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Abstract

Humans and animals constantly adapt to their environment over the course of their life. This

thesis seeks to integrate various timescales of adaptation, ranging from the adaptation of

synaptic connections between spiking neurons (milliseconds), rapid behavioral adjustments

in response to situations like unexpected encountering someone on the street (seconds), and

the process of lifelong learning such as learning a language (years).

Our work comprises two primary narratives: the development of a bio-inspired Spiking Neural

Network (SpikeSuM) for surprise-based learning, and the creation of an artificial continual

learning model (GateON).

To examine the role of surprise in rapid adaptation to unforeseen events, we developed

SpikeSuM. SpikeSuM is a biologically plausible model using three-factor Hebbian rules for

fast adaptation to unexpected events. Our findings indicate that brain-like surprise can be

extracted from the neuronal activity of a prediction-error-minimizing network, and that Spike-

SuM achieves Bayesian performance in online adaptation tasks. However, rapid adaptation

may be susceptible to unwanted memory loss, or “catastrophic forgetting”. To address this

issue, we developed a context-driven prediction circuit that enables SpikeSuM to not only

learn quickly in new contexts, but also retain memories of previous ones.

Our research resulted in the formulation of key hypotheses for context detection in the brain.

These include a Surprise-driven context boundary detection using dis-inhibitory networks, as

well as the hypothesis of locally inhibited neuromodulation for preventing unwanted learning.

The context-driven approach of SpikeSuM inspired the development of our GateON method.

GateON is an artificial neural network method that emphasizes the importance of context-

based prediction and the ability of neurons to retain information to solve continual learning

problems. The method is designed to solve the limitations of SpikeSuM, namely the modular

approach preventing generalization across contexts. GateON achieves state-of-the-art results

on large-scale continual learning problems, including continual learning on 100 MNIST tasks

and large language models. Furthermore, GateON’s potential for refinement through local

learning rules suggests a path toward a more biologically plausible implementation, making it

a promising approach for future research.

By synthesizing these approaches and insights, our work aims to advance the neuroscience

and machine learning fields and contribute to a deeper comprehension of brain mechanisms

underlying surprise, context-based learning, and continual learning.

keywords — Surprise, spiking network, fast adaptation, context, continual learning, Artificial network
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Résumé

Les êtres humains et les animaux s’adaptent en permanence à leur environnement tout au long

de leur vie. Cette thèse vise à intégrer diverses échelles temporelles d’adaptation, allant de la

modification des connexions synaptiques entre les neurones à impulsion (millisecondes), les

ajustements comportementaux rapides face à des situations imprévues – comme rencontrer

quelqu’un dans la rue (secondes) – et le processus continu d’apprentissage, tel qu’apprendre

une langue (années).

La thèse se compose de deux récits principaux : le premier se consacre au développement

d’un réseau de neurones à impulsion bio-inspiré (SpikeSuM) dédié à un apprentissage basé

sur la surprise, le second s’axe sur la création d’un modèle artificiel d’apprentissage continu

(GateON).

Pour étudier le rôle de la surprise afin de permettre une rapide adaptation aux événements

imprévus, nous avons élaboré SpikeSuM, un modèle biologiquement plausible utilisant des

règles de Hebb à trois facteurs. Nos résultats montrent qu’un signal lié a la surprise, similaire à

celui observé dans le cerveau, peut être extrait de l’activité neuronale d’un réseau minimisant

les erreurs de prédiction. De plus, SpikeSuM atteint des performances Bayésiennes dans

les tâches d’adaptation en ligne. Cependant, l’adaptation rapide peut induire une perte de

mémoire non souhaitée, ou "oubli catastrophique". Pour résoudre ce problème, nous avons

développé un réseau de neurones adaptant ses prédictions selon le contexte qui permet à

SpikeSuM d’apprendre rapidement dans de nouvelles tâches, tout en conservant les souvenirs

des précédentes.

Nos recherches ont conduit à la formulation de diverses hypothèses clés relevant de la détec-

tion de contexte dans le cerveau. Ces dernières incluent la détection de contexte basée sur

la surprise par le biais de réseaux désinhibiteurs, ainsi qu’une neuromodulation localement

inhibée pour prévenir d’apprentissages indésirables. Au-delà de ces hypothèses, l’approche

utilisée dans SpikeSuM nous a inspiré pour le développement de la méthode GateON.

GateON est une méthode de réseau neuronal artificiel qui met l’accent sur l’importance

de la prédiction basée sur le contexte ainsi que la capacité des neurones à conserver des

informations. Cependant, GateON vise à rester aussi proche que possible d’une compati-

bilité biologique. Contrairement à SpikeSuM, qui utilise une approche modulaire limitant

la généralisation entre les tâches, GateON est conçu pour surmonter cette limitation. Cette

nouvelle architecture nous a permis d’obtenir des résultats de pointe dans des problèmes

d’apprentissage continus à grande échelle, tel que sur l’apprentissage continu de 100 tâches

MNIST ainsi que sur de grands modèles de langage. De plus, l’inspiration biologique initiale
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Résumé

de GateON suggère une capacité d’adaptation de la méthode qui permettrait une implémen-

tation bio-plausible. Cette observation en fait une approche prometteuse pour de futures

recherches en neuroscience.

En synthétisant ces approches et ces idées, notre travail a pour objectif faire progresser les

domaines de l’adaptation rapide et de l’apprentissage continu. En outre, notre recherche vise

à contribuer à une compréhension plus approfondie des mécanismes cérébraux sous-jacents

à l’apprentissage basé sur la surprise et le contexte. Cette thèse met en avant l’intégration des

informations sur diverses échelles temporelles, allant des millisecondes aux années, et fournit

une base pour les recherches futures et les applications pratiques en neurosciences.

mots clés — Surprise, réseau à impulsion, adaptation rapide, contexte, apprentissage continue, réseau artificiel
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1 Introduction

In the past two decades, artificial intelligence (AI) and machine learning (ML) have become in-

creasingly popular topics, paving the way for numerous scientific breakthroughs. While these

cutting-edge technologies, from the classic feed-forward neural network[1] to transformers[2],

have received much attention, it is noteworthy that the human brain has and still serves as the

primary source of inspiration[3–5].

Although the first studies on the human brain trace back to Ancient Greece, modern neuro-

science, particularly computational neuroscience, emerged in the mid to late 20th century

with the development of new measurement devices, such as calcium imaging[6], fMRI[7], two-

photon imaging[8], etc. Today, neuroscience is a growing interdisciplinary field that involves

professionals ranging from medical doctors and biologists to physicists and computer scien-

tists. This thesis takes place at the interface of theoretical neuroscience and applied machine

learning.

In biological neural networks, like in their artificial counterparts, even the smallest changes

can have a significant impact on the overall system. The way neurons communicate (informa-

tion transmitted through spikes[9]) impacts the way the synapses between two neurons are

strengthened (synaptic update rule[10, 11]). The way the synapses are strengthened impacts

the way the neurons organize (neural network). The way the neurons organize impacts the

cortical column structure (from the input to output layers), all of these impacting human

behavior. The first chapter focuses on the impact that spikes can have on global signals in the

brain influencing learning, called neuromodulatory signals.

Since the 2000s, it has become evident that neuromodulatory signals play a crucial role in

influencing human and animal behavior, memory, and responses, among other aspects[12–16].

One such signal is the Surprise. Over recent decades, extensive research has been conducted

on the detection and modeling of surprise, primarily in the fields of behavioral studies and

information theory[17, 18]. In recent years, however, there has been a growing interest in

exploring the mechanistic underpinnings of these signals.
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Introduction

We propose to investigate 3 different time scales of learning and show their interdependency.

First, the use of spike signals, with a duration of approximately 1 millisecond, for the pur-

pose of detecting surprise signals over a longer integration time period of around 200–600

milliseconds[19]. Second, we explore how these surprise signals can be employed to detect

contextual changes that can occur in the environment over varying time spans ranging from

seconds to hours. Third, we highlight the potential of context-driven models as a means of

facilitating lifelong learning, also called continual learning. By utilizing these models, individ-

uals can continually adapt and improve their behavior as they encounter novel situations and

challenges.

The following sections introduce the general topics of our work. First, we delve into the

origins and properties of theoretical bio-plausible neural networks. Second, we describe the

concept of surprise in information theory to gain a better understanding of its significance

for learning. Furthermore, we elucidate how surprise can be linked to context boundary

detection to prevent memory overwriting, also known as catastrophic forgetting. Finally, we

explore the concept of continual learning in machine learning to illustrate how our framework

of surprise and context detection holds the potential to facilitate human-like learning.

2
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Biological model of neural networks

Figure 1.1: First reproduction of
pyramidal neurons in the cere-
bral cortex, observed by Santiago
Ramón y Cajal in 1888[20]

The cerebral cortex is a complex network of neurons and

synapses (Figure 1.1) that enable the brain to process

information and produce behavior.

Neurons play a dual role in the brain, acting as both in-

formation receivers and transmitters. Although there

is a multitude of neuronal subtypes, they can be gener-

ally categorized based on their structural or functional

attributes. Structural classifications include pyramidal,

unipolar, bipolar, and multipolar. While it is easy to de-

fine functional distinctions of neurons in the spinal cords

comprising sensory, motor, and interneurons[21], it is

more complicated for cortical neurons. One main clas-

sification of brain neurons is based on their neurotrans-

mitter type (Glutamatet [22], GABAt [23], . . . ). For most

computational neuroscientists, this practically means

a model composed of Excitatory (Glutamate receptors)

and inhibitory (GABA receptors) neurons only. Excita-

tory neurons increase the electrical potential of adjacent

neurons, while inhibitory neurons reduce it.

The synapses are the channels of communication, allow-

ing the information to flow from the presynaptic neuron

to the postsynaptic one. Together, these neurons and

synapses form a neural network that is capable of pro-

ducing macroscopic behavior.

The properties of biological neural networks differ significantly from those of artificial neural

networks introduced earlier. In particular, artificial neural networks do not follow the three

key biological constraints that we focus on: neurons emit information through spikes, the

evolution of a synapse is driven only by the two neurons it connects (locality), and neurons

can only be either excitatory or inhibitory, not both (Dale’s law).

The limitations imposed on bio-inspired neural networks can significantly hinder their capa-

bilities when compared to artificial neural networks. One of the earliest models of synaptic

evolution was introduced by Donald Hebb in his 1949 publication, “The Organization of

Behavior”[24]. Hebb proposed that changes in synaptic strength (wi k ) are only dependent on

the activities of the pre-and post-synaptic neurons (i.e., neuron i and neuron k). This led to

the weight update:

∆wi k = f (prek ,posti , wi k ) (1.1)

Recent research suggests that neuromodulators such as dopamine, serotonin, etc. act as

global modulatory (not neuron-specific) signals for synaptic evolution. In particular, a gen-

3
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eralization of Hebbian rules also known as the three-factor learning rule, suggests that the

variation in synaptic strength between pre-neuron k and post-neuron i is influenced by these

neuromodulators (also called 3r d factor):

∆wi k = f (prek ,posti , wi k ,3r d ) (1.2)

The first experimental evidence of neuromodulated learning in the brain was highlighted

in reward-based experiments, where dopamine was found to be the crucial third factor[25].

Ever since, the theory of three-factor learning rules has allowed for many breakthroughs in

neuroscience[26] and further research has indicated that brain signals, such as reward, surprise,

and novelty, stimulate the release of neuromodulators, influencing learning and behavior in

animals. In this thesis, we formulate the hypothesis that the surprise signal should act as the

introduced third factor.

Surprise: from information theory to neural implementation

In the field of information theory, the notion of surprise emerges when there is a contrast

between a prior (or prior prediction), which reflects an individual’s internal model of the

world, and an actual observation in the external world. The extent to which an observation is

deemed surprising is contingent on an individual’s expectations. As an illustration, the 2008

financial crisis may have been astounding for someone who firmly believed in the stability of

the market (low-risk prior), whereas an anti-capitalist activist who predicted the collapse of

the system (high-risk prior) might not have been surprised (see Figure 1.2).

As nicely summarized in Modirshanechi et al.[27], surprise can be quantified using various

methods, including Bayesian surprise[28], which is calculated based on the magnitude of

update in predictions. Shannon Surprise[29], which is based on the logarithm of the probability

of the internal model given an observation, and the direct distance between predicted and

observed outcomes. The feeling of surprise in neuroscience has been extensively studied in

terms of behavior, including observable changes such as startle and pupil dilation. However,

the underlying mechanisms of surprise remain poorly understood.

One of our goals was to investigate the origins of surprise and its effects on human learning.

We focus on neutral surprise, not related to reward or any other feelings. To exemplify our ap-

proach and later test our model, we designed a real-life action-free task for surprise detection

tested on 100 subjects in Fig.1.3.

Prior to observation, looking for surprises allows for maximizing information gain. Such

reinforcement algorithms are called surprise-seeking. Posterior to observation, surprise-

based updates allow for fast adaptation of the model towards the new data. Fast adaptation

allows for preventing negative consequences. Minimizing surprise is critical for reliable
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Figure 1.2: Illustration of the 2008 market crisis through the lens of surprise theory. Each
individual constructs their own world model, or prior belief, based on previous life experience.
In the example of the stock market: the anti-capitalist activist anticipates a high risk of a crash
(P (crash) = 0.8), the stockholder has a low expectation of a crash (P (crash) = 0.1), and the
random citizen has no particular belief about the likelihood of a crash (P (crash) = 0.5). The
external observation is the actual market crash in 2008. Surprise is the result of the discrepancy
between the prior belief and the observation.

prediction-making, as demonstrated by the financial crisis example, and is also vital for human

development activities such as food acquisition and danger avoidance. Additionally, multiple

studies have demonstrated the impact of surprise on learning speed[17, 18, 30, 31]. Therefore, we

propose that surprise may modulate synaptic plasticity through a global third factor.

Our mechanistic approach began with the observation that surprise is a highly energy-

consuming experience, showing also an increase in brain activity. From this, we hypothesized

that minimizing surprise would be a primary goal in our model. We focus on action-free tasks

to avoid any interfering properties. Chapter 1 provides a detailed account of the development

of SpikeSuM, a fast-adaptive spiking neural network, building on the insights gained from

these earlier investigations.

Context boundary detection: another property of the surprise signal

In the field of surprise-based learning, it is widely accepted that surprise serves as a crucial

mechanism to identify significant changes in the environment’s structure, commonly known

as switch points, which in turn facilitates swift adaptation[18, 32]. We focus on delta rule

updates such that for a given prediction ŷ , an observation y , and a surprise factor S the model

update is as follows:

∆ŷ = S(ŷ − y) (1.3)

In essence, the model is barely updated if S is small, while a larger value of S results in a

stronger update toward the observation. Regrettably, the use of Eq. (1.3) entails overwriting
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Example presentation sequence

1s 1s 1s . . .

p = 1

p = 0.5

p = 0.5

Sequence 1: deterministic K=1

Sequence 2: stochastic K=2

A

B Task SetupC

D

E

K=2, with change point: reported surprise.

K=2, without change point: reported surprise.

Figure 1.3: Change points are linked to the subjective feeling of surprise. A Example of
an image sequence shown to participants. Each image is presented for 1s followed by a 1s
gray screen. B Sequence 1 is deterministic and used to familiarize the subject with the task.
Sequence 2 has stochastic transitions so that each given image can be followed by one of 2
other images, with equal probability. C Experimental setup: Participants sit in front of a screen
and observe the image sequence. Participants are informed to predict the image following the
shoe and asked to report their feeling of surprise continuously throughout the task by moving
a ’Surprise slider’ horizontally. Participants are randomly assigned to two different groups. D
Reported surprise Ŝ (dark blue) as a function of time (image presentation number) for the
stochastic sequence, averaged over all 65 participants in the first group. Immediately after
the change point at step 150 (vertical bar) the reported surprise increases. Before averaging,
the reported surprise Ŝ (dark blue) is, for each participant, normalized to mean zero and unit
variance before the switch-point. Light blue: standard deviation across participants. E. 25
other participants in the second group see a different sequence without change-point. For
time steps >150, differences between D and E are significant (see Fig. 2.4). Data collected on
the platform ’prolific’, courtesy of Michael Herzog and Wei-Hsiang Lin, EPFL.

the previous model with each new switch-point, which can result in an unwanted overwrite

called catastrophic forgetting.

To address this challenge, our proposed solution involves incorporating context-dependency

into the model learning process. Specifically, we suggest introducing the concept of the

probability of a particular context C , represented as PC , alongside a context-dependent model

ŷc . By making these adjustments, we can establish an updated rule that accounts for context,

which can be expressed as:

∆ŷc = Pc S(ŷc − y) (1.4)

The objective of the second part of Chapter 1 is to incorporate a rule into a spiking neural

network, with the goal of enabling rapid adaptation without disrupting prior knowledge. It is

worth highlighting that this model is contextual, which allows for efficient adaptation without

overwriting previous information.
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Continual learning and context-gated neural networks

Continual learning represents a critical challenge in the field of machine learning. Despite

widespread interest, defining continual learning remains an elusive task, with divergent

interpretations among experts. This introduction aims to establish a comprehensive definition

of continual learning, with the ultimate objective of clarifying the underlying objectives of

this rapidly-evolving field. Specifically, continual learning may be understood as the capacity

of an autonomous agent, such as a human, robot, or artificial intelligence system, to learn

and integrate an increasing number of complex functions within a continuously changing

environment. While this definition provides a broad framework, the precise goals of continual

learning remain subject to ongoing refinement and exploration.

The primary objective unanimously agreed upon in the field is to prevent catastrophic forget-

ting. It is imperative that an agent, once it has learned a function, task, or language, should

not forget it when presented with a novel environment or trained on a new function. However,

if we limit our scope to this objective, the most optimal approach would be to train n agents

on n tasks and consider the task complete.

In comparison to training n independently functioning agents, what benefits can be reaped

from continual learning? Timo Flesh et al.[33] defined continual learning as “[. . . ] learn[ing] to

perform multiple distinct tasks over their lifetimes while avoiding mutual interference among

them”. Even though not intended that way, this definition might overlook the primary ad-

vantage of continual learning, i.e., positive mutual interference. Continual learning aims to

generalize the learned knowledge to be applicable to novel functions, also called forward

transfer. Forward transfer allows for the attainment of favorable solutions even with limited

available data, which is typically the case in real-life scenarios or datasets. Pre-trained models

fine-tuned for specific tasks were initially thought to be the solution to this problem, but they

are highly susceptible to catastrophic forgetting. Backward transfer complements forward

transfer, and allows agents to enhance previously learned functions when exposed to new

tasks.

So far, our discussion on the learning process has not yet incorporated the formal introduction

of the terms “functions” and “environment” employed in our definition. In the context of

machine learning, functions refer to the objectives of the agent, such as classification, re-

ward optimization, regression, translation, etc. It is important to note that the same dataset

can be used to accomplish different functions, with the agent exhibiting different behavior.

Mathematically, we can represent this as:

y = f (x) ̸= f ′(x) = y ′ (1.5)

Where f and f ′ are two distinct functions of the agent, yielding different outputs despite

receiving the same input x. For instance, when applied to a dataset composed of images of
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integers (such as the MNIST dataset), an agent can be trained to perform number classifica-

tion (each number has to be classified from 0 to 9), or even numbers versus odd numbers

classification.

Now, the environment can be defined mathematically as the dataset or data distribution

from which the inputs x and x ′ are drawn, where D and D′ are two distinct environments

if D ̸= D′. The challenge faced by continual learners lies in distinguishing between two

environments that may appear very similar. For instance, when confronted with two mazes

that possess identical room arrangements but differ in only two rooms, one may opt to learn

two separate models for each maze, or instead, a single model except for the specific rooms in

question. More complex problems arise with time-dependent environments D(t ) that slowly

shift without distinct boundaries. The English lexicon, for instance, is continually evolving,

yet there exists no objective way of defining the boundaries that could separate old from

new English. To circumvent this issue, we focus solely on environments with sharp changes

that can be differentiated according to a distance measure d . Specifically, we consider two

environments D and D′ to be distinct if their distance d(D,D′) is greater than a pre-defined

threshold value θ, denoting the minimum distance required to classify two environments as

separate.

In essence, continual learning would be a valuable tool for dealing with partially observable

datasets that are observed sequentially, with limited or no repetitions. This approach enables

the training of multi-functional agents with minimal examples. By mitigating catastrophic

forgetting, continual learning facilitates model fine-tuning and upgrading without requiring

a complete retraining process from scratch. This feature is particularly beneficial given the

ever-increasing size and training time of new AI technologies, which can have a significant

ecological impact[34, 35].

We previously discussed the use of surprise signals to facilitate learning and identify shifts in

environmental structures. Additionally, we explored the concept of contextual predictions,

which enables adaptation to novel environments without erasing prior knowledge. However,

life-long learning (or continual learning as referred to within the machine learning community)

encompasses more than just preventing memory loss. A comprehensive algorithm should be

able to persistently train with minimal forgetting, transfer knowledge to new contexts (forward

transfer), and refine previous models with the incorporation of new pertinent information

(backward transfer). In comparison to machines, humans excel at operating within such a

paradigm, as the natural inputs we encounter are predominantly sequential. We summarize

Multi-task learning (access to all data at all times) versus continual learning in Fig 1.4.

In the longstanding interplay between neuroscience and machine learning, we chose to

develop a machine learning implementation of a continual learning algorithm, drawing inspi-

ration from neuroscience, called GateON. Building upon the idea of context-based prediction

modules from SpikeSuM, we aimed to create non-independent models using multiplicative

gating of activity—a concept inspired by observations of dendritic inputs in the brain[36, 37].
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Figure 1.4: Schematic of Continual Learning with 4 tasks. Left: The datasets comprise the
data from which the agent learns. For example, task 1 could be learning French, and the dataset
composed of French books, task 2 Italian, and so on. Multi-Task randomly draws examples
(books) from any task at each epoch, while continually learning samples from the same task
for a certain time (here 5 epochs) before going to the next one without revisiting earlier tasks.
Right: Results comparison between artificial and continual learners. The results presented
are synthetic and for comprehension purposes. The bars’ colors indicate test performance
for corresponding tasks, with black bars representing average performance across tasks. In
multitask learning, both artificial learners excel, achieving a performance of 1 for all tasks at
the end of training. Conversely, in the continual learning paradigm, artificial learners struggle
to maintain performance for earlier tasks when exposed to new tasks, while continual learners
enhance performance over time. This includes forward transfer (increased performance for
unobserved tasks) and backward transfer (improved performance for previously observed
tasks). In our example, knowing French helps a lot to learn Italian (forward transfer), and
learning Italian can improve already known French (Backward transfer), see bottom right
histograms.

Additionally, we considered an unsupervised, online algorithm, which is typically favored for

biologically plausible models, for determining neuron importance. This approach aids in

fixing representations to prevent catastrophic forgetting. In chapter 2, we examine the GateON

method in detail, exploring its ability to continuously learn new tasks while preserving existing

knowledge.
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2 SpikeSuM: A spiking neural network
for surprise-based learning

11



Chapter 2. SpikeSuM: A spiking neural network for surprise-based learning

Fast Adaptation to Rule Switching using Neuronal Surprise

Authors: Martin Barry, Wulfram Gerstner

Contribution: All theories and implementations have been made by Martin Barry. The writing

has been shared across authors.

2.1 Introduction

An event is surprising if it does not match our expectations [27, 38–40]. The unexpected punch-

line of a joke [40], the unexpected continuation of a sequence of tones [41], harmonies [42, 43] or

images [44–46], as well as rule switching such as shift of escape platform in the Morris water

maze [47] or meaning of cues [48–51] induce measurable physiological and behavioral reactions

in humans and animals. Without expectations arising from previous experiences, an event

such as the observation of a new image may be perceived as ’novel’ but cannot be ’surprising’
[52, 53].

Surprise is a well-studied phenomenon in the neurosciences [38, 39] and has also been formally

analyzed in the mathematical literature [27]. In the neurosciences, startle responses [54],

delayed responses [39] and pupil dilation [55, 56] are measurable physiological manifestations

in response to surprising events. Moreover, EEG, fMRI, MEG, and electrophysiological studies

show an increase in brain activity shortly after a surprising event [38, 45, 57–61]. Apart from its

potential role for intrinsic motivation [62], surprise plays a crucial role in learning: surprising

events are more memorable [39, 63, 64] and allow quick adaptation to a changing environment
[65, 66]. In this chapter, we study the role of surprise in building expectations, modulating

learning, and detecting rule switches. Specifically, we focus on two aspects. First, surprising

events significantly increase the speed of learning [17, 30, 31, 52], presumably by increasing

synaptic plasticity. Second, surprise is involved in the creation and consolidation of memories
[39, 67, 68], presumably including the memory of rules.

In contrast to the numerous mathematical studies that start from a normative framework of

surprise [27, 32, 69–78], we take a constructive approach based on a network of spiking model

neurons with plastic connections. We consider two aspects of spiking neural networks as

crucial requirements for biological plausibility. First, all information about expected and

observed events, and an occasional mismatch between the two, needs to be communicated

via spikes; thus a comparison of subthreshold membrane potentials across different neurons –

as required in some existing models [79–81] – is not possible. Second, synaptic plasticity rules

should be expressed as NeoHebbian three-factor learning rules [82–87] where the changes of

a synapse from neuron A to neuron B can only depend on the spikes of neuron A and the

state of neuron B (the two ’local’ factors’) plus one (or several) neuromodulators that play the

role of a global feedback signal (third factor) broadcasted to large groups of neurons; in our

approach, a detailed synapse-specific feedback as used in the BackProp algorithm [88] and

variants thereof [89–92] is not needed.
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Our main hypothesis is that surprise manifests itself in a spiking neural network as a mismatch

between excitation and inhibition in a layer of hidden neurons that represent the current

observation and compare it to the expectation arising from earlier observations. Our approach

is intimately linked to both the theory of excitation-inhibition balance (E-I balance) [93–95] and

the theory of predictive coding [96–99].

Predictive coding is an influential theory in the fields of neurosciences [60, 96, 100–102] and bio-

inspired artificial neural networks [103–106]. In contrast to the classic framework of predictive

coding that emphasizes sparsity of activity as a means to minimize redundancy of codes [107],

we emphasize the advantage of predictive codes for generating a surprise signal in spiking

neural networks. Importantly, we propose in this chapter that an intrinsic spike-based surprise

signal can modulate biologically plausible synaptic plasticity rules to achieve fast adaptation

and continual learning across rule switches.

We focus on two related tasks, both involving sequences of observations. The first task illus-

trates the well-known problem of re-adaptation to abrupt switches in the stimulus statistics

where the same rule of stimulus generation is unlikely to occur twice [31, 32, 75]; the second one

exemplifies the problem of continual learning across rule switches where each rule should

be memorized since it is likely to re-appear [47, 51, 108]. In both tasks, expectations (’predic-

tions’) must be built by self-supervised learning, and change points (’rule switches’) must be

inferred from the observation sequence since they are not indicated by a cue. Our model links

observations in the neurosciences at the level of single neurons or circuits to psychological

phenomena of surprise and provides an alternative to algorithmic approaches to the stability-

plasticity dilemma [109, 110], continual learning [49, 108, 111, 112], context-dependent prediction
[113–115], or context buffers in artificial neural networks [104].

2.2 Results

2.2.1 Building expectations in a sequence task with rule switching

Imagine the following sequence of numbers

1 → 2 → 3 → 4 → 1 → 2 → 3 → 4︸ ︷︷ ︸
rule A

→ 1 → 3 → 2 → 4 → 1 → 3 → 2 → 4︸ ︷︷ ︸
ruleB

. (2.1)

The complete sequence is composed of transitions (e.g., 2 → 3) and switches between two

different rules (rule A → rule B). We refer to the moment of rule switching as a change point.

The “volatile sequence tasks” generalizes switches between elementary deterministic rules,

as in (2.1), to more complex probabilistic sequences of images generated by the following

procedure. We have a total of R images. After the presentation of image number i , the next

image is one of K images that are possible as successors of i . For example, for K = 2 the

possible successors after the image ’rubber cone’ could be ’pen’ or ’table tennis bat’ (See

introductory Figure 1.3 A, B). When the rule of sequence generation changes, participants

13



Chapter 2. SpikeSuM: A spiking neural network for surprise-based learning

watching the sequence of images report the subjective feeling of surprise (See introductory

Figure 1.3 C, D) consistent with earlier experiments [116]. Thus, in such a framework, a change

point triggers a surprise signal.

To generalize the above procedure to the case of K = 4 possible successor images, we may

think of a video taken in an empty apartment of R square rooms, each room recognizable by a

specific wallpaper. The video camera takes one static view of a room before it is moved to one of

the K neighboring rooms (Fig. 2.1 A). In total, RxR transitions would be possible, but because

of the specific layout of the apartment, not all of these are observed. An observer watching

the recorded sequence would see transitions of images (’rooms’) 1 → 2 with probability T ∗
2,1

or 1 → 3 with probability T ∗
3,1, etc. The hidden ’rule’ of sequence generation arises from the

transition matrix T ∗
i , j (Fig. 2.1 B). However, at unknown moments in time the rule changes

(with switch probability H , called ’volatility’), akin to the switch from rule A → rule B in

(2.1). Note that the set of images remains the same after a change point, while the transition

matrix changes [72, 79]. The above probabilistic task with rule switching is a generalization of

established tasks in the cognitive neuroscience of surprise [31, 116–118].

As opposed to an agent that selects actions to collect information, our observer is passively

watching the image sequence. From the observed transitions between images, the observer

learns which image (or images) to expect given the current one, i.e., estimate transition

probabilities Ti , j . This passive mode is ideal for a study of surprise because, in the context of

neuroscience, it avoids any confounding factors arising from action selection [119] or reward
[12] and, in the context of reinforcement learning theory, it avoids any complex interaction with

models of curiosity, action selection policy or questions of model-based versus model-free

reinforcement learning [120, 121] - simply because our observer does not choose actions. Once

the set of possible transitions under a given rule has been learned, this knowledge could, of

course, be used in model-based reinforcement learning, but this is not part of the tasks that

we consider (see Supplementary Discussion).

A typical sequence of rule switches is shown in Fig. 2.1 C where different rules correspond to

different transition matrices T ∗
i , j . Inspired by experimental observations for passive learning

in humans and animals [46, 60, 118, 122, 123], we assume that the (potentially unconscious) goal

of observers is to predict possible next observations, i.e., estimate transition probabilities Ti , j

that are as close as possible to the real probabilities T ∗
i , j . Our spiking neural network model

(introduced in the next paragraph) implicitly encodes expectations about possible next stimuli

in the set of synaptic weights. From this set of weights, we extract the expectations at time t in

the form of a learned transition matrix Ti , j (t) that can be compared to the currently active

rule T ∗
i , j (Fig. 2.1 B). The expectations built during exposure to the sequence are a prerequisite

to extracting a surprise signal.
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Figure 2.1: Expected transitions in a volatile sequence task. A. At each presentation step,
the stimulation is caused by the wallpaper image (indicated by different colors) in one of the
rooms of an apartment with R rooms (here R = 16). The image sequence reflects transitions
(arrows) from the current room to one of the K neighboring rooms (here K = 4). On rare
occasions (change points), the transition rule is changed by a new random assignment of
wallpapers to rooms. The same rule is unlikely to return. B. The ground truth transition matrix
for different rules (left), compared to the transition matrix estimated by the model (right) at
different time points of a simulation run. C. Switching of rules over time in the simulation of B.
Each rule (Rule 1, Rule 2, . . . ) only appears once. Vertical lines indicate the time points in B.

2.2.2 A mismatch of excitation and inhibition yields an intrinsically generated
surprise signal

The Spike-based Surprise-Modulated (SpikeSuMr and ) network model (Fig. 2.2 A) consists of

an input layer with random projections onto excitatory and inhibitory neurons in a prediction

error layer, and a deep nucleus (i.e., a cluster of neurons in the central nervous system located

below cortex [100, 124]), e.g., the locus Coeruleus [59], the ventral tegmental area [125] or higher-

order thalamus [126, 127]. Neurons in the prediction error layer receive spikes from a first pool

of N neurons encoding the currently observed stimulus and from another pool of N neurons

in a memory buffer that encodes information on the previously observed stimulus (Material

and methods). Synapses onto excitatory and inhibitory neurons have different weights. Two

populations of pyramidal neurons P1 and P2, putatively located in cortical layers 2/3 [60],

compare the weighted inputs of the current observation with the weighted inputs arising

via connections from the memory buffer that we interpret as ’predictions’. Population P1 is

inhibited by the current observation and excited by the prediction coming from the buffer,

whereas population P2 is excited by the current observation and inhibited by the prediction.

Both populations project to a group of pyramidal tract (PT) neurons, putatively located in

layer 5b [87, 128], which output a low-pass filtered version Ā of the summed neuronal activity.

Since Ā reflects the combined outputs of populations P1 and P2, the output of PT neurons

15



Chapter 2. SpikeSuM: A spiking neural network for surprise-based learning

can be interpreted as a symmetric measure of ’distance’ between prediction and observation

(Material and methods). If a prediction is correct, excitation and inhibition balance each

other so that the total activity Ā of all pyramidal neurons is close to zero.

In our model, the PT-neurons send the filtered network activity information Ā to an unspeci-

fied nucleus (Fig. 2.2A) which sends back a neuromodulatory signal 3r d (Ā) that is broadcast

across the prediction error layer. We have checked that a large activity Ā, caused by positive or

negative prediction errors [57, 60, 122, 129, 130], indicates an unexpected transition. A transition is

unexpected (’surprising’) if the network has for example learned that after image ’6’, the next

possible images are 2,5,7 or 10 (Fig 2.1 A), but the observed input corresponds to image ’3’,

indicating that a switch point has occurred. Indeed, we find that the amplitude 3r d (Ā(t )) of the

3rd factor increases after a switch of rules (Fig. 2.2 A, inset). We therefore interpret 3r d (Ā) as a

’surprise signal’. Note that the surprise signal is a function of activity in the prediction error

layer—and therefore implicitly a function of the mismatch between excitation and inhibition.

To achieve E-I balance for expected transitions, we assume that activated excitatory synapses

onto neurons in population P1 change according to an anti-Hebbian three-factor plasticity

rule, modulated by the surprise signal,

∆w =−3r d (Ā)hpost EPSC
pre

, (2.2)

where EPSC
pre

is the filtered sequence of excitatory postsynaptic currents (EPSCs) caused

by the presynaptic spike train and hpost is the input potential of the postsynaptic neuron

(for details, see Material and methods). Analogously, we assume that activated inhibitory

synapses onto neurons in population P2 change according to a Hebbian three-factor rule

modulated by the surprise signal,

∆w = 3r d (Ā)hpost IPSC
pre

(2.3)

where IPSC
pre

is the filtered sequence of inhibitory postsynaptic currents (IPSCs). For conver-

gence properties of the two learning rules, see Material and methods.

Earlier theories have established that both Hebbian learning of inhibitory synapses [95] and

anti-Hebbian learning of excitatory synapses [131] lead, for predictable inputs, to a stabilization

of the firing rate of postsynaptic neurons at a low value. To check whether this holds also true

for the above three-factor rules, we focus on a long stimulation sequence of 3000 presentation

steps containing a single switch between two equal-length sequences generated each with

a fixed but different rule. Consistent with earlier Hebbian theories, we observe that the

SpikeSuMr and network converges after about 500 presentation steps to a stationary state of

low activity (Fig 2.2 D1). Moreover, the switch between rules causes a sharp peak in the activity

Ā (Fig 2.2 D1, inset). Thus, the activity Ā of PT-neurons can indeed be used to extract a surprise

signal that is large for unexpected observations.

The predictability of the next stimulus is higher in a volatile sequence task with K = 2 possible
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Figure 2.2: Neurons in the prediction error layer exhibit high activity for unexpected transitions. A.
Spiking network model (SpikeSuM). From top to bottom: Every 100ms, stimuli change gives rise to a
sequence Rn−1,Rn ,Rn+1 . . . representing images of the volatile sequence task. The presently observed
stimulus (wallpaper image of room Rn , red box ’OBS’) and the previous stimulus (Rn−1, ’Buffer’) are
encoded with spike trains of 128 neurons each (16 sample spike trains shown). These spike trains
are transmitted to an antisymmetric excitation-inhibition network (prediction error layer) composed
of pyramidal neurons (red triangles) and inhibitory neurons (orange circles). Pyramidal neurons in
population P1 are excited (arrowheads) by the inputs representing the prediction X̂ from the previous
presentation step and inhibited (round heads) by the current observation X whereas neurons in P2

are inhibited by the prediction X̂ and excited by the current observation X . The activity A1 and A2 of
populations P1 and P2 is transmitted to a population of pyramidal tract neurons (PT), which conveys a

low-pass filtered global activity τ ˙̄A =−Ā+ A1 + A2 to a group of neuromodulatory neurons in a deep
nucleus (green, labeled 3r d ) which send a neuromodulatory surprise signal back to the prediction error
layer. Poorly predicted stimuli increase activity in the prediction error layer and indirectly accelerate,
via the 3r d factor, learning in the plastic connections (red lines). Inset: Time course of the 3r d factor
(green) over 4s before and after a rule switch at time tswi tch . B: Spike trains of neurons in P2 during
a specific stimulus Rn representing one of the R = 16 images. For visualization, the neurons have
first been ordered from highest to lowest firing rate and then clustered into groups of 8 neurons, with
neurons 1 to 8 forming the first cluster, 9 to 16 second etc. The histogram of the average firing rate
per cluster is shown on the right. B1: Random sparse connectivity from presynaptic neurons in the
input layer to neurons in the prediction error layer. Inset: schematics, continuous weights with colors
indicating strength from red (weak) to blue (strong). B2: Connectivity with binary connections. Inset:
schematics, nonzero connections (blue) are organized in clusters of independent neurons. Random
connectivity is potentially closer to biology, but regular connectivity has algorithmic advantages. C1

and C2: To compare the two networks, we show the spikes generated in response to a new image Rn′
while keeping the same order of neurons. For random connectivity (C1) spike plots are different if
Rn′ ̸= Rn but similar if Rn′ = Rn . The same holds for regular connectivity (C2), but the structure is more
obvious to the human eye. D1 and D2: Filtered activity of pyramidal neurons in populations P1 (red),
P2 (cyan), and the total filtered activity Ā (black) as a function of time-averaged over 100 different
sequences with a change point (switch of rule) after 500 presentation steps, for random (D1) or regular
(D2) connectivity. Both networks indicate a surprising transition (dashed vertical line) by increased
activity. Insets show the activity before and after the rule switch. E1 and E2: Same as in D1 and D2, but
for the case of K = 4 possible next images. Since predictions are less reliable, the activity Ā converges to
higher levels.
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Chapter 2. SpikeSuM: A spiking neural network for surprise-based learning

transitions from a given observation (Fig 2.2 D1) than in a task with K = 4 (Fig 2.2 E1). Hence,

the next stimulus becomes ’more expected’, the prediction error is lower, and the population

activity converges to a significantly lower value in Fig 2.2 D1 than in E1; mean activity averaged

over the last 100 presentation steps is 375Hz in Fig. 2.2 D1 versus 461Hz in Fig. 2.2 E1 (p < 10−10

). This observation leads to experimentally testable predictions (Supplementary Fig. S2.B.1).

We consider two different architectures for the connectivity from the input spike trains to the

pools P1 and P2 of pyramidal neurons. The first one, SpikeSuMr and (Fig. 2.2 B1), uses sparsely

connected random projection weights from the input layer to the prediction error layer,

whereas the second one (SpikeSuM) has a simplified connectivity matrix with hand-wired

binary weights implementing a direct representation of input stimuli by non-overlapping

subsets of pyramidal neurons in the prediction error layer (See Material and methods). We

find that the qualitative features of the population activity in the simpler network (Fig. 2.2

B2-E2) are similar to those of the randomly connected network (Fig. 2.2 B1-E1). Since results

are comparable for the two connectivity patterns, we focus in the following on SpikeSuM

with the simple binary connectivity as a reference because it is faster to simulate. Moreover,

the interpretation of activity patterns is easier with binary connectivity, since states that are

predicted as potential observations given the previous stimulus are identifiable by simple

visual inspection of the spiking activity (Supplementary Figure S2.B.2).

2.2.3 Modulation of plasticity by surprise supports rapid re-adaptation

To understand whether the modulation of plasticity by surprise is necessary for the rapid

re-adaptation after rule switches, we compare the results of SpikeSuM over a long sequence

of 10’000 presentation steps with those of two simpler networks with the same architecture

but different modulation (Fig. 2.3A). In our reference model, the third factor 3r d (Ā) has two

components that yield a slow modulation of plasticity for small Ā and a rapid one for large Ā

(Fig. 2.3A, inset, red line). The two components enable rapid learning after an unexpected rule

switch, but slow learning during a long phase with a fixed rule with a residual level of ’expected

uncertainty’ [17] caused by stochastic transitions compatible with the rule. In comparison, a

network with a constant learning rate (no modulation, SNNnm) either converges after a switch

of rules with a short delay (for a fixed high learning rate, an example is shown in Fig. 2.3A)

towards a high-error solution or converges (for a fixed low learning rate, example not shown)

to a low-error solution, but only slowly and with a much longer delay. Moreover, a network

with a simpler modulation SNNsm shows fairly good convergence but adapts more slowly

immediately after a switch. We find that, within the family of tested functions, a 3r d factor

built of two components as in SpikeSuM is necessary to reach adaptation that is both fast and

precise, but adding a third component does not further improve learning.

A systematic comparison shows that SpikeSuM and SpikeSuMr and outperform SNNsm and

SNNnm across various instantiations of the volatile sequence task (Fig. 2.3 B). Moreover, the

performance of SpikeSuM is only slightly worse than that of the variational Bayesian algorithm

18



2.2 Results

0 2k 4k 6k 8k
0

0.005

0.01

0.015

0.02

0.025

Presented stimulus

E
rr

or
 m

ag
ni

tu
de

Size 16 
 K 2

Size 16 
 K 4

Size 16 
 K 8

Size 32 
 K 2

Size 32 
 K 4

Size 32 
 K 8

0

20

40

60

80

100

SpikeSuM
SNNsm

SpikeSuM

SNNnm

SNNsm

BOCPA VarSmile

A B

Fu
ll 

si
m

ul
at

io
n 

Er
ro

r

SpikeSuMrand

0 5000 10000

SNNnm 3rd
(Ā)
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Figure 2.3: Rapid adaptation enabled by surprise-modulated three-factor plasticity. A
Inset: The surprise signal transmitted by the 3rd factor as a function of the activity Ā in
the prediction error layer for three cases (red: SpikeSuM rule; cyan: simplified modulation
rule; green: constant learning rate, no modulation). The parameters of all three rules have
been optimized. Main graph: Error magnitude of the transition matrix (Frobenius norm
between the true transition matrix T ∗ and the estimated matrix T ) as a function of time
for the SpikeSuM model (red), and a Spiking Neural Network model (SNN) with the same
architecture and number of neurons as SpikeSuM, but simple modulation (cyan SNNsm) or
no modulation (green SNNnm), in a volatile sequence task with R = 16 images and K = 4
possible transitions. The occasional abrupt increases in error are caused by rule switches.
The SpikeSuM network exhibits faster learning immediately after the switch, as well as better
convergence during periods when the rule stays fixed; volatility H=0.001. B Average error
over 10’000 presentation steps with volatility H = 0.001 for different values of R (size) and
K . The performance of SpikeSuM is comparable to that of the Bayesian Online Change Point
detection algorithm (BOCPA) and better than SNNnm or SNNsm . The results with random
connectivity SpikeSuMrand are shown in dark blue.

varSMiLe [32] or the online Bayesian change point detection algorithm BOCPA [75] which are

both surprise-based machine learning algorithms designed for near-optimal change-point

detection (Material and methods).

In summary, on the volatile sequence task without re-occurrence of the same rule, our spiking

network with surprise-modulated learning shows faster relearning after a rule switch than the

one without, which suggests an important role of surprise-modulation in rapid, yet precise,

adaptation to changes in the stimulus statistics. Importantly, the surprise signal is not some

external variable but is extracted from the spiking activity of the network itself. Moreover, the

feeling of surprise reported by human participants is strongly correlated with the simulated

surprise signal in the SpikeSuM network if the model is stimulated with the same sequence

(Fig. 2.4). Thus, the surprise signal in the SpikeSuM network links the notion of surprise in a

behavioral experiment with a functional role for modulating synaptic plasticity at the level of

neuronal circuits.
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Figure 2.4: Simulated compared to behavioral surprise. We ran 60 simulations of SpikeSuM
using the specific sequence with change-points from the behavioral experiments of Fig. S1,
and 30 further simulations using the sequence without change points. A Scaled normalized
surprise (cf. Fig. S1) as a function of time in simulations with SpikeSuM (green line: mean;
shaded green: variance) and from the 65 participants in group 1 (blue line: mean; shaded
blue: variance) for sequences with change-points. B Same as A, but for sequences without
change-points; experimental data in red colors. C Differences in the experimental data of
participants are significant (t-test) in A between the 50 steps before and 50 steps after the
change point (blue bars in C); not significant in B between the 50 steps before and 50 steps
after step 150 in the absence of change point (red bars in C); and significant for the time steps
150-200 between A and B (blue vs. red bar in C). The symbol *** indicates p < 10−5, and ’ns’ not
significant. D Bootstrapped (20 random draws of 10 subjects) correlation between simulation
and experiment. Simulation in the presence of a change point strongly correlates with the
experimental data in the presence of a change point, but much less with the experimental
data in the absence of a change point, and analogous for simulations without a change point.
The table shows bootstrapped correlation values plus standard deviation.

2.2.4 Continual learning across rule switches is supported by the surprise signal

So far, each switch of a rule introduced a sequence of observations with a new transition

matrix so that the previously learned transition matrix could be overwritten at no loss. To

explore continual learning across rule switches, we now consider a task where the same rules

(’apartments’) reappear several times (Fig. 2.5 A). We study a meta-network composed of M

SpikeSuM modules, each acting as one of the rule memories (Fig. 2.5 B). We call this enlarged

network SpikeSuM-C (for SpikeSuM with Context). Note that the sets of stimuli (e.g., the
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different wallpapers) are the same for all rules so the context needs to be inferred from the

observed sequences. Ideally, each module m ∈ M should focus on one of the contexts, i.e., a

single set of rules. We postulate that in a well-functioning network, only predictions within the

currently active rule are updated while multiple other contexts that were memorized before

are left untouched and can be reused later when the same context reappears.

To implement this idea, we assume that a set of ’context selector modules’ (CSMs) selects

the specific module that should learn the observed transition (Material and methods). The

indirect coupling of context memories via the CSMs gives rise to a Best-Predictor-Learns (BPL)

architecture, such that only the context module m with the lowest activity in the prediction-

error layer updates its weights. Importantly, the prediction-error module with the lowest

activity is the one with the best prediction for the currently observed transition.

All CSMs compete with each other via standard Winner-Take-All dynamics [132], such that all

CSMs are silent except one. However, none of the prediction error neurons is shut down by

the competitive dynamics between CSMs, so an arbitrary population p in module m has a

non-zero activity. To restrict synaptic plasticity to the prediction error module with the lowest

activity, we hypothesize that the nucleus that broadcasts the third factor is organized in several

segments, such that segment m sends a neuromodulatory signal 3r d (Ām) to the corresponding

prediction-error module m. Such a structure with localized feedback loops is compatible

with the anatomy of the higher-order thalamus [100, 126, 127] or the ventral tegmental area [125].

More specifically, in our model the activity of populations P1 and P2 in the SpikeSuM module

m excites segment m of the nucleus. In parallel, high activity of another CSM m′ ̸= m (i.e.,

m′ is the winner) inhibits PT neurons in the prediction-error layer of module m and hence

suppresses segment m of the nucleus. But without neuromodulatory activity, plasticity does

not occur in module m. Taken together, excitation and inhibition ensure that only the module

m′ with the lowest prediction error updates its weights (Material and methods)

To illustrate the function of the network, we initialize it with 5 empty context modules and

stimulate it with a stochastic sequence generated by switches between four different rules.

Figure 2.5 D shows that SpikeSuM-C learns a new rule as fast as SpikeSuM (equivalent to

SpikeSuM-C with 1 module). Moreover, if a known rule reappears it re-activates an existing

module instead of learning from scratch. Switches to a previously learned rule trigger a rapid

switch of the network to the correct module. Finally, we find that if the number of learned

rules is smaller than the number of allocated modules, empty modules stay untouched and

therefore remain available for later use (Fig. 2.5 E).

The amplitude of the surprise signal after a switch to a previously encountered rule is smaller

than that after a switch to a completely new rule (Fig. 2.5 D). In the first case, surprise leads

to a switch to an existing module while in the second case to the recruitment of a previously

untouched module. Thus, the surprise signals that are generated in the network are used

by the same network to trigger learning or switching between context modules - all in an

unsupervised manner (Material and methods for more details).
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2.2.5 A modular network architecture avoids the stability-plasticity dilemma

In both SpikeSuM and SpikeSum-C, neurons in the prediction-error layer exhibit low activity

for known transitions and large transient activities for surprising ones (Figs. 2.2D-E and 2.5

D). This finding is in agreement with experimental studies using visual [122, 133, 134], auditory
[58, 118, 135], or tactile [117, 136] tasks. The two model networks contain separate populations

of neurons, P1 and P2, that respond to negative and positive prediction error, respectively,

consistent with in-vivo data [57, 60, 122, 129, 130]. Here we ask how the plasticity of synapses

onto prediction-error neurons succeeds to avoid the stability-plasticity dilemma [109] which

stipulates that learning is either slow or leads to overwriting of earlier memories.

We find in the volatile sequence task with re-occurrence of rules that the ’effective modulation’

of prediction-error neurons is radically different between SpikeSuM and SpikeSuM-C model

networks (Fig. 2.6 A1-A2). In the network with multiple modules, a large activity of prediction

error neurons in layer-2/3 of module k does not cause the emission of neuromodulator in

module k since another module is the winner. The magnitude of the neuromodulator signal

influences the amount of Hebbian learning. The magnitude of synaptic changes in populations

P1 and P2 of the SpikeSuM network without modular architecture (equivalent to a SpikeSuM-C

network with a single module) depends monotonically on the total Hebbian drive, i.e. on the

combination of presynaptic activity with an elevated postsynaptic membrane potential (Fig.

2.6 B1). While in the network with a single module, the increase is monotonic, this is not the

case for the network with multiple modules (Fig. 2.6 B2). For small and medium values of

the Hebbian drive, the update magnitude increases with the Hebbian drive whereas, for a

Hebbian drive above a value of 0.6 (a.u.), the magnitude decreases back to negligible values

(Fig. 2.6 B2).

We observe the same qualitative difference between the SpikeSuM and SpikeSuM-C model

networks if we study the total incoming plasticity of a single neuron in the prediction error

layer, i.e., the update magnitude of all synapses onto a given neuron as a function of the

membrane potential averaged over all prediction error neurons (Fig. 2.6 C1-C2). Since

the membrane potential encodes positive (in population P2) or negative (in population P1)

prediction errors, the graph in Fig. 2.6 C1-C2 can be interpreted as the total amount of synaptic

plasticity (vertical axis) as a function of prediction error (horizontal axis). The small magnitude

of synaptic changes for very large prediction errors (Fig. 2.6 C2) is functionally important

because it leads to the protection of existing modules after a switch of context. The two

regimes, i.e., memory modification for small prediction errors and memory protection for

large prediction errors in a given module, separated by an inverted-U-shaped curve, have

been hypothesized by Gershman et al. as a model for memory modification and formation
[68]. Therefore, our model has translated a hypothesis at the cognitive level [68] into specific

experimental predictions for synaptic plasticity at the circuit level. In an in-vivo experiment

involving multiple contexts, presynaptic activation and postsynaptic membrane potential

of putative prediction-error neurons should be monitored while the size of the synaptic

connection is measured, e.g., by spine size estimation from optogenetic experiments. We
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speculate that in primary sensory areas future experimental observations might resemble

the qualitative features of SpikeSuM whereas in frontal cortex or subcortical areas those of

SpikeSuM-C.

2.3 Discussion

Our network of spiking model neurons enables rapid formation of context-dependent ex-

pectations in a paradigm of continual learning where rule switching occurs at unknown

moments in time. Importantly, rapid adaptation becomes possible by surprise-modulated

learning. In contrast to earlier implementations of surprise in cognitive neuroscience models
[17, 30, 31, 52, 71, 73], surprise manifests itself in our spiking neural model by increased population

activity caused by a momentary imbalance of excitation and inhibition [60, 95]. The surprise

signal has two different roles in our model. First, it triggers the release of feedback signals (e.g.,

neuromodulators) that serve as ’third factors’ in an unsupervised neoHebbian learning rule
[82, 83, 86]. Second, it initiates switches between modules and avoids overwriting old memories
[68, 111, 112], since synaptic plasticity is disinhibited only in the module representing the current

rule.

In our approach, predictive coding is a consequence of our aim to extract a surprise signal from

spiking activity—as opposed to classic approaches where predictive coding is a consequence

of redundancy-reducing or energy-minimizing codes [96, 107]. Surprise requires expectations

that arise from earlier experience. In our model, the sensory experience of the previous

presentation step is represented in the buffer population, while predictions are encoded

in the connection weights. Our model does not specify whether the buffer population is

located in the same area (e.g., cortical L5 cells [60]) or in some other area (e.g., prefrontal

cortex [137, 138]). The antisymmetric architecture of the prediction-error circuit in each module

requires two separate excitatory and inhibitory pathways onto model neurons that extract

positive and negative error prediction, similar to putative prediction error neurons in layer 2/3

of the sensory cortex [123, 139]. We propose that the activity of these neurons is summed, and

potentially low-pass filtered, by layer 5b PT neurons [87, 128] which would then transmit the

aggregated signal (’surprise’) to other areas or nuclei that eventually trigger a feedback signal

such as the release of a neuromodulator. While positive or negative prediction errors can be

assigned to single neurons, surprise in our model is extracted from the aggregated unsigned

prediction error—available by a summation over large groups of neurons.

Our model is a conceptual one and makes no specific predictions on the type or origin

of these feedback signals. However, candidate sources for such feedback signals could be

acetylcholinergic neurons in nuclei of the basal forebrain and brain stem, potentially linked

to arousal and plasticity [100, 124, 140]; noradrenergic neurons in locus coeruleus linked to

cognition, attention, and network reorganization [59, 141]; serotonergic neurons in the Raphe

nuclei linked to surprise [50]; dopaminergic neurons in the ventral tegmental area linked to

reward [142]; or populations of neurons in the higher-order thalamus potentially linked to
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consciousness or predictive processing [100, 126, 127]. At least for the last two, it is known that

the population is not homogeneous but structured, [125, 127] which is a necessary condition

for the proposed model of switching between different rules encoded in different modules.

Even though dopamine is largely correlated with reward and reward prediction error [12, 142],

dopamine has also been linked to novelty and potentially surprise [142, 143]. On the other

hand, dopamine can also be triggered by activity in locus coeruleus [144, 145], a nucleus that

is traditionally associated with noradrenaline [141]. Hence, a one-to-one mapping between

neuromodulators and functional roles should not be expected [84].

Predictions in our model are encoded at two levels, i.e., in the weights of synaptic connections

and the activity pattern of excitatory neurons in the prediction-error layer (Supplementary Fig.

S2.B.2). While the model was not designed to reproduce experimental data of frontal cortex

neurons, several aspects of the activity patterns in the SpikeSuM-C model are qualitatively

consistent with delay activity [138], implicit encoding of associations [137], and mixed activity

profiles [146] which enables to decode from the population activity the current rule, the present

input, the previous state, and alternative observations consistent with the previous state but

inconsistent with the present input.

A distinction between expected and unexpected uncertainty has been proposed in the litera-

ture on reward-based learning [17, 147]. Analogously, we can define expected and unexpected

uncertainty in the absence of rewards. In our volatile sequence task, the expected uncertainty

depends on the number K of possible next stimuli whereas the unexpected uncertainty corre-

sponds to unpredictable switches between rules. For K = 1, the expected uncertainty vanishes.

For K > 1, the level of expected uncertainty is, after learning, represented in our model by the

remaining activity of excitatory neurons in the prediction error layer which could be tested

in experiments (Supplementary Fig. S2.B.1). Expected uncertainty can also be visible as a

non-zero tonic level of the surprise signal (i.e., the 3rd factor). The unexpected uncertainty is

represented by sharp peaks in the activity of the prediction error neurons (Fig. 2.5 D).

Detecting unpredictable switches in the rules governing the momentary environment is a

challenge for both artificial neural networks [108] and biological brains [50, 138]. If rule switching

is not detected, for example, because of reduced serotonergic signaling, behavior exhibits

reduced adaptation speed [50] or even obsessive-compulsive signatures [50, 148]. Surprise in our

model is putatively related to mismatch negativity in EEG signals. Interestingly, schizophrenia

patients exhibit a reduced mismatch negativity[149] and a reduced capacity to make valid

prediction [150–152]. In our model, missing surprise signals lead to an impairment of memory

formation and consolidation, potentially linked to deficits in schizophrenia patients [153–156].

Definitions of surprise in a probabilistic framework [27] have previously been used to explain

adaptation to rule switching [75–78]. However, these definitions cannot be directly applied to

spiking neural networks since a correct normalization of probability distributions is difficult to

maintain within spiking networks [157, 158] and the calculation of a distance, or Kullback-Leiber

divergence, between two probability distributions [27, 159] is even harder. Surprise-driven neu-
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ral networks for adaptive decision making [160] or neural particle filters for adaptive perception
[161] are not easily extendable to networks of spiking neurons. Our approach extracts from the

activity of spiking neurons a qualitative surprise signal that can be interpreted as a measure

of observation-mismatch surprise [27] without a direct link to probability distributions. In

summary, surprise, i.e., a response of the brain to a stimulus that occurs against expecta-

tions [27, 38–40], is a phenomenon of relevance similar to that of reward. Similar to reward and

reward expectations [12], surprise must be detected by neuronal networks in the brain and

transformed into modulatory signals that influence synaptic plasticity. Our conceptual model

study shows how surprise detection and modulation of plasticity can be implemented in

spiking neural networks and how these networks can be used for memory formation, memory

protection, and prediction of upcoming inputs, in the absence of reward.
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Figure 2.5: Continual learning across rule switches. A: Sequence task with re-occurring rules. At the
beginning, M rules (here represented as M = 4 rules) are created by a random assignment of different
wallpapers to R = 16 rooms. At each change point, a rule is randomly picked from these M rules.
B: The SpikeSuM-C network is composed of four layers. The input layer receives the stimulus and
connects to the prediction-error layer which is composed of several SpikeSuM modules (see section
2.2.2); only three are shown. A set of context selector modules (CSM) composed of dis-inhibitory
networks is bidirectionally connected with the prediction-error layer. Each SpikeSuM module excites
its corresponding CSM. A Winner-Take-All circuit in the CSM layer selects the least excited module.
The inhibitory feedback weights from the CSM to the prediction-error layer inhibit the PT neurons of
unselected SpikeSuM modules, but not the prediction-error neurons. (see Material and methods). Red
weights are plastic. Non-plastic weights are shown in black for feedforward, solid blue for feedback,
and dashed blue for lateral inhibitory connections. C: Sequence of rule switches as a function of time.
D: Summed activity of all PT-cells (gray, arbitrary units) in a SpikeSuM-C network with 5 modules and
error magnitude (green, mismatch between transition matrix in currently selected module and ground
truth) during learning. When the SpikeSuM-C is exposed to the second rule for the second time, the
error exhibits a short spike (green triangle) before it instantaneously goes down, indicating successful
switching between modules. At rare moments (green star marks one of the examples) module switching
is initiated at an inappropriate moment but stops immediately thereafter. The activity generated by the
switch to an unknown rule is much stronger (gray bars exceed the horizontal orange dashed line) than
that of a previously observed one (gray bars never reach the cyan dashed line). SpikeSuM-C can create
new memories or reactivate memories previously learned if a known transition rule reappears. Red
line: behavior of SpikeSuM (control, 1 single module). E Evolution of synaptic weight matrices over
time for each of the five modules. After 500 time steps, the transition matrix of rule 1 has been stored in
module 5, and transition matrices of other rules are added as they appear.

26



2.3 Discussion

Pre Post

Pre

Prediction error Prediction error

Hebbian drive Hebbian drive

L2/3 Activity L2/3 Activity

3rd
(Ā)
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The difference between the two curves (A1-A2) arises from the inhibition of model PT-neurons if they
are not located in the winning module: in A1, the activity Ā of PT neurons always reflects the activity
A of layer-2/3 neurons, in A2 it does not. Inset: Histogram of modulation amplitudes 3r d (Ām) for
values slightly above θ: the distribution of modulation amplitudes is bimodal with rare events of large
modulation. Arrow: the peak is due to known transitions that remain after a rule change. B1-B2: Update
magnitude |∆wi k | of a specific synapse is shown as a function of the Hebbian drive |tanh(hi )EPSCk |
i.e., the combination of postsynaptic membrane potential and the current influx caused by presynaptic
spike arrival. The short-dashed and long-dashed lines show the average over the population P1 and P2,
respectively. The solid line is the average over both populations.C1-C2: The total amount of synaptic
plasticity, represented by the update magnitude

∑
k |∆wi k | summed over all synapses onto an arbitrary

neuron i is shown as a function of the prediction error, represented by the scaled membrane potential
|tanhhi |. In a network with a single module (C1), plasticity increases with prediction error so that
large prediction errors after a context change lead to overwriting of existing memories. In the network
with multiple modules (C2), the plasticity in the SpikeSuM-C network exhibits two regimes: prediction
errors between 0.1 and 0.4 generate small but non-negligible changes, and induce a refinement of
existing memories, whereas for prediction errors above 0.6 existing memories are protected since other
memories are created or changed. The error bars represent the 90% confidence interval of the mean.
The two regimes agree with a prediction of Gershman et al.[68].
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Chapter 2. SpikeSuM: A spiking neural network for surprise-based learning

2.A Material and methods

2.A.1 Two volatile sequence tasks

In the volatile sequence tasks (Fig. 2.1 A and 2.5 A), a sequence of stimuli is generated by a

doubly stochastic Markov chain. At each presentation step, a stimulus with index q is chosen

from a finite set of R different inputs, 1 ≤ q ≤ R. Given a stimulus q at presentation time

step n, a stimulus k at presentation step n +1 is chosen with probability T ∗
k,q where T ∗ is

the transition matrix that summarizes a given rule. At each presentation step, rules switch

stochastically with probability H ≪ 1, called the volatility of the rule. We often refer to the

moment of rule switch as a ’change point’. From the point of view of the observer, switches

are unexpected and potentially cause a high surprise.

While the theory is more general, we often visualize stimuli as static wallpaper images collected

by a video camera that is moved randomly across an apartment composed of R rooms (Fig.

2.1A), each enabling K possible transitions to other rooms. Rooms have distinct wallpapers.

The stimulus Rn stands for the wallpaper in the room seen at presentation step n. The

transitions are stochastic and follow:

P (Rn+1|Rn) =
{

1
K if stimuli Rn+1 and Rn refer to connected rooms

0 otherwise,
(2.4)

We assume periodic boundary conditions, e.g., room 4 in Figure 2.1A (top) is a neighbor to

rooms 1,3,8, and 16. Thus, the layout of the apartment defines the hidden rule of allowed

transitions between stimuli. In particular, a transition matrix generated from a given apart-

ment has the property that for each starting stimulus q , the elements T ∗
k,q either vanish or

take a value T ∗
k,q = 1/K with constraints

∑
k T ∗

k,q = 1 and T ∗
q,q = 0 . In the theory below, we do

not assume that the transition matrix is symmetric, even though whenever we simulate an

apartment with two-dimensional layout and K = 4 (or a 1-dimensional apartment with K = 2),

then the matrix is symmetric T ∗
k,q = T ∗

q,k .

We design two tasks with different switching patterns. For the first task (’volatile sequence task

without re-occurrence of rules’), at each change point, all wallpapers are randomly shuffled.

Thus, at each change point, a new transition rule is generated. For the second task (’volatile

sequence task with re-occurrence of rules’), we first randomly assign the set of R different

wallpapers M times to different apartments, each of R rooms. At each change point, we

randomly choose one of the M −1 possible other apartments. Thus, the number of potential

transition rules is finite. The first task implies that having a memory of past apartments is

vain, as there is a very low probability to observe the same apartment multiple times. Hence,

an adaptive algorithm with rapid forgetting is suited to solve this task. For the second task, a

suitable algorithm should memorize context dependent predictions and quickly re-activate

the correct context after each rule switch.

In the simulations in the main text, we use apartments with either R = 16 or R = 32 rooms
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and vary the number K of allowed transitions per room between K = 2 and K = 8. The

terms ’apartment’, ’room’, ’wallpaper’ are for illustration purpose only, since each stimulus is

represented in the model by a unique neuronal input pattern (see below).

2.A.2 Spike trains of sensory neurons

To simulate the volatile sequence task with R discrete stimuli (’wallpapers of rooms’), we

translate the wallpaper images (introduced in 2.A.1) into spiking patterns of abstract ’sensory’

neurons: each stimulus is represented by a distinct cluster of m = 8 neurons with elevated

firing rate of 100Hz. (We think of these ’sensory’ neurons as the output of a multi-layer network

with wallpaper images as input and 8-hot coding as output; but we do not implement such a

preprocessing network; see Supplementary Discussion). Each stimulus presentation lasts for

100ms (=1 presentation step), and thereafter a new input stimulus is presented to the network.

The network input layer is composed of two populations of ’sensory’ neurons: a population

of observation neurons and a population of buffer neurons (see Fig. 2.2). Both populations

consist of m ×R Poisson neurons. Note that we use m = 8 neurons per cluster to have a good

estimation of the firing rate; however, for a network of rate neurons it would be sufficient to

use a single neuron per stimulus (1-hot coding).

In a network of 8 ×R presynaptic neurons per sensory population, the first cluster of 8

neurons represents the first stimulus (q = 1) of the volatile sequence task, the second cluster

consisting of neurons 9 to 16 the second one and so forth. For each observation, neurons

in one of the cluster will spike with firing probability 0.1 at each time step of d t = 1ms

(firing rate 100Hz), whereas all other neurons fire with probability ϵ≪ 0.1 at each time step.

Note that, sensory neurons in the buffer population have the same behavior as those in

the observation population except that active neurons encode the stimulus number of the

previous observation.

2.A.3 Transmission from sensory neurons to prediction error neurons

Each spike zk in a neuron k of one of the sensory populations triggers a square EPSC of

length l = 4ms, which is transmitted to neurons in the prediction error layer consisting of two

populations p ∈ {P1,P2}. The total input current Ii into neuron i of the prediction error layer is

I P1
i = x̂P1

i −xP1
i , (2.5)

if neuron i is in population P1 and

I P2
i = xP2

i − x̂P2
i , (2.6)

if neuron i is in population P2. Here,

xp
i (t ) =∑

k
w p,o

i k EPSCo
k (t ), (2.7)
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is the input from sensory neurons in the observation population to neuron i in population p

of the prediction error layer where EPSCo
k (t ) is 1 if neuron k in the observation population has

fired in the last 4ms and w p,o
i k are fixed observation weights. Similarly,

x̂p
i (t ) =∑

k
w p,b

i k EPSCb
k (t ). (2.8)

is the input from sensory neurons in the buffer population to neuron i in population p of the

prediction error layer, where EPSCb
k (t ) is 1 if neuron k in the buffer population has fired in the

last 4ms and w p,b
i k are plastic weights driven by the plasticity rule of Eq. 2.19. We refer to x̂p

i (t )

as the (learned) prediction and to xp
i (t ) as the (representation of the present) observation. To

simplify the notations, we drop in the following the time argument t and replace

xp
i ≜ xp

i (t )

x̂p
i ≜ x̂p

i (t )
(2.9)

2.A.4 Spiking neuron model

Neurons in the prediction error layer are described by the Spike Response Model SRM0
[132, 162].

Each prediction error neuron i receives an input current I p
i where p stands for P1 or P2; cf.

Eqs. 2.5 and 2.6. The input current is then integrated to obtain the input potential (Fig. 2.A.1)

τ
dhp

i

d t
=−hp

i + I p
i −→ hp

i (t ) = 1

τ

∫ t

−∞
e

s−t
τ I p

i (s)ds (2.10)

Combining the input potential with a refractory kernel η leads to the membrane potential

integration
Non

linearity
Stochastic

spiking Spike Train

Refractoriness 

Figure 2.A.1: Spike Response Model of neurons in the prediction error layer. Each postsy-
naptic neuron receives an input current Ii . This current is integrated, with membrane time
constant τ, to obtain the input potential hi . The actual membrane potential of the neuron
ui is the combination of both the input potential and a refractory function η, where η is a
strong negative potential activated after a spike, forcing the neuron to stay silent for a while.
The spike times are then randomly drawn with probability φ(ui ) generating the spike train of
neuron i . Redrawn from [132].
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up
i (t ) = η(t − t ′i )+hp

i (t ), (2.11)

where t ′i stands for the last firing time of post-synaptic neuron i , and η(t − t ′i ) =−e−
(t−t ′i )

τ is an

exponential refractory function, preventing the neuron to fire again right after a spike. Spikes

are generated stochastically with probability

P (zi = 1) =φ(ui ) = [tanh(ui )]+ (2.12)

per time steps of d t = 1ms where φ is the activation function of the neurons and [x]+ = x for

x > 0 and zero otherwise. Eqs. (2.10), (2.11) and (2.12) define the Spike Response Model of the

prediction error neurons.

2.A.5 Two connectivity patterns onto the prediction error layer: random and
regular

The first projection pattern (SpikeSuMr and ) is sparse random connectivity (with density 0.1)

and weights uniformly drawn between 0 and 1. In other words, for each of the 256 postsynaptic

neurons in the prediction error layer, we draw an input connection to a specific presynaptic

neuron with a probability of 10 percent and then connect the two neurons with a random

weight (Fig. 2.2). Since in our standard simulations we have 16 different stimuli and each

stimulus is represented by a distinct cluster of m =8 presynaptic neurons, the average number

of input connections to a neuron in the prediction error layer is 0.1 ·m ·R = 12.8 with a mean

weight of 0.5. Thus, in the prediction error layer stimuli (wallpapers) are represented by

overlapping groups of neurons of different firing rates (coarse coding).

The second projection pattern is a regularly structured connectivity pattern (SpikeSuM).

Presynaptic neurons are, as before, separated in R clusters of m = 8 neurons each, but each

cluster projects (with binary weights) to a different group of 8 neurons in the prediction error

layer. In other words, both pre-and postsynaptic layers are composed of 8R neurons such

that different stimuli are represented in the prediction error layer by distinct, non-overlapping

groups of neurons (Fig. 2.2).

2.A.6 SpikeSuM Network architecture

Eqs. (2.5) and (2.6) show that I p
i = 0 if and only if x̂p

i = xP
i , for p ∈ {P1,P2}. Note that x̂p

i is

the prediction arising from the activity of the buffer population whereas xp
i is the present

observation. Hence, the total input is minimal if the prediction coincides with the observation.

A wrong prediction increases the activity in at least one of the two populations in the prediction

error layer: if x̂p
i > xp

i for many neurons in p = P1, then many neurons in population P1 have

a positive input current and nonzero spiking activity; on the other hand, if x̂p
i < xp

i for many

neurons in p = P2, then many neurons in population P2 have a positive input current and

nonzero spiking activity. Because of the rectification at the transition from neuronal input I p
i
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to output spikes (Eq. 2.12), the two populations P1 and P2 complement each other. A natural

way to estimate the overall prediction error of the network is therefore to collect the spikes of

both populations P1 and P2. We assume that the population of PT-neurons acts as a linear

filter and transmits a mean activity Ā defined as

τĀ
d Ā

d t
=−Ā+ c

∑
p=P1,P2

∑
i

EPSCp
i , (2.13)

where EPSCp
i denotes the square excitatory postsynaptic current of neuron i of population

p and τĀ and c are constants. In our model, Ā provides the total drive of neurons in a deep

nucleus that receives dense input connections from PT cells. The neurons in the deep nucleus

send back a broadcast signal that measures the total surprise

′surprise′ = η1 tanh(Ā)+η2 tanh(Ā)Θ(Ā−θ) = 3r d (Ā) (2.14)

where 3r d (Ā) is a non-linearly increasing function of Ā,Θ is the Heaviside step function and

η1,η2,θ are fixed hyperparameters. Since this surprise signal modulates learning, we refer to

it as a 3r d factor that gates plasticity in neoHebbian three-factor learning rules [86].

The third factor, composed of two non-linear components, could either be interpreted as a

single neuromodulator with a complex nonlinearity or alternatively as the combined action

of two neuromodulators involved in surprise-based learning [17]. Following the terminology

of [17], the adaptation to the expected uncertainty (e.g., stochastic transitions to one of the

possible next stimuli under a fixed rule) could be controlled by the action of acetylcholine [de-

scribed in our model by the term η1 tanh(Ā)], whereas the adaptation speed to the unexpected

uncertainty (i.e. a rule switch) could be controlled by the action of norepinephrine [turned on

in our model if Ā > θ].

2.A.7 SpikeSuM learning rule: Derivation of Hebbian factors

We aim for a neoHebbian plasticity rule with three factors [86], i.e., a rule that combines traces

of pre-and postsynaptic activity with a modulation of the learning rate. As indicated above, a

good prediction of the present observation is indicated by a small current in Eqs. (2.5) and (2.6)

or, similarly, by a small value of the input potential hp
i of all pyramidal neurons in populations

P1 and P2; cf. Eq. (2.10). We, therefore, minimize the loss function

L =
∫ t stop

t st ar t
L̂ (t )d t =

∫ t stop

t st ar t

1

2

∑
p=P1,P2

∑
i

[hp
i (t )]2 d t (2.15)

where t is time and runs from the beginning t st ar t to the end t stop of the experiment. Op-

timization is implemented as online gradient descent with respect to the weights w p,b
i k that

project from neuron k in the buffer population to neuron i in population p of the prediction

error network. We recall that weights w p,o
i k from observation neuron k to neuron i are fixed.
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We present here all the calculations for p = P1 only. For the population P2, one just needs to

add a minus sign. The integral over time corresponds to a batch rule; for stochastic gradient

descent (online rule) we can focus on an arbitrary point in time and apply the chain rule of

differentiation
∂L̂ (t )

∂wP1,b
i k

= hi (t )
∂hP1

i (t )

∂wP1,b
i k

(2.16)

where we can evaluate the derivative using Eqs. (2.5) and (2.8)

∂hP1
i (t )

∂wP1,b
i k

=
∫ t

−∞
e

s−t
τ

∂I P1
i (s)

∂wP1,b
i k

d s =
E q.(2.8)

∫ t

−∞
e

s−t
τ EPSCb

k (s)d s (2.17)

Since EPSCs have a rectangular shape with duration l we can evaluate further

∂hP1
i (t )

∂wP1,b
i k

= ∑
t ′k≤t

e
−t
τ

∫ t ′k+∆k

t ′k
e

s
τ d s = ∑

t ′k≤t

e
−(t−t ′

k
)

τ [e
∆k
τ −1]≜ EPSC

b
k , (2.18)

where EPSC
b
k is a low-pass filtered version of the EPSC, t ′k are the spike times of neuron k

and ∆k = mi n(t − t ′k , l ). We now apply online gradient descent with an update amplitude

proportional to the variable 3r d (’learning rate’) and the step size d t

d wP1,b
i k

d t
=−3r d hP1

i EPSC
b
k in population P1,

d wP2,b
i k

d t
= +3r d hP2

i EPSC
b
k in population P2.

(2.19)

The above neoHebbian rule combines a trace of the incoming EPSCb
k (presynaptic factor) with

the momentary input potential hp
i (rather than the spike time) of the postsynaptic neuron

(postsynaptic factor): these are the two Hebbian factors. In standard stochastic gradient

descent, the learning rate 3r d could be fixed or slowly decrease over time as learning proceeds

(’freezing’), and also depend (via a momentum term) on the recent history. However, in

our model, the learning rate increases whenever the prediction fails (indicated by a large

prediction error), so that we refer to the learning rate 3r d as a surprise-driven neuromodulator.

To summarize, we have a three-factor learning rule with the following properties: (i) EPSCk

limits the weight update to active connections; (ii) hi is the local signed prediction error and

goes to zero if the prediction for neuron i is correct; (iii) finally, 3r d is a function of the global

unsigned prediction error which is sent back as ’surprise’ to the full network; see main text

and section 2.A.8.

2.A.8 SpikeSuM learning rule: third factor

There is no fundamental reason that a learning rate should be fixed as long as each update

step (in the batch rule) decreases the loss [163]. However, in an online gradient descent rule, we
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have to make sure that all observations get an appropriate statistical weight during the update.

In particular, we have to ensure that none of the observations is systematically ignored. This

could happen if the learning rate 3r d vanished whenever a specific stimulus appears. Such a

problem is not a hypothetical one, because of the rectification of the neuronal gain function; cf.

Eq. 2.12. Suppose that, for a given stimulus, the observation xP1
i is larger than the prediction

x̂P1
i for all neurons in population P1. In this case, none of the neurons in population P1 would

respond. If we were to use a third factor that is proportional to the activity A1 of population P1

(e.g., if we set 3r d =βA1), then this stimulus would never lead to an update.

However, the dependence of the third factor 3r d (Ā) upon the total population activity Ā of

the prediction error layer together with the anti-symmetric architecture avoids this problem.

Whenever the observation does not match the prediction, at least one of the populations,

either P1 or P2, will be turned on. This is true throughout the simulation because (i) there are

many plastic weights that code for each stimulus (e.g., with regular connectivity and R = 16

different stimuli, we have 64 weights coding for each stimulus in each of the two populations);

(ii) all synaptic weights in both populations are initialized in the range [0,1]; (iii) the update

rule Eq. (2.19) is symmetric for both populations (i.e., if the excitatory weights onto a neuron

in P1 increase, then the inhibitory weights onto a neuron in P2 decrease) which ensures that

the symmetries at initialization remain throughout learning.

Thus, whenever predictions and observations do not match, the total activity Ā conveys a

prediction error signal which leads to a non-zero learning rate 3r d (Ā) that is identical for all

weights.

2.A.9 After convergence, synaptic weights of SpikeSuM reflect transition probabil-
ities

We claim that the anti-symmetric architecture of the prediction error layer together with the

three-factor learning rule makes the weights converge to a solution that reflects the main

features of the hidden rule implemented by the transition matrix T ∗
k,q between stimuli. For

example, if we imagine an apartment with K = 4 possible transitions from a given room, then

all four transitions will be encoded in the weight matrix. More generally, we want to show that,

for a transition matrix T ∗
k,q with K entries of value 1/K per column and zero entries otherwise,

the weights onto the pyramidal neurons in the prediction error layer are adjusted such that all

possible transitions are predicted proportional to their statistical probabilities. We will also

show how to decode the predictions of the network. To stay concrete, we illustrate the abstract

mathematical concepts with the words ’room’ and ’apartment’, but the calculations are valid

for arbitrary stimulus sets and transition matrices.
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Preliminaries: Encoding of rooms and decoding of predicted transitions

As an abstract encoding of rooms, we use a 1-hot encoding. If the total number of rooms is

R, then room q (with 1 ≤ q ≤ R) is encoded by an R-dimensional vector Rq ∈ {0,1}R with

the qth component equal to 1 and all other components equal to zero. The transition matrix

T ∗ ∈ R ×R that describes the probability of a transitions from room Rq to room Rk has

elements T ∗
k,q defined as

T ∗
k,q = Prob(Rk |Rq ) (2.20)

with
∑

k T ∗
k,q = 1 for all q . The set of rooms {R1, ...,RR} represented by 1-hot coding vectors

defines an orthonormal basis in an R-dimensional vector space, which gives rise to the

following properties of the transition matrix T ∗. First, the multiplication of the matrix with

the room vectors from both sides gives back the transition

Rk T ∗Rq = T ∗
k,q (2.21)

and, second, one-sided multiplication with a room Rq gives a vector R.|q with non-zero

elements for all those rooms that are reachable from Rq

R.|q = T ∗Rq =∑
k

Rk T ∗
k,q . (2.22)

We interpret R.|q as the code of ’reachable rooms’ starting from room q . It represents the qth

column of the transition matrix T ∗ and can be expressed as a linear sum over the one-hot-

coded rooms Rk . In particular, for K = 4 neighboring rooms, the vector on the left-hand-side

of Eq. (2.22) contains four non-zero entries (with a value of 1/4 each) that represent the four

rooms reachable from the room with index q .

The actual encoding of rooms in the input layer of the SpikeSuM network corresponds to

m-hot encoding, since a room Rq is represented in the input layer by a cluster of m neurons

that fire at a high rate (ν=100Hz); cf. Spike trains of sensory neurons. For the sake of simplicity

of the arguments below, we assume that the neurons representing other rooms Rk ̸= Rq are

inactive (ϵ→ 0) when room Rq is observed. Thus, we can think of the input representation

of room q as an m-hot encoding Vq = P 1→mRq∈ {0,1}mR , where P 1→m is the rectangular

expansion matrix from 1-hot encoding to m-hot encoding transforming the R-dimensional

space of rooms into a mR-dimensional space of input neurons.

We now turn to the representation of stimuli in the prediction error layer. For the SpikeSuM

network with regular connectivity, the representation in the prediction error layer is also an

m-hot encoding in each of the two populations P1 and P2. However, to keep our arguments

general, we will also include the case of random connectivity. From Eq. (2.7) we know

that the input neurons in the observation population drive neuron i in population p of the

prediction error layer with a current xp
i (t ) =∑

k w p,o
i k EPSCo

k (t ). We collect the set of neurons i

in population p into a vector xp , and the weights w p,o
i k into a matrix W p,o and write the vector
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equation

xp (t ) =W p,oEPSCo(t ) . (2.23)

Let us consider a time point tn located close to the end of the nth presentation step. Further-

more, let us suppose that during the nth presentation step room Rq(tn ) was observed. Here

q(tn) denotes the index of the room in presentation step n.

We exploit the m-hot encoding to write for the mean activity pattern in population p

ES[xp (tn)] =W p,oP 1→mRq(tn )ν l (2.24)

where ES[x] denotes the expectation over stochastic spiking of the Poisson neurons in the

input layer, W p,o is the matrix of fixed connectivity weights to the pyramidal neurons in the

prediction error layer, ν is the firing rate of the active neurons, and l is the duration of the

rectangular EPSC. Similarly, the expected prediction generated by connections from neurons

in the buffer population to those in population p ∈ {P1,P2} is

ES[x̂p (tn)] =W p,bP 1→mRk(tn−1)ν l . (2.25)

Since we would like to interpret activity patterns in terms of the rooms, we introduce hypo-

thetical decoding weights Dp from the space of neuronal activities (in one of the pyramidal

populations in the prediction error layer, p ∈ {1,2}) to the space of room labels in 1-hot coding.

We choose decoding weights such that encoding followed by decoding forms an auto-encoder

for arbitrary rooms Rq :

Rq = Dp W p,oP 1→mRq (2.26)

With these decoding weights fixed, the read-out with the matrix Dp enables us to interpret

the momentary activity xp (tn) of neurons in the prediction error layer in terms of room labels;

to see this compare the right-hand side of Eq. (2.26) with Eq. (2.25). Note that the decoding

weights are an interpretation tool, but not implemented in the network (even though it would

be easy to learn them, for example with the perceptron learning rule).

In order to interpret the predicted activity ES[x̂p (tn)] in terms of room labels, we use the same

decoding weights D as for the observed activity

R̂.|k(tn−1) = Dp W p,bP 1→mRk(tn−1)︸ ︷︷ ︸
ES [x̂p (tn )]/(ν l )

, (2.27)

where k(tn−1) is the index of the room during presentation step n − 1 and R̂.|k(tn−1) is the

prediction of rooms in step n, given room with index k(tn−1) in step n −1. These predicted

room labels enable not only the decoding of predictions in the figures of the results section

but are also at the core of the following theorem.
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Weights after convergence

We now show the following:

Theorem 1. For a large number of input neurons (m → ∞), a small fixed learning rate

3r d = η≪ 1, presentation steps longer than the membrane time constant (∆T ≫ τ), and a

large dwell time in a given apartment (H → 0), the synaptic weights connecting the buffer

population to the prediction error layer converge under the plasticity rule of Eq. (2.19) to a

fixed point such that (if the input from the momentary observation is blocked) the activity of

rectified linear neurons in the prediction error layer can be decoded as

R̂.|q = Etr [Rk |Rq ] =∑
k

Rk T ∗
k,q = T ∗Rq (2.28)

where Etr denotes expectations over transitions conditioned on the index q of the previous

room.

Thus, given that the room in the previous time step tn−1 was Rq , the predictive input from the

buffer population can be decoded and represents the average of reachable next rooms; cf. Eq.

(2.22)

Notes:

(i) For the situation with K = 4 transitions per room, the theorem implies that the network

activity of the prediction error layer reflects all possible next rooms (with equal weights) if

there is no input from the current observation.

(ii) The condition of a small and constant learning rate ensures a separation of time scales.

If learning is slow enough to keep fluctuations of weights small, then learning becomes self-

averaging after many presentation steps [164].

(iii) The condition of m →∞ where m is the number of neurons in the input layer coding for

the same room ensures that fluctuations due to spikes, and in particular those correlations

between input-and-output spikes that are not accounted for by correlations of firing rates,

become negligible [131].

(iv) We only need to calculate the stationary state because for the plasticity rule of Eq. (2.19)

the local stability of the stationary state is guaranteed by [95, 131].

Proof. According to Eq. (2.19) the update of the weights from an input neuron k to the set of

neurons in population p is proportional to the product of the membrane potential and the

postsynaptic current PSC(t) (EPSC or IPSC), so that at the end of a single presentation time
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step of duration ∆T ≫ τ

∆wp
k (∆T ) = η

∫ ∆T

0
d t ′hp (t ′)PSC

b
k (t ′),

=±η
∫ ∆T

0
d t ′

∫ t ′

−∞
dse

s−t
τ (xp (s)− x̂p (s))PSC

b
k (t )

(2.29)

where η is a small constant learning rate and PSCk are the filtered PSCs from the presynaptic

neuron k. The plus sign applies to population p = P1 and the minus sign to p = P2. We

exploited that the presentation time step (∆T = 100 ms) is long compared to the membrane

time constant τ so that the transients of neuronal activities after the transition between rooms

can be neglected.

We study the network at the end of presentation step n and assume that during the previous

presentation step n −1 the room Rq with index q was observed. There are two levels of

stochasticity in equation (2.29), stochasticity of transitions and stochasticity of spike firing.

We first take the average over the stochasticity of spiking ES , by taking the expectation over the

Poisson distribution of input spikes

ES
[
∆wP

k |Rq
]=±ηES

[∫ ∆T

0
d t ′

∫ t ′

−∞
dse

s−t ′
τ ((xp (s)− x̂p (s))PSC

b
k (t ′) |Rq

]
. (2.30)

Under the condition m →∞, correlations between input spikes and membrane potential

can be neglected [131]. We can therefore separate the conditioned expectations into two

independent terms and write

ES
[
∆wP

k |Rq
]=±η

∫ ∆T

0
d t ′

∫ t ′

−∞
dse

s−t ′
τ

(
ES

[
xp (s) |Rq

]−ES
[
x̂p (s) |Rq

])
ES

[
PSC

b
k (t ′) |Rq

]
.

(2.31)

We define the expected input current originating from neuron k of the buffer population as,

ES[PSC
b
k|q (t ′) |Rq ] = J k which is constant after an initial transient; this simplifies the notation

of the last factor on the right-hand side of Eq. (2.31). Furthermore, we use Eqs. (2.24) and

(2.25) to evaluate the two remaining expectations in Eq. (2.31).

ES
[
∆wP

k |Rq
]=±η

∫ ∆T

0
d t ′

∫ t ′

−∞
dse

s−t ′
τ ν l

(
W p,oP 1→mR j (tn ) |q −W p,bP 1→mRq

)
J k|q (2.32)

where R j (tn ) |q is the room observed in presentation step n, given that room Rq was observed

in step n −1. Note that the index j (tn) depends on the specific realization of the stochastic

transition starting from room Rq .

Exploiting that H → 0, we now compute the average over a long observation sequence (ex-

pectation En over presentation steps tn) in the same apartment. We can decompose this

average into multiplication with the probability P (q) of observing room Rq and the expected

transitions Etr [R j (tn )|q ] from room Rq to other rooms R j . We exploit that the rooms reachable

from room Rq are given by the transition matrix T ∗.
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After convergence, the change of weight ∆wP
k averaged over many presentation steps and

realizations of spike trains is zero. Hence, we will set En
[
ES

[
∆wP

k

] |Rq
]= 0. Since the filtering

operations induced by the two integrations in Eq. (2.32) are linear, they yield a fixed factor

which can—just like the fixed multiplicative parameters ην l —be dropped after convergence.

We exploit that the only term that depends on transitions is R j |q so that we can pull the

transition average inside and find

0 = En
[
ES

[
∆wP

k

] |Rq
]= R∑

q=1

(
W p,oP 1→mEtr [R j |q ]−W p,bP 1→mRq

)
J k|q P (q). (2.33)

Using Eq. (2.22) we rewrite Etr [R j |q ] = T ∗Rq =∑
j R j T ∗

j ,q .

Since decoding is linear, stationary, and deterministic, we can multiply Eq. (2.33) with the

decoding weights Dp from the left. From Eq. (2.26) and Eq. (2.27) we obtain

0 =
R∑

q=1
P (q) J k|q

(∑
j

R j T ∗
j ,q − R̂p

.|q

)
. (2.34)

Note that because of the presynaptic factor proportional to J k|q , only those weights will be

changed that receive input from a neuron k coding for room Rq . However, since in the long

sequence, all rooms appear with non-zero probability P (q) = 1/K , for each choice of k the

synaptic input current J k|q is non-zero during some presentation steps so that all weights are

eventually adapted during the presentation sequence and the terms inside the parenthesis

must be zero. Hence,

R̂p
.|q =∑

j
R j T ∗

j ,q . (2.35)

Eq. 2.35 shows that the synaptic rule with a fixed learning rate has a stationary solution, where

the weight pattern predicts possible next rooms according to the probabilities of the transition

matrix. This ends the proof.

Notes:

(i) The stationary solution is locally stable both for the plastic excitatory weights in P1
[131] and

for the plastic inhibitory weights in P2
[95].

(ii) In the proof, we decode rooms from the membrane potential of neurons in the prediction

error layer. If neurons in the prediction error layer are rectified linear and the input from the

observation pool is blocked, then their output is either zero or proportional to their potential.

Neurons in at least one of the populations, P1 or P2, have a positive potential and can therefore

be decoded.

(iii) The predictions reported in the Results section are the average across the readouts from

two populations P1 and P2

R̂q = 1

2
(R̂P1

.|q + R̂P2
.|q ). (2.36)
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2.A.10 Predicted next stimuli with learning rate modulated by surprise

In the previous subsection, the learning rate was a constant, η whereas in our model the

learning rate is modulated by the third fact 3r d (Ā). Let us consider a transition from room q to

one of the reachable rooms. If the reachable rooms have different transition probabilities, e.g,

T ∗
1,q = 0.7 and T ∗

2,q = T ∗
3,q = T ∗

4,q = 0.1, then the transition to a room j = 1 is less surprising than

the transition to one of the other available rooms. Since the amount of activity depends on the

surprise level, the third factor will be a function of the room j that is reached from room q :

3r d (Ā) = 3r d
j |q . We need to include this dependence in our calculations and modify Eqs. (2.33)

and (2.34) accordingly. Multiplication on the right-hand-side of Eq. (2.33) with 3r d
j |q gives a

weighted average

0 = En
[
ES

[
∆wP

k

] |Rq
]= R∑

q=1
Etr [3r d

j |q
(
W p,oP 1→mR j |q −W p,bP 1→mRq

)
J k|q ]P (q). (2.37)

As before, we now use linear decoding weights

0 =
R∑

q=1
P (q) J k|q

(∑
j

3r d
j |q R j T ∗

j ,q −∑
j

3r d
j |q R̂p

.|q

)
. (2.38)

which gives a weighted average for the predicted rooms,

R̂p
.|q =

(∑
j

3r d
j |q R j T ∗

j ,q

)
/(

∑
j

3r d
j |q ) (2.39)

Thus, for surprise-modulated learning rate and inhomogeneous transition probabilities, the

code of the predicted rooms does not correctly reflect the statistical weights, and rare transi-

tions are slightly amplified.

2.A.11 Population activity in prediction error layer represents the present state
and consistent alternatives to the present state, given the previous state

To illustrate the theoretical results in simulations, we run the volatile sequence task without

re-occurrence of rules (Fig 2.1 A) with R = 16 different stimuli (K = 4) for 3000 presentation

steps in a SpikeSuM network. In the beginning, the spike pattern across the population of

pyramidal neurons in the prediction error layer looks noisy (Supplementary Fig. S2.B.2

middle left), but after a few hundred presentation steps with a fixed transition rule T ∗
k,q , the

prediction error layer exhibits four active groups of neurons. These four groups represent

the four possible transitions predicted from the previous stimulus, including the currently

observed one (Supplementary Fig. S2.B.2 middle, second panel). Note that the predictions

from the memory buffer of the previous stimulus excite neurons in population P1, whereas

the current stimulus mainly excites neurons in population P2 (Fig. 2.2). Therefore, with

K = 4 possible transitions, the currently observed stimulus is represented by a single group
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of neurons in population P2 whereas the three alternatives are consistent with the previous

stimulus by groups of neurons in population P1. Thus, for the SpikeSuM network with hand-

wired connectivity, the activity in the prediction error layers reflects a column of the transition

matrix T ∗
k,q where the fixed q denotes the previous stimulus (stored in the buffer) and the

index k runs over the groups of neurons in the prediction error layer coding for stimulus k.

Immediately after a switch to a new rule, a fifth cluster of active pyramidal neurons is observed.

The five clusters correspond to the four wrong predictions (that have been learned with the

previous rule and now give rise to negative prediction errors) and the currently observed

(unexpected) state under the new rule (which gives rise to a ’positive prediction error’, in the

sense that the current sensory input is stronger than the prediction [60]).

2.A.12 One-shot learning after a rule switch

As predicted by the theory in the previous paragraphs, the learned weights implicitly encode

the full transition matrix of the current rule (Supplementary Fig. S2.B.2 bottom). The switch

between rules causes a large activity (Supplementary Fig. S2.B.2, top). In turn, the large

activity induces an increase of the neuromodulatory surprise signal 3r d (Ā) that leads to a fast

update of the weights. Hence, the new transition appears in the transition matrix already at the

end of the first presentation step, i.e., after only 100ms (red circle in the graph). Thus, a single

novel transition is sufficient to change the matrix (learning in ’one shot’). After spending some

time with stimulus presentations under the new rule, the activity Ā of PT-neurons returns to a

low value and the new transition matrix can be extracted from the weights onto pyramidal

neurons in populations P1 and P2 (Supplementary Fig. S2.B.2, right, labeled 4).

2.A.13 Benchmark algorithms

We compare the results of our network to several state-of-the-art algorithms (Fig. 2.3). For

fairness of comparison, each of these algorithms uses surprise-based online adaptation to

detect change points induced by rule switching. BOCPA [75] is a Bayesian online algorithm for

exact inference of the most recent change point. It is a message-passing algorithm that infers

the probability distribution over the run time since the last switch. It is known to be optimal

on average for long simulations. VarSMiLe [32] is a Variational approximation [165] of BOCPA

that uses the Bayes Factor surprise SBF
[32] to detect change points. VarSMiLe does not need

message-passing (as implemented in BOCPA) and has a closed-form update rule similar to

the SMiLe rule[72].

We also compare SpikeSuM with networks of the same architecture but with a simplified

function for the third factor. The function 3r d , introduced in Eq. (2.3), scales the amount of

plasticity. The first line in the following equation gives the definition, while the next ones the

simplifications considered
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3r d (Ā) = η1 tanh(Ā)Θ(Ā)+η2 tanh(Ā)Θ(Ā−θ), for SpikeSuM

3r d (Ā) = η1 tanh(Ā), for SNNsm

3r d (Ā) = η1 for SNNnm .

(2.40)

This comparison of 3r d factors allows us to investigate the impact of modulation on learning.

The differences in networks parameters can be found in table 2.A.1

2.A.14 Simulation parameters and comparison of algorithms

The results are obtained by running networks composed of, 8×R, presynaptic neurons (so

that 8 neurons have sustained spiking for each stimulus), and 128 postsynaptic neurons (256

for random connectivity). The presynaptic neurons have a firing rate of 100Hz if representing

the observed stimulus, and the squared EPSCs last for 4ms. The integration time of the input

potential τ= 10ms. See the summary in table 2.A.1

Table 2.A.1: Networks parameters for simulations with R stimuli.

Presynaptic neurons Postsynaptic neurons 3r d hyperparameters
SpikeSuM 8×R 128 3
SpikeSuMr and 8×R 256 3
SNNsm 8×R 128 1
SNNnm 8×R 128 1

Hyperparameters (η1,η2,θ) of SpikeSuM as well those for SMiLe and BOCPA have been opti-

mized using the python library scikit-optimize [166] minimizing
∑

n ||Tn − T̂n ||2F , where Tn is

the transition matrix of the apartment at time step t and T̂n the estimated transition matrix

extracted from the weights and ||.||F the Frobenius norm.

2.A.15 Context Modules: architecture of SpikeSuM-C

SpikeSuM-C is an extension of the original SpikeSuM network and is composed of M SpikeSuM

modules (Fig. 2.5). Each context selection module (CSM) m outputs (in its second layer, L2)

an inhibitory current

Inhm = J
∑

m′ ̸=m

∑
j

EPSCm′
j ,L2, (2.41)

inhibiting the PT neurons,

τĀm

d Ām

d t
=−Ām + c

∑
p=P m

1 ,P m
2

∑
i

EPSCp
i − Inhm . (2.42)
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The sum run over all neurons j of all CSM other than the one with index m. We chose J=20 for

strong inhibition. This way if m is the active module 3r d (Ām) ≥ 0 and 3r d (Ām′
) = 0.

The neurons in SpikeSuM module m are updated following

∆wm
i k =−3r d (Ām)hm

i EPSC
m
k in population P1,

∆wm
i k = 3r d (Ām)hm

i EPSC
m
k in population P2.

(2.43)

for each SpikeSuM module. 3r d is the same as in Eq. (2.14).

The selection of the learning module is done in the CSM network (Fig. 2.A.2) which has a

Best-Prediction-Learns (BPL) dynamics. It is a combination of dis-inhibitory feedforward

connectivity within a module and lateral Winner-Take-ALL (WTA) dynamics between modules.

Each module contains two layers of NCSM spiking neurons each, described by the Spike

Response Model in 2.A.4.

The first layer (L1) of CSM m receives excitatory input from SpikeSuM module m and sends

inhibitory input to the second layer (L2). L2 is a WTA circuit where the least inhibited module

stays selected, whereas the others are silenced. The overall network architecture has a BPL-

dynamics since the least active SpikeSuM module (i.e., the best prediction) is chosen by the

CSM network as the learning module. The inputs to neurons in layers L1 and L2 are

I m
L1,i = a1

[∑
k

W F F p,m
i ,k EPSCm

k −β
]

,

I m
L2,i = a2

[
−a3

∑
k

W Inh,m
i k EPSCm

L1,k −a4
∑

m′ ̸=m

∑
k

W W T A,m′
i k EPSCm′

L2,k +a5Iext

]
.

(2.44)

where a1, a2, a3, a4, a5 and β are fixed positive parameters. Here, a3 governs the overall

strength of the feedforward dis-inhibition drive from the SpikeSuM module. The connection

strength a4 controls the strength of lateral inhibition in the WTA circuit. Iext =∑
m

∑
k EPSCm

k ,

the sum over all possible spikes in the prediction error populations (and all context). I m
ext

drives the necessary amount of excitation so that the WTA dynamics take place and account

for the variability in the network activity, in other words, this noise-dependent input allows

stabilizing learning and adapting the WTA threshold. In fact, if the overall activity of the

prediction error layer increases due to randomness (not misprediction) in the network, the

threshold of the WTA would also increase. The parameter a2 is a scaling parameter that we

found useful in setting up the simulations. The choice of parameters is discussed below in

SpikeSuM-C parameters.

While the weights (W F F )p,m and W W T A,m′
are fixed at a value of one, the connections W Inh,m

i k
from L1 to L2 are plastic. The inhibitory connections W Inh,m

i k are potentiated by a Hebbian

rule modulated by a third factor and depressed by an unspecific decay term with decay rate, α

∆W Inh,m
i k = ηg (3r d ,m)EPSCm

L2,i EPSCm
L1,k −α(W Inh,m

i k −W Inh
0 ). (2.45)
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We call these weights the confidence weights. Indeed, ηEPSCm
L2,i EPSCm

L1,k > 0 drives the poten-

tiating as long as neurons in both L1 and L2 are active; i.e., when the module m is selected.

During this phase, we consider that the observer builds their confidence up.

After learning a task for some time, W Inh,m
i k ≫W Inh

0 its initial value.

Suppose now that suddenly a higher prediction error in SpikeSuM module m occurs. This

causes an increase of activity in L1 and leads to strong inhibition (because the weights had

been potentiated earlier) of neurons in L2 so that the WTA mechanism rapidly ’unselects’ this

module in favor of another one. Note that postsynaptic neurons in L2 of a CSM that lost the

WTA competition are silenced so that connections onto these neurons are no longer potenti-

ated. The net result of the plasticity rule is that modules that have never been chosen in the past

have connection weights that are still close to their initial values—and these modules can then

be later selected by the WTA dynamics for new tasks. The function g (3r d ,m) in Eq. 2.45 allows

influencing the direction of learning. For the simulations we use, g (3r d ,m) = (
1−2Θ(Ā−θ)

)
η

where θ is the surprise threshold of SpikeSuM so that weights are depressed during phases

of surprise and potentiated otherwise. Finally α(W Inh,m
i k −W Inh

0 ), α≪ 1, implements weight

decay on a long timescale so that a module that is not used for a long time is slowly forgotten.

Note that we could also add a similar decay term to the standard SpikeSuM learning rule in

the prediction error layer, to allow the weights to be slowly forgotten.

Other
CSM

 Memory 1

Layer 1

Layer 2




Network activity

 Other memories

Figure 2.A.2: Context selector module (CSM). Each CSM is composed of two layers of in-
hibitory neurons. Layer 1 receives excitatory input from the corresponding SpikeSuM module.
Layer 2 receives inhibition from layer 1 and lateral inhibition from layer 2 of other CSMs. Be-
cause of the inhibitory connection from layer 1 to layer 1, the more excitation a CSM receives,
the lower the activity in layer 2. Because of WTA dynamics implemented by lateral inhibition,
the CSM module with the lowest excitation is selected, inhibits other CSM, and shuts down
the plasticity of other SpikeSuM modules. Red weights are plastic and can be interpreted as a
’commitment’ of the selected module. The network activity is driven by all SpikeSuM modules
and supports the WTA dynamic.
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2.A.16 Systematic results for SpikeSuM-C

To systematically evaluate the performance of the SpikeSuM-C network, we ran a series of

simulations for three volatilities H = (0.002,0.001,0.0005). We ran 100 simulations that run over

10 000 presentations, each with 4 randomly drawn apartments and K = 2 (or 4) transitions per

room. To describe the efficiency of the network we use four different measures of performance:

1. Detection success rate: Number of simulation runs (out of 100) that detect all switch

points within less than 50 steps and that made less than 10 context switches not linked

to apartment switching.

2. Module usage success rate: the match
∑

i [N i
used==N i

obser ved ]
100 between the number of context

modules used in simulation run i , N i
used , and the number of apartments observed

N i
obser ved .

3. Complete success rate: Number of simulation runs (out of 100) that have detected all

switch points in less than 50 steps and that fulfill N i
used == N i

obser ved .

4. Detection time: mean number of presentation steps between a switch to a different

apartment in the input sequence and a switch to a different memory module in the

model network.

Note that a simulation where a network uses more memory modules than the objective

number of apartments does not necessarily imply a complete failure. Indeed, one can conceive

that an observer splits a single apartment into two different memories due to the unsupervised

nature of the task. This is why we consider the results section the detection success rate as the

most valuable measure (it is not so important how many memories are used as long as one

can detect the switch points).

For sequences that switch apartments on average every 2000 time steps ( 1
H =2000), the switch

detection success rate is 100 percent for apartments with both K = 2 and 4 transitions, but it is

slightly lower for simulation paradigms with more frequent context switches (Tables 2.A.2a

and 2.A.2b). We expected that for K = 8 transitions the performance breaks down since it

implies that from each room and in each apartment 8 out of 16 possible transitions are allowed

so that a large fraction of transitions is compatible with several apartments. This was indeed

the case (results not shown). However, for K = 2 already, the first or second transition after a

switch between apartments is with high probability a good indicator of the switch. Indeed,

for K = 2 the SpikeSuM-C model detects switches within less than three presentation steps if

switches occur on average every 1000 or 2000 time steps (Table 2.A.2a).

2.A.17 SpikeSuM-C parameters

The results are obtained by running networks with the parameters summarized in tables

2.A.3 and 2.A.4. The presynaptic neurons have a firing rate of 100Hz if representing the
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(a) Results for 2 transitions apartment

Detection success rate module usage success rate Complete success rate Detection time
H: 0.002 95.0 ± 2.2 90.0 ± 3.2 90.0± 3.2 1.4 ± 0.2
H: 0.001 100.0 ± 0.0 93.0 ± 2.6 93.0 ± 2.6 2.7 ± 0.2
H: 0.0005 100.0 ± 0.0 96.0 ± 2.0 96.0 ± 2.0 2.3 ± 0.2

(b) Results for 4 transitions apartment
Detection success rate module usage success rate Complete success rate Detection time

H: 0.002 74.0 ± 4.4 59.0 ± 4.9 48.0 ± 5.0 5.7 ± 0.7
H: 0.001 98.0 ± 1.4 91.0 ± 2.9 91.0 ± 2.9 6.1 ± 0.5
H: 0.0005 100.0 ± 0.0 92.0 ± 2.72 92.0 ± 2.72 7.3 ± 0.83

Table 2.A.2: Summary of SpikeSuM-C accuracy on the re-occurrence-based task with different
stochasticities and volatilities.

observed room, and the squared EPSCs last for 4ms. The integration time of the input potential,

τ= 10ms. The code is available on GitHub (https://github.com/martinbarry59/SpikeSuMNet).

Context selection module parameters 1/H = 500 1/H = 1000 1/H = 2000
a1 0.256 0.22 0.22
a2 0.05 0.05 0.05
a3 4 4 4
a4, a5 20 20 20
α 1e-06 1e-06 1e-06
β 0.045 0.045 0.045
η 0.0003 0.00025 0.0003

W Inh,m
max 0.11 0.08 0.09

SpikeSuM parameters
η1 1e-05 1e-05 1e-05
η2 0.005 0.005 0.005
θ 0.45 0.45 0.45
Wi ni t 60 60 60
c 40 40 40
EI-neurons 128 128 128

Table 2.A.3: Summary of SpikeSuM-C parameters for results in table 2.A.2a
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Context selection module parameters 1/H = 500 1/H = 1000 1/H = 2000
a1 0.07 0.07 0.07
a2 0.05 0.05 0.05
a3 4 4 4
a4, a5 20 20 20
α 1e-06 1e-06 1e-06
β 0.055 0.055 0.055
η 0.0008 0.0007 0.0006

W Inh,m
max 0.1 0.11 0.13

SpikeSuM parameters
η1 1e-06 1e-06 1e-06
η2 0.002 0.002 0.002
θ 0.5 0.5 0.5
Wi ni t 9 9 9
c 40 40 40
EI-neurons 512 512 512

Table 2.A.4: Summary of SpikeSuM-C parameters for results in table 2.A.2b
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2.B Supplementary figures
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Figure 2.B.1: Deterministic transitions have a different signature than stochastic ones. The paradigm
uses a volatile sequence task with re-occurrence of rules but restricted to R = 8 different (auditory or
visual) stimuli and two different transition rules (A and B) and could be tested in rodent experiments.
A Transition matrix corresponding to rule A (left) and rule B (right). The transition to stimulus ’0’,
T7→0 = 1, is deterministic (yellow square, lower left corner) under rule A, but stochastic with a value
of T4→0 = 0.5 (light blue) under rule B, and vice versa for the transitions to stimulus ’4’. B Population
activity averaged over network neurons in populations P1 and P2 during all presentations of stimulus
xt+1 = 0 (left) or xt+1 = 4 (right). Black lines: SpikeSuM without context. Green/blue lines: population
of neurons in module 1 of SpikeSuM-C (i.e., the module responding to rule A). Orange/red lines:
population of neurons in module 2 (i.e., responding to rule B) of SpikeSuM-C. Horizontal axis: count of
occurrences of the stimulus ’0’ or ’4’, respectively. Inset, middle: histogram of average activity after
200 presentation time steps under a given rule. Black bars: comparison of activity under rules A and
B in SpikeSuM without context. Colored bars: The activity of neurons in module 1 of SpikeSuM-C
during stimuli under rule A is compared with that of neurons in module 2 during stimuli under rule
B. A stochastic transition causes more activity than a deterministic one. C, same as in B, but only the
activity of those neurons responsive to stimulus ’0’ (left) or ’4’ (right) is shown. In contrast to the simple
SpikeSuM network without context, neurons in the SpikeSuM-C network that respond to stimulus ’4’
in module 1 under rule A (blue) respond even stronger in the context of rule B but this does not affect
their plasticity. Thus, the same experimental paradigm also differentiates between models with and
without context modules
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Figure 2.B.2: Mixed response profile where neuronal responses depend on the present state,
the previous state, and consistent alternatives to the present state in a task with R = 16
stimuli and K = 4 transitions possibilities and two rules. Top: Activity (arbitrary units) of
populations P1 (green) and P2 (red) as well as the total activity Ā (black) of all pyramidal
neurons. After 1500 presentation steps, the transition rule switches from rule 1 to rule 2. Each
presentation step corresponds to the exposure to one stimulus for 100ms. Middle: Spike trains
of pyramidal neurons during one presentation step, at different points during learning (from
left to right): at the beginning and end of the first episode with rule 1 and the beginning and
end of the first episode with rule 2. Initially, (label 1) all pyramidal neurons have approximately
the same activity, whereas after 1000 presentation steps (label 2) only a few pyramidal neurons
are active, i.e., those that correspond to the four possible next states reachable from the
previously observed state. Out of the four reachable states, one is presently observed, and,
since the observation is stronger than the prediction, neurons in population P2 fire (blue dots)
whereas for the three other predicted states the observation is weaker than the prediction so
that neurons in population P1 fire (red dots). After the rule change (label 3), a fifth cluster of
neurons is activated corresponding to the presently observed, but unpredicted, state visible
as spikes in population P2. Pyramidal neurons (16 per state, 8 neurons each from P1 and P2)
have been sorted according to state numbers for visual clarity. Bottom. Matrix of transitions
between states decoded from the weights onto pyramidal neurons. At the end of the first
presentation step after a change point (label 3), a new element (red arrow) has appeared in the
transition matrix corresponding to the newly observed transition, Rn−1 → Rn . After some time
with the novel rule, the new transition matrix is learned (label 4) and the old one is suppressed.
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2.B Supplementary figures

Supplementary Discussion

We comment on the relations of our approach to Artificial Neural Network approaches in

neuroscience.

Predictions and Model-Based Reinforcement learning

In our model, the surprise signal arises from a mismatch between the representation of

the present state and predictions based on the previous state. These learned predictions

could be used in several ways. First, the learned predictions generate a synaptic transition

matrix that reflects the temporal neighborhood relations of the input stimuli (’states’). These

neighborhood relations correspond to the adjacency matrix of states in an abstract or, in the

case of apartments, a two-dimensional space. Thus, our approach learns an autoencoder of

transitions rather than states[167]. Second, in the absence of input from the next state (e.g.,

while closing the eyes and waiting), the predictions could be used by an agent to ’imagine’ the

next state—and, if this imagined next state is fed back into the network as surrogate input, it

would become possible to plan forward in time over several states, similar to forward replay

observed in animals and humans [168, 169] and used in model-based reinforcement learning
[120]. Interestingly, since the speed of forward replay would be given by the intrinsic dynamics

of the network when closing the loop, it is faster than the original experience [168, 169].

The unsupervised paradigm for training SpikeSuM modules can be complemented by a reward-

based paradigm[12], for example in an actor-critic network[120]. Even though detecting surprise

requires a model of possible transitions, recent evidence from human behavior suggests that

surprise is mainly used to detect rule changes. In contrast, reward-based learning in complex

environments is dominated by model-free reinforcement learning[52].

Representation of States and Artificial Neural Networks

In the model in the main text, the representation of states is simple and predefined. However,

we view our surprise-detection networks as modules that can be integrated into bigger net-

works able to solve more complicated tasks. For example, the input layer of our SpikeSuM-C

network can be replaced by the output of a model of the ventral stream[170]. Moreover, the

backprop learning rules of a multi-layer artificial network could be replaced by local predictive

learning rules[105], and SpikeSuM modules can be used in each layer of the network (area of

the processing stream) to detect area-specific surprise and locally modulate plasticity.
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Contribution

In this chapter, we addressed the questions of how to measure surprise in a biologically

constrained neural network and how to utilize it for learning. Unlike prior research, we use a

network architecture and dynamics where high neuronal activity serves as a natural measure

of surprise, rather than relying on an explicitly defined surprise signal.

In order to extract a surprise signal, we developed a paradigm that is in line with experimental

findings. Our approach involved the implementation of positive and negative prediction error

neuron populations, which sought to balance excitatory and inhibitory inputs, akin to putative

L2/3 neurons. Notably, the design of these two-population prediction errors (which were

already hypothesized in Keller et al.[60]) was influenced by the biological constraints of our

model, specifically the asymmetry in neuronal activity between an over-inhibited and over-

excited population. The activity of these populations is then integrated by projection neurons,

which estimate the total prediction error and act as putative L5 neurons. This integrated

activity is then sent to the deeper locus coeruleus area to estimate the surprise scenario,

where we use a two-neuromodulator model (acetylcholine and norepinephrine) to distinguish

between intrinsic volatility of the environment and structural changes for computing surprise.

This two-neuromodulator approach allows us to reach Bayesian performance in our scenario.

Finally, the complete surprise signal is used as a neuromodulator for learning, guiding the

speed of adaptation of our error populations. Unlike many other models, SpikeSuM is fully

self-supervised and does not focus on reward-based learning that would ultimately interfere

with the surprise signal. To our knowledge, there are no other existing surprise-based spiking

models working on fully local three-factor learning rules capable of extracting Surprise and

learning from it. We also are the first to implement with biological constraints the two-

neuromodulator model introduced in Yu et al.[17].

In addition to this new model of surprise, we realized that the model could be extended

to avoid forgetting the previous environment at every structural change. Our approach of

module-based surprise and dis-inhibitory networks for self-supervised detection of context

changes and reactivation has shown great potential. Context-based learning is becoming

increasingly popular in the neuroscience community, and we hope that our novel model serves

as an inspiration for follow-up experimental studies, such as the existence of dis-inhibitory

networks and activity-driven context detection in possibly L5 neurons, and the existence of

local inhibition of neuromodulation.
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Contribution

This chapter emphasizes the crucial role of multiple time scales for adaptation. SpikeSuM

integrates 1ms spike signals over 100ms windows to detect and adapt to unexpected inputs

rapidly and efficiently. Moreover, SpikeSuM features a context detector that leverages long-

term integrated confidence in the environment, enabling the creation and learning of models

over longer time scales, up to minutes (hundreds to thousands of image presentations). By

harnessing these capabilities, SpikeSuM can learn and adapt to varying time scales of input,

underscoring its versatility and efficacy as a learning system.
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3 GateON: an unsupervised method for
large scale continual learning
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GateON: an unsupervised method for large scale continual learning

Authors: Martin Barry, Guillaume Bellec, Wulfram Gerstner

Contribution: All theories and implementations have been made by Martin Barry. The writing

has been shared across authors.

3.1 Introduction

Artificial neural networks (ANNs) have made significant strides in recent years, showcas-

ing remarkable capabilities that surpass human performance in several domains. How-

ever, traditional neural network models (multi-layer perceptrons[171], LSTM[172], CNN[173],

Transformers[2]), unlike humans, are plagued by a major drawback – the inability to con-

tinually integrate new data without overwriting previously acquired knowledge[174]. This

phenomenon, commonly known as catastrophic forgetting, raises a major challenge for

real-life applications such as training robots or understanding human development[175–178].

Unlike traditional ANNs, humans can easily generalize their internal models to new paradigms

(forward transfer[179]), update previous knowledge (backward transfer[180]), and prevent catas-

trophic forgetting. These remarkable capabilities have intrigued the community of theoretical

neuroscience[33, 111, 112, 181–183] as well as that of Machine Learning (ML)[184–187].

An ideal continual learning (CL) method would leverage prior knowledge acquired during a

first task for new task acquisition (forward transfer). Forward transfer results in accelerated

training and enhanced generalization, since prior knowledge from a first task acts as a useful

initialization for the following tasks. It has been suggested[188] that forward transfer could

(at least partially) address the problem of small or biased datasets, that pose challenges

for traditional ML paradigms. Forward transfer during CL is similar in spirit to adapting

pre-trained models, such as Bert or ResNet50[189, 190], to novel tasks. In addition to forward

transfer, CL could also cause positive backward transfer across similar tasks, i.e., knowledge

gained in later tasks could potentially facilitate improvement of the model on the original task,

without reactivation of stimuli of the original task.

There are three primary types of continual learning methods, summarized in Kaushik et al.[191].

The first type is the replay-based method[184, 192–194], where the algorithm intelligently stores

crucial samples in memory for reuse in later training epochs. The second type is the regularizer-

based method[112, 195, 196], where the loss function or gradient is adjusted to prevent deviation

from the solution obtained in previous tasks. The third type is formed by parameter isolation

models[185, 197–199], which protect a subset of parameters to prevent forgetting in subsequent

tasks. Our method, though closer to parameter-isolation models, also shares aspects with

regularizer-based methods. Our method avoids using replay because replay is expensive in

terms of memory since it requires to keep an increasing amount of data in a buffer when going

from a few to a hundred tasks.

Contributions. We present a novel CL method (called GateON) and test it on established tasks
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3.1 Introduction

for CL, such as permuted MNIST and language tasks with a pre-trained BERT model[189]. We

show that

• GateON is compatible with various neural network architectures, including fully con-

nected networks, convolutional neural networks (CNNs), and transformers.

• GateON combines aspects of regularization-based and isolation-based methods by

monitoring the relevance of each parameter (or each neuron) and adjusting the learn-

ing rate on a parameter-specific basis. Importantly, the learning rate can decrease or

increase, which prevents the ’freezing’ of parameters that are never re-used.

• GateON does not require separate inputs to indicate task switching but detects task

switches automatically.

• Going beyond the standard CL paradigm (limited to 10 tasks), GateON also works across

100 MNIST CL tasks. It also surpasses the State-of-the-Art for CL language tasks with

pre-trained BERT with a measurable forward and backward transfer of knowledge,

outperforming recent state-of-the-art approaches, such as Ramesh et al.[184], Ke et

al.[200], and Sun et al.[186].

Related work

Our approach uses online relevance estimation, in combination with gating and unsupervised

context detection.

(i) relevance estimation is used in several other studies, either in combination with gradient

obstruction (e.g., HAT[185], and RMN[199]) or in combination with regularization to prevent

large parameter drifts (EWC[112], SI[111]). HAT uses an attention mask as relevance mapping,

which may overestimate the true importance of a parameter, while RMN uses an estimation of

relevance learned during training. By contrast, we compute online an analytical estimate of

the impact of each parameter on the loss of the current task which defines the instantaneous

relevance of a parameter.

(ii) Leaky availability mapping. In contrast to existing availability control methods which

fixate neurons of high relevance [185, 199], GateON integrates the relevance gradually into an

availability mapping, which determines which parameters are allowed to update and which are

not. A key advantage of our design over Hat or RMN [185, 199] is that it enables the introduction

of a meta-parameter, denoted by ϵ, that controls the reactivation rate of parameters that have

not been relevant for a long time while hedging against catastrophic forgetting.

(iii) Gating approaches, such as HAT[185] and Active dendrites[182], have been successful in

the field of continual learning. In contrast to HAT[185] which employs a binary attention

mechanism for gating and a multi-head output, our approach gates every unit (or parameter)

with a task-specific control variable and does not require a multi-head output. Our gating
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approach shares similarities with the learnable context masking in the Active dendrites model
[182], but in contrast to their approach, we do not enforce a strict number of active neurons

per context nor do we need to estimate a task embedding.

(iv) Whereas standard CL models give explicit information on task numbers[199], we intro-

duce a simple context detector that enables unsupervised inference of tasks. While the

fields of machine learning and signal processing have incorporated context switches via out-

of-distribution detection[201–205], our proposed detector is, in the context of our CL tasks,

computationally cheap since it focuses on deviations in the loss that is evaluated anyway for

each sample.

3.2 The GateON Model

In this section, we explain the GateON method for fully-connected networks (FC) but the

GateON method can also be used for CNNs (Appendix 3.A.6). We study CL with a sequence of

tasks 1 ≤ t ≤ T where tasks are also called ’context’.

Network architecture and contextual gatingWe study a network of L layers. To simplify

notation, all hidden layers are assumed to have N neurons. For the activity of a neuron i in

layer l , we use the notation

x l
i = g l

i · f (
∑

j
w l

i j x(l−1)
j ), with g l

i =σ(
∑

j
w g ,l

i j C j ), (3.1)

where w l
i j are the connection weights from layer l −1 to l and w g ,l

i j the context weights to layer

l . The input is denoted by x(0)
i and the output by yi = xL

i . Contextual gating, denoted by g l
i ,

modulates the output activity x l
i of a neuron i and σ is a rectified hyperbolic tangent, so that

g l
i (t ) ∈ [0,1]. Each context C⃗ is a one-hot encoded vector (Fig. 3.1) where the vector contains

(at least) as many elements as the number of tasks. GateON can work in two modes: either

the task ID is given in the dataset, otherwise, we provide in (Appendix 3.A.3) an algorithm for

change point detection. In this unsupervised mode (task ID is not given), the algorithm can

also reactivate previously encountered contexts (aka tasks). The gating mechanism learns

through backprop which neurons should participate in the feedforward processing network

and which should not. While the learning rate of the feedforward weights w l
i j is modulated by

the availability variable (see next paragraph), the learning rate of the contextual weights w g ,l
i k

is not.

Relevance mapping and gradient obstructionParameter isolation methods[197, 206] demon-

strate that fixing a neuron’s representation during learning can prevent catastrophic forgetting.

However, fixing all weights would prevent future training on later tasks and is similar to setting

the learning rate of gradient descent to 0. To circumvent this issue, GateON uses a ’flexible iso-
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lation’ by online detection of relevance. Here, relevance can be defined at two different levels:

either the relevance of each specific parameter (i.e., weights and biases) or the relevance of a

neuron as a whole (i.e., all its input weights and bias together). In both cases, a high relevance

turns down the parameter-specific learning rate (’gradient obstruction’) and eventually fixes

the corresponding parameter. We call the two variants parameter GateON (p-GateON) and

neuron GateON (n-GateON) respectively.

For the rest of the chapter, θ denotes a parameter (feedforward weights and biases) if we use

p-GateON or the neuronal activity x l
i for n-GateON. We measure the relevance of θ as the

mean effect that it has on the loss function for the current task t

µθ = (Lθ−L )2, (3.2)

where Lθ denotes the loss for θ = 0 in the forward path. Since this term is computationally

expensive, we assume θ small and approximate the relevance by its first-order Taylor expansion

around θ

µθ ≈
(
∂L

∂θ
θ

)2

, (3.3)

details in Appendix 3.A.1. The vector µ denotes the relevance of all parameters (with the loss

evaluated for the current batch of data) and is called the relevance mapping. We normalize

the relevance µθ → µnor m
θ

so that the average is 1 and that 0 ≤ µnor m
θ

≤ N ′ where N ′ is the

number of parameters (or neurons) per hidden layer (Appendix 3.A.1).

The gradient is flexibly obstructed by modulating the learning rate with the availability pa-

rameter Aθ ≥ 0. After each batch update, we estimate the relevance mapping and integrate it

in an availability mapping:

Aθ(t +1) =C l i p[Aθ(t )(1−ηA(µnor m
θ −ϵ))], (3.4)

where Aθ(t ) denotes the availability of the parameter θ at time t , and ηA and ϵ are non-negative

constants. The function C l i p[x] = x for 0 < x < 1 and C l i p[x] = 1 for x ≥ 1 is clipping Aθ(t)

in the range [0,1]. Eq. 3.4 has two stable fixed points, at Aθ = 0 and Aθ = 1. For a relevance

µθ > ϵ, the availability decays exponentially to zero, and for µθ < ϵ it increases exponentially

until it stops at Aθ = 1. Hence, ϵ acts as a threshold to separate relevant from non-relevant

parameters. Aθ(t ) together with ϵ> 0, define a leaky availability mapping.

Finally, gradient updates are controlled with a parameter-specific learning rate that is con-

trolled by the availability,

∆w l
i j =


ηAw l

i j

∂L

∂w l ,
i j

, if p-GateON

ηAx l
i

∂L

∂w l ,
i j

, if n-GateON
(3.5)

where η is the nominal learning rate (SGD, Adam, . . . ). As shown in Eq. (3.5), the smaller
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Figure 3.1: Top: Schematic. GateON during 2 successive tasks. Assume task 1 and task 2
classify what is on the left or right side of the picture, respectively. Blue neurons in the network
are silenced by the context layer, and red ones are active. Dashed connections are connections
with low availability by the end of the task. Neurons can be shared across tasks, and neurons
with low availability keep low availability for the following task. Bottom: Toy simulation across
three permuted MNIST tasks. The activity x, gating g, and availability A evolve over batch
updates for three consecutive tasks, each lasting 250 batch presentations. Blue and yellow
lines indicate an average over the subset of neurons with mean activity higher than a threshold
during tasks 2 and 3, respectively. Neurons that are selective for task 2 (or 3) have a higher
gating value during task 2 (or 3) than the network average (green). The availability of neurons
selective for task 2 (or 3) decreases towards zero during task 2 (or 3). Note that the average
availability of neurons remains high (green) while the availability of neurons selective for
task 2 remains low during the presentation of task 3 showing that only a few neurons are
considered relevant for the task.

the availability Al
θ

, the larger the obstruction of the gradient. In other words, our method

regularizes learning speed.

We will show that the hyperparameter ϵ balances the trade-off between preserving represen-

tations (ϵ→ 0) and maintaining the flexibility of the network for future tasks. In n-GateON

learning is obstructed on a per-neuron basis, i.e., N parameters per layer. This method is

therefore coarse compared to p-GateON (N ′ =O(N 2) parameters per layer) which enables a

more fine-grained obstruction. The consequences of these choices will be analyzed in the

results section. Figure 3.1 bottom illustrates an example of the availability of task-selective

neurons in an n-GateON network across three tasks. We discuss the network inference of the

context in additional figure 3.A.1.
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3.3 Simulations

In this study, we employ four distinct metrics to differentiate between various aspects of

continual learning. The immediate test accuracy (At
cc ), measures the test accuracy on a single

task t immediately after training this task. The accuracy deviation (∆At
cc ), computes the

relative difference between the immediate test accuracy of GateON and the accuracy of task-

specific isolated networks, averaged over all tasks (a positive ∆At
cc implies forward transfer).

The continual accuracy (Acont ,t
cc ), measures the averaged test accuracy of a task t from the

end of its training until the completion of all tasks. The forgetting rate (FRt ), quantifies the

difference between the immediate test accuracy and the continual accuracy averaged only on

t ′ > t (excluding the immediate test accuracy). A FRt < 0 implies that on average, previously

trained tasks increase their test accuracy more than they forget, showing positive backward

transfer. All these metrics M t averaged over all tasks are denoted M (e.g., Acc = 1
T

∑
t At

cc ), we

only report the average in the following.

Continual MNIST datasets Our investigation into the properties of the GateON method

involves its application to networks trained on four CL problems constructed on the MNIST

dataset. The first three have been defined previously: Permuted MNIST[207] (Permuted),

Rotated MNIST[208] (Rotated), Split MNIST[209] (Split); and we add a fourth one: Shuffled-

label MNIST task (Shuffled). For each problem, the network receives the image pixels as

inputs and outputs a digit label. Then for each problem, we apply a change in the input or

output convention after each task change, i.e., the input image (or output) is either rotated

or shuffled. In Permuted, the input pixels are randomly permuted, thereby rendering it

impossible for a classical fully-connected network to generalize from the previous task. The

tasks in Permutedare orthogonal to each other, which means that knowledge gained from

one task cannot be used to perform well on any other task. On the other hand, in Rotated, if

the rotation angle between two tasks is small, the network might be able to generalize using

its learned feature space. However, correlations could cause negative interference, making

Rotated more challenging to learn than Permuted for some methods[210, 211]. Split consists in

separating the classes present in the dataset and presenting these sub-datasets sequentially.

For MNIST instead of showing all digits, we split the dataset into five tasks each containing two

random digits. Split is interesting as it impacts the output. A limitation of the existing ’Split’

approach for MNIST is that you can only get 5 tasks with non-overlapping labels. This is why we

also introduce Shuffled, which replaces Split when working on 100 tasks. In Shuffled each new

task randomly shuffles the labels. This task is particularly challenging for classical networks

(without multi-head) as it completely overrides in the final layer the previous knowledge at

each new task. Together with Rotated, Permutedand Split, this collection of problems enables

us to evaluate three key properties of the GateON method: its ability to prevent catastrophic

forgetting (measured by FR and Acont
cc ), its saturation limit that eventually prevents learning

new tasks sequentially (Acc and Acont
cc ), and its ability in forward (∆Acc ) and backward transfer

(FR).
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Table 3.1: Continual accuracy results (Acont
cc ) for the three classical CL-tasks (Permuted, Rotated,

and Split MNIST) over 10 tasks. We compare the performance of our model with other ’online’
models (i.e., no replay), such as RMN, EWC, OGDT, and HAT. We also select state-of-the-art
methods with replay (e.g., Zoo, Active dendrite), indicated by R . GateON 0 refers to our model
with ϵ = 0. Isolated is the averaged accuracy for 10 vanilla networks trained on each task
separately. Methods that use multi-head outputs are marked by H . The values in bold indicate
the best performance. The Rotatedvalue for Zoo is in parentheses because they used only 5
fixed small rotations as opposed to random ones.

Methods Permuted Rotated Split

OGDTH [212] 86.44 88.32 98.84
EWC[112] 96.9 84 -
HATH [111] 98.6 - 99.0
RMN[199] 97.73 - 99.5
n-GateON 0 (OURS) 97.8 99.2 99.98
p-GateON 0 (OURS) 97.29 99.27 99.98

Active dendriteR [182] 97.2 - -
ZooR [184] 97.71 (99.66) 99.97

Isolated 98.0 99.4 99.99

3.3.1 Classical continual learning

Most of the literature study only continual accuracy after CL on 10 tasks. To compare to the

state-of-the-art, we first limit to classic CL with 10 tasks before studying large-scale CL with

100 tasks. The architectures of our networks are detailed in Appendix (3.A.11).

We show in Tab. 3.1 CL results for 10 MNIST tasks. We observe that GateON performs well

across all three classic continual tasks, as it is close to the performance of ’Isolated’ models,

optimized for each task separately. Moreover, it beats the state-of-the-art for Split. On Per-

mutedand Rotated, GateON is the best, or amongst the best online methods (no replay) of all

15 online models reported in Ramesh et al.[184]. The only exception is HAT, on Permuted. On

Permuted, HAT performs even better than our ’Isolated’ model, which is usually considered a

baseline for Permuted. This performance might come from the multi-head output applied to a

common representation in the previous layer. Notably, Zoo, the only model that beats GateON

on Rotated, uses Replay and reports only results on 5 fixed, and relatively small rotations which

might make transfer across tasks easier.

3.3.2 Large-scale Continual learning.

Although our method has achieved state-of-the-art results on classical CL, we aim to show that

there is a network saturation problem that emerges on long-term CL (up to 100 MNIST tasks).

This problem has not been addressed in previous literature and is typical for parameter-fixing

methods.
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Figure 3.2: Network saturation. A: Immediate test accuracy across tasks for Permutedon
n-GateON (with task identity given, not inferred). The test accuracy shows that the network
saturates after about 10 - 20 tasks in its learning performance for ϵ→ 0 (blue). Yet, for GateON
1, this saturation does not occur. B: Missed detections of tasks switches for n-GateON with
task-inference activated. Comparing A with B shows a clear correlation between the saturation
in immediate test accuracy and the missed detections. Missed detections strongly harm CL.
The number following GateON stands for the ϵ used.

Saturation when scaling to 100 tasks. Parameter-fixing models can quickly reach saturation,

meaning that they are unable to learn anything new once all their parameters are fixed. To

address this issue, GateON uses a leaky availability mapping, Eq. (3.4). In our analysis, we

focus specifically on n-GateON, as it saturates much faster than p-GateON. Fig. 3.2A shows

the evolution of immediate test accuracy over the sequential training of 100 tasks, revealing

a distinct drop in accuracy after 10 tasks for n-GateON 0 (where 0 stands for epsi lon =
0), consistent with the idea that strict fixing of parameters (ϵ = 0) limits network capacity.

However, we observe that this issue is mitigated when ϵ is set to 0.5 or 1. Moreover, Fig. 3.2B

highlights that saturation significantly impairs the model’s capacity to detect task switches.

This incapacity of detecting switches worsens the CL capacity of our method. However, we

find that saturation does not occur for more correlated tasks (Rotated, Shuffled), which is

discussed in more detail in Appendix 3.A.8. These results suggest that saturation induced by

parameter-fixing presents a critical limitation, which the leaky availability mapping helps to

address, preventing network fixation and incapacity of context detection.

Continual learning across 100 tasks. Although we showed that a leaky availability mapping

prevents saturation, the ’un-fixing’ of parameters with an ϵ> 0 might harm the CL performance

of GateON when tested across different tasks. To answer this question, we turn now to learning

100 MNIST tasks across three types of task variants (the Split task has been replaced by

Shuffled). Going to 100 tasks has rarely been attempted before (Table 3.2). We compare

the results of GateON with four other models: Vanilla, a classically trained ANN; the Active

Dendrites[182] algorithm as a baseline (data only available for Permuted); and two ablation

models named Gating and Obstruction. The ablated model ’Gating’ employs contextual gating
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(Eq. 3.1) but without obstruction (Eq. 3.5); on the contrary, ’Obstruction’ does not use gating.

The results of Table 3.2 show that both gating and obstruction are important components of

our model, and none of them works on their own.

Studying Acont
cc across the three task variations indicates that the traditional fully-connected

model (Vanilla) underperforms for all tasks, a phenomenon previously observed in studies on

catastrophic forgetting[176, 213]. The GateON method leads to a significant increase in mean

continual accuracy across all competing models and all tasks. Both n-GateON (with ϵ≥ 0.5)

and p-GateON (for arbitrary ϵ) surpass Active Dendrites[182] by a large margin.

For n-GateON, a parameter choice ϵ≥ 0.5 positively impacts continual accuracy, making it

a valuable tool for large-scale continual learning. While there were only small differences

between n- and p-GateON for their best results, ϵ→ 0 affects n-GateON more strongly than

p-GateON. Our interpretation is that the parameter ϵ is less important for p-GateON since

the latter makes better use of the parameters and probably does not yet reach saturation

for 100 tasks. For the sake of completeness, we also report the results for GateON fed with

explicit context information in Supplementary 3.B, which sheds light on the impact of context

inference on the final results.

For the PermutedMNIST task, ∆At
cc is negative for all GateON models, indicating the absence

of forward transfer. However, for the two other CL MNIST variants, we find positive ∆At
cc

for all models, suggesting that our model does promote slight forward transfer. Since the

parameter FR is always positive we conclude that there is no backward transfer on the MNIST

tasks. However, p-GateON demonstrates a significant resilience against forgetting, with all FRs

below 1% across all 100 tasks. Note that for MNIST, the amount of training data is large. We

anticipate that backward transfer may be more relevant in tasks with limited training data.

Our findings demonstrate excellent performance for both n-GateON and p-GateON. The use

of a leaky availability map enables the resolution of network saturation while maintaining

exceptional continual learning performance. To understand the performance, we have math-

ematically analyzed forgetting in the leaky availability map: the forgetting time for highly

relevant neurons is much longer than their learning time (see Appendix 3.A.2) whereas less

relevant neurons learn as fast as they forget. This ensures that the relevant neurons do not

forget the first task over time, while other neurons become reusable, thereby significantly

increasing the network saturation limit.

3.3.3 Continual learning with large language models

To evaluate the GateON method on interesting large datasets, we conducted tests on three

natural language processing (NLP) continual learning (CL) tasks: Aspect Sentiment Classifica-

tion (ASC)[214], Document Sentiment Classification (DSC)[215], and Text Classification using

20News data[216] (20News).
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Table 3.2: Performance results on Permuted, Rotated, and Shuffled for 100 tasks. Results show
that a leaky relevance mapping drastically improves the CL performance of n-GateON on
Permuted. Results for GateON with CNNs can be found in Supplementary 3.B. The values
in bold indicate the best performance. For Acont

cc , green shows all the values that are within
1% of the best performance. For ∆Acc and FR the green values show forward (positive) and
backward (negative) transfer, respectively. On MNIST we do not observe backward transfer
(no green).

Models
Acont

cc ∆Acc FR
Permuted Rotated Shuffled Permuted Rotated Shuffled Permuted Rotated Shuffled

Vanilla 26.29 69.68 13.41 - - 28.53 71.57 28.53 77.44
Active dendritesR [182] 91.2 - - - - - - - -
Obstruction 18.69 48.29 11.15 -34.15 -63.85 -13.67 45.82 29.36 72.16
Gating 55.07 71.63 62.07 0.24 0.94 0.6 41.96 25.33 35.11

n-GateON 0 73.64 97.62 97.72 -5.61 0.59 0.26 14.82 0.35 0.12
n-GateON 0.5 92.86 97.6 97.35 -1.57 0.66 0.39 2.06 0.33 0.62
n-GateON 1 95.75 97.7 96.89 -0.48 0.7 0.4 1.12 0.24 1.09

p-GateON 0 96.34 97.87 97.69 -0.6 0.64 0.24 0.48 0.14 0.13
p-GateON 0.5 96.48 97.76 97.51 -0.05 0.55 0.29 0.84 0.16 0.37

The ASC CL task involves sentiment analysis on product reviews, with the network required

to classify each aspect of the product, such as the picture or sound, as positive, negative, or

neutral. The CL task includes 19 products, with each product considered a separate task. The

aspect term and sentence are concatenated using the [SEP] token, and the [CLS] token is used

to predict the opinion polarity. For example, the network receives “[CLS] torchlight [SEP]

this is a good torchlight” and should output ’positive’ for the aspect torchlight. Some reviews

can have multiple aspects. The DSC CL task requires sentiment analysis on the full customer

review, with the network tasked with classifying the overall tone as positive or negative. The

CL task comprises 10 products (tasks), and the input comprises the token [CLS] followed by

the text review. The first output token is used as the sentiment estimate. The split 20News CL

task is a topic classification task on the 20News dataset. The original task has 20 topics, which

were randomly split into ten tasks, each containing two topics. The input consists of the token

[CLS] followed by text. The first output token is used as the topic estimate.

All these are CL-tasks, meaning that their tasks are shown sequentially without recall. ASC and

DSC are similar to Permuted and Rotated in the sense that each task has the same classification

objectives but with different datasets, while split-20News changes also the labels similarly

as for split-MNIST. We use both Acont
cc and Macro-F1 (MF1) score for comparison. MF1 is

the F1 score averaged over the different tasks and is more relevant than accuracy on biased

datasets such as ASC . To solve these tasks we use one of the most used large language models,

pre-trained Bert[189] to which we applied the GateON method on each module, attention,

intermediate, output, for all 12 layers as well as pooling and embedding.

GateON performance on large language models Remarkably n-GateON emerges as a versatile

method that achieves state-of-the-art or near state-of-the-art for all tasks (including other

models in Ke et al.[200]) see Tab. 3.3. Additionally, our consistent use of the same parameters

across tasks demonstrates its adaptability. Only LAMOL significantly outperforms it for the
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Table 3.3: The table presented above compares the results for the NLP continual learning
CL-tasks. Multi-task learning (MTL) is not considered as continual learning since it addresses
all tasks simultaneously and can be used as a maximum baseline. We compare our results
with the best models currently known. The GateON method appears to be competitive with
the state-of-the-art and outperforms all other known models summarized in[200]. The values
in bold indicate the best performance.

Models
ASC DSC 20News

Acont
cc MF1 Acont

cc MF1 Acont
cc MF1

BERT MTL
(max baseline)

91.91 88.11 89.77 89.28 96.77 96.77

BERT naive 49.60 43.08 73.08 71.81 52.50 39.22
HAT[111] 86.74 78.16 87.29 86.14 93.51 92.93
LAMOL[186] 88.91 80.59 92.11 91.72 66.13 45.74
B-CL[187] 88.29 81.40 79.76 76.51 95.07 95.04
CTR[200] 89.47 83.62 89.31 88.75 95.25 95.23
n-GateON 0 89.35 84.11 89.29 88.79 95.85 95.86
p-GateON 0 83.09 76.71 87.1 85.34 95.93 95.96

DSC CL task but it performs poorly on the other tasks. It is worth noting that both LAMOL and

CTR are designed for BERT models and are not generalizable to other architectures. p-GateON

achieves a relatively low performance on ASC and DSC in comparison with n-GateON. We

believe that the parameter approach might require more data to be able to identify and tune all

relevant parameters individually. Additionally, unlike n-GateON which fixes all the parameters

into the neuron p-GateON only fixes the relevant ones. Since BERT is very sensitive to slight

changes in representation, the difference between p-GateON and n-GateON might have a big

impact.

Forward and backward transfer The NLP datasets exhibit a wide range of sizes, with some

tasks characterized by limited and biased datasets. We report the ∆At
cc to study forward

transfer in Tab. 3.4. Both models on all tasks show positive deviations emphasizing the

method’s capacity for forward transfer. It is most obvious in ASC and DSC, reaching 6.3%

for ASC’s MF1 for n-GateON, which is understandable since ASC possesses small and biased

datasets. The detailed values of FR are reported in table 3.5. Remarkably, n-GateON FR scores

on ASC are negative, suggesting that the network not only retains high accuracy levels but also

enhances the performance of previous tasks through backward transfer. p-GateON appears to

have more difficulties on these datasets showing a significant forgetting rate explaining its low

performance. The dataset Split 20news has consistent dataset sizes and highly independent

tasks, which contribute to a reduced impact on both forward and backward transfer (small

∆At
cc and positive FR) for both n- and p-GateON.
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Table 3.4: Forward transfer in large language model. The deviation accuracy (∆Acc ) and MF1
deviation (∆MF 1) are the performance improvement against the baseline where tasks are
trained in isolation. All tasks show systematic positive deviation implying a forward transfer
of knowledge for both n- and p-GateON. With an MF1 deviation up to 6.3% for ASC. ASC
comprises many small and biased datasets that seem to profit from this knowledge transfer.

Models ASC DSC 20News
∆Acc ∆MF 1 ∆Acc ∆MF 1 ∆Acc ∆MF 1

n-GateON 3.52 6.28 2.34 2.99 0.16 0.17
p-GateON 2.24 1.99 2.78 3.17 0.12 0.13

Table 3.5: Backward transfer in large language model. The forgetting rate (FR) is a measure
of the difference in accuracy between a model’s performance immediately after training on
a particular task and its performance after training on all subsequent tasks. For ASC FR is
negative, showing that on average previous tasks learn more than they forget, showing the
backward transfer capacity of n-GateON. In contrast, the p-GateON model has generally high
FR values, which may explain its poor performance.

Models ASC DSC 20News
F RAcc F RMF 1 F RAcc F RMF 1 F RAcc F RMF 1

n-GateON -0.21 -0.09 -0.02 0.03 0.08 0.08
p-GateON 2.33 1.16 1.56 2.32 0.12 0.12

3.4 Discussion

In conclusion, the GateON method is a powerful continual learning approach that can be

applied to many types of neural networks by incorporating a context-gating layer and gradient

flow obstruction. Unlike previous models [111, 185, 199], we showed that our model is general

enough to be used either with the parameter or neuron relevance mappings. With mini-

mal algorithmic complexity, the method can prevent catastrophic forgetting by analytically

computing the relevance mapping of each neuron online and adjusting their learning rate.

On MNIST CL tasks p-GateON performed better than n-GateON, because of the large amount

of available training data. On the other hand, n-GateON performed exceptionally well on NLP

continual learning tasks using pre-trained transformers. It has also shown positive forward

transfer capacity for all tasks. Our experiments on the ASC dataset revealed a negative forget-

ting rate, indicating that the method possesses backward transfer capabilities for incomplete

datasets. In the optic of a complete approach, we also implemented a computationally cheap

task detection algorithm allowing for unsupervised context switches.

Overall, the GateON method has the potential to revolutionize the field of continual learn-

ing, particularly in areas such as robotics[217], where the ability to generalize from just a few

real-world examples is crucial; or NLP where new datasets arise that might not be available

at training time. As an online method, unlike replay-based methods, GateON does not re-

quire memory of previous datasets and avoids catastrophic remembering[218]. Our method
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resonates with the idea of preserving neuron selectivity[219, 220] in neuroscience, as well as

possibly explaining paradigms such as representational drifts[221]. Indicating that our method

could have broad applications.
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3.A Methods

3.A.1 Relevance mapping

In order to implement the GateON approach, it is necessary to compute the relevance µl
θ

of the

parameter (or neuron) θ on output loss. We define an analytical expression of the relevance

µθ as the distance between the loss and the loss if the parameter theta were to be removed:

µθ = (Lθ−L )2 (3.6)

To simplify the computation of this term, we use the Taylor expansion around θ = 0:

µθ ≈
(
∂L

∂θ
θ

)2

. (3.7)

To avoid scaling issues we normalize µθ with respect to the number of parameters N (or

neurons) within the layer

µnor m
θ = µθ

1
N

∑
θµθ

. (3.8)

The higher the causal effect the more important the neuron is to the task. Hence, we use this

causal effect for availability adaptation

Aθ(t +1) =C l i p
(

Aθ(t ) · (1−ηA(µnor m
θ −ϵ))

)
. (3.9)

With C l i p as saturating function C l i p(x) = x if x ∈ [0,1],C l i p(x) = 0 if x ≤ 0 and C l i p(x) = 1

otherwise. C l i p clips the availability Aθ between 0 and 1. The term ϵ allows neurons to recover

availability over time if their causal effect decreases.

3.A.2 Availability forgetting time

An important theoretical question is how the introduction of the threshold ϵ in equation (3.9)

impacts the temporal evolution of the availability. Indeed, with ϵ= 0, the availability A can

only decrease or stay fixed. To study the evolution of A for ϵ> 0, we consider the following toy

scenario: we assume that a given neuron is relevant for the first T update steps (T could, for

example, represent all updates during the first task) where relevance is indicated by a high

level µ= a > ϵ; and thereafter the same neuron is irrelevant for the next T ′ steps, as indicated

by µ= b < ϵ (T ′ could represent all updates during all other tasks). From our assumptions and

Eq. (3.9) with A(0) = A0 we have :

A(T +T ′) = A0(1−ηA(a −ϵ))T (1−ηA(b −ϵ))T ′
. (3.10)

We ask ourselves how big T ′ needs to be for the availability to return to its original value.

Solving A(T +T ′) = A0 we obtain
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T ∗ =−T
log

(
1−ηA(a −ϵ)

)
log

(
1−ηA(b −ϵ)

) . (3.11)

Eq. (3.11) shows that the bigger the relevance a, the longer it will take to grow back to A0. For

the further interpretation, we suppose now that ϵ= 1. Since 0 < b < ϵ, we have ϵ−b < 1 during

the ’irrelevant’ phase. The relevance a, however, is bounded by the number of neurons N per

layer (for n-GateON). Hence, during the ’relevant’ phase of a neuron, the difference a −ϵ can

take a value much larger than 1. The behavior described by Eq. (3.11) is exactly what we expect

from the threshold term. It shows that very relevant neurons (a ≫ ϵ) have T ∗ ≫ T meaning

that, for relevant neurons, the time scale of forgetting is much slower than the time scale of

learning.

3.A.3 Task inference

In this section, we present an unsupervised algorithm capable of identifying change points

and inferring the prevailing context (i.e., the current task) for the network. While our approach

employs a single context for the entire network, it is adaptable for application to individual net-

work layers. Initially, we define the concept of network confidence in the current context, prior

to addressing change-point detection. Denoted as confidencek , the confidence quantifies the

network’s level of expertise regarding context k. This confidence is updated as follows:

∆confidencek = confidencek +ηC Ck , (3.12)

where η is a hyperparameter and Ck is a one-hot neuron layer that represents whether the

context k is active during the backward step. In other words, the confidence over the context

k increases if the said context is active during the backward pass.

Next, we describe the change-point detection algorithm in ALG. 1.

1. In line 11, we compare the minimum loss over the last k steps to a low-pass filtered loss.

A change point is detected if the error exceeds a predefined thresholdΘ and the network

exhibits sufficient confidence; otherwise, the network remains in its current context. We

compare to the minimum of the last k steps to be sure that the current loss is not an

outlier. The larger k the longer to detect a change-point but the more sure we get.

2. Upon detecting a change point, lines 12-18 assess if a prior context aligns with the

present observation. If such alignment is found, the previous context is reactivated; if

not, a new context is generated.

3. This procedure is carried out for every batch step.

We detect change points by comparing the current loss to the average one in this context.
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Algorithm 1 Change-point detection algorithm for GateON

1: procedure CPD
2: Change-point ← f al se
3: Θ,η,k ← set hyper parameters
4: active-context ← 0
5: Confidence(active-context) ← 0
6: Ncontext s ← 1
7: for data in datasets do
8: x0 ← d at a
9: L t ← f or w ar d(x0,active-context) // forward pass network

10: L̄ = L̄ +ηL(−L̄ +L t )
11: if min

t−k≤t ′≤t
L t ′ >Θ ·L̄ and Confidence(active-context) > 0.9 then

12: reactivated ← false // Trying to reactivate previous context
13: for test_context in Ncontext s do
14: L t ← f or w ar d(x0, test_context)
15: if L t <Θ ·L̄ then
16: active-context ← test_context
17: reactivated ← True
18: Break
19: if not reactivated then // if no previous context suitable
20: Ncontext s ← Ncontext s + 1
21: active-context ←Ncontext s

22: Confidence(active-context)← 0

23: Change-point ← false
24: Confidence(active-context) ←Confidence(active-context) (1−ηC )+ηC

25: Continue the training steps...

The use of inferred context can have benefits, as it allows us to set our tolerance for change

points. For instance, in the case of Rotated, the representational drift depends on the angle

between task k and k ′, which means that we can choose a toleranceΘ at which we consider

the tasks to be similar or dissimilar. In Fig. 3.A.1 we study the properties of the task detection

with MNIST CL tasks.

3.A.4 Intuition behind the GateON method

We know that the feedforward activity of the network if context k ′ is active follows

x l
i ,k ′ =σ(w g ,l

i k ′ ) · f (
∑

j
w l

i j x(l−1)
j +bi )

= g l
i (k ′) · fi (x(l−1))

(3.13)

In this equation, the input to the network is influenced by two factors: the task-driven input

g l
i (k ′) and the data-driven one fi (x(l−1)). The data-driven input determines the represen-

tation of a neuron given the data, whereas the task-driven input determines the average
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Figure 3.A.1: Context Detection in MNIST. A1-3 We executed 10 continual learning (CL) tasks
and tracked the number of tasks identified by GateON compared to the number of tasks
presented. The results are plotted for twoΘ values, whereΘmodulates task detection strin-
gency as explained in Algorithm (1). The dashed black line represents perfect task estimation
accuracy. Results are averaged over 10 trials, with standard deviation indicated by the shaded
region. A1 and A3 exhibit parity between the number of tasks presented and detected for both
Θ parameters. In contrast, A2 reveals that for Rotated, GateON underestimates the actual task
count, with larger Θ values leading to fewer tasks detected. Specifically, tasks with closely
spaced angles may be misconstrued as a single task, leading to context collapse. B To elucidate
the reasons for the incomplete task detection in A3, we executed two consecutive Rotatedtasks
with an angle difference ∆α ∈ [−25,25], and charted the switch-point detection probability for
GateON (averaged over 10 trials for each ∆α). The results indicate a binary behavior: if ∆α
exceeds a certain threshold, tasks are distinctly identified with a probability of 1; otherwise,
tasks are amalgamated with equal certainty. This suggests a 100 percent switch-point detec-
tion rate if the angle difference is sufficiently large; otherwise, GateON perceives the tasks
as identical. To confirm that similar tasks can reactivate prior ones, we ran in C a sequence
of three tasks such that angles 1 and 3 differ by ∆α and angle 2 is always far from the other
two to be detected as switch-point. C demonstrates that the angle pairs leading to context
collapse in B will also trigger reactivation, while those that resulted in distinct tasks do not
reactivate. In summary, our context detector appears proficient at identifying switch-points
between significantly dissimilar tasks and can also reactivate or collapse tasks when they are
sufficiently alike.

representation of the neuron over the task.

Our objective is to explore methods for preserving the results of a trained task. To answer this
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we study the variation of the activity of a neuron i before (time t ) and after update (time t +1),

expressed as x l
i ,k ′ and x l

i ,k(t+1), respectively, with k ′ the active context and k(t +1) is the active

context at time t +1. In the following, we denote the variations of the parameters ∆θ, with

θ ∈ {wi j ,bi }∀i , j .

∆x l
i = x l

i ,k(t+1) −x l
i ,k ′

= g l
i (k(t +1)) · fi (x(l−1)(t +1))− g l

i (k ′) · fi (x(l−1))

≃
Taylor

∆w g ,l
i k(t+1)(

∑
j
∆w l

i j +∆bl
i ) f ′

i (x(l−1))g ′(k(t +1))

+∆w g ,l
i k(t+1) fi (x(l−1))g ′(k(t +1))

+ (
∑

j
∆w l

i j +∆bl
i ) · f ′

i (x(l−1))g (k(t +1)).

(3.14)

In Eq. (3.14) the black part comes from the update of the forward weights, whereas the red one

is from the update of the context weights, hence only impacting activity if k ′ is active. From a

catastrophic forgetting point of view, if we want to assess the impact of the weight updates

on the representation of a context k(t +1) ̸= k ′, ∆w g ,l
i k(t+1) = 0 because it was not the active

context, Eq. (3.14) reduces to:

∆x l
i = (

∑
j
∆w l

i j +∆bl
i ) · f ′

i (x(l−1))g (k(t +1)). (3.15)

Eq. (3.15) represents the change in activity (and hence in representation) that suffers the

feed-forward path for any non-active context k(t +1) ̸= k ′. Meaning that this would be the

difference observed in activity if we were to re-active an old task after the update. To prevent

catastrophic forgetting we want ∆x l
i = 0. The common approach in the literature is to look

at the relevant parameters and fix them hoping that it is sufficient to prevent catastrophic

forgetting. This is what we do in p-GateON. Another more restrictive way is to ensure that

∆w l
i k ,∆bl

i → 0∀k. One way to force the variation of all parameters connected to the neuron

i to be 0 is the obstruction method we use in n-GateON, which ensures that the network

prioritizes learning new information on available neurons while preserving the non-available

ones. Finally depending on the approach we obstruct the gradient as follows for p-GateON

∆w g ,l
i k =−ηg

∂L

∂w g ,l
i k

∆w l
i k =−ηAw l

i j

∂L

∂w l
i k

∆bl
i =−ηAbl

i

∂L

∂bl
i

.

(3.16)

76



3.A Methods

and this version for n-GateON

∆w g ,l
i k =−ηg

∂L

∂w g ,l
i k

∆w l
i k =−ηAx l

i

∂L

∂w l
i k

∆bl
i =−ηAx l

i

∂L

∂bl
i

.

(3.17)

Interestingly, some neurons have small but non-zero availability, which acts as a gradient

regularizer. Due to their very low learning rate, these neurons cannot drift too far from the

previous representation, helping to preserve previously learned information and prevent

catastrophic forgetting.

3.A.5 Alternative relevance mappings approximations for n-GateON

In the scope of n-GateON Eq. (3.7) writes as

µx l
i
≈

(
∂L

∂x l
i

x l
i

)2

. (3.18)

However, computing the term ∂L
∂x l

i

can be expensive or not accessible, especially for convolu-

tional layers. We propose two approximations. The first one is a local definition of causality

that computes how much removing neuron i in layer l impacts neurons j in layer l +1

µx l
i
= 1

N

∑
j

(x l+1,−i
j −x l+1

j )2

µx l
i
= 1

N

∑
j

g j · ( f (I l+1,−i
j )− f (I l+1

j ))2

≈
Tayl or

1

N

∑
j

g j · (∇T
I⃗

f (I l+1
j )w⃗ j x l

i )2,

(3.19)

where −i implies that we removed the neuron i in the forward path. For example, for ReLU

Eq. (3.19) reduces to µx l
i
= 1

N

∑
j g j (w j i x l

i )2. This local variation allows computing a good

approximation of the global causality if we don’t have access to the loss function.

The last approximation, µx l
i
= (x l

i )2, is the least precise but easiest to implement on any model.

We show in Fig 3.A.2 that in practice using the approximations solely impacts the speed

of availability reduction leading to faster network saturation. The problem of saturation is

compensated to some extent by ϵ.
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µi ∝ (x−i
j − xj)

2

µi = x2
i

µi = (Lxi
− L)2

Figure 3.A.2: Network availability decay over 10 tasks for the three different versions of µi for
n-GateON 0 on Permuted. Blue is the full causality, orange is its local approximation, and
green weakest approximation. As the approximation weakens the availability decreases faster,
meaning that an activity approximation obstructs the gradient of more neurons that its true
counterpart. All reach 97.7% continual accuracy on 10 tasks, meaning that the CL capabilities
of the network stays the same. In practice, the approximated relevance mapping only impacts
the saturation of the network but not directly its CL properties.
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3.A.6 n-GateON for CNN

In the context of a convolutional neural network (CNN), it is necessary to define the gating

and availability operations at the level of filters as opposed to individual neurons. Building

upon the notation established in the previous section, we refer to the filters in the l -th layer of

channel c as wc,l
a,b , where a and b correspond to the indices of the filter weights. By applying

gating and availability operations to each filter in every channel c of layer l , we can compute

the corresponding gated activity as follows:

x l ,c
i j = g l

c f (
K∑

a=0

K∑
b=0

wc,l
ab x l−1,c

(i+a)( j+b))

with g l
c =σ(

∑
j

w g ,l
c j C j ),

(3.20)

For p-GateON, the relevance mappings are exactly the same. Shamefully here the relevance

in Eq.(3.6) is ill-defined in n-GateON for channels. More specifically, we discuss in math met

3.A.5 that the causal effect can be approximated by the mean activity of the channel outputs.

µl ,c
x = 1

Ni

1

N j

∑
i

∑
j

(x l ,c
i j )2

(3.21)

3.A.7 Metrics for Continual learning

We train the tasks t ∈ {1,T } sequentially. For any task t ′ larger than t we can measure the

accuracy on task t right after training on task t ′, this test accuracy is denoted At
cc |t ′. The

immediate test accuracy after training task t being, At
cc = At |t

cc .

After training on all tasks we measure the continual accuracy

Acont
cc,t = 1

T − t

T∑
t ′≥t

At |t ′
cc . (3.22)

The continual accuracy can only expose the catastrophic forgetting property. To get an es-

timation of the capacity of sequential training we measure the ratio between the average

immediate test accuracy of the GateON method and isolated networks called the relative

immediate test accuracy ratio (∆At
cc ).

∆At
cc =

1

ĀIsolated
cc ,

(
1

T

T∑
t

At
cc − ĀIsolated

cc

)
, (3.23)

with ĀIsolated
cc the average accuracy over all tasks if networks are trained separately for each task.

This measure allows for estimating the ability for forward transfer. A positive ∆At
cc shows that

on average the immediate test accuracy is better with continual learning (forward transfer)

than without. We also compute how much accuracy is lost compared to the immediate test
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accuracy, the forgetting rate (FR)

F Rt =
(

At
cc −

1

T − t

T∑
t ′>t

At |t ′
cc

)
. (3.24)

A positive F Rt shows catastrophic forgetting, while negative F Rt represents backward transfer

as it means that on average you have better accuracy later compared to right after training.

The three measures in Eqs (3.22),(3.23),(3.24) summarize well all the aspects of catastrophic

forgetting. The continual accuracy, the relative continual accuracy to the vanilla method, and

the absolute forgetting. In the results section we show all the measures in %, i.e. multiplied by

100.

3.A.8 Network Generalization and neuron sharing

GateON utilizes over-parameterization in both fully-connected and convolutional models.

Specifically, our method employs sub-networks, to solve each task, with typically only 2%

to 10% of neurons per layer being used for a specific task. Yet, we show in Fig 3.A.3 that for

correlated tasks (2 tasks with small angle difference on Rotated) neurons are shared while

for un-correlated tasks (any 2 tasks in Permuted) the network decorrelates used neurons as

much as possible until saturation. GateON capitalizes on the resemblances between tasks to

enhance generalization, as opposed to merely dissociating tasks in order of appearances.

Figure 3.A.4 presents the task-locked average accuracy (see details in material method 3.A.9)

during the 500 batch steps of task presentations, along with the vanilla first task test accuracy

evolution in black (baseline). For orthogonal tasks, the network struggles to generalize and

shows some loss in final accuracy for ϵ = 0, resulting in the network not re-learning faster

than the initial speed. For ϵ= 0 we observe a better start test accuracy, this is not because it

behaves better but because it does not detect switch points anymore. Conversely, for Rotated,

GateON methods facilitate greatly faster learning of new tasks, suggesting that the method

can generalize to correlated tasks, as expected from the correlation matrices. Notably, Shuffled

proves to be counterintuitive to fully-connected models, significantly impeding the speed

of re-training for non-gated networks (bottom right figure). GateON re-trains faster than

vanilla but still can not generalize very well. The parameters of GateON appear to have no

significant impact on correlated tasks. The shaded area in the figure corresponds to the

standard deviation of the mean over (99 tasks * 5 simulations).

3.A.9 Task-locked accuracy

In the classical learning paradigms, we plot the evolution of the test accuracy of the training

epochs or batch steps. For MNIST we train each task for 500 batch steps (around 9 epochs) and

then switch to the next one. During training, we save the test accuracy of task t as At
cc (step)

for step ∈ {1,500}.
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Figure 3.A.3: Context correlation matrices. This figure showcases the Pearson correlations of
context weights across all layers of n-GateONC N N 0 after, trained on 100 tasks for Permuted
(top) and Rotated (bottom). We use n-GateONC N N to show the effect on both FC and con-
volutional layers. For Permuted there is no clear structure in the CNN layers. For the fully
connected ones, the first tasks are highly decorrelated until network saturation (around 10,15
tasks). This is due to Permuted having orthogonal tasks, meaning that you can not generalize
and always use new neurons. For Rotated for visualization, we re-ordered after training the
tasks by increasing angles. The context weights clearly correlate with their neighboring angles
and decorate with the others. This correlation facilitates generalization across tasks. The figure
highlights GateON’s ability to discover existing structures or generate new selective neurons as
needed. We can also explain the propensity of GateON to saturate in Permutedas at each new
task a new set of neurons must be recruited while for Rotatedneurons are reused depending
on the angle.

To avoid showing redundant plots (100 tasks trained) and highlight the average convergence

speed and accuracy during training we compute the average tasked-locked accuracy,

Acc (step) = 1

T −1

T∑
t>1

At
cc (step). (3.25)

Acc (step) highlights the speed of re-training (t > 1) on average after a task switch and its

average convergence. A fast re-training compared to A1
cc (step) shows the capacity of the

network to generalize previous knowledge to new tasks. Similar convergence to the A1
cc (step)

shows that the method does not harm the final accuracy either. In some cases, the final

accuracy can even be better as the generalization might also benefit.
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Figure 3.A.4: Network generalization. The three figures show the task-locked accuracy (mate-
rial methods 3.A.9) over 500 batch presentations for all three MNIST tasks. The task-locked
accuracy reveals the average re-training speed and final accuracy of the network. A network
that generalizes well should learn faster and achieve higher accuracy if possible. Isolated indi-
cates the average speed of training using a new network for each task. The number following
GateON in the legend corresponds to the value of epsilon in Eq. (3.4) used for the GateON
method.

3.A.10 Context correlation matrix

To be sure that sub-networks generated from the GateON method are not mutually exclusive

we want to measure how the context weights that gate the activity of the neurons correlate

between each task. To do so we binarise the context weight vector from context i to all neurons

in layer l

w l ,bi nar i sed
i k =

1 if w l
i k > 0

0 otherwise.
(3.26)

We chose to binarise since we want to focus only on whether this neuron is used or not and

hence if the neuron feature is re-used. Then we compute the Pearson correlation ([222])

Ci j =
COV (w⃗bi nar i sed

i , w⃗bi nar i sed
j )

σiσ j
. (3.27)

Strong correlation means that similar neurons are used between the two tasks and hence the

sub-networks are not separated. We expect this kind of behavior in correlated tasks like Rotated

with two close angles. In orthogonal tasks we would expect the neurons to be anti-correlated,

i.e. the network actively chooses other neurons than the one previously used.

3.A.11 Network architectures

10 Tasks

For Permuted, the network is composed of one input layer of size 728, 2 hidden layers with

2000 neurons, and an output layer of 10 neurons. We added two layers of conv with size 32

for Split and 256,512 for Rotated. We Trained for 17 epochs each. We use the Adam optimizer
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with a learning rate of 5e −3, reset after each task switch. ηA = 0.01 for all layers. The gating

activation function is a rectified hyperbolic tangent, ReLU for the neurons and softmax for

the output. To make the learning faster we also add a batch norm at each layer. We use

cross-entropy loss. Everything is implemented with Pytorch [223]

100 Tasks

Fully-connected architectureThe architecture used for the three meta-tasks is the same with

the same hyper-parameters using Pytorch [223]. It is composed of one input layer of size 728, 4

hidden layers with 5000 neurons, and an output layer of 10 neurons. So many neurons are

necessary for solving 100 tasks but it can be decreased if fewer tasks require to be learned. We

use the Adam optimizer with a learning rate of 5e−3, reset after each task switch. ηA = 0.01 for

all layers. The gating activation function is a rectified hyperbolic tangent, ReLU for the hidden

neurons and softmax for the output. To make the learning faster we also add a batch norm at

each layer, and we re-normalize the output layer activity at each layer. We use a cross-entropy

loss.

Convolutional architectureThe architecture used for the three meta-tasks is the same with

the same hyper-parameters using Pytorch [223]. It is composed of one input layer of size 728, 2

convolutional layers with 256 and 512 channels followed by one max pool of kernel 4, 2 hidden

layers with 5000 neurons, and the output layer of 10 neurons. We use the Adam optimizer with

a learning rate of 5e −3, reset after each task switch. ηA = 0.004 for all conv layers, ηA = 0.01 all

hidden layers. The gating activation function is a rectified hyperbolic tangent, ReLU for the

neurons and softmax for the output. To make the learning faster we also add a batch norm at

each hidden layer, and we re-normalize the output layer activity. We use a cross-entropy loss.

BERT network architecture

We use the BERT base model (uncased) similarly as in Devlin et al.[189]. The same parameters

are used for all tasks for the training. The parameters for context detection differ between

tasks. The only adaption we did is to add the context layers. We also put the availability of the

embedding layer and self-attention layers to 0. We do this because we did not have access to

the pre-training to implement our relevance mapping and availability fixing. Since Attentions

and embedding are projections in small dimensions it has a very dense representation leading

to most of the neurons being relevant. We expect that for these layers our model would fix

most of the neurons during training. Hence we set the availability of the embedding layer and

each attention layer to 0. Note that they still have the gating that allows task-driven adaptation.

The context parameters w are initialized so that σ(w) = 1 for all neurons and contexts. It

prevents gating to change too much the Bert representation before training. We use ηA = 0.05

except if the first dataset has less than 50 batch updates in this case the first task uses ηA = 0.1.
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k Θ ηA ηC

Permuted 1 1.01 0.01 0.02
Rotated 1 1.01 0.01 0.02
Shuffle 1 1.01 0.01 0.02

Table 3.A.1: GateON parameters for MNIST

k Θ ηA ηC

ASC 3 1.1 0.05 0.02
DSC 3 5 0.05 0.02

newsgroup 3 5 0.05 0.02

Table 3.A.2: GateON parameters for NLP

3.B Supplementary tables

Results GateON, task-fed

Models
Permuted Rotated Shuffled

Acont
cc ∆At

cc FR. Acont
cc ∆At

cc FR Acont
cc ∆At

cc FR
Vanilla 26.29 0.0 71.57 69.68 0.0 28.53 13.41 0.0 77.44

n-Gating 55.07 0.24 41.96 71.63 0.94 25.33 62.07 0.6 35.11

n-GateON 1 95.96 0.2 1.5 97.46 1.18 0.49 96.38 1.05 1.52
n-GateON 0.5 95.88 -1.39 0.25 97.6 1.08 0.19 97.66 1.01 0.19
n-GateON 0 92.38 -5.0 0.25 97.39 0.82 0.05 97.72 0.93 0.06

p-GateON 0.5 96.54 -0.05 0.79 97.83 0.67 0.14 97.52 0.31 0.36
p-GateON 0 96.56 -0.62 0.23 97.8 0.64 0.06 97.69 0.25 0.15

Table 3.B.1: Performance results on the three CL-tasks (Permuted, Rotated, and Shuffled) for
100 tasks with task fed in the context layer.

Models
Permuted Rotated Shuffled

Acont
cc ∆At

cc FR. Acont
cc ∆At

cc FR Acont
cc ∆At

cc FR
VanillaC N N 41.32 55.91 94.06 5.33 40.15 58.22
GatingC N N 50.03 -0.07 47.15 88.76 -0.04 10.1 48.63 -0.14 50.65
n-GateONC N N 1 96.16 -0.58 0.9 98.83 0.43 0.37 98.5 -0.12 0.78
n-GateONC N N 0.5 96.57 -0.72 0.37 98.62 0.38 0.36 98.97 -0.15 0.28
n-GateONC N N 0 89.43 -7.91 0.78 99.11 0.25 0.06 98.97 -0.26 0.2

p-GateONC N N 0.5 94.75 -1.4 1.62 99.1 0.11 0.21 98.94 -0.14 0.34
p-GateONC N N 0 95.02 -2.34 0.48 99.05 0.09 0.12 99.06 -0.14 0.22

Table 3.B.2: Performance results on the three CL-tasks (Permuted, Rotated, and Shuffled) for
100 tasks with task-fed in the context layer using CNN.

Results GateON, task inferred
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Models
Permuted Rotated Shuffled

Acont
cc ∆At

cc FR. Acont
cc ∆At

cc FR Acont
cc ∆At

cc FR
Vanilla 26.29 0.0 71.57 69.68 0.0 28.53 13.41 0.0 77.44

Gating 55.07 0.24 41.96 71.63 0.94 25.33 62.07 0.6 35.11

n-GateON 1 95.75 -0.48 1.12 97.7 0.7 0.24 96.89 0.4 1.09
n-GateON 0.5 92.86 -1.57 2.06 97.6 0.66 0.33 97.35 0.39 0.62
n-GateON 0 73.64 -5.61 14.82 97.62 0.59 0.35 97.72 0.26 0.12

p-GateON 0.5 96.48 -0.05 0.84 97.76 0.55 0.16 97.51 0.29 0.37
p-GateON 0 96.34 -0.6 0.48 97.87 0.64 0.14 97.69 0.24 0.13

Table 3.B.3: Performance results on the three CL-tasks (Permuted, Rotated, and Shuffled) for
100 tasks with task inferred by the network.

Models
Permuted Rotated Shuffled

Acont
cc ∆At

cc FR. Acont
cc ∆At

cc FR Acont
cc ∆At

cc FR
VanillaC N N 41.32 55.91 94.06 5.33 40.15 58.22
GatingC N N 50.03 -0.07 47.15 88.76 -0.04 10.1 48.63 -0.14 50.65
n-GateONC N N 1 89.82 -2.61 4.03 98.92 0.11 0.45 98.71 -0.16 0.55
n-GateONC N N 0.5 93.22 -1.95 1.64 98.79 0.03 0.5 98.92 -0.18 0.32
n-GateONC N N 0 76.8 -8.79 10.56 98.89 -0.01 0.37 99.02 -0.21 0.2

p-GateONC N N 0.5 93.4 -1.59 2.51 98.92 0.07 0.41 98.91 -0.15 0.37
p-GateONC N N 0 93.36 -2.17 1.71 98.97 0.07 0.36 99.04 -0.16 0.22

Table 3.B.4: Performance results on the three CL-tasks (Permuted, Rotated, and Shuffled) for
100 tasks with task inferred by the network.
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Contribution

In our first chapter, we developed a module-based approach to context-based learning using

SpikeSuM. While this approach provided valuable insights, we recognized that the human and

animal brain exhibits neuron sharing [224] and the ability to generalize across tasks[225], far

from our modular approach. To address these features, we developed GateON. Drawing on

studies on complex neurons[37], task-specific dendritic input[36], and our work on SpikeSuM,

we employed context-based multiplicative gating of activity in a bio-inspired model. Our

research has demonstrated that GateON is a performative model with many novel ideas

for the machine learning community, such as neuron-based relevance mapping instead of

parameters, which has proven effective even for large language models. We also developed

leaky relevance mapping to prevent network fixing and implemented contextual gating using

multiplicative gating based on one-hot encoded tasks, which simplifies complex embedding

of context that typically requires binarized gating to avoid interferences across tasks.

We anticipate that GateON will have many applications in neuroscience. In fact, most of

GateON’s properties were inspired by our previous work on spiking networks, such as un-

supervised context detection and context-based predictions. GateON is also inspired by

experimental results on possible multiplicative gating of activity through dendritic inputs. All

the computations are done online, and most can be at least approximated with local compu-

tations (for n-GateON). In fact, only the contextual gating needs to use the backpropagation

algorithm to be updated, yet we have good hope that even this could be solved by the use of

predictive coding-like architecture where the error is computed layer-wise.
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4 Discussion & Conclusions

In this thesis, we studied how surprise signals can be extracted from the spike activity of an

error-minimizing network, and how this process triggers the release of neuromodulators to

promote rapid adaptation to unexpected events. Our model proposes that the three-factor

Hebbian rules play a critical role in promoting efficient model rehabilitation.

However, our findings also indicate that our prime model exhibited strong catastrophic forget-

ting, which is the tendency to forget previously learned information. While humans are adept

at re-adaptation, they are also skilled at multitasking and integrating new information without

erasing old ones.

In order to address the problem of catastrophic forgetting resulting from rapid adaptation, we

proposed a solution that involves contextualizing predictions. Specifically, we have developed

a bio-plausible circuit that builds on top of our surprise detector network, which allows for

detecting context switches and context-driven predictions. This approach enables our network

to make more precise predictions based on the current context, while also retaining memory

of previous contexts for reactivation later.

Furthermore, our new approach to understanding the role of surprise and prediction error

has led to the development of new hypotheses for context detection in the brain. Such has

the putative Layer 5 integration of prediction error coming from layer 2/3 leads to both

computations of surprise signal and context boundary detection. We also propose global/local

neuromodulation where the global signal is broadcast from deep areas such as locus coeruleus

and our model of competitive inhibitory populations fine-tunes the effect of neuromodulation

locally. We hope that these testable hypotheses can be further explored and confirmed or

refuted by experiments.

However, one major drawback of SpikeSuM is its independent modular architecture, which

prevents the reuse of old knowledge for new tasks or the update of previous models based on

new observations. These limitations are known as forward and backward transfer, and they

have been extensively studied in the field of continual learning in machine learning.
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To address this problem, we have dived into the machine-learning community and approached

our problem from a different angle. This approach builds on the long tradition of back and

forth between biology and machine learning. We built our intuition around the GateON

method from experimental results, that claim that dendritic input might act as a multiplicative

gating on the axonal input [36, 37]. Indeed, one of the two main properties of the GateON

method is the gating of the feed-forward input from the contextual neurons. The gating allows

us to bypass our previous modular approach to create task-specific subnetworks that are not

necessarily independent. The second property of GateON is neuron availability. The neuron

availability depends on the activity of the neuron over the course of training. The more a

neuron has been active, the less it will be available for integrating new information. Neuron

availability can also be understood as the neuron ’age’. In other words, a neuron that has been

active a lot is considered as old and can not change its representation anymore. We hope that

by sharing this perspective, we can raise the reader’s interest and curiosity about the actual

bio-compatibility of our GateON method.

For the GateON method, the only non-bio-implementable aspect is the back-propagation used

for the weight update of the context weight. We predict that in the future, a bio-implementation

of such a model can be done using local learning rules. We have good reasons to believe

that a network based on local error computation such as CLAPP[105] would allow for a bio

implementation of GateON.

We anticipate that a model of this nature, particularly when adapted to a biologically plausible

algorithm, could offer insights into key aspects of brain mechanisms, such as the interplay

between dendritic and axonal inputs or the phenomenon of representational drift over time.

We trust that a combination of these approaches, informed by a deep understanding of the

underlying mechanisms, can lead to significant advances in the field of continual learning

and by extension in the understanding of continual learning in the neuroscience community.

Conclusion

This thesis has explored the integration of information at different timescales in the brain and

the resulting properties that emerge from it.

Our models’ smallest time resolution is the timescale of single action potentials, in the order

of milliseconds, consistent with the literature[24] that these spikes (and their related activity)

are the first responsible for the synaptic weight evolution.

From there, we explored how these short impulses can be integrated over time to detect

wrongly predicted outputs and estimate surprise on the order of hundreds of milliseconds.

We use this surprise for unsupervised updates of our world model (synaptic weights) and fast

adaptation to novel information.

Our work has also shed light on the importance of context-based prediction and the role it
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plays in identifying dynamics that occur on timescales ranging from minutes to several hours.

Our latest method, GateON, which involves a context-gated and representation-fixing algo-

rithm, has allowed us to develop a lifelong learning network that can integrate new knowledge

continually over the putative course of years, without suffering from catastrophic forgetting.

From a theoretical perspective, identify two promising directions for further exploration in

the realm of surprise-based learning. Firstly, developing a model capable of more intricate

top-down predictions, instead of relying on our fixed buffer population, would represent a

substantial advancement. While our classical Hebbian approach necessitated the use of shal-

low networks without recurrences, our learning modulation could be adapted to incorporate

deep spiking neural network methods like e-prop[91] and others. Secondly, our current ap-

proach does not encompass complex multisensory processing or the crucial state-action pair.

Consequently, it would be intriguing to delve deeper into surprise-based learning by exploring

action-based tasks and model-based algorithms, which account for the interdependency that

arises from model-building and action-taking. Regarding the continual learning framework,

we did not study the impact of learning tasks with different input/output spaces or look at

how we could enforce more hierarchical generalization such as understanding rotation vs.

permutation that would make the method even more powerful.

In terms of experimental opportunities, there are various task designs that hold significant

promise. In Chapter One, we proposed an experiment utilizing SpikeSum, which incorpo-

rates different levels of stochasticity to study the hypothesized variations in brain activity.

The SpikeSum-C model also presents a range of hypotheses. Of particular interest would be

investigating the activity patterns of L5 neurons at switch points and for reappearing con-

texts. Additionally, exploring the dis-inhibitory networks driving reversed winner-take-all

mechanisms in the brain, as introduced for context detection, would be both intriguing and

challenging. Regarding GateON, there are already opportunities for designing compelling

studies. Our main assumption for continual learning revolves around the concept of soft

neuronal fixing. Experimentally examining the existence of such fixing in the brain and deter-

mining whether it occurs at the parameter or neuronal level, as described in Chapter 2, would

be highly valuable.

Overall, we are optimistic about the potential impact of our work and believe that it will

continue to advance our understanding of the brain and its remarkable ability to integrate

information at different timescales. We look forward to seeing how our findings will be applied

in future research and practical applications, and we are excited to continue exploring this

fascinating area of study.

91





Bibliography

[1] Stephen I Gallant et al. Perceptron-based learning algorithms. IEEE Transactions on

neural networks, 1(2):179–191, 1990.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[3] George N Reeke and Gerald M Edelman. Real brains and artificial intelligence. Daedalus,

pages 143–173, 1988.

[4] Jingtao Fan, Lu Fang, Jiamin Wu, Yuchen Guo, and Qionghai Dai. From brain science to

artificial intelligence. Engineering, 6(3):248–252, 2020.

[5] Anthony Zador, Sean Escola, Blake Richards, Bence Ölveczky, Yoshua Bengio, Kwabena

Boahen, Matthew Botvinick, Dmitri Chklovskii, Anne Churchland, Claudia Clopath,

et al. Catalyzing next-generation artificial intelligence through neuroai. Nature Com-

munications, 14(1):1597, 2023.

[6] Ricardo Augusto de Melo Reis, Hércules Rezende Freitas, and Fernando Garcia De Mello.

Cell calcium imaging as a reliable method to study neuron–glial circuits. Frontiers in

Neuroscience, 14:569361, 2020.

[7] Peter A Rinck. Magnetic resonance in medicine: a critical introduction. BoD–Books on

Demand, 2019.

[8] Winifried Denk, James H Strickler, and Watt W Webb. Two-photon laser scanning

fluorescence microscopy. Science, 248(4951):73–76, 1990.

[9] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current

and its application to conduction and excitation in nerve. The Journal of physiology, 117

(4):500, 1952.

[10] Santiago Ramón y Cajal. The croonian lecture.—la fine structure des centres nerveux.

Proceedings of the Royal Society of London, 55(331-335):444–468, 1894.

[11] Vernon B Mountcastle. Modality and topographic properties of single neurons of cat’s

somatic sensory cortex. Journal of neurophysiology, 20(4):408–434, 1957.

93



Bibliography

[12] W. Schultz, P. Dayan, and R.R. Montague. A neural substrate for prediction and reward.

Science, 275:1593–1599, 1997.

[13] Nicholas M Barnes and Trevor Sharp. A review of central 5-ht receptors and their

function. Neuropharmacology, 38(8):1083–1152, 1999.

[14] Craig W Berridge and Barry D Waterhouse. The locus coeruleus–noradrenergic

system: modulation of behavioral state and state-dependent cognitive processes.

Brain Research Reviews, 42(1):33–84, 2003. ISSN 0165-0173. doi: https://doi.org/10.

1016/S0165-0173(03)00143-7. URL https://www.sciencedirect.com/science/article/pii/

S0165017303001437.

[15] Michael E Hasselmo. Neuromodulation: acetylcholine and memory consolidation.

Trends in cognitive sciences, 3(9):351–359, 1999.

[16] Michael C Avery and Jeffrey L Krichmar. Neuromodulatory systems and their interac-

tions: a review of models, theories, and experiments. Frontiers in neural circuits, page

108, 2017.

[17] A. Yu and P. Dayan. Uncertainty, neuromodulation, and attention. Neuron, 46:681–692,

2005.

[18] Matthew R Nassar, Robert C Wilson, Benjamin Heasly, and Joshua I Gold. An approxi-

mately bayesian delta-rule model explains the dynamics of belief updating in a changing

environment. Journal of Neuroscience, 30(37):12366–12378, 2010.

[19] Terence W Picton. The p300 wave of the human event-related potential. Journal of

clinical neurophysiology, 9(4):456–479, 1992.

[20] Santiago Ramón y Cajal. Sobre las fibras nerviosas de la capa molecular del cerebelo.

1888.

[21] Overview of neuron structure and function (article). URL https://www.

khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/

overview-of-neuron-structure-and-function.

[22] Brian S Meldrum. Glutamate as a neurotransmitter in the brain: review of physiology

and pathology. The Journal of nutrition, 130(4):1007S–1015S, 2000.

[23] William Van der Kloot and J Robbins. The effects of γ-aminobutyric acid and picrotoxin

on the junctional potential and the contraction of crayfish muscle. Experientia, 15:

35–36, 1959.

[24] Donald Olding Hebb. The organization of behavior; a neuropsychological theory. Wiley,

1949.

[25] John NJ Reynolds and Jeffery R Wickens. Dopamine-dependent plasticity of corticostri-

atal synapses. Neural networks, 15(4-6):507–521, 2002.

94

https://www.sciencedirect.com/science/article/pii/S0165017303001437
https://www.sciencedirect.com/science/article/pii/S0165017303001437
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function
https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/overview-of-neuron-structure-and-function


Bibliography
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