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From calibration rig

From points and lines at infinity 
+ orthogonal lines and planes ® structure of the scene, K

® location/pose of the rig, K

Knowledge about scene (point correspondences,  geometry of lines & planes, etc…
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Why is it so difficult?

Intrinsic ambiguity of the mapping from 3D to image (2D)



Recovering structure from a single view

Intrinsic ambiguity of the mapping from 3D to image (2D)

Courtesy slide S. Lazebnik



Two eyes help!
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Two	eyes	help!

This	is	called	triangulation

K’ =knownK =known

R, T

P = l × "l
P

l 'l
[Eq. 1]



• Find	P*	that	minimizes
d(p,M P*)+ d(p ',M 'P*)

O1 O2

p
p’

P

Triangulation

[Eq. 2]
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Multi	(stereo)-view	geometry

• Camera	geometry:	Given	corresponding	points	
in	two	images,	find	camera	matrices,	position	
and	pose.

• Scene	geometry:	Find	coordinates	of	3D	point	
from	its	projection	into	2	or	multiple	images.

• Correspondence:	Given	a	point	p in	one	image,	
how	can	I	find	the	corresponding	point	p’ in	
another	one?



The epipolar geometry

C,C’,x,x’ and X are coplanar

(a)



The epipolar geometry

What if only C,C’,x are known?

b

• If we know x, how is the corresponding

point x’ constrained?

• l’ is the Epipolar line 

corresponding to point x

• Upshot: if we know C and C’

for a stereo correspondence

algorithm, no need to search

all over the second image, 

but just only over the epipolar

line. 

C C’



The epipolar geometry

All points on p project on l and l’

a

C C’

• Baseline: connects two camera centers

• Epipole: point of intersection of baseline

with image plane

• Epipole: image in one view of the camera 

center of the other view.



The epipolar geometry

Family of planes p and lines l and l’ 

Intersection in e and e’

b

• Epipolar plane: A plane containing the 

baseline.

• There is a one parameter family , or a 

pencil, of epipolar planes

• Epipolar line is the intersection of an 

epipolar plane with the image plane

• All epipolar lines intersect at the epipole

• An epipolar plane intersects the left and 

right image planes in epipolar lines,

and defines the correspondence 

between the lines. 



The epipolar geometry

epipoles e,e’

= intersection of baseline with image plane 

= projection of projection center in other image

= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image

(always come in corresponding pairs)



An Introduction to
Computer Vision

10
p

Two views of a collection of objectswo v ews o co ec o o objec s

Assume that the full camera calibration is known.  That is the extrinsic 
parameters of both cameras are known.



An Introduction to
Computer Vision
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Some points have been identified in the right hand viewSo e po s ve bee de ed e g d v ew



An Introduction to
Computer Vision
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These points define epipolar lines in the left hand viewese po s de e ep po es e e d v ew



An Introduction to
Computer Vision
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The corresponding points are located on the epipolar lines in the 
left hand view



An Introduction to
Computer Vision
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The points in the left hand view in turn define epipolar 
lines in the right hand view, and these lines pass through the 
points in the right hand view.



An Introduction to
Computer Vision

15Epipolar Geometry
p

Epipolar geometry is 
– dependant only on the (internal and external) camera parameters.dependant only on the (internal and external) camera parameters.
– independent of the 3D structure of a scene.

Figure courtesy of Richard Hartley, from Multiple View Geometry in Computer Vision, Hartley and Zisserman, Cambridge, 2000.



Example: 

converging 

cameras



• Epipolar Plane • Epipoles e, e’

• Epipolar Lines
• Baseline

Epipolar geometry

O1 O2

p’

P

p

e e’

= intersections of baseline with image planes 
= projections of the other camera center



Example of epipolar lines
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Example: Parallel image planes

• Baseline intersects the image plane at infinity
• Epipoles are at infinity
• Epipolar lines are parallel to u axis

u u

v v



Example:	Parallel	Image	Planes



Example: motion parallel with image plane



An Introduction to
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Example: Forward translation

• The epipoles have same position in both images
• Epipole called FOE (focus of expansion)

O2

e

e’

O1

P



- Two views of the same object 
- Given a point on left image, how can I find the corresponding point on right image?

Epipolar Constraint

p
Where is p’?



Epipolar geometry

O1 O2

P

p p’

Epipolar line 2



Epipolar Constraint

p p’
Epipolar line 2



• l = E p’  is the epipolar line associated with p’ 
• l’ = ET p  is the epipolar line associated with p 
• E e’ = 0   and   ET e = 0 
• E is 3x3 matrix; 5 DOF
• E is singular (rank two)

Epipolar Constraint

O1 O2

p’

P

p

e e’
l l’

pT ⋅ E p ' = 0
[Eq. 10]



Fundamental Matrix

F is a projective mapping   x  l’  from a point x in one image to its

Corresponding epipolar line in the other image

l’ = Fx



The fundamental matrix F

algebraic representation of epipolar geometry 

l'x

we will see that mapping is (singular) correlation 

(i.e. projective mapping from points to lines) 

represented by the fundamental matrix F



Skew Symmetric Matrix for a 
vector a

• [a]x is skew symmetric matrix for vector a

• If a = (a1 , a2 , a3 )T then,

[a]x = [ 0   -a3   a2

a3 0    -a1

-a2 a1 0      ]

• Cross product between two vectors a and be can be written in terms 

of skew symmetric matrix for a:

axb = [a]x b



The fundamental matrix F
geometric derivation

xHx' π

x'e'l'    FxxHe' π  

mapping from 2-D to 1-D family (rank 2)

• Plane π, not passing through either of the 

camera centers

• Ray through C corresponding to image point

x, meets plane π in a point in 3D called X.

• Project X to a point x’ in the second image

• “Transfer via the plane π”.

• l’ is the epipolar line for x  x’ must like on l’

• x and x’ are projectively equivalent to the 

planar point set Xi

• There is a 2D homography mapping

each xi to x’i

C C’

πH

x'e'l' 



The fundamental matrix F

algebraic derivation

 IPP 

  

 PP'e'F

xPP'CP'l' 

(note: doesn’t work for C=C’  F=0)

xP

 λX• Line l’ joints two points: can be written as 

cross product of those two points:

• First point is P’C which is e’

• Second point is projection P’ of P+x onto

second image plane

l’ = e’ cross product with ( P’ P+ x )

P+ is pseudo 

inverse of P

C
C’



The fundamental matrix F

correspondence condition

0Fxx'T 

The fundamental matrix satisfies the condition 

that for any pair of corresponding points x↔x’ in 

the two images

 0l'x'T  l’ = FxCombine these two:

• Upshot: A way of characterizing fundamental matrix without reference to 

camera matrices, i.e. only in terms of corresponding image points

• How many correspondences are needed find F? at least 7.



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that 

satisfies x’TFx=0 for all x↔x’ 

(i) Transpose: if F is fundamental matrix for (P,P’), then FT is fundamental 

matrix for (P’,P)

(ii) Epipolar lines: for any point x in the first image, the corresponding 

epipolar line is l’ = Fx ; same with converse: l = FT x’ represents the 

epipolar line corresponding to x’ in the second image

(i) Epipoles: for any point x, the epipolar line l’ = Fx contains the epipole

e’. Thus e’TFx=0, x e’TF=0;  similarly Fe=0

e’ is the left null vector of F;  e is the right null vector of F

(i) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)

(ii) F is a correlation, projective mapping from a point x to a line l’=Fx (not a 

proper correlation, i.e. not invertible)

If l and l’ are corresponding epipolar lines, then any point x on l is 

mapped to the same line l’  no inverse mapping F not proper correlation
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Epipolar Constraint

0pFpT =¢

F = Fundamental Matrix
(Faugeras and Luong, 1992)

[ ] 1-
´

- ¢××= KRTKF T[Eq. 13]

[Eq. 14]



Epipolar Constraint

O1 O2
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• l = F p’ is the epipolar line associated with p’ 
• l’= FT p  is the epipolar line associated with p 
• F e’ = 0   and   FT e = 0
• F is 3x3 matrix; 7 DOF 
• F is singular (rank two)

pT ⋅ F p ' = 0

l’l



Why F is useful?

- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, we can compute the corresponding epipolar line in the second image

l’ = FT p
p p’



Why	F	is	useful?

• F	captures	information	about	the	epipolar	geometry	of	
2	views	+	camera	parameters	

• MORE	IMPORTANTLY: F	gives	constraints	on	how	the	
scene	changes	under	view	point	transformation	
(without	reconstructing	the	scene!)

• Powerful	tool	in:
• 3D	reconstruction
• Multi-view	object/scene	matching	
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Example: Parallel image planes

E=?K1=K2 = known
Hint :

x

y

z

x parallel to O1O2

R = I T = (T, 0, 0)

u

v
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Essential	matrix	for	parallel	images

T = [ T  0  0 ]
R = I

[ ] RTE ×= ´

[Eq. 20]
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Example: Parallel image planes

x
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z

horizontal!
What are the 
directions of 
epipolar lines?

l = E p ' =
0 0 0
0 0 −T
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Example: Parallel image planes

How are p
and p’ 
related?

pT ⋅ E p ' = 0

P

e’
p p’

e

y

z

xO1

u

v

u’

v’



Example: Parallel image planes
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How are p 
and p’ 
related?
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Example: Parallel image planes

Rectification: making two images “parallel” 
Why it is useful? • Epipolar constraint ® v = v’

• New views can be synthesized by linear interpolation
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Application: view morphing
S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30 


