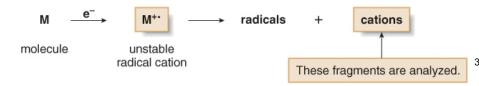

Mass Spectrometry

- Mass spectrometry is a technique used for measuring the molecular weight and determining the molecular formula of an organic compound.
- In a mass spectrometer, a molecule is vaporized and ionized by bombardment with a beam of high-energy electrons (~ 1600 kcal, or 70 eV). It takes ~100 kcal of energy to cleave a typical σ bond.
- The electron beam ionizes the molecule by causing it to eject an electron forming positive ions (the parent or molecular ion) and products from broken bonds (fragment ions).

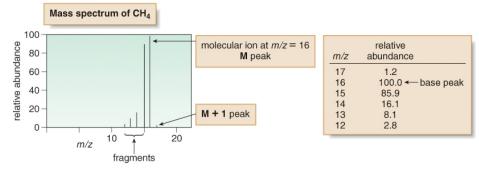
Instrumentation

1



In a mass spectrometer, a sample is vaporized and bombarded by a beam of electrons to form an unstable radical cation, which then decomposes to smaller fragments. The positively charged ions are accelerated toward a negatively charged plate, and then passed through a curved analyzer tube in a magnetic field, where they are deflected by different amounts depending on their ratio of mass to charge. A mass spectrum plots the intensity of each ion versus its *m/z* ratio.

2


Mass Spectrometry

- When the electron beam ionizes the molecule, the species that is formed is called a radical cation, and symbolized as M⁺⁺.
- The radical cation M⁺⁺ is called the molecular ion or parent ion.
- The mass of M⁺⁺ represents the molecular weight of M.
- Because M⁺⁺ is unstable, it decomposes to form fragments of radicals and cations that have a lower molecular weight than M⁺⁺.
- · The mass spectrometer analyzes the masses of cations.
- A mass spectrum is a plot of the amount of each cation (its relative abundance) versus its mass to charge ratio (m/z, where m is mass, and z is charge).
- z is almost always +1, m/z actually measures the mass (m) of the individual ions.

Mass Spectrometry

Consider the mass spectrum of CH₄ below:

- The tallest peak in the mass spectrum is called the base peak.
- The base peak is also the M peak, although this may not always be the case.
- Though most C atoms have an atomic mass of 12, 1.1% have a mass of 13. Thus, ${}^{13}CH_4$ is responsible for the peak at m/z = 17. This is called the M+1 peak.

- The mass spectrum of $\rm CH_4$ consists of more peaks than just the M peak.
- Since the molecular ion is unstable, it fragments into other cations and radical cations containing one, two, three, or four fewer hydrogen atoms than methane itself.
- Thus, the peaks at m/z 15, 14, 13 and 12 are due to these lower molecular weight fragments.

mass 15

e⁻⁻

CH

(CH₄)+•

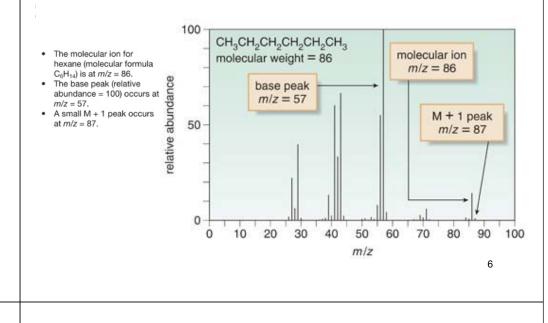
mass 16

molecular ion

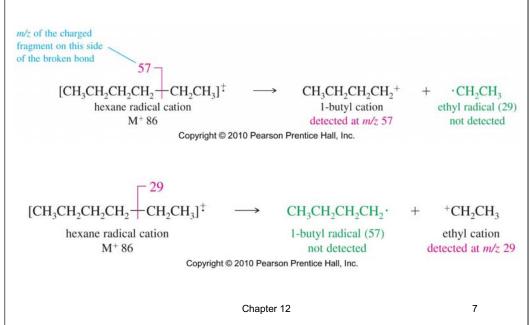
 $\xrightarrow{-H}$ CH_3^+ $\xrightarrow{-H}$ CH_2^{+} $\xrightarrow{-H}$ CH^+ $\xrightarrow{-H}$

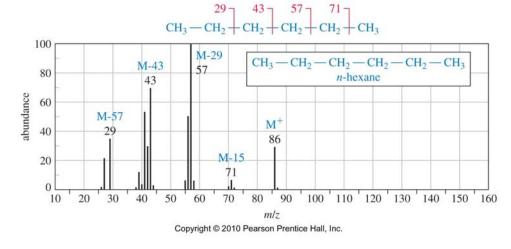
mass 14

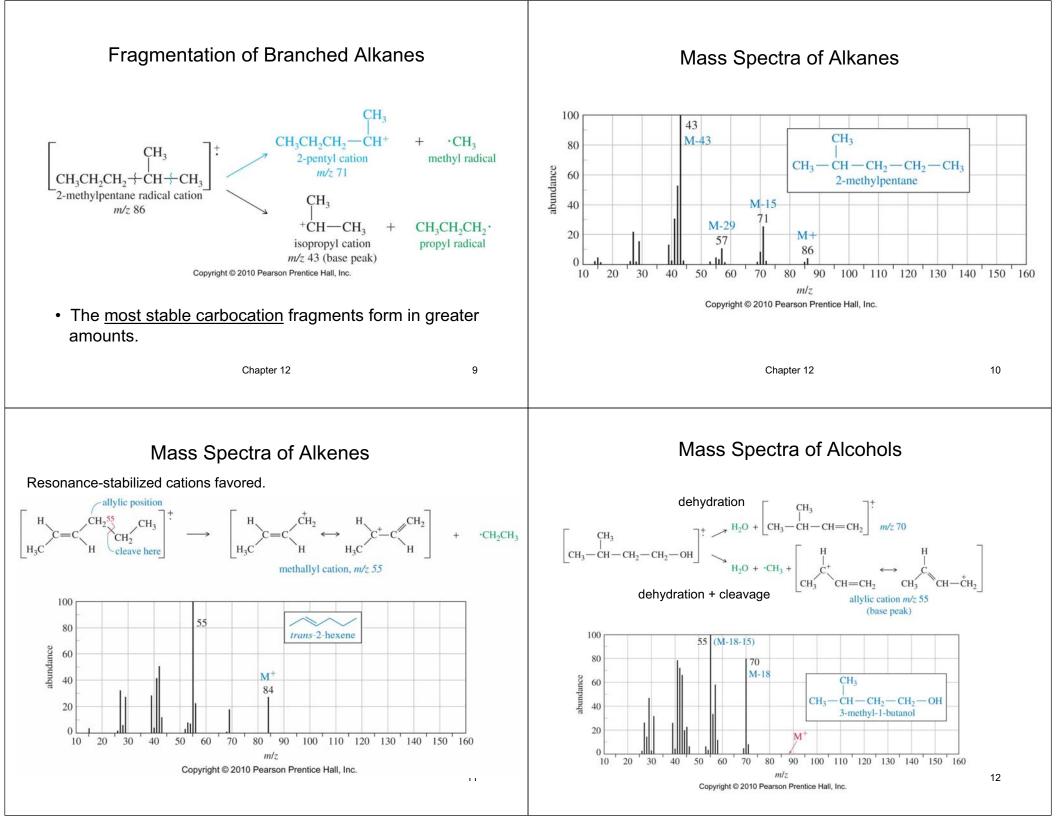
mass 13

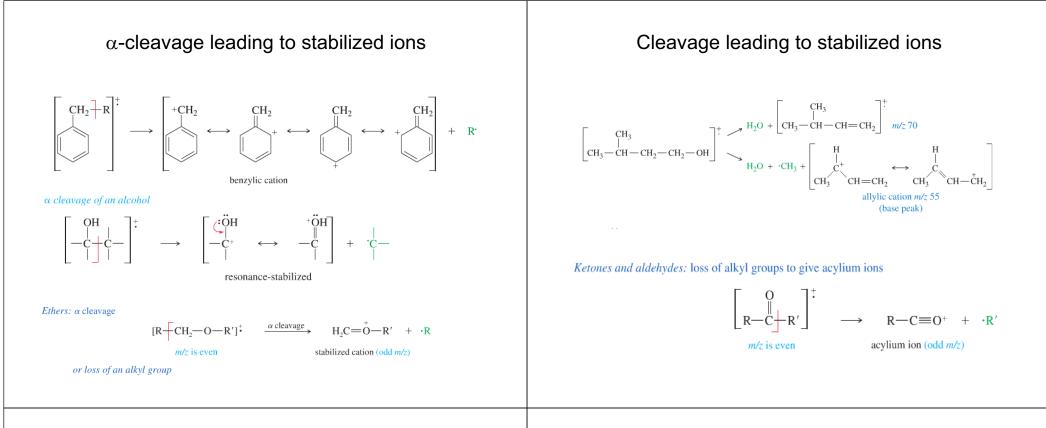

fragments

mass 12


5

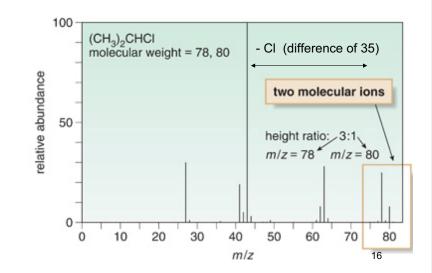

A mass spectrum:


Fragmentation of the Hexane Radical Cation

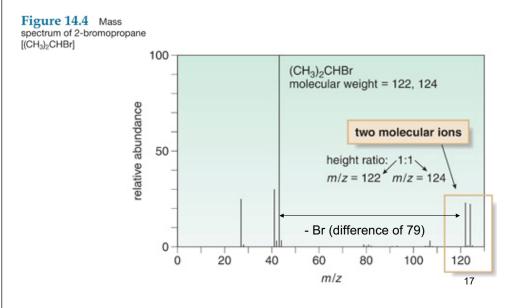


Mass Spectrum of *n*-Hexane

• Groups of ions correspond to loss of one-, two-, three-, and fourcarbon fragments.



Alkyl Halides and the M + 2 Peak


- Most elements have one major isotope, notable exceptions:
- Chlorine: ³⁵Cl and ³⁷Cl, which occur naturally in a 3:1 ratio.
 - Thus, there are two peaks in a 3:1 ratio for the molecular ion of an alkyl chloride.
 - The larger peak, the M peak, corresponds to the compound containing the ³⁵Cl. The smaller peak, the M+2 peak, corresponds to the compound containing ³⁷Cl.
- Br has two isotopes—⁷⁹Br and ⁸¹Br, in a ratio of ~1:1. Thus, when the molecular ion consists of two peaks (M and M + 2) in a 1:1 ratio, a Br atom is present.
- lodine may be lost as l⁺ (127) a gap of 127 in the spectrum as well as a peak at m/z = 127.

Mass Spectrometry

Alkyl chlorides and the M+2 peak

Alkyl bromides and the M+2 peak

Mass Spectrometry

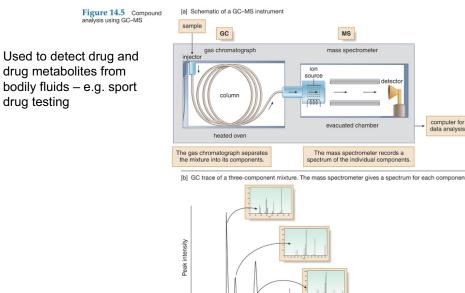
High-Resolution Mass Spectrometers

 Consider a compound having a molecular ion at m/z = 60 using a low-resolution mass spectrometer. The molecule could have any one of the following molecular formulas.

Formula	Exact mass
C ₃ H ₈ O	60.0575
$C_2H_4O_2$	60.0211
$C_2H_8N_2$	60.0688

Mass Spectrometry

High Resolution Mass Spectrometers


- Low resolution mass spectrometers report *m*/*z* values to the nearest whole number. Thus, the mass of a given molecular ion can correspond to many different masses.
- High resolution mass spectrometers measure *m*/*z* ratios to four (or more) decimal places.
- This is valuable because except for ¹²C whose mass is defined as 12.0000, the masses of all other nuclei are very close-but not exactly-whole numbers.
- The Table lists the exact mass values for a few common nuclei. Using these values it is possible to determine the single molecular formula that gives rise to a molecular ion.

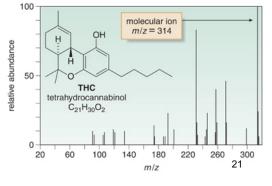
drug testing

19

Exact Masses of Some Common Isotopes	
Isotope	Mass
¹² C	12.0000
¹ H	1.00783
¹⁶ O	15.9949
¹⁴ N	14.0031 18

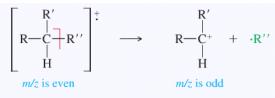
Mass Spectrometry Gas Chromatography-Mass Spectrometry (GC-MS)

Time


sample injection

computer for

data analysis


Gas Chromatography-Mass Spectrometry (GC-MS)

- To analyze a urine sample for tetrahydrocannabinol, (THC) the principle psychoactive component of marijuana, the organic compounds are extracted from urine, purified, concentrated and injected into the GC-MS.
- THC appears as a GC peak, and gives a molecular ion at 314, its molecular weight.

Mass Spectrometry Other useful information

Compounds of carbon/hydrogen/oxygen have even mass number parent ions and odd mass number fragments, for example:

Compounds of that contain nitrogen, such as amines, have odd mass number parent ions and even mass number fragments, for example:

m/z is odd

Amines: α cleavage next to the carbon bearing the nitrogen to give stabilized cations (Section 19-9)

$$[R_2N-CH_2-R']^+ \longrightarrow R_2N^+=CH_2 + \cdot R'$$

iminium ion (even m/z)

Also an example of α -cleavage