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ABSTRACT
We present an end-to-end interpretable deep architecture that pre-
dicts the success of drug prescription based onmultiple graph kernel
fusion using a graphical representation of electronic health records.
We formulate the predictive model as a binary graph classification
problem with a set of graph kernels proposed to capture different
aspects of graph structures through deep neural networks. Results
using the Taiwanese National Health Insurance Research Database
demonstrate that our approach outperforms current start-of-the-
art models on accuracy and interpretability. The approach is in
preliminary deployment.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Ap-
plied computing→ Health informatics.
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1 INTRODUCTION
Predictive modeling of drug prescription is paramount yet not
always achieved. For any clinical visit, medical doctors are obligated
to prescribe the most suitable and least harmful drug that combats
the ailment while minimizing adverse side-effects [3, 39]. Many
machine learning techniques exist to solve such predictivemodeling
problems; their development was fueled by the rapid growth of
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Electronic Health Recoreds (EHRs), providing opportunities to mine
medical data [1, 29]. EHRs provide historical medical road-maps
for patients enabling the design of intelligent predictive systems.

The complex nature of EHR, such as high dimensional infor-
mation and temporal event relationships, complicates their use in
developing predictive models. Traditional approaches transform
EHRs into vector representations via various feature extraction
techniques (e.g. electronic phenotyping) [37]. The extracted feature
vectors, where each dimension corresponds to a certain medical
concept, are fed into a linear classifier. This flattening formulation
of EHRs ignores temporal relationships between medical events in
a patient’s history, reducing effectiveness. On the other hand, many
extraction tasks require domain medical knowledge to generate
hand-crafted features which is not efficient and cost prohibitive at
large scale. [37].

We address this accuracy loss via a graphical EHR formulation.
Such formulation compactly encompasses all the medical informa-
tion, without the need of electronic phenotyping. A set of graph
kernels is proposed to compute the similarity between graphical
EHR with multi-view captured by different types of kernels. To
achieve the best kernel combination, deep learning formulation
for an end-to-end multiple kernel learning is applied, resulting in
meaningful and noise-resistant refined kernel embedding, while
maintaining the interpretability. Dimension reduction by virtue of
kernel embedding boosts the efficiency for large scale learning.

A common strategy, derived from recent development of deep
learning, is to apply representation learning to embed EHR into
low dimensional space to represent the medical concept combining
with downstream classifier [33]. The end-to-end learning performs
various prediction tasks such as diagnosis code prediction [6, 13],
mortality prediction [32], and risk prediction [9, 12] and achieves
impressive accuracy.

On the other hand, interpretability is not only critical for doc-
tors and patients but also essential for knowledge discovery in the
medical domain. At the same time, it is unreliable for people to
trust such an elusive system resulting in low utilization. More and
more studies introduce interpretable models to resolve such issues.
However, producing a good interpretation is still a challenge for
current deep learning models.

We continue our previous work [38] and introduce a kernel based
deep architecture to predict the success or failure for drug prescrip-
tion given to a patient. The success and failure of medication on
patients are identified for targeted disease treatment to generate
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the training data. Observation windows with user specified periods
are used to define the success and failure cases. An EHR prior to the
disease diagnosis is included for each patient, and their graphical
representation (e.g., patient graph), where nodes denote all medical
events with day differences as edge weights, are built. The binary
graph classification task is performed directly on the patient graph
via a deep architecture. Interpretability is readily available and eas-
ily accepted by users without further post-processing due to the
nature of the graph structure.

We also propose a novel graph kernel: Temporal proximity ker-
nel, which efficiently calculates temporal similarity between two
patient graphs. The kernel function is proven to be positive definite,
increasing the model availability by using a kernelized classifier
such as Support Vector Machine (SVM). To obtain the multi-view
aspect, we combine the temporal proximity kernel with the node
kernel and the shortest path kernel as a single kernel through mul-
tiple kernel learning.

To perform large scale and noise-resistant learning objectives,
we transfer the original task to similarity-based classification [11],
where each row in the kernel gram matrix is considered as a feature
vector with each dimension expressing the similarity measurement
with specific training examples. A multiple graph kernel fusion ap-
proach is proposed to learn kernel representation in an end-to-end
manner for the best kernel combination. We argue that represen-
tation learning is a typical kernel approximation which preserves
the similarity while reducing the dimension for the original kernel
matrix. The embedding weight for each kernel supports the inter-
pretation to the prediction via most similar cases by selecting top
relevant embedding dimension.

We evaluate our proposed method by using the National Health
Insurance Research Database (NHIRD); a real world population
claim-based database from Taiwan. The task is to predict the out-
come of success or failure for a prescribed drug to patients given
their disease diagnosis at the time of treatment and their medical
history prior to the diagnosis. The experimental results show that
our proposed multiple graph kernel fusion approach outperforms
the current state-of-the-art deep learning models as well as the tra-
ditional feature extraction approaches. In addition, we demonstrate
the interpretability by analyzing the kernel embedding to infer rele-
vant features corresponding to the original feature space, providing
insight on prediction. Finally, we discuss the observation on possi-
ble model biases for major state-of-the-art deep learning models
on NHIRD. To our best knowledge, we are the first to propose the
predictive model by combining deep architecture and graph ker-
nel method, and compare the majority state-of-the-art deep learn-
ing baselines on large scale, real-world, different population-based
dataset. The described approach is now under limited preliminary
use. Our contributions using the proposed model are:

• We propose and discuss how multiple kernel fusion can be
utilized to develop an interpretable predictive model for drug
prescriptions.

• We show the improvement of interpretability of a deep ar-
chitecture by combining it with a kernel method.

• We compare the majority of the state-of-the-art deep learn-
ing baselines to demonstrate our effectiveness as well as
interpretability on a large scale real-world dataset.

• We discuss the possible model biases when performing the
prediction task on different population-based datasets.

2 RELATEDWORK
2.1 Predictive models for Drug prescription
An erroneous medication treatment process results in an unsuccess-
ful treatment or harmful outcome to patients [3]. One interest is
predicting Adverse Drug Reactions (ADRs) or possible medication
errors for given prescriptions. A data mining technique to derive
treatment algorithms from EHR to improve theoretical empirical
therapy for outpatient urinary tract infections is developed in [1].
Predicting ADRs by a hierarchical Bayesian model formulation is
proposed in [36]. Another paper [28] describes a method that uses
a probability model with association rule mining to predict a possi-
ble unsafe drug prescription, and a machine learning approach for
predicting a failure in drug prescription on anti-diabetic drugs is
introduced in [19].

2.2 Models for EHR analytics
Traditionally, major approaches rely on extracting features or phe-
notypes from diverse EHR data representation with linear models
and ensemble methods like Random Forset as downstream classi-
fiers [37]. Due to the recent prosperity of deep learning approaches,
representation learning, embedding EHR from high dimensional
input space into low dimensional space, plays the major role in EHR
analytics. Models like autoencoder [25] and multilayer perceptron
(MLP) [14] are two examples. The majority of related work focuses
on using Recurrent Neural Networks (RNNs) to model the temporal
event sequences of clinical visits in EHR, where an EHR is treated as
a sequence of feature vectors [6, 13]. Convolution Neural Networks
(CNNs) are also applied to learn local patterns [9, 12] or clinical
visit progression motifs [27]. Once the representation is learned,
an end-to-end classification task is performed.

2.3 Interpretable Deep learning models
For classification or prediction, Med2Vec [14] uses MLP with Rec-
tified linear unit (ReLU) activation function to embed medical
codes and clinical visits into interpretable low dimensional spaces.
The success of attention mechanism in nerual machine transla-
tion [4, 21] provides opportunities for interpretability for RNN-
based models. Retain [16] used a two-level neural attention model
to assign an attention weight for each visit and capture relevant
medical information. Dipole [22] introduces a three attention mech-
anism with bi-directional long short term memory network (LSTM)
to predict patient future medical diagnosis. A hierarchical atten-
tion networks is introduced in [32] with Gated Recurrent Units
(GRUs) to detect code level and visit level attention. Timeline [5]
proposes an attention based RNN to learn time progression patterns
of disease by learning time decay factors for every medical code.
GRAM [15] combines medical ontologies to learn medical concept
representation by graph-based attention model to address data in-
sufficiency and align the interpretation with medical knowledge 1.
In [20], attention based RNN along with conditional variational

1We will not compare GRAM since we do not use and incorporate external medical
ontologies.



autoencoder (CVAE) is developed to learn both temporal medical
events and patient demographic information.

2.4 Problems on current interpretable models
Although many studies successfully improve the interpretability
of deep learning models, few problems are yet unsolved. First, in-
terpretation should lead to medical knowledge discovery. Posing
attention on relevant medical code or visit enables inference on
cause of prediction. However, this inference only happens in local
perspective, which the interpretation is only used for individual
patient, and lowers the ability to perform global knowledge infer-
ence such as discovering inter-patient disease progression. Second,
to deal with complex representation learning on EHR, models are
developed in a very complex structure resulting in implementation
difficulty and overfitting possibility. Additional attention layer to
design interpretable model expands such complexity. Third, the of-
fered interpretation should be familiar with medical doctor, where
case-based study is a common clinical practice performed by medi-
cal clinician [18, 23], and improve model utilization. We design a
case learning based interpretation, which mimics the real medical
learning method, instead of returning attention spots in the specific
part of information.

2.5 Graph kernel and Multiple Kernel Fusion
Graph kernels compute the similarity between pairs of graphs. A
positive definite kernel performs the inner product by mapping
from an input space to the Hilbert space implicitly. Recent graph
kernel approaches compare two input graphs based on their com-
mon substructures [17]. Many of the applications introduced by
graph kernels are within the domains of bioinformatics [17]. An
application using EHRs is proposed in [38], however it is still rela-
tively limited. We design a kernel approach to predict medication
success using EHRs.

Multiple kernel learning is a framework. The optimization prob-
lem for minimizing objective loss function is performed simulta-
neously with the convex combination on a set of kernels, soas to
manipulate the interdependent behavior of different features col-
lectively by different kernel functions [34]. Recently, a multiple
kernel learning framework, working on feature fusion, with a deep
learning approach was proposed [34]. Instead of traditional mul-
tiple kernel learning framework, the learned representation can
be considered as a replacement of convex combination approach
by using representation learning on kernel merging. In our work,
we proposed a multi-layer embedding framework with associated
ReLU activation function, where an embedding is learned for each
kernel, and a fusion embedding is learned for their joint represen-
tation followed by a fully-connected layer with sigmoid activation
function commuting the binary cross-entropy loss. Given a set of
kernel gram matrix, instead of minimizing the classification loss
as well as finding the best convex combination, we aim to learn
their individual kernel representation jointly which derives the best
combination in an end-to-end fashion.

Figure 1: An example of patient graph

3 METHODOLOGY
3.1 EHR patient graph
Following our previous work [38], a patient’s EHR is represented
by a directed acyclic graph where each node represents a medical
event, and an edge between two nodes represents ordering and time
difference (e.g., days) as a edge weight. All patient demographic
information, e.g., gender, connect to the first medical event with
age as an edge weight. Figure 1 describes an example patient graph.

Given n medical events, set M = {(m1, t1), . . . , (mn , t1)} repre-
sents a patient’s EHR withmi denoting a medical event such as
diagnosis or drug prescription, and ti denoting the time for mi .
For each patient, their demographic information is represented
as a set of string (e.g., {Male, Student, Postcode....}) with length k
D = {d1, . . . ,dk }. We define the patient graph as follows:

Definition 3.1 (Patient Graph). The patient graph Pд = (V ,E) of
eventsM and demographic information D is a weighted directed
acyclic graph with its vertices V containing all eventsmi ∈ M and
dj ∈ D. Edges E contains all pairs of consecutive events (mi ,mj )

and all pairs of demographic information connected to all the first
medical events. The edge weight from node i to node j is defined
asWi j = tj − ti which defines the time interval between mi ,mj
if both node i, j are medical events, andWi j = aдe if node i is a
demographic information and node j is a medical event 2.

3.2 Success and Failure cases
Given a disease diagnosis of a patient, a drug prescription for the
diagnosis is considered a failure if the patient has a second same
diagnosis within an observation window. Otherwise, the prescrip-
tion is considered a success. Figure 2 explains this criterion 3. The
failure is labelled as positive, and the success is labelled as neg-
ative. To capture historical factors, each case contains previous
medical events prior to the diagnosis date in a user-defined period.
We treat each case as a subset of patient EHRs as Figure 3, which
contains a multiple-event single-patient EHR. In short, each case
contains the medical events before and after the disease diagnosis
for a user-defined period.

3.3 Problem Definition
We aim to perform a binary graph classification on graph EHR.
Given success and failure cases with their associated label (дi ,yi ),

2To simplify model assumption, we only use gender and age as demographic
information.
3We follow the same setting in [38].



(a) Success case

(b) Failure case

Figure 2: Criteria for success and failure cases

Figure 3: A sample subset of EHRs

we want to learn a classifier such that f (дi ) = yi where yi ∈ {0, 1}
to predict the success or failure outcomeyi of the given prescription
in дi . This problem can be easily tackled via a kernelized support
vector machine (Kernel-SVM) with a proper graph kernel which is
demonstrated in our previous work [38]. The predictive system is
illustrated in Figure 4

Figure 4: Predictive framework

3.4 Graph Kernel
For a given pair of graph input д1,д2, we want to calculate their
kernel value via a kernel function. Before introducing our proposed
Temporal proximity kernel, we need to define Topological se-
quence and Temporal signature.

Topological sequence
Let T be a topological ordering of graph G = (V ,E) such that
T = {ni | i = 1, . . . , |V |}, the topological sequence S is defined as

S = {ni .label + level | i = 1, . . . , |V |, and ni ∈ T } (1)
where + represents the string concatenation and level denotes the
order of occurrence of label associated to node ni in T . Namely,
every node in the topological sequence has an attached number to
indicate the level. The level indicates the order of occurrence of the
same node label in the topological ordering.

Topological signature

Figure 5: Input graphs to temporal signatures.

Let S1, S2 be topological sequences of two input graphs д1,д2, and
S = S1 ∪ S2 with the union set length m = |S |. We define the
temporal signature for д1 as tp1 = {v11, · · · ,v1m } where

v1 j =

{
dj , if S[j] ∈ S1
−1, otherwise

, for j = 1, . . . ,m (2)

and define the temporal signature for д2 as tp2 = {v21, · · · ,v2m }

where

v2 j =

{
dj , if S[j] ∈ S2
−1, otherwise

, for j = 1, . . . ,m (3)

for dj denotes the total passage day from the root node to node
nj in its belonging patient graph. We now transfer д1,д2 into their
vector representation tp1, tp2. Figure 5 illustrates the process of
transferring the input from graphs to temporal signature.

Temporal proximity kernel
Temporal proximity kernel Ktp calculates the kernel value between
д1,д2 via temporal signature tp1, tp2 as:

Ktp (д1,д2) = e−∥tp1−tp2 ∥ (4)
where ∥tp1 − tp2∥ is the Euclidean distance between tp1, tp2.

Shortest path kernel4

Shortest path kernel Ksp calculates the edge walk similarity on the
shortest path graphs for two input graphs. We use the same kernel
definition in [7].

Node kernel
Node kernel Knode compares the node labels of two input graphs.
The kernel value is the total number of same node labels:

Knode (д1,д2) =
∑

n1∈д1 .V ,n2∈д2 .V
Klabel (n1,n2) (5)

where Klabel is defined as:

Klabel (n1,n2) =

{
1, if label(n1) = label(n2)
0, otherwise

(6)

4We modify original all-pair shortest path algorithm used in [7] to directed acyclic
graph version to reduce time complexity.



Figure 6: Multiple graph kernel fusion

3.5 Positive Definiteness
Here, we prove all the above kernels are positive definite. Ktp is
positive definite since the transformation of exponential function of
euclidean distance is still positive definite [8].Ksp is already proven
to be positive definite in [7]. Finally, Knode is positive definite since
the Klabel is a dirac delta function which is proven to be positive
definite in [31], and it is known that positive definiteness is closed
under addition on positive definite kernels.

3.6 Multiple kernel fusion architecture
To capture multi-view characteristics on patient graphs, we use
two additional kernels; shortest path kernel and node kernel, in
conjunction with our proposed temporal proximity kernel and find
the best combination of them in an end-to-end manner. Specifically,
temporal proximity kernel Ktp focuses on temporal similarity be-
tween substructure such as node ordering and their time difference,
shortest path kernel Ksp aims to capture similarity in overall con-
nection, and node kernel Knode offers a balance between local and
global similarity by comparing all node labels between two patient
graphs to achieve best accuracy as well as prevent overfitting from
noise collaboratively by kernels. The architecture is described in
Figure 6.

Given gram matrices on all pair of n graphs for each kernel type
Kt ∈ Rn×n where Kt дi ,дj = kt (дi ,дj ) and t ∈ {tp, sp,node}, we
use a Multi-layer perceptron (MLP) to generate the correspond-
ing kernel representation дembt ∈ Rn×m where m ≪ n. In this
case, each row i in Kt represents a high-dimensional feature vector
with each dimension being a kernel value (e.g., similarity score)
between its associated graph дi and all other graphs, and its kernel
embedding дembt can be treated as a dimension reduction by using
traditional kernel approximation technique [30, 35, 41] to generate
low dimensional features for дi such that efficient linear classifier
can be used directly. дit ∈ Rn is converted to дembt ∈ Rm under
kernel type t as follows:

дembt = ReLU (Wtдit + bt ) (7)
by using the kernel embedding weight matrixWt ∈ Rm×n and the
bias vector bt ∈ Rm where n is the number of input graphs, andm
is the dimension for the embedding space. The rectified linear unit

(ReLU) activation is defined as ReLU (val) =max(val , 0). For deep
architecture, we can compute the layer l with its previous layer
l − 1 with related parametersWtl and btl within layer by using the
same way that we compute the embedding for input kernel gram
matrix such as:

дembtl
= ReLU (Wtlдembtl−1

+ btl ) (8)

For combining three kernels, we first average their embedding from
last layer and use another dense layer with ReLU activation that
learns the kernel fusion дembF ∈ Rf :

дembsum =
∑

t ∈{tp,sp,node }

дembtlast

дembavд =
дembsum

3
дembF = ReLU (WFдembavд + bF )

(9)

in whichWF ∈ Rf ×q is the fusion weight matrix with fusion em-
bedding dimension f and the bias vector bF ∈ Rf assuming the
last embedding layer dimension is q.

Finally, the label of success or failure for дembF is produced by
using Sigmoid layer defined as:

ŷ = Siдmoid(WpдembF + bp ) (10)

where Wp ∈ R1×f and bp ∈ R are trainable weight used to
generate class label ŷ ∈ {0, 1}. We also use binary cross-entropy
loss function to optimize the best embedding under the fusion
setting to learn all kernel embedding weight matrices.

3.7 Interpretation
As we stated in Section 3.6, each row (e.g., each patient) depicts a
high dimensional feature vector with each dimension correspond-
ing a kernel value to a specific training example. Since the kernel
value can be treated as a similarity measurement, we can use the
concept in similarity-based classification, in which class labels are
inferred by a set of most similar training examples [10], and consult
the top k most similar patients to get prediction insights based on
the nature such that features with higher weight contribute more
to the result in a linear classifier [26]. Kernel embedding, reducing
input dimension, for each kernel type facilitates similarity measure-
ment refinement, reducing the number of training examples used
to infer. Similar patients with allied graph similarity are grouped
into one coordinate (e.g., dimension) in the embedding space.

Since kernel embedding space is trained in an end-to-endmanner
through ReLU operation in Equation 8, which achieves the inter-
pretability [14], we can select a set of candidates that contribute
most to the prediction, via top k value coordinates in the embedding
space. The selected ones under different kernel type can be inter-
preted as multi-view representative cases (e.g., time propagation
or disease connection) in case-based learning [23]. In practice, we
sort patient дembt in kernel embedding space and pick up top k
coordinates. We then select top k ′ training examples for the i-th
coordinate in top k coordinates. We illustrate the interpretation
process under ktp in Figure 7. All sorts are in a reverse order:

arдsort(дembt )[1 : k] (11)



Figure 7: Interpretation steps. Given an embedded patient
vector дembtp , we sort it in a descending order and select top
3 value dimension and find corresponding training exam-
ples in дtp , which contribute most, through weight matrix
Wtp .

arдsort(Wt [i, :])[1 : k ′] (12)

4 EXPERIMENTS
4.1 Dataset
Data Source
We use a subset of the Taiwanese National Health Insurance Re-
search Database (NHIRD) 5 as our data source. Our sample contains
over a 20-year, complete, medical history for one-million randomly
sampled patients. The database is provided by the National Health
Insurance Administration and the Ministry of Health and Welfare.
NHIRD is composed of registration files and original claim data
for the hospitals that participate in the National Health Insurance
(NHI) program for reimbursement. The International Classifica-
tion of Diseases, 9th Revision, Clinical Modification (ICD9-CM)
code indicates the diagnosed disease. The unique identifier is used
for drug prescription and can be further linked to the Anatomical
Therapeutic Chemical (ATC) code. All personal information are
de-identified. Institutional Review Board (IRB) approvals for our
research were granted by all associated institutions.

Diseases
Four diseases, namely, pneumonia, acute otitis media, acute cystitis,
and urinary tract infection, are studied. Their treatments primarily
rely on drug prescriptions (e.g., antibiotics), and the effectiveness for
treatment depends onwhat stage of the disease the patient is at, with
early treatment effecting recovery. The goal is to predict the success
or failure of the given drug prescription for disease diagnosis. For
creating patient cases, a 1 month observation window is established
after the drug is prescribed. For each patient, 2 months of medical
history is included prior to their diagnosis. Table 1 summarizes the
dataset statistic.

5https://nhird.nhri.org.tw/en/

Table 1: Disease Data Statistic

Disease # of patient # of failure # of success
Pneumonia 37,677 12,439 25,238

Acute
otitis media 40,008 14,999 25,009

Acute
cystitis 113,513 35,728 77,785

Urinary
tract infection 279,645 94,105 185,540

4.2 Experimental Setup
Baselines
We selected 14 deep learning and 3 traditional approaches as our
baselines6.

Deep learning approaches:
• Deep Patient [25]. Deep Patient learns an EHR unsupervised
representation through three-layer stack denoising autoen-
coder with Random Forest used as classifier to predict future
diagnosis.

• LSTM [6]. This model uses LSTM to classify medical code
diagnosis given the time series clinical measurements. Word
embedding is used to embed medical code before feeding to
LSTM.

• Med2Vec [14]. Med2Vec tries to learn interpretable code
and visit representations from EHR by using multi-layer
perceptron and uses the current visit information to predict
medical codes in the following visit.

• Doctor AI [13]. Doctor AI uses Gate Recurrent Unit to learn
representation for patient status at each timestamp to make
multilabel predictions. We connect a timestamp to the most
recent diagnosis time and change the softmax layer to sig-
moid layer.

• Retain [16]. This is an interpretable model to predict the
future diagnosis of heart failure via two-level RNN attention
model incorporated with reverse time attention mechanism.
By using attention, influential past visits which contribute
to the final prediction can be selected.

• CNN [9]. This model uses word embedding to learn medical
code embedding from raw EHRs and transfer each visit into
a fixed dimension vector. The multi-layer CNN is introduced
to capture local and short temporal dependency in EHRs for
risk prediction.

• Temporal Fusion CNN [12]. Four types of CNNs, namely
Single-frame (S), Early Fusion (EF), Late Fusion (LF), and
Slow Fusion (SF) are proposed to extract phenotypes from
patient EHR represented as a temporal event matrix.

• Deepr [27]. Deepr uses CNN to learn and detect meaningful
clinical motifs from EHR to predict unplanned readmission.
In their work, EHRs are transformed into a sentence where
each medical event is represented as a phrase and connected
with each other by special keywords as a time gap.

• Dipole [22]. In their work, bidirectional RNN with three dif-
ferent attention mechanism is proposed. The three attention

6All word embedding is performed by Word2Vec [24].



Table 2: Performance comparison

Pneumonia Acute otitis media Acute cystitis Urinary tract infection
Model AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1
MGKF 0.7056 0.6744 0.6583 0.6912 0.6920 0.6351 0.7201 0.7200 0.6883 0.7249 0.7224 0.7202
Deep Patient 0.5184 0.6258 0.3829 0.6076 0.6051 0.5747 0.5874 0.6400 0.4994 0.5714 0.6017 0.5178
LSTM 0.5650 0.6074 0.4249 0.5929 0.5912 0.6031 0.5986 0.6184 0.5106 0.5841 0.5877 0.5457
Doctor AI 0.4689 0.5250 0.2963 0.6054 0.6046 0.5968 0.6008 0.6233 0.5066 0.6286 0.6350 0.4511
CNN 0.5616 0.6171 0.3932 0.6036 0.6048 0.5837 0.6085 0.6372 0.5014 0.5975 0.6055 0.5407
Fusion CNN-S 0.5655 0.6308 0.3804 0.6053 0.6070 0.5783 0.6127 0.6437 0.5019 0.6000 0.6087 0.5408
Fusion CNN-EF 0.5596 0.6142 0.3932 0.6042 0.6064 0.5660 0.6096 0.6355 0.5070 0.5992 0.6088 0.5356
Fusion CNN-SF 0.5718 0.6279 0.4045 0.6045 0.6067 0.5667 0.6112 0.6429 0.4934 0.6088 0.6222 0.5306
Fusion CNN-LF 0.5667 0.6476 0.3329 0.6165 0.6195 0.5738 0.6130 0.6550 0.4597 0.6133 0.6286 0.5169
Med2Vec 0.5506 0.6308 0.3134 0.6174 0.6204 0.5537 0.6040 0.6493 0.4382 0.6028 0.6224 0.4777
Retain 0.5559 0.5800 0.4531 0.6176 0.6183 0.5970 0.6073 0.6576 0.4403 0.6027 0.6170 0.5030
Deepr 0.5400 0.6180 0.2204 0.6081 0.6113 0.5639 0.5996 0.6509 0.4242 0.6073 0.6266 0.4922
Dipole-g 0.5802 0.5860 0.4759 0.6031 0.6040 0.5775 0.5999 0.6436 0.4434 0.5982 0.6131 0.5060
Dipole-c 0.5668 0.5900 0.4533 0.5943 0.5959 0.5716 0.5994 0.6351 0.4689 0.5936 0.6024 0.5280
Dipole-l 0.5357 0.5520 0.4455 0.6025 0.6049 0.5709 0.5973 0.6367 0.4604 0.5926 0.6051 0.5096
GRNN-HA 0.5553 0.5709 0.4624 0.5767 0.5763 0.5778 0.5763 0.5824 0.5184 0.5730 0.5730 0.5502
Timeline 0.5458 0.6300 0.2629 0.6200 0.6280 0.5613 0.6470 0.6400 0.5982 0.6022 0.6000 0.6226
Patient2Vec 0.5497 0.6053 0.3785 0.6010 0.6029 0.5672 0.5995 0.6351 0.4729 0.5851 0.5975 0.5059
MCA-RNN 0.6121 0.6532 0.4762 0.6440 0.6464 0.6081 0.6065 0.6457 0.4680 0.6123 0.6263 0.5296
ClinicalBERT 0.5000 0.5089 0.3373 0.5946 0.6018 0.5170 0.5000 0.5855 0.3693 0.5000 0.5089 0.3373
SVM 0.6463 0.6120 0.5369 0.6209 0.5955 0.5035 0.5950 0.6241 0.2809 0.6463 0.6120 0.5369
LR 0.6486 0.6023 0.5328 0.6152 0.5839 0.5791 0.5939 0.5720 0.4991 0.6486 0.6023 0.5328
RF 0.6603 0.6134 0.5874 0.6190 0.5772 0.5344 0.5887 0.6069 0.4372 0.6603 0.6134 0.5874

mechanisms, namely, general (g), concatenation-based (c),
and location-based (l) are used to calculate attention weight
for each patient visit.

• GRNN-HA [32]. This model introduces a hierarchical atten-
tion network to learn attention weight from medical code
level to patient visit level.

• MCA-RNN [20]. An attention-based contextual RNN is used,
and patient information (e.g., demographic) is derived from
conditional variational autoencoders. They combine the con-
textual features with RNN by usingmedical context attention
to generate final representation to make prediction.

• Timeline [5]. Timeline is an interpretable model with atten-
tion mechanism to learn time decay factors for every medical
code and improves visit embedding. By analyzing attention
and disease propagation functions, Timeline provides inter-
pretation for prediction and insights on how future risks are
changed over time.

• Patient2Vec [40]. Patient2Vec proposes a hierarchical repre-
sentation learning framework to capture complex relation-
ships between medical events in EHR with the attention
mechanism used to learn personalized representation for
patient.

• ClinicalBERT 7 [2]. The pre-trained BERT model is used to
learn embedding for clinical text and performed on clinical
natural language processing tasks.

7In our task, patient is represented as a document containing all medical codes.

Traditional approaches 8:
• Linear Support Vector Machine (SVM).
• Logistic Regression (LR).
• Random Forest (RF).

Implementation Detail
We use Keras with Tensorflow backend to build our model. We set
1000 dimensions for dense embedding layer of each kernel and 500
dimensions for kernel fusion layer. Between the dense embedding
layer and kernel fusion layer, we setup 3-layer neural network with
size 800, 600, and 500 to learn the deep representation for each
kernel. We also use dropout for each layer with the fine tuning
rate except for the final fusion layer which is set to 0.9. All these
parameters were empirically determined. For the training stage, we
use the adam optimizer with 128 batch size to optimize the binary
cross-entropy loss and train for 10 epochs. All the experiments are
executed on an Intel Core i7, with 64GB memory and one Nvidia
1080 Ti GPU.

Evaluation Metrics
We use accuracy (ACC), F1-score (F1), and the area under the re-
ceiver operating characteristic curve (AUROC) as our evaluation
metrics. For each disease, we divide our datasets into training, vali-
dation, and testing in an 80:10:10 ratio. All parameters for all models
and dropout rate in our proposed model are fine tuned via 10-fold

8All traditional approaches use word embedding to embed medical code into 256
dimension vector.



cross validation on the validation set. We repeat all experiments 100
times and report their best performance scores. The pairwise t-test
is used with p-value set to 0.05 to reject the null-hypothesis to test
the statistical significance of our proposed method statistically. We
find that our solution statistically significantly differs from previous
efforts.

4.3 Experimental Results

Results shown in Table 2 illustrate that our proposed method
(MGKF) outperforms all baseline approaches by a large margin. We
are surprised that most of the deep learning approaches failed to
yield better results than traditional methods. We surmise that the
possible reason might be the characteristic difference between de-
velopment datasets. For most deep learning models, their datasets
are primarily collected from regional sources such as local hospitals
or private healthcare data partnerships where uniform patient pop-
ulation type is expected. Data cleaning and normalization is often
conducted. For models developed on a widely used public open
dataset, namely MIMIC3, the primary difficulty is the relatively
few history records for each patient, diminishing the detection
on long term medical information. On the contrary, NHIRD is a
national-wide, in production, and clinical usage dataset with com-
plete medical history, mirroring true medical practice from daily
clinical activities. High variance and noise is inevitable.

In NHIRD, some clinical visit records are for reimbursement
or request for refill of prescription purposes. Due to the system
limitation for maximum number of drugs allowed to store in one
record, physicians split prescription orders into multiple records.
The diagnosis or drug codes in such cases are pointless, which pre-
vents deep learning models from learning event sequence patterns
from those pointless events. We can see all deep learning models
especially Doctor AI, Deepr, Med2Vec, and Timeline, where code
level representation learning acts as the major part, performing
poorly on F1 for pneumonia since it is one of the most frequent
diseases that uses record splitting for reimbursement purposes. The
attention mechanism on visit level (e.g., Retain, Dipole, GRNN-HA,
and MCA-RNN) eases the effect by memorizing relevant visits to-
ward classification result. Although Timeline introduces time decay
factors with attention, the capricious medical records listed in those
pointless events may lead to overfitting in Timeline. Another con-
cern, the patient hospital-shopping habit in Taiwan generates lots
of sequences for the same disease diagnosis. Distinguishing the
event sequence originated from a hospital-shopping habit from a
true medical condition is difficult, causing RNN-based models to
overfit.

On the other hand, traditional approaches are shallow architec-
tures that usually fit the data in a simple manner without much
representation learning process (e.g., LR and SVM). They are easy
to interpret and avoid severe overfitting in high noise environments
as compared to deep architectures. Thus, our approach does not
rely on data representation learning, reducing the likelihood of
falling into NHIRD-driven potential pitfalls. Also, with the help of
representation learning on multi-view kernel value (e.g., similar-
ity measurement), the reduced dimension keeps the most relevant
consulting cases and filters noise such as hospital-shopping events.
We explain this further in Section 4.4.

4.4 Interpreting Results
We select two patients who had a successful and failure treatment
for pneumonia respectively. All patients from top coordinate under
all kernel types are selected 9 following interpretation steps in
Section 3.7. We show top 5 weighted patients with their kernel
value between 2 selected patients from each coordinate in Table 3,
and two selected patient graphs in Figure 8.

For patient level interpretation, it is simple to see patient’s dis-
ease progression using an EHR graphical representation. Patient
10 failed to treat Pneumonia at visit 7 while patient 19 is success-
ful at visit 4. The medical event ordering and their connection is
straightforward for the treating physician to understand. We also
see that similar patients, whose treatment is successful, under all
kernel types do not affect the prediction for patient 10 since the
weight contribution for success training examples are reduced by
Ksp and Knode ; top failure patients from coordinate 365 in Ksp
and coordinate 499 in Knode balance the final weight 10. Also, for
patient 19 whose treatment is a success, the node similar patients
from coordinate 499 in Knode do not affect the prediction because
of the contribution weight reduced by Ktp and Ksp . Each coordi-
nate in the kernel embedding space reveals similarity patient group,
where top weighted training examples in each coordinate provide
contribution to prediction, diminishing the effects from pointless
events described in Section 4.3. The representative cases, which are
denoted by top weighted training examples, provide insights on
how overall treatment and disease progression look like for suc-
cess and failure outcomes. These results demonstrate how multiple
graph kernel fusion with multiple layer embedding prevents the
model from overfitting due to noise and offers interpretation.

5 CONCLUSION
Sparsity, temporal relationships, and heterogeneity challenge the de-
velopment of a predictive model on patient EHRs. The bias among
different population groups also provides a gap between model
implementation and utilization. Those are issues that must be ad-
dressed in model development. It is a trade-off to develop a model
that achieves high accuracy versus high interpretability, for exam-
ple, recurrent neural network versus logistic regression solutions.
To balance the issue, current approaches try to add interpretability
via different ways of attention mechanism to existing deep neural
networks. This, however, increases the complexity of the models
themselves and may result in overfitting issues when performing
those models on different population based datasets (e.g., NHIRD).

Consequently, we proposed a model, Multiple Graph Kernel
Fusion, that achieves both high accuracy and interpretability to
predict the success or failure of drug prescription. We presented a
deep learning approach where the prediction task uses a graphical
represented EHR without the need of electronic phenotyping or
representation learning. Three of our proposed kernel functions
capture different aspects from patient graph structures that provide
meaningful insights for clinical practice. The multiple graph kernel
fusion with the help of deep neural networks helps the prediction
task to refine and concentrate on the most relevant and similar
patients to prevent overfitting on noisy data via kernel embedding.

9Due to space limitations we only select maximum value coordinate.
10The ranking for training examples is ordered by weight in their belonging coordinate.



Table 3: Coordination information of two selected patients

Patient/Kernel type ktp ksp knode
Coordinate number 11 365 499

Patient Number Kernel Value Patient Number Kernel Value Patient Number Kernel Value

Patient 10 Failure

257 Success
193 Failure
332 Success
589 Success
102 Success

10.946
15.362
4.955
2.901
4.579

96 Failure
747 Success
415 Success
558 Failure
112 Failure

17.291
7.957
4.252
0.626
17.460

546 Success
523 Failure
733 Failure
654 Success
35 Success

28.322
2.173
3.462
1.765
2.221

Coordinate number 304 218 499
Patient Number Kernel Value Patient Number Kernel Value Patient Number Kernel Value

Patient 19 Success

207 Success
110 Success
343 Success
222 Success
532 Failure

3.604
22.351
3.304
10.021
10.081

470 Success
494 Success
4 Success
297 Success
337 Failure

6.691
17.284
13.011
0.179
30.395

546 Success
523 Failure
733 Failure
654 Success
35 Success

20.930
3.808
8.773
5.347
3.404

(a) Patient 19

(b) Patient 10

Figure 8: Two sample patient graphs. Due to space limitation, instead of displaying connection between disease nodes and drug
nodes, we show drug information by text. For each medical event, red color denotes disease diagnosis following a ICD9-CM
code and black color denotes drug prescription with prescribed days within parentheses.



The classification performance of drug prescription success/failure
shown by experimental results surpasses all evaluated approaches.
The interpretation is simple, and the medical clinician can put more
attention on the most relevant cases for the given patient.

Overall, we have shown that our described approach has the
ability to predict the outcome of drug prescription with the high
scores in all evaluation metrics with high interpretability. It was
also reviewed by a medical clinician to confirm that our proposed
approach is able to predict the failure of a drug used for a specific
diagnosis and identify which drug prescription path to pursue. The
approach is now in limited clinical use.
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