation. Progress is displayed in the wizard, which will close
automatically after successful completion.

If a cube already exists in the database, it is dropped and recreated. If a related dimension
already exists, it is reused. To fully generate a cube, your model must include a complete
mapping to a table.

Reverse Engineering Microsoft SQL Server 2005 Cubes
The Microsoft SQL Server 2005 Analysis Services add-in enables the reverse engineering of
cubes.

Before reverse-engineering cubes, you should create one or more PDMs to model the tables
which provide its data. As part of the reverse-engineering process, PowerDesigner will create
links from the reversed cubes to these tables.

1. Select Tools > Microsoft SQL Server 2005 Analysis Services > Reverse Engineer
Cubes to open the wizard.

CHAPTER 12: Microsoft SQL Server

Data Modeling 443

Click Next to continue.

2. Enter a server name, and select the database you want to reverse from:

CHAPTER 12: Microsoft SQL Server

444 SAP Sybase PowerDesigner

Click Next to continue.

3. The Select Cubes page lists the available cubes. Select the cubes you want to reverse
engineer and then click Next to continue:

CHAPTER 12: Microsoft SQL Server

Data Modeling 445

4. The Configure Data Sources page lists the data sources that are required to populate the
selected cubes. For each source, select the Physical Data Model in which the tables are
modeled, and then click Next to continue:

CHAPTER 12: Microsoft SQL Server

446 SAP Sybase PowerDesigner

5. The Reverse Engineer Cubes page lists the cubes to be reversed:

CHAPTER 12: Microsoft SQL Server

Data Modeling 447

Click Finish to begin reverse-engineering. Progress is displayed in the wizard, which will
close automatically after successful completion.

CHAPTER 12: Microsoft SQL Server

448 SAP Sybase PowerDesigner

CHAPTER 13 Netezza

To create a PDM with support for features specific to the Netezza DBMS family, select the
appropriate version in the DBMS field of the New Model dialog. To view these extensions to
the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

The following sections list the extensions provided for Netezza.

Columns (v5.0 and higher)
The following extensions are available on the Standard Checks tab:

Name Description

Default constraint
name

Specifies the constraint name for default constraint

Scripting name: DefaultConstName

Not null constraint
name

Specifies the constraint name for not null constraint.

Scripting name: NotNullConstName

Tables
The following extensions are available on the Options tab:

Name Description

Distribution type Specifies the type of row distribution. You can choose between None, hash, and
random (on General tab for v4.5).

Scripting name: Distribution

Columns [hash or random distribution] Specifies the hash distribution columns (on
General tab for v4.5).

Scripting name: DistributeOnExplicitColumnList

Organize on Specifies whether or not the table is organized.

Scripting name: Organized

Columns [organized table] Specifies the list of columns.

Scripting name: OrganizedColumnList

Options Displays the options defined for the table.

Scripting name: TableOption

Data Modeling 449

Databases (v5.0 and higher)
The following extensions are available on the General tab:

Name Description

Character set Specifies the default character set and collation. The default and only supported
value is Latin9.

Scripting name: Charset

Collation The collation is binary. You cannot specify other values.

Scripting name: Collation

Users/Groups (v5.0 and higher)
The following extensions are available on the Options tab:

Name Description

SysId Specifies the SYSID clause to choose the group ID of the new user/group.

Scripting name: SysId

Owner The user that created this user/group.

Scripting name: Owner

Rowset limit Specifies the maximum number of rows any query run by this user (or group)
can return.

Scripting name: RowsetLimit

Query timeout Specifies the amount of time a query can run before the system sends the
administrator a message.

Scripting name: QueryTimeout

Session idle time-
out

Specifies the amount of time a session can be idle before the system terminates
it.

Scripting name: SessionTimeout

Session priority [group only] Specifies the default priority for the group.

Scripting name: DefPriority

Default priority [user only] Specifies the default priority for the user.

Scripting name: DefPriority

Maximum priority Specifies the maximum priority for the user/group.

Scripting name: MaxPriority

CHAPTER 13: Netezza

450 SAP Sybase PowerDesigner

Name Description

Minimum resource [group only] Specifies the minimum percentage of the system that a resource
group will use when it has jobs.

Scripting name: ResourceMinimum

Maximum resource [group only] Specifies the maximum percentage of the system that a resource
group can use.

Scripting name: ResourceMaximum

Job maximum [group only] Specifies the maximum number of concurrent jobs that a single
resource group can run.

Scripting name: JobMaximum

Password [user only] Specifies the password used for database connection.

Scripting name: PasswordDisplay

Valid until [user only] Specifies the password validity.

Scripting name: ValidUntil

Expire [user only] Specify is the password expires on next connection.

Scripting name: ExpirePassword

Authentication [user only] Overrides the authentication for the user to LOCAL if specified.
DEFAULT is the connection setting or whatever authentication is set.

Scripting name: Authentication

Sequences (v5.0 and higher)
The following extensions are available on the Options tab:

Name Description

Datatype Specifies the data type. The value can be any exact integer type such as byteint,
smallint, integer, or bigint.

Scripting name: As

Start with Specifies the starting value.

Scripting name: StartWith

Increment Specifies the increment value. The integer value can be any positive or negative
integer, but it cannot be zero.

Scripting name: IncrementBy

CHAPTER 13: Netezza

Data Modeling 451

Name Description

Minimum Specifies the minimum value of the sequence.

Scripting name: Minvalue

No min value Results in a value of 1.

Scripting name: NoMinvalue

Maximum Specifies the maximum value of the sequence.

Scripting name: Maxvalue

No max value Results in the largest value for the specified datatype.

Scripting name: NoMaxvalue

Cycle Specifies whether the sequence continues to generate values after reaching
either its maximum value (in an ascending sequence) or its minimum value (in a
descending sequence).

Scripting name: Cycle

History Configurations (Netezza)
History configurations provide support for query history logging. PowerDesigner models
history configurations as extended objects with a stereotype of <<HistoryConfiguration>>.

Creating an History Configuration
You can create an history configuration in any of the following ways:

• Select Model > History Configurations to access the List of history configurations, and
click the Add a Row tool.

• Right-click the model or package in the Browser, and select New > History
Configuration.

History Configuration Properties
You can modify an object's properties from its property sheet. To open an history
configuration property sheet, double-click its Browser entry in the History Configurations
folder.

The following extended attributes are available on the Options tab:

CHAPTER 13: Netezza

452 SAP Sybase PowerDesigner

Name Description

History type Specifies the type of the database to create, which can be QUERY or NONE.
Specify NONE to disable history collection. This is a required option which
does not have a default value.

Scripting name: Histtype

Data to collect Specifies the history data to collect. Specify multiple values using comma-
separated values, or click the Select tool to the right of the field to select them.

Scripting name: Collect

Database / User /
Password

Specifies the history database to which the captured data will be written, along
with the user and password to use for accessing and inserting data.

Scripting name: Database, User, Password

Load interval Specifies the number of minutes to wait before checking the staged area for
history data to transfer to the loading area.

Scripting name: Loadinterval

Load retry Specifies the number of times that the load operation will be retried. The valid
values are 0 (no retry), 1 or 2.

Scripting name: Loadretry

Minimum / Maxi-
mum threshold

Specify the minimum and maximum amounts of history data in MB to collect
before transferring the staged batch files to the loading area. Values of 0 disable
these threshold checks.

Scripting name: Loadminthreshold, Loadmaxthreshold

Disk full threshold This option is reserved for future use. Any value you specify will be ignored.
The default value is 0.

Scripting name: Diskfullthreshold

Storage limit Specifies the maximum size of the history data staging area in MB.

Scripting name: Storagelimit

Enable history Specifies to log information about queries to the query history database.

Scripting name: Enablehist

Enable system Specifies to log information about system queries. A system queries accesses at
least one system table but no user tables.

Scripting name: Enablesystem

CHAPTER 13: Netezza

Data Modeling 453

Name Description

Version Specifies the query history schema version of the configuration. The version
must match the version number specified in the nzhistcreatedb command;
otherwise, the loader process will fail.

Scripting name: Version

Definition Specifies the attribute that stores the object definition.

Scripting name:ObjectDefn

CHAPTER 13: Netezza

454 SAP Sybase PowerDesigner

CHAPTER 14 Oracle

To create a PDM with support for features specific to the Oracle DBMS family, select the
appropriate version in the DBMS field of the New Model dialog. To view these extensions to
the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

Note: The DBMSs for Oracle v8-9 are deprecated.

When working with Oracle triggers, you can use the TRGBODY and TRGDESC variables. For
information about working with variables, see Customizing and Extending PowerDesigner >
DBMS Definition Files > PDM Variables and Macros.

The following table lists Oracle dimension objects and their equivalents in PowerDesigner:

Oracle object PowerDesigner object

Dimension Dimension (see Dimensions (PDM) on page 222)

Hierarchy Dimension hierarchy (see Hierarchies (PDM) on page 225)

Level Dimension attribute used in a hierarchy (see Fact and Dimension Attributes
(PDM) on page 223)

Attribute Dimension attribute used as detail attribute (seeFact and Dimension At-
tributes (PDM) on page 223)

The following sections list the extensions provided for Oracle.

Note: We do not provide documentation for the properties on the Physical Options and
certain other tabs, though minimal information is available for them in the Resource Editor.
For information about these properties, consult your DBMS reference documentation.

Note: In Oracle, the storage composite physical option is used as a template to define all
the storage values in a storage entry to avoid having to set values independently each time you
need to re-use them same values in a storage clause. For this reason, the Oracle physical option
does not include the storage name (%s).

Abstract Data Types Attributes
The following extensions are available on the Oracle tab for attributes of abstract data types of
type OBJECT or SQLJ_OBJECT:

Data Modeling 455

Name Description

Declare REF Generates a REF modifier on attribute to declare references, which hold pointers
to objects.

Scripting name: RefAttribute

Columns
The following extensions are available on the Oracle tab:

Name Description

Deferrable [v11g and higher] Specifies that in subsequent transactions you can use the SET
CONSTRAINT clause to defer checking of this constraint until after the trans-
action is committed.

Scripting name: CheckDeferrable, NotNullDeferrable

Initially deferred [v11g and higher] Specifies that Oracle should check this constraint at the end of
subsequent transactions.

Scripting name: CheckInitiallyDeferred, NotNullInitiallyDeferred

Deferred option
of check con-
straint

[up to v10gR2] Defines the deferred option of a column constraint check. It is
used in the definition or create and add items statements.

Scripting name: ExtColumnDeferOption

Constraint name/
Name of not null
constraint

[v8i and higher] Defines the name of the not null constraint for a column.

Scripting name: ExtNotNullConstraintName

Deferred option
of not null con-
straint

[up to v10gR2] Defines the deferred option of a column not null constraint. It is
used in "create" and "add" statement items definition.

An empty value means "Not deferrable".

Scripting name: ExtNotNullDeferOption

Encrypted [v10gR2 and higher] Specifies if column is encrypted.

Scripting name: Encrypted

Algorithm [v10gR2 and higher] Specifies the algorithm used for encryption.

Scripting name: Algorithm

With salt [v10gR2 and higher] Specifies if encryption adds salt to encoded data.

Scripting name: EncryptionWithSalt

CHAPTER 14: Oracle

456 SAP Sybase PowerDesigner

Name Description

Identified by
Password

[v10gR2 and higher] Identifies by password.

Scripting name: IdentifiedByPassword

XML Virtual Columns
If the table type is set to XML, the Columns tab is replaced by the XML Virtual Columns
tab.The following extensions are available on the General tab of XML virtual columns:

Name Description

Expression Specifies the SQL expression used to compute virtual column value.

Scripting name: Expression

Database Packages
The following extensions are available on the Oracle tab:

Name Description

Add serially_reusable
pragma on package specifi-
cation

[v9i and higher] When set to True, defines that the pragma serially_re-
usable clause must be applied on the database package specification.

Scripting name: IsSpecPragma

Add serially_reusable
pragma on package body

[v9i and higher] When set to True, defines that the pragma serially_re-
usable clause must be applied on the database package body declara-
tion.

Scripting name: IsPragma

Models
The following extensions are available on the Oracle tab:

Name Description

Password Encryp-
tion

[v10gR2 and higher] Specifies the master key for encoding and decoding en-
crypted data.

Scripting name: PasswordEncryption

References
The following extensions are available on the Oracle tab:

CHAPTER 14: Oracle

Data Modeling 457

Name Description

Deferred option Defines the deferred option of a reference. It is used in the definition of
create and add items statements.

Scripting name: ExtReferenceDeferOption

Exceptions into Specifies a table into which Oracle places the ROWIDs of all rows
violating the constraint.

Scripting name: ExceptionsInto

Rely [v8i and higher] Specifies whether an enabled constraint is to be en-
forced.

Specify RELY to enable an existing constraint without enforcement.

Specify NORELY to enable and enforce an existing constraint.

Scripting name: Rely

Disable Disables the integrity constraint.

Scripting name: Disable

Validate Checks that all old data also obeys the constraint.

Scripting name: Validate

Tables
The following extensions are available on the Oracle tab:

Name Description

Materialized view
log

Specifies the materialized view log associated with the table.

Scripting name: MaterializedViewLog

The following extensions are available on the XML properties tab (for v11g and higher) when
the table type is set to XML:

Name Description

Definition Specifies that the properties of object tables are essentially the same as those of
relational tables.

However, instead of specifying columns, you specify attributes of the object.

Scripting name: XmlTypeObjProperty

CHAPTER 14: Oracle

458 SAP Sybase PowerDesigner

Name Description

Storage type Specifies that XMLType columns can be stored in LOB, object-relational, or
binary XML columns.

Scripting name: XMLTypeStorage

Basic file Use this clause to specify the traditional LOB storage.

Scripting name: BasicFile

Secure file Use this clause to specify high-performance LOB.

Scripting name: SecureFile

LOB segment
name

Specify the name of the LOB data segment. You cannot use LOB_segname if you
specify more than one LOB_item.

Scripting name: LOBSegname

LOB parameters Use this clause to specify various elements of LOB parameters.

Scripting name: LOBParameters

Tablespaces
The following extensions are available on the Oracle tab:

Name Description

Size specification [v10g and higher] Specifies whether the tablespace is a bigfile or smallfile ta-
blespace. This clause overrides any default tablespace type setting for the data-
base. You can choose from the following settings:

• bigfile - contains only one datafile or tempfile. The maximum size of the
single datafile or tempfile is 128 terabytes (TB) for a tablespace with 32K
blocks and 32TB for a tablespace with 8K blocks.

• smallfile - a traditional Oracle tablespace.

Scripting name: SizeSpecification

Temporary table-
space

Use this option to create a locally managed temporary tablespace, which is an
allocation of space in the database that can contain transient data that persists
only for the duration of a session. This transient data cannot be recovered after
process or instance failure.

Scripting name: Temporary

CHAPTER 14: Oracle

Data Modeling 459

Name Description

Undo tablespace Use this option to create an undo tablespace. When you run the database in
automatic undo management mode, Oracle Database manages undo space using
the undo tablespace instead of rollback segments. This clause is useful if you are
now running in automatic undo management mode but your database was not
created in automatic undo management mode.

Scripting name: Undo

Note: If you do not have a login "System", when reversing tablespaces via a live database
connection, physical options will not be reversed. If you want to cancel the reverse
engineering of tablespace physical options, you should clear the SqlAttrQuery query in
the Tablespace category in the Oracle DBMS.

Users
The following extensions are available on the General tab (for v9i and higher):

Name Description

Identification
type

Specifies how the user will be identified. You can choose between:

• by - requires a password

• externally - requires a distinguished name

• globally - requires a distinguished name

Scripting name: Identification

Distinguished
name

[external or global identification types] Specifies the user's distinguished name
(DN) in the directory or certificate.

Scripting name: DistinguishedName

Password [by identification type] Specifies the user password.

Scripting name: ClearPassword

The following extensions are available on the Options tab (for v9i and higher):

Name Description

Default table-
space

Specifies the default tablespace for objects that the user creates.

Scripting name: DefaultTablespace

Temporary table-
space

Specifies the tablespace or tablespace group for the user's temporary segments.

Scripting name: TemporaryTablespace

CHAPTER 14: Oracle

460 SAP Sybase PowerDesigner

Name Description

Quota definition Specifies the maximum amount of space the user can allocate in the tablespace.

Scripting name: QuotaDefinition

Profile Specifies the profile to assign to the user.

Scripting name: Profile

Password expire Specifies that the user's password will expire.

Scripting name: PasswordExpire

Account lock Select lock to lock the user's account and disable access or unlock to enable
access to the account.

Scripting name: AccountLock

Views
The following extensions are available on the Oracle tab:

Name Description

Super view object [v9i and higher] Used in the UNDER clause to specify the superview the current
object view is based on.

Scripting name: ExtObjSuperView

Object view key [v8i and higher] Specifies the attributes of the object type that will be used as a
key to identify each row in the object view.

Scripting name: ExtObjOIDList

Object view type [v8i and higher] Defines the type of the object view.

Scripting name: ExtObjViewType

Force When set to TRUE, allows you to create the view regardless of the existence of
the base tables or the owner privileges on these tables.

Scripting name: ExtViewForce

CHAPTER 14: Oracle

Data Modeling 461

Object and SQLJ Object Data Types (Oracle)
Oracle v8 and higher allows you to specify a table type of "Object", and to base the table on an
object or SQLJ object abstract data type, so that the table uses the properties of the ADT and
the ADT attributes become table columns.

1. Select Model > Abstract Data Types to open the List of Abstract Data Types, and click
the Add a Row tool. Enter a name for the new ADT, and click the Properties tool to open
its property sheet.

2. Select OBJECT or SQLJ_OBJECT from the Type list to display additional Attributes
and Procedures tabs.

3. Enter as many attributes and procedures as appropriate.

4. Click OK to close the property sheet and return to your model.

Once you have defined your data type, you can base a table on it by opening the table
property sheet, selecting Object in the Type field, and then selecting your new data type
in the Based on field.

Bitmap Join Indexes (Oracle)
A bitmap join index is a bitmap index described through a join query. It is defined on a base
table, and stores the row ids from the base table along with the indexed columns from the
joined tables. You can design a bitmap join index either automatically or manually. For
detailed information about bitmap join indexes, see your Oracle documentation.

Automatically Creating Bitmap Join Indexes Through Rebuilding
You can automatically generate a bitmap join index for each fact table and the dimension
tables that it references. Each generated bitmap join index consists of the references that link a
fact table to all the dimension tables located on a single axis proceeding from the fact table.

A reference between two fact tables does not generate any bitmap join index. A bitmap join
index is constrained and can only be defined for tables that are organized in a connected tree.

1. Select Tools > Rebuild Objects > Rebuild Join Indexes to open the Rebuild Join Indexes
dialog box, and select one of the following modes:

• Delete and Rebuild - all existing indexes are deleted before join index rebuild.
• Preserve - preserves all existing join indexes in the PDM.

2. Click the Selection tab, select one or more fact tables in the list, and then click OK.

A confirmation box asks if you want to continue.

3. Click Yes to generate a bitmap join index for each fact table.

CHAPTER 14: Oracle

462 SAP Sybase PowerDesigner

Note: Automatically generated bitmap join indexes appear in the list of join indexes. To
display the list, select Model > Join Indexes.

Manually Creating Bitmap Join Indexes
You can manually create bitmap join indexes from the list of join indexes or via the base table
property sheet.

1. Select Model > Join Indexes to open the List of Join Indexes, click the Add a Row tool,
enter a bitmap join index name in the Name column, and then click the Properties tool to
open the new bitmap join index property sheet.

2. Select a base table on the General tab.

Note: You can, alternately, create a bitmap join index from a table property sheet by
clicking the Add a Row tool. In this case, the Base table field is set automatically.

3. Click the References tab, and then click the Add References tool to open a selection
window, which lists the available references depending on the selected base table. Select
one or more references in the list, and then click OK.

The selected reference is displayed in the References list.

4. Click the Columns tab, and then click the Add Columns tool to open a selection window,
which lists the available columns depending on the selected references. Select one or more
columns in the list, and then click OK.

The selected columns are displayed in the Columns list.

5. Click OK to complete the creation of the bitmap join index and return to the model.

Bitmap Join Index Properties
A bitmap join index has the following properties:

Property Description

Name The name of the item which should be clear and meaningful, and should convey
the item's purpose to non-technical users.

Code The technical name of the item used for generating code or scripts, which may be
abbreviated, and should not generally include spaces.

Comment Additional information about the bitmap join index.

Stereotype Sub-classification among bitmap join indexes.

Owner Name of the user who created the bitmap join index.

Base table Name of the table that stores the bitmap join index.

The following tabs are also available:

• Columns - Lists the columns used for the index. These columns proceed from the different
dimension tables linked to the base table. When you create a bitmap join index manually,

CHAPTER 14: Oracle

Data Modeling 463

you have to select the columns to use. When you create a bitmap join index by rebuilding,
the list of columns is initialized with all columns of the tables involved in the join except
foreign keys.

• References - Lists the references used for the index.
• Physical Options - You can define physical options for bitmap join indexes generation.

These options override the default physical options defined in the model. You can choose
to generate these options by selecting the Physical Options check box in the Join Index
groupbox in the Keys and Indexes tab of the Generation dialog box.

Database Packages (Oracle)
In Oracle, packages encapsulate related procedures, functions, and associated cursors and
variables together as a unit in the database. Packages usually have two parts, a specification
and a body. The specification is the interface with your applications; it declares the types,
variables, constants, exceptions, cursors, and subprograms available for use. The body fully
defines cursors and subprograms, and so implements the specification.

Packages provide advantages in the following areas:

• Encapsulation of related procedures and variables in a single named, stored unit in the
database. This provides for better organization during the development process and makes
privilege management easier.

• Separation of public and private procedures, variables, constants, and cursors.
• Improved performance since the entire package is loaded into memory when an object

from the package is called for the first time.

You can generate and reverse engineer database packages in the same way as other database
objects (see Chapter 6, Generating and Reverse-Engineering Databases on page 281). When
you reverse engineer a database package, the sub-objects (variable, procedure, cursor,
exception, and type) are created from the specification and the body of the database package.

Creating a Database Package
You can create a database package in any of the following ways:

• Select Model > Database Packages to access the List of Database Packages, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Database
Package.

Database Package Properties
To view or edit a database package's properties, double-click its Browser or list entry. The
property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

CHAPTER 14: Oracle

464 SAP Sybase PowerDesigner

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Owner Specifies the name of the database package owner, which you choose from the list
of users.

Privilege Lets you specify whether the functions and procedures in the database package
execute with the privileges and in the schema of the user who owns it (definer), or
with the privileges and in the schema of CURRENT_USER (invoker).

Table Specifies the table with which the database package is associated.

Template Specifies the template on which the database package is based (see Database
Package Templates on page 471). If you use a template, then the remaining tabs
of the property sheet will be completed by the template. If you make any mod-
ifications to the other tabs, then the User-Defined button to the right of the field is
depressed and the package is detached from the template and will no longer be
automatically updated when you modify the definition of the table with which it
is associated.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Procedures – Lists the procedures associated with the database package (see Database
Package Procedures on page 466).

• Variables - Lists the variables associated with the database package (see Database Package
Variables on page 467).

• Cursors - Lists the cursors associated with the database package (see Database Package
Cursors on page 468).

• Exceptions – Lists the exceptions associated with the database package (see Database
Package Exceptions on page 469).

• Types - Lists the types associated with the database package (see Database Package Types
on page 470).

CHAPTER 14: Oracle

Data Modeling 465

• Initialization - Lets you define initialization code for the database package body. Typically
initialization holds statements that initialize database package variables. Initialization
takes place after database package creation and compilation in the server.

• Preview - Displays the SQL code that will be generated for the database package.

Database Package Procedures
You create database package procedures on the Procedures tab of a database package using
the Add a Row tool. To copy a procedure from elsewhere in the model, use the Create from
Procedure tool.

Note: To rebuild database package procedure dependencies (along with other procedure
dependencies), select Tools > Rebuild Objects > Rebuild Procedures Dependencies (see
Rebuilding Trigger and Procedure Dependencies on page 146).

To view or edit a database package procedure's properties, double-click its Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

DB Package Name of the database package to which the procedure belongs.

Type Allows you to choose between procedure and function.

Return data type Allows you to define the return data type of a function.

Pragma Allows you to type a compiler directive, that is, a string for specifying com-
pilation parameters for the procedure.

Public Allows you to declare the procedure in the package specification and to permit
use from outside the database package. A private procedure (check box de-
selected) is only defined in the package body.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

CHAPTER 14: Oracle

466 SAP Sybase PowerDesigner

• Parameters – Lists the input and output parameters required by the procedure (see
Database Package Parameters on page 471).

• Definition tab - Lets you define package procedures. Package procedures are not built
using the structure of templates defined in the DBMS. You have to type the entire package
procedure definition. To do so, you can use operators and functions to insert script items
into the cursor definition.

For example, the definition of the CREDIT package procedure is the following:

CREATE PROCEDURE credit (Account_number NUMBER, Amount IN NUMBER) AS
BEGIN
UPDATE accounts
SET balance = balance + amount
WHERE account_id = acc_no;
END;

Database Package Variables
Variables can be declared within a package, and can be used in a SQL or PL/SQL statement to
capture or provide a value when one is needed. For example, you can define the variable
in_stock with a boolean data type to verify if a product is available or not. You create database
package variables on the Variables tab of a database package using the Add a Row tool.

To view or edit a database package variable's properties, double-click its Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

DB Package Name of the database package to which the variable belongs.

Data Type Data type of the variable. You can use the Question Mark button to display the
list of Standard Data Types.

Mandatory If selected, indicates that the not null clause is set on the variable, thus making it
mandatory.

Length Allows you to define the variable length.

Precision Number of places after the decimal point, for data values that can take a dec-
imal point.

CHAPTER 14: Oracle

Data Modeling 467

Property Description

Default value Default value of the variable.

Constant Indicates that the variable is a constant. A constant has a value assigned. For
example: Credit_Limit constant REAL := 500 000;

Public Allows you to declare the variable in the package specification and to permit
use from outside the database package. A private variable (check box dese-
lected) is only defined in the package body.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Database Package Cursors
A cursor is a multi-row query, which lets you name a work area and access its stored
information. You create database package cursors on the Cursors tab of a database package
using the Add a Row tool.

To view or edit a database package cursor's properties, double-click its Browser or list entry.
The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

DB Package Name of the database package to which the cursor belongs.

Return Data Type Allows you to define the data type of a cursor result value.

Public Allows you to declare the cursor in the package specification and to permit use
from outside the database package. A private cursor (check box deselected) is
only defined in the package body.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Parameters – Lists the input and output parameters required by the cursor (see Database
Package Parameters on page 471).

CHAPTER 14: Oracle

468 SAP Sybase PowerDesigner

• Definition - lets you define the cursor. You can use operators and functions to insert script
items into the cursor definition.

For example, the following cursor allows locating in table emp, the employee number, name,
and function in a given department and for a given employee number:
Select empno, empname, job FROM emp WHERE deptno=20 and empno =
num ;

Database Package Exceptions
PL/SQL allows you to explicitly handle internal and user-defined error conditions, called
exceptions, that arise during processing of PL/SQL code. You create database package
exceptions on the Exceptions tab of a database package using the Add a Row tool.

To view or edit a database package exception's properties, double-click its Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Properties Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

CHAPTER 14: Oracle

Data Modeling 469

Properties Description

DB Package Name of the database package to which the exception belongs.

Pragma Allows you to type a compiler directive, that is, a string for specifying compi-
lation parameters for the exception.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Database Package Types
A type is a user-defined composite datatype that encapsulates a data structure along with the
functions and procedures needed to manipulate the data. You create database package types on
the Types tab of a database package using the Add a Row tool.

To view or edit a database package type's properties, double-click its Browser or list entry. The
property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

DB Package Name of the database package to which the type belongs.

Type Allows you to declare the type as type or subtype. A subtype contains all the
attributes and methods of the parent type, it can contain additional attributes and
can override methods from the type.

Public Allows you to declare the type in the package specification and to permit use from
outside the database package. A private type (check box deselected) is only de-
fined in the package body.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

The following tabs are also available:

• Definition - Used to declare the type contents.

The following example defines the type bank_account:
CREATE TYPE Bank_Account AS OBJECT (
acct_number INTEGER(5),
balance REAL,

CHAPTER 14: Oracle

470 SAP Sybase PowerDesigner

status VARCHAR2(10),
);

Database Package Parameters
Database package procedures and cursors can use input and output parameters. For example,
in a CREDIT procedure, you could define the parameters Account Number and Amount. You
create database package parameters on the Parameters tab of a database package procedure
or cursor using the Add a Row or Insert a Row tools.

To view or edit a database package parameter's properties, double-click its Browser or list
entry. The property sheet tabs and fields listed here are those available by default, before any
customization of the interface by you or an administrator.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may
be abbreviated, and should not normally include spaces. You can optionally add a
comment to provide more detailed information about the object. By default the
code is generated from the name by applying the naming conventions specified in
the model options. To decouple name-code synchronization, click to release the =
button to the right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this
field, or add stereotypes to the list by specifying them in an extension file.

Parent Specifies the database package parent of the parameter. You can see the database
package property sheet by clicking the Properties tool at the right of the field.

Data type Data type of the parameter. You can use the Question Mark button to display the
list of Standard Data Types.

Default Value Default value of the parameter.

Parameter type Type of the parameter.

Keywords Provide a way of loosely grouping objects through tagging. To enter multiple
keywords, separate them with commas.

Database Package Templates
Instead of modeling each individual database package by hand, you can use a template and
have PowerDesigner generate packages specific to each table. Database packages defined
through a template are updated automatically when you make changes to the table definition,
and you can quickly create packages for multiple tables from the Rebuild Table Database
Packages dialog.

CHAPTER 14: Oracle

Data Modeling 471

Database package templates are written in the PowerDesigner Generation Template Language
(GTL). PowerDesigner provides a template for generating CRUD procedures, and you can
create your own templates as necessary.

To define a database package from a template, simply select the template on the General tab of
the database package property sheet.

Creating a Database Package Template
The available database package templates are defined in the DBMS resource file. Select
Database > Edit Current Database, click the Database Package Templates tab. To create a
database package template, click the Add a Row tool

Database Package Template Properties
To open a template property sheet, select it in the list and click the Properties tool.

The General tab contains the following properties:

Property Description

Name/Code/Com-
ment

Identify the object. The name should clearly convey the object's purpose to
non-technical users, while the code, which is used for generating code or
scripts, may be abbreviated, and should not normally include spaces. You can
optionally add a comment to provide more detailed information about the
object. By default the code is generated from the name by applying the naming
conventions specified in the model options. To decouple name-code synchro-
nization, click to release the = button to the right of the Code field.

DBMS Specifies the DBMS version.

The following tabs are also available:

• Definition - Contains a GTL template, which will generate a database package creation
script based on the properties of the associated table. For detailed information about
working with GTL, see Customizing and Extending PowerDesigner > Customizing
Generation with GTL .

Rebuilding Table Database Packages
Database packages defined through templates are automatically updated when you modify the
definition of the table with which they are associated. You can use the Rebuild Table Database
Packages dialog to add database packages to tables that lack them or to overwrite any
modifications you have made to packages associated with a template.

1. Select Tools > Rebuild Objects > Rebuild Table Database Packages to open the Rebuild
Table Database Packages dialog.

2. Select a rebuild mode:

CHAPTER 14: Oracle

472 SAP Sybase PowerDesigner

• Delete and Rebuild - deletes all table database packages associated with templates
(including those which have been modified) and recreates them from the template

• Add Missing Database Packages - preserves existing database packages and creates
packages only for those tables that lack them

3. Select the templates to use in the rebuild. You can select as many templates as necessary
and the rebuild will create a database package for each template for each table.

4. [optional] Click the Selection tab and select the tables for which you want to rebuild
database packages. By default all the tables in the model are selected.

5. Click OK to begin the rebuild.

Transparent Data Encryption (Oracle)
Oracle 10gR2 provides Transparent Data Encryption (TDE), encryption that is transparent for
the user.

When encrypting a column, Oracle creates an encryption key for the parent table and encrypts
text data in the column with a user-specified encryption algorithm. The table key is encrypted
using a master key and placed in the data dictionary.

The master key is stored in a secure location called a wallet, which can be a file on the database
server. When a user enters data into an encrypted column, Oracle retrieves the master key from
the wallet, decrypts the table key from the data dictionary, and uses it to encrypt the new data.

Note: In order to access the master key used to encrypt the table keys, you must create a master
password to open the wallet. To do this, right-click the model in the Browser, and select
Properties. Click the Oracle tab, and enter your wallet password in the Password
Encryption field. Click OK to return to the model. The password will be used to create alter
statements for opening and closing the wallet.

You can create one or more encrypted column in one or more tables. You can specify the
encryption algorithm to be used, but all columns in a particular table must use the same
algorithm. If you create a second encrypted column in a table, and specify a different
algorithm, the last specified algorithm will be used for all columns in the table.

1. Create a column and open its property sheet.

2. On the General tab, specify any of the following types, which support encryption:

• CHAR, NCHAR, VARCHAR2, and NVARCHAR2
• DATE and TIMESTAMP
• INTERVAL DAY TO SECOND and YEAR TO MONTH
• NUMBER
• RAW

3. Click the Oracle tab and select the Encryption checkbox.

4. Select an encryption algorithm from the list particular

CHAPTER 14: Oracle

Data Modeling 473

5. [optional] Select the With salt checkbox in order to add some random bits to the encryption
key.

6. Click OK to complete the column definition.

Clusters (Oracle)
A cluster is a schema object that contains data from one or more tables, which have one or
more columns in common. Oracle Database stores together all the rows from all the tables that
share the same cluster key.

PowerDesigner models clusters as extended objects with a stereotype of <<Cluster>>.

Note: Clusters in Oracle v10gR2 and earlier are modeled as indexes with the Cluster check
box selected. To upgrade such clusters to v11 or higher, you must generate a new PDM with
the appropriate DBMS target from your original model. Simply changing the target DBMS
will result in the loss of any existing clusters

Creating a Cluster
You can create a cluster in any of the following ways:

• Select Model > Clusters to access the List of Clusters, and click the Add a Row tool
• Right-click the model (or a package) in the Browser, and select New > Cluster

Cluster Properties
You can modify an object's properties from its property sheet. To open a cluster property sheet,
double-click its Browser in the Clusters folder.

The following extended attributes are available on the General tab:

Name Description

Owner Specifies the owner of the cluster

In addition, the following tabs are available:

• Columns – lists the columns associated with the cluster. You can can define the following
extended attributes for cluster columns:

Name Description

Data type Specifies the data type for the cluster index.

Scripting name: Datatype

Length Specifies the length for the cluster index.

Scripting name: DatatypeLength

CHAPTER 14: Oracle

474 SAP Sybase PowerDesigner

Name Description

Precision Specifies the precision for the cluster index.

Scripting name: DatatypePrec

Sort This clause instructs Oracle Database to sort the rows of the cluster on this
column before applying the hash function.

Scripting name: RowSort

• Indexes – lists the indexes defined for the cluster. You can can define the following
extended attributes for cluster columns:

Name Description

Owner Specifies the owner of the cluster index

Scripting name: Owner

Unique Specifies whether the cluster index is unique.

Scripting name: Unique

Bitmap Specifies if the index is to be created with a bitmap for each distinct key,
rather than indexing each row separately.

Scripting name: Bitmap

Sort By default, Oracle Database sorts indexes in ascending order when it creates
the index. You can specify NOSORT to indicate to the database that the rows
are already stored in the database in ascending order, so that Oracle Database
does not have to sort the rows when creating the index.

Scripting name: Sort

Database Links (Oracle)
A database link is a schema object in one database that enables you to access objects on
another database.

Database links are supported for Oracle 11g and higher. PowerDesigner models database links
as extended objects with a stereotype of <<Database Link>>.

Creating a Database Link
You can create a database link in any of the following ways:

• Select Model > Database links to access the List of Database links, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Database link.

CHAPTER 14: Oracle

Data Modeling 475

Database Link Properties
You can modify an object's properties from its property sheet. To open a database link property
sheet, double-click its Browser in the Database links folder.

The following extensions are available on the General tab:

Name Description

Public Specifies whether the database link is available to all users. If False, then the
database link is private and is available only to you.

Scripting name: Public

The following extended attributes are available on the Oracle tab:

Name Description

Shared Specifies the use of a single network connection to create a public database link
that can be shared among multiple users. If selected, you must also specify a user
name and password for the target instance on the remote server.

Scripting names: Shared, AuthenticatedBy, AuthenticationPassword

Connect to Specifies the user name and password used to connect to the remote database
using a fixed user database link.You need to specify CURRENT_USER to create a
current user database link. The current user must be a global user with a valid
account on the remote database. If you do not specify a value, then the database
link uses the user name and password of each user who is connected to the data-
base.

Scripting names: Username, Password

Service name Specifies the service name of a remote database. If you specify only the database
name, then Oracle Database implicitly appends the database domain to the con-
nect string to create a complete service name.

Scripting name: ServiceName

Physical data
model

Specifies the PowerDesigner model that contains the objects of the remote data-
base. Use the buttons to the right of the field to create, delete, select, or view the
property sheet of the model.

Scripting name: LinkModel

CHAPTER 14: Oracle

476 SAP Sybase PowerDesigner

Materialized View Logs (Oracle)
When DML changes are made to master table data, Oracle Database stores rows describing
those changes in the materialized view log and then uses the materialized view log to refresh
materialized views based on the master table.

Materialized view logs are supported for Oracle 11g and higher. PowerDesigner models
materialized view logs as extended objects with a stereotype of <<Materialized view log>>.

Creating a Materialized View Log
You can create a materialized view log as follows:

• Open the property sheet of the table to which you want to attach the log, select the Oracle
tab, and click the Create button in the Materialized view log groupbox.

Materialized View Log Properties
You can modify an object's properties from its property sheet. To open a materialized view log
property sheet, double-click its Browser entry or click the Properties button on its parent table
Oracle tab.

The General tab displays the master table name and the comment. The following properties
are available on the Partitions tab:

Name Description

Type Specifies the method for paritioning the table. You can choose between:

• Range/Composite - Partitions the table on ranges of values from the column
list.

• Hash - Partitions the table using the hash method.

• List - Partitions the table on lists of literal values from column.

• Reference - Equipartitions the table being created (the child table) by a ref-
erential constraint to an existing partitioned table (the parent table).

• System - Partitions the table by the partitions specified.

When you select a type, additional options are displayed, to allow you to specify
the appropriate parameters.

CHAPTER 14: Oracle

Data Modeling 477

CHAPTER 14: Oracle

478 SAP Sybase PowerDesigner

CHAPTER 15 SAP Sybase Adaptive Server
Enterprise

To create a PDM with support for features specific to the SAP® Sybase® Adaptive Server®

Enterprise DBMS family, select the appropriate version in the DBMS field of the New Model
dialog. To view these extensions to the PowerDesigner metamodel in the Resource Editor,
select Database > Edit Current DBMS and expand the Profile node.

Note: The DBMS definition file for Sybase AS Enterprise v12.5.3a is deprecated.

The following sections list the extensions provided for ASE.

Note: We do not provide documentation for the properties on the Physical Options and
certain other tabs, though minimal information is available for them in the Resource Editor.
For information about these properties, consult your DBMS reference documentation.

Tables
The following extensions are available on the Partitions tab (v15.0 and higher):

Name Description

Partition Indicates how records are distributed on table partitions. You must choose
between:

• Range - partitioned according to specified ranges of values in the parti-
tioning column or columns (Scripting name: PartitionByRange).

• Hash - partitioned by a system-supplied hash function (Scripting name:
PartitionByHash).

• List - partitioned according to literal values specified in the named column
(Scripting name: PartitionByList).

• Round robin - partitioned in a sequential manner (Scripting name: Parti-
tionByRoundrobin).

Each of the partitioning methods enables a list of partitions for you to complete,
except round robin by partition number, which requires only that you specify
the number of available partitions on a particular storage.

Scripting name: Partition

Columns [range and hash] Specifies an ordered list of columns used to determine into
which partition a row belongs.

Scripting name: PartitionByRangeColumnListColumn, PartitionByHashCo-
lumnListColumn

Data Modeling 479

Name Description

Column [list] Specifies the column used to determine into which partition a row be-
longs.

Scripting name: PartitionByListColumnColumnName

List [round robin] Specifies the table partitions

Scripting name: PartitionByRoundrobinSegmentEnumOnAbsence

Partition number [round robin] Specifies the number of partitions for the table.

Scripting name: PartitionByRoundrobinSegmentEnumOnPresence

Quantity [round robin by partition number] Number of partitions for the table

Scripting name: PartitionByRoundrobinSegmentEnumPartitionNum

Storage (segment) [round robin by partition number] Specifies the name of the segment on which
to place the table partition.

Scripting name: PartitionByRoundrobinSegmentEnumOnSegmentName

[list of partitions] [all but round robin by partition number] Specifies the list of partitions to be
used

Scripting name: PartitionByRangePartitionListPartitionDefinition, Partition-
ByHashPartitionListPartitionDefinition, PartitionByListPartitionListParti-
tionDefinition,PartitionByRoundrobinPartitionListPartitionDefinition

Columns
The following extensions are available on the Sybase tab:

Name Description

Store Java-SQL
column in row

[v12.0 and higher] Specifies whether a Java-SQL column is stored separate from
the row (set to False) or in storage allocated directly in the row (set to True).

Scripting name: InRow

Computed col-
umn is material-
ized

[v15.0 and higher] Specifies that the computed column is materialized.

Scripting name: Materialized

Encrypted [v12.5.3a and higher] Specifies that the column is encrypted. Enabled only for
columns with a datatype that supports encryption.

Scripting name: Encrypted

CHAPTER 15: SAP Sybase Adaptive Server Enterprise

480 SAP Sybase PowerDesigner

Name Description

Encryption key [v12.5.3a and higher] Specifies an encryption key. Use the tools to the create or
select a key (see Encryption Keys on page 483).

Scripting name: EncryptionKey

Default decrypt
value

[v15.5.0 and higher] Specifies the default constant value that is returned to users
who do not have decrypt permissions.

Scripting name: DecryptDefault

Compressed [v15.7 and higher] Specifies that the data in the column is compressed.

Scripting name: Compressed

Compression
Level

[v15.7 and higher] Specifies the level of column data compression.

Scripting name: CompressionLevel

Databases
The following extensions are available on the General tab:

Name Description

For cluster [v15.5.0 and higher] Specifies that the database will support clustering.

Scripting name: ForCluster

Type [v15.5.0 and higher] Specifies the whether the database is of type:

• [for standard databases] inmemory, temporary, or inmemory
temporary

• [for cluster databases] temporary, global temporary, or sys-
tem temporary

.

Scripting name: DatabaseType

Keys
The following extensions are available on the Sybase tab:

Name Description

Key index is de-
scending

[v12.0 and higher] Specifies if the index created for a constraint is to be created in
descending order for each column.

Scripting name: DescKey

CHAPTER 15: SAP Sybase Adaptive Server Enterprise

Data Modeling 481

Model
The following extensions are available on the Encryption tab (v12.5.3a and higher):

Name Description

Encryption pass-
word

Global encryption password.

Scripting name: EncryptionPassword

Web Services
The following extensions are available on the Sybase tab (v15.0 and higher):

Name Description

Port number Specifies the web service port number.

Scripting name: PortNumber

Server name Specifies the web service server name.

Scripting name: ServerName

Database name Specifies the database name used in the URL to access the web service.

Scripting name: DatabaseName

Web Operations
The following extensions are available on the Sybase tab (v15.0 and higher):

Name Description

Alias Specifies the name of the user-defined database alias.

Scripting name: Alias

Secure Security option. clear indicates that HTTP is used to access this Web service. ssl
indicates HTTPS is used to access this Web service

Scripting name: Secure

Proxy Tables (ASE)
Sybase supports modeling for Sybase ASE proxy tables.

For more information, see Proxy Tables (ASE/SQL Anywhere) on page 548.

CHAPTER 15: SAP Sybase Adaptive Server Enterprise

482 SAP Sybase PowerDesigner

Encryption Keys (ASE)
Encryption keys are supported for ASE v12.5.3a and higher. PowerDesigner models
encryption keys as extended objects with a stereotype of <<EncryptionKey>>.

Adaptive Server authentication and access control mechanisms ensure that only properly
identified and authorized users can access data. You can encrypt data at the column level, thus
restricting your security measures to only sensitive data, and minimizing processing
overhead.

Encrypting columns in Adaptive Server is more straightforward than using encryption in the
middle tier, or in the client application. You use SQL statements to create the encryption keys
and specify columns for encryption. Adaptive Server handles key generation and storage.
Encryption and decryption of data occurs automatically and transparently as you write and
read the data in encrypted columns. No application changes are required, and there is no need
to purchase third-party software.

Creating an Encryption Key
You can create an encryption key in any of the following ways:

• Select Model > Encryption Keys to access the List of Encryption Keys, and click the Add
a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Encryption
Key.

Encryption Key Properties
You can modify an object's properties from its property sheet. To open an encryption key
property sheet, double-click its Browser entry in the Encryption Keys folder.

The following extended attributes are available on the Sybase tab:

Name Description

Owner Specifies the owner of the encryption key.

Scripting name: Owner

Key length Specifies the size in bits of the key to be created. Valid key lengths for AES are
128, 192 and 256 bits.

Scripting name: KeyLength

Algorithm Specifies the algorithm used to generate the encryption key. Currently, Advanced
Encryption Standard (AES) is the only algorithm supported.

Scripting name: Algorithm

CHAPTER 15: SAP Sybase Adaptive Server Enterprise

Data Modeling 483

Name Description

Initialization
vector

Controls the use of an initialization vector when encrypting. When an initializa-
tion vector is used by the encryption algorithm, the ciphertext of two identical
pieces of plaintext will be different, which would prevent the cryptanalyst from
detecting patterns of data but would render the data on disk useless for indexing or
matching without decryption.

Scripting name: InitVector

Padding of data-
types

Specifies the use of padding of datatypes whose length is less than one block.
Padding can be used instead of an initialization vector to randomize the ciphertext.
It is only suitable for columns whose plaintext length is less than half the block
length. For the default AES algorithm the block length is 16 bytes.

Scripting name: Pad

Password phrase [v15.0.2 and higher] Specifies a default key for use on all encrypted columns
which do not have a keyname specified in create table or alter table. This is a
database specific default key for use with tables in the same database. The default
key is stored in the database sysencryptkeys table, the same as non-default keys.

Scripting name: PasswordPhrase

Default encryp-
tion key

Allows the System Security Officer to create a default key for use on all encrypted
columns which do not have a keyname specified in create table or alter table. This
is a database specific default key for use with tables in the same database. The
default key is stored in the database sysencryptkeys table, the same as non-default
keys.

Scripting name: Default

The following tabs are also available:

• Key Copies - [v15.0.2 and higher] ASE allows users to access encrypted columns using
their copy of a single key. A key copy is designated for an individual user with a private
password known only to the user, ASE does not save the passwords on disk, so that even
the SA cannot access the protected data. PowerDesigner models key copies as extended
sub-objects with a <<KeyCopy>> stereotype, and the following extensions are available
on the Sybase tab of its property sheet:
• User - identifies the user for whom the key copy is made.
• Password - specifies the password used to encrypt the key copy.

CHAPTER 15: SAP Sybase Adaptive Server Enterprise

484 SAP Sybase PowerDesigner

CHAPTER 16 SAP Business Suite

To create a PDM with support for features specific to the SAP Business Suite, select the
DBMS on which your installation is running in the DBMS field of the New Model dialog,
click OK to create an empty PDM, and then select Tools > SAP Business Suite > Import
SAP Business Suite Data Dictionary. To view these extensions to the PowerDesigner
metamodel in the Resource Editor, select Model > Extensions, select the SAP Business
Suite extension, click the Properties tool, and expand the Profile node.

PowerDesigner supports importing any recent version of SAP® Business Suite.

The following sections list the extensions provided for SAP Business Suite.

Model
The following extensions are available on the Data Dictionary tab:

Name Description

Host name Specifies the host name or IP address of the server on which the Business Suite
installation is running.

Scripting name: HostName

User name Specifies the user who connects to the Business Suite server.

Scripting name: UserName

ABAP Components
ABAP components are based on standard PowerDesigner packages with a ABAP
Component stereotype. The following extensions are available on the Data Dictionary tab:

Name Description

Created by Specifies the user who created the object and when the change was made.

Scripting name: CreatedBy, CreatedOnDate, CreatedOnTime

Changed by Specifies the user who last changed the object and when the change was made.

Scripting name: ChangedBy, ChangedOnDate, ChangedOnTime

Parent Specifies the ABAP component that is the parent of the present component.

Scripting name: Parent

Data Modeling 485

Name Description

Customized by /
Release notes by

Specify the users who customized the component and wrote the release notes
for the customization.

Scripting name: CustomizingResponsible, ReleaseNoteResponsible

Released Provides release information about the component.

Scripting name: Released

Support web / desk-
top

Specify that the component can be displayed in the SAP NetWeaver Portal and
in the desktop NetWeaver client.

Scripting name: SupportWeb, SupportDesktop

Visible Specifies that the component should be visible to users.

Scripting name: Visible

ABAP Packages
ABAP packages are based on standard PowerDesigner packages with an ABAP Package
stereotype. The following extensions are available on the Data Dictionary tab:

Name Description

Created by Specifies the user who create the object and when it was created.

Scripting name: CreatedBy, CreatedOnDate, CreatedOnTime

Changed by Specifies the user who last changed the object and when the change was made.

Scripting name: ChangedBy, ChangedOnDate

Parent Specifies the ABAP component or package that is the parent of the package.

Scripting name: ApplicationComponent

Software compo-
nent

Specifies the software component to which the package is a support package.

Scripting name: SoftwareComponent

Main package Specifies whether the package is a:

• <empty> - Development Package

• X - Main Package, which does not contain any development elements itself;
and provides a structure for its children

• S - Structure Package

Scripting name: MainPackage

CHAPTER 16: SAP Business Suite

486 SAP Sybase PowerDesigner

Name Description

Namespace Specifies a deprecated method for organizing package structures.

Scripting name: Namespace

Owner Specifies the user currently responsible for the package.

Scripting name: Owner

Tables/Structures
The following extensions are available on the Data Dictionary tab:

Name Description

Changed by Specifies the user who last changed the object and when the change was made.

Scripting name: ChangedBy, ChangedOnDate, ChangedOnTime

Parent package Specifies the ABAP package that is the parent of the table or structure.

Scripting name: PackageCode

Physical table Specifies the database table on which the table or structure is based.

Scripting name: PhysicalTableCode

Is extended Specifies that the table contains extensions.

Scripting name: IsExtended

Columns (Fields)
Business Suite fields are represented as columns in PowerDesigner. The following extensions
are available on the Data Dictionary tab:

Name Description

Field type Specifies whether the field is:

• <Empty> - Built-in type

• E - Data element

• S - Structure

• L - Table type

Scripting name: FieldType

Domain Specifies the domain attached to the column.

Scripting name: Domain

CHAPTER 16: SAP Business Suite

Data Modeling 487

Name Description

ABAP data type Specifies the data type used by the runtime environment:

• B, S, I - 1-byte, 2-byte, or 4-byte integer

• C, N, B, F, G - Character, numerical, binary, float, or string

• D, T - Date, or time

• X, Y - Fixed or variable length raw

Scripting name: ABAPDataType

Data dictionary da-
ta type

Specifies the data type used in the Dictionary.

Scripting name: DataDictionaryDataType

Data element Specifies the data element attached to the field, if of type E.

Scripting name: DataElement

Include structure Specifies the included structure attached to the field, if of type S.

Scripting name: IncludeStructure

Lookup table Specifies that lookup table from which to draw key values, if of type T.

Scripting name: LookupTable

Reference field / ta-
ble

For numerical or currency columns, specify the reference field and table.

Scripting name: ReferenceField, ReferenceTable

Input help Specifies the origin of input help:

• <empty> - No input help exists

• X - Explicit search help attachment to field

• P - Input help implemented with check table

• D - Explicit search help attachment to data element

• F - Input help with fixed values

• T - Input help based on data type

Scripting name: InputHelp

Indexes
The following extensions are available on the Data Dictionary tab:

Name Description

Changed by Specifies the user who last changed the object and when the change was made.

Scripting name: ChangedBy, ChangedOnDate, ChangedOnTime

CHAPTER 16: SAP Business Suite

488 SAP Sybase PowerDesigner

Name Description

DB index name Specifies the associated database index name.

Scripting name: DBIndexName

DB include exclude Specifies that a list of database systems is used as:

• I - List of inclusions: create index on these DB systems.

• E - List of exclusions: do not create index on these DB systems.

Scripting name: DBIncludeExclude

List of database
systems 1-4

Specify lists of database systems for inclusion or exclusion by the index.

Scripting name: DBSYSSEL1, DBSYSSEL2, DBSYSSEL3, DBSYSSEL4

Extension index Specifies that the index is an extension index.

Scripting name: IsExtensionIndex

Status Specifies the status of the index in the database:

• <empty> - Create on database.

• O - Do not create on database.

• D - Create on database depending on DB

Scripting name: Status

Data Elements
Data elements are based on PowerDesigner extended objects with a Data Element
stereotype. The following extensions are available on the Data Dictionary tab:

Name Description

Changed by Specifies the user who last changed the object and when the change was made.

Scripting name: ChangedBy, ChangedOnDate, ChangedOnTime

Package code Specifies the package containing the data element.

Scripting name: PackageCode

Default name Specifies the default name for components using the data element.

Scripting name: DefaultName

Original language Specifies the language in which the data element was defined.

Scripting name: OriginalLanguage

CHAPTER 16: SAP Business Suite

Data Modeling 489

Name Description

Data dictionary da-
ta type

Specifies the data type of the column in terms of the ABAP Dictionary.

Scripting name: DataDictionaryDataType, DataType

Length / Output
length

Specifies the supported number of characters and the number that can be dis-
played in ABAP forms.

Scripting name: OutputLength, Length

Precision Specifies the supported number of decimal places.

Scripting name: Precision

Reference kind Specifies the category of dictionary type:

• <empty> - Direct type

• E - Elementary type

• S - Structured type

• L - Table type

• R - Reference type

• D - Domain

Scripting name: ReferenceKind

Conversion routine Specifies function modules that are executed when values are input to and
displayed in the ABAP screen field.

Scripting name: ConversionRoutine

Value table Specifies that the permitted values for the data element are PK values of the
selected table.

Scripting name: ValueTable

Signed Specifies that negative values are supported.

Scripting name: Signed

Lowercase Specifies that lowercase letters are supported.

Scripting name: Lowercase

Fixed values Specifies that permitted values are limited to those specified.

Scripting name: FixedValues

Domains
The following extensions are available on the Data Dictionary tab:

CHAPTER 16: SAP Business Suite

490 SAP Sybase PowerDesigner

Name Description

Changed by Specifies the user who last changed the object and when the change was made.

Scripting name: ChangedBy, ChangedOnDate, ChangedOnTime

Package code Specifies the package containing the domain.

Scripting name: PackageCode

Data dictionary da-
ta type

Specifies the data type of the column in terms of the ABAP Dictionary.

Scripting name: DataDictionaryDataType

Base domain Specifies the domain that the present domain extends.

Scripting name: BaseDomain

Value table Specifies that the permitted values for the domain are PK values of the selected
table.

Scripting name: ValueTable

Conversion routine Specifies function modules that are executed when values are input to and
displayed in the ABAP screen field.

Scripting name: ConversionRoutine

Fixed values Specifies that permitted values are limited to those specified.

Scripting name: FixedValues

Signed Specifies that negative values are supported.

Scripting name: Signed

Views
The following extensions are available on the Data Dictionary tab:

Name Description

Changed by Specifies the user who last changed the object and when the change was made.

Scripting name: ChangedBy, ChangedOnDate, ChangedOnTime

Root table code Specifies the primary table of an aggregate.

Scripting name: RootTableCode

CHAPTER 16: SAP Business Suite

Data Modeling 491

Name Description

View type Specifies that the view is a:

• H - Help view

• D - Database view

• P - Projection view

• S - Structure view, data selection not possible

• C - Maintenance view

• E - Entity view (no longer supported)

• V - View variant

• A - Append view

Scripting name: ViewType

Delivery class Specifies that the delivery class of the view is:

• A - Application table

• C - Customer table, maintained by customer

• L - Table for storing temporary data

• G - Customer table, SAP can add rows

• E - Control table

• S - System table, maintained by SAP

• W - System table

Scripting name: DeliveryClass

Maintenance status Specifies the maintenance status of the view:

• <empty> - Modifiable

• R - Read only

• U - Read and change

• M - Time dependent view

Scripting name: MaintenanceStatus

View Columns (View Fields)
The following extensions are available on the Data Dictionary tab:

Name Description

ABAP form name Specifies the field's name in ABAP forms.

Scripting name: ABAPFormName

CHAPTER 16: SAP Business Suite

492 SAP Sybase PowerDesigner

Name Description

Base table / field Specify the table and field from which the field are drawn.

Scripting name: BaseTable, BaseField

Data element Specifies the data element attached to the field.

Scripting name: DataElement

Is key Specifies that the field belongs to a key area.

Scripting name: IsKey

Lock mode Specifies the lock mode for the field:

• E - Write lock

• S - Read lock

• X - Exclusive lock

Scripting name: LockMode

Maintenance status Specifies the maintenance status of the field:

• <empty> - View is available as normal

• R - View field can only be read

• S - View field is used to form subsets

• H - View field is not transferred to the maintenance screens

Scripting name: MaintenanceStatus

Importing an SAP Business Suite Data Dictionary
An SAP Business Suite installation is built on a complex database structure, which comprises
many thousand tables with often cryptic names, and may include large numbers of extensions.
In certain environments, there may be multiple servers, each with different extensions.
PowerDesigner allows you to browse the application component and packages in the
hierarchy, and to import them and their supporting logical objects for analysis, comparison,
and merging of data dictionaries.

1. Create a new PDM targeting the DBMS hosting your Business Suite server. For a server
running SAP MaxDB, use the SAP HANA DBMS.

2. Select Tools > SAP Business Suite > Import SAP Business Suite Data Dictionary to
open the wizard, and click Next on the Welcome page.

3. Enter your Business Suite connection parameters and then click Next to connect.

CHAPTER 16: SAP Business Suite

Data Modeling 493

Use the tools to the right of the Connection name field to create a new connection profile,
review the properties of the existing profile, or delete it. Business Suite connection profiles
are stored in the registry.

4. Select application components and packages in the left pane to add their tables and views
to the import and then click Next.

When you select a component or package to import, its supporting tables and views are
added to the subtabs in the right pane, and the total number of tables and views to be
imported is updated. Tables are selected for import by default, but views are not. You can
select or deselect tables and views for import as necessary.

Note: Since an ERP system can contain many thousands of tables, we recommend that you
import only a limited subset of components or packages at a time. You can relaunch the
wizard and import additional components or packages as many times as necessary.

5. Review the objects that will be imported and then click Finish.

The component and package structure is imported, with tables located in their appropriate
package, and global domains and data elements are listed at the root of the model.

CHAPTER 16: SAP Business Suite

494 SAP Sybase PowerDesigner

PowerDesigner stores the technical name of each object in its Code field, and uses the
more intuitive short description of the object as its name. Thus, for example, the table
identified as SCMATRANSACT in the data dictionary is displayed as Schedule
Manager: Registered SAP Transactions in PowerDesigner.

Each component and package contains a diagram which shows the objects it contains:

Note: Not all packages contain tables. To view the structure of only those components and
packages with diagrams that do contain tables, right-click the model in the Browser or a
diagram background and select View ABAP Diagrams Containing Tables . Select a
diagram in the tree and click OK to open it.

6. Review the imported metadata as appropriate. Configurable and filterable lists of each
type of object are available from the Model menu. For example, to display the List of Data
Elements, select Model > Data Elements:

CHAPTER 16: SAP Business Suite

Data Modeling 495

Note: To view lists of global objects, such as domains and data elements, ensure that you
are in the context of the model root (by double-clicking the Top-Level Component
Diagram) before opening the list. To view all the components, packages, or tables in the
model, ensure that you are at root, open the list, and click the Include Sub-Packages tool
in the list toolbar. For detailed information about working with object lists, see Core
Features Guide > Modeling with PowerDesigner > Objects > Object Lists

7. [optional] Perform a new import to enrich your model. You can perform as many imports
as necessary, and delete components, packages, or other objects as appropriate, to simplify
your model and focus on the areas that interest you.

8. [optional] To compare two or more Business Suite installations, import each one into its
own PDM, and select Tools > Compare Models. For detailed information about working
in this dialog, see Core Features Guide > Modeling with PowerDesigner > Comparing and
Merging Models.

9. [optional] PowerDesigner supports the merging of Business Suite PDMs and their
generation to HANA to provide the basis for establishing a business intelligence
environment for reporting on your Business Suite transactional data (see Generating an
SAP Business Suite Data Dictionary to HANA on page 497).

CHAPTER 16: SAP Business Suite

496 SAP Sybase PowerDesigner

Generating an SAP Business Suite Data Dictionary to HANA
PowerDesigner can help you prepare a HANA table structure to allow consolidated reporting
on one or more SAP Business Suite installations.

1. Create a PDM for each SAP Business Suite installation, and import the logical tables that
you want to define warehouse reporting on (see Importing an SAP Business Suite Data
Dictionary on page 493).

2. Analyze and purify your models, deleting components, packages, tables, and columns that
are not of interest to your reporting project.

Note: You should not edit the properties of Business Suite objects (except for the
Comment field or Notes tab) or create new objects, in order to ensure the integrity of the
metadata that will be generated to the HANA schema.

3. Select a model to act as the core warehouse model, and then select Tools > Merge Models
and merge the other models into it one after the other to create a superset of all the
components, packages, tables, and columns that you want to generate to HANA.

For detailed information about merging models, see Core Features Guide > Modeling with
PowerDesigner > Comparing and Merging Models.

4. Select Tools > SAP Business Suite > Generate HANA Physical Data Model.

PowerDesigner generates a new PDM targeting the HANA DBMS.

Note: PowerDesigner generates the Business Suite component and package structure to
the HANA PDM. This structure does not represent HANA packages, and your tables will
all be exported to the HANA catalog.

5. Export your tables to your HANA server (see Exporting Objects to the HANA Repository
on page 504).

CHAPTER 16: SAP Business Suite

Data Modeling 497

Implement loading of your transactional data to your HANA warehouse using your
standard ETL solution.

CHAPTER 16: SAP Business Suite

498 SAP Sybase PowerDesigner

CHAPTER 17 SAP HANA

To create a PDM with support for features specific to the SAP HANA® DBMS family, select
the appropriate version in the DBMS field of the New Model dialog. To view these extensions
to the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

PowerDesigner supports round trip reverse-engineering and generation of SAP HANA® v1.0
SP05 and SP06 tables and analytic and attribute views.

The following sections list the extensions provided for SAP HANA.

Tables
The following extensions are available on the General tab:

Name Description

Type Specifies the table type. You can choose between:

• Row - [default] If the majority of table access involves selecting a few records,
with all attributes selected, ROW-based storage is preferable.

• Column - If the majority of table access will be through a large number of
tuples, with only a few selected attributes, COLUMN-based storage should be
used.

• History column - Creates a table with a session type HISTORY, to support
time travel queries, which are queries against historical states of the database.

• Global temporary - The table definition is globally available while data is
visible only to the current session. The table is truncated at the end of the
session.

• Local temporary - The table definition and data is visible only to the current
session. The table is truncated at the end of the session.

Scripting name: FullType

The following extensions are available on the HANA tab:

Data Modeling 499

Name Description

Logging type Specifies whether table logging is activated. You can choose between:

• logging - [default]

• nologging - specifies that logging is deactivated. As a result, the definition of
the table is persistent and globally available and data is temporary and global.
The resource manager should therefore explicitly drop a NOLOGGING table.

Scripting name: LoggingType

Retention period [if nologging] Specifies the retention time in seconds of the table created as
nologging.

Scripting name: Retention

Auto-Merge Specifies that automatic delta merge is triggered.

Scripting name: AutoMerge

Unload priority Specifies the priority for unloading the table from memory from 0 to 9.

Scripting name: UnloadPriority

Schema flexibil-
ity

Specifies that the table schema is flexible.

Scripting name: WithSchemaFlexibility

Location Specifies that partitions will be created on the listed instances using round robin
scheme.

Scripting name: PartitionLocation

Multiple Specifies that the location targets multiple HANA instances.

Scripting name: HasMultipleLocations

Options text Specifies the SQL text of the table options. Options entered here will be set in their
relevant fields, and changes to the fields are reflected here.

Scripting name: FullTableOptions

The following extensions are available on the Partitions tab:

CHAPTER 17: SAP HANA

500 SAP Sybase PowerDesigner

Name Description

Type Specifies the partition scheme type:

• Hash - Distributes rows to partitions equally for load balancing and to over-
come the 2 billion row limitation. Specify an expression listing the columns to
partition on and the number of partitions to create. You may specify a second
scheme of type Hash or Range.

• Range - Creates partitions for specific values or value ranges. Specify an
expression and range specifier.

• RoundRobin - Distributes rows to partitions equally without specifying par-
titioning columns. Specify the number of partitions to create. You may specify
a second scheme of type Range.

Scripting name: FirstPartitionElement, etc

Columns
The following extensions are available on the Detail tab:

Name Description

Stored as Specifies the stored data type.

Scripting name: StoreDataType

DDIC type Specifies the application data type.

Scripting name: DDICDataType

Indexes
The following extensions are available on the General tab:

Name Description

Descending Specifies that the index should be created in descending order.

Scripting name: DescIndex

Keys
The following extensions are available on the General tab:

Name Description

Key type Specifies the key type.

Scripting name: KeyType

Roles
The following extensions are available on the General tab:

CHAPTER 17: SAP HANA

Data Modeling 501

Name Description

Global visibility Specifies that the role is available globally.

Scripting name: GlobalVisibility

Global ID [if global visibility] Specifies the external role name for the global user.

Scripting name: GlobalID

References
The following extensions are available on the HANA tab:

Name Description

Cardinality Specifies the type of cardinality.

Scripting name: HANACardinality

Join type Specifies the join type.

Scripting name: HANAJoinType

Language Column Specifies the language column.

Scripting name: HANALanguageColumn

Users
The following extensions are available on the General tab:

Name Description

Identification Specifies the type of identification (global, local or external).

Scripting name: Identification

Distinguished name Specifies the user's distinguished name (DN) in the directory or certificate.

Scripting name: DistinguishedName

Password Specifies the clear copy of the password.

Scripting name: CopyPassword

Implicit Schema Specifie"s that the database generation will use the stored procedure
sp_grantdbaccess instead of a create user statement.

Scripting name: ImplicitSchema

Default Schema Specifies the first schema searched to resolve the names of objects for this user.

Scripting name: DefaultSchema

CHAPTER 17: SAP HANA

502 SAP Sybase PowerDesigner

Packages
The following extensions are available on the HANA tab of HANA packages:

Name Description

Structure package Specifies that the package is a structural package

Scripting name: Structural

Object Name Specifies the HANA object name.

Scripting name: _ObjectName_

Facts (Analytic Views) and Dimensions (Attribute Views)
The following extensions are available on the HANA tab:

Name Description

Default Client /
Language / Member

Specify the HANA default client, language, and (dimension only) member.

Scripting name: DefaultClient, DefaultLanguage, DefaultMember

Multidimensional
reporting

[facts] Specifies that multidimensional reporting is enabled.

Scripting name: MultidimensionalReporting

Package / Name /
Version

Specifies the HANA package, object name, and version.

Scripting name: _ObjectPackage_, _ObjectName_, _ObjectVersion_

Last Updated Date /
at

Specifies when the dimension or fact was last edited.

Scripting name: _LastUpdatedDate_, _LastUpdatedTime_

Dimension Attributes and Fact Attributes
The following extensions are available on the HANA tab:

Name Description

Default Member /
Info Object

Specify the HANA default member and info object.

Scripting Name: DefaultMember, InfoObject

Drill Down Enabled Specifies the drill down is enabled for the attribute.

Scripting Name: DrillDownEnabled

Hidden Specifies that the attribute is hidden.

Scripting Name: IsHidden

CHAPTER 17: SAP HANA

Data Modeling 503

Name Description

Key Attribute / Prin-
cipal Key / Attribute
Hierarchy Active

[Dimension attribute only] Specify that the attribute is a key attribute, a prin-
cipal key attribute, and that the attribute hierarchy is active.

Scripting Name: KeyAttribute, PrincipalKey, AttributeHierarchyActive

Data Type / Length /
Scale

Specify the data type, length and scale of the attribute.

Scripting Name: AttributeDataType, Length, AttributeScale

Fact Measures
The following extensions are available on the HANA tab:

Name Description

Data Type / Length /
Scale

Specify the data type, length and scale of the measure.

Scripting Name: MeasureDataType, MeasureLength, MeasureScale

Exporting Objects to the HANA Repository
While HANA tables are generated directly to the catalog, analytic and attribute views are
exported to the HANA repository from where they will be deployed. PowerDesigner provides
a wizard to allow you to export your views and tables to the HANA repository and catalog
respectively in a single action.

Note: This feature requires a 32-Bit Java installation.

In your PDM, the HANA catalog is represented by the root of the model, while the HANA
repository is represented by a structure of HANA packages. In order to generate your tables
and views correctly, you must place your tables at the root (or in standard PowerDesigner
packages), and your facts (analytic views) and dimensions (analytic views) in their
appropriate HANA packages.

In the following example, the tables in the Sales Tables physical diagram are at the root
of the model, and appear as shortcuts inside the Sales Hana package, which contains the
corresponding fact and dimensions:

CHAPTER 17: SAP HANA

504 SAP Sybase PowerDesigner

Tables and analytic and attribute views imported from HANA are automatically placed at the
root and in HANA packages as appropriate. When generating cubes from tables in your model
(see Generating Cubes on page 217), launch the wizard from within a HANA package. If you
have generated cubes at the model root, drag the multidimensional diagram into a HANA
package to move its contents.

1. Select Database > Apply Model Changes to HANA Repository to open the wizard, and
click Next on the Welcome page.

The wizard checks your model for consistency and displays any errors which may
compromise the generation.

2. Enter your HANA repository host name and instance number, along with your user name
and password, and then click Next to connect.

Use the tools to the right of the Connection field to create a new connection profile, review
the properties of the existing profile, or delete it. HANA connection profiles are stored in
the registry.

Note: The account with which you connect must have at least the CONTENT_ADMIN,
MODELING, and PUBLIC roles.

3. Select HANA packages in your model in the left pane to make their contents available to
export. Select the facts to export in the right pane, and then click Next.

When you select a fact to export, its supporting dimensions are automatically selected for
import.

Note: If you have previously imported objects from HANA, the archive model helps to
determine model changes since that point (see Archive PDMs on page 322).

4. Select the catalog tables to export, and then click Next.

PowerDesigner automatically selects any catalog tables required by the selected facts and
dimensions.

CHAPTER 17: SAP HANA

Data Modeling 505

5. Review the objects that will be exported and then click Finish to generate them to the
HANA repository.

Note: If PowerDesigner detects conflicts between changes made in the model and changes
to the same objects on the server, then a merge dialog (see Core Features Guide > Modeling
with PowerDesigner > Comparing and Merging Models) will open to allow you to select,
for each conflict, which of the conflicting changes will prevail. The resolutions that you
select will first be applied to the model, and then your changes will be exported to the the
server.

Importing Objects from the HANA Repository
While HANA tables are generated directly to the catalog, analytic and attribute views are
exported to the HANA repository from where they will be deployed. PowerDesigner provides
a wizard to allow you to import analytic and attribute views from the HANA repository, along
with their supporting catalog tables.

Note: This feature requires a 32-Bit Java installation.

CHAPTER 17: SAP HANA

506 SAP Sybase PowerDesigner

1. Select Database > Update Model from HANA Repository to open the wizard, and click
Next on the Welcome page.

2. Enter your HANA repository host name and instance number, along with your user name
and password, and then click Next to connect.

Note: The account with which you connect must have at least the CONTENT_ADMIN,
MODELING, and PUBLIC roles.

3. Select packages in the repository in the left pane to make their contents available to import.
Select the analytic views to import in the right pane, and then click Next.

When you select an analytic view to import, its supporting attribute views are
automatically selected for import.

Note: The archive model retains a snapshot of the structure of your objects at import time
to help in determining model changes when re-exporting to HANA (see Archive PDMs on
page 322).

4. Select catalog tables to import from the list, and then click Next.

PowerDesigner automatically selects any catalog tables required by the selected analytic
and attribute views. Select additional schemas to make their tables available for selection.

5. Review the objects that will be imported and then click Finish.

CHAPTER 17: SAP HANA

Data Modeling 507

6. If objects are already present in the model, a merge dialog will open (see Core Features
Guide > Modeling with PowerDesigner > Comparing and Merging Models) to allow you
to review the specific changes that will be make. Approve or reject the proposed changes,
and then click OK to perfom the import.

PowerDesigner will import schemas, users, and tables to the root of the model and analytic
and attribute views to their appropriate HANA packages. When the import is complete,
click Close to exit the wizard.

CHAPTER 17: SAP HANA

508 SAP Sybase PowerDesigner

CHAPTER 18 SAP Sybase IQ

To create a PDM with support for features specific to the SAP® Sybase® IQ DBMS family,
select the appropriate version in the DBMS field of the New Model dialog. To view these
extensions to the PowerDesigner metamodel in the Resource Editor, select Database > Edit
Current DBMS and expand the Profile node.

Note: The DBMS definition files for Sybase IQ v12.x are deprecated.

The following sections list the extensions provided for IQ.

Note: We do not provide documentation for the properties on the Physical Options and
certain other tabs, though minimal information is available for them in the Resource Editor.
For information about these properties, consult your DBMS reference documentation.

Tables
The following extensions are available on the Sybase IQ tab (v12.4.3 and higher):

Name Description

DBSpace [v15.0 and higher] Specifies the dbspace in which to create the table (see
Dbspaces (IQ) on page 516).

Scripting name: DBSpace

Global temporary
table

[v12.4.3 to 15.2] Specifies that the table is a global temporary table.

Scripting name: ExtGlobalTemporaryTable

Scope [v15.3 and higher] Specifies that the table is either a global or local temporary
table.

Scripting name: TemporaryTableScope

On commit [v15.0 and higher] Action on commit.

Scripting name: OnCommit

Not transactional [v15.0 and higher] A table created using NOT TRANSACTIONAL is not
affected by either COMMIT or ROLLBACK.

Scripting name: NotTransactional

Remote location [v15.0 and higher] Used to create a table at the remote location.

Scripting name: At

Data Modeling 509

Name Description

Partition key [v15.0 and higher] Specifies the partition key column.

Scripting name: PartitionKey

Columns
The following extensions are available on the Sybase tab (v12.4.3 and higher):

Name Description

DBSpace [v15.4 and higher] Specifies the database file (dbspace) in which to create the
column (see Dbspaces (IQ) on page 516).

Scripting name: DBSpace

Number of distinct
value (Iq unique)

Defines the cardinality of the column (to optimize the indexes internally).

Scripting name: ExtIqUnicity

In addition, from v15.0 and higher, the Partitions tab allows you to override the allocations of
partitioned column values to different dbspaces (see Table and Column Partitions (IQ) on page
518).

Indexes
The following extensions are available on the Sybase tab (v15.0 and higher):

Name Description

With nulls not dis-
tinct

[v15.4 and higher, when Unique] Specifies that more than one null value is
permitted despite the index requiring unique values.

Scripting name: WithNullsNotDistinct

Tablespace [Non-text indexes] Specifies the index dbspace (see Dbspaces (IQ) on page
516).

Scripting name: In

Notify [Non-text indexes] Gives notification messages after n records are successfully
added for the index.

Scripting name: Notify

Word length [WD indexes] Specifies the maximum word length that is permitted in the WD
index.

Scripting name: Limit

CHAPTER 18: SAP Sybase IQ

510 SAP Sybase PowerDesigner

Name Description

Delimited by [WD indexes] Specifies separators to use in parsing a column string into the
words to be stored in that column's WD index.

Scripting name: DelimitedBy

Configuration [Text indexes] Specifies the text configuration (see Text Configurations (IQ/
SQL Anywhere) on page 530) to be used to control the building of the text
index.

Scripting name: Configuration

Immediate refresh [Text indexes v15.2 and higher] Specifies that the index is refreshed immedi-
ately each time data is written to the table.

Scripting name: Refresh

Keys and References
The following extensions are available on the General tab (v15.0 and higher):

Name Description

DBSpace Specifies the DBSpace where the object is stored (see Dbspaces (IQ) on page
516).

Scripting name: PortNumber

Data Sources
The following extensions are available on the Data Movement (Lifecycle) tab (v15.0 and
higher), and are required when the first phase of a lifecycle policy must manage data in an
external database:

Name Description

Remote server
name

Specifies the name of the server where the remote database is located.

Scripting name: Server

Remote database
name

Specifies the name of the remote database from which data must be loaded.

Scripting name: DatabaseName

Server class Specifies the type of connection that must be made to the external database.
Select the appropriate value from the list.

Scripting name: ServerClass

CHAPTER 18: SAP Sybase IQ

Data Modeling 511

Name Description

Connection string Specifies the connection string used to connect to the external database in the
format:

• JDBC - <host>:<port>[/database name]
• ODBC - <odbc name>
Scripting name: JDBCConnectionString/ODBCConnectionString

User/group Specifies the user or group name with which to log into the external database.

Scripting name: ExternalLogin

Procedures
The following extensions are available on the Sybase IQ tab (v15.0 and higher):

Name Description

Temporary [standard functions] Specifies that the function is visible only by the connec-
tion that created it, and that it is automatically dropped when the connection is
dropped.

Scripting name: TempFunction

Return data type Specifies the procedure return data type.

Scripting name: ReturnDttp

Routine characteris-
tics

[standard functions] Transact-SQL-like error handling and deterministic op-
tions.

Scripting name: RoutineCharacteristics

Sql security [standard functions] Defines whether the function is executed as the INVOK-
ER, the user who is calling the function, or as the DEFINER, the user who owns
the function.

Scripting name: SqlSecurity

URL [web functions] Specifies the URL of the web service.

Scripting name: URL

Type [web functions] Specifies the format used when making the web service re-
quest.

Scripting name: URLType

CHAPTER 18: SAP Sybase IQ

512 SAP Sybase PowerDesigner

Name Description

Header [HTTP web functions] When creating HTTP web service client functions, use
this clause to add or modify HTTP request header entries.

Scripting name: Header

Soap header [SOAP web functions] When declaring a SOAP web service as a function, use
this clause to specify one or more SOAP request header entries.

Scripting name: SoapHeader

Certificate [web functions] To make a secure (HTTPS) request, a client must have access
to the certificate used by the HTTPS server. The necessary information is
specified in a string of semicolon-separated key/value pairs.

Scripting name: Certificate

Client port [HTTP web functions] Identifies the port number on which the HTTP client
procedure communicates using TCP/IP.

Scripting name: ClientPort

Namespace [SOAP web functions] Identifies the method namespace usually required for
both SOAP:RPC and SOAP:DOC requests.

Scripting name: Namespace

Proxy [web functions] Specifies the URI of a proxy server.

Scripting name: Proxy

Users
The following extensions are available on the General tab (v15.0 and higher):

Name Description

Force change Controls whether the user must specify a new password when they log in. This
setting overrides the password_expiry_on_next_login option setting in the
login policy.

Scripting name: ForcePasswordChange

Login policy Specifies the login policy to assign to the user (see Login Policies on page
522).

Scripting name: LoginPolicy

Web Services
The following extensions are available on the Sybase tab (v12.6 and higher):

CHAPTER 18: SAP Sybase IQ

Data Modeling 513

Name Description

Port number Specifies the web service port number.

Scripting name: PortNumber

Server name Specifies the web service server name.

Scripting name: ServerName

Name prefix [DISH service type] Specifies a name prefix. Only SOAP services whose
names begin with this prefix are handled.

Scripting name: Prefix

Web Operations
The following extensions are available on the Sybase tab (v12.6 and higher) when the service
type is not dish:

Name Description

URL Determines whether URI paths are accepted and, if so, how they are processed.

Scripting name: Url

Reference Architecture Modeling (IQ)
PowerDesigner provides a special EAM model to help you determine the architecture
required to deploy a Sybase IQ data warehouse solution to meet your anticipated workload.
An advisor wizard generates architectures based on one or more hardware servers, and
comparison tools help you choose the best architecture based on your requirements for cost
and speed.

For detailed information, see Enterprise Architecture Modeling > Sybase IQ Reference
Architecture Model.

Information Lifecycle Management (IQ)
Sybase IQ v15.0 and higher provides data placement capabilities and supports hierarchical
storage management with relocation of less critical data to cheaper storage. PowerDesigner
offers a simple modeling structure to cost effectively manage "aging" of data inside the data
center from 1st tier high performance storage for frequently accessed data through 2nd tier
near-line storage for data that is infrequently accessed to 3rd tier archive storage for data that
must remain available for regulatory audits.

For detailed information about using PowerDesigner to model your IQ information lifecycle
management, see Lifecycles (PDM) on page 189.

CHAPTER 18: SAP Sybase IQ

514 SAP Sybase PowerDesigner

Events (IQ/SQL Anywhere)
Sybase IQ (v12.7 and higher) and SQL Anywhere (v10 and higher) support events, which
allow you to automate and schedule actions. PowerDesigner models events as extended
objects with a stereotype of <<Event>>.

Creating an Event
You can create an event in any of the following ways:

• Select Model > Events to access the List of Events, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Event.

Event Properties
You can modify an object's properties from its property sheet. To open an event property sheet,
double-click its diagram symbol or its Browser entry in the Events folder.

The following extended attributes are available on the Sybase tab:

Name Description

Event is sched-
uled

Specifies that the server carries out a set of actions according to a schedule of times.

If selected, this option disables the "Event is triggered" option.

Scripting name: ScheduledEvent

Schedule defi-
nition

Enter the schedule of event trigger times here. Click the New button to launch a
dedicated editor window.

Scripting name: SchedulesText

Event is trig-
gered

Specifies that the server carries out a set of actions when a predefined type of system
event occurs.

This option is the default and, if selected, disables the "Event is scheduled" option.

Scripting name: TypedEvent

Event type The event-type is one of the listed set of system-defined event types. The event types
are case insensitive. To specify the conditions under which this event-type triggers
the event, use the WHERE clause.

Scripting name: EventType

CHAPTER 18: SAP Sybase IQ

Data Modeling 515

Name Description

Trigger condi-
tion

Determines the condition under which an event is fired. For example, to take an
action when the disk containing the transaction log becomes more than 80% full, use
the following triggering condition:

WHERE event_condition('LogDiskSpacePercentFree') < 20

The argument to the event_condition function must be valid for the event type.

You can use multiple AND conditions to make up the WHERE clause, but you
cannot use OR conditions or other conditions.

Scripting name: TriggerCondition

Handler Each event has one handler.

The actions of an event handler are committed if no error is detected during exe-
cution, and rolled back if errors are detected.

Scripting name: Handler

Enable By default, event handlers are enabled. When DISABLE is specified, the event
handler does not execute even when the scheduled time or triggering condition
occurs. A TRIGGER EVENT statement does not cause a disabled event handler to
be executed.

Scripting name: Enable

At (databases) If you want to execute events at remote or consolidated databases in a SQL Remote
setup, you can use this clause to restrict the databases at which the event is handled.
By default, all databases execute the event.

Scripting name: Database

Dbspaces (IQ)
Sybase IQ distributes user data across multiple disks at the application level by representing
each device as a dbspace. A dbspace can be an operating system file or a raw disk partition.
Dbspaces can contain both user data and internal database structures used for startup,
recovery, backup, and transaction management.

PowerDesigner allows you to allocate tables and tables partitions, columns and column
partitions, indexes, join indexes, keys, and references to specific dbspaces from each object's
property sheet.

Creating a Dbspace
PowerDesigner models dbspaces as tablespaces with additional properties. You can create a
dbspace in any of the following ways:

CHAPTER 18: SAP Sybase IQ

516 SAP Sybase PowerDesigner

• Select Model > Tablespaces to access the List of Tablespaces, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Tablespace.

Dbspace Properties
PowerDesigner models dbspaces as tablespaces (see Tablespaces and Storages (PDM) on
page 198) with the following additional properties on the General tab (v15.0 and higher):

Property Description

Catalog store Specifies that the dbspace is created for the catalog store and will contain a single
dbfile. If you select this option, you must specify a path to the file.

Scripting name: CatalogStoreDisplay

File path Specifies a physical file path for the dbspace.

Scripting name: As

Online Specifies that the dbspace is online.

Scripting name: Online

Read-only Specifies that the online dbspace is read-only.

Scripting name: ReadOnly

Striping Specifies that the dbspace is available for striping.

Scripting name: Striping

Stripe size (in
kb)

Specifies the size of the stripes.

Scripting name: Stripesizekb

In addition, the following tabs are available:

• Cost - allows you to specify the cost per GB of storage for the dbspace (see Tablespace and
Storage Properties on page 200).

• DBFiles - lists the dbfiles associated with the dbspace.

DBSpace Files
PowerDesigner models dbspace files as extended objects with a stereotype of
<<DBSpaceFile>> with the following additional properties on the General tab (v15.0 and
higher):

Property Description

Path Specifies the file path to the dbspace file.

Scripting name: FilePath

CHAPTER 18: SAP Sybase IQ

Data Modeling 517

Property Description

Read-only Specifies that the resource is read-only.

Scripting name: ReadOnly

Size Specifies that the size of the dbspace file.

Scripting name: Size, SizeUnit

Reserve Specifies the size of space to reserve, so that the dbspace can be increased in size in
the future.

Scripting name: Reserve, ReserveUnit

Table and Column Partitions (IQ)
A partition is a physical division of the contents of a database table, based on values in the
column designated as the partition key, and allocated to a particular dbspace. You can override
the allocation of values in certain columns by specifying column partitions.

Creating a Table Partition
In order to create table partitions, you must first select a column as the Partition key on the
Sybase IQ tab of the table property sheet (see Chapter 18, SAP Sybase IQ on page 509), in
order to display the Partitions tab.

You can create as many partitions as necessary for the table on this tab using the Insert Row
and Add a Row tools.

Note: Some PowerDesigner features automate the creation of partitions (see Denormalizing
Tables and Columns on page 80 and Modeling a Lifecycle on page 190. If you associate a table
with a lifecycle (see Lifecycles (PDM) on page 189), PowerDesigner will delete all existing
table partitions in order to create the necessary partitions to move data between lifecycle
phases.

Table Partition Properties
To view or edit a partition's properties, double-click its Browser or list entry. The property
sheet tabs and fields listed here are those available by default, before any customization of the
interface by you or an administrator. The following properties are available on the General
tab:

Property Description

Parent object [read only] Specifies the table of which the partition forms a part.

CHAPTER 18: SAP Sybase IQ

518 SAP Sybase PowerDesigner

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-tech-
nical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a com-
ment to provide more detailed information about the object. By default the code is
generated from the name by applying the naming conventions specified in the model
options. To decouple name-code synchronization, click to release the = button to the
right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field, or
add stereotypes to the list by specifying them in an extension file.

Values Specifies the upper bound of the partition, based on the value of the column specified
as the partition key. The max keyword can only be set on the last partition.

DBSpace Specifies the dbspace with which the partition is associated (see Dbspaces (IQ) on
page 516). Select a dbspace from the list or click the tools to the right of this field to
create, delete, or search for a dbspace, or to open the property sheet of the selected
dbspace.

Overriding Partition DBspaces for a Particular Column
You can override the allocation of values in a particular column from the table partition
dbspace to an alternate dbspace. The column will continue to be partitioned based on the same
partition key ranges, but the column values for each range will be allocated to the alternate
dbspaces.

You create column partitions on the Partitions tab of the column property sheet. Click the
Properties tool to specify the following properties:

Property Description

Parent object [read only] Specifies the column to which the partition belongs.

Comment Provides more detailed information about the object.

Partition Specifies the table partition for which this partition will redirect column values to an
alternate dbspace.

Dbspace Specifies the dbspace (see Dbspaces (IQ) on page 516) to which column values
contained within this table partition should be allocated.

Logical Servers and Policies (IQ)
Sybase IQ v16 and higher supports logical servers, which provide the only means to access the
multiplex server nodes. PowerDesigner models logical servers and logical server policies as

CHAPTER 18: SAP Sybase IQ

Data Modeling 519

extended objects with a stereotype of <<LogicalServer>> and
<<LogicalServerPolicy>> respectively.

Creating a Logical Server
You can create a logical server in any of the following ways:

• Select Model > Logical Servers to access the List of Logical Servers, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Logical Server.

Creating a Logical Server Policy
You can create a logical server policy in any of the following ways:

• Select Model > Logical Server Policies to access the List of Logical Policies, and click
the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Logical Server
Policy.

Logical Server and Logical Server Policy Properties
You can modify an object's properties from its property sheet. To open a logical server or
logical server policy property sheet, double-click its Browser entry in the Logical Servers or
Logical Server Policies folder.

The following extended attributes are available on the General tab:

Name Description

With stop server Automatically shuts down all servers in the logical server when the TEMP_DA-
TA_IN_SHARED_TEMP option is changed directly or indirectly.

Scripting name: WithStopServer

The following extended attributes are available on the Sybase IQ tab of logical servers:

Name Description

Membership Lists the multiplex nodes (see Multiplex Servers (IQ) on page 521) of the logical
server.

Select the Add for logical coordinator membership option to specifies a logical
server membership to the current coordinator.

Scripting name: Membership, MembershipForLogicalCoordinator

Policy Specifies the logical server policy applied to the server.

Scripting name: Policy

The following extended attributes are available on the Options tab of logical server policies:

CHAPTER 18: SAP Sybase IQ

520 SAP Sybase PowerDesigner

Name Description

DQP enabled Specifies how query processing is distributed:

• 0 - Not distributed

• 1 - [default] Distributed as long as a writable shared temporary file exists.

• 2 - Distributed over the network, and the shared temporary store is not used

Scripting name: DqpEnabled-disp

Allow coordina-
tor as member

[ROOT policy only] Specifies that the coordinator can be a member of any user-
defined logical server. Enabled by default.

Scripting name: AllowCoordinatorAsMember-disp

Login redirec-
tion

Enables login redirection for logical servers governed by specified login policy.
By default, login redirection is disabled at the logical server level, allowing ex-
ternal connection management.

Scripting name: LoginRedirection-disp

Redirection
waiters threshold

Specifies how many connections can queue before IQ redirects a connection to
this logical server to another server.

Scripting name: RedirectionWaitersThreshold-disp

Temp data in
shared temp

Enables temporary table data and eligible scratch data writes to the shared tem-
porary store, provided that the shared temporary store has at least one read-write
file added.

Scripting name: TempDataInSharedTemp-disp

Multiplex Servers (IQ)
Sybase IQ v15.0 and higher supports multiplex, a highly scalable shared disk grid technology
that allows concurrent data loads and queries via independent data processing nodes
connected to a shared data source.

PowerDesigner models multiplex servers as extended objects with a stereotype of
<<MultiplexServer>>.

Creating a Multiplex Server
You can create a multiplex server in any of the following ways:

• Select Model > Multiplex Servers to access the List of Multiplex Servers, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Multiplex
Server.

CHAPTER 18: SAP Sybase IQ

Data Modeling 521

Multiplex Server Properties
You can modify an object's properties from its property sheet. To open a multiplex server
property sheet, double-click its Browser entry in the Multiplex Servers folder.

The following extended attributes are available on the Sybase tab:

Name Description

Database Specifies the database file with which the server is associated.

Scripting name: Database

Host port list Specifies the machine where the database engine will run.

Scripting name: HostPortList

Role Specifies the server's role in the multiplex environment.

Scripting name: Role

Status Specifies whether the server is included or excluded. If a multiplex secondary
server will be shut down for an extended period of time, that server should be
excluded. Excluding the server allows the coordinator to ignore this server when
performing version cleanup.

Scripting name: Status

Failover Specifies that the server is a failover server.

Scripting name: Failover

Login Policies (IQ/SQL Anywhere)
Sybase IQ (v15.0 and higher) and SQL Anywhere (v12 and higher) define the rules to be
followed when establishing a user’s database connection in a database object called a login
policy. PowerDesigner models login policies as extended objects with a stereotype of
<<LoginPolicy>>.

Creating a Login Policy
You can create a login policy in any of the following ways:

• Select Model > Login Policies to access the List of Login Policies, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Login Policy.

Login Policy Properties
You can modify an object's properties from its property sheet. To open a login policy property
sheet, double-click its Browser entry in the Login Policies folder.

CHAPTER 18: SAP Sybase IQ

522 SAP Sybase PowerDesigner

The following extended attributes are available on the Sybase tab (Options tab from v16 and
higher):

Name Description

Password life
time

Specifies the maximum number of days before a password must be changed.

Scripting name: PasswordLifeTime

Password grace
time

Specifies the number of days before password expiration during which login is
allowed but the default post_login procedure issues warnings.

Scripting name: PasswordGraceTime

Password ex-
pires

Specifies that the user's password will expire in the next login.

Scripting name: PasswordExpiryOnNextLogin

Locked Specifies that users are prohibited from establishing new connections.

Scripting name: Locked

Maximum con-
nections

Specifies the maximum number of concurrent connections allowed for a user.

Scripting name: MaxConnections

Maximum failed
logins

Specifies the maximum number of failed attempts, since the last successful at-
tempt, to login to the user account before the account is locked.

Scripting name: MaxFailedLoginAttempts

Auto unlock
time

[v16 and higher] Specifies the time period after which locked accounts not granted
the MANAGE ANY USER system privilege are automatically unlocked.

Scripting name: AutoUnlockTime

Maximum days
since login

Specifies the maximum number of days that can elapse between two successive
logins by the same user.

Scripting name: MaxDaysSinceLogin

Maximum non-
dba connections

Specifies the maximum number of concurrent connections that a user without
DBA authority can make. This option is only supported in the root login policy.

Scripting name: MaxNonDBAConnections

Change pass-
word dual con-
trol

[v16 and higher] Specifies that two users, each granted the CHANGE PASS-
WORD system privilege, are required to change the password of another user.

Scripting name: ChangePasswordDualControl

Default logical
server

[v16 and higher] Specifies the server to which the user using this login policy
connects when the connection string specifies no logical server.

Scripting name: DefaultLogicalServer_disp

CHAPTER 18: SAP Sybase IQ

Data Modeling 523

Name Description

Root auto unlock
time

[v16 and higher] Specifies the time period after which locked accounts granted the
MANAGE ANY USER system privilege are automatically unlocked.

Scripting name: RootAutoUnlockTime

[v16 and higher] The following extended attributes are available on the LDAP tab:

Name Description

Primary / Secon-
dary server

Specify the names of the primary and secondary LDAP servers (see LDAP Servers
(IQ) on page 524).

Scripting name: LDAPPrimaryServer, LDAPSecondaryServer

Auto fallback
period

Specifies the time period, in minutes, after which automatic failback to the pri-
mary server is attempted.

Scripting name: LDAPAutoFailbackPeriod

Failover to
standard authen-
tication

Permits standard authentication when authentication via the LDAP server fails
due to system resources, network outage, connection timeouts, or similar system
failures.

Scripting name: LDAPFailoverToStd

Record LDAP
DN refresh time

Updates the ldap_refresh_dn value in the system table with the current

time, stored in Coordinated Universal Time (UTC)

Scripting name: LDAPRefreshDN

LDAP Servers (IQ)
Sybase IQ v16 and higher supports delegating the authentication of users to LDAP servers.
PowerDesigner models LDAP servers as extended objects with a stereotype of
<<LDAPServer>>.

Creating an LDAP Server
You can create an LDAP server in any of the following ways:

• Select Model > LDAP Servers to access the List of LDAP Servers, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > LDAP Server.

LDAP Server Properties
You can modify an object's properties from its property sheet. To open an LDAP server
property sheet, double-click its Browser entry in the LDAP Servers folder.

CHAPTER 18: SAP Sybase IQ

524 SAP Sybase PowerDesigner

The following extended attributes are available on the General tab:

Name Description

Activate LDAP
server after crea-
tion

Activates the LDAP server configuration object for immediate use upon creation.

Scripting name: WithActivate

The following extended attributes are available on the Sybase tab:

Name Description

Search DN Specifies the host (by name or by IP address), port number, and the search to be
performed for the DN lookup for a given user ID, along with the user created in the
LDAP server for use by SAP Sybase IQ, the password to use, and whether it is
encrypted.

Scripting name: URL, AccessAccount, Password, Encrypted

Attributes Specifies the host (by name or IP address) and the port number of the LDAP server
to use for authentication of the user, the connection timeout and number of retries,
and whether TLS or Secure LDAP protocol is used for connections for both DN
searches and authentication.

Scripting name: AuthenticationURL, ConnectionTimeout, ConnectionRetries,
TLS

Remote Servers (IQ)
Sybase IQ v15.0 and higher supports remote servers, which define where remote objects
mapped to a local proxy table are located. PowerDesigner models remote servers as extended
objects with a stereotype of <<RemoteServer>>.

Creating a Remote Server
You can create a remote server in any of the following ways:

• Select Model > Remote Servers to access the List of Remote Servers, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Remote Server.

Remote Server Properties
You can modify an object's properties from its property sheet. To open a remote server
property sheet, double-click its Browser entry in the Multiplex Servers folder.

The following extended attributes are available on the General tab:

CHAPTER 18: SAP Sybase IQ

Data Modeling 525

Name Description

Class Specifies the remote server class.

Scripting name: Class

Read-only Specifies that the remote server is a read-only data source. Any update request is
rejected by Sybase IQ.

Scripting name: ReadOnly

Connection Specifies the connection string in the format machine-name:port-num-
ber [/dbname] or as a data source name

Scripting name: ConnectionInfo

External Logins (IQ)
Sybase IQ v15.3 and higher supports external logins, which are alternate login names and
passwords that are used when communicating with a remote server. PowerDesigner models
external logins as extended objects with a stereotype of <<ExternLogin>>.

Creating an External Login
You can create an external login in any of the following ways:

• Select Model > Extern Logins to access the List of External Logins, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > External Login.

External Login Properties
You can modify an object's properties from its property sheet. To open an external login
property sheet, double-click its Browser entry in the External Logins folder.

The following extended attributes are available on the General tab:

Name Description

Local login Specifies the local login name to which the remote login is assigned.

Scripting name: LocalLogin

Remote server Specifies the name of the remote server.

Scripting name: RemoteServer

Remote login Specifies the user account on the remote server, which is associated with the local
user login.

Scripting name: RemoteLogin

CHAPTER 18: SAP Sybase IQ

526 SAP Sybase PowerDesigner

Name Description

Remote pass-
word

Specifies the password for the remote login

Scripting name: RemotePassword

Spatial Data (IQ/SQL Anywhere)
Sybase IQ v15.4 and higher and SQL Anywhere v12 and higher can store spatial data (data
that describes the position, shape, and orientation of objects in a defined space) using spatial
reference systems.

Spatial Reference Systems (SQL Anywhere)
Sybase IQ v15.4 and higher and SQL Anywhere v12 and higher support spatial reference
systems, which define the space in which geometries are described. PowerDesigner models
spatial reference systems as extended objects with a stereotype of
<<SpatialReferenceSystem>>.

Creating a Spatial Reference System
You can create a spatial reference system in any of the following ways:

• Select Model > Spatial Reference Systems to access the List of Spatial Reference
Systems, and click the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Spatial Reference
System.

Spatial Reference System Properties
You can modify an object's properties from its property sheet. To open a spatial reference
system property sheet, double-click its diagram symbol or its Browser entry in the Spatial
Reference Systems folder.

The following extended attributes are available on the General tab:

Name Description

Spatial refer-
ence system
identifier

Specifies the SRID (srs-id) for the spatial reference system.

Scripting name: SRS_Id

Organization Specifies the organization that created the spatial reference system that the new
spatial reference system is based on.

Scripting name: Organization

CHAPTER 18: SAP Sybase IQ

Data Modeling 527

Name Description

Organization
coordinate ref-
erence system
ID

Specifies the numeric identifier the organization uses to identify the spatial refer-
ence system.

Scripting name: OrganizationSRSId

The following extended attributes are available on the Definition tab:

Name Description

Definition Specifies default coordinate system settings. If any attribute is set in a clause other
than the DEFINITION clause, the value specified in the other clause is used re-
gardless of what is specified in the DEFINITION clause.

Scripting name: Definition

Type Specifies whether the system is Projected, Geographic, or Engineering. If a defini-
tion is given, this attribute is computed from the definition text.

Scripting name: SRSType

Transform def-
inition

Specify a description of the transform to use for the spatial reference system.

Scripting name: TransformDefinition

The following extended attributes are available on the Settings tab:

Name Description

Line interpre-
tation

Specifies how the SRS interprets lines between points.

Scripting name: LineInterpretation

Axis order Specifies the order in which values are given for each axis.

Scripting name: AxisOrder

Polygon for-
mat

Specifies how polygons are interpreted.

Scripting name: PolygonFormat

Storage format Specifies how data is stored.

Scripting name: StorageFormat

The following extended attributes are available on the Coordinate tab:

CHAPTER 18: SAP Sybase IQ

528 SAP Sybase PowerDesigner

Name Description

Axis/Boun-
ded/Unboun-
ded

Specifies whether the axis is bounded or unbounded and, if it is bounded, the
minimum and maximum values.

Scripting names: BoundedCoordinateAxis, MinCoordinateAxis, MaxCoordi-
nateAxis

Ellipsoid axis
length

[round earth systems] Specifies the values to use for representing the Earth as an
ellipsoid.

Scripting names: SemiMajorAxisLength, SemiMinorAxisLength, InverseFlatten-
ing

Grid Size [planar systems] Specifies the size of the grid to use when performing calculations.

Scripting name: GridSize

Tolerance [planar systems] Specifies the precision to use when comparing points.

Scripting name: Tolerance

Linear/Angu-
lar unit of
measure

Specify the linear and angular units of measure for the spatial reference system.

Scripting name: LinearUnitOfMeasure, AngularUnitOfMeasure

Spatial Units of Measure (SQL Anywhere)
Sybase IQ v15.4 and higher and SQL Anywhere v12 and higher support spatial units of
measure, which define the units in which geographic coordinates are measured, and how these
units are converted to radians or meters. PowerDesigner models spatial units of measure as
extended objects with a stereotype of <<SpatialUnitOf Measure>>.

Creating a Spatial Unit of Measure
You can create a spatial unit of measure in any of the following ways:

• Select Model > Spatial Units of Measure to access the List of Spatial Units of Measure,
and click the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Spatial Unit of
Measure.

Spatial Unit of Measure Properties
You can modify an object's properties from its property sheet. To open a spatial unit of
measure property sheet, double-click its diagram symbol or its Browser entry in the Spatial
Units of Measure folder.

The following extended attributes are available on the General tab:

CHAPTER 18: SAP Sybase IQ

Data Modeling 529

Name Description

Type Specifies the kind of unit. Linear units are used for distances and angular units are
used for angles.

Scripting name: Type

Conversion
factor

Specifies how to convert the defined units to the base unit of measure (radians or
meters).

Scripting name: ConversionFactor

Full Text Searches (IQ/SQL Anywhere)
Full text search can quickly find all instances of a term (word) in a database without having to
scan table rows and without having to know which column a term is stored in. IQ (v15.2 and
higher) and SQL Anywhere) support full text searches through text configurations and text
indexes, which store complete positional information for every instance of every term in every
indexed column.

Text Configurations (IQ/SQL Anywhere)
Text configuration objects are supported for IQ (v15.2 and higher) and SQL Anywhere (v12
and higher) to control the creation of text indexes. PowerDesigner models text configurations
as extended objects with a stereotype of <<TextConfiguration>>.

Text configurations contain a set of configuration settings that control the characteristics of
text index data such as what terms to ignore, and the minimum and maximum length of terms
to include in the index. Once you have created a text configuration, you can select it to control a
text index on the Sybase tab of your text index property sheet (see Text Indexes on page
531).

Creating a Text Configuration
You can create a text configuration in any of the following ways:

• Select Model > Text Configurations to access the List of Text Configurations, and click
the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Text
Configuration.

Text Configuration Properties
You can modify an object's properties from its property sheet. To open a text configuration
property sheet, double-click its Browser entry in the Text Configurations folder.

The following extended attributes are available on the General tab:

CHAPTER 18: SAP Sybase IQ

530 SAP Sybase PowerDesigner

Name Description

Owner Specifies the owner of the text configuration. Use the tools to the right of the field
to create or choose an owner or to delete or inspect the properties of the current
owner.

Scripting name: Owner

Template Specifies a text configuration to use as the template for creating this one.

Scripting name: ParentConfiguration

The following extended attributes are available on the Sybase tab:

Name Description

Minimum/Maxi-
mum Term
Length

Specify the minimum and maximum length in characters of terms that will be
included in the index.

Scripting name: MinTermLength, MaxTermLength

Text breaker Specifies the name of the algorithm to use for separating column values into terms.

Scripting name: TextBreaker

Stoplist Specifies terms to ignore when building a text index.

Scripting name: StopList

Text Indexes (IQ/SQL Anywhere)
Text indexes are supported for IQ (v15.2 and higher) and SQL Anywhere (v12 and higher) to
enable fast full text searching.

You create a text index by creating a standard index (see Creating an Index on page 109), and
selecting the type TEXT. For information about the properties specific to text indexes, see
Chapter 18, SAP Sybase IQ on page 509.

Indexes (IQ)
Before creating IQ indexes, you should consider the implications of various types of indexes
on the database server memory and disk space. The set of indexes you define for any given
column can have dramatic impact on the speed of query processing.

There are four main criteria for choosing indexes:

• Number of unique values
• Types of queries
• Disk space usage

CHAPTER 18: SAP Sybase IQ

Data Modeling 531

• Data types

You should consider all criteria in combination, rather than individually. Try to anticipate for
the data in each column, the number of unique and total values, the query results users will
want, and whether the data will be used in ad hoc joins or join indexes.

The following types of index are available:

• HG – HighGroup indexes are used for GROUP BY, COUNT(DISTINCT) and SELECT
DISTINCT statements when data has more than 1000 unique values

• HNG – HighNonGroup indexes make equality comparisons, SUM and AVG calculations
very fast when data has more than 1000 unique values. Nonequality comparisons can also
be done

• LF – LowFast indexes are used for columns that have a very low number of unique values.
This index also facilitates join index processing (Join Indexes (IQ/Oracle) on page 534).
It is one of the two indexes allowed for columns used in join relationships.

• CMP – Compare indexes are used for columns that store the binary comparison (<, >, or =)
of any two distinct columns with identical data types, precision, and scale.

• TEXT – Full text indexes (see Full Text Searches (IQ/SQL Anywhere) on page 530).
• WD – Used to index keywords by treating the contents of a CHAR or VARCHAR column

as a delimited list.
• DATE, TIME, and DTTM – For date and timestamp columns.

For detailed information about choosing index types, see your IQ documentation.

Rebuilding IQ Indexes
As you develop a PDM or modify an existing one, you may change data types, alter the
percentage of distinct values or change the number of values in tables. You must then rebuild
the IQ indexes to reflect these changes.

When you rebuild indexes, PowerDesigner determines the index type based on information
contained from the table statistics, using the number field, which indicates the estimated
number of records per table, and the percentage of distinct values to compute the number of
unique values. If you have not specified a number of rows for the table, PD assumes that the
table will include at least 1 row of data.

The rebuild process creates a FASTPROJECTION index for all columns, unless any of the
following criteria apply:

Criteria Index type

If no statistics are provided and the column has an undefined data type No index is created

Low number of unique values in a column

Column used in join predicate

LOWFAST

CHAPTER 18: SAP Sybase IQ

532 SAP Sybase PowerDesigner

Criteria Index type

High number of unique values in a column

No COUNT DISTINCT, SELECT DISTINCT, or GROUP BY queries
required

HIGHNONGROUP

Column used in join predicate

High number of unique values in a column (more that 1000)

Anticipate COUNT DISTINCT, SELECT DISTINCT, or GROUP BY
queries

Column must enforce uniqueness

HIGHGROUP

Column without numeric datatype No index is created

Column with date type DATE

Column with time type TIME

Column with datetime or smalldatetime type DTTM

For example (IQ v12.5, Table A contains 1500 rows

Column % Distinct
values

Unique values Rebuild indexes gener-
ates

Col_1 integer 100 1500 HG index

Col_2 integer 50 750 LF index

Col_3 integer 0 0 no index

Col_4 char (10) 100 1500 no index

Col_5 char (10) 50 750 LF index

1. Select Tools > Rebuild Objects > Rebuild Indexes to open the Rebuild Indexes dialog
box:

CHAPTER 18: SAP Sybase IQ

Data Modeling 533

2. Select a default name to generates IQ indexes. You can use the following variables:

• %COLUMN% - Column name
• %INDEXTYPE% - Type of index to be rebuilt
• %TABLE% - Name or code of table (based on display preferences)

3. Specify a mode to use. You can choose between:

• Delete and Rebuild - All existing indexes are deleted before index rebuild
• Preserve Indexes - Preserves all existing indexes

4. [optional] Select the Include HNG and DATE/TIME indexes option to permit the
creation of these specialized indexes for appropriate columns. If you do not select this
option then only HG and LF indexes will be created.

5. [optional] Select the Update statistics before rebuild option to update such statistics as
the number of records in a table and the number of distinct values in a column before
performing the rebuild. Selecting this option can help with optimizing the rebuild.

6. [optional] Click the Selection tab and select or clear checkboxes to specify for which tables
you want to rebuild indexes.

7. Click OK, and then Yes to confirm the rebuilding of your indexes.

Join Indexes (IQ/Oracle)
A join index is a special type of index, which represents a full outer join of two or more tables,
where all rows from both tables are included in the result (with NULL returned for any column

CHAPTER 18: SAP Sybase IQ

534 SAP Sybase PowerDesigner

with no matching value). The query engine may use this full outer join as a starting point for
queries that include left outer, right outer, and inner joins.

Join indexes are defined from references. You can create a join index for any set of columns
that your users commonly join to resolve queries.

While some references are based on keys, Sybase IQ allows you to create user-defined
references to include the exact join required by your foreseen queries.

Creating a Join Index
You can create a join index in any of the following ways:

• Open the property sheet of a table, click the Join Index tab, and click the Add a Row tool.
The join index is created with the selected table specified as the base table.

• Select Model > Join Indexes, and click the Add a Row tool.
• Right-click the model or package in the Browser, and select New > Join Index
• Automatically, for each fact table and the dimension table it references by selecting Tools

> Rebuild Objects > Rebuild Join Indexes (see Automatically Creating Join Indexes
Through Rebuilding on page 536).

Join Index Properties
You can modify an object's properties from its property sheet. To open a join index property
sheet, double-click its Browser entry in the Join Indexes folder.

The General tab contains the following properties:

Property Description

Name/Code/
Comment

Identify the object. The name should clearly convey the object's purpose to non-
technical users, while the code, which is used for generating code or scripts, may be
abbreviated, and should not normally include spaces. You can optionally add a com-
ment to provide more detailed information about the object. By default the code is
generated from the name by applying the naming conventions specified in the model
options. To decouple name-code synchronization, click to release the = button to the
right of the Code field.

Stereotype Extends the semantics of the object. You can enter a stereotype directly in this field, or
add stereotypes to the list by specifying them in an extension file.

Owner Specifies the user who is the owner of the join index (usually its creator). Use the tools
to the right of the list to create, browse for, or view the properties of the currently
selected user.

Comment Descriptive label for the join index.

Base table Specifies the name of the table or materialized view that stores the join index.

DBSpace [IQ only] Specifies the DBSpace that will contain the join index.

CHAPTER 18: SAP Sybase IQ

Data Modeling 535

The following tabs are also available:

• Columns - Lists the columns used for the join index.
• References - Lists the references used for the join index.

Automatically Creating Join Indexes Through Rebuilding
You can automatically generate a join index for each selected fact table and the dimension
tables that it references. Each rebuilt join index contains the references that link the fact table
to all the dimension tables located on a single axis proceeding from the fact table.

A join index is constrained and can only be defined for tables that are organized in a connected
tree. A reference between two fact tables does not generate any join index.

1. Select Tools > Rebuild Objects > Rebuild Join Indexes to open the Rebuild Join Indexes
dialog.

2. On the General tab, select the appropriate mode to use:

• Delete and Rebuild - all existing indexes are deleted before join index rebuild.
• Preserve - preserves all existing join indexes

3. Click the Selection tab, and select one or more fact tables from the list:

CHAPTER 18: SAP Sybase IQ

536 SAP Sybase PowerDesigner

4. Click OK, and then Yes to confirm the rebuild.

A join index is generated for each fact table. The generated join indexes are available in the
list of join indexes (select Model > Join Indexes).

Adding References to a Join Index
You can add a reference to any join index. You do this, for example, when you create a new
reference that you want to include in an existing join index.

1. Open the property sheet of the join index and, if necessary, specify the appropriate base
table and DBSpace on the General tab.

2. Click the References tab, and click the Add References tool to open a selection box listing
all the available references in the PDM. Select the appropriate references in the list and
click OK to add them to the join index.

3. Click OK to save your changes and return to the model.

IQ Data Movement Scripts
PowerDesigner can generate data movement scripts to populate your AS IQ data warehouse
from other databases. The script can generate a flat file for loading to the IQ data warehouse
and create Insert Location statements for use with a proxy database (for ASE and ASA only).

To create a data movement script, you must:

• [optional] Specify mappings between the tables in your data source and your AS IQ
database

CHAPTER 18: SAP Sybase IQ

Data Modeling 537

• Generate the data movement script

1. To enable the Data Movement extensions in your model, select Model > Extensions, click
the Attach an Extension tool, select the Data Movement IQ (on the General
Purpose tab), and click OK to attach it.

2. Right-click the model in the Browser and select Properties to open its property sheet, then
click the Data Movement tab and set the following properties as appropriate to control the
files used during data movement:

Property Description

Field / Row de-
limiter

Specify the delimiters to be used between fields and between rows in the dump
file.

Fully delimited
file

Specifies that each row ends with a field delimiter before the row delimiter.

Maximum im-
age or text size

Specifies the maximum length of an image (or text) record, to which it will be
truncated if necessary.

Load file direc-
tory

Specifies the directory where the load file is located.

Note: You can override these global data movement options for a specific table (and
specify a table-specific dump file for importing) by opening its property sheet and enter
table-specific values on the Data Movement tab.

3. In your IQ warehouse PDM, right-click the model in the Browser and select New > Data
Source to create a data source to populate your IQ Data Warehouse. Enter a name for the
source and then click the Models tab, click the Add Models tool, and select your source
model.

4. Click the data source Database Connection tab, and select a data source, login, and
password to connect to your source database.

5. Click the data source Data Movement tab, and enter the following properties as
appropriate to access the remote server:

Property Description

Remote server
name

Specifies the name of the remote server used in the interface file for IQ server.

Remote data-
base name

Specifies the name of the remote database.

Data source
name

Specifies the label given to the data source in the sql.ini file.

Dump file direc-
tory

Specifies the directory where the 'dump' file (external flat file), that contains
the data to be imported, will be created.

CHAPTER 18: SAP Sybase IQ

538 SAP Sybase PowerDesigner

Property Description

Local user name Specifies the database user name.

6. [optional] Select Tools > Mapping Editor and create mappings between your source and
warehouse tables.

For detailed information about using the Mapping Editor, see Core Features Guide >
Linking and Synchronizing Models > Object Mappings.

Generating the Data Movement Script
You can generate the data movement script from the Tools menu.

1. Select Tools > Extended Generation , and specify a directory in which to generate your
data movement files.

2. [optional] Click the Selection tab and specify for which Tables and/or Data Sources you
want to generate a data movement script.

3. [optional] Click the Options tab and specify the following generation options as
appropriate:

• Use Mappings – Specifies to use mappings to control the data movement.
• Data Movement Method – Specifies the type of script to generate:

• Insert Location – [IQ or ASE only] Create a loadscript for connecting the
source database to the IQ server. If the data source is not an IQ or ASE database,
then no loadscript will be generated.

• External File – Create a dump file from the source database together with a
loadscript to upload it to the IQ server.

4. [optional] Click the Generated Files tab to review the names and locations of the files to
be generated.

5. Click OK to begin the generation of the data movement script.

CHAPTER 18: SAP Sybase IQ

Data Modeling 539

CHAPTER 18: SAP Sybase IQ

540 SAP Sybase PowerDesigner

CHAPTER 19 SAP Sybase SQL Anywhere

To create a PDM with support for features specific to the SAP® Sybase® SQL Anywhere®

(formerly AS Anywhere) DBMS family, select the appropriate version in the DBMS field of
the New Model dialog. To view these extensions to the PowerDesigner metamodel in the
Resource Editor, select Database > Edit Current DBMS and expand the Profile node.

Note: The DBMS definition file for Sybase AS Anywhere v9 is deprecated.

The following sections list the extensions provided for SQL Anywhere.

Note: We do not provide documentation for the properties on the Physical Options and
certain other tabs, though minimal information is available for them in the Resource Editor.
For information about these properties, consult your DBMS reference documentation.

Columns
The following extensions are available on the Sybase tab (v10 and higher):

Name Description

Column is com-
pressed

Specifies whether this column is stored in a compressed format.

Scripting name: Compressed

Tables
The following extensions are available on the Sybase tab:

Name Description

PCTFREE Specifies the percentage of free space to reserve for each table page. If there is
no free space in a table page, every increase in the size of a row on that page
requires the row to be split across multiple table pages, causing row fragmen-
tation and possible performance degradation.

Enter an integer between 0 (no free space is to be left on each page) and 100
(high values cause each row to be inserted into a page by itself. If PCTFREE is
not set, 200 bytes are reserved in each page.

Scripting name: PctFree

Dbspace (table-
space)

Specifies the dbspace in which the table is to be created

Scripting name: DbspaceIn

Data Modeling 541

Name Description

Remote location Creates a table at the specified remote location in addition to a proxy table on
the current database that maps to the remote table. Supports the semicolon (;) as
a field delimiter in the location-string. If no semicolon is present, a period is the
field delimiter.

Scripting name: At

Encrypted Encrypts the table using the encryption key and algorithm specified at database
creation time. Encrypting a table may take time, depending on the size of the
table.

Scripting name: Encrypted

Temporary table/
Global temporary
table

Specifies either temporary table is a global or a local temporary table.

Scripting name: [v10 and higher] TemporaryTable, [up to v9] ExtGlobalTem-
poraryTable

Not transactional [temporary tables] Specifies that the temporary table is not affected by either
COMMIT or ROLLBACK. This can provide performance improvements be-
cause operations on non-transactional temporary tables do not require entries
in the rollback log. For example, NOT TRANSACTIONAL may be useful if
procedures that use the temporary table are called repeatedly with no inter-
vening COMMITs or ROLLBACKs.

Scripting name: TemporaryTableOptionsNotTransactional

On commit [temporary tables] Specifies that the rows of a temporary table are deleted on
COMMIT.

Scripting name: TemporaryTableOptionsOnCommit

Indexes
The following extensions are available on the Sybase tab:

Name Description

Tablespace [Non-text indexes] Specifies the index dbspace.

Scripting name: In

CHAPTER 19: SAP Sybase SQL Anywhere

542 SAP Sybase PowerDesigner

Name Description

Virtual index [v10 and higher] The VIRTUAL keyword is primarily for use by the Index
Consultant. A virtual index mimics the properties of a real physical index
during the evaluation of query plans by the Index Consultant and when the
PLAN function is used. You can use virtual indexes together with the PLAN
function to explore the performance impact of an index, without the often time
consuming and resource consuming effects of creating a real index.

Scripting name: Virtual

Notify [Non-text indexes v12 and higher] Gives notification messages after n records
are successfully added for the index.

Scripting name: Notify

Word length [Non-text indexes v12 and higher] Specifies the maximum word length that is
permitted.

Scripting name: Limit

Delimited by [Non-text indexes v12 and higher] Specifies separators to use in parsing a
column string into the words to be stored in the index.

Scripting name: DelimitedBy

Text index [v12 and higher] Specifies whether the index is a text index or not.

Scripting name: TextIndex

Configuration [Text indexes v12 and higher] Specifies the text configuration (see Text Con-
figurations on page 530) to be used to control the building of the text index.

Scripting name: Configuration

Immediate refresh [Text indexes v12 and higher] Specifies that the index is refreshed immediately
each time data is written to the table.

Scripting name: Refresh

Users
The following extensions are available on the General tab (v12 and higher):

Name Description

Force change Controls whether the user must specify a new password when they log in. This
setting overrides the password_expiry_on_next_login option setting in the
login policy.

Scripting name: ForcePasswordChange

CHAPTER 19: SAP Sybase SQL Anywhere

Data Modeling 543

Name Description

Login policy Specifies the login policy to assign to the user (see Login Policies on page
522).

Scripting name: LoginPolicy

Web Services
The following extensions are available on the Sybase tab (v9 and higher):

Name Description

Port number Specifies the web service port number.

Scripting name: PortNumber

Server name Specifies the web service server name.

Scripting name: ServerName

Name prefix [DISH service type] Specifies a name prefix. Only SOAP services whose
names begin with this prefix are handled.

Scripting name: Prefix

Web Operations
The following extensions are available on the Sybase tab (v9 and higher) when the service type
is not dish:

Name Description

URL Determines whether URI paths are accepted and, if so, how they are processed.

Scripting name: Url

Auto-increment Columns
Auto-increment columns are equivalent to identity columns in those DBMS that support
identity columns.

If you switch from Sybase ASA to a DBMS that supports identity columns, the Identity
checkbox will be selected for each auto-increment column. On the other hand, if you switch to
Sybase ASA, identity columns will be assigned the autoincrement default value.

When you reverse engineer a script containing identity columns (using Sybase ASE-
compatible syntax), these are automatically converted into auto-increment columns in Sybase
ASA.

CHAPTER 19: SAP Sybase SQL Anywhere

544 SAP Sybase PowerDesigner

Mirror Servers (SQL Anywhere)
Sybase SQL Anywhere (v12 and higher) supports database mirroring through the use of
mirror servers. PowerDesigner models mirror servers as extended objects with a stereotype of
<<MirrorServer>>.

Creating a Mirror Server
You can create a mirror server in any of the following ways:

• Select Model > Mirror Servers to access the List of Mirror Servers, and click the Add a
Row tool.

• Right-click the model (or a package) in the Browser, and select New > Mirror Server.

Mirror Server Properties
You can modify an object's properties from its property sheet. To open a mirror server property
sheet, double-click its diagram symbol or its Browser entry in the Mirror Servers folder.

The following extended attributes are available on the Options tab:

CHAPTER 19: SAP Sybase SQL Anywhere

Data Modeling 545

Name Description

Type Specifies the type of mirror server to create. You can choose between:

• Primary - defines a virtual or logical server, whose name is the alternate server
name for the database, which can be used by applications to connect to the server
currently acting as the primary server. There can be only one PRIMARY server
for a database.

• Mirror - defines a virtual or logical server, whose name is the alternate server
name for the database, which can be used by applications to connect to the server
currently acting as the read-only mirror. There can be only one MIRROR server
for a database.

• Arbiter - assists in determining which of the PARTNER servers takes ownership
of the database. The arbiter server must be defined with a connection string that
can be used by the partner servers to connect to the arbiter. There can be only one
ARBITER server for a database.

• Partner - is eligible to become the primary server and take ownership of the
database. You must define two PARTNER servers for database mirroring, and
both must have a connection string and a state file. In a read-only scale-out
system, you must define one PARTNER server. This server is the root server, and
runs the only copy of the database that allows both read and write operations.

• Copy - In a read-only scale-out system, this value specifies that the database
server is a copy node. All connections to the database on this server are read-
only. You do not have to explicitly define copy nodes for the scale-out system;
you can choose to have the root node define the copy nodes when they connect.

Scripting name: Type

Using auto pa-
rent

[copy only] Specifies that the primary server will assign a parent for this server.

Scripting name: UsingAutoParent

Parent [copy only] Specifies a tree of servers for a mirroring or scale-out system and
indicates the servers from which the non-participating nodes obtain transaction log
pages.

Scripting name: ParentServer

Alternate pa-
rent

[copy only] Specifies an alternate parent for the copy node.

Scripting name: AlternateParentServer

Primary [copy only] Specifies that the parent server is the primary server.

Scripting name: PrimaryParentServer

Connection
string

Specifies the connection string to be used to connect to the server.

Scripting name: ConnectionString

CHAPTER 19: SAP Sybase SQL Anywhere

546 SAP Sybase PowerDesigner

Name Description

Log file Specifies the location of the log file that is sent between mirror servers.

Scripting name: LogFile

Preferred [partner only] Specifies whether the server is the preferred server in the mirroring
system, which assumes the role of primary server whenever possible.

Scripting name: Preferred

State file [arbiter, partner] Specifies the location of the file used for maintaining state infor-
mation about the mirroring system.

Scripting name: StateFile

Spatial Data (SQL Anywhere)
SQL Anywhere (v12 and higher) can store spatial data (data that describes the position, shape,
and orientation of objects in a defined space) using spatial reference systems.

For more information, see Spatial Data (IQ/SQL Anywhere) on page 527.

Events, Login Policies, and Full Text Searches (SQL
Anywhere)

PowerDesigner supports modeling for Sybase SQL Anywhere events (v10 and higher), login
policies (v12 and higher), and full text searches (v12 and higher).

For detailed information, see Events (IQ/SQL Anywhere) on page 515, Login Policies (IQ/
SQL Anywhere) on page 522, and Full Text Searches (IQ/SQL Anywhere) on page 530.

Certificates (SQL Anywhere)
Sybase SQL Anywhere (v16.0 and higher) supports X.509 certificates for transport-layer
security. PowerDesigner models certificates as extended objects with a stereotype of
<<Certificate>>.

Creating a Certificate
You can create a certificate in any of the following ways:

• Select Model > Certificates to access the List of Certificates, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Certificate.

CHAPTER 19: SAP Sybase SQL Anywhere

Data Modeling 547

Certificate Properties
You can modify an object's properties from its property sheet. To open a certificate property
sheet, double-click its diagram symbol or its Browser entry in the Certificates folder.

The following extended attributes are available on the General tab:

Name Description

Type Specifies the type of the certificate, which can be a string, variable, or file.

Scripting name: CertificateSourceType

Certificate Specifies the source of the certificate.

Scripting name: CertificateSource

Proxy Tables (ASE/SQL Anywhere)
A proxy table is used to access data in a remote table; it has all the attributes of the remote table,
but does not contain any data locally. PowerDesigner uses an extension file to provide support
for generating the script for a proxy table in order to run it in a Sybase ASA or ASE database.

1. To enable the proxy table extensions in your model, select Model > Extensions, click the
Attach an Extension tool, select the Proxy Tables file (on the General Purpose tab), and
click OK to attach it.

2. For each proxy table, right-click a table in another PDM target model, drag it to the model
where you want to create a proxy table, release the right mouse button and select one of the
following:

• Create Shortcut Here - Creates a non-modifiable reference to the original table.
• Replicate Here - Creates a modifiable reference to the original table. You can

desynchronize the Code property of the replica to give the proxy table a different name
in the local model.

For more information about shortcuts and replicas, see Core Features Guide > Linking and
Synchronizing Models > Shortcuts and Replicas.

Note: A custom check verifies that the proxy table is not the child table of a reference.

3. Right-click the model in the browser and select New > Data Source to create a new data
source to provide access to the remote tables on the server, and ensure that the
GenerateAsProxyServer property on the Extended Attributes tab is set to True.

Note: A single data source can contain information for several models if they represent a
single remote server.

4. Add the models from which you have drawn your proxy tables in the Models tab.

CHAPTER 19: SAP Sybase SQL Anywhere

548 SAP Sybase PowerDesigner

5. Click the Database Connection tab, and define the data source name, login and password
and click OK to return to your model.

Generating the Remote Server and Proxy Tables Creation Scripts
You can generate the remote server and proxy tables creation scripts from the model
containing proxy tables in order to run them in the database.

1. Select Tools > Proxy Tables > GenerateProxy Tables to open the Generation dialog, and
click the Options tab.

2. Set an appropriate value for the UserReplica and UserShorcut options to allow you to
generate the proxy tables corresponding to replica and/or external shortcuts.

3. Set the Generate proxy servers option to True to generate proxy servers. You can
deselect any proxy servers you do not want to generate.

4. Click OK to begin generation.

The generated script is displayed in the Result dialog.

5. [optional] Double-click the generated SQL file or click the Edit button to open the script in
a text editor.

6. Run the script on your database in order to create the proxy tables.

CHAPTER 19: SAP Sybase SQL Anywhere

Data Modeling 549

CHAPTER 19: SAP Sybase SQL Anywhere

550 SAP Sybase PowerDesigner

CHAPTER 20 Teradata

To create a PDM with support for features specific to the Teradata DBMS family, select the
appropriate version in the DBMS field of the New Model dialog. To view these extensions to
the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

Note: The DBMS definition files for Teradata V2R5 and V2R6 are deprecated.

The following sections list the extensions provided for Teradata.

Abstract Data Types
The following extensions are available on the Teradata tab (V2R6 and higher):

Name Description

Predefined data
type

[type:distinct] Indicates that character column comparison uses character

case (upper and lower) to raise differences.

Scripting name: PredefinedDataType

Dimension [v14 and higher, type:array] Specifies the dimension(s) of the array as [n1]
[n2]....

Scripting name: Dimension

Nullify [v14 and higher, type:array] Initializes all of the elements of ar-
ray_type_name to null when the type is constructed.

Scripting name: DefaultNull

Abstract Data Type Procedures
The following extensions are available on the Teradata tab if the type is distinct (V2R6 and
higher):

Name Description

Return data type Specifies the name of the data type returned by the method, which can be either a
predefined data type or a UDT.

Scripting name: ReturnDataType

Self as result Specifies that the method is type-preserving. If so, then the data type specified in
the RETURNS clause for the method must have the same name as UDT_name.

Scripting name: SelfAsResult

Data Modeling 551

Name Description

As locator Specifies that BLOB and CLOB types must be represented by a locator. The
Teradata Database does not support in-memory LOB parameters: an AS LOCA-
TOR phrase must be specified for each LOB parameter and return value.

Scripting name: ReturnAsLocator

Character set Specifies the CHARACTER SET clause for character data type.

Scripting name: ReturnCharSet

Cast data type Specifies a computed attribute that show the datatype and its length and precision.

Scripting name: CastDataTypeDisplay

As locator Specifies that BLOB and CLOB types must be represented by a locator.

Scripting name: CastAsLocator

Specific method
name

Specifies the specific name of the method whose signature is being added to the
type definition for UDT_name.

Scripting name: SpecificMethodName

Parameter style Specifies the parameter style for the method defined by this signature.

Scripting name: ParameterStyle

Returns null on
null input

Specifies that the method defined by this signature is not called if any of the
arguments passed to it is null. Instead, it returns a null.

Scripting name: ReturnsNullOnNullInput

Deterministic Specifies that the result of invoking the method defined by this signature is de-
terministic.

Scripting name: Deterministic

Glop set [v13 and higher]Specifies the glop set with which the method is associated.

Scripting name: GlopSet

Language Specifies the language (either C or C++) used to write the source code for the
method defined by this signature.

Scripting name: Language

Columns
The following extensions are available on the Teradata tab:

CHAPTER 20: Teradata

552 SAP Sybase PowerDesigner

Name Description

Character set Specifies the character set to be used.

Scripting name: CharacterSet

Case specific Specifies that character column comparison is case-sensitive.

Scripting name: CaseSpecific

Compress Compresses specified values and nulls in one or more columns of a table to zero
space. When the data in a column matches a value specified in the COMPRESS
phrase, then that value is stored only once in the table header regardless of how
many times it occurs as a field value for the column, thus saving disk storage
space.

Attribute must be enclosed in parenthesis when it is composed of multiple values.

Scripting name: Compress

Always generate
value

Specifies that identity column values are always system-generated. You cannot
insert values into, nor update, an identity column defined as GENERATED AL-
WAYS.

If not selected, identity column values are system-generated unless the user does
not enter a non-null value.

Scripting name: ExtGenAlways

Partition Specifies the partition to which the column is assigned.

Databases
The following extensions are available on the Teradata tab:

Name Description

Owning database Specifies the name of the immediate owning user or database. The default is the
user name associated with the current session.

Scripting name: FromDatabaseName

Account Specifies the account ID identifiers.

Scripting name: Account

Fallback Specifies whether to create and store a duplicate copy of each table created in
the new database.

Scripting name: Fallback

CHAPTER 20: Teradata

Data Modeling 553

Name Description

Journal Specifies the number of before change images to be maintained by default for
each data table created in the new database.

Scripting name: Journal

After journal Specifies the type of image to be maintained by default for data tables created in
the new database.

Scripting name: AfterJournal

Default journal ta-
ble

Specifies the default table that is to receive the journal images of data tables
created in the new database.

Scripting name: DefaultJournalTable

Permanent Specifies the number of bytes to be reserved for permanent storage of the new
user database. The space is taken from unallocated space in the database of the
immediate owner.

Scripting name: PermanentSpace

Spool Specifies the number of bytes (n) to be allocated for spool files. The default is
the largest value that is not greater then the owner spool space, and that is a
multiple of the number of AMPs on the system.

Scripting name: SpoolSpace

Temporary Specifies how much space (in bytes) is to be allocated for creating temporary
tables by this user. Note that temporary space is reserved prior to spool space
for any user defined with this characteristic.

Scripting name: TemporarySpace

Indexes
The following extensions are available on the Teradata tab:

Name Description

Primary Index Specifies that the index is the primary index.

Scripting name: PrimaryIndex

CHAPTER 20: Teradata

554 SAP Sybase PowerDesigner

Name Description

Partition by [primary key] Lets you select the used function to evaluate partition condition.

• case_n: Evaluates a list of conditions and returns the position of the first
condition that evaluates to TRUE, provided that no prior condition in the list
evaluates to UNKNOWN.

• range_n: Evaluates an expression and maps the result into one of a list of
specified ranges and returns the position of the range in the list.

Scripting name: PartitionBy

Partition expres-
sion

[primary key] Specifies an SQL expression used to define the partition to which a
partitioned primary index row is assigned when it is hashed to its AMP.

Scripting name: PartitionExpression

Click on the check
box to switch
multiple / single
partition mode

[primary key] Specifies whether the index is defined over multiple partitioning
expressions. When this checkbox is selected, you can specify the partition func-
tions and expressions in a list.

Scripting name: DisplayMultiplePartitions

Ordering type [not primary key] Select VALUES to optimize queries that return a contiguous
range of values, especially for a covering index or a nested join. Select HASH to
limit hash-ordering to one column, rather than all columns (the default)

Scripting name: OrderingType

Column [not primary key] Row ordering on each AMP by a single NUSI column: either
value-ordered or hash-ordered.

Scripting name: OrderByColumnList

All Specifies that a NUSI should retain row ID pointers for each logical row of a join
index (as opposed to only the compressed physical rows).

Scripting name: AllIndex

Index has name Specifies that the index will be generated with its name (as Teradata allows index
with no name).

Scripting name: NamedIndex

Tables
The following extensions are available on the Teradata tab:

CHAPTER 20: Teradata

Data Modeling 555

Name Description

Type Specifies whether the table to be created is a global temporary table or a volatile
table:

• GLOBAL TEMPORARY - a temporary table definition is created and stored
in the data dictionary for future materialization. You can create global tem-
porary tables by copying a table WITH NO DATA, but not by copying a table
WITH DATA.

• VOLATILE - specifies that a volatile table be created, with its definition
retained in memory only for the course of the session in which it is defined.

Scripting name: GlobalTemporary

Commit row ac-
tion

Specifies the action to take with the contents of a global temporary table when a
transaction ends:

• DELETE - clears the temporary table of all rows.

• PRESERVE - retains the rows in the table after the transaction is committed.

Scripting name: CommitRowAction

Duplicate row
control

Controls the treatment of duplicate rows. If there are uniqueness constraints on
any column or set of columns in the table definition, then the table cannot have
duplicate rows even if it is declared as MULTISET. Some client utilities have
restrictions with respect to MULTISET tables.

Scripting name: SetOrMultiset

Primary index Specifies the primary index of the table (see Primary Indexes (Teradata) on page
561).

Scripting name: PrimaryIndex

Users
The following extensions are available on the Teradata tab :

Name Description

Owner Specifies the database (or user) that owns the current user.

Scripting name: DBOwner

Permanent Specifies the number of bytes to be reserved for permanent storage of the new
user database. The space is taken from unallocated space in the database of the
immediate owner.

Scripting name: PermanentSpace

CHAPTER 20: Teradata

556 SAP Sybase PowerDesigner

Name Description

Spool Specifies the number of bytes (n) to be allocated for spool files. The default is
the largest value that is not greater then the owner spool space, and that is a
multiple of the number of AMPs on the system.

Scripting name: SpoolSpace

Temporary Specifies how much space (in bytes) is to be allocated for creating temporary
tables by this user. Note that temporary space is reserved prior to spool space
for any user defined with this characteristic.

Scripting name: TemporarySpace

Account Specifies the account ID identifiers.

Scripting name: Account

Fallback Specifies whether to create and store a duplicate copy of each table created in
the new database.

Scripting name: Fallback

Journal Specifies the number of before change images to be maintained by default for
each data table created in the new database.

Scripting name: Journal

After journal Specifies the type of image to be maintained by default for data tables created in
the new database.

Scripting name: AfterJournal

Default table Specifies the default table that is to receive the journal images of data tables
created in the new database.

Scripting name: DefaultJournalTable

Database Specifies the default database name.

Scripting name: DefaultDatabase

Role Specifies the default role for the user.

Scripting name: DefaultRole

Character set Specifies the default character data type.

Scripting name: DefaultCharacterSet

Collation Specifies the default collation for this user.

Scripting name: Collation

CHAPTER 20: Teradata

Data Modeling 557

Name Description

Time zone Specifies the default time zone displacement for the user.

Scripting name: TimeZone

Date format Specifies the default format for importing and exporting DATE values for the
user.

Scripting name: DateForm

Profile name Specifies a profile to the user.

Scripting name: Profile

Startup string Specifies a startup string.

Scripting name: Startup

Views
The following extensions are available on the Teradata tab:

Name Description

Lock type Specifies the type of lock to be placed.

Scripting name: LockType

Locked object class Specifies the type (class) of the object to be locked.

Scripting name: LockedClass

Locked object Specifies the name of the object to be locked.

Scripting name: LockedObjt

No wait Specifies that if the indicated lock cannot be obtained, the statement should be
aborted.

Scripting name: NoWait

Partitions (Teradata)
Teradata partitions allow you partition table data by range, case, or column. PowerDesigner
models partitions as extended sub-objects with a stereotype of Partition.

Creating a Partition
You can create a partition in any of the following ways:

• Open the property sheet of a table, select the Partitions tab and click the Add a Row tool.
The Partition field on the Teradata tab is updated to reflect the partitions that you create

CHAPTER 20: Teradata

558 SAP Sybase PowerDesigner

• Open the property sheet of a table, select the Teradata tab and enter your partition
definition in the Partition field. Partition objects are created, deleted, or modified to
reflect changes in this field.

Partition Properties
You can modify an object's properties from its property sheet. To open a partition property
sheet, double-click its Browser entry in the Partitions folder under its parent table.

Name Description

Table Specifies the parent table of the partition.

Scripting name: ParentObject

Type Specifies the type of the partition:

• Range n - Specify a range and interval in the Expression field.

• Case n - Specify criteria for the partition in the Expression field.

• Column - [if no primary index is defined on the table] Create objects in the
Column Groups list, open their property sheets and associate columns with
them. Select the All but option to create a single-column partition with au-
tocompression and a system-determined COLUMN or ROW format for each
column, if any, that is not specified in the column group list.

Scripting name: PartitionType, AllBut

Expression Specifies the partitioning expression for partitions of type Range n or Case n.

Scripting name: Expression

Column Groups Lists the groups of columns that will be partitioned for partitions of type Column.
Select an item in the list and click the Properties tool to define its type, and the
columns of the parent table to which it applies. You can specify partitioning by:

• Row

• Column

• Auto - Teradata determines the optimum partitioning format.

Select the All but option to compress data as physical rows that are inserted into
that column partition of a column-partitioned table if an appropriate method can
be calculated.

Scripting name: PartitionColumns

Add Specifies that the maximum number of partitions for a partitioning level is the
number of partitions it defines plus the value of the BIGINT constant value
specified in this field.

Scripting name: AddConstant

CHAPTER 20: Teradata

Data Modeling 559

Name Description

Partition sql Specifies the SQL statement that defines the partition. You can enter SQL in this
field to generate appropriate PowerDesigner objects or create the objects and have
them generate the SQL in this field. Changes to objects or the SQL are synchron-
ized with the other.

Scripting name: Gen

Transform Groups (Teradata)
A transform is a mechanism for creating an external representation of the UDT that is used
when exporting and importing data between the client and the Teradata server. This
mechanism allows most Teradata client utilities and open APIs to transparently move data to
and from a UDT without the need for special logic or metadata.

Transforms usually appear as a named pair of functions or methods (usually referred to as
To-SQL and From-SQL to indicate the direction of data flow to and from the database) called a
transform group. A transform group is required if the type is to be used in a table.

Transform groups are supported for Teradata v2r6 and higher. PowerDesigner models
transform groups as extended objects with a stereotype of <<TransformGroup>>.

Creating a Transform Group
You can create a transform group in any of the following ways:

• Select Model > Transform Groups to access the List of Transform Groups, and click the
Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Transform
Group.

Transform Group Properties
You can modify an object's properties from its property sheet. To open a transform group
property sheet, double-click its Browser entry in the Transform Groups folder.

Name Description

UDT Specifies the name of the user-defined type associated with the transform group.

Scripting name: UDT

To sql with Specifies the function name and parameters to be used as the tosql routine for this
transform group, and whether or not it is specific.

Scripting names: ToName, ToParms, ToSpecific

CHAPTER 20: Teradata

560 SAP Sybase PowerDesigner

Name Description

From sql with Specifies the method or function name and parameters to be used as the fromsql
routine for this transform group, and whether or not it is specific and/or instan-
tiable.

Scripting names: FromType, FromName, FromParms, FromSpecific, FromIn-
stance, FromUDT

Database Permissions (Teradata)
You can define multiple databases in a PDM for Teradata, and also define permissions on the
database object.

For more information on permissions, see Granting Object Permissions on page 154.

Primary Indexes (Teradata)
In Teradata, users tend to use indexes rather than key constraints.

1. Open the property sheet of an index from the Indexes tab of a table, or from the List of
Indexes available by selecting Model > Indexes.

2. Click the Teradata tab and select the Primary Index checkbox.

3. Click OK to close the index property sheet.

When a primary index is based on a key, it is automatically unique. You can make this
primary index non-unique by detaching the index from the key. To do so, select <None> in
the Columns Definition list in the Columns tab of the index property sheet, and set the
PrimaryIndex extended attribute of the index to True.

Once defined, you can decide to generate indexes or keys in the SQL script, and you can
also decide to generate them inside or outside the table creation script.

Error Tables (Teradata)
Teradata can record errors encounterd when writing to a data table in an error table associated
with the data table. Error tables are supported for Teradata v12 and higher. PowerDesigner
models error tables as extended objects with a stereotype of <<ErrorTable>>.

Creating an Error Table
You can create an error table in any of the following ways:

CHAPTER 20: Teradata

Data Modeling 561

• Select Model > Error Tables to access the List of Error Tables, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Error Table.

Error Table Properties
You can modify an object's properties from its property sheet. To open an error table property
sheet, double-click its diagram symbol or its Browser entry in the Error Tables folder.

The following extended attributes are available on the General tab:

Name Description

Owner Specifies the name of the database containing the error table.

Scripting name: Owner

Data table Specifies the data table for which the error table is being created.

Scripting name: DataTable

Use name at gener-
ation

Specifies that the error table will be generated with its name.

Scripting name: HasName

Join Indexes (Teradata)
Join indexes are materialized views that improve access times for cross-table queries, and
which are automatically updated when changed are made to the underlying tables. Join
indexes are supported for Teradata v12 and higher. PowerDesigner models join indexes as
views with a stereotype of <<JoinIndex>>.

Creating a Join Index
You can create a join index in any of the following ways:

• Select Model > Join Indexes to access the List of Join Indexes, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Join Index.

To complete the view, specify a view query (see View Queries on page 115).

Join Index Properties
You can modify an object's properties from its property sheet. To open a join index property
sheet, double-click its diagram symbol or its Browser entry in the Join Indexes folder.

The following extended attributes are available on the General tab:

CHAPTER 20: Teradata

562 SAP Sybase PowerDesigner

Name Description

Fallback Specifies that the join index uses fallback protection.

Scripting name: Fallback

Checksum Enables a table-specific disk I/O integrity checksum level. The checksum setting
applies to primary data rows, fallback data rows, and all secondary index rows for
the index.

Scripting name: Checksum

Hash Indexes (Teradata)
Hash indexes are designed to improve query performance like join indexes, but may in
addition enable you to avoid accessing the base table. Hash indexes are supported for Teradata
v12 and higher. PowerDesigner models hash indexes as extended objects with a stereotype of
<<HashIndex>>.

Creating a Hash Index
You can create a hash index in any of the following ways:

• Select Model > Hash Indexes to access the List of Hash Indexes, and click the Add a Row
tool.

• Right-click the model (or a package) in the Browser, and select New > Hash Index.

Hash Index Properties
You can modify an object's properties from its property sheet. To open a hash index property
sheet, double-click its diagram symbol or its Browser entry in the Hash Indexes folder.

The following extended attributes are available on the General tab:

Name Description

Table Specifies the base table on which the hash index is defined.

Scripting name: Table

Database Specifies the name of the database containing the base table. By default the
same as the database in which the hash index is created.

Scripting name: Owner

Fallback Specifies that the hash index uses fallback protection.

Scripting name: Fallback

CHAPTER 20: Teradata

Data Modeling 563

Name Description

Checksum Enables a table-specific disk I/O integrity checksum level. The checksum set-
ting applies to primary data rows, fallback data rows, and all secondary index
rows for the index.

Scripting name: Checksum

The following extended attributes are available on the Teradata tab:

Name Description

Columns Specifies the base table columns on which the hash index is defined

Scripting name: Columns

Distributed col-
umns

Specifies an optional, explicitly specified column set on which the hash index
rows are distributed across the AMPs. This is a subset of index column list.

Scripting name: ByColumns

Order by columns Specifies the row ordering on each AMP, which must be either value-ordered or
hash-ordered.

Scripting name: OrderByColumns

Ordering type [if Order by columns are specified] Specifies the ordering type of the ORDER
BY column.

Scripting name: OrderByType

Glop Sets (Teradata)
Glop sets are sets of persistent data used in external procedures and functions. PowerDesigner
supports glop sets for Teradata v13 and higher as extended objects with a stereotype of
<<GlopSet>>.

Creating a Glop Set
You can create a glop set in any of the following ways:

• Select Model > Glop Sets to access the List of Glop Sets, and click the Add a Row tool.
• Right-click the model (or a package) in the Browser, and select New > Glop Set.

Glop Set Properties
You can modify an object's properties from its property sheet. To open a glop set property
sheet, double-click its diagram symbol or its Browser entry in the Glop Sets folder.

The following extended attributes are available on the General tab:

CHAPTER 20: Teradata

564 SAP Sybase PowerDesigner

Name Description

Owner Specifies the owner of the glop set.

Scripting name: Owner

Replication Groups (Teradata)
Replication groups contain tables to be replicated. PowerDesigner supports replication groups
for Teradata v13 and higher as extended objects with a stereotype of <<ReplicationGroup>>.

Creating a Replication Group
You can create a replication group in any of the following ways:

• Select Model > Replication Groups to access the List of Replication Groups, and click
the Add a Row tool.

• Right-click the model (or a package) in the Browser, and select New > Replication
Group.

Replication Group Properties
You can modify an object's properties from its property sheet. To open a replication group
property sheet, double-click its diagram symbol or its Browser entry in the Replication Groups
folder.

The following extended attributes are available on the General tab:

Name Description

List of tables Specifies the tables to be included in the replication group. You can enter table
names here as a comma-separated list and on the Tables tab. Both lists are
synchronized and if any table name does not currently exist in the model, then it
will be created.

Scripting name: TableList

Replication Rules and Rule Sets (Teradata)
Replication rules are patterns for matching table names to include in replication groups. Rules
are collected into sets, which are in turn associated with replication groups. PowerDesigner
supports replication rule sets and rules for Teradata v13 and higher as extended objects with a
stereotype of <<ReplicationRuleSet>> and extended sub-objects with a stereotype of
<<ReplicationRule>>.

Creating a Replication Rule Set
You can create a replication rule set in any of the following ways:

CHAPTER 20: Teradata

Data Modeling 565

• Select Model > Replication Rule Sets to access the List of Replication Rule Sets, and
click the Add a Row tool.

• Right-click the model or package in the Browser, and select New > Replication Rule
Set.

Creating Replication Rules
You create replication rules on the Patterns tab of a replication rule set. You can define the rule
on the tab or by clicking the Properties tool to open the rule properties sheet. Rules have the
following properties:

Name Description

Object kind Specifies the type of database object to be added to the replication rule set.

Scripting name: ObjectKind

Like/And not like Specifies pattern strings to match or exclude against the fully qualified names of
the objects of certain SQL statements. The specified string literals can contain
wildcard characters.

Scripting name: LikeClause, NotLikeClause

Escape character Specifies an escape character for the like and not like patterns.

Scripting name: EscapeLike, EscapeNotLike

Sql [property sheet only] Displays the SQL expression corresponding to the values
entered in the other fields.

Scripting name: Definition

Replication Rule Set Properties
You can modify an object's properties from its property sheet. To open a replication rule set
property sheet, double-click its diagram symbol or its Browser entry in the Replication Rule
Sets folder.

The following extended attributes are available on the General tab:

Name Description

Default Specifies that all the rules in the rule set are default rules.

Scripting name: DefaultRules

Replication
group

Specifies the name of the replication group to which the rule set is assigned.

Scripting name: ReplicationGroup

CHAPTER 20: Teradata

566 SAP Sybase PowerDesigner

CHAPTER 21 Other Databases

The following sections list extensions to other DBMS families supported by PowerDesigner.

Informix SQL
To create a PDM with support for features specific to the Informix SQL DBMS family, select
the appropriate version in the DBMS field of the New Model dialog. To view these extensions
to the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

Note: The DBMSs for Informix v8-9 are deprecated.

The following sections list the extensions provided for Informix SQL.

Columns
The following extensions are available on the Informix tab:

Name Description

Serial Start Specifies the initial value of the column with a SERIAL datatype.

Scripting name: ExtSerialStart

Indexes
The following extensions are available on the Extended Attributes tab:

Name Description

IndexSpec Specifies an internal index definition (indexkeys column).

Scripting name: IndexSpec

Procedures
The following extensions are available on the Extended Attributes tab:

Name Description

InternalID Specifies an internal identifier in the server, which is used to retrieve the
function of an index expression.

Scripting name: InternalID

Data Modeling 567

Ingres
To create a PDM with support for features specific to the Ingres DBMS family, select the
appropriate version in the DBMS field of the New Model dialog. To view these extensions to
the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

The following sections list the extensions provided for Ingres.

Columns
The following extensions are available on the Extended Attributes tab:

Name Description

NotDefault Specifies that the column needs a value. This generates the "not default" clause in the
sql statement.

Scripting name: NotDefault

Users
The following extensions are available on the Ingres tab:

Name Description

Default group Specifies the default group the user belongs to.

Scripting name: DefaultGroup

Expiration
date

Specifies an optional expiration date associated with each user. Any valid date can be
used. Once the expiration date is reached, the user is no longer able to log on. If the
expire_date clause is omitted, the default is noexpire_date.

Scripting name: ExpireDate

Limiting se-
curity label

Allows a security administrator to restrict the highest security label with which users
can connect to Ingres when enforcing mandatory access control (MAC).

Scripting name: LimitingSecurityLabel

Profile Allows a profile to be specified for a particular user. If the profile clause is omitted,
the default is noprofile.

Scripting name: Profile

External
password

Allows a user's password to be authenticated externally to Ingres. The password is
passed to an external authentication server for authentication.

Scripting name: ExternalPassword

CHAPTER 21: Other Databases

568 SAP Sybase PowerDesigner

Interbase
To create a PDM with support for features specific to the Interbase DBMS family, select the
appropriate version in the DBMS field of the New Model dialog. To view these extensions to
the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

The following sections list the extensions provided for Interbase.

Indexes
The following extensions are available on the Interbase tab:

Name Description

Row sort Defines that the default value of the index (ascending or descending) is
defined on the index and not on the column.

Scripting name: ExtAscDesc

Sequences
The following extensions are available on the Interbase tab:

Name Description

First value Specifies the sequence first value for Interbase generator.

Scripting name: ExtStartWith

Increment value Specifies the sequence increment value for Interbase generator.

Scripting name: ExtIncrement

Microsoft Access
To create a PDM with support for features specific to the MS Access DBMS family, select the
appropriate version in the DBMS field of the New Model dialog. To view these extensions to
the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

Note: The DBMS definition file for Microsoft Access 2000 is deprecated.

The following sections list the extensions provided forMS Access.

Columns
The following extended attributes are available on the Access tab:

CHAPTER 21: Other Databases

Data Modeling 569

Name Description

Allow Zero
Length

Specifies whether a zero-length string ("") is a valid entry in a table column.

Applies only to Text, Memo, and Hyperlink table fields.

Scripting name: ExtAllowZeroLength

Generating a Microsoft Access Database
PowerDesigner and MS Access use .dat files to exchange information. You must pass via
the appropriate accessversion database delivered with PowerDesigner in order to
convert the .dat files generated into Access database files.

1. Select Database > Generate Database to launch the standard Database Generation
dialog (see Generating a Database from a PDM on page 290), set any appropriate options,
and click OK.

2. Open the appropriate accessversion database in the PowerDesigner \tools
directory.

3. Select the Generate Access database from script file radio button and enter or select a
destination database file in the Select database field.

4. Select the .dat file generated by PowerDesigner in the Script file field.

5. Click the Create button to create the database file, and then click the Open MDB button to
open the generated database.

Reverse Engineering a Microsoft Access Database
PowerDesigner and MS Access use .dat files to exchange information. You must pass via
the appropriate accessversion database delivered with PowerDesigner in order to
convert an Access database file into the .dat file required by PowerDesigner.

1. Open the appropriate accessversion database in the PowerDesigner \tools
directory.

2. Select the Reverse engineer Access database to script radio button and select the
database file to reverse in the Select database field.

3. Enter the .dat file to be generated in the Script file field.

4. Click the Create button to generate the .dat file and then reverse engineer this script in
PowerDesigner (see Reverse Engineering from Scripts on page 312).

MySQL
To create a PDM with support for features specific to the MySQL DBMS family, select the
appropriate version in the DBMS field of the New Model dialog. To view these extensions to

CHAPTER 21: Other Databases

570 SAP Sybase PowerDesigner

the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

Note: The DBMSs for MySQL v3.22 and 3.23 are deprecated. In v4.0 the attributes listed
below are available on the Extended Attributes tab.

Note that when developing for MySQL and using double quotes as a delimiter, it is necessary
to set the sql_mode to ANSI_QUOTES:
SET sql_mode='ANSI_QUOTES'

The following sections list the extensions provided for MySQL.

Columns
The following extended attributes are available on the MySQL tab:

Name Description

Retrieve with
leading zeros

When displayed, the default padding of spaces is replaced with zeros. For exam-
ple, for a column declared as INT(5) ZEROFILL, a value of 4 is retrieved as
00004.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the
UNSIGNED attribute to the column.

Scripting name: ZeroFill

Unsigned Indicates negative values are not allowed for the column.

Scripting name: Unsigned

National A way to indicate that a CHAR column should use UTF8 character set.

Scripting name: National

Character set Set of symbols and encodings.

Scripting name: CharSet

Collation Set of rules for comparing characters in a character set.

Scripting name: Collate

Indexes
The following extended attributes are available on the MySQL tab:

Name Description

Full text index Indicates that the index is a full text index.

Scripting name: FullText

CHAPTER 21: Other Databases

Data Modeling 571

Keys
The following extended attributes are available on the MySQL tab:

Name Description

Unique key When set to True, indicates that the key is unique. False implies that the key allows
duplicate values.

Scripting name: ExtUnique

Models
The following extended attributes are available on the MySQL tab:

Name Description

Database type Indicates the type of the database, as specified in the extended attribute type
DatabaseType.

Scripting name: DatabaseType

References
The following extended attributes are available on the MySQL tab:

Name Description

Reference match
type

Indicates the reference match type, as specified in the extended attribute type
ReferenceMatchType.

Scripting name: ReferenceMatch

Tables
The following extended attributes are available on the MySQL tab:

Name Description

Temporary table [v5.0 and higher] Used to create a temporary table. A temporary table is visible
only to the current connection, and is dropped automatically when the connection
is closed.

Scripting name: Temporary

NonStop SQL
To create a PDM with support for features specific to the NonStop SQL DBMS family, select
the appropriate version in the DBMS field of the New Model dialog. To view these extensions

CHAPTER 21: Other Databases

572 SAP Sybase PowerDesigner

to the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

The following sections list the extensions provided for NonStop SQL.

Columns
The following extensions are available on the Extended Attributes tab:

Name Description

ExtType Specifies an extended type for columns. Select either signed or unsigned in the
Value column.

Scripting name: ExtType

PostgreSQL
To create a PDM with support for features specific to the PostgreSQL DBMS family, select the
appropriate version in the DBMS field of the New Model dialog. To view these extensions to
the PowerDesigner metamodel in the Resource Editor, select Database > Edit Current
DBMS and expand the Profile node.

The following sections list the extensions provided for PostgreSQL.

Databases
The following extensions are available on the PostgreSQL tab:

Name Description

Template The name of the template from which to create the new database, or DEFAULT to
use the default template.

Scripting name: Template

Encoding Character set encoding to use in the new database. Specify a string constant (e.g.,
'SQL_ASCII'), or an integer encoding number, or DEFAULT to use the default
encoding.

Scripting name: Encoding

Domains
The following extensions are available on the PostgreSQL tab. To display this tab, select
BaseType or CompositeType in the Stereotype field on the General tab and click
Apply:

CHAPTER 21: Other Databases

Data Modeling 573

Name Description

Definition [Composite Type] The composite type is specified by a list of attribute names and
data types. This is essentially the same as the row type of a table, but using
CREATE TYPE avoids the need to create an actual table when all that is wanted is
to define a type. A stand-alone composite type is useful as the argument or return
type of a function.

Scripting name: CompositeDefinition

Length [Base Type] Specifies the internal length of the new type.

Scripting name: ExtTypeLength

Array Element
type

[Base Type] Specifies the type of the array elements.

Scripting name: ExtTypeElement

Array delimiter [Base Type] Specifies the delimiter character for the array.

Scripting name: ExtTypeDelimiter

By Value [Base Type] Specifies that operators and functions which use this data type
should be passed an argument by value rather than by reference.

Scripting name: ExtTypePassedByValue

Input function [Base Type] Specifies the name of a function, created by CREATE FUNCTION,
which converts data from its external form to the internal form of the type.

Scripting name: ExtTypeInput

Output function [Base Type] Specifies the name of a function, created by CREATE FUNCTION,
which converts data from its internal form to a form suitable for display.

Scripting name: ExtTypeOutput

Send function [Base Type] Specifies the name of a function, created by CREATE FUNCTION,
which converts data of this type into a form suitable for transmission to another
machine.

Scripting name: ExtTypeSend

Receive function [Base Type] Specifies the name of a function, created by CREATE FUNCTION,
which converts data of this type from a form suitable for transmission from
another machine to internal form.

Scripting name: ExtTypeReceive

Groups
The following extensions are available on the PostgreSQL tab (v8 and higher):

CHAPTER 21: Other Databases

574 SAP Sybase PowerDesigner

Name Description

Group identifier
(id)

The SYSID clause can be used to choose the PostgreSQL group ID of the new
group. This is normally not necessary, but may be useful if you need to recreate a
group referenced in the permissions of some object.

Scripting name: SysId

Procedures
The following extensions are available on the PostgreSQL tab:

Name Description

Language The name of the language that the function is implemented in. May be SQL, C,
internal, or the name of a user-defined procedural language. (See also extended
attribute type ProcLanguageList.)

Scripting name: ProcLanguage

References
The following extensions are available on the PostgreSQL tab (v8 and higher):

Name Description

Deferrable Controls whether the constraint can be deferred. A constraint that is not deferrable
will be checked immediately after every command. Checking of constraints that
are deferrable may be postponed until the end of the transaction.

Only foreign key constraints currently accept this clause. All other constraint
types are not deferrable.

Scripting name: Deferrable

Foreign key con-
straint deferred

If a constraint is deferrable, this clause specifies the default time to check the
constraint.

False means the constraint is INITIALLY IMMEDIATE, it is checked after each
statement. This is the default.

True means the constraint is INITIALLY DEFERRED, it is checked only at the
end of the transaction.

Scripting name: ForeignKeyConstraintDeferred

Tables
The following extensions are available on the PostgreSQL tab (v8 and higher):

CHAPTER 21: Other Databases

Data Modeling 575

Name Description

Temporary state If specified, the table is created as a temporary table. Temporary tables are auto-
matically dropped at the end of a session, or optionally at the end of the current
transaction.

Scripting name: Temporary

Tablespaces
The following extensions are available on the PostgreSQL tab (v8 and higher):

Name Description

Location Specifies the directory that will be used for the tablespace. The directory must be
specified by an absolute path name.

Scripting name: TbspLocation

Owner Specifies the name of the user who will own the tablespace. If omitted, defaults to
the user executing the command. Only superusers may create tablespaces, but they
can assign ownership of tablespaces to non-superusers.

Scripting name: TbspOwner

Users
The following extensions are available on the General tab (v8 and higher):

Name Description

Is schema Specifies that the user is a schema.

If TRUE, the user is allowed to create databases.

Scripting name: Schema

Owner [schemas] Specifies the owner of the schema.

Scripting name: Owner

The following extensions are available on the PostgreSQL tab (v8 and higher):

Name Description

User identifier
(id)

Specifies the PostgreSQL user ID of the new user. This is normally not necessary,
but may be useful if you need to recreate the owner of an orphaned object.

Scripting name: SysId

Create database Specifies that the user can create databases.

Scripting name: CreateDB

CHAPTER 21: Other Databases

576 SAP Sybase PowerDesigner

Name Description

Create user Specifies that the user can create users and turns the user into a superuser who can
override all access restrictions.

Scripting name: CreateUser

Validity Specifies an absolute time after which the user's password is no longer valid. By
default, the password will be valid forever.

Scripting name: Validity

Encrypted pass-
word

Specifies that the password is stored encrypted in the system catalogs.

Scripting name: EncryptedPassword

Red Brick Warehouse
To create a PDM with support for features specific to the Red Brick Warehouse DBMS family,
select the appropriate version in the DBMS field of the New Model dialog. To view these
extensions to the PowerDesigner metamodel in the Resource Editor, select Database > Edit
Current DBMS and expand the Profile node.

The following sections list the extensions provided for Red Brick Warehouse.

Columns
The following extensions are available on the Red Brick tab:

Name Description

Unique Specifies that duplicate values are not allowed in the column. Declaring a column
UNIQUE does not enforce uniqueness on the column; to enforce uniqueness, you
must also build a BTREE index on the column.

Scripting name: IsUnique

Procedures
The following extensions are available on the Red Brick tab:

Name Description

Macro Type Specifies the type of macro. You can choose either Public or Temporary. If you do
not select a type, a private macro is created by default.

Scripting name: MacroType

CHAPTER 21: Other Databases

Data Modeling 577

CHAPTER 21: Other Databases

578 SAP Sybase PowerDesigner

Index
A
ABAP components 485
ABAP packages 485
abstract data type 79, 171

abstract object 233
check model 233
create 172
instantiable object 233
link to Java class 174
properties 172

abstract data type procedure
check model 234

Access 570
access.mdb 570
aggregate function (CLR) 403
alias 157
alter (script) 308
alternate key 74, 105

designate 107
Analysis services (MS SQL Server) 433
apm 322
archive 322
ASK column default 91
assertion

template 12
association 62, 216, 226

cardinality 64
change to entity 66
check model 235, 237
create 63, 226
dependent 65
entity attribute 66
properties 63, 226
reflexive 65

association attribute 67
association link 62

cardinality 64
properties 64

asymmetric key 408
attribute 50, 216, 223

association 67
constraint 94, 95, 97
create 50, 223
delete 52
identifier 52

properties 50, 223
reuse 52

auto-increment column in Sybase ASA 544
auto-migrate

check parameter 178
column 178
domain 178
validation rule 178

auto-migrate columns (model option) 15
auto-reuse columns 178
auto-reuse columns (model option) 15
auxiliary table

IBM DB2 355

B

Barker
generation 45
inheritance 67

Barker notation 23
bitmap join index 462, 463

check model 261
options in Oracle 463
properties 463
rebuild 462

BLOB 306
build

index 111
Business Objects

See BusinessObjects
business rule 184

attach 187
create 185

business rule (PDM)
properties 185

Business Suite
importing 493, 497

BusinessObjects
generating a universe 301
Information Design Tool 301
Universe Design Tool 301
Web Intelligence 301

Index

Data Modeling 579

C
candidate key 105
cardinality 56

association 64
define for an association link 64
reference 175
relationship 53

case sensitivity (model option) 13
CDM

association 62
association link 62
attribute 50
check model 233
conceptual diagram 27
create 5
data dictionary 29
data item 42
description 3
domain 162
entity 45
Entity Relationship Diagram 3
ERD 3
generate 324
identifier 52
import 335
inheritance 67
model options 10
notation 23
option 61
relationship 53
role 3

certificate 407
certificates 547
change parent allowed (model option) 15
check model 233

abstract data type 233
abstract data type procedure 234
association (CDM) 235
association (PDM) 237
bitmap join index 261
column 238
cube 240
data format 244
data item 245
data source 246
database 241
database package 242
database package subobject 243
default 247

dimension 248
dimension attribute 257
dimension hierarchy 257
domain 250
entity 254
entity attribute 251
entity identifier 253
fact 255
fact measure 257
group 277
horizontal partitioning 257
index 258
inheritance 260
join index 261
key 262
lifecycle 263
package 265
phase 263
procedure 267
reference 268
relationship 269
role 277
sequence 271
synonym 272
table 273
table collapsing 257
tablespace 275
trigger 276
user 277
vertical partitioning 257
view 273, 278
view index 258
view reference 268
Web operation 279
Web service 279

check on commit (model option) 15
check parameter

auto-migrate 178
constraint 80
table 80
validation rule 184

CLR
aggregate function 403
assembly 402
function 406
integration 402
procedure 406
trigger 406
user-defined type 405

Index

580 SAP Sybase PowerDesigner

cluster
key 107
Oracle 474

clustered index 110
CODASYL 13
code

preview 285
collapse tables 82
column 74, 91

alternate key 107
assign default 161
assign sequence 170
auto-migrate 178
check model 238
computed 91, 102
constraint 94, 95, 97
copy 104
create 91
domain 103, 167
foreign key 91, 107
permission 155
primary key 91, 105
properties 91
replicate 104
reuse 178
statistics 321
test data profile 101

column denormalization
delete replica 83
duplicate columns 83
replication 83
revert 83
select column 83

column mandatory by default (model option) 15
column partition 518
computed column 91, 102
conceptual 13
conceptual data model

generate other models 323
conceptual diagram

association 62
association link 62
attribute 50
data item 42
entity 45
identifier 52
inheritance 67
relationship 53

connect database 288, 311

connection profile 288
constraint 94, 95, 97

create 187
data format 96
delete 130
generate 187
insert 130
name 80
reverse engineer 187
table 80
update 130

contract 422
copy

column 104
cube

check model 240
generate 217
generate cube data 229
generate in MS SQL Server 435
generate in MS SQL Server 2005 439
modify 219
reverse engineer in MS SQL Server 436
reverse engineer in MS SQL Server 2005 443

cube data generation 229
currency 200
customize

function 140
procedure 140
script 298

D
data access 80
data dictionary 29
data fields 229
data format 96

check model 244
data item 42

association 67
check model 245
copy 46
create 43
delete 52
error 44
model option 46
properties 43
reuse 44, 52
unique code 44

data lifecycle 189
data movement script (Sybase IQ) 537

Index

Data Modeling 581

data profiling 94, 95, 97
data source

check model 246
disconnect 288

data type
average length 306
BLOB 306
custom mapping 328
domain 163
length 165
precision 165
undefined 163

database
check model 241
connect 288, 311
create 8, 290, 298
define 8
denormalization 80
display 288, 311
estimate size 306
generate 290, 296, 298, 308
generate PDM 318
generate privileges 153
group 149, 157
information 288
modify 290, 308
MS Access 570
optimize reverse engineering 320
owner 151
permission 154
prefix tablespace in DB2 for z/OS 356
privilege 151
properties 8
quick launch 297
reverse engineer 312
role 149, 157
script 308
settings sets 297
size 306
statistics 91, 321
user 149, 157

database link
Oracle 475

database mirroring 418, 545
database package 464

check model 242
cursors 468
exceptions 469
procedure 466

types 470
variable 467

database package cursor 468
database package exception 469
database package procedure dependencies 146
database package subobject

check model 243
database package template 471
database package type 470
database partition group 367
DATE 531
DB2

column default 91
DB2 for Common Server 361
DB2 for z/OS 351, 357

masks 358
row permissions 359

DBCreateAfter 118, 137
DBMS

physical options 89
DBMS trigger 119

properties 122
DBMS triggers

creating 121
dbspace 516
default 160

assign 161
check model 247
column 91
create 160
physical options 89
properties 161
rebuild 162
reuse 162

default constraints delete (model option) 15
default constraints update (model option) 15
default data type (model option) 15
default implementation (model option) 15
default link on creation (model option) 15
default owner 151
denormalization 80

column denormalization 83
horizontal partitioning 81
table collapsing 82
vertical partitioning 81

dependency
procedure 142
trigger 142

dependent association 65

Index

582 SAP Sybase PowerDesigner

detail attribute 223
dimension 216, 222, 229

check model 248
create 222
detail attribute 223
mapping 227
properties 222

dimension attribute
check model 257

dimension hierarchy
check model 257

disconnect data source 288
discriminant column 81
display preference

entity 47
reference 181
table 86

display preferences 17
domain

CDM 162
check model 250
constraint 94, 95, 97
create 163
data type 163, 165
LDM 162
length 165
PDM 162
precision 165
properties 163

domain (CDM/LDM)
attribute 167
enforce 167
modify 167

domain (PDM)
assign default 161
attach column 103
auto-migrate 178
column 167
enforce 167
modify 167

domain mandatory by default (model option) 15
DSO metamodel 433
DTTM 531
duplicate columns 83

E
E/R + Merise 10
enable links to requirements (model option) 13
enabledbprefix 356

encoding for reverse engineering 317
encryption 406
encryption key

Sybase ASE 483
end point 419
enforce non-divergence (model option) 15
Enhance Data Type Mapping 328
entity 45

add to inheritance 69
associative 61
attribute 52
check model 254
constraint 95, 97
copy 46
create 45
create from association 66
create from relationship 61
delete 52
display preferences 47
entity attribute 46
identifier 46, 52
inheritance 67
properties 45

entity attribute
add to identifier 52
association 66
check model 251
copy 46
identifier 46, 52
relationship 61

entity identifier
check model 253

entity/relationship 10
ERD

CDM 3
Entity Relationship Diagram 3

error message
data item 44
relationship 61
unique code 44, 61
user-defined 138, 139

error table 561
ERwin

import 335
migrate CDM/PDM pair 336
migrate multiple files 337
migrating from 336, 337
user-defined properties 335

Index

Data Modeling 583

estimate
database size 306

event
EventDelimiter 125
multiple 125

event monitor 371
event monitor group 371
event notification 426
EventDelimiter 125
events 515, 547
extended attribute

IBM DB2 for Common Server 361
extension 20
extension file 20
extensions

HP Neoview 345
IBM DB2 for z/OS 351
Informix SQL 567
Ingres 568
Interbase 569
MS Access 569
MS SQL Server 383
MySQL 570
Netezza 449
NonStop SQL 572
Oracle 455
PostgreSQL 573
PowerBuilder 85
Red Brick Warehouse 577
SAP Business Suite 485
SAP HANA Database 499
Sybase ASA 541
Sybase ASE 479
Sybase IQ 509
Sybase SQL Anywhere 541
Teradata 551

external login 526

F
fact 216, 219

check model 255
create 219
mapping 227
properties 220

fact measure
check model 257

FASTPROJECTION 531
federated system 374
foreign key 74, 105

auto-migrate 178

column 91
designate 107
generate from identifier 324
index 110

full text indexes 547
full text search 530
full-text catalog 411
full-text index 412
full-text search 411
function

create 140
custom 140
define 140
permission 154

function-based index 109

G
generate

BusinessObjects universe 301
CDM 332
constraint 187
cube 217
cube data 229
cubes in MS SQL Server 435
database 290, 296, 298, 308
error message 138, 139
extraction script 228
foreign key 324
from a CDM 324
from a PDM 327
join index 536
MS Access 570
PDM from database 318
PowerBuilder extended attributes 85
primary key 324
privileges 153
procedure 136
proxy table script 549
quick launch 297
reference 181
script 308
settings sets 297
stored procedures order 137
test data 304
trigger 136

generate automatic archive 322
generation

preserve horizontal partitioning 81
Generation Template Language 281

Index

584 SAP Sybase PowerDesigner

glop set 564
group 149

assign user 157
check model 277
create 150
privilege 151
properties 150

GTL 281

H

HANA
exporting tables and views 504
importing tables and views 506

hash index 563
hierarchy 216, 225

create 225
properties 225

HIGHGROUP 531
HIGHNONGROUP 531
history configuration 452
horizontal partitioning

check model 257
create 81
MS SQL Server 2005 400
preserve during generation 81
properties 84
remove 85

HP Neoview
extensions 345
materialized view groups 348

I

IBM DB2
auxiliary table 355
DADX files 201
database partition group 367
event monitor 371
event monitor group 371
federated system 374
index extension 368
nicknames 374
security label 369
security label component 370
security policy 368
server 377
trusted context 354
user mappings 382

Web services 201
wrappers 381

IBM DB2 for Common Server
extended attributes 361

IBM DB2 for z/OS 357
extensions 351

IDEF1X 10, 13
identifier 52

attribute 52
copy 46
create 52
delete 52
entity attribute 46, 52
generate key 324
properties 52

identity
column 91
column in Sybase ASE 544
Sybase 91

ignore identifying owner 16
import

CDM 335
deprecated PDM logical model 41
ERwin 335
interconnected PDM logical models 42
model 335
Web service as service provider 201

index 74, 108
alternate key 110
check model 258
clear 111
clustered 110
create 109
estimate database size 306
foreign key 110
function-based 109
generate 111
key 109
materialized view 113
primary key 110
properties 110
rebuild 111
standard 109
type 531
unique 110

index extension 368
Information Design Tool 301
Informix SQL

extensions 567

Index

Data Modeling 585

Ingres
extensions 568

inheritance 67
add child entity 69
check model 260
create 68
generate 69
generation mode 69
mutually exclusive 71
properties 69

Interbase
extensions 569
sequences 169

IQ
partition 518

IQ index rebuild 531, 532

J

Java class
link 174
reverse engineer 174

join
create 175
table collapsing 82

join index 562
check model 261
generate 536
Oracle 534
Sybase IQ 534

K

key
alternate 105
check model 262
foreign 105
primary 105
properties 107

key index 109

L

LDAP server 524
LDM

attribute 50
check model 233
create 5
domain 162

entity 45
identifier 52
inheritance 67
logical diagram 39
logical model 3
migration settings 12
model options 10
notation 23
relationship 53

life cycle 189
lifecycle 189

check model 263
create 190
data source wizard 198
external database 196–198
generating data movement scripts 192
mapping editor 197
phase 195
properties 193

link
Java class 171
reverse Java class 171

logical data model
generate other models 323

logical diagram
attribute 50
entity 45
identifier 52
inheritance 67
objects 40
relationship 53

logical model 3
logical server 519
logical server policy 519
login policies 547
login policy 522
LOWFAST 531

M

mandatory parent (model option) 15
mapping

operational to warehouse 227
relational to relational mapping 228

mapping (PDM)
dimension 227
fact 227

mask (IBM DB2 for z/OS) 358
materialized query table 117

Index

586 SAP Sybase PowerDesigner

materialized view 117, 357
index 113

materialized view groups 348
materialized view log

Oracle 477
measure 216, 220

create 220
properties 220

member 229
Merise 10

association 62
message contract 423
message type 421
migrate

ERwin model into CDM/PDM pair 336
migrate from ERwin 336, 337
migration settings

LDM 12
mirror servers 545
model

copy DBMS 5
create 5
ERwin 335
import 335
option 61
preview code 285
properties 7
script 299
share DBMS 5

model option 13
data item 46

modeling environment
customize 10

modify
cube 219

MS Access 570
MS Access extensions 569

MS SQL Server
Analysis Services 433
asymmetric key 408
certificate 407
CLR aggregate function 403
CLR assembly 402
CLR function 406
CLR integration 402
CLR procedure 406
CLR trigger 406
CLR user-defined type 405
contract 422

database mirroring 418
DSO metamodel 433
encryption 406
end point 419
event notification 426
extensions 383
full-text catalog 411
full-text index 412
full-text search 411
generate cubes 435, 439
message contract 423
message type 421
partition function 400
partition scheme 401
queue 424
remote service binding 429
Resource Governor 430
resource pool 431
reverse engineer cubes 436, 443
route 428
schema 432
service 427
service broker 420
spatial index 413
symmetric key 410
synonym 433
workload group 430
XML data type 416
XML index 415
XML schema collection 417

MS SQL Server 2005
horizontal partitioning 400

multidimensional diagram
association 226
attribute 223
basics 215
dimension 222
fact 219
hierarchy 225
measure 220
retrieve objects 217

multiple triggers 124
multiplex server 521
MySQL

extensions 570

N
Netezza

extensions 449

Index

Data Modeling 587

history configuration 452
NonStop SQL

extensions 572
normalization 80
notation 10

Barker 23

O

object
attach to user 151
owner 151
PDM 74

ODBC 318
OOM

link 174
link Java class 171

operation procedure 147
operational to warehouse mapping 227
Oracle

bitmap join index 462, 463
bitmap join index properties 463
cluster 474
database link 475
database package 464
database package template 471
extensions 455
join index 534
materialized view log 477
rebuild bitmap join index 462
rebuild table database package 472
sequences 169
transparent data encryption (TDE) 473

owner 154
database 151
default 151
table 151

P

package
check model 265

partition
add 84
create 518
delete 84
horizontal 81
IQ 518
manage 84

Teradata 558
vertical 81

partition function 400
partition scheme 401
PBCatCol 85
PBCatTbl 85
PDM 4

archive 322
changing 18
check model 233
create 5
domain 162
edit definition file 17
generate from 327
generate from database 318
object 74
save as 322
table 76

PDM model options
notation 13

permission
column 155
database objects 154
object owner 154

phase
check model 263
create 195
properties 195

physical data model 4
generate other models 323

physical diagram
abstract data type 171
column 91
default 160
define 73
index 108
reference 174
synonym 157
table 76
view 112
view reference 182
web parameter 206

physical options
setting 88
specifying defaults 89
storage 88
tablespace 88

PostgreSQL
extensions 573

Index

588 SAP Sybase PowerDesigner

PowerBuilder
extensions 85
generate extended attributes 85
PBCatCol 85
PBCatTbl 85
reverse extended attributes 85

precision 165
preview

SQL 285
preview code 285
primary index

Teradata 561
primary key 74, 105

column 91, 105
generate from identifier 324
index 110
rebuild 106, 316
referential integrity 175

privilege
generate 153
grant 151
revoke 151

procedure
attach to table 147
check model 267
custom 140
define 140
dependency 142
generate 136
OOM operation 147
permission 154
procedure template 148
properties 141
SQL tools 281
stored 140
trigger template 124

procedure (database package) 466
procedure dependencies 146
procedure template 148
propagate column properties (model option) 15
proxy table

create 548
define remote server 548
generate script 549
Sybase ASA 548
Sybase ASE 482, 548

Q
query

execute 289

performance 80
queue 424
quick launch 297

R
rebuild

bitmap join index 462
database package procedure dependencies

146
database package template 472
defaults 162
index 111
IQ index 531, 532
primary key 316
primary keys 106
procedure dependencies 146
reference 181, 316
trigger dependencies 146

rebuild automatically triggers 16
rebuild trigger 125
rebuild triggers

create trigger automatically 121
template item 127
trigger template 127

Red Brick Warehouse
extensions 577

reference 74, 174
add to join index 537
auto-migration 178
cardinality 175
check model 268
create 175
delete 181
display preferences 181
generate 181
join 175
properties 175
rebuild 181, 316
reuse column 178
view 115

referential integrity 121, 175
reflexive association 65
relational 13
relational to multidimensional

mapping 229
relational to multidimensional mapping 227
relationship 53

associative entity 61
cardinality 53, 56

Index

Data Modeling 589

check model 269
create 56
create associative entity 61
entity attribute 61
example 53
option 61
properties 56
reflexive 60
unique code 61

remote server 525, 548
remote service binding 429
replicate

column 104
replication (PDM) 83
replication group 565
replication rule 565
replication rule set 565
Resource Governor 430
resource pool 431
result column

data type 208
definition 208
is element 208

retrieve
multidimensional objects 217

reverse engineer
Access 570
administrator permissions 312
constraint 187
cubes in MS SQL Server 436
from a data source 314
from script files 312
from scripts 312
generate PDM from database 318
Java class 174
link Java class 171
optimization 320
options 316
PowerBuilder extended attributes 85
script files order 312
shortcuts 319

reverse engineering
file encoding 317
statistics 321

role 149
assign user 157
check model 277
create 150
privilege 151

properties 150
route 428
row permissions (IBM DB2 for z/OS) 359

S
SAP Business Suite

extensions 485
See also Business Suite

SAP BusinessObjects
See BusinessObjects

SAP ERP
See Business Suite

SAP HANA Database
extensions 499

SAP platform
Business Suite 485, 493, 497
BusinessObjects 301
ERP 493, 497
HANA 499, 504, 506

schema 149, 432
script

alter 308
begin 299, 300
create database 298
create table 298
customize 298
database create 299
end 299, 300
extraction 228
generate 308
model 299
table 300
tablespace 300

security label 369
security label component 370
security policy 368
sequence 169

assign 170
check model 271
creating 169
properties 171

service 427
service broker 420
service provider in Web service import 201
settings sets 297
shortcuts

reverse engineering in PDM 319
size

database 306

Index

590 SAP Sybase PowerDesigner

snapshot 117
SOAP 201
spatial data 527, 547
spatial index 413
spatial reference systems 527
spatial units of measure 529
SQL

preview 285
SQL Editor

tools 281
SQL query 289
SQL/XML wizard 132
SQLBase column default 91
standard index 109
statistics 91
storage 198

check model 275
create 199
not used 275
properties 200

stored procedure
create 140
generation order 137
traceability link 137

summary table 117
Sybase AS IQ

add reference to join index 537
data movement script 537
generate join index 536
index type 531
rebuild IQ indexes 531, 532

Sybase ASA
auto-increment columns 544
extensions 541
generate script for proxy tables 549
proxy tables 548
web services 201

Sybase ASE
encryption key 483
extensions 479
generate script for proxy tables 549
identity columns 544
proxy table 482
proxy tables 548
web services 201

Sybase IQ
dbspace 516
events 515
extensions 509

external login 526
full text search 530
information lifecycle management 514
join index 534
LDAP server 524
logical server 519
logical server policy 519
login policy 522
multiplex server 521
reference architecture model 514
remote server 525
spatial data 527
spatial reference systems 527
spatial units of measure 529
text configuration 530
text index 531
web services 201

Sybase SQL Anywhere
certificates 547
events 515, 547
extensions 541
full text indexes 547
full text search 530
login policies 547
login policy 522
mirror servers 545
spatial data 527, 547
spatial reference systems 527
spatial units of measure 529
text configuration 530
text index 531

symmetric key 410
synonym 157, 433

check model 272
create 158
create view 159
properties 158

System Administrator 149
system privilege 151
System Security Officer 149

T
table 74, 76

alternate key 107
attach procedure 147
based on abstract data type 79
bitmap join index 463
check model 273
constraint 80, 95, 97

Index

Data Modeling 591

create 76, 298
default owner 16
display preferences 86
estimate database size 306
foreign key 107, 178
lifecycle 76
message 138
multidimensional type 217
owner 151
permission 154
preview code 285
primary key 105
properties 76
script 300
statistics 321
table collapsing 82
trigger 120
view 115
XML type 79

table collapsing
check model 257
object 82
remove 85

table partition 518
tablespace 198

check model 275
create 199
database prefix in DB2 for z/OS 356
enabledbprefix 356
properties 200
script 300
specifying 88

TDE 473
template item 119

add to trigger template 127
identify 130
rebuild triggers 127

teradata
error table 561

Teradata
extensions 551
glop set 564
hash index 563
join index 562
partition 558
primary index 561
primary key 561
replication group 565
replication rule 565

replication rule set 565
transform group 560

test data
generate 304
number of rows 304
triggers 304

test data profile 98
assigning to column 101
properties 98

text configuration 530
text index 531
TIME 531
traceability link 21

circular 118, 137
stored procedures 137
view 117, 118

transform group
Teradata 560

transformation
column denormalization 83
horizontal partitioning 81
table collapsing 82
vertical partitioning 81

transparent data encryption (TDE) 473
trigger 119

check model 276
create automatically 121
create from template 120
dependency 142
generate 136
multiple 124
multiple events 125
name convention 123
order 124
properties 122
rebuild 125
referential integrity 121
SQL tools 281
test data 304
trigger template 127

trigger dependencies 146
trigger template 119

add template item 127
create 127
name convention 123
procedure 124
properties 127
rebuild triggers 127

Index

592 SAP Sybase PowerDesigner

trigger template item
properties 128

trusted context
IBM DB2 354

U

undefined data type 163
unique

index 110
unique code (model option) 15
universe

generate 301
Universe Design Tool 301
user 149

attach object 151
check model 277
create 150
group 157
permission 154
privilege 151
properties 150
role 157

user-defined
generate 139

V

validation rule
auto-migrate 178

variable (database package) 467
vertical partitioning

check model 257
create 81
properties 84
remove 85

view 74, 112
check model 273, 278
create 112
create from synonym 159
default owner 16
define query 115
generation order 118
materialized query 117
multidimensional type 217
permission 154
properties 113
reference 115
select table 112

select view 112
table 115
traceability link 117, 118
trigger 120
XML type 79

view column
properties 113

view index
check model 258

view reference 182
check model 268
create 183
properties 184

W

Web Intelligence 301
web operation

create 204
properties 204

Web operation 74
check model 279

web parameter
create 206

web service
create 202
DADX extension 209
generate web services for IBM DB2 209
properties 202
reverse engineer web services 212

Web service 74
check model 279
DADX files 201
generate 208
IBM DB2 201
import as service provider 201
SOAP 201
Sybase ASA 201
Sybase ASE 201
Sybase IQ 201
testing 201
WSDL 201

with default (column properties) 91
workload group 430
WSDL 201

X

xem 20

Index

Data Modeling 593

XML
data type 416
index 415
table 79
view 79

XML schema collection 417
XML index 415
XML schema collection 417
XSM

customizing generation 330

Index

594 SAP Sybase PowerDesigner

	Data Modeling
	Contents
	PART I: Building Data Models
	CHAPTER 1: Getting Started with Data Modeling
	Conceptual Data Models
	Logical Data Models
	Physical Data Models
	Creating a Data Model
	Data Model Properties
	Database Properties (PDM)
	Using a Database in a Physical Option

	Customizing your Modeling Environment
	Setting CDM/LDM Model Options
	Assertion Template
	Migration Settings (LDM)

	Setting PDM Model Options
	Column and Domain Model Options
	Reference Model Options
	Other Object Model Options

	Setting Data Model Display Preferences
	Viewing and Editing the DBMS Definition File
	Changing the DBMS

	Extending your Modeling Environment
	Linking Objects with Traceability Links

	CHAPTER 2: Conceptual and Logical Diagrams
	Supported CDM/LDM Notations
	Conceptual Diagrams
	Conceptual Diagram Objects
	Example: Building a Data Dictionary in a CDM

	Logical Diagrams
	Logical Diagram Objects
	Importing a Deprecated PDM Logical Model
	Importing Multiple Interconnected PDM Logical Models

	Data Items (CDM)
	Creating a Data Item
	Data Item Properties
	Controlling Uniqueness and Reuse of Data Items

	Entities (CDM/LDM)
	Creating an Entity
	Entity Properties
	Copying Entities
	Displaying Attributes and Other Information on an Entity Symbol

	Attributes (CDM/LDM)
	Creating an Attribute
	Attribute Properties
	Deleting Attributes (CDM)

	Identifiers (CDM/LDM)
	Creating an Identifier
	Identifier Properties

	Relationships (CDM/LDM)
	Creating a Relationship
	Relationship Properties
	Enabling Many-to-many Relationships in an LDM
	Creating a Reflexive Relationship
	Defining a Code Option for Relationships
	Changing a Relationship into an Associative Entity
	Identifier Migration Along Relationships

	Associations and Association Links (CDM)
	Creating an Association with Links
	Creating an Association Without Links
	Association Properties
	Association Link Properties
	Creating a Reflexive Association
	Defining a Dependent Association
	Changing an Association into an Associative Entity
	Creating an Association Attribute

	Inheritances (CDM/LDM)
	Creating an Inheritance
	Creating an Inheritance with the Inheritance Tool

	Inheritance Properties
	Making Inheritance Links Mutually Exclusive

	CHAPTER 3: Physical Diagrams
	Physical Diagram Objects
	Tables (PDM)
	Creating a Table
	Table Properties
	Linking a Table to an Abstract Data Type
	Creating an XML Table or View
	Specifying Table Constraints
	Denormalizing Tables and Columns
	Horizontal Partitions
	Vertical Partitions
	Table Collapsings
	Column Denormalization
	Denormalization Object Properties
	Removing Partitionings and Table Collapsings

	PowerBuilder DataWindow Extended Attributes
	Displaying Column, Domain, and Data Type Information on a Table Symbol
	Physical Options (PDM)
	Defining Default Physical Options

	Columns (PDM)
	Creating a Column
	Column Properties
	Setting Data Profiling Constraints
	Specifying Constraints Through Business Rules
	Creating Data Formats For Reuse
	Specifying Advanced Constraints

	Populating Columns with Test Data
	Test Data Profile Properties
	Assigning Test Data Profiles to Columns

	Creating a Computed Column
	Attaching a Column to a Domain
	Copying or Replicating a Column from Another Table

	Primary, Alternate, and Foreign Keys (PDM)
	Creating Primary Keys
	Rebuilding Primary Keys

	Creating Alternate Keys
	Creating Foreign Keys
	Key Properties

	Indexes (PDM)
	Creating Standard, Key, or Function-Based Indexes
	Index Properties
	Rebuilding Indexes

	Views (PDM)
	Creating a View
	View Properties
	View Queries
	Materialized Views
	Showing View Dependencies using Traceability Links
	Defining a Generation Order for Views

	Triggers (PDM)
	Creating a Table or View Trigger
	Creating Triggers from References
	Creating a DBMS Trigger
	Trigger and DBMS Trigger Properties
	Trigger Naming Conventions
	Calling a Related Procedure in a Trigger Template
	Indicating Trigger Order for Multiple Triggers
	Defining Triggers with Multiple Events
	Rebuilding Triggers
	Trigger Templates
	Trigger Template Items
	PowerDesigner Pre-Defined Trigger Template Items

	Creating SQL/XML Queries with the Wizard
	Generating Triggers and Procedures
	Defining a Generation Order for Stored Procedures
	Creating User-Defined Error Messages
	Generating a User-Defined Error Message

	Stored Procedures and Functions (PDM)
	Creating a Stored Procedure or Function
	Procedure Properties
	Tracing Trigger and Procedure Dependencies
	Creating Procedure Dependencies Manually
	Rebuilding Trigger and Procedure Dependencies

	Attaching a Stored Procedure to a Table
	Rebuilding Procedures Attached to Tables

	Procedure Templates (PDM)

	Users, Groups, and Roles (PDM)
	Creating a User, Group, or Role
	User, Group, and Role Properties
	Assigning an Owner to an Object
	Granting System Privileges
	Generating Privileges

	Granting Object Permissions
	Defining Column Permissions

	Assigning a User to a Group or Role

	Synonyms (PDM)
	Creating a Synonym
	Synonym Properties
	Creating a View from a Synonym

	Defaults (PDM)
	Creating a Default
	Default Properties
	Assigning a Default to a Column or a Domain
	Rebuilding Defaults

	Domains (CDM/LDM/PDM)
	Creating a Domain
	Domain Properties
	PowerDesigner Standard Data Types

	Controlling Non-Divergence from a Domain

	Sequences (PDM)
	Creating a Sequence
	Assigning a Sequence to a Column
	Sequence Properties

	Abstract Data Types (PDM)
	Creating an Abstract Data Type
	Abstract Data Type Properties
	Linking an Abstract Data Type to a Java Class

	References (PDM)
	Creating a Reference
	Reference Properties
	Automatic Reuse and Migration of Columns
	Rebuilding References
	Displaying Information on Reference Symbols

	View References (PDM)
	Creating a View Reference
	View Reference Properties

	Business Rules (CDM/LDM/PDM)
	Creating a Business Rule
	Business Rule Properties
	Attaching a Business Rule to a Model Object
	Creating and Attaching a Constraint Rule

	Lifecycles (PDM)
	Modeling a Lifecycle
	Generating Data Archiving Scripts to Implement your Lifecycle

	Lifecycle Properties
	Phases (PDM)
	Archiving Data From External Databases
	Linking an External Database by Generation
	Linking an External Database through the Mapping Editor
	Linking an External Database via the Data Source Wizard

	Tablespaces and Storages (PDM)
	Creating a Tablespace or Storage
	Tablespace and Storage Properties

	Web Services (PDM)
	Creating a Web Service
	Web Service Properties
	Web Operations (PDM)
	Web Parameters (PDM)
	Web Result Columns (PDM)
	Generating Web Services for Sybase ASA, ASE, and IQ
	Generating Web Services for IBM DB2
	Reverse Engineering Web Services

	CHAPTER 4: Multidimensional Diagrams
	Multidimensional Diagram Objects
	Identifying Fact and Dimension Tables
	Generating Cubes
	Modifying Cubes

	Facts (PDM)
	Creating a Fact
	Fact Properties
	Measures (PDM)

	Dimensions (PDM)
	Creating a Dimension
	Dimension Properties
	Fact and Dimension Attributes (PDM)
	Hierarchies (PDM)

	Associations (PDM)
	Operational to Warehouse Data Mappings
	Generating Data Warehouse Extraction Scripts
	Generating Cube Data

	CHAPTER 5: Checking a Data Model
	Abstract Data Type Checks (PDM)
	Abstract Data Type Procedure Checks (PDM)
	Association Checks (CDM)
	Association Checks (PDM)
	Column Checks (PDM)
	Cube Checks (PDM)
	Database Checks (PDM)
	Database Package Checks (PDM)
	Database Package Sub-Object Checks (PDM)
	Data Format Checks (CDM/LDM/PDM)
	Data Item Checks (CDM)
	Data Source Checks (PDM)
	Default Checks (PDM)
	Dimension Checks (PDM)
	Domain Checks (CDM/LDM/PDM)
	Entity Attribute Checks (CDM/LDM)
	Entity Identifier Checks (CDM/LDM)
	Entity Checks (CDM/LDM)
	Fact Checks (PDM)
	Fact Measure and Dimension Hierarchy and Attribute Checks (PDM)
	Horizontal and Vertical Partitioning and Table Collapsing Checks (PDM)
	Index and View Index Checks (PDM)
	Inheritance Checks (CDM/LDM)
	Join Index Checks (PDM)
	Key Checks (PDM)
	Lifecycle and Lifecycle Phase Checks (PDM)
	Package Checks (CDM/LDM/PDM)
	Procedure Checks (PDM)
	Reference and View Reference Checks (PDM)
	Relationship Checks (CDM/LDM)
	Sequence Checks (PDM)
	Synonym Checks (PDM)
	Table and View Checks (PDM)
	Tablespace and Storage Checks (PDM)
	Trigger and DBMS Trigger Checks (PDM)
	User, Group, and Role Checks (PDM)
	View Checks (PDM)
	Web Service and Web Operation Checks (PDM)

	CHAPTER 6: Generating and Reverse-Engineering Databases
	Writing SQL Code in PowerDesigner
	Previewing SQL Statements
	Connecting to a Database
	Executing SQL Queries

	Generating a Database from a PDM
	Database Generation Dialog Options Tab
	Database Generation Dialog Format Tab
	Quick Launch Selection and Settings Sets
	Customizing Scripts
	Inserting Begin and End Scripts for Database Creation
	Inserting Begin and End Scripts for Table and Tablespace Creation

	Generating a BusinessObjects Universe
	Generating Test Data to a Database
	Estimating Database Size
	Modifying a Database
	Displaying Data from a Database
	Reverse Engineering a Database into a PDM
	Reverse Engineering from Scripts
	Reverse Engineering from a Live Database
	Reverse Engineering Options Tab
	Reverse Engineering Encoding Format

	Database Reverse Engineering Selection Window
	Reverse Engineering Target Models Tab
	Optimizing Live Database Reverse Engineering Queries
	Reverse Engineering Database Statistics

	Archive PDMs

	CHAPTER 7: Generating Other Models from a Data Model
	Generating Other Models from a CDM
	Generating PDM Table Keys from CDM Entity Identifiers

	Generating Other Models from an LDM
	Generating Other Models from a PDM
	Customizing Data Type Mappings
	Customizing XSM Generation for Individual Objects
	Configuring the Generated Model Options

	CHAPTER 8: Migrating from ERwin to PowerDesigner
	Importing Individual ERwin Files
	Importing Multiple ERwin Files
	Post-Import
	PowerDesigner vs ERwin Terminology
	Getting Started Using PowerDesigner for Former ERwin Users

	PART II: DBMS Definition Reference
	CHAPTER 9: HP Neoview
	Materialized View Groups (Neoview)

	CHAPTER 10: IBM DB2 for z/OS (formerly OS/390)
	Trusted Contexts (DB2)
	Auxiliary Tables (DB2)
	Tablespace Prefix (DB2)
	Materialized Query Tables (DB2)
	Masks (DB2)
	Row Permissions (DB2)

	CHAPTER 11: IBM DB2 for Common Server
	Database Partition Groups (DB2)
	Index Extensions (DB2)
	Security Policies (DB2)
	Security Labels (DB2)
	Security Label Components (DB2)

	Event Monitors (DB2)
	Federated Systems (DB2)
	Nicknames (DB2)
	Servers (DB2)
	Wrappers (DB2)
	User Mappings (DB2)

	CHAPTER 12: Microsoft SQL Server
	Horizontal Partitioning (SQL Server)
	Partition Functions (SQL Server)
	Partition Schemes (SQL Server)

	Common Language Runtime (CLR) Integration (SQL Server)
	CLR Assemblies (SQL Server)
	CLR Aggregate Functions (SQL Server)
	CLR User-Defined Types (SQL Server)
	CLR Procedures, Functions, and Triggers (SQL Server)

	Encryption (SQL Server)
	Certificates (SQL Server)
	Asymmetric Keys (SQL Server)
	Symmetric Keys (SQL Server)

	Full Text Search (SQL Server)
	Full-Text Catalogs (SQL Server)
	Full-Text Indexes (SQL Server)

	Spatial Indexes (SQL Server)
	XML Indexes (SQL Server)
	XML Data Types (SQL Server)
	XML Schema Collections (SQL Server)

	Database Mirroring (SQL Server)
	End Points (SQL Server)

	Service Broker (SQL Server)
	Message Types (SQL Server)
	Contracts (SQL Server)
	Message Contracts (SQL Server)
	Queues (SQL Server)
	Event Notifications (SQL Server)
	Services (SQL Server)
	Routes (SQL Server)
	Remote Service Bindings (SQL Server)

	Resource Governor (SQL Server)
	Workload Groups (SQL Server)
	Resource Pools (SQL Server)

	Schemas (SQL Server)
	Synonyms (SQL Server)
	Analysis Services (SQL Server 2000)
	Generating Cubes
	Reverse Engineering Cubes

	Analysis Services (SQL Server 2005)
	Specifying a Data Source for Cubes
	Generating Cubes for Microsoft SQL Server 2005
	Reverse Engineering Microsoft SQL Server 2005 Cubes

	CHAPTER 13: Netezza
	History Configurations (Netezza)

	CHAPTER 14: Oracle
	Object and SQLJ Object Data Types (Oracle)
	Bitmap Join Indexes (Oracle)
	Automatically Creating Bitmap Join Indexes Through Rebuilding
	Manually Creating Bitmap Join Indexes
	Bitmap Join Index Properties

	Database Packages (Oracle)
	Database Package Procedures
	Database Package Variables
	Database Package Cursors
	Database Package Exceptions
	Database Package Types
	Database Package Parameters
	Database Package Templates
	Rebuilding Table Database Packages

	Transparent Data Encryption (Oracle)
	Clusters (Oracle)
	Database Links (Oracle)
	Materialized View Logs (Oracle)

	CHAPTER 15: SAP Sybase Adaptive Server Enterprise
	Proxy Tables (ASE)
	Encryption Keys (ASE)

	CHAPTER 16: SAP Business Suite
	Importing an SAP Business Suite Data Dictionary
	Generating an SAP Business Suite Data Dictionary to HANA

	CHAPTER 17: SAP HANA
	Exporting Objects to the HANA Repository
	Importing Objects from the HANA Repository

	CHAPTER 18: SAP Sybase IQ
	Reference Architecture Modeling (IQ)
	Information Lifecycle Management (IQ)
	Events (IQ/SQL Anywhere)
	Dbspaces (IQ)
	Table and Column Partitions (IQ)
	Logical Servers and Policies (IQ)
	Multiplex Servers (IQ)
	Login Policies (IQ/SQL Anywhere)
	LDAP Servers (IQ)
	Remote Servers (IQ)
	External Logins (IQ)
	Spatial Data (IQ/SQL Anywhere)
	Spatial Reference Systems (SQL Anywhere)
	Spatial Units of Measure (SQL Anywhere)

	Full Text Searches (IQ/SQL Anywhere)
	Text Configurations (IQ/SQL Anywhere)
	Text Indexes (IQ/SQL Anywhere)

	Indexes (IQ)
	Rebuilding IQ Indexes

	Join Indexes (IQ/Oracle)
	Automatically Creating Join Indexes Through Rebuilding
	Adding References to a Join Index

	IQ Data Movement Scripts
	Generating the Data Movement Script

	CHAPTER 19: SAP Sybase SQL Anywhere
	Auto-increment Columns
	Mirror Servers (SQL Anywhere)
	Spatial Data (SQL Anywhere)
	Events, Login Policies, and Full Text Searches (SQL Anywhere)
	Certificates (SQL Anywhere)
	Proxy Tables (ASE/SQL Anywhere)
	Generating the Remote Server and Proxy Tables Creation Scripts

	CHAPTER 20: Teradata
	Partitions (Teradata)
	Transform Groups (Teradata)
	Database Permissions (Teradata)
	Primary Indexes (Teradata)
	Error Tables (Teradata)
	Join Indexes (Teradata)
	Hash Indexes (Teradata)
	Glop Sets (Teradata)
	Replication Groups (Teradata)
	Replication Rules and Rule Sets (Teradata)

	CHAPTER 21: Other Databases
	Informix SQL
	Ingres
	Interbase
	Microsoft Access
	Generating a Microsoft Access Database
	Reverse Engineering a Microsoft Access Database

	MySQL
	NonStop SQL
	PostgreSQL
	Red Brick Warehouse

	Index

