Euler Paths and Euler Circuits

An Euler Path is a path that goes through every edge of a graph exactly once
An Euler Circuit is an Euler Path that begins and ends at the same vertex.

Euler Path

Euler Path: BBADCDEBC

Euler Circuit

Euler Cicuit: CDEBADC

Euler's Theorem:

1. If a graph has more than $\mathbf{2}$ vertices of odd degree then it has no Euler paths.
2. If a graph is connected and has $\mathbf{0}$ or exactly $\mathbf{2}$ vertices of odd degree, then it has at least one Euler path
3. If a graph is connected and has $\mathbf{0}$ vertices of odd degree, then it has at least one Euler circuit.

\# Odd Vertices	Euler Path?	Euler Circuit?
0	$\boldsymbol{Y E} \boldsymbol{S}$	$\boldsymbol{Y} \boldsymbol{E} \boldsymbol{S}$
2	$\boldsymbol{Y E} \boldsymbol{S}$	No
$4,6,8 \ldots$	No	No
$1,3,5 \ldots$	No Such Graphs Exist!!!	

Tracing a graph: A graph can be traced if you can begin at an edge and draw the entire graph without lifting up your pencil or going over an edge twice. If a graph contains two odd vertices, you must begin at one and end at the other.

Euler Paths and Euler Circuits

Finding an Euler Circuit: There are two different ways to find an Euler circuit.

1. Fleury's Algorithm: Erasing edges in a graph with no odd vertices and keeping track of your progress to find an Euler Circuit.
a. Begin at any vertex, since they are all even. A graph may have more than 1 circuit).
b. After you have traveled over an edge, erase it. If all edges at a particular vertex have been erased, erase the vertex as well.
c. Only travel over an edge that is a bridge if there is no other option.

Starting at vertex A you come through AFGB.
Then you cannot choose edge AB as it is a bridge.
Now BFECDEGCBA completes the trail.
2. Eulerizing a Graph: Repeating edges on a graph with odd vertices so that the graph has no odd vertices. (Remember, there will always be an even number of odd vertices!)
a. Pick out all vertices of an odd degree.
b. Repeat edges between vertices until the final graph has no odd vertices.
c. You must repeat pre-existing edges only!!!!

*For this example, you can add edges $\underline{\mathbf{A B}}$ and $\underline{\mathbf{A D}}$, but you $\underline{\text { CANNOT }}$ add $\underline{\mathbf{B D}}$ because there isn't already an edge between vertices B and D.

