

1 symmetry operations: leave a set of objects in indistinguishable configurations	
said to be equivalent	
The identity operator, E is the "do nothing" operator. Therefore, its final configuration is not distinguishable from the initial one, but identical with it.	
2 symmetry element: a geometrical entity (line, plane or point) with respect to which one or more symmetry operations may be carried out.	
Four kinds of symmetry elements for molecular symmetry	
1.) Plane operation = reflection in the plane	
2.) Centre of symmetry or inversion centre:	
operation = inversion of all atoms through the centre	
3.) Proper axis operation = one or more rotations about the axis	
4.) Improper axis operation = one or more of the sequence rotation about the	
axis followed by reflection in a plane perpendicular (\bot) to the rotation axis.	
C734b Symmetry Operations and	2

1. Symmetry Plane and Reflection

A plane must pass through a body, not be outside.

Symbol = σ . The same symbol is used for the operation of reflecting through a plane

 σ_m as an operation means "carry out the reflection in a plane normal to m".

• Take a point $\{e_1, e_2, e_3\}$ along $(\hat{x}, \hat{y}, \hat{z})$

$$\sigma_{x}\{e_{1}, e_{2}, e_{3}\} = \{-e_{1}, e_{2}, e_{3}\} \equiv \left\{ e_{1}^{-}, e_{2}^{-}, e_{3}^{-} \right\}$$

Often the plane itself is specified rather than the normal.

 $\Rightarrow \sigma_x = \sigma_{yz}$ means "reflect in a plane containing the y- and z-, usually called the yz olane

C734b Symmetry Operations and Point groups 3

-atoms lying in a plane is a special case since reflection through a plane doesn't move the atoms. Consequently all planar molecules have at least one plane of symmetry \equiv molecular plane Note: σ produces an equivalent configuration. $\sigma^2 = \sigma \sigma$ produces an identical configuration with the original. $\therefore \qquad \sigma^2 = E$ $\therefore \qquad \sigma^n = E$ for n even; n = 2, 4, 6,... $\sigma^n = \sigma$ for n odd; n = 3, 5, 7,...

Complete Table									
	$egin{array}{c c} E & I \\ S_4^+ & S \end{array}$	$egin{array}{cccc} E & S_4^+ \ E & S_4^+ \ C_2 \ C_2 & S_4^- \ C_2 \ S_4^- \ E \end{array}$	$egin{array}{c} C_2 \ S_4^- \end{array}$	$S_4^- E$					
		37							

Can complete these binary products to construct the multiplication table for G											
Multiplication Table for the set $G = \{E, C_3^+, C_3^-, \sigma_A, \sigma_B, \sigma_C\}$											
<i>G</i>		C_3^+	C_3^-	$\sigma_{\scriptscriptstyle A}$	$\sigma_{\scriptscriptstyle B}$	$\sigma_{\scriptscriptstyle C}$	_				
E	E	C_3^+	C_3^-	$\sigma_{\scriptscriptstyle A}$	$\sigma_{\scriptscriptstyle B}$	$\sigma_{\scriptscriptstyle C}$					
C_3	C_3^+	C_3^-	E	$\sigma_{\scriptscriptstyle C}$	$\sigma_{\scriptscriptstyle A}$	$\sigma_{\scriptscriptstyle B}$					
C_3	C_3^-	E	C_3^+	$\sigma_{\scriptscriptstyle B}$	$\sigma_{\scriptscriptstyle C}$	$\sigma_{\scriptscriptstyle A}$					
σ_{r}	$\sigma_A \sigma_A$	$\sigma_{\scriptscriptstyle B}$	$\sigma_{\scriptscriptstyle C}$	E	C_3^+	C_3^-					
σ_{i}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sigma_{\scriptscriptstyle C}$	$\sigma_{\scriptscriptstyle A}$	C_3^-	Ε	C_3^+					
σ_{c}	$\sigma_c \sigma_c$	$\sigma_{\scriptscriptstyle A}$	$\sigma_{\scriptscriptstyle B}$	C_3^+	C_3^-	Ε					
	I										
	C734b Symmetry Operations and Point groups										

