Managing Mineral Deposit in Pulp Mill at IPPTA Workshop & Seminar

Rekha Bharati, Ph.D. 19th July 2019

Contents

- Non process elements in pulp raw materials/wood chips
- Why does it deposit?
- Different types of deposits in pulp mill
- Calcium balance around batch digester
- Calcium carbonate deposit and ways to minimize it
- Calcium oxalate deposit ways to reduce it
- Barium sulfate deposit and the ways to minimize it
- Pirssonite scaling in green liquor and ways to reduce it
- Types of Evaporator Scales
- Ways to reduce evaporator scaling/fouling
- Case histories
- Conclusion

NPE in pulp raw materials

Particulars	Bagasse	Wheat Straw	Rice straw	Tropical hardwood
Ash	2.3	9.5	18	0.3
Silica	1.8	5.8	11	0.2
Potassium	0.2	1.8	2	<0.1
Calcium	0.23	0.12	0.18	0.15
Chlorides	<0.1	0.88	0.94	<0.1

expressed as % ovendry basis

Range,ppm	Non Process Elements in wood							
Mange,ppm		ı	Non Frod	DOD EICHIC	into ini wo	-	1	
400-1000	K	Ca						
100-400	Mg	P						
10-100	F	Na	Si	S	Mn	Fe	Zn	Ва
upto 10	В	Al	Ti	Cu	Ge	Se	Rb	Sr
<1	Cr	Ni	Br	Rh	Ag	Sn	Cs	Ta

- > In cooking: calcium scaling on the digester screens
- ➤ In bleaching:
 - Iron, manganese, copper detrimentally effect brightness
 - Calcium scales washing equipment, reducing the washing efficiency & productivity.
- ➤ In recovery: silica and calcium promote scale formation in evaps. effecting productivity

Why Does it Deposit /scale?

Necessary conditions for scaling

➤ **Supersaturation**: dissolved ions like Ca++, CO3⁻⁻,C2O4⁻⁻,Na+, Ba++ and SO4⁻⁻ increase in concentration to levels that exceed normal solubility limits

Compound	Formula	Solubility at 18°C
Calcium carbonate	CaCO3	0.014
Calcium oxalate	CaC2O4	0.0074
Sodium carbonate	Na2CO3	75
Barium sulphate	BaSO4	0.0025
Calcium sulphate	CaSO4	2.4
Sodium sulphate	Na2SO4	50

- ➤ Accelerated Kinetics: temperature shock, intense mechanical, hydrodynamic shear force optimum pH
- ➤ **Optimum substrate:** Non uniform surface providing mechanical foothold for scale microcrystal to begin growing

Typical inorganic scale in fiber line

- Calcium (carbonate, oxalate, sulphate, silicate)
- Aluminum (silicates, hydroxides, phosphates)
- Barium, radium (sulphate)
- Magnesium (silicates)
- Sodium (burkeite, dicarbonate, pirssonite)

Scale Control in Fiber line

Calcium Balance in Cooking for 700 ADT/ D, with 0.4% bark

Wood 2.73kg/ADT
1914kg/day

Bark 0.11kg/ADT
77Kg/Day

WL 33.35kg/day

BL to maintain L/W 84.375kg/day

Total Ca In Dig/day 2108kg/day

Brown pulp 290 kg/day

Liq. To Evap 962.5kg/day

Total Ca out Dig/day 1252.5kg/day

Calcium Carbonate Scale

- Calcium is present as high as 2000ppm in wood.
- Most common scale in kraft pulping is calcium carbonate.
- Scale formation is extremely pH & Temperature dependent.

 More often than not, pitch-scale combination is frequent in bleach plant & often cause for dirt (quality) problems in pulp

CaCO3 scale in a EOP pipeline

CaCO3 scale in a MC pump

- Operating conditions to reduce Cal.carbonate scale
 - Bark contaminations of less than 0.5%
 - Suspended solids in white liquor<25ppm
 - Chemically treated shower water to tie up Ca++

Scale in white liquor heater tubes

- Part of filtrate should be severed to remove Ca++ from loop.
- Use of antiscalant chemical

Calcium oxalate deposit

- Oxalic acid is found in the wood also formed as a result of oxidation of lignin
- When pH drops below 7, calcium dissolves, react with oxalic acid to form cal.oxalate

- Operating conditions to reduce Cal.oxalate scale
 - Bark contaminations of less than 0.5%
 - First acid stage vat below 2-2.8 pH
 - Use of specific antiscalant

BaSO4 Scale

Barium sulphate is most difficult scale to remove & prevent. Barium enters along with wood.

Simple steps to eliminate Barium Sulfate Scale:

- Reduced sulfate-ion carryover into the D0 stage is the most likely way for the elimination of this scale.
- Improve brownstock washing to reduce residual carryover of sulfate, sulfide & lignin bound sulfur
- Avoid use of spent acid (sodium sesquisulfate) for pH control in the D0 stage
- Acid stage vat pH below 2.0
- Partly sewer the filtrate
- Take chelant boil-out at regular intervals to keep wire open.
- Use of antiscalant

BaSO4 scale choking washer wire holes

Scale Control in Recovery

Evaporator Scaling & Fouling

- Kraft recovery cycle is a very effective & proven simple system
- However, scaling & fouling reduces the efficiency due to downtime
- Evaporator scaling can have serious implications on fiberline productivity if Evaporator capacity is limited

Pirssonite scale & Ways to reduce it

Pirssonite scaling occurs because of double salt Na₂CO₃.CaCO₃.2H₂O

- Improve the causticizing efficiency to 82%
 - ❖ For each 1% decrease in CE 5kgNa2CO3 enters the process
- Reduce (NPEs) dead load on the system
- Reduction in available calcium lesser will be CaCO3 and pirssonite scale
- Use scale control product with weak wash to keep the scrubber and green liquor lines clean

%CE	Kg Na2CO3/ADT
82	68
78	88

Pirssonite scale in green liq.line

Evaporator Fouling

Sulphate Rich

Burkeite: Double salt of 2 moles of Na2SO4 and one molecule of Na2CO3

Carbonate Rich

Dicarbonate: Double salt 2 moles of Na2CO3 and one molecule of Na2SO4

Either or both may crystallize simultaneously depending on ratio of carbonate to sulphate in black liquor

Lower ratio: Burkeite

Higher ratio: Dicarbonate

Scale types at different dry solids

At Na2SO4 / Na2CO3 crystallization solubility limit is called "Critical Solids Content"

> REDUCING THE CONTENT OF EACH COMPONENT TO LOWER CRITICAL SOLIDS IS KEY TO REDUCE FOULING.

Ways to reduce sodium scales in LTV

How to reduce Na Scale in LTV:

- ➤ Reduce Na₂CO₃
 - Improve causticization efficiency, 80 -82%
 - Maintaining CE is critical to prevent both calcium carbonate scale and also soft sodium salt scales like Burkeite and dicarbonate scale.
- Reduce Na₂SO₄
 - Increase RB reduction efficiency >90%
- ➤ Add saltcake /spent acid after LTV
- > Reduce total Na in black liquor
 - Control AA charge to digester
 - Reduce NaCl dead load
- ➤ Operate about 2 -3% below critical solids

Ways to Reduce Fouling in concentrator

Operate the solids profile above the crystallization point

 Encourage the sodium salts to crystallize on the suspended crystals instead of heat transfer surface

- Use high liquor circulation rates
- Maintain long residence time in concentrator
- Distribute liquor uniformly on heater surfaces
- Avoid upset conditions
 - Minimize changes in black liquor composition

Calcium precipitation in Evaporator

- High Temp.break down organic near heat transfer surface
- Calcium is released and combines with carbonate
 - Deposit on the surface
 - Genarally occurs at 120C but sometimes even starts at 104C

Ways to Reduce Calcium scaling in Evaporator

- Limit temperature
- Improve soap skimming &
- Minimize bark if possible

Ways to Reduce Silica Scaling in Evaporator

- Decrease bark and dirt in chips
- Decrease silica in make up lime
- Avoid white water in brown stock washing
- Minimize use of defoamers
- Increase silica purges with dregs and grits

Case Histories

Digester (Cal.carbonate) scale control of 750 tons continuous digester

Customer benefit:

- Outage time improved by 133%
- No scale control used in 1st washer

Case History: Bleach Scale Control

✓ Mills Description

Capacity: 800T/D ,BKP

Furnish: Hardwood

✓ Customers' overview :

- Scale formation on wash press holes reduces the washing efficiency and consistencies drastically
- Increased the bleach consumption
- Reduces the production capacity

✓ Benefits :

- Scale control when fed with pulp to inlet of wash press after boil out controlled the scale and interval of boil out was increased from 15 days to +120days
- Consistencies obtained with Infinity program was +28%
- Increased and maintained the production

Choked press roll hole

Treated press rolls

Case History: Pirssonite scale control

Mills Description

Capacity: 1200T/D ,BKP

Customers' overview:

+2 inches scale in green liquor lines
 High and fluctuating suspended solids in green li

Required manpower and long boil out hours for d

Benefits:

- Scale control when fed to the suction side of the Weak Wash Pump(s) providing dilution to the Recovery Boiler Dissolving Tank
- Completely eliminated the need to acid clean or hydro-blast the Green Liquor lines, reducing costs and minimizing safety hazards to mill personnel
- Improves the cleanliness of the Dissolving Tank itself, reducing time and money spent during outages to clean it out.
- Reduced green liquor inlet velocity to the Green Liquor Clarifier helps the settling of dregs, improving green liquor quality
- Maintained the cleanliness of the Green Liquor density meter on the outlet of the Dissolving Tank
- Improved green liquor strength variability &TSS.

Case study of mineral deposits in causticizing area

Process

- 6 digesters batch with direct steam heating.
- cooking capacity 250
 ADT/day of unbleached pulp
- one line green liquor causticizing
- capacity white liquor 40 000
 m3/Month or 55 m3/h

Target

- Provide prevent mineral deposits on causticizing line.
- Provide capacity of the white liquor 60 m3/h
- Increasing the time between cleanings line from 2 to 6 months.

Results achieved

- Ensuring a stable flow rate of the reaction blend resulting of increased capacity of white liquor from 55 to 61 m3/h ⇔ 44 000 m3/month
- NO Cleaning equipment during the period chemical was fed on dirty equipment
- Annual savings calculated = **€185 000**

Case History: Evaporator Scale Control

Problem Statement:

- Evaporator fouling impacting WBL throughput
- Hyrdoblasting 1st & 2nd effects every 6 months at a cost of roughly \$35K per event

Solution

- Started scale control program
- performance improvement and cost reduction
- installed new feed equipment and implemented automated control through DCS
- Optimized dosage and changed feed ratio between 1st & 2nd effects when in single steam configuration (more to 1st effect – hotter effect)

RECORDED BENEFITS

- Hydroblasting events:
 - #2 Evaporator extended to 2.6 years and counting (last cleaning was Aug 2016)
 - #1 Evaporator extended to 1.5 years
- Documented ROI to mill, of \$210K based on historical steam usage, hydroblasting cost and chemical cost reduction
- Maintaining Steam Economy and WBL throughput
- Continue to work on program improvements

Case History- Evaporator Scale

Mills Description

Capacity: 2450000 t/a, BKP, Market pulp

Furnish: Plantation hardwood

Customer overview:

- Mill experienced increased frequency of water wash and mechanical wash of evaporator
- Burkeite & Cal oxalate was found in scale
- Level of WBL tanks remained high and evaporator became a limitation for increasing the production

Benefits:

- Scale control product when dosed with weak black liquor increased the evaporator availability (running hours) by 23%
- Solids out from evaporator increased by 1.5% (average 70% to 71.5%) at higher flows
- Even at higher total pulp production by 6.1% Weak black liquor tank level was decreased by 7.5%.
- With Scale inhibitor evaporator was no longer a limitation for increasing the production rate of fiber line

Conclusion

- Scaling is an unavoidable phenomenon, caused by the presence of trace metals, coming into the system primarily with wood.
- Low bark content, good raw material preparation, efficient dregs and NPE removal from system are ways to minimize scaling
- Boiler ash handling, good %CE & %RE steady controlled operation are the key to reduce scaling and fouling in evaporators.

Conclusion

- Seldom, the process requirements and conditions favoring a "low scaling" environment are contradictory. In these situations, usage of scale control chemicals work best to minimize scaling.
- Indian Pulp mill conditions where hardwood availability is limited, high bark contamination cannot be avoided, non wood is a raw material source where non process elements are high, use of antiscalants is the way to minimize or live with scales

Thank You

