# Part II: Symmetry Operations and Point Groups 

C734b

## Definitions

1.- symmetry operations: leave a set of objects in indistinguishable configurations said to be equivalent
-The identity operator, E is the "do nothing" operator. Therefore, its final configuration is not distinguishable from the initial one, but identical with it.
2.- symmetry element: a geometrical entity (line, plane or point) with respect to which one or more symmetry operations may be carried out.

Four kinds of symmetry elements for molecular symmetry
1.) Plane operation = reflection in the plane
2.) Centre of symmetry or inversion centre: operation $=$ inversion of all atoms through the centre
3.) Proper axis operation $=$ one or more rotations about the axis
4.) Improper axis operation = one or more of the sequence rotation about the axis followed by reflection in a plane perpendicular $\left({ }^{\perp}\right)$ to the rotation axis.

## 1. Symmetry Plane and Reflection

A plane must pass through a body, not be outside.
Symbol $=\sigma$. The same symbol is used for the operation of reflecting through a plane $\sigma_{\mathrm{m}}$ as an operation means "carry out the reflection in a plane normal to m".
$\therefore$ Take a point $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$ along $(\hat{\mathrm{x}}, \hat{\mathrm{y}}, \hat{\mathrm{z}})$

$$
\sigma_{x}\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}=\left\{-\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\} \equiv\left\{\overline{\mathrm{e}}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}
$$

Often the plane itself is specified rather than the normal.
$\Longrightarrow \sigma_{x}=\sigma_{y z}$ means "reflect in a plane containing the $y$ - and $z$-, usually called the yz olane
-atoms lying in a plane is a special case since reflection through a plane doesn't move the atoms.
Consequently all planar molecules have at least one plane of symmetry $\equiv$ molecular plane

Note: $\sigma$ produces an equivalent configuration.
$\sigma^{2}=\sigma \sigma$ produces an identical configuration with the original.

$$
\therefore \quad \sigma^{2}=\mathrm{E}
$$

$\therefore \quad \sigma^{n}=E$ for $n$ even; $n=2,4,6, \ldots$
$\sigma^{n}=\sigma$ for $n$ odd; $\quad n=3,5,7, \ldots$

Some molecules have no $\sigma$-planes:


Linear molecules have an infinite number of planes containing the bond axis.

$$
X-Y
$$

Many molecules have a number of planes which lie somewhere between these two extremes:

Example: $\mathrm{H}_{2} \mathrm{O}$
2 planes; 1 molecular plane + the other bisecting the H-O-H group


Example: $\mathrm{NH}_{3}$


3 planes containing on $\mathrm{N}-\mathrm{H}$ bond and bisecting opposite HNH group

Example: $\mathrm{BCl}_{3}$


4 planes; I molecular plane + 3 containing a $\mathrm{B}-\mathrm{Cl}$ bond and bisecting the opposite $\mathrm{Cl}-\mathrm{B}-\mathrm{Cl}$ group

Example: $\left[\mathrm{AuCl}_{4}\right]^{-}$ square planar
 $\left[\begin{array}{l}\text { 5 planes; } 1 \text { molecular plane }+ \\ 4 \text { planes; } 2 \text { containing } \mathrm{Cl}-\mathrm{Au}-\mathrm{Cl} \\ \\ +2 \text { bisecting the } \mathrm{Cl}-\mathrm{Au}-\mathrm{Cl} \text { groups. }\end{array}\right.$

Tetrahedral molecules like $\mathrm{CH}_{4}$ have 6 planes.


Octahedral molecules like $\mathrm{SF}_{6}$ have 9 planes in total


## 2.) Inversion Centre

-Symbol = i

- operation on a point $\left\{e_{1}, e_{2}, e_{3}\right\} \quad i\left\{e_{1}, e_{2}, e_{3}\right\}=\left\{-e_{1},-e_{2},-e_{3}\right\}$

-If an atom exists at the inversion centre it is the only atom which will not move upon inversion.
-All other atoms occur in pairs which are "twins". This means no inversion centre for molecules containing an odd number of more than one species of atoms.

$$
\begin{array}{ll} 
& \mathrm{i}^{2}=\mathrm{ii}=\mathrm{E} \\
\Rightarrow \quad & \begin{array}{ll}
\mathrm{in}=\mathrm{E} & \mathrm{n} \text { even } \\
\mathrm{i}^{\mathrm{n}}=\mathrm{i} & \text { n odd }
\end{array}
\end{array}
$$

## Example:



or

have no inversion centre even though in the methane case the number of Hs is even

## 3. Proper Axes and Proper Rotations

- A proper rotation or simply rotation is effected by an operator $\mathrm{R}(\Phi, \mathrm{n})$ which means "carry out a rotation with respect to a fixed axis through an angle $\Phi$ described by some unit vector n".

For example: $R(\pi / 4, x)\left\{e_{1}, e_{2}, e_{3}\right\}=\left\{e_{1}^{\prime}, e_{2}{ }^{\prime}, e_{3}{ }^{\prime}\right\}$


Take the following as the convention:
a rotation is positive if looking down axis of rotation the rotation appears to be counterclockwise.

More common symbol for rotation operator is $\mathrm{C}_{\mathrm{n}}$ where n is the order of the axis.
$\Longrightarrow C_{n}$ means "carry out a rotation through an angle of $\Phi=2 \pi / n$ "

- $\mathrm{R}(\pi / 4) \equiv \mathrm{C}_{8}$
$R(\pi / 2)=C_{4}$
$R(\pi)=C_{2}$
etc.
$\mathrm{C}_{2}$ is also called a binary rotation.

Product of symmetry operators means: "carry out the operation successively beginning with the one on the right".

- $\quad \mathrm{C}_{4} \mathrm{C}_{4}=\mathrm{C}_{4}{ }^{2}=\mathrm{C}_{2}=\mathrm{R}(\pi, \mathrm{n})$

$$
\left(\mathrm{C}_{\mathrm{n}}\right)^{\mathrm{k}}=\mathrm{C}_{\mathrm{n}}{ }^{\mathrm{k}}=\mathrm{R}(\Phi, \mathrm{n}) ; \Phi=2 \pi \mathrm{k} / \mathrm{n}
$$

- $\mathrm{C}_{\mathrm{n}}{ }^{-\mathrm{k}}=\mathrm{R}(-\Phi, \mathrm{n}) ; \Phi=-2 \pi \mathrm{k} / \mathrm{n}$

$$
\mathrm{C}_{\mathrm{n}}{ }^{k} \mathrm{C}_{\mathrm{n}}{ }^{-k}=\mathrm{C}_{\mathrm{n}}{ }^{k+(-k)}=\mathrm{C}_{\mathrm{n}}^{0} \equiv \mathrm{E}
$$

$\Longrightarrow \quad C_{n}{ }^{-k}$ is the inverse of $C_{n}{ }^{k}$

## Example:


$\mathrm{C}_{3}$ axis is perpendicular to the plane of the equilateral triangle.


But


- $\quad \mathrm{C}_{3}{ }^{2}=\mathrm{C}_{3}{ }^{-1}$


1 I 3
$=$ rotation by $2 \pi$
$=360^{\circ}$

- $\quad \mathrm{C}_{3}{ }^{3}=\mathrm{E}$

What about $\mathrm{C}_{3}{ }^{4}$ ?


Similar arguments can be applied to any proper axis of order $n$

$$
\begin{array}{ll}
\text { Example: } \quad \mathrm{C}_{6}: & \mathrm{C}_{6} ; \\
& \mathrm{C}_{6}{ }^{2} \equiv \mathrm{C}_{3} \\
& \mathrm{C}_{6}{ }^{3} \equiv \mathrm{C}_{2} \\
\mathrm{C}_{6}{ }^{4} \equiv \mathrm{C}_{6}-2 \equiv \mathrm{C}_{3}{ }^{-1} \\
& \mathrm{C}_{6}{ }^{5} \equiv \mathrm{C}_{6}-1 \\
& \mathrm{C}_{6}{ }^{6} \equiv \mathrm{E}
\end{array}
$$

Note: for $\mathrm{C}_{\mathrm{n}} \mathrm{n}$ odd the existence of one $\mathrm{C}_{2}$ axis perpendicular to or $\sigma$ containing $\mathrm{C}_{\mathrm{n}}$ implies $\mathrm{n}-1$ more separate (that is, distinct) $\mathrm{C}_{2}$ axes or $\sigma$ planes


* When > one symmetry axis exist, the one with the largest value of $n$
ミ PRINCIPLE AXIS

Things are a bit more subtle for $\mathrm{C}_{\mathrm{n}}, \mathrm{n}$ even

Take for example $\mathrm{C}_{4}$ axis:



Conclusion: $\mathrm{C}_{2}(1)$ and $\mathrm{C}_{2}(2)$ are not distinct

Conclusion: a $\mathrm{C}_{\mathrm{n}}$ axis, n even, may be accompanied by $\mathrm{n} / 2$ sets of $2 \mathrm{C}_{2}$ axes

$4 \mathrm{C}_{2}$ axes: $\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$ and $\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right)$.
$\mathrm{C}_{\mathrm{n}}$ rotational groups are Abelian

## 4. Improper Axes and Improper Rotations

Accurate definitions:
Improper rotation is a proper rotation $R(\Phi, n)$ followed by inversion $\equiv \mathrm{i} R(\Phi, n)$
Rotoreflection is a proper reflection $\mathrm{R}(\Phi, \mathrm{n})$ followed by reflection in a plane normal to the axis of rotation, $\sigma_{h}$


Cotton and many other books for chemists call $\mathrm{S}_{\mathrm{n}}$ an improper rotation, and we will too.

Example: staggered ethane ( $\mathrm{C}_{3}$ axis but no $\mathrm{C}_{6}$ axis)


Note:

$\Longrightarrow \quad S_{n}=\sigma_{h} C_{n}$ or $C_{n} \sigma_{h}$
The order is irrelevant.

Clear if $C_{n}$ exists and $\sigma_{h}$ exists $S_{n}$ must exist.
HOWEVER: $S_{n}$ can exist if $C_{n}$ and $\sigma_{h}$ do not.
The example above for staggered ethane is such a case.

The element $\mathrm{S}_{\mathrm{n}}$ generates operations $\mathrm{S}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}{ }^{2}, \mathrm{~S}_{\mathrm{n}}{ }^{3}, \ldots$
However the set of operations generated are different depending if n is even or odd.
$n$ even
$\left\{\mathrm{S}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}{ }^{2}, \mathrm{~S}_{\mathrm{n}}{ }^{3}, \ldots, \mathrm{~S}_{\mathrm{n}}{ }^{\mathrm{n}}\right\} \equiv\left\{\sigma_{\mathrm{h}} \mathrm{C}_{\mathrm{n}}, \sigma_{\mathrm{h}}{ }^{2} \mathrm{C}_{\mathrm{n}}{ }^{2}, \sigma_{\mathrm{h}}{ }^{3} \mathrm{C}_{\mathrm{n}}{ }^{3}, \ldots, \sigma_{\mathrm{h}}{ }^{n} \mathrm{C}_{\mathrm{n}}{ }^{n}\right\}$

But $\sigma_{h}{ }^{n}=\mathrm{E}$ and $\mathrm{C}_{\mathrm{n}}{ }^{\mathrm{n}}=\mathrm{E} \quad \Longrightarrow \quad \mathrm{S}_{\mathrm{n}}{ }^{\mathrm{n}}=\mathrm{E}$
and therefore: $\mathrm{S}_{\mathrm{n}}{ }^{\mathrm{n}+1}=\mathrm{S}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}{ }^{\mathrm{n}+2}=\mathrm{S}_{\mathrm{n}}{ }^{2}$, etc, and $\mathrm{S}_{\mathrm{n}}{ }^{\mathrm{m}}=\mathrm{C}_{\mathrm{n}}{ }^{m}$ if m is even.

Therefore for $\mathrm{S}_{6}$, operations are:

$$
\begin{aligned}
& \mathrm{S}_{6} \\
& \mathrm{~S}_{6}{ }^{2} \equiv \mathrm{C}_{6}{ }^{2} \equiv \mathrm{C}_{3} \\
& \mathrm{~S}_{6}{ }^{3} \equiv \mathrm{~S}_{2} \equiv \mathrm{i} \\
& \mathrm{~S}_{6}{ }^{4} \equiv \mathrm{C}_{6}{ }^{4} \equiv \mathrm{C}_{3}{ }^{2} \\
& \mathrm{~S}_{6}{ }^{5} \equiv \mathrm{~S}_{6}{ }^{-1} \\
& \mathrm{~S}_{6}{ }^{6} \equiv \mathrm{E}
\end{aligned}
$$

Conclusion: the existence of an $\mathrm{S}_{\mathrm{n}}$ axis requires the existence of a $\mathrm{C}_{\mathrm{n} / 2}$ axis.
$S_{n}$ groups, $n$ even, are Abelian.

## n odd

Consider $\mathrm{S}_{\mathrm{n}}{ }^{\mathrm{n}}=\sigma_{\mathrm{h}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}{ }^{\mathrm{n}}=\sigma_{\mathrm{h}} \mathrm{E}=\sigma_{\mathrm{h}}$
$\Rightarrow \quad \sigma_{h}$ must exist as an element in its own right, as must $C_{n}$.

Consider as an example an $S_{5}$ axis. This generates the following operations:

$$
\begin{aligned}
& \mathrm{S}_{5}{ }^{1}=\sigma_{\mathrm{h}} \mathrm{C}_{5} \\
& \mathrm{~S}_{5}^{2}=\sigma_{\mathrm{h}}{ }^{2} \mathrm{C}_{5}^{2} \equiv \mathrm{C}_{5}^{2} \\
& \mathrm{~S}_{5}{ }^{3}=\sigma_{\mathrm{h}}{ }^{3} \mathrm{C}_{5}{ }^{3} \equiv \sigma_{\mathrm{h}} \mathrm{C}_{5}{ }^{3} \\
& \mathrm{~S}_{5}^{4}=\sigma_{\mathrm{h}}{ }^{4} \mathrm{C}_{5}{ }^{4} \equiv \mathrm{C}_{5}^{4} \\
& \mathrm{~S}_{5}{ }^{5}=\sigma_{\mathrm{h}}{ }^{5} \mathrm{C}_{5}{ }^{5} \equiv \sigma_{\mathrm{h}}
\end{aligned}
$$

$\mathrm{S}_{5}{ }^{6}=\sigma_{\mathrm{h}}{ }^{6} \mathrm{C}_{5}{ }^{6} \equiv \mathrm{C}_{5}$
$\mathrm{S}_{5}{ }^{7}=\sigma_{\mathrm{h}}{ }^{7} \mathrm{C}_{5}{ }^{7} \equiv \sigma_{\mathrm{h}} \mathrm{C}_{5}{ }^{2}$
$\mathrm{S}_{5}{ }^{8}=\sigma_{\mathrm{h}}{ }^{8} \mathrm{C}_{5}{ }^{8} \equiv \mathrm{C}_{5}{ }^{3}$
$\mathrm{S}_{5}{ }^{9}=\sigma_{\mathrm{h}}{ }^{9} \mathrm{C}_{5}{ }^{9} \equiv \sigma_{\mathrm{h}} \mathrm{C}_{5}{ }^{4}$
$\mathrm{S}_{5}{ }^{10}=\mathrm{\sigma}_{\mathrm{h}}{ }^{10} \mathrm{C}_{5}{ }^{10} \equiv \mathrm{E}$
It's easy to show that $\mathrm{S}_{5}{ }^{11}=\mathrm{S}_{5}$
-. The element $\mathrm{S}_{\mathrm{n}}, \mathrm{n}$ odd, generates 2 n distinct operations
$\mathrm{S}_{\mathrm{n}}$ groups, n odd, are not Abelian

| Symmetry element | Notation for symmetry element Schōnflies International | Corresponding operation | Symmetry operator |
| :---: | :---: | :---: | :---: |
| any arbitrary axis | C | identity ${ }^{(3)}$ | $\mathbf{E}=\mathbf{R}(0 \mathrm{n})$ |
| centre | $1 \quad \overline{\mathbf{I}}$ | inversion | I |
| proper axis | $\mathrm{C}_{n} \quad \mathrm{n}$ | proper rotation | $\mathbf{R}(\phi \quad \mathrm{n})=\mathrm{C}_{\mathbf{n}}$ or $\mathrm{C}_{-\mu^{(a)}}$ |
| improper axis | $\boldsymbol{I C}$ | rotation, then inversion | $1 \mathrm{R}(\boldsymbol{\phi} \mathrm{n})=1 \mathrm{C}_{\mathrm{n}}$ |
| plane | $\sigma_{m} \quad \mathbf{m}$ | reflection in a plane normal to m | $\sigma_{\text {m }}$ |
| rotoreflection axis | $\mathrm{S}_{n} \quad \tilde{\mathrm{n}}$ | rotation through $\phi-2 \pi / n$ followed by reflection in a plane normal to the axis of rotation |  |

a) A body or molecule for which the only symmetry operator is E has no symmetry at all. However, E is equivalent to a rotation through an angle $\Phi=0$ about an arbitrary axis. It is not customary to include $\mathrm{C}_{1}$ in a list of symmetry elements except when the only symmetry operator is the identity E .
b) $\Phi=2 \pi / n ; \mathrm{n}$ is a unit vector along the axis of rotation.

## Products of Symmetry Operators

-Symmetry operators are conveniently represented by means of a stereogram or stereographic projection.

Start with a circle which is a projection of the unit sphere in configuration space (usually the xy plane). Take x to be parallel with the top of the page.

A point above the plane (+z-direction) is represented by a small filled circle.
A point below the plane (-z-direction) is represented by a larger open circle.

A general point transformed by a point symmetry operation is marked by an E.

## Symbols used to show an n-fold proper axis. For improper

 axes the same geometrical symbols are used but they are not filled in. Also shown are the corresponding rotation operator and angle of rotation $\phi$

For improper axes the same geometrical symbols are used but are not filled in.


Example: Show that $\mathrm{S}^{+}(\Phi, \mathrm{z})=\mathrm{iR}(\pi-\Phi, \mathrm{z})$


Example: Prove $\mathrm{iC}_{2 \mathrm{z}}=\sigma_{\mathrm{z}}$


C734b Symmetry Operations and

The complete set of point-symmetry operators including E that are generated from the operators $\left\{\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots\right\}$ that are associated with the symmetry elements
$\left\{C_{1}, i, C_{n}, S_{n}, \sigma\right\}$ by forming all possible products like $R_{2} R_{1}$ satisfy the necessary group properties:

1) Closure
2) Contains E
3) Satisfies associativity
4) Each element has an inverse

Such groups of point symmetry operators are called Point Groups

Example: construct a multiplication table for the $\mathrm{S}_{4}$ point group having the set of elements: $\mathrm{S}_{4}=\left\{E, \mathrm{~S}_{4}{ }^{+}, \mathrm{S}_{4}{ }^{2}=\mathrm{C}_{2}, \mathrm{~S}_{4}{ }^{-}\right\}$

| $S_{4}$ | $E$ | $S_{4}^{+}$ | $C_{2}$ | $S_{4}^{-}$ |
| :---: | :---: | :---: | :---: | :---: |
| $E$ | $E$ | $S_{4}^{+}$ | $C_{2}$ | $S_{4}^{-}$ |
| $S_{4}^{+}$ | $S_{4}^{+}$ |  |  |  |
| $C_{2}$ | $C_{2}$ |  |  |  |
| $S_{4}^{-}$ | $S_{4}^{-}$ |  |  |  |
|  |  |  |  |  |

Complete row 2 using stereograms: $\mathrm{S}_{4}{ }^{+} \mathrm{S}_{4}{ }^{+}, \mathrm{C}_{2} \mathrm{~S}_{4}{ }^{+}, \mathrm{S}_{4}{ }^{-} \mathrm{S}_{4}{ }^{+}$(column x row)

$C_{2} S_{4}^{+}$

$S_{4}^{-} S_{4}^{+}$

$\xrightarrow{S_{4}{ }^{-}}$


## Complete Table

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $S_{4}$ | $E$ | $S_{4}^{+}$ | $C_{2}$ | $S_{4}^{-}$ |
| $E$ | $E$ | $S_{4}^{+}$ | $C_{2}$ | $S_{4}^{-}$ |
| $S_{4}^{+}$ | $S_{4}^{+}$ | $C_{2}$ | $S_{4}^{-}$ | $E$ |
| $C_{2}$ | $C_{2}$ | $S_{4}^{-}$ | $E$ | $S_{4}^{+}$ |
| $S_{4}^{-}$ | $S_{4}^{-}$ | $E$ | $S_{4}^{+}$ | $C_{2}$ |

Another example: an equilateral triangle

Choose $\mathrm{C}_{3}$ axis along z

The set of distinct operators are $G=\left(E, C_{3}{ }^{+}, C_{3}^{-}, \sigma_{A}, \sigma_{B}, \sigma_{C}\right\}$


Blue lines denote symmetry planes.


Typical binary products:


Note: i) $\sigma_{\mathrm{A}}$ and $\mathrm{C}_{3}{ }^{+}$do not commute ii) Labels move, not the symmetry elements

Can complete these binary products to construct the multiplication table for G
Multiplication Table for the set $\mathrm{G}=\left\{\mathrm{E}, \mathrm{C}_{3}{ }^{+}, \mathrm{C}_{3}{ }^{-}, \sigma_{\mathrm{A}}, \sigma_{\mathrm{B}}, \sigma_{\mathrm{C}}\right\}$

| $G$ | $E$ | $C_{3}^{+}$ | $C_{3}^{-}$ | $\sigma_{A}$ | $\sigma_{B}$ | $\sigma_{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E$ | $E$ | $C_{3}^{+}$ | $C_{3}^{-}$ | $\sigma_{A}$ | $\sigma_{B}$ | $\sigma_{C}$ |
| $C_{3}^{+}$ | $C_{3}^{+}$ | $C_{3}^{-}$ | $E$ | $\sigma_{C}$ | $\sigma_{A}$ | $\sigma_{B}$ |
| $C_{3}^{-}$ | $C_{3}^{-}$ | $E$ | $C_{3}^{+}$ | $\sigma_{B}$ | $\sigma_{C}$ | $\sigma_{A}$ |
| $\sigma_{A}$ | $\sigma_{A}$ | $\sigma_{B}$ | $\sigma_{C}$ | $E$ | $C_{3}^{+}$ | $C_{3}^{-}$ |
| $\sigma_{B}$ | $\sigma_{B}$ | $\sigma_{C}$ | $\sigma_{A}$ | $C_{3}^{-}$ | $E$ | $C_{3}^{+}$ |
| $\sigma_{C}$ | $\sigma_{C}$ | $\sigma_{A}$ | $\sigma_{B}$ | $C_{3}^{+}$ | $C_{3}^{-}$ | $E$ |

## Symmetry Point Groups (Schönflies notation)

One symmetry element
1.) No symmetry: $\square$ $\mathrm{C}_{1}$
2.) sole element is a plane:

$$
\mathrm{C}_{\mathrm{s}}
$$

$\left\{\sigma, \sigma^{2}=E\right\}$
order $=2$
3.) sole element is an inversion centre:

$\left\{\mathrm{i}, \mathrm{i}^{2}=\mathrm{E}\right\}$ order $=2$
4.) Only element is a proper axis of order $n$ : $\mathrm{C}_{\mathrm{n}}$ $\left\{\mathrm{C}_{\mathrm{n}}{ }^{1}, \mathrm{C}_{\mathrm{n}}{ }^{2}, \ldots, \mathrm{C}_{\mathrm{n}}{ }^{\mathrm{n}}=\mathrm{E}\right\} \quad$ order $=\mathrm{n} \quad$ These are Abelian cyclic groups.
5.) Only element is an improper axis of order $n$.

Two cases:
a) n even $\quad\left\{\mathrm{E}, \mathrm{S}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n} / 2}, \mathrm{~S}_{\mathrm{n}}{ }^{3}, \ldots, \mathrm{~S}_{\mathrm{n}}^{\mathrm{n}-1} \quad\right.$ order $=\mathrm{n}$

Note: $\mathrm{S}_{2}=\mathrm{i} . \quad \Rightarrow \quad \mathrm{S}_{2}=\mathrm{C}_{\mathrm{i}}$
Symbol: $\quad \mathrm{S}_{\mathrm{n}}$
b) $\mathbf{n}$ odd $\quad$ order $=2 n$ including $\sigma_{h}$ and operations generated by $\mathrm{C}_{\mathrm{n}}$ axis.

Symbol: $\square$

## Two or more symmetry elements

Need to consider (1) the addition of different symmetry elements to a $\mathrm{C}_{\mathrm{n}}$ axis and
(2) addition of symmetry planes to a $\mathrm{C}_{\mathrm{n}}$ axis and $\mathrm{nC}_{2}$ ' axes perpendicular to it.

To define symbols, consider the principle axis to be vertical.
$\Rightarrow$ Symmetry plane perpendicular to $\mathrm{C}_{\mathrm{n}}$ will be a horizontal plane $\sigma_{\mathrm{h}}$

There are 2 types of vertical planes (containing $\mathrm{C}_{\mathrm{n}}$ )
If all are equivalent $\quad \Rightarrow \quad \sigma_{\mathrm{v}}(\mathrm{v} \equiv$ vertical $)$
There may be 2different sets (or classes)
one set $=\sigma_{v}$; the other set $=\sigma_{d}(d=$ dihedral $)$
C734b Symmetry Operations and
-• adding $\sigma_{\mathrm{h}}$ to $\mathrm{C}_{\mathrm{n}} \rightarrow \mathrm{C}_{\mathrm{nh}}\left(\equiv \mathrm{S}_{\mathrm{n}} ; \mathrm{n}\right.$ odd $)$

$$
\text { adding } \sigma_{\mathrm{v}} \text { to } \mathrm{C}_{\mathrm{n}}:
$$

$n$ odd $\rightarrow n \sigma_{v}$ planes
$n$ even $\rightarrow n / 2 \sigma_{v}$ planes and $n / 2 \sigma_{d}$ planes

See previous discussion regarding $C_{4}$ axis.

Note: the $\sigma_{\mathrm{d}}$ set bisect the dihedral angle between members of the $\sigma_{\mathrm{v}}$ set.
Distinction is arbitrary: $\quad \Rightarrow \quad \mathrm{C}_{\mathrm{nv}}$ point group.

Next: add $\sigma_{\mathrm{h}}$ to $\mathrm{C}_{\mathrm{n}}$ with $\mathrm{n} \mathrm{C}_{2}{ }^{\prime}$ axes

$$
\Rightarrow \quad \mathrm{D}_{\mathrm{nh}} \quad \text { point group } \quad \text { (D for dihedral groups) }
$$

Note: $\sigma_{h} \sigma_{v}=C_{2}$. Therefore, need only find existence of $C_{n}, \sigma_{h}$, and $\sigma_{v}$ 's to establish $\mathrm{D}_{\mathrm{nh}}$ group.

By convention however, simultaneous existence of $C_{n}, n C_{2}$ 's, and $\sigma_{h}$ used as criterion.

Next: add $\sigma_{\mathrm{d}}$ 's to $\mathrm{C}_{\mathrm{n}}$ and $\mathrm{n} \mathrm{C}_{2}$ ' axes.
$\sigma_{d} \equiv$ vertical planes which bisect the angles between adjacent vertical planes

## Special Cases

1.) Linear molecules: each molecule is its own axis of symmetry. order $=\infty$

$$
\begin{array}{lll}
\text { no }_{\mathrm{h}:} & \Rightarrow & \mathrm{C}_{\infty \mathrm{V}} \\
\text { point group } \\
\sigma_{\mathrm{h}} \text { exists: } & \Rightarrow & \mathrm{D}_{\infty \mathrm{h}} \text { point group }
\end{array}
$$

## 2.) Symmetries with $>1$ high-order axis

a) tetrahedron

Elements $=\left\{E, 8 C_{3}, 3 C_{2}, 6 S_{4}, 6 \sigma_{d}\right\} \quad \Rightarrow \quad T_{d}$ point group

Alternate vertices of the cube (marked 1,2,3, and 4) are the apices of a regular tetrahedron. Small crosses show where the $X, Y$, and $Z$ axes intersect the cube faces. $a, b ; c, d ;$ and $e, f$ mark the mid-points of pairs of opposite cube edges that lie in planes that bisect the cube and are normal to $z, x$, and $y$, respectively.

b) Octahedron (Cubic Group)

Group elements: $\left\{E, 8 C_{3}, 6 C_{2}, 6 C_{4}, 3 C_{2}\left(=C_{4}{ }^{2}\right), i, 6 S_{4}, 8 S_{6}, 3 \sigma_{h}, 6 \sigma_{d}\right\}$

c) Dodecahedron and icosahedron

Group elements: $\left\{\mathrm{E}, 12 \mathrm{C}_{5}, 12 \mathrm{C}_{5}^{2}, 20 \mathrm{C}_{3}, 15 \mathrm{C}_{2}, \mathrm{i}, 12 \mathrm{~S}_{10}, 12 \mathrm{~S}_{10}{ }^{3}, 20 \mathrm{~S}_{6}, 15 \sigma\right\}$


icosahedron

dodecahedron


There are 4 other point groups: $\mathrm{T}, \mathrm{T}_{\mathrm{h}}$, O , I which are not as important for molecules.

A systematic method for identifying point groups of any molecule

Linear molecuies $\left[\begin{array}{c}\text { no horizontal plane of symmerry: } \quad C_{\mathrm{cv}} \\ \text { horizontal plane } \sigma_{\mathrm{n}}: \text { Den }\end{array}\right.$
Non-linear molecules :


C734b Symmetry Operations and

