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numbers of females examined are shown on the top. 
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related to carapace length and logistic curve fitted to these data.  
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Fig. 1.2 Parapenaeus species recorded in Kagoshima Bay, southern Japan. A. 

Parapenaeus investigatories Alcock and Anderson, 1899; B. 
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ABSTRACT 

 

Parapenaeus Smith, 1885 are commercially important penaeid shrimp and are found in 

relatively deep waters. Parapenaeus fissuroides Crosnier, 1985 and Parapenaeus lanceolatus 

Kubo, 1949 are two of the dominant species in the benthic community of Kagoshima Bay, 

southern Japan. These shrimps are emergent fisheries resources in the bay. The present study 

aims to describe fisheries biology including reproduction, growth and spatiotemporal distribution 

of P. fissuroides and P. lanceolatus in Kagoshima Bay. 

Monthly samplings were conducted at few stations and seasonal samplings were carried out at 

all eight stations established in Kagoshima Bay, southern Japan during 2011-2016. The 

samplings were conducted on board Nansei Maru (175 t), a training vessel of the Faculty of 

Fisheries, Kagoshima University, using a simple trawl net attached with submersible data 

loggers. In addition, previously collected samples during 2003-2010 were also used in the 

present study. The effective tow durations were adjusted to preset tow durations according to 

Fulanda and Ohtomi (2011). The catch in numbers and weight per haul were standardized to 

preset tow durations. All specimens of both species were sexed, and carapace length (CL) and 

body weight (BW) were measured. Female specimens of both species were dissected and whole 

gonads were removed and weighted. The gonadosomatic index (GSI) was calculated for each 

female: GSI (%) = 100 × [ovarian weight (g) / body weight (g)]. The ovaries of female 

individuals of P. fissuroides and P. lanceolatus were examined by histological observations to 

estimate the degree of ovarian maturation. Ovarian maturity stages were classified into four 

categories as follows: Stage I, undeveloped; Stage II, developing; Stage III, nearly ripe; and 

Stage IV, ripe. For growth analysis of these shrimps, monthly length-frequency distributions 

were constructed for both sexes using 1 mm intervals of CL. A computer analysis (Microsoft 
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Excel-add-in-solver) based on Hasselblad‘s maximum-likelihood method (Hasselblad, 1966) was 

used to fit a series of component normal distributions to the frequency distribution of each 

sample by sex. Each component normal distribution represents an age group in the population. 

CL-BW relationship was also examined for both sexes of both species. 

P. fissuroides is a multiple spawner, as the ovaries of this species contained different 

developmental stages of oocytes. The mature females were defined as those having nearly ripe or 

ripe ovaries containing cortical granules in the peripheral region of the oocytes. GSI (%) 

significantly increased with the progress of ovarian maturation and most of the females with GSI 

≥ 6% were mature. The size at sexual maturity of female P. fissuroides was estimated to be 23 

mm in carapace length. The spawning season of this species was estimated to last from July to 

February with a peak during October and November.  

Carapace length (CL) of P. fissuroides ranged from 7.7 - 27.1 mm in males and 6.4 - 36.1 mm 

in females. Both males and females were recruited during late autumn and winter. Growth was 

best described by Pauly and Gaschütz growth equation as Lt = 25.6 [1 - exp {- 1.011 (t/12 + 

0.539) - (0.641/2π) sin (2π (t/12 - 0.577))}] for males and Lt = 34.3 [1 - exp {- 0.941 (t/12 + 

0.227) - (0.581/2π) sin (2π (t/12 - 0.603))}] for females. The monthly growth rate (%) of P. 

fissuroides was the highest during July to August (summer point) and the lowest during January 

to February (winter point). Females grew faster and reached larger sizes than males of the same 

age group. The longevity of P. fissuroides was estimated to be around 2 years for males and 2.5 

years for females.  

All the individuals of P. lanceolatus examined histologically showed an asynchronous type of 

ovary. Females with nearly ripe (Stage III) and ripe (Stage IV) ovaries considered as mature, 

where the cortical granules were found in the peripheral region of the oocytes. The majority of 
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the females with GSI ≥ 4% were found to be mature. The females with GSI ≥ 4% were, 

therefore, considered as a simple index of maturation. The size at sexual maturity of female P. 

lanceolatus was considered to be 22 mm in CL. The spawning season of P. lanceolatus extends 

from July to April and the main spawning season lasts from September and October. 

Both male and female P. lanceolatus were first recruited in late autumn to winter (November 

to January) with modal size of around 10 mm in CL. The growth patterns of CL for both sexes of 

this species were well described by von Bertalanffy equation as Lt = 27.8 [1 - exp {- 0.081 (t + 

3.559)}] for male, and Lt = 33.8 [1 - exp {- 0.110 (t + 0.442)}] for female. Females grew faster 

than males of the same age group. The longevity of male and female P. lanceolatus was 

estimated to be around 27 months. 

The majority of P. fissuroides was distributed in the central area of Kagoshima Bay around 

135 m water depth, while P. lanceolatus was distributed both in relatively shallower (around 130 

m) and deeper (180-230 m) area of the central bay. From the analysis of distribution of P. 

fissuroides and P. lanceolatus with the progression of age revealed different distribution pattern 

in the bay. P. fissuroides recruited, spawned and spent their life mainly in the southern central 

area with around 130 m water depth. In case of P. lanceolatus, the spawning grounds for young 

individuals were almost entire central part while older individuals spawned only in deeper area 

of central bay.  

P. fissuroides and P. lanceolatus are emergent fisheries resources in Kagoshima Bay. The 

present study reveals the different distribution pattern of these shrimps in the bay, and their 

spawning season, size at sexual maturity, growth pattern, and longevity which are indispensable 

information for appropriate stock management of these species. 
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1. GENERAL INTRODUCTION 

 

The Penaeidae Rafinesque, 1815 is a family of natantian decapods that is diverse and 

distributed worldwide. There are 48 recognized genera in the family, including Parapenaeus 

Smith, 1885 (De Grave et al., 2009). Members of Parapenaeus have economic importance and 

are found in relatively deep waters, usually more than 100 m in depth, and are distributed in the 

Indo-West Pacific and the tropical Atlantic regions (Holthuis, 1980). At present, 15 extant 

species and 3 sub species are known in this genus (Pérez Farfante & Kensley, 1997; Crosnier, 

2005). Some of these species are caught commercially in the Mediterranean, and seas around 

Taiwan, mainland China, Japan, and Korea (Holthuis, 1980; Liu & Zhong, 1988; Chan, 1998).  

Parapenaeus fissuroides Crosnier, 1985 is widely distributed in the western Pacific, from 

tropical to temperate regions, and occurs in deep waters from India eastward to East China Sea 

(Liu & Zhong, 1988), and is one of the main species in the East China and Yellow seas (Li et al., 

2009). This species has supported a strong fishery since late 1980's and made great contributions 

to local fisheries (Liu, 2013). Parapenaeus lanceolatus Kubo, 1949 is widely distributed in 

Indonesia to Japan and Australia (Holthuis, 1980). This shrimp is commercially important in the 

Inland Sea of Japan (Yasuda, 1957). 

The present study was conducted in Kagoshima Bay, southern Japan in the eastern East China 

Sea (Fig. 1.1). Temporal and spatial distribution of P.  fissuroides were previously studied in the 

East China Sea by Lu et al. (2007). They reported that this species was densely distributed to the 

east of 100 m isobath and had neither apparent over-winter migration nor obvious spawning 

migration. A study of the reproduction of the species in the East China Sea found a spawning 

period from July to October, with a peak in August (Song et al., 2002). Growth among 

individuals collected off the South China Sea coast of Fujian, mainland China was studied by Ye 
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et al. (2006). Sex ratio and insemination of P. lanceolatus was studied in Korean water (Choi et 

al., 2005). The reproductive biology of Parapenaeus  longirostris Lucas, 1846 was studied in the 

south Ionian and south Adriatic seas (Kapiris et al., 2013), European Atlantic and Mediterranean 

waters (Sobrino et al., 2005), northeastern Mediterranean (Manasirli & Avsar, 2008), Sea of 

Marmara (Bayhan, 2005), and in the northern Tyrrhenian Sea (Mori et al., 2000), while larval 

stages were studied in the western Mediterranean (Torres et al., 2013), distribution and migration 

in the northwestern Pacific (Tanaka et al., 1985), and growth in the southern Tyrrhenian Sea 

(Arculeo et al., 2014). The reproductive biology of Parapenaeus longipes Alcock, 1905 was 

studied on the Arabian Sea coast of India (Chakraborti & Thumber, 2007). 

 Seven species of Parapenaeus have been reported from Japan: P. fissurus Spence Bate, 1881, 

P. lanceolatus, P. longipes, P. murrayi Ramadan, 1938, P. sextuberculatus Kubo, 1949, P. 

investigatoris Alcock and Anderson, 1899, and P. fissuroides (Hayashi, 1992; Miyake, 1998; 

Nagata & Ohtomi, 2005); four species have been recorded from Kagoshima Bay: P. 

investigatoris, P. fissurus, P. fissuroides, and P. lanceolatus (Fig. 1.2) (Nagata & Ohtomi, 2005). 

P. fissuroides and P. lanceolatus are two of the dominant species in the benthic community of 

the bay (Chapter 6, Fig. 6.4) and are emergent fisheries resources.  

Insufficient studies on population biology of Parapenaeus species, including P. fissuroides 

and P. lanceolatus have been conducted around the world. The present study describes the 

spatiotemporal distribution, ovarian maturity stages, size at sexual maturity, spawning season, 

growth pattern and longevity of P.  fissuroides and P. lanceolatus which are important 

information for appropriate stock management of these shrimps. 
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Fig. 1.1 Map of Kagoshima Bay, southern Japan. 
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Fig. 1.2 Parapenaeus species recorded in Kagoshima Bay, southern Japan. A. Parapenaeus 

investigatories Alcock and Anderson, 1899; B. Parapenaeus fissurus Spence Bate, 1881; C. 

Parapenaeus fissuroides Crosnier, 1985; D. Parapenaeus lanceolatus Kubo, 1949. The 

specimens showed here are around 10 cm in body length. 
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2. REPRODUCTION OF PARAPENAEUS FISSUROIDES 

 

2.1 INTRODUCTION 

 

Reproduction is one of the important aspects of the ecology and life history of a species 

(Anger & Moreira, 1998). The reproductive process of shrimps includes attaining maturity, 

mating and spawning. Song et al. (2002) studied the reproductive biology of Parapenaeus 

fissuroides in the East China Sea near Taiwan. Very few detail studies on reproductive biology 

of this species have been reported in world waters. The present study describes the ovarian 

maturity stages, size at sexual maturity and spawning season of P.  fissuroides. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Sampling and Measurements 

Samples of P. fissuroides were collected monthly during the daytime in Kagoshima Bay at 

depths of 127-134 m (31
0
18´6´´N and 130

0
39´0´´E) from April 2003 to March 2005 (Period 1) 

and December 2011 to November 2013 (Period 2). Sampling was conducted on board Nansei 

Maru (175t), a training vessel of the Faculty of Fisheries, Kagoshima University. This ship was 

equipped with a simple trawl net carrying canvas kites on tip of the wings (Ohtomi et al., 2004) 

and a split-beam quantitative echo sounder (KFC-3000, KAIJO, Hamura, Japan). The net was 

23.5 m long and a mesh size at the net body and cod end of 37.9 mm and 20.2 mm, respectively. 

A submersible data logger (Compact-TD ATD-HR, JFE Advantech, Nishinomiya, Japan) was 

attached to the head rope of the net to record water depth and temperature, with data logging set 

to 1 min interval. Effective tow duration was estimated by plotting logger data (depth) and echo 

sounder data (Fulanda & Ohtomi, 2011). Only bottom water temperature was recorded during 

effective tow duration was used to calculate mean temperature for each haul. Samples collected 



17 
  

were sorted, immediately chilled in ice on board, and fixed with 10% formalin in the laboratory 

within 6 hours. All specimens were sexed according to the presence of petasma for males and 

thelycum for females. Only female specimens (2761 individuals) were used. Carapace length 

(CL), between the posterior margin of the orbit and the mid-dorsal posterior edge of the 

carapace, was recorded with digital slide calipers (CD-15PS, Mitutoyo, Kawasaki, Japan) to the 

nearest 0.01 mm. Body weight was recorded by electric balance (EB-430DW, Shimadzu, Kyoto, 

Japan) to the nearest 0.01 g and whole gonads were removed from each female and weighed to 

the nearest 0.001 g. The gonadosomatic index (GSI) was calculated for each female as follows 

(Grant &Tyler, 1983): 

GSI (%) = 100 × [ovarian weight (g) / body weight (g)]. 

 

2.2.2 Histological Analysis 

The ovaries were examined by histological observation to estimate the degree of ovarian 

maturation. Small pieces of each ovary obtained from 215 females collected during March 2004 

to February 2005 and January 2012 to November 2013 (CL 17.2-32.8 mm, GSI 0.01-9.10%) 

were dehydrated following an ethanol series, embedded in paraffin, sectioned (6 µm thickness) 

and stained with Mayer‘s hematoxylin and eosin. Preliminarily sections of the oocytes were 

made in three regions of the ovaries (posterior regions of the cephalothoracic lobes and anterior 

and middle regions of the abdominal lobes) for one female (CL 27.1 mm, GSI 7.2%). These 

histological sections showed similar development throughout the ovaries. The anterior regions of 

the abdominal lobes were therefore used for the remaining females to classify oocytes into 

respective developmental stages microscopically.  
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Ohtomi and Yamamoto (1997), Yano (1988), and Tom et al. (1987) were used to define 

mature females, where the appearance of cortical granules at the periphery of the oocytes and 

germinal vesicle breakdown throughout the cytoplasm of oocytes were considered as indication 

of spawning.  

 

2.2.3 Developmental Stages of Oocytes 

Oocytes were classified into six developmental stages as follows: early nucleolus, middle 

nucleolus, late nucleolus, yolk granule, prematuration, and maturation (Table 1). Early nucleolus 

stage: oocytes are small and the cytoplasm is stained with hematoxylin (Fig. 2.1A); middle 

nucleolus stage: nucleoli are located in the peripheral region of the nucleus and follicle cells are 

visible around the oocytes (Fig. 2.1B); late nucleolus stage: the cytoplasm is weakly stained with 

hematoxylin and the thickness of follicle layer decreases (Fig. 2.1C); yolk granule stage: yolk 

granules are found in the cytoplasm stained with eosin (Fig. 2.1D); prematuration stage: cortical 

granules are found in the peripheral region of the oocyte (Fig. 2.1E); maturation stage: yolk 

granules extensively accumulate throughout the cytoplasm and germinal vesicle breakdown 

occurs (Fig. 2.1F). 

 

2.2.4 Size at Sexual Maturity 

Size at maturity was estimated based on the histological observations of a total of 215 

females. The size was examined from the percentage of mature females (PMF) in each CL class, 

by fitting a logistic equation described by King (2007): 

PMF = 1/ [1 + exp {- f (CLM - CLm)}] 
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Fig. 2.1 Developmental stages of oocyte of Parapenaeus fissuroides Crosnier 1985. A, early nucleolus 

stage; B, middle nucleolus stage; C, late nucleolus stage; D, yolk granule stage; E, prematuration stage; 

F, maturation stage. fc, follicle cells; y, yolk granules; cg, cortical granules. Scale bar = 200 µm 
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where the explanatory variable, CLM is the median of each CL class, CLm is the size at sexual 

maturity at which 50% of females are sexually mature and f is the growth coefficient. PMF was 

less than a hundred, even in the largest CL class. Data were therefore adjusted to avoid an 

unreasonably high estimation of CLm, according to the method established by King (2007). The 

relationship between carapace length (mm) and gonadosomatic index (%) was also investigated. 

 

2.2.5 Spawning Season 

The spawning season was estimated from the monthly occurrences of mature females according 

to the histological observations and monthly changes in the GSI of females. The specimens were 

used from two different sampling periods. Females smaller than the size at sexual maturity were 

excluded from this analysis. 

 

2.2.6 Statistical Analysis 

The relationship between CL and GSI was analyzed using simple regression analysis. The 

differences in GSI between ovarian developmental stages were tested using Kruskal-Wallis test 

and, between every two stages, tested by post hoc Steel-Dwass test (Neuhäuser & Bretz, 2001).  

 

2.3 RESULTS 

2.3.1 Ovarian Maturity Stage 

P. fissuroides showed an asynchronous type of ovary since all the individuals examined 

histologically contained different developmental stages of oocytes. Ovarian maturity stages were 

classified into four categories based on the developmental stage of the most advanced oocytes in 

the ovary: Stage I, undeveloped; Stage II, developing; Stage III, nearly ripe; and Stage IV, ripe 
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(Table 2.1). Nearly ripe ovaries contained prematuration-stage oocytes, where the cortical 

granules are found in the peripheral region. Ripe ovaries contained maturation-stage oocytes, 

where the yolk granules had accumulated extensively throughout the cytoplasm and the germinal 

vesicle had broken down. We defined females with nearly ripe (Stage III) or ripe (Stage IV) 

ovaries as mature, where the cortical granules appeared in the peripheral region of the oocyte. 

 

2.3.2 Change in Gonadosomatic Index with Ovarian Maturation 

In mature females having Stage III- or IV-ovaries, there was no significant correlation 

between CL and GSI (simple regression analysis, P = 0.136), which indicates that the GSI is 

independent of female body size. The mean and standard deviation of GSI for each ovarian 

maturity stage were as follows: Stage I, 1.45 ± 1.31 (n = 64); Stage II, 3.87 ± 1.61 (n = 84); 

Stage III, 5.68 ± 1.72 (n = 41); and Stage IV, 5.99 ± 2.01 (n = 26). We revealed significant 

differences between the GSI of all ovarian stages (Kruskal-Wallis test followed by post hoc 

Steel-Dwass test, P < 0.05 for all pairs) except for Stage III versus IV (P > 0.05).  

Females with GSI 0-1% had mostly Stage I-ovaries (previtellogenic), and Stage II-ovaries 

(developing) appeared mostly between 2-6% GSI classes that were developing. Mature females 

with Stage III- or IV-ovaries first appeared at 2-3% GSI class and most of the females with GSI 

≥ 6% were found to be mature (Fig. 2.2). We therefore considered a GSI ≥ 6% as a rough index 

of maturation. 

 

 

 

 



22 
  

2.3.3 Size at Sexual Maturity 

The size of mature females having Stage III- or IV-ovaries ranged from 21.7 to 32.8 mm CL. 

The relationship between the percentage of mature females (PMF) and body size (CLM) was 

expressed by a logistic function as follows: 

                   PMF = 1/ [1 + exp {- 0.580 (CLM – 23.5)}] (n = 11; r
2
 = 0.980, P < 0.001) 

Fifty percent of the females were mature at 23.5 mm in CL (Fig. 2.3a). In CL-GSI relationship, 

the GSI values rose sharply at around 23 mm CL (Fig. 2.3b). The size at sexual maturity of 

female P.  fissuroides was, therefore, estimated to be  23 mm in CL. 

 

2.3.4 Spawning Season 

The monthly changes in GSI and the occurrences of mature females based on histological 

observations of their ovaries are shown for two different periods in Fig. 2.4. From April 2003 to 

March 2005 (period 1), females with GSI ≥ 6 % occurred from July to January with a higher 

mean GSI from October to November (Fig. 2.4a). From December 2011 to November 2013 

(period 2), females with GSI ≥ 6 % occurred from July to January and the mean GSI became 

higher during October to November (Fig. 2.4b). According to the histological analysis, mature 

females occurred from July to January in Period 1 (Fig. 2.4a) and July to February in Period 2 

(Fig. 2.4b). The spawning season in Period 2 was one month longer than that in Period 1 but the 

month of the first spawning was the same in both periods. These observations indicate that P.  

fissuroides spawns from July to February and the main spawning season lasts from October to 

November. 
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Table. 2.1. Ovarian maturity stages together with developmental stage of the most advanced 

oocytes and histological condition of Parapenaeus fissuroides Crosnier, 1985.  

Ovarian maturity stage Developmental  

stage of oocytes 

Histological condition 

Stage I (Undeveloped) 

 

 

 

Stage II (Developing) 

 

Stage III (Nearly ripe) 

 

 

Stage IV (Ripe) 

Early nucleolus 

Middle nucleolus 

Late nucleolus 

 

Yolk granule 

 

Prematuration 

 

 

Maturation 

 

 

Previtellogenesis 

 

 

 

Progress of vitellogenesis 

 

Appearance of cortical                    

granules 

 

Germinal vesicle breakdown 
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Fig. 2.2 Percentage occurrence of female Parapenaeus fissuroides Crosnier 

1985 at each ovarian maturity stage as related to gonadosomatic index class. The 

numbers of females examined are shown on the top. 
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Fig. 2.3a Adjusted percentages of mature females of 

Parapenaeus fissuroides Crosnier 1985 as related to 

carapace length and logistic curve fitted to these data 
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n = 1256 

Fig. 2.3b The relationship between Gonadosomatic 

index (%) and Carapace length (mm) 
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Fig. 2.4 Monthly changes in gonadosomatic index of female Parapenaeus fissuroides 

Crosnier 1985 during (a) April 2003 to March 2005 (Period 1) and (b) December 2011 to 

November 2013 (Period 2). The circles on the mean value indicate the occurrence of mature 

females according to the histological observations.
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Fig. 2.5 Monthly changes in mean bottom water temperature at the 

sampling site of Kagoshima Bay during April 2003 to March 2005 

(Period 1) and December 2011 to November 2013 (Period 2). 
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2.3.5 Bottom-Water Temperature 

A slight variation in monthly bottom-water temperature was observed at the sampling site for 

both periods (Fig. 2.5). The temperature was higher during October to January and lower during 

March to May. Maximum and minimum temperature was 16.3
0
C in December and 15.3

0
C in 

March, respectively. The mean bottom-water temperature was 15.6
0
C for Period 1, 15.8

0
C for 

Period 2, and tended to be constant throughout the year. 

 

2.4 DISCUSSION 

The collection of a large number of specimens is essential to examine the biological aspects of 

a population. It is difficult to collect a long-time series of samples from deep water, and few 

biological studies have been conducted on deep-water shrimps such as P. fissuroides in 

comparison to inshore species. Fortunately we were able to collect satisfactory numbers of P.  

fissuroides specimens for the present study. This allowed us to examine some aspects of the 

reproductive biology of the population, including ovarian maturity stage, size at sexual maturity, 

and spawning season of this species.  

Histological observation of oocytes is considered one of the most accurate methods for the 

determination of female maturity (Ohtomi et al., 2003; Carbonell et al., 2006). The ovary of P. 

fissuroides was classified as asynchronous type, because it contained oocytes of different 

developmental stages. The species was therefore considered to have multiple spawns during a 

single spawning season. Similar results have been reported for the deep-water penaeoids 

Solenocera melantho de Man, 1907 (Ohtomi et al., 1998) and Haliporoides sibogae De Man, 

1907 (Ohtomi & Yamamoto, 1997).  
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The condition of the ovary of P. fissuroides was classified into four maturity stages based on 

the developmental stage of the most advanced oocytes found in the ovary. Females with Stage 

III- or IV-ovaries having cortical granules in the peripheral region of the oocytes were defined as 

mature and would spawn within a few days. The appearance of cortical granules as a spawning 

sign has been reported for penaeoids such as P. longirostris (Tom et al., 1987), H.  sibogae 

(Ohtomi & Yamamoto, 1997), Marsupenaeus japonicus Spence Bate, 1888 (Yano, 1988), 

Penaeus monodon Fabricius, 1798 (Krol et al., 1992), Litopenaeus vannamei Boone, 1931 (Krol 

et al., 1992), and S.  melantho (Ohtomi et al., 1998). In the oocytes of M.  japonicus, after the 

occurrence of cortical granules, the nuclei migrate towards the cytoplasmic membrane and then 

break down, which is known as germinal-vesicle breakdown (Yano, 1988). A similar observation 

was also reported for H. sibogae (Ohtomi & Yamamoto, 1997). Germinal-vesicle breakdown is 

initiated in the late phase of prematuration and continues until the late phase of maturation 

immediately prior to spawning (Yano, 1988). 

The GSI increased significantly with the progress of ovarian maturity stages in P. fissuroides. 

Significant differences in GSI were revealed between undeveloped, developing, and nearly ripe 

ovaries. There was no significant difference between the latest two stages (nearly ripe and ripe), 

which were regarded as mature. Females with nearly ripe or ripe ovaries first appeared at 2-3% 

GSI class and there was a sharp increase in the percent occurrence of mature females at GSI ≥ 

6% (Fig. 2.2). GSI can therefore be considered a simple and rough index to identify mature P. 

fissuroides females. GSI as an index of maturity in females has been reported for other penaeoids 

such as Trachysalambria curvirostris Stimpson, 1860 (Hossain & Ohtomi, 2008), H.  sibogae 

(Ohtomi & Yamamoto, 1997), and S.  melantho (Ohtomi et al., 1998).  
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Size at sexual maturity of female P.  fissuroides was estimated to be 23 mm in CL (Fig. 2.3). 

The minimum size of mature females found by histological observations was around 22 mm in 

CL. Transforming these CLs of mature females to ages using the CL frequency distribution and 

the estimated growth equation, females with 23 and 22 mm CL belong to around a 1 year-old 

group (Farhana & Ohtomi, 2016b). 

We examined the spawning season of P. fissuroides for two periods. The spawning season of 

this species was estimated to be longer and lasting from summer to winter with a peak in autumn 

for both periods (Fig. 2.4). No distinct change in temperature was observed between the two 

periods. The bottom water temperature at the sampling site tended to be constant throughout the 

year (Fig. 2.5). Inshore penaeid shrimps in Japanese waters tend to mature from spring to 

summer, April to September as in M.  japonicus (Ohtomi et al., 2003), June to July for 

Fenneropenaeus chinensis Osbeck, 1765 (Yoshida, 1949), and May to September for 

Metapenaeus joyneri Miers, 1880 (Ikematsu, 1955). Song et al. (2002) reported the breeding 

period of P. fissuroides lasting from July to October in the near Taiwan, East China Sea, at a 

depth of 60-100 m. The reproductive period of P. fissuroides in Kagoshima Bay was found 

longer than that in Taiwan. Several authors (Harrison, 1988; Gage & Tyler, 1991; Bishop & 

Shalla, 1994) reported that a longer reproductive period seems to be a typical feature of deep-

water species. The daily cycle of light and dark and the seasonal changes in the proportions of 

light and dark are most likely to be of importance in crustaceans (Aiken et al., 1983). 

Photoperiodicity induced successful maturation in Penaeus semisulcatus De Haan, 1844 (Aktas 

et al., 2003). The duration of exposure, for example, influences the timing and incidence of 

spawning in lobsters (Waddy and Aiken, 1992). The reproduction of P. fissuroides might be 

influenced by photoperiodicity because the spawning season lasts from around the summer 
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solstice (longest day) to around winter solstice (shortest day) and the peak spawning season was 

estimated to be in autumn, as in Plesionika semilaevis Spence Bate, 1888 (Pandalidae) (Ohtomi, 

1997) and S.  melantho (Solenoceridae) (Ohtomi et al., 1998) in Kagoshima Bay. 

Several studies (Giese & Pearse, 1974; Sastry, 1983; Bauer, 1989; 1992) have reported that 

food availability for planktonic larvae was the ultimate factor for explaining seasonality in 

reproduction. Additional detailed studies are needed to determine the influence of food supply on 

the reproductive cycle of P. fissuroides. We could not examine frequency of spawning of this 

species in a single spawning season. Quantitative analyses of fecundity, frequency of spawning, 

and abundance of breeding stock are recommended for future stock management of this species. 
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3. GROWTH OF PARAPENAEUS FISSUROIDES 

 

3.1 INTRODUCTION 

Information on growth of crustaceans is important for future management strategies. Accurate 

age determination of crustacean from hard part analysis is difficult because of repeated 

occurrence of molting. However, in the present study, a time series of length-frequency 

distributions was used for growth determination of Parapenaeus fissuroides. Detailed studies on 

the growth of P. fissuroides from any geographical area of distribution are still insufficient. The 

growths of other penaeids have been investigated in different waters over the world, e.g. 

Parapenaeus longirostris in the southern Tyrrhenian Sea (Arculeo et al., 2014), European 

Atlantic and Mediterranean waters (Sobrino et al., 2005), south Ionian and south Adriatic Sea 

(Kapiris et al., 2013), Saros Bay, and in the Aegean Sea (Bilgin et al., 2009); Penaeus esculentus 

Haswell, 1879, and Penaeus semisulcatus in the western Gulf of Carpentaria (Krikwood & 

Somers, 1984); Metapenaeus joyneri in the western coast of Korea (Cha et al., 2004). Lack of 

adequate knowledge on the growth of P. fissuroides is a barrier to sound management of this 

fishery.  

The purpose of the present study was to provide information on the growth pattern and 

longevity of P. fissuroides based on monthly length-frequency distributions using a large number 

of specimens. Monthly growth rate, growth performance and the relationship between carapace 

length and body weight were also estimated for both sexes. 

  

 

 



33 
  

3.2 MATERIALS AND METHODS 

3.2.1 Shrimp Sampling and Measurement 

Shrimp sampling was carried out monthly during the daytime in the central area of 

Kagoshima Bay, southern Japan, at depths ranging from 127 - 133 m (31
0
18´6´´N and 

130
0
39´0´´E) using Nansei Maru (175 t), a training vessel of the Faculty of Fisheries, Kagoshima 

University, from April 2003 to November 2005. Shrimp sampling was conducted using a simple 

trawl net measuring 23.5 m in total length and a mesh size at the net body and cod end of 37.9 

mm and 20.2 mm, respectively, carrying canvas kites on tip of the wings (Ohtomi et al., 2004). 

The vessel was equipped with a split-beam quantitative echo sounder (KFC-3000, KAIJO, 

Hamura, Japan). A submersible data logger (Compact-TD ATD-HR, JFE Advantech, 

Nishinomiya, Japan) was attached to the head rope of the net to record net depth and 

temperature, with data logging set to 1-minute intervals. Each trawl was towed for 10 or 20 

minutes at 2 knots. Effective tow duration was estimated by the method adopted by Fulanda & 

Ohtomi (2011). For the present study, bottom water temperature recorded during effective tow 

duration was used to calculate mean temperature for each haul. The specimens were sorted, 

immediately chilled on board and fixed with 10% formalin in the laboratory. 

The sex of all specimens was determined according to the presence of petasma for males and 

thelycum for females. Carapace length (CL), the distance between the posterior margin of the 

orbit and the mid dorsal posterior edge of the carapace was measured with a digital slide calipers 

(CD-15PS, Mitutoyo, Kawasaki, Japan) to the nearest 0.01 mm. Body weight (BW) was 

measured by an electronic balance (EB-430DW, Shimadzu, Kyoto, Japan) to the nearest 0.01 g. 
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3.2.2 Growth Analysis 

Monthly length-frequency distributions were constructed for both sexes using 1 mm intervals 

of CL. A computer analysis (Microsoft Excel-add-in-solver) based on Hasselblad‘s maximum-

likelihood method (Hasselblad, 1966) was used to fit a series of component normal distributions 

to the frequency distribution of each sample by sex. Each component normal distribution 

represents an age group in the population. The outputs from this analysis include mean CL, 

standard deviation and proportion of each age group.  

The growth patterns for male and female P. fissuroides were modeled by fitting the following 

two equations to the mean CLs at ages estimated for each component normal distribution at each 

sampling dates: 

von Bertalanffy equation (von Bertalanffy, 1938):  

 Lt = L∞ [1 - exp {- K (t - t0)}], 

Pauly & Gaschütz equation (Pauly & Gaschütz, 1979):  

Lt = L∞ [1 - exp {- K (t/12 - t0) - (CK/2π) sin (2π (t/12 - ts))}], 

where Lt is the CL (mm) at age t (months), L∞ is the asymptotic CL (mm), K is the growth 

coefficient (year
-1

), C is the amplitude of seasonal growth oscillation, ts is the summer point; the 

time of the year when growth is the highest (winter point, tw = ts + 0.5; the time of the year when 

growth is the lowest) and t0 is the hypothetical age when the CL would be zero. The Pauly & 

Gaschütz equation is a modification of the simple von Bertalanffy equation to fit seasonally 

oscillating length data (Pauly & Gaschütz, 1979). The best fitting model among these equations 

was selected on the basis of the Akaike‘s information criterion (AIC) (Akaike, 1973) and 

Bayesian information criterion (BIC) (Schwarz, 1978). AIC gives the chance of choosing the 

model with a large number of parameters, while BIC gives the chance to choose a comparatively 



35 
  

simple model (Shono, 2000; Yang, 2005; Nylund et al., 2007; Dziak et al., 2012). Therefore, we 

adopted both to select the best fitting model for the growth of P. fissuroides. 

The monthly growth rate (MGR) was estimated for both sexes using the following equation: 

MGR (%) = 100 × [(Lt + 1 - Lt) / Lt],  

where Lt and Lt + 1 are the back-calculated CLs (mm) at age t and t + 1 (months) from the best 

fitting equation.  

 Growth performance index (Ø´) was calculated to compare the growth between sexes using 

the following equation (Pauly & Munro, 1984):  

Ø´ = log10 K + 2 log10 L∞,  

The values of L∞ and K were used from the best fitting model. 

 

3.2.3 Length-Weight Relationship 

The relationship between CL and BW in both sexes was expressed by the equation of Huxley 

(1932): ln (BW) = ln (a) + b ln (CL). Significant deviation of the b value from the theoretical 

isometric value (b = 3) indicates positive (b > 3) or negative (b < 3) allometric growth (Tesch, 

1971), which was verified by the Student's t-test (Sokal & Rohlf, 1987).  We used analysis of 

covariance (ANCOVA) (Zar, 1984) to test the significant differences in slope and elevation 

between sexes. 

 

3.3 RESULTS 

     3.3.1 Growth Pattern 

A total of 5,085 specimens were collected from Kagoshima Bay, among them 51.4% 

specimens were male and 48.6% were female. CL in males ranged from 7.7 - 27.1 mm and 6.4 - 
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36.1 mm in females. Both male and female P. fissuroides were recruited in late autumn to winter 

(November to January) with modal size of around 11 mm CL (Figs. 3.1 & 3.2). Mostly one or 

two age groups were present in each month but third age groups also appeared occasionally.  

The spawning season of P. fissuroides extends from July to February and the main spawning 

period is in autumn (Farhana & Ohtomi, 2016a). The ages of individuals of each age group were 

determined by arbitrarily assigning 1 October (approximate peak date of main spawning season) 

as ''day 1''of this shrimp‘s life cycle. The estimated growth equations for males were as follows: 

von Bertalanffy equation: 

Lt = 24.5 [1 - exp {- 0.118 (t + 2.909)}]  

        (n = 47, AIC = 4622.83, BIC = 4644.08)…………………………………………… (1) 

Pauly & Gaschütz equation: 

Lt = 25.6 [1 - exp {- 1.011 (t/12 + 0.539) - (0.641/2π) sin (2π (t/12 - 0.577))}] 

       (n = 47, AIC = 4438.35, BIC = 4470.17)…………………………………………… (2) 

The estimated growth equations for females were as follows: 

von Bertalanffy equation: 

Lt = 32.8 [1 - exp {- 0.093 (t + 1.969)}]  

       (n = 60, AIC = 6869.61, BIC = 6891.47)…..……………………………………….. (3) 

Pauly & Gaschütz equation: 

Lt = 34.3 [1 - exp {- 0.941 (t/12 + 0.227) - (0.581/2π) sin (2π (t/12 - 0.603))}]  

       (n = 60, AIC = 6351.51, BIC = 6421. 33)…………………………………………… (4) 

The Pauly & Gaschütz equation provided the best fitting model for describing the growth for 

both sexes of P. fissuroides based on the lowest values of AIC and BIC. Therefore, we adopted 

equation (2) for males and (4) for females to describe the growth of P. fissuroides in Kagoshima 
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Bay. The F-test revealed that there was a significant difference between males and females in 

Pauly & Gaschütz equation (P > 0.05). Females had a lower K value but reached larger sizes at 

each age and larger asymptotic size than males (Fig. 3.3). 

The temporal changes of monthly growth rate (MGR %) of P. fissuroides throughout their life 

cycle in Kagoshima Bay are shown in Fig. 3.4. The changes in MGR % showed a similar pattern 

in both sexes.  The summer point (ts) was estimated to be 0.577 for males and 0.603 for females. 

These indicate that the growth rate was the highest during July to August and the lowest during 

January to February. 

The growth performance index (Ø´) was higher for females (3.04) than males (2.83). This 

indicates that females grew faster than males of the same age. The longevity was estimated to be 

around 2 years for males and 2.5 years for females based on the time series of the CL-frequency 

distributions (Figs. 3.1 & 3.2). 

 

3.3.2 Length-Weight Relationship 

 The CL-BW relationship indicated negative allometric growth for both sexes as the statistical 

t-test revealed that the allometric coefficient b values were significantly lower than 3 in both 

sexes (P < 0.05) (Table 3.1). Significant differences in both slope and elevation between sexes 

were detected (ANCOVA; P < 0.001). Transforming the estimated asymptotic CLs of male and 

female P. fissuroides to BWs, the asymptotic weights (W∞) were calculated as 8.56 g for males 

and 20.16 g for females. 
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Fig. 3.1 Length-frequency distributions of male Parapenaeus fissuroides Crosnier, 1985 in Kagoshima Bay. 

Curves show the estimated normal distributions of age groups. 
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Fig. 3.2 Length-frequency distributions of female Parapenaeus fissuroides Crosnier, 1985 in Kagoshima Bay. 

Curves show the estimated normal distributions of age groups. 
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     PG: Lt = 34.3 [1- exp {-0.941 (t/12 + 0.227) 
 - (0.581/2π) sin (2π (t/12 - 0.603))}] 

    PG: Lt = 25.6 [1- exp {-1.011 (t/12 + 0.539)  
- (0.641/2π) sin (2π (t/12 - 0.577))}] 

VB: Lt = 24.5 [1-exp {-0.118 (t + 2.909)}] 

VB: Lt = 32.8 [1-exp {-0.093 (t + 1.969)}] 

Fig. 3.3 Growth curves for male and female Parapenaeus fissuroides Crosnier, 1985 in Kagoshima 

Bay. Solid circles show the mean carapace lengths of age groups derived from Figs. 3.1 and 3.2. VB 

and PG indicate von Bertalanffy equation and Pauly and Gaschütz equation, respectively. 
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Fig. 3.4 Temporal changes in monthly growth rate (%) of male and 

female Parapenaeus fissuroides Crosnier, 1985 in Kagoshima Bay. 
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Table 3.1 Allometric relationships between body weight (BW in g) and carapace length (CL in 

mm) of Parapenaeus fissuroides Crosnier, 1985 in Kagoshima Bay. The equation is: ln (BW) = 

ln (a) + b ln (CL). CL range, sample size (n) and coefficient of determination (r
2
) are also given. 

          Sex  n CL range (mm)     a   b         r
2
 

 

 

          Male 

 

 

1352 

 

 

7.74 - 27.07 

 

 

0.00192 

 

 

2.590 

 

 

0.933 (P < 0.05) 

 

Female 1552 6.36 - 36.09 0.00271 2.556 0.967 (P < 0.05) 
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Fig. 3.5 Monthly changes in bottom water temperature at the sampling 

site in Kagoshima Bay from January 2003 to December 2004. 
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3.3.3 Bottom Water Temperature 

Maximum and minimum bottom water temperatures were recorded as 16.4
0 

C in January and 

15
0 

C in June, respectively at the sampling area. There was no distinct seasonal trend observed in  

monthly bottom water temperature and it tended to be constant at around 15.6
0 

C throughout the 

year (Fig. 3.5). 

 

3.4 DISCUSSION 

The age and growth of crustacean natural population are usually estimated by using length-

frequency distributions (Gulland & Rosenberg, 1992). Fewer studies have been conducted on age 

and growth of deep water species compared to inshore species due to the difficulties of collecting 

long series of large samples. In the present study, we were able to collect a large series of 

specimens of P. fissuroides from Kagoshima Bay, southern Japan. Though we used fishing gear 

with large mesh size, we were fortunately able to capture a considerable amount of small 

individuals during their recruitment period, which allowed us to estimate age and growth using 

length-frequency distributions. 

The body size of females was consistently exceeding that of males throughout the study 

period. Quan- tu et al. (2006) also reported that females of P. fissuroides were larger than males 

in the northeast Fujian Outer-sea. In the time series of length-frequency distributions, a 

perceptible shift in modal carapace length with time was observed for both sexes. This species 

recruited during November to January and continued to grow. Their longevity is around 2 years 

for males and 2.5 years for females (Figs. 3.1 & 3.2). In comparison with Parapenaeus 

longirostris found in European Atlantic and Mediterranean waters, the longevity of P. fissuroides 

was shorter, as Sobrino et al. (2005) reported that the longevity of P. longirostris there was 
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around 3 years. The asymptotic CL of P. longirostris was larger than that of P. fissuroides and 

was distributed comparatively in deeper waters. The difference in the longevity between species 

may be attributed to the differences in bathymetric distribution and deeper water shrimp exhibit 

longer life cycles as well as maximum sizes compared to shallow water species (King & Butler, 

1985). 

Growth patterns were modeled using two growth equations both in males and females (Fig. 

3.3). The fitted Pauly & Gaschütz growth model suggested that growth rates of both male and 

female P. fissuroides followed a seasonal oscillation. The MGR (%) of shrimp is correlated with 

the frequency of moulting and moulting frequency is correlated with numerous factors (Hartnoll, 

2001). The MGR (%) of P. fissuroides was the highest during July to August (summer point) and 

the lowest during January to February (winter point) both in males and females (Fig. 3.4). This 

suggests that the growth slows down during the reproductive period from summer to winter. 

Ohtomi & Irieda (1997) also reported the growth of Solenocera melantho to slow down during 

the reproductive period in Kagoshima Bay. The moult activity stops or slows down during the 

reproduction in many crustaceans (Scheer, 1960). In reproductive period, the accumulation of 

energy may be necessary to respond to the development of oocytes and the activities of enzyme 

decline which are related to the stages of moulting cycle (Charron et al., 2014). The seasonal 

oscillation of growth rate of P. fissuroides was likely to be related to reproductive cycle in the 

bay. Several studies (Pauly et al., 1984; García, 1985; Pauly et al., 1995; Swain et al., 2003; Ye 

et al., 2003; Cha et al., 2004; Silva et al., 2008; Castillo-Jordán et al., 2010) reported that 

seasonal oscillation of growth rate is related to seasonal variations in water temperature. 

However, there was no marked seasonal trend in the bottom water temperature in Kagoshima 

Bay (Fig. 3.5). Hossain and Ohtomi (2010) reported that the moulting or growth of 
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Trachysalambria curvirostris was not affected by bottom water temperature in Kagoshima Bay. 

Yacouba et al. (2014) reported that rainfall influences the growth of P. longirostris in West 

Africa due to the resulting abundance of food. The variation in availability of food can be an 

important factor for seasonal growth pattern of P. fissuroides. Therefore, the feeding habits of 

this species in this bay are needed to be explored in future research.  

Females had higher L∞ and lower K values than males. Several studies on other penaeid 

shrimps reported similar observations (e.g., Sobrino, 1998; Pauly et al., 1984; Cha et al., 2002; 

Ohtomi & Irieda, 1997). Since the growth pattern of shrimps is not linear, the direct comparison 

of growth parameters is biologically not reasonable (Cartaxana, 2003). The growth performance 

index (Ø´) is an easy procedure that can be used to compare the growth between sexes of a 

species and between species rather than comparison of L∞ and K, as these parameters are 

intrinsically negatively correlated (Pauly & Munro, 1984). The estimated growth performance 

index (Ø´) of females‘ P. fissuroides was higher than that of males indicating that females grew 

faster than males at same age. Similar observations were reported by Kapiris et al. (2007), while 

studying P. longirostris in the Hellenic Ionian Sea.  

The allometric relationship between CL and BW was presented by log transformed linear 

equation for both males and females (Table 3.1). The body weight of males increased faster with 

carapace length after recruitment size than that of females. However, the absolute growth of 

males was slower than females (Fig. 3.3). The W∞ for females is more than twice as large as that 

of males, which makes females commercially more important. 

The present study provided information on demographic parameters such as asymptotic 

length, growth coefficient, growth performance and longevity which will be helpful for 

designing a fishing management strategy to ensure a sustainable exploitation of P. fissuroides in 
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Kagoshima Bay. For proper stock management of this species, studies need to be carried out on 

the duration of their planktonic phases and the settlement periods of this penaeid shrimp in 

Kagoshima Bay as well as in other deep waters. 
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4. REPRODUCTION OF PARAPENAEUS LANCEOLATUS 

 

4.1 INTRODUCTION 

Reproductive biology is one of the main concerns for proper management practices. Choi et 

al. (2005) studied the sex ratio and insemination rate of Parapenaeus lanceolatus in Korean 

waters. Insufficient studies on reproductive biology of this species have been reported in world 

waters. Farhana and Ohtomi (2016a) studied reproductive biology of Parapenaeus fissuroides in 

Kagoshima Bay. For proper management strategies of P. lanceolatus, information and adequate 

knowledge on the biology of this species are needed to be explored. The present study describes 

the reproductive biology of P. lanceolatus including ovarian maturity stages, size at sexual 

maturity and spawning season. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Sampling and Measurements 

Shrimp samples were collected during daytime once or twice a month in the central area of 

Kagoshima Bay (31
0
25´0´´N and 130

0
37´60´´E) at depths of 127-228 m from January 2011 to 

February 2016. Shrimp was sampled using Nansei Maru (175 t), a training vessel of the Faculty 

of Fisheries, Kagoshima University which was equipped with a simple trawl net carrying canvas 

kites on tip of the wings (Ohtomi et al., 2004). The total length of the net was 23.5 m and the 

mesh size of net body was 37.9 mm and cod end was 37.9 mm. Samples collected were sorted 

and immediately chilled in ice on board. All specimens were preserved in 10% formalin in the 

laboratory and sexed according to the presence of petasma in males and thelycum in females. 

Sex determination was possible for all specimens. Carapace length (between the posterior margin 
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of the orbit and the mid-dorsal posterior edge of the carapace), CL (mm) and body weight, BW 

(mm) were recorded to the nearest 0.01 mm and 0.01 g, respectively. Whole gonads were 

removed from each female and weighed to the nearest 0.001 g. The gonadosomatic index (GSI) 

was calculated for each female: 

GSI (%) = 100 × [ovarian weight (g) / body weight (g)]. 

 

4.2.2 Histological Analysis 

The ovaries were preserved in 10% formalin for histological observation. Small pieces of 

each ovary from 108 females collected during January 2011 to February 2016 (CL 15.9-34.0 

mm, GSI 0.12-6.13%) were dehydrated following an ethanol series, embedded in paraffin, 

sectioned (6 µm thickness) and stained with Mayer‘s hematoxylin and eosin. The ovaries from 

one female (CL 28.2 mm, GSI 6.13%) were considered to section in three regions (posterior 

regions of the cephalothoracic lobes and anterior and middle regions of the abdominal lobes) for 

observing the oocyte development. These experimental sections showed similar development 

throughout the ovaries. Therefore, the anterior regions of the abdominal lobes were used for the 

remaining females to classify the developmental stages of oocytes.  

The developmental stages of the oocytes were categorized according to Ohtomi and 

Yamamoto (1997) (Fig. 4.1, Table 4.1). Cortical granules at the periphery of the oocytes and 

germinal vesicle breakdown throughout the cytoplasm of oocytes were considered as indication 

of spawning as considered in Parapenaeus longirostris (Tom et al., 1987), and in P. fissuroides 

(Farhana & Ohtomi, 2016a).  
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4.2.3 Developmental Stages of Oocytes 

The oocytes were divided into six developmental stages as follows:  

1. Early nucleolus stage: oocytes are small and the cytoplasm is stained with hematoxylin 

(Fig. 4.1A).  

2. Middle nucleolus stage: nucleoli are located in the peripheral region of the nucleus and 

follicle cells are visible around the oocytes (Fig. 4.1B).  

3. Late nucleolus stage: the cytoplasm is weakly stained with hematoxylin and the thickness 

of follicle layer decreases (Fig. 4.1C)  

4. Yolk granule stage: yolk granules are found in the cytoplasm stained with eosin (Fig. 

4.1D).  

5. Prematuration stage: cortical granules are found in the peripheral region of the oocyte 

(Fig. 4.1E).  

6. Maturation stage: yolk granules extensively accumulate throughout the cytoplasm and 

germinal vesicle breakdown occurs (Fig. 4.1F). 

 

4.2.4 Size at Sexual Maturity 

Size at maturity was estimated based on the minimum size of mature females in histological 

observations and the percentage of mature females (PMF) in each CL class, by fitting a logistic 

equation explained by King (2007): 

                                           PMF = 1/ [1 + exp {- f (CLM - CLm)}] 

where the explanatory variable, CLM is the median of each CL class, CLm is the size at sexual 

maturity at which 50% of females are sexually mature and f is the growth coefficient. PMF was 
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less than a hundred, even in the largest CL class. Data were therefore adjusted to avoid an 

unreasonably high estimation of CLm. The relationship between CL and GSI was also observed. 

 

4.2.5 Spawning Season 

The spawning season was estimated from the monthly occurrences of mature females 

according to the histological observations and monthly changes in the GSI of females. Females 

smaller than the size at sexual maturity were excluded from this analysis. 

 

4.3 RESULTS 

4.3.1 Ovarian Maturity Stage 

All the individuals of P. lanceolatus examined histologically showed an asynchronous type of 

ovary. The ovaries could be classified into four stages based on the developmental stage of the 

most advanced oocytes in the ovary: Stage I, undeveloped; Stage II, developing; Stage III, nearly 

ripe; and Stage IV, ripe (Table 4.1). We defined females with nearly ripe (Stage III) and ripe 

(Stage IV) ovaries as mature, where the cortical granules are found in the peripheral region of the 

oocytes. Germinal vesicle had broken down throughout the cytoplasm in ripe ovaries. 

 

4.3.2 Change in Gonadosomatic Index with Ovarian Maturation 

In mature females, no significant correlation was detected between CL and GSI (simple 

regression analysis, n = 33, P = 0.246), which reveals that the GSI is independent of female body 

size. The mean and standard deviation of GSI for each ovarian maturity stage were as follows: 

Stage I, 1.79 ± 0.80 (n = 39); Stage II, 2.75 ± 0.73 (n = 36); Stage III, 3.69 ± 1.01 (n = 24); and 
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Stage IV, 4.78 ± 0.62 (n = 9). Significant differences between the GSI of all ovarian stages 

(Kruskal-Wallis test followed by post hoc Steel-Dwass test, P < 0.05 for all pairs) were detected. 

All females with GSI 0-1% had Stage I-ovaries (previtellogenic), and females with GSI 1-3% 

mostly had Stage II-ovaries (developing). Mature females with Stage III- or IV-ovaries first 

appeared at GSI 1-2%. The majority of the females with GSI ≥ 4% were found to be mature (Fig. 

4.2). Females with GSI ≥ 4% were therefore considered as a reliable index of maturation.  

 

4.3.3 Size at Sexual Maturity 

The minimum size of mature female having nearly ripe or ripe ovaries was 21.6 mm in CL 

according to histological examination. The relationship between the percentage of mature 

females (PMF) and body size (CLM) was expressed by a logistic function as follows: 

               PMF = 1/ [1 + exp {- 0.586 (CLM – 22.8)}] (n = 10; r
2
 = 0.814, P < 0.001) 

Fifty percent of the females were mature at 22.8 mm in CL (Fig. 4.3a). The relationship between 

CL and GSI revealed that the GSI values rose sharply at around 22 mm in CL and the minimum 

sized female with GSI ≥ 4% was 21.8 mm in CL (Fig. 4.3b). By considering these observations, 

the size at sexual maturity of female P. lanceolatus was estimated to be 22 mm in CL. 

 

4.3.4 Spawning Season 

Females with GSI ≥ 4% appeared from July to April, with a higher mean GSI from September 

to October. Mature females having nearly ripe and ripe ovaries appeared during July and 

September to April in histological observation (Fig. 4.4). The spawning season of P. lanceolatus  

 

 

  



53 
  

 

 

 

  

  

 
 

 

Fig. 4.1 Developmental stages of oocyte of Parapenaeus lanceolatus Kubo 1949. A, early nucleolus 

stage; B, middle nucleolus stage; C, late nucleolus stage; D, yolk granule stage; E, prematuration stage; 

F, maturation stage. fc, follicle cells; y, yolk granules; cg, cortical granules. Scale bar = 200 µm. 
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Table. 4.1 Ovarian maturity stages together with developmental stage of the most advanced 

oocytes and histological condition of Parapenaeus lanceolatus Kubo 1949.  

Ovarian maturity stage Developmental  

stage of oocytes 

Histological condition 

Stage I (Undeveloped) 

 

 

 

Stage II (Developing) 

 

Stage III (Nearly ripe) 

 

 

Stage IV (Ripe) 

Early nucleolus 

Middle nucleolus 

Late nucleolus 

 

Yolk granule 

 

Prematuration 

 

 

Maturation 

 

 

Previtellogenesis 

 

 

 

Progress of vitellogenesis 

 

Appearance of cortical                    

granules 

 

Germinal vesicle breakdown 
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Fig. 4.2 Percentage occurrence of female Parapenaeus lanceolatus Kubo, 1949 

at each ovarian maturity stage as related to gonadosomatic index class. The 

numbers of females examined are shown on the top. 
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Fig. 4.3b The relationship between gonadosomatic 

index (%) and carapace length (mm) of Parapenaeus 

lanceolatus Kubo, 1949. 
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Fig. 4.3a Adjusted percentage of mature females of 

Parapenaeus lanceolatus Kubo, 1949 as related to 

carapace length (mm) and logistic curve fitted to 

these data  

PMF = 1/ [1 + exp {- 0.586 (CL
M

 – 22.8)}]  

r
2

 = 0.814, P < 0.001 
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Fig. 4.4 Monthly changes in gonadosomatic index of female Parapenaeus lanceolatus 

Kubo, 1949 during 2011 to 2013.The circles on the mean value indicate the occurrence 

of mature females according to the histological observations.
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was therefore, to be estimated from July to April and the main spawning season was during 

September and October. 

 

4.4 DISCUSSION 

It was difficult to collect a long time series of samples of P. lanceolatus in deep waters. In the 

present study, several aspects of the reproductive biology of this species, including ovarian 

maturity stage, size at sexual maturity, and spawning season were studied using a sufficiently 

large number of specimens collected from Kagoshima Bay, southern Japan.  

The developmental stages of oocytes were examined by histological observation and the 

ovaries of this species were considered as asynchronous, indicating this species is a multiple 

spawner. Similar results have been reported for P. fissuroides (Farhana & Ohtomi, 2016a). The 

ovaries of P. lanceolatus were classified into four maturity stages based on the developmental 

stage of the most advanced oocytes found in the ovary. Females with spent ovaries could not be 

detected during the present study. The females having cortical granules in the peripheral region 

of the oocytes considered as mature. According to Yano (1988), germinal-vesicle breakdown is 

initiated in the late phase of prematuration and continues until the late phase of maturation 

immediately prior to spawning. This stage was detected for P. lanceolatus which would spawn 

soon. 

According to the histological study, GSI significantly increased with the ovarian maturity 

stages in P. lanceolatus. Significant differences in GSI were revealed between ovarian stages and 

a majority of females with GSI ≥ 4% was mature with nearly ripe and ripe ovaries (Fig. 4.2). The 

females with GSI ≥ 4% obtained only during the spawning season (Fig. 4.4). Therefore, a GSI ≥ 

4% was considered a simple index to identify mature females in P. lanceolatus. GSI was 
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considered as a good index to identify the maturity in females for other penaeoidae such as P. 

fissuroides (Farhana & Ohtomi, 2016a), Marsupenaeus japonicus (Ohtomi et al., 2003), 

Solenocera melantho (Ohtomi et al., 1998), Trachysalambria curvirostris (Hossain & Ohtomi, 

2008), Metapenaeopsis sibogae de Man, 1907 (Rahman & Ohtomi, unpublished).  

Size at sexual maturity for females was considered to be 22 mm in CL (Fig. 4.3). The size of 

mature females ranged from 21.6-34.3 mm in CL. Transforming these CLs to ages using the 

estimated growth equations, females with 21.6 mm CL belong to around a 1 year-old group and 

34.3 mm CL belong to 2 year-old group (See Chapter 5). The minimum size of mature female in 

early spawning season (July) was 28.8 mm in CL which belongs to 2 year old group. It can 

therefore be considered that only older individuals matured in the early spawning season. 

A longer reproductive period is a typical feature for deep-water species (Harrison, 1988; Gage 

and Tyler, 1991; Bishop & Shalla, 1994). A prolonged spawning season was observed for P. 

lanceolatus ranging from July to April (Fig. 4.4) and this shrimp distributed in deeper waters of 

Kagoshima Bay (Fig. 6.5, Chapter 6). Choi et al. (2005) studied the insemination rate of this 

species in Korean waters sampled only January and inseminated female was found in this month. 

In the present study, environmental variables such as seasonality in food supply, current flows 

were not considered. Though P. lanceolatus is a multiple spawner, the frequency of spawning in 

a single spawning season could not be explained in the present study.  
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5. GROWTH OF PARAPENAEUS LANCEOLATUS 

 

 

5.1 INTRODUCTION 

Growth in penaeid shrimp can be defined as the increase in length or weight and a 

discontinuous process with a succession of moults (Hartnoll, 1982). Detail studies on growth and 

longevity of Parapenaeus lanceolatus in world waters are evidently lacking. The present study 

aimed to provide information on asymptotic length, growth coefficient, growth performance and 

longevity based on length-frequency distributions of this species in Kagoshima Bay, southern 

Japan. The relationship between carapace length and body weight was also examined for both 

sexes. 

 

5.2 MATERIALS AND METHODS  

5.2.1 Shrimp Sampling and Measurement 

The study was conducted using samples collected from the central area of Kagoshima Bay, 

southern Japan, at depths ranging from 127 - 237 m during January 2011 to January 2013 using 

Nansei Maru (175 t), a training vessel of the Faculty of Fisheries, Kagoshima University. Shrimp 

sampling was conducted using a simple trawl net carrying canvas kites on tip of the wings 

(Ohtomi et al., 2004). The dimensions of the net were 23.5 m long, 37.9 mm and 20.2 mm mesh 

size at the net body and cod end respectively. Each trawl was towed for 10 minutes at 2 knots. 

The specimens were sorted to the species level, chilled immediately in ice on board and 

preserved with 10 % formalin in the laboratory. 

All specimens collected were sexed by the presence of petasma for males and thelycum for 

females. Carapace length (CL) was measured with a digital slide calipers (CD-15PS, Mitutoyo, 
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Kawasaki, Japan) to the nearest 0.01 mm. Body weight (BW) was measured by an electronic 

balance (EB-430DW, Shimadzu, Kyoto, Japan) to the nearest 0.01 g. 

 

5.2.2 Growth Analysis 

Monthly length-frequency distributions were constructed using 1 mm intervals of CL for both 

sexes. A series of component normal distributions were fitted to the length-frequency of each 

sample by sex, using a computer analysis (Microsoft Excel-add-in-solver) based on Hasselblad‘s 

maximum-likelihood method (Hasselblad, 1966). Each component normal distribution was 

assumed an age group in the population. The outputs from this analysis include mean CL, 

standard deviation and proportion of each age group. Then, ages in months were assigned to the 

mean CLs considering 1 September as birth date. This assumption was done because the main 

spawning season of P. lanceolatus was September to October (Chapter 4, Fig. 4.4).  

The growth patterns for male and female P. lanceolatus were modeled by fitting the following 

two equations to the mean CLs at ages estimated for each component normal distribution at 

various sampling dates during 2011-2013: 

von Bertalanffy equation (von Bertalanffy, 1938):  

 Lt = L∞ [1 - exp {- K (t - t0)}], 

and Pauly & Gaschütz equation (Pauly & Gaschütz, 1979):  

Lt = L∞ [1 - exp {- K (t/12 - t0) - (CK/2π) sin (2π (t/12 - ts))}], 

where Lt is the CL (mm) at age t (months), L∞ is the asymptotic CL (mm), K is the growth 

coefficient (year
-1

), C is the amplitude of seasonal growth oscillation, ts is the summer point; the 

time of the year when growth is the highest (winter point, tw = ts + 0.5; the time of the year when 

growth is the lowest) and t0 is the hypothetical age when the CL would be zero. Akaike‘s 
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information criterion (AIC) (Akaike, 1973) and Bayesian information criterion (BIC) (Schwarz, 

1978) were used as an indicator of the precision. The lowest value of AIC and BIC indicate the 

best fitted model.  

  

5.2.3 Length-Weight Relationship 

The relationship between CL and BW was examined based on the equation expressed by 

Huxley (1932): ln (BW) = ln (a) + b ln (CL). The linear equation was fitted separately for males 

and females of P. lanceolatus. The t-test was used to test whether the b value departed 

significantly from expected hypothetical isometric value (b = 3). The asymptotic lengths (L∞) of 

male and female were transformed to asymptotic weights (W∞). 

  

5.3 RESULTS 

     5.3.1 Growth Pattern 

The overall sample was composed of 51.4 % males (9.9 - 26.4 mm CL) and 48.6 % females 

(8.3 - 34.3). Both male and female P. lanceolatus were first recruited in late autumn to winter 

(November to January) with modal size of around 10 mm in CL (Figs. 5.1 & 5.2). The size of 

newly recruited age group rapidly increased until the spawning season. The growth equations of 

von Bertalanffy and Pauly & Gaschütz with AIC and BIC values for males were obtained as:  

Lt = 27.8 [1 - exp {- 0.081 (t + 3.559)}]  

        (n = 42, AIC = 3483.48, BIC = 3504.03)…………………………………………… (1) 

Lt = 28.7 [1 - exp {- 0.867 (t/12 + 0.4) - (0.161/2π) sin (2π (t/12 - 0.826))}] 

       (n = 42, AIC = 3488.4, BIC = 3519.21)……………………………………………... (2) 

The estimated growth equations for females were as follows: 
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Lt = 33.8 [1 - exp {- 0.110 (t + 0.442)}]  

       (n = 39, AIC = 3754.05, BIC = 3774.48)…..……………………………………….. (3) 

Lt = 36.6 [1 - exp {- 0.995 (t/12 + 0.07) - (0.323/2π) sin (2π (t/12 - 0.757))}]  

       (n = 39, AIC = 3927.52, BIC = 3958.16)…………………………………………… (4) 

The growth curves are illustrated in Fig. 5.3. Based on the lowest value of AIC and BIC, von 

Bertalanffy equations provided the best-fit model for describing the growth for both sexes of P. 

lanceolatus. Equation (1) for males and (3) for females were, therefore, adopted to describe the 

growth of this shrimp. The F-test revealed that there was a significant difference between males 

and females in growth equation (P < 0.05). Females had a higher K value and larger asymptotic 

size in comparison to males (Fig. 5.3). The longevity for both sexes of P. lanceolatus was 

estimated to be around 27 months. 
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Fig. 5.1. Length-frequency distributions of male Parapenaeus lanceolatus Kubo, 1949 in 

Kagoshima Bay. Curves show the estimated normal distributions of age groups. 
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Fig. 5.2. Length-frequency distributions of female Parapenaeus lanceolatus Kubo, 1949 in 

Kagoshima Bay. Curves show the estimated normal distributions of age groups. 
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Fig. 5.3. Growth curves for male and female Parapenaeus lanceolatus Kubo, 1949 in Kagoshima 

Bay. Solid circles show the mean carapace lengths of age groups derived from Figs. 5.1 and 5.2. 

VB and PG indicate von Bertalanffy equation and Pauly & Gaschütz equation, respectively. 

PG 

VB 

    PG: Lt = 28.7 [1 - exp {- 0.867 (t/12 + 0.401)  
- (0.161/2π) sin (2π (t/12 - 0.826))}] 

VB: Lt = 27.8 [1 - exp {- 0.081 (t + 3.559)}] 

    PG: Lt = 36.6 [1 - exp {- 0.995 (t/12 + 0.070)  
- (0.323/2π) sin (2π (t/12 - 0.757))}] 

VB: Lt = 33.8 [1 - exp {- 0.110 (t + 2.442)}] 
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5.3.2 Length-Weight Relationship 

 The estimated b value was 2.514 for males and 2.462 for females indicated negative 

allometric growth for both sexes (P < 0.05) (Table 5.1). There was a statistically significant 

difference in both slope and elevation between sexes (ANCOVA, P < 0.001). The estimated W∞ 

of males and females were 7.7 g and 15.6 g, respectively. 

 

5.4 DISCUSSION 

In the present study, growth pattern and longevity of P. lanceolatus were investigated using a 

time series of large number of specimens from Kagoshima Bay, southern Japan. We were 

fortunately able to capture a considerable amount of small individuals during their recruitment 

period, which allowed us to estimate age and growth of this shrimp using length-frequency 

distributions. 

The growth of male and female P. lanceolatus was well described by the von Bertalanffy 

growth equation. The maximum CLs recorded in this study were 26.4 mm for males and 34.3 

mm for females. Females attain larger size than males in same age group, indicating sexual 

dimorphism in size which was also observed for Parapenaeus fissuroides in Kagoshima Bay 

(Farhana & Ohtomi, 2016b). The standard deviations were greater in females than in males. This 

indicates the growth of females is more variable than in males. Females of P. lanceolatus had 

higher L∞ and K values than males. This indicates females grew faster than males at same age 

group. These results agree with earlier studies reported for other penaeidae, P. fissuroides 

(Farhana & Ohtomi, 2016b), Trachysalambria curvirostris (Hossain & Ohtomi, 2010) in 

Kagoshima Bay.  
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Table 5.1 Allometric relationships between body weight (BW in g) and carapace length (CL in 

mm) of Parapenaeus lanceolatus Kubo, 1949 in Kagoshima Bay. The equation is: ln (BW) = ln 

(a) + b ln (CL). CL range, sample size (n) and coefficient of determination (r
2
) are also given. 

          Sex  n CL range (mm)     a   b         r
2
 

 

 

          Male 

 

 

290 

 

 

12.31 – 26.42 

 

 

0.00231 

 

 

2.514 

 

 

0.968 (P < 0.05) 

 

Female 312 11.79 – 34.32 0.00270 2.462 0.967 (P < 0.05) 
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Based on the time series of length-frequency distributions, the longevity was estimated to be 

around 27 months for P. lanceolatus. According to King & Butler (1985), the difference in the 

longevity between species might be attributed to the differences in bathymetric distribution and 

deeper water shrimp exhibit longer life cycle. In comparison with Parapenaeus longirostris in 

European Atlantic and Mediterranean waters, the longevity of P. lanceolatus was somewhat 

shorter, as Sobrino et al. (2005) reported that the longevity of P. longirostris there was around 3 

years and distributed in comparatively deeper waters.  

In the present study, a negative allometry was observed between CL-BW relationships for 

both sexes of P. lanceolatus. The BW of males increased faster with CL after recruitment size 

than that of females. However, the absolute growth of females was faster than males (Fig. 5.3). 

Similar observation was reported for P. fissuroides by Farhana & Ohtomi (2016b) while studying 

in Kagoshima Bay.  The females are commercially more important because the W∞ for females is 

more than twice as large as that of males. 

In the present study, the peak date of spawning season was considered as starting point of age 

for the calculation of growth equations, because the early life history of this species is still 

unknown. Future research can be done on the planktonic phase and the settlement period of this 

species. 
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6. DISTRIBUTION OF PARAPENAEUS FISSUROIDES AND  

PARAPENAEUS LANCEOLATUS 

 

6.1 INTRODUCTION 

Understanding the causes and mechanisms of change in the abundance of species over time 

and space is a crucial issue in marine ecology. There is a growing interest in describing the 

spatial distribution of fishery resources by life phase and the habitats essential to complete the 

resources‘ life cycle. Research on nursery and spawning areas is essential for effective 

management of vulnerable stages of the life cycle (FAO, 2003), and knowledge of the spatial 

structure of a species is essential when the management question involves. However, studies on 

the distribution of Parapenaeus fissuroides and Parapenaeus lanceolatus are evidently lacking 

in Kagoshima Bay and other waters of the world. The present study aimed to provide the 

information on spatiotemporal distribution and spawning ground of these two species in 

Kagoshima Bay using large number specimens. 

 

6.2 MATERIALS AND METHODS 

6.2.1 Study Site 

The present study was conducted in Kagoshima Bay, southern Japan in the eastern East China 

Sea (Fig. 6.1). Eight stations were established based on oceanographic and bathymetric features 

of the bay. The bay was demarcated into three areas; bay head, central basin and bay mouth. 

Eight sampling stations were considered as follows; stations 1, 2, and 3 in the bay head, stations 

4, 5, 6 and 7 in the central basin, and station 8 in the bay mouth (Table 6.1). 
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6.2.2 Sampling Protocol and Data Analysis 

Seasonal samplings were carried out in eight established sampling stations of Kagoshima Bay, 

southern Japan during 2006-2015. Experimental trawl surveys were conducted in central area 

with 10 m depth interval ranging from 110-150 m during February, 2012. In the present study, 

seasons were considered as winter (December to February), spring (March to May), summer 

(June to August) and autumn (September to November). The samples were collected during day 

time on board of Nansei Maru, a training vessel of the Faculty of Fisheries, Kagoshima 

University. This ship was equipped with a simple trawl net carrying canvas kites on tip of the 

wings (Ohtomi et al., 2004) and a split-beam quantitative echo sounder (KFC-3000; KAIJO, 

Hamura, Japan). The dimensions of the net were, 23.5 m long, 6.7 m wide, 37.9 mm and 20.2 

mm mesh size of net body and cod end respectively (Fig. 6.2). The mouth opening height of the 

net was 2.5 ± 0.3 m (Fuwa et al., 2010). Towing was conducted at 2.0 kt for 10 mins. preset 

duration. The bottom depth was recorded from the echo sounder at 1 min. intervals. Water depth 

was also recorded at 1 min. intervals using submersible data loggers (Compact-TD ATD-HR; 

JFE Advantech, Nishinomiya, Japan) attached to the head rope of the net. Effective tow duration 

was estimated by plotting echo sounder data and logger data (depth). Effective tow duration is 

the time between initial and final contact of the trawl net to bottom according to Fulanda and 

Ohtomi (2011) (Fig. 6.3). Trawl net contact with sea bottom was assumed when the difference 

between the depth readings on the echo sounder and TD logger reached to ≤ 2.8 m. 

All collected specimens were sorted into species level and chilled immediately in ice on 

board. In the laboratory, the numbers and wet weight of these specimens were recorded at each 

haul. The catch in numbers and weight per haul then standardized to 10 mins. preset tow duration 

by following formula (Fulanda & Ohtomi, 2011):  
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All specimens of Parapenaeus fissuroides and Parapenaeus lanceolatus were sexed according to 

the presence of petasma in males and thelycum in females. Carapace length (CL) was measured 

with a digital slide calipers (CD-15PS, Mitutoyo, Kawasaki, Japan) to the nearest 0.01 mm. 

Individual body weight (BW) of each specimen of these two species was measured by an 

electronic balance (EB-430DW, Shimadzu, Kyoto, Japan) to the nearest 0.01 g. Distribution 

pattern with age progression of both species was investigated using each component normal 

distributions explained in growth analysis. In case of overlapping two age groups in the CL-

frequency distributions, individuals were considered into age groups using the following 

discriminant function: 

Zi = (Lmσn + Lnσm) / (σm + σn) - Li 

Where Lm is the mean CL and σm is the standard deviation at age m; Ln and σn is the mean CL and 

standard deviation at age n; Li is CL of individual i. If Zi > 0, i belonged to m age group; if Zi < 0, 

i belonged to n age group. 

 

 

 

  

   Preset tow duration 

Effective tow duration  

 

CPUE/weight =  No. of individuals  × 
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Fig. 6.1 Sampling sites in Kagoshima Bay, southern Japan. 
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         Area 

  

 

Station 

 

        

Latitude 

   

 

Longitude   

  

 

Mean water 

depth (m) 

         

 

Warp length (m) 

    Bay head 

 

 

 

     

 

1 

 

2 

 

3 

31
0 
36.0´ 

 

31
0
 40.2´ 

 

31
0 
37.8´ 

130
0
 45.0´ 

 

130
0
 41.4´ 

 

130
0
 37.2´ 

136.2 

 

143.4 

 

127.9 

620 

 

650 

 

600 

   Central basin 

 

 

 

 

 

 

 

Bay mouth 

4 

 

5 

 

6 

 

7 

 

8 

31
0 
31.8´ 

 

31
0 
27.0´ 

 

31
0
 20.4´ 

 

31
0
 18.6´ 

 

31
0 
12.6´ 

130
0 
39.0´ 

 

130
0
37.2´ 

 

130
0
 45.0´ 

 

130
0
 39.0´ 

 

130
0
 43.2´ 

179.2 

 

228.5 

 

78.9 

 

135.7 

 

99.1 

700 

 

900 

 

430 

 

600 

 

500 

Table 6.1 Latitude-longitude coordinates, mean depths, and warp lengths for sampling 

stations in Kagoshima Bay, southern Japan. 

 Location 
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Fig. 6.2 The trawl net carrying canvas kites on the tip of the wings used for samplings. 
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Fig. 6.3 Estimation of effective tow duration plotting logger data (depth) and echo sounder data (depth). 
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Fig. 6.4 Species composition in total weight (g) of benthic community in Kagoshima Bay during 2006-2013. 
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Fig. 6.6 CPUE in relation to water depth in the central area of Kagoshima Bay during 

February, 2012 (Experimental trawl survey). 
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Fig. Distribution pattern of Parapenaeus fissuroides Crosnier, 1985 at each station with progression of age in Kagoshima 

Bay. The green circles indicate the CPUE of mature females. 
 

Jan. 2012, Age: 3 months Apr., Age: 6 months July, Age: 9 months Oct., Age: 12 months 

Jan. 2013, Age:15 months Apr., Age: 18 months July, Age: 21 months Oct., Age: 24 months Jan. 2014, Age: 27 months 
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Fig. Distribution pattern of Parapenaeus lanceolatus Kubo, 1949 at each station with progression of age in Kagoshima Bay. 

The green circles indicate the CPUE of mature females. 
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6.3 RESULTS 

6.3.1 Species composition 

Species composition in total weight (g) of benthic community in Kagoshima Bay is shown in 

Fig. 6.4. Plesionika Semilaevis is the most dominant species followed by Solenocera melantho 

and Metapenaeopsis sibogae in the benthic community of Kagoshima Bay.  P. fissuroides and P. 

lanceolatus are 7
th

 and 10
th

 dominant species in the benthic community of the bay. 

 

6.3.2 Spatial distribution 

The catch from the present study revealed that P. fissuroides was distributed in the central 

basin area (Sts. 7 & 4); whereas Sts. 1 and 3 in the bay head recorded only lower number of 

specimens (Fig. 6.5) in Kagoshima Bay. The results showed that P. fissuroides was distributed in 

depths from around 130-180 m, while highest individuals were recorded around 130 m depth (St. 

7). The number of specimens per haul at this station ranged from 5 to 231 with an average of 78, 

and the weight ranging from 3 to 1292 g with an average of 276 g. 

P. lanceolatus was distributed in the central basin area at Sts. 4, 5 and 7 and St. 2 in bay head 

area (Fig. 6.5). This species was distributed at depths ranging from around 130-230 m in the bay.  

The number of specimens per haul ranged from 0 to 96 with an average of 16 at St. 7, 14 at St. 4 

and 10 at St. 5. Few individuals were recorded at St. 2. The weight per haul ranged from 4 to 475 

g and the average was 68 g at St.7, 56 g at St. 4 and 41 g at St. 5. 

In the experimental trawl surveys, P. fissuroides obtained from 110-150 m water depth and 

the maximum CPUE was observed at 140 m water depth (Fig. 6.6). Few specimens of P. 

lanceolatus caught from 120-150 m water depth. 
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6.3.3 Temporal distribution 

Distribution pattern of P. fissuroides and P. lanceolatus with progression of age at each 

station in Kagoshima Bay are shown in Figs. 6.7 and 6.8. Small individuals of P. fissuroides 

were observed in central basin during winter. With the progression of age, they were observed at 

same distributed areas mainly southern shallower part of central basin. In case of P. lanceolatus 

young individuals appeared almost entire central basin and older individuals appeared only in 

deeper parts of central bay. 

 

6.3.4 Spawning ground 

Distribution pattern with the age progression of mature females indicate the main spawning 

ground of P. fissuroides was in the southern shallower central basin (Fig. 6.7). In case of P. 

lanceolatus, different spawning grounds were detected for young and older individuals. Young 

mature females obtained from almost entire central basin while older mature females obtained 

only in deeper areas of central bay (Fig. 6.8).  

 

6.4 Discussion 

Collecting samples of shrimp population inhabiting deep waters are quite difficult. Few 

studies were focused on distribution of Parapenaeus species including P. fissuroides and P. 

lanceolatus in world waters. The information on spatiotemporal distribution of these species is 

indispensable to understand the population dynamics and appropriate fisheries management 

strategies. This study described the spatiotemporal distribution of these two species in 

Kagoshima Bay using a long-term survey data.  
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According to the number of individuals per haul, both species are mainly distributed in the 

central area of the bay (Fig. 6.5). The present study revealed that P. fissuroides is mainly inhibit 

in relatively shallower part of central bay, while P. lanceolatus is distributed in almost entire 

central bay. The quantitative distribution of P. fissuroides was studied in East China Sea by Song 

et al. (2002). He obtained this species in shallower area with 60 m depth in eastern areas (26
0
00´- 

30
0
00´). Higher density areas were around 100 m depth near Taiwan. The experimental trawl 

surveys and seasonal samplings revealed that the depth range of P. fissuroides was around 110-

180 m and mainly distributed in around 130 m in Kagoshima Bay (Figs. 6.5 & 6.6). Several 

studies suggested local water environment play important role in partitioning fishes and other 

aquatic animals (Schoener 1974; Gatz, 1979). The bottom water temperature of main distributed 

area of P. fissuroides tended to be stable throughout the year (Farhana & Ohtomi, 2016). Song et 

al., 2002 also reported that higher density of P. fissuroides obtained where the bottom water 

temperature was relatively stable without obvious seasonal changes. The depth range of P. 

lanceolatus was reported from 300 to 350 m by Holthuis (1980). The present study confirmed 

the presence of this species in relatively shallower water in Kagoshima Bay. The depth of this 

species ranged from around 120-230 m in the bay (Figs. 6.5 & 6.6). Depth is considered one of 

the major factors influencing the spatial distribution of penaeid shrimps (Dall et al., 1990; 

Somers, 1994). Several authors reported bottom sediment characteristic is one of the key factors 

influencing spatial distribution of crustaceans (Wenner et al., 1983; Abelló et al., 1988). The type 

of sediment in the central areas of Kagoshima Bay is muddy (Hossain and Ohtomi, unpublished). 

Parapenaeus longirostris was reported to live on muddy bottoms in the Mediterranean Sea and 

the western and eastern northern Atlantic Ocean (Heldt, 1954; Holthuis, 1980). Water depth and 
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sediment type can be the factors influencing the spatial distribution of these two species in 

Kagoshima Bay. 

Distribution pattern of P. fissuroides with the progression of age revealed that both young and 

older individuals of this shrimp occurred in their distributed areas in central basin (Fig. 6.7). Lu 

et al. (2007) also reported that no apparent migration was observed for P. fissuroides in east of 

East China Sea. In case of P. lanceolatus, Young individuals appeared almost entire central basin 

while older individuals appeared only deeper parts of central bay (Fig. 6.8). The reason can be 

migration, predation or death. A migratory movement of P. longirostris was reported in the 

central Mediterranean Sea (Ardizzone et al., 1990).  

In the present study, Environmental variables such as current flows, temporal distribution of 

food availability, predations were not investigated. In addition, further detailed studies on 

migration of these shrimps are needed to clarify the distribution pattern of these shrimps in 

Kagoshima Bay. 
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7. GENERAL DISCUSSION 

 

Parapenaeus are well distributed in Indo-west Pacific and Atlantic regions (Holthuis, 1980). 

In spite of their economic importance, few biological studies have been reported for 

Parapenaeus species including P. fissuroides and P. lanceolatus. The present study conducted in 

Kagoshima Bay, southern Japan which is a semi enclosed deep water body. Though four species 

of Parapenaeus were recorded in the bay, P. fissuroides and P. laneolatus are two of the 

dominant species in the benthic community of the bay. This study provides the information on 

the fisheries biology of these two species in Kagoshima Bay that would be helpful for 

sustainable management of these fisheries in the Pacific region. 

P. fissuroides and P. lanceolatus are mainly distributed in the central area of Kagoshima Bay. 

The majority of P. fissuroides was distributed in around 130 m depth in the central bay, while P. 

lanceolatus was distributed both in relatively shallower (around 130 m) and deeper (180-230 m) 

area of the central bay (Fig. 6.5). Their different bathymetric distribution was also reported in 

world waters. P. fissuroides was caught in 60-200 m water depth in East China Sea (Song et al., 

2002) and P. lanceolatus was recorded in 300-350 m water depth in Pacific region (Holthuis, 

1980). P. lanceolatus inhabits a wider range of water depths in comparison to P. fissuroides in 

Kagoshima Bay. In comparison to other closely related species in world waters, Parapenaeus 

longirostris was captured between 100-508 m isobaths and the highest abundances were 

observed mainly between 150-350 m isobaths in central Mediterranean (Ardizzone et al., 1990). 

In Kagoshima Bay, other penaeidae, Trachysalambria curvirostris is well distributed in the bay 

head area with an around 130 m water depth (Hossain & Ohtomi, 2010). Several authors 

reported the correlation between body size of the shrimp and water depth. Larger shrimps are 

likely to inhibit in deeper water areas (King and Butler, 1985, Ardizzone et al., 1990, Company 
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and Sardá, 2000). The maximum carapace length of P. fissuroides and P. lanceolatus are larger 

than T. curvirostrs. Sediment type can be influencing factor for spatial distribution. T. 

curvirostris is mostly living on sandy-mud bottoms in Kagoshima Bay and eastern 

Mediterranean Sea (Hossain and Ohtomi, 2010; Galil, 2000). P. fissuroides and P. lanceolatus 

are mostly inhibit in the central bay which is consists of muddy bottoms (Hossain & Ohtomi, 

unpublished). In addition, Ohtomi et al. (2008) reported that the sediment composition of 

Kagoshima Bay is strongly influenced by current flows. Environmental variable such as food 

availability was not considered in the present study.  

From the analysis of distribution of P. fissuroides and P. lanceolatus with the progression of 

age revealed different distribution pattern for these shrimps in the bay. P. fissuroides recruited, 

spawned and spent their life mainly in southern central bay with around 130 m water depth (Fig. 

6.7). This analysis suggested that main spawning grounds were different for young and older 

individuals of P. lanceolatus. Young individuals spawned in almost entire central bay, while 

older individuals spawned only deeper central bay (Fig. 6.8).  

The size at sexual maturity for P. fissuroides was 23 mm in CL (Fig. 2.3) and 22 mm in CL 

for P. lanceolatus (Fig. 4.3). Transforming these CLs to ages using the estimated growth 

equations, the mature females of both species belong to 1 year old group. A prolonged spawning 

season was observed for P. lanceolatus ranging from July to April (Fig. 4.4), while the estimated 

spawning season of P. fissuroides in Kagoshima Bay was during July to February (Fig. 2.4). The 

spawning season of P. lanceolatus was more extended than P. fissuroides. Several authors 

reported that deeper water species exhibit a longer reproductive period (Harrison, 1988; Gage & 

Tyler, 1991; Bishop & Shalla, 1994). P. lanceolatus is distributed in deeper areas of the bay 
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compare to P. fissuroides (Fig. 6.5). Another deep-water shrimp P. longirostris spawn 

throughout the year reported by Kasalica et al. (2011) in southern Adriatic Sea.  

The Pauly and Gaschütz equation provided the best fitting model for describing the growth 

for both sexes of P. fissuroides (Fig. 3.3) suggested that growth rates of this shrimp followed a 

seasonal oscillation, while the growth of P. lanceolatus for both sexes was well described by von 

Bertalanffy equation (Fig. 5.3). The growth oscillation of P. fissuroides was correlated with their 

spawning season in Kagoshima Bay (Farhana & Ohtomi, 2016a). In comparison with P. 

lanceolatus, the shorter spawning period of P. fissuroides may influence their seasonal 

oscillation in growth rate, while the longer reproductive period of P. lanceolatus might not have 

any influence on their growth rate.  P. fissuroides had higher K and L∞ values than P. lanceolatus 

for both sexes. This indicate higher growth rate in P. fissuroides than P. lanceolatus. Females 

had a lower K value but reached larger sizes at each age and larger asymptotic size than males in 

P. fissuroides. For P. lanceolatus, females had a higher L∞ and K value and larger asymptotic 

size in comparison to males.  

The present study revealed the different bathymetric distribution and different temporal 

distribution of these closely related species in Kagoshima Bay, which was quite interesting. This 

study provides a lot of important information on their biology as biological information of P. 

fissuroides and P. lanceolatus is evidently lacking in world waters. 
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8. CONCLUSION 

 

Parapenaeus fissuroides and Parapenaeus lanceolatus are two of the dominant species in the 

benthic community of Kagoshima Bay, southern Japan. They are mainly distributed in the central 

area of Kagoshima Bay. P. fissuroides recruited, spawned and spent their life mainly in southern 

central bay with around 130 m water depth. The main spawning grounds were different for 

young and older individuals of P. lanceolatus. The spawning grounds for young individuals were 

almost the entire central bay and older individuals spawned only in deeper part of the central 

bay. P. lanceolatus is a deeper water species compare to P. fissuroides. 

The ovaries of P. fissuroides and P. lanceolatus were observed as asynchronous type, 

suggesting that these species are multiple spawners. Cortical granules in the peripheral region of 

the oocytes were considered as spawning sign to define the mature females of both species. The 

size at sexual maturity of female P. fissuroides and P. lanceolatus was estimated to be 23 mm 

and 22 mm in carapace length, respectively. The spawning season was estimated during July to 

February for P. fissuroides and July to April for P. lanceolatus. The spawning season of P. 

lanceolatus was more extended than P. fissuroides. 

In the present study, age and growth of P. fissuroides and P. lanceolatus were estimated using 

monthly length-frequency distribution. For P. fissuroides, CL in males ranged from 7.7 - 27.1 

mm and 6.4 - 36.1 mm in females. And for P. lanceolatus, males ranged from 9.9 - 26.4 mm in 

CL and females 8.3 - 34.3 mm in CL. P. fissuroides and P. lanceolatus both were recruited in 

late autumn to winter (November to January) with modal size of around 11 mm CL and 10 mm 

in CL respectively. Growth was best described by Pauly and Gaschütz growth equation for P. 

fissuroides and von Bertalanffy equation for P. lanceolatus. The monthly growth rate (%) of P. 
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fissuroides was the highest during July to August (summer point) and the lowest during January 

to February (winter point). This suggests that the growth of this shrimp slows down during the 

reproductive period from summer to winter. Females grew faster and reached larger sizes than 

males of the same age group in these shrimps. The longevity of P. fissuroides was estimated to 

be around 24 months for males and 30 months for females. The longevity for male and female P. 

lanceolatus was around 27 months. 

The present study provided biological information on distribution pattern, size at sexual 

maturity, spawning season, asymptotic length, growth pattern, growth performance and longevity 

of P. fissuroides and P. lanceolatus in Kagoshima Bay. These data will be helpful for designing 

a fishing management strategy to ensure a sustainable exploitation of these shrimp in Kagoshima 

Bay. 
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