Recovering structure from a single view
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From calibration rig — location/pose of the rig, K

From points and lines at infinity

+ orthogonal lines and planes — structure of the scene, K

Knowledge about scene (point correspondences, geometry of lines & planes, etc...




Recovering structure from a single view
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Why is it so difficult?

Intrinsic ambiguity of the mapping from 3D to image (2D)



Recovering structure from a single view

Intrinsic ambiguity of the mapping from 3D to image (2D)
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Two eyes help!




Two eyes help!

This is called triangulation



Triangulation

e Find P* that minimizes
d(p,M P*)+d(p',M'P*) Itq.2]




Multi (stereo)-view geometry

Camera geometry: Given corresponding points
in two images, find camera matrices, position
and pose.

Scene geometry: Find coordinates of 3D point
from its projection into 2 or multiple images.

Correspondence: Given a point p in one image,
how can | find the corresponding point p* in
another one?



The epipolar geometry

X

epipolar plane 7T

(a)

C,C’.x,x’ and X are coplanar

Fig. 9.1. Point correspondence geometry. (a) The iwo cameras are indicated by their centres C and
C' and image planes. The camera centres, 3-space point X, and its images X and X' lie in a common
plane . (b) An image point X back-projecis 1o a ray in 3-space defined by the first camera centre, C,
and x. This ray is imaged as a line I in the second view. The 3-space point X which projects 1o X must
lie on this ray, so the image of X in the second view must lie on |,



The epipolar geometry

If we know X, how is the corresponding
point X’ constrained?

I is the Epipolar line
corresponding to point x
Upshot: if we know C and C’
for a stereo correspondence
algorithm, no need to search
all over the second image,
but just only over the epipolar
line. X
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What if only C,C’,x are known?

Fig. 9.1. Point correspondence geometry. (a) The mweo cameras are indicated by their centres C and
C' and image planes. The camera centres, 3-space point X, and its images x and X' lie in a common
plane w. (b) An image point X back-projects to a ray in 3-space defined by the first camera centre, C,
and x. This rav is imaged as a line 1 in the second view. The 3-space point X which projects to X must
fie on this rav. so the image of X in the second view must lie on 1.



The epipolar geometry

Baseline: connects two camera centers
Epipole: point of intersection of baseline
with image plane

Epipole: image in one view of the camera
center of the other view.

C baseline

a

All points on &t projectonland I’

Fig. 9.2. Epipolar geometry. (a) The camera baseline intersects each image plane at the epipoles e
and &'. Any plane w confaining the baseline ix an epipolar plane, and intersects the image planes in
corresponding epipolar lines | and 1. (b) As the position of the 3D point X varies, the epipolar planes
“rotate” about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines
intersect at the epipole.



The epipolar geometry

Epipolar plane: A plane containing the

baseline.
There is a one parameter family , or a

pencil, of epipolar planes .
Epipolar line is the intersection of an +
epipolar plane with the image plane o X
All epipolar lines intersect at the epipole ./
An epipolar plane intersects the left and/
right image planes in epipolar lines, : 3 /
and defines the correspondence baseline
between the lines.
b

Family of planes © and lines | and |
Intersection in e and €’

Fig. 9.2. Epipolar geometry. (a) The camera baseline imersects each image plane ar the epipoles ¢
andl @', Any plane m containing the baseline is an epipolar plane, and intersects the image planes in
corresponding epipolar lines | and 1. (b) As the position of the 3D point X varies, the epipolar planes
“rotate” about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines

intersect ar the epipole.



The epipolar geometry

epipoles e,¢e’

= intersection of baseline with image plane

= projection of projection center in other image
= vanishing point of camera motion direction

an epipolar plane = p\iane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



An Introduction to
Computer Vision

Two views of a collection of objects

Assume that the full camera calibration is known. That is the extrinsic
parameters of both cameras are known.



An Introduction to
Computer Vision

Some points have been identified in the right hand view




An Introduction to
Computer Vision

These points define epipolar lines in the left hand view




An Introduction to
Computer Vision

The corresponding points are located on the epipolar lines in the
left hand view




An Introduction to

Computer Vision

The points in the left hand view in turn define epipolar
lines in the right hand view, and these lines pass through the
points in the right hand view.




Epipolar Geometry TS

Computer Vision

Epipolar geometry is
— dependant only on the (internal and external) camera parameters.
— independent of the 3D structure of a scene.

Figure courtesy of Richard Hartley, from Multiple View Geometry in Computer Vision, Hartley and Zisserman, Cambridge, 2000.



Example:
converging

cameras

Fig. 9.3. Converging cameras. (a) Epipolar geomelry for converging cameras. (b} and (¢) A pair of
images with superimposed corresponding points and their epipolar lines (in whire). The motion between
the views is a translation and rotation. In each image, the direction of the other camera mav be inferred
from the intersection of the pencil of epipolar lines. In this case, both epipoles lie outside of the visible

i e,




Epipolar geometry

e e
O; B — O,
* Epipolar Plane  Epipoles e, e’
* Baseline = intersections of baseline with image planes

. . = projections of the other camera center
 Epipolar Lines



Example of epipolar lines
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Example: Parallel image planes

* Baseline intersects the image plane at infinity
* Epipoles are at infinity
* Epipolar lines are parallel to v axis



Parallel Image Planes

Example




Example: motion parallel with image plane

Fig. 9.4. Motion parallel to the image plane. In the case of a special meotion where the translation is
parallel to the image plane, and the rotation axis is perpendicular 1o the image plane, the intersection
of the baseline with the image plane is av infiniry. Conseguently the epipoles are ar infiniry, and epipolar
lines are parallel. (a) Epipolar geometry for motion parallel to the image plane. (b) and (¢) a pair of
images for which the motion between views is (approximately) a rranslation parallel to the x-axis, with
ne rotation. Four corresponding epipolar lines are superimposed in white. Note that corvesponding
points lie on corresponding epipolar (ines.



Epipolar geometry example

e at
>
infinity

e at
——

infinity

Epipolar geometry depends only on the relative pose (position and
orientation) and internal parameters of the two cameras, i.e. the posi-
tion of the camera centres and image planes. It does not depend on
structure (3D points external to the camera).



Example: Forward translation

* The epipoles have same position in both images
* Epipole called FOE (focus of expansion)



Eplpolar Constraint

- Two views of the same object
- Given a point on left image, how can | find the corresponding point on right image?




Epipolar geometry

Epipolar line 2
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Epipolar Constraint

e e
O] e V 02
e | =E p’ is the epipolar line associated with p’

e |"=ETp isthe epipolar line associated with p
eEe’'=0 and ETe=0
e Eis 3x3 matrix; 5 DOF
* Eis singular (rank two)



Fundamental Matrix

0.2 The fundamental mairix F 243

—

o X

Fig. 9.5. A point X in one image is transferred via the plane w® 1o a marching point X' in the second
image. The epipaolar line through X' is obtained by joining x' to the epipole €. In symbols one may
write X' = HpXandl = |e | . X' = |e'| HyX = Fx where F = |e'|, Hy is the fundamental marrix.

F is a projective mapping x -2 I' from a point x in one image to its
Corresponding epipolar line in the other image



The fundamental matrix F

algebraic representation of epipolar geometry

X1

we will see that mapping is (singular) correlation
(i.e. projective mapping from points to lines)
represented by the fundamental matrix F



Skew Symmetric Matrix for a
vector a

» [a], is skew symmetric matrix for vector a
- Ifa=(a;,a,,a; )" then,

[al,=[0 -a; a&,

a3 0 'a1

« Cross product between two vectors a and be can be written in terms
of skew symmetric matrix for a:

axb =[a], b



I'=

The fundamental matrix F

VN

geometric derivation

Plane 11, not passing through either of the
camera centers

Ray through C corresponding to image point
X, meets plane 1 in a point in 3D called X.

Project X to a point x’ in the second image Pl

“Transfer via the plane 11". /

I is the epipolar line for x = x’ must like on I’ 1I|IF,/’
|'=e'xx’

x and x’ are projectively equivalent to the C

planar point set X,

Thereis a 2D homography H mapping

each x; to X,

X'=H_x

e'xx' = [e']XHnX = Fx
mapping from 2-D to 1-D family (rank 2)

Result9.1. The fundamental matrix F may be written as F = |e'| . Hg, where Hy is the
transfer mapping from one image to another via any plane w. Furthermore, since '],

has rank 2 and Hy rank 3, F is a mairix of rank 2.




The fundamental matrix F

P* is pseudo
inverse of P

PP=1)

algebraic derivation

I'=P'CxP'P"x
« Line I joints two points: can be written as
cross product of those two points:
* First pointis P’'C which is €’
« Second point is projection P’ of P*x onto

second image plane
) / £ e /
L L
!

I’ = e’ cross product with ( P’ P* x .
F — e']x P P+ C \\\\\\ ‘/\/J{ﬁ!nolarlin?

(note: doesn’t work for C=C’ = F=0)



The fundamental matrix F

correspondence condition

The fundamental matrix satisfies the condition
that for any pair of corresponding points x<x’ in
the two images

Combine these two: (x'T 1':0) "= Fx
X" Fx =0

Result9.3. The fundamental matrix satisfies the condition that for anv pair of corre-
sponding poinis X «— X' in the two images

x'TFx = 0.

« Upshot: A way of characterizing fundamental matrix without reference to
camera matrices, i.e. only in terms of corresponding image points
« How many correspondences are needed find F? at least 7.



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that
satisfies x’TFx=0 for all x—x’

(i) Transpose: if F is fundamental matrix for (P,P’), then FT is fundamental
matrix for (P’,P)

(if) Epipolar lines: for any point x in the first image, the corresponding
epipolar line is I' = Fx ; same with converse: | = FT X’ represents the
epipolar line corresponding to x’ in the second image

(1) Epipoles: for any point x, the epipolar line I' = Fx contains the epipole
e’. Thus €'TFx=0, Vx =e’'TF=0; similarly Fe=0
e’ is the left null vector of F; e is the right null vector of F
() F has 7 d.o.f.,ie. 3x3-1(homogeneous)-1(rank2)
(ii) F is a correlation, projective mapping from a point x to a line I'=Fx (not a
proper correlation, i.e. not invertible)
If | and I’ are corresponding epipolar lines, then any point x on | is
mapped to the same line I' = no inverse mapping=>» F not proper correlation



O,

[Eq. 13]

F = Fundamental Matrix
(Faugeras and Luong, 1992)

Epipolar Constraint

p Fp'=0

)pi
O,

F=K".[T]RK"

[Eq. 14]



Epipolar Constraint

O] e V 02
e | =F p’ is the epipolar line associated with p’

e I'’=F"p is the epipolar line associated with p
e Fe'=0 and FTe=0
 Fis 3x3 matrix; 7 DOF
* Fis singular (rank two)



Why Fis Usefu|3

- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, we can compute the corresponding epipolar line in the second imag




Why F is useful?

e F captures information about the epipolar geometry of
2 views + camera parameters

e MORE IMPORTANTLY: F gives constraints on how the
scene changes under view point transformation
(without reconstructing the scene!)

e Powerful tool in:
e 3D reconstruction
e Multi-view object/scene matching



Example: Parallel image planes

P
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O,

Hint :
R=1 T=(T,0,0)

K,=K, = known

x parallel to O,0,



Essential matrix for parallel images

E=|T | R

0 -7, T, 0 0 O

T 0 -T. |R=| 0 0 -T
T T 0 O 7 O

Y X i

[Eq. 20]
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Example: Parallel image planes

P
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What are the 00 0 u 0 .
directions of [=Ep'=| 0O 0 -T v |=| =T horizontal!
epipolar lines? 0O 7T 0 1 Ty




Example: Parallel image planes

P

—— __P__ | ___oé€

How are p 7 '
and p’ p Ep =(

related?



Example: Parallel image planes

P

—— __P__ | ___oé€

related? 0O 7 0 &%

ﬁv:v,

How are p 0 0 0| 0
and P' >(u y 1)0 0 =TIV =O:>(u v 1) T |=0=>Tv="1




Example: Parallel image planes

P

_—- __P__ | ___oé€

III

Rectification: making two images “paralle

y



Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30




