SPECIES RICHNESS AND PRODUCTIVITY PATTERN ALONG ALTITUDINAL GRADIENTS IN EAST DISTRICT OF SIKKIM, INDIA

A THESIS SUBMITTED TO THE UNIVERSITY OF NORTH BENGAL FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN BOTANY

By
 NARPATI SHARMA

Under the Supervision of
Dr. A.P. Das
Professor
UNIVERSITY OF NORTH BENGAL

\&

Dr. M.D. Behera

Associate Professor

DEPARTMENT OF STUDIES IN BOTANY UNIVERSITY OF NORTH BENGAL

December, 2016

Declaration

I declare that the thesis entitled "Species Richness and Productivity Pattern along Altitudinal Gradients in East District of Sikkim, India" has been prepared by me under the guidance of Dr. A. P. Das, Professor, Taxonomy and Environmental Biology laboratory, Department of Studies in Botany, University of North Bengal and Dr. M. D. Behera, Associate Professor, Indian Institute of Technology, Kharagpur. No part of this thesis has formed the basis for the award of any degree or fellowship previously.

CERTIFICATE

I certify that Sri Narpati Sharma has prepared the thesis entitled "Species Richness and Productivity Pattern along Altitudinal Gradients in East District of Sikkim, India", for the award of the degree of Doctor of Philosophy of the University of North Bengal, under my guidance, he has carried out the work at the Taxonomy and Environmental Biology Laboratory, Department of Botany, University of North Bengal.

[Dr. A. P. Das]

CERTIFICATE

This is to certify that the thesis entitled Species Richness and Productivity Pattern Along with Altitudinal Gradients in East District of Sikkim, India, submitted by Narpati Sharma to Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal is a record of bona fide research work under our supervision and we consider it worthy of consideration for award of degree of Doctor of Philosophy of the University.

Date 21111|2016

(Formerly, Scientist/ Engineer-SD
RRSSC-ISRO, Kharagpur, W.B.)

Acknowledgements

I express my heartiest gratitude to my respected teacher, mentor and supervisor, Prof. Abhaya Prasad Das of Plant Taxonomy and Environmental Biology Laboratory, Department of Botany, North Bengal University for his inspiration, motivation, suggestion and continuous encouragement, co-operation and invaluable guidance, which were tremendously helpful for me to take up and to complete the present work.

I would also like to thank equally to my Co-Supervisor, Dr. M. D. Behera, Associate Professor, Center for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology (IIT), Kharagpur, his consistent encouragement and all sorts of support and suggestions throughout the research program led the work to reach its completion stage.

I would like to extend my heartiest thank and gratitude to all the Heads of the Department of Botany, North Bengal University, to whom I interacted during my research and all other respected teachers, namely Prof. B.N. Chakraborty, Prof. P.K. Sarkar, Prof. U. Chakraborty, Dr. A. Saha, Dr. A. Sen, Dr. S.C. Roy, Dr. P. Mandal and Dr. M. Chowdhury for their constant supports and suggestions.

I wish a deep gratitude to the former and present Secretaries, Department of Science \& Technology, Govt. of Sikkim viz., , Shri O.P. Singhi, Shri M. L. Arrawatia, Shri R. Teleng, Shri, A. K. Shreewastva, Shri, D, Anandhan, Shri S. K. Shilal, Shri P.T Euthenpa \& Dr. Anil Mainra, without their kind support and encouragement this work might have not been completed.

It is my pleasure to acknowledge the Secretary cum PCCF, Department of Forest, Govt. of Sikkim and all other concern officials for permitting me to visit the entire East Sikkim to complete the field survey especially in the remote locations.

I express my heartiest thanks to our senior scholar (Didi) Dr. Chandra Ghosh, Head, Botany Department, Gour Mahavidayalaya, Malda for her kind advices and cooperation.

I would like to extend my heartiest thanks to all the scholars in the Taxonomy and Environmental Biology Laboratory, namely, Dr. Sonam Rinchen Lepcha, Dr. Animesh Sarkar, Mr. Suman Nirola, Dr. Ajita Sarkar, Mr. Rajib Biswas, Mr. Saurav Moktan, Mr. Dibakar Choudhury, Mr Anurag Chowdhury, Mr. Amalesh Bijali, Mr. Kishor Biswas, Mrs. Baishakhi Sarkar, Miss Payel Paul, Mrs Ihuma Sutradhan and Miss Deepika Chettri for their continuous help and support.

I extend my thanks to Mr. Binod Singha and Mrs. Sangita Oraon, the laboratory attendants in the Taxonomy and Environmental Biology Laboratory for their assistance in different laboratory works.

I sincerely thank Shri D.G. Shrestha, Additional Director and entire team of Remote Sensing Centre, namely Shri Benoy Pradhan, Shri Dilli Ram Dahal, Shri Pranay Pradhan, Shri R.K. Sharma, Shri Dinesh Dhakal, Shri Bandan Ghagmer and Shri Safal Pradhan for providing all the essential support during my work.

Equally, I am thankful to Shri R.M. Panda, Ms. Punam, Ms. Swapna and Shri Pulakesh of COREL, IIT-Kharagpur for their all types of help and co-operation whenever I was there for my works.

I would also like to thank Dr. B. C. Bashista, and Shri Dorjee T. Bhutia Additional Directors, and Dr. S.R. Lepcha Dy. Director, Shri K.B. Subba, Dr. Shiva Kumar Sharma, Shri Laydong Lepcha, Shri Sushan Pradhan and other staff members of Department of Science and Technology, Govt. of Sikkim for their constant support during my research work.

During my work, I have came across and acquainted with numerous helpful and nature effecting personalities including Dr. Sandeep Tambee, Dr. Tika Prasad Sharma and Ms. Anjali Sharma. All of them deserve my sincere gratitude for their constant cordial support.

I also thank the Scientist-in-Charge, Sikkim Himalayan Circle, of Botanical Survey of India, Gangtok and their entire team of scientists who helped me all the time whenever I approached them for the identification of my specimens and litrature.

In this connection, I would like to extend my thanks to Dr. Laxuman Sharma my other friends, Shri R.C Sharma, Shri Ganesh Sharma, and Shri Bishnu Sharma for their constant support during my work.

Finally, although numerous to mentioned by name, I certainly owe to all of them, whose names might not have been included in this account, who had taught me so much as they caught on how wonders and valuable are our plants for our future and for the survival of the entire biosphere. I will always fondly keep them in my memory in every moments of my life.

Now, at the end of all out-of-home supports, I remember my parents Shri Dilli Ram Sharma, and Smt. Dilli Maya Sharma with deepest sense of love and gratitude, without their affection, encouragement and blessings it would not have been possible to complete by research work. My sincere thanks to my beloved wife, Chandrakala, for her encouragement and support at each and every step of the journey towards the completion of my research work. I shall remain grateful to all other family members for their encouragement and support especially, to my, brothers Bhola daju, Ram and Jagan, and my sister in law Sushma, Muna who always wish to see my success in my every endeavors.
[Narpatirnarma] Napatisherma
Department of Botany, University of North Bengal
Raja Rammohunpur, Dist. Darjeeling
West Bengal, India, 734013
Date: $25 / 11 / 2016$

Abstract

The present work "Species Richness and Productivity Pattern along Altitudinal Gradients in East District of Sikkim, India" is based on the field data collected from the different altitudinal gradient of East district of Sikkim. The elevation of East district of Sikkim is ranging from 340 m at Rangpo to 4649 m near Nathula and the total geographical area is 954 sq km . Within the very short distance the all kind of climatic zones viz. tropical, sub-tropical, temperate, sub-alpine, alpine and permanent snow line area were cover within this district. For the present work, field data were collected through nested quadrats within an altitudinal range of 500-3300 m elevation gradient located within the district. The field data collected mostly from the undisturbed vegetation tracts including reserve forest (RF), wildlife sanctuary, khasmal and gorucharan (rangeland), located at least 500 m away from the human habitat areas. Altogether there are 224 nested quadrats of $20 \times 20 \mathrm{~m}$ size laid out in the field for trees. The data from two $5 \times 5 \mathrm{~m}$ quadrats [located within $20 \times 20 \mathrm{~m}$] for shrubs and five $1 \times 1 \mathrm{~m}$ [also within $20 \times 20 \mathrm{~m}$] for herbs/ ground cover were collected. The field data was collected in the designed field format and the voucher specimens were collected for identification. A total of 664 species of vascular plants were recorded through such sampling, which include almost all habit groups like herbs, shrubs, climbers, lianas, trees and epiphytes. Major part of the natural vegetation, especially in the tropical to warm temperate belt is dominated by trees. Out of the recorded 664 species 34 species are found to be endemic to different sections of the Himalayan region.

Slope, aspect, climatic elements and soil were also taken into consideration during the analysis. The field data was divided in three elevation categories (grain size) viz. 100 m elevation steps, 200 m elevation steps and 300 m elevation steps with three taxonomic spectra (i.e., species, genus and family). As much as 159 species of trees, 121 shrub species, 302 herbaceous species and 82 epiphytes and lianas were recorded from the field. Schima wallichii Choisy is found to be occurring with highest abundance in sub-tropical belt of the district with recorded 1246 counts. A minimum of 60 and maximum of 155 species were noted in $3200-3300 \mathrm{~m}$ and $2200-2300 \mathrm{~m}$ elevation bands respectively. Castanopsis hystrix Hook.f. \& Thomson ex A.DC., Engelhardtia spicata Hook.f. \& Thomson ex A.DC., Ostodes paniculata Blume, Alnus nepalensis D.Don and Schima wallichii Choisy are the dominant tree species of tropical and temperate forests.

Schima wallichii Choisy contributed highest IVI score of 12.19 followed by Ostodes paniculata Blume with 4.64 in phytosocological analysis.

Pteridium quilinum (L.) Kuhn is found in all the elevation bands indicating maximum tolerance and adaptability with its extremely broad ecological amplitude. On the other hand, 190 species were found with single appearance in one elevation band and have very narrow tolerance and adaptability ranges. The Margalef diversity index showed very high values at all elevation bands with the highest 19.33 reaching at $2200-2300 \mathrm{~m}$; whereas Shannon Weiner Diversity Index values varied between 3.4 and 4.4 (except at the highest elevation band, where the value was the lowest, 1.9) with the highest value of 4.4 recorded at $2200-2300 \mathrm{~m}$.

The species richness pattern along the altitude analysis became prominent when adjudged from 100 m to 200 m and 300 m elevation bands with R^{2} values of $0.502,0.553$ and 0.743 respectively. The species richness showed a gentle mid-elevation peak with a fast declining trend beyond mid-elevation. The pattern became prominent when adjudged from 100 m to 200 m and 300 m elevation bands with R^{2} values of $0.502,0.553$ and 0.743 respectively; indicating realisation of scale effect. Similarly, the genus and family richness pattern followed the mirror image of species with mid-elevation peak. The R^{2} values increased when plotted from 100 m to 200 m and 300 m elevation bands for genera (0.657 , 0.764 and 0.862) and families ($0.765,0.875$ and 0.907). Though, the species richness pattern along elevation gradient showed non-linear polynomial relationship, it clearly confirmed the pattern of midelevation peak across the taxonomic spectrum (i.e., species, genera and families), and grain size (100 $\mathrm{m}, 200 \mathrm{~m}$ and 300 m elevation bands).

The above ground (AG) biomass distribution pattern showed alternate increasing and decreasing pattern along the elevation gradient in the study area. In general, the AG biomass showed a smooth increase up to mid-elevation and then decreases further. The R^{2} values increased (i.e., $0.28,0.41$ and 0.58) when plotted from 100 m to 200 m and 300 m elevation bands. Species richness and AG biomass along elevation gradient shows strong positive relationships.

Species richness and above ground biomass vary in similar direction along the elevation gradient showing strongly positive relationships. The relationship became prominent with increasing elevation and grain size of different elevation bands i.e. from 100 m to 200 m and 300 m (along with the increase of R^{2} values i.e., $0.31,0.53$ and 0.80).

Satellite remote sensing data, in the form of imageries, provide consistent and systematic observations on vegetation and ecosystems. So, as a proxy of biomass NDVI and EVI were calculated using the Landsat data of different dates, where the R^{2} at 0.322 has been observed in second order polynomial in 100 m elevation band. But the field derived biomass and MODIS productivity was not showing the good relationship.

The multivariate analysis was also performed using the GLM model, to understand the correlation between species richness and other variables viz. temperature, rainfall, slope, soil, elevation, aspect and biomass. The good relationship between species richness with temperature and elevation were observed through such analysis.

Finally, it was suggested that more research in different scale is required to know the better relationship between species richness and productivity pattern along the altitudinal gradient in the biodiversity rich mountainous regions like Sikkim.

TABLE OF CONTENTS

Contents Page No
Declarations
Acknowledgements
Abstract i - ii
List of Tables ix
List of Figures x - xii
List of Annexures xiii
List of Plates xiv - xv
Chapter -1 INTRODUCTION 01-26
1.1. Biological Diversity 01
1.2. Plant community structure 05
1.3. Topographical description 05
1.3.1. Elevation 05
1.3.2. Slope and aspect 06
1.3.3. Drainage 07
1.3.4. Road 07
1.3.5. Edaphic conditions 07
1.4. Biodiversity pattern 07
1.4.1. Latitudinal pattern 07
1.4.2. Life-form composition pattern 08
1.4.3. Factors correlated with diversity 08
1.4.4. Ecotone zone 08
1.4.5. Forest type variation 08
1.4.6. Species distribution range 08
1.4.7. Biodiversity scale factor 09
1.5. Community 09
1.5.1. Frequency and Relative Frequency 09
1.5.2. Density and Relative Density 09
1.5.3. Abundance and Relative Abundance (Dominance) 09
1.5.4. Importance Value Index 10
1.6. Diversity Indices 10
1.7. Plant Biomass 10
1.7.1. Destructive sampling technique or harvest mapping technique 10
1.7.2. Non-destructive sampling technique 11
1.7.2.1. The biomass assessment using the field data 11
1.7.3. Measurements based on remotely sensed data taken from airborne/ space borne systems 11
1.7.3.1. Satellite derived NPP Products 11
1.7.4. Semi-empirical modelling - Estimation using models 12
1.8. Relation between productivity and species richness 12
1.9. Relationship between species richness with biomass along the elevation 13
1.9.1. Positive correlations of diversity and productivity 14
1.9.2. Negative correlation of diversity and productivity 14
1.10. Summary of some related studies around the globe 15
1.11. Hills, Mountain and biodiversity 25
1.12. The Sikkim Himalaya 25
1.13. The Hypothesis 25
Chapter-2
OBJECTIVES 26
Chapter-3
STUDY AREA 27-46
3.1. The Himalayan State of Sikkim 27
3.2. Distribution of Forest Vegetation vis-à-vis Elevation 29
3.2.1. Low Hill Forests (tropical to sub-tropical, up to 900 m) 29
3.2.2. Middle Hill Forests (subtropical, $750-1500 \mathrm{~m}$) 29
3.2.3. Upper Hill forests (Wet temperate, $1500-2700 \mathrm{~m}$) 30
3.2.4. Rhododendron-Conifer Zone (cold temperate or sub- alpine, $2700-3600 \mathrm{~m}$) 31
3.3. Occurrence and distribution of forest types 31
3.3.1 Forest Type Distribution as per Champion and Seth (1968) 33
3.3.1.1. Tropical Semi-Evergreen Forests-3C/C1 (300- $900 \mathrm{~m})$ 33
3.3.1.2. Sub-Tropical Mixed Broad Leaved Hill Forests- 8B/C1 (900-1800 m) 33
3.3.1.3. Upper Hill Himalayan Wet Temperate Forests- 11B/C1 (1800-2400 m) 33
3.3.1.4. Sub-alpine Forests ($2400-3000 \mathrm{~m}$) 33
3.3.1.5. Moist Alpine Forests ($2700-3700 \mathrm{~m}$) 33
3.3.1.6. Dry Alpine Forests ($3700-4500 \mathrm{~m}$) 34
3.4. Location of East District of Sikkim 34
3.4.1. Protected areas in East District 36
3.5. Plant diversity in the Sikkim Himalaya 37
3.5.1. Endangered plants 38
3.5.1.1. Number and status of endangered plants 38
3.5.2. Endemic plants 40
3.5.3. Medicinal plants 40
3.6. Elevation 40
3.7. Soil 41
3.8. Climate 41
3.9. Drainage System 41
3.10. Communication network 44
3.11. Socio-economic status 44
3.12. Fauna 46
Chapter-4
MATERIALS AND METHODS 47-57
4.1. Physiognomy, Climate, Edaphic and Forest Cover Mapping 47
4.1.1. Elevation 47
4.1.2. Slope and Aspect 47
4.1.3. Climate 47
4.1.3.1. Temperature and Precipitation 47
4.1.4. Soil 47
4.1.5. Forest type and density 47
4.2. Plant diversity 48
4.2.1. \quad Sampling design 48
4.2.2. Sampling strategy 48
4.2.3. Field data collection 49
4.2.3.1. List-Count Data 50
4.2.4. Data entry and design 50
4.2.5. Data analysis 50
4.2.5.1. Dominance analysis 51
4.2.5.1.1. Frequency (F) and Relative Frequency (RF) 51
4.2.5.1.2. Density (D) and Relative Density (RD) 51
4.2.5.1.3. Abundance (A) and Relative Abundance (RA) 51
4.2.5.1.4. Important Value Index (IVI) 51
4.2.5.2. Diversity Indices 52
4.2.5.2.1. Margalef Index (M)[Sp Richness] 52
4.2.5.2.2. Simpson's Index (1/D)[dominance] 52
4.2.5.2.3. Shannon-Wiener Index (H')[Diversity] 52
4.2.5.2.4. Pielou's Index (e) [Evenness] 53
4.2.6. Species, Genera and Families richness along the altitude 53
4.2.6.1. Along 100 m 200 m and 300 m elevation steps 53
4.3. Endemic species 53
4.4. Productivity (Biomass) 54
4.4.1. Name of the species 54
4.4.2. Circumference at Breast Height (CBH) 54
4.4.3. Height of trees 54
4.4.4. Indicator parameters for non-tree species 54
4.4.5. Basal area 54
4.4.6. Volume estimation 54
4.4.7. Biomass estimation 55
4.4.7.1. Biomass along 100 m elevation steps 55
4.4.7.2. Biomass along 200 m elevation steps 55
4.4.7.3. Biomass long 300 m elevation step 55
4.5. Satellite based productivity 55
4.5.1. MODIS Productivity 55
4.5.2. MODIS Algorithms 55
4.5.3. Landsat-8 NDVI and EVI 55
4.5.3.1. Data download and process 55
4.5.3.2. Normalised Difference Vegetation Index (NDVI) 56
4.5.3.3. Enhanced Vegetation Index (EVI) 56
4.5.3.4. Data download and process: The website <http://modis.gsfc.nasa.gov/data/dataprod/ dataproducts. php?MOD_NUMBER=17> 56
4.5.4. Relationship between MODIS productivity field biomass 56
4.5.5. Relation between field biomass Satellite EVI 56
4.6. Relation between species diversity and Plant productivity (biomass) along the altitude 56
4.7. Multivariate analysis 56
4.7.1. General Linear Model (GLM) 56
4.7.2. GLM Modelling in R 57
Chapter-5
RESULT: SPECIES RICHNESS ALONG THE ALTITUDE 58-83
5.1. Topography 58
5.1.1. Elevation 58
5.1.2. Slope and Aspect 60
5.1.3. Climate 63
5.1.3.1. Temperature 63
5.1.3.2. Precipitation 63
5.1.4. Soil 64
5.1.5. Forest type and density 66
5.2. Plant diversity 67
5.2.1. Data entry and design 67
5.2.2. Data analysis 67
4.2.2.1. Dominance analysis 69
5.2.2.1.1. Frequency and Relative Frequency 70
5.2.2.1.2. Density and Relative Density 70
5.2.2.1.3. Abundance and relative abundance 70
5.2.2.1.4. Importance Value Index 71
5.2.2.2. Diversity Indices 71
5.2.2.2.1. Margalef Index (MI) 71
5.2.2.2.2. Simpson's Index 71
5.2.2.2.3. Shannon-Wiener Index (H') 72
5.2.2.2.4. Pielou's Index (J) [Evenness] 72
5.2.2.3. Richness of Species, Genus and Family along the altitude 73
5.2.2.3.1. Along 100 m elevation step 73
5.2.2.3.2. Along 200 m elevation step 77
5.2.2.3.3. Along 300 m elevation step 78
5.2.2.4. Endemic species 80
Chapter - 6
RESULT: PRODUCTION OF BIOMASS ALONG THE 84-98 ALTITUDINAL GRADIENT
6.1. Biomass Productivity 86
6.1.1. Field data 86
6.1.1.1. Circumference at Breast Height (CBH) 86
6.1.1.2. Tree height 86
6.1.1.3. Basal area 86
6.1.1.4. Volume Estimation 86
6.1.1.5. Biomass estimation 87
6.1.1.5.1. Along 100 m elevation step 87
6.1.1.5.2. Along 200 m elevation step 88
6.1.1.5.3. Along 300m elevation step 89
6.2. Satellite based relation of Biomass 89
6.2.1. Landsat-8 NDVI and EVI 89
6.2.2. Relation between biomass and satellite EVI 90
6.2.3. MODIS Productivity 98
6.2.4. Relation MODIS Productivity with Biomass 98

Chapter-7

RESULT: RELATIONSHIP BETWEEN SPECIES RICHNESS AND BIOMASS ALONG THE ALTITUDE 99-108
7.1. Relation between species diversity and productivity 99
7.1.1. Conditions in East district of Sikkim 100
7.2. Relation between species diversity and productivity along the altitude 102
7.3. Relation between species richness and other environmental variables - multivariate analysis 104
7.3.1. Correlation of species richness with other factors 104
7.3.2. Relationships between species richness and other variables 105
7.3.3. Relation between diversity with temperature, precipitation and area 106
Chapter-8
DISCUSSION 109-123
8.1. Topology 109
8.2. Plant diversity 109
8.3. Dominance analysis 109
8.4. Diversity Indices 112
8.5. Species Richness and Elevation 112
8.5.1. Species richness 113
8.6. Distribution of Trees Shrubs and Herbs along the altitude 113
8.7. Species richness along elevation gradient 114
8.7.1. Along 100 m elevation step 116
8.7.2. Along 200 m and 300 m elevation Steps 116
8.8. Effect of the forest ecotone 117
8.9. Species Richness and Environmental Parameters 118
8.10. Biomass along Altitudinal (Elevation) Gradient 119
8.11. Satellite based correlation 120
8.12. Relationship between Species Richness and Biomass Production along the altitude 121
8.13. Relation of diversity with Temperature, Precipitation and Area 121
8.14. Status of Conservation in the Study area 122
Chapter - 9
CONCLUSION 123-124
PHOTO PLATES 126-135
BIBLIOGRAPHY 136-151
ANNEXURES 152-226
Publications 227

LIST OFTABLES

Table 3.1. Details of forest types found in Sikkim, Eastern Himalaya, India 31-32

Table 1.1. Summary of some related studies around the globe
16-24

Table 3.2. Detailed of Forest Range of East Sikkim 34

Table 3.3. Endangered and endemic flowering plants known to grow in the East
district of Sikkim

38-39

Table 3.4. Important rivers of East district of Sikkim 41-42
Table 3.5. Lists of important lakes in East district Sikkim 43
Table 5.1. Geographical area of each elevation band of study area 59
Table 5.2. The area covered by each forest type in the East district of Sikkim 67
Table 5.3. List of 10 dominant tree species along with their total counts 67
Table 5.4. Records of different diversity indices at different altitudinal steps in the
East district of Sikkim.
Table 5.5. List of endemic species recorded from the study area 81-82
Table 6.1. $\begin{array}{ll}\text { List of } 10 \text { maximum volume contributed tree species of east district } \\ & \text { Sikkim }\end{array}$
Table 6.2. List of tree species as per their contribution of biomass 87
$\begin{array}{ll}\text { Table 7.1. Correlation Matrix of species richness with other factor in East district } \\ & \text { of Sikkim }\end{array}$
Table 7.2. Coefficients GLM of Species Richness with other variable 104
Table 7.3. Analysis of deviance among the response variable 106
$\begin{array}{ll}\text { Table 8.1. } & \begin{array}{l}\text { Detail of vascular plant species Genus and Family in each elevation } \\ \\ \text { steps }\end{array} \\ 110-111\end{array}$
Table 8.2. List of the highest IVI scores of 10 vascular plants 112
Table 8.3. List of tree, shrubs, herbs and epiphyte of the study area 114
Table 8.4. List of the number vascular plant species in each 100 m 200 m , and 300
m elevation steps.
Table 8.5. Protected area networks in Sikkim 122

LIST OF FIGURES

Page No

Fig. 1.1. $\begin{aligned} & \text { Biodiversity distribution pattern along the elevation gradient. Curve '1' } \\ & \text { shows that the biodiversity levels decrease with elevation and the maximum } \\ & \text { is at low elevations and curve ' } 2 \text { ' indicates that most diverse zones are in the } \\ & \text { mid-elevation (Adapted from: Weng et al., 2007) }\end{aligned}$ 3
Fig. 1.2. Relation between tree species richness and elevation in central Nepal (Adapted from: Bhattarai \& Vetaas, 2003)
Fig. 1.3. Relation between tree species richness and elevation in central Nepal (Adapted from: Bhattarai \& Vetaas, 2006).
$\begin{array}{ll}\text { Fig. 1.4. } & \text { Observed species richness of trees along the elevation gradient of Sikkim, } \\ \text { Eastern Himalaya (Adapted from: Acharya et al., 2011) }\end{array}$
Fig.1.5. Vegetation zones in the Himalayas as adapted from http://blog-yard-gardennews.extension.umn.edu/ 2009/02/in-rhododendron-fairyland-fantasyof.html
Fig. 1.6. Plot of effective number of species calculated from the Shannon Wiener
index against AGB estimates; (Adapted from Day et. al, 2013).
Fig.1.7. Qualitative predictions of growth-mortality trade-offs (a-b), biomass (c), diversity (d) and resulting BEF relationships (e-f) based on a successional niche model with only early- and late-successional specialists (e.g. two species, Kinzig and Pacala 2001). (a) Biomass growth declines with stand age. Early-successional specialists have higher productivity under abundant resources early, but cannot maintain productivity as stands age. (b) As resources decline with stand age, biomass mortality increases. Increased mortality is higher for early-successional species. (c) As a result, earlysuccessional species biomass peaks early in succession but is supplanted by late-successional species. (d) Under the successional niche hypothesis, the highest diversity occurs in middle-aged stands transitioning from early to late-successional species. (e) Diversity relationship with biomass dynamics (Dbiomass) due to growth shifts from negative to positive across succession. (f) Diversity relationship with Dbiomass due to mortality shifts from positive to negative, due to dominance late in succession by low mortality species. [Adapted from: Lasky et al., 2014]
Fig. 3.1. Location map of Sikkim 27
Fig. 3.2. Profile along the altitude of Sikkim with the distance in Kilometers
Fig. 3.3. Forest Range map of East Sikkim 35
Fig. 3.4. Wetlands in East Sikkim 43
Fig. 3.5. Drainage/stream map of east district indicates very dense network 44
Fig. 3.6. Road network in east district of Sikkim shows less density 45
Fig. 4.1. Nested Quadrat design (20x20m for trees and lianas, $5 \times 5 \mathrm{~m}$ for shrubs and 1 x 1 m for herbs) 49
Fig. 4.2. Field photograph taking the CBH of tree in steep slope (left) counting of herb and noted in the prescribe format (Right) 50
Fig. 5.1. 200 m elevation steps map of the study area showing over 70% of the area of East district of Sikkim for the study 58
Fig. 5.2. Elevation step-wise area availability at 100 m elevation steps 60
Fig. 5.3. Slope map of East district that indicates more area is under $15-30^{\circ}$ slope 61
Fig. 5.4. Percentage-wise distribution of slope of East district of Sikkim 61
Fig. 5.5. Aspect map of East district indicates less area is under NE slope 62
Fig. 5.6. (a) Percentage wise distribution of aspect; (b) distribution of northern and southern aspects of east district shown in a Pie diagram 62
Fig. 5.7. Average Maximum and Minimum temperature between 2000 and 2010 of Gangtok in East district, Sikkim 63
Fig. 5.8. Average rainfall at Gangtok during 2000 and 2010 64
Fig. 5.9. Average Annual Rainfall map of east district, Sikkim showing Isohyets of rainfall 65
Fig. 5.10. Soil map of East district based on NBSS \& LUP (1996) information 65
Fig. 5.11. Forest type zonation map of East district of Sikkim 66
Fig. 5.12. Box plot of average maximum, minimum and standard deviation of every eight quadrat data in 28 elevation steps [5-32= $(550-3250)$] 68
Fig. 5.13. Habit group richness along the 100 m elevation gradient 69
Fig. 5.14. Margalef index (MI) of Species Richness along 100 m elevation gradients 73
Fig. 5.15 Species dominance along the 100 m elevation gradients 74
Fig. 5.16. Shannon-Wiener index of species diversity along the 100 m elevation gradients 74
Fig. 5.17. Species Evenness along the 100 m elevation gradient 75
Fig. 5.18. Plant species distribution along the 100 m elevation gradient 75
Fig. 5.19. Distribution of plant genera along the 100 m elevation gradient 76
Fig. 5.20. Distribution of plant families along the 100 m elevation gradient 77
Fig. 5.21. Distribution of plant species along the 200 m elevation gradient 78
Fig. 5.22. Distribution of plant genera along the 200 m elevation gradient 78
Fig. 5.23. Distribution of plant families along the 200 m elevation gradient 79
Fig. 5.24. Distribution of plant species along the 300 m elevation gradient 79
Fig. 5.25. Distribution of plant genera along the 300 m elevation gradient 80
Fig. 5.26. Distribution of plant families along the 300 m elevation gradient 80
Fig. 6.1. Relationship between biomass and altitude along 100 m elevation step 88
Fig. 6.2. Relationship between biomass and altitude along 200 m elevation step 88
Fig. 6.3. Relationship between biomass and altitude along 300 m elevation step 89
Fig. 6.4. Landsat satellite imagery of $6^{\text {th }}$ December 2013 (A) and NDVI of same period (B) 90

Fig. 6.5. Relation between Biomass vs Landsat EVI in 300m steps
Fig. 6.6. Relation between field biomass vs EVI2 values along the 100 m elevation
steps from 500 to 3300 m of Sikkim Himalaya
$\begin{array}{lll}\text { Fig. 6.7a. Relation between field biomass vs EVI2 values along the elevation steps } & \\ & \text { from (A) } 1200-3000 \mathrm{~m} \text { and (B) } 2300-3000 \text { of Sikkim Himalaya } & 92\end{array}$
Fig. 6.7b. Relation between field biomass vs EVI2 values along the elevation steps from (A) $1200-3000 \mathrm{~m}$ and (B) $2300-3000 \mathrm{~m}$ of Sikkim Himalaya
Fig. 6.8. Landsat satellite imagery of $26^{\text {th }}$ April 2013 (A) and (B) EVI of same period
indicate the presence of more than 40% cloud cover.
Fig. 6.9. Landsat satellite imagery of $13^{\text {th }}$ June 2013 (A) and (B) EVI of same period 94
Fig. 6.10. Landsat satellite imagery of $17^{\text {th }}$ September 2013 (A) and (B) EVI of same
period
Fig. 6.11. Landsat satellite imagery of $6^{\text {th }}$ December 2013 (A) and (B) EVI of same
period
Fig. 6.12. Relation between MODIS NPP and Field derived biomass 98
Fig. 6.13. MODIS Productivity imagery (A) and (B) MODIS NPP derive after
interpolation
Fig. 7.1. Relation between species richness and biomass along 100 m elevation steps. 101
Fig. 7.2. Relation between species richness and biomass along 200 m elevation steps. 101
Fig. 7.3 Relation between species richness and biomass along 300 m elevation steps. 102
Fig. 7.4. Relationship between biomass and species richness along the 100 m
elevation steps.
Fig. 7.5. Relationship between biomass and species richness along the 200 m
elevation steps.
Fig. 7.6. Relationship between biomass and species richness along the 300 m
elevation steps.
$\begin{array}{lll}\text { Fig. 7.7. Relationship between species richness and other variables (Temperature } \\ & \text { rainfall slope, rainfall, soil, elevation aspect and biomass) } & 105\end{array}$
Fig.7.8. Richness pattern along 200m elevation steps for (A) Species, (B) Genera and (C) Families based on best fitted second order polynomial regression model. All models were statistically significant ($\mathrm{p}<0.01$) and peaked at1800 m altitude.
Fig. 7.9. Residual vs. predicted values plot showing species richness at 200 m elevation steps in relation to: (A) Temperature, (B) Precipitation and (C) Area using generalized linear model fitted with Poisson error distribution. The non-linear pattern is clearly indicated with no heteroscedasticity in modelling. Points having values are outliers
Fig. 8.1. Elevation wise geographical area distribution map of east district of Sikkim 110
Fig. 8.2. Landuse and landcover map of East district of Sikkim 111
Fig. 8.3. Species richness along the 100 m elevation steps 113

LIST OFANNEXURE

Page No.

Annexure I: Importance Value Index of Species of the study area 152-170
Annexure II: Importance Value Index at Genus level in the Study area 171-180
Annexure III: IVI of recorded plant Families of the study area 181-184
Annexure IV: Volume Equation used for trees of the study area 185-186
Annexure V: List of plants species along the altitude showing the species distribution range (lower elevation 500 and upper elevation range 3300 (5 to 32) 186-219
Annexure VI: Detail description of Soil Classes found in Sikkim 220-226
Annexure VII: List of Publication 227

LIST OF PHOTO PLATES

Plate: 1 A. Girardinia diversifolia; B. Laphangium affine; C. Cheilocostus speciosus; D. Houttuynia cordata; E. Nepeta connata; F. Impatiens glandulifera; G. Aconitum ferox; H.Oxalis acetosella; I. Fragaria nubicola; J. Persicaria chinensis; K. Potentilla fulgens; L. Onopordum acanthium.

Plate: 2	A. Clematis montana; B. Arisaema propinquum; C. Pilea umbrosa; D.			
	Piper boehmeriifolium; E. Myricaria rosea; F. Oxalis corniculata; G.			
	Taraxacum campylodes; H. Impatiens urticifolia; I. Ranunculus laetus; J.	127		
	Anaphalis busua; K. Ageratum houstonianum; L. Didymocarpus			
	albicalyx.			

Plate: $3 \quad$ A. Ageratina adenophora; B. Swertia chirayita; C. Dobinea vulgaris; D. Panax pseudoginseng; E. Rheum aciminatum; F. Streptopus simplex; G. Achyranthes bidentata; H. Selinum wallichianum; I. Aster himalaicus; J.
Cassiope fastigiata; K. Erigeron bellidioides; L. Rhaphidophora decursiva; М. Euphorbia sikkimensis.
Plate: $4 \quad$ A. Primula capitata; B. Primula drummondiana; C. Primula edgeworthii;
D. Primula calderiana; E. Primula macrophylla; F. Mikania micrantha; G.

Elsholtzia fruticosa; H. Artemisia nilagirica; I. Inula orientalis; J. Polygonum molle; K. Pseudocyclosorus canus; L. Lycopodium japonicum.
Plate: 5 A. Anemone obtusiloba; B. Anemone rivularis; C. Elsholtzia fruticosa; D. Hedychium thyrsiforme; E. Cautleya spicata; F. Hedychium coccineum; G. Hedychium greenii; H. Aeschynanthus hookeri; I. Dendrobium denneanum;
J. Equisetum arvense; K. Pleione praecox; L.Clintonia Spp; M. Liparis Spp.
$\begin{aligned} \text { Plate: } 6 \quad & \text { A. Solanum viarum; B. Rubus buergeri; C. Rosa brunonii; D. Mussaenda } \\ & \text { roxburghii; E. Aster albescens; F. Brugmansia suaveolens; G. Daphne } \\ & \text { bholua; H. Viburnum erubescens; I. Zanthoxylum nepalense; J. Maesa } \\ & \text { chisia; K. Hypericum uralum; L. Erythrina arborescens; M. Callicarpa } \\ & \text { macrophylla. }\end{aligned}$
Plate: $7 \quad$ A. Osbeckia crinita; B. Mahonia napaulensis; C. Oxyspora paniculata; D. Leucosceptrum canum; E. Symplocos ramosissima; F. Engelhardtia spicata; G. Magnolia doltsopa; H. Edgeworthia gardneri; I. Litsea cubeba; J. Castanopsis indica; K. Callicarpa arborea; L. Terminalia myriocarpa.
Plate: $8 \quad$ A. Osbeckia crinita; B. Mahonia napaulensis; C. Oxyspora paniculata; D. Leucosceptrum canum; E. Symplocos ramosissima; F. Engelhardtia spicata; G. Magnolia doltsopa; H. Edgeworthia gardneri; I. Litsea cubeba; J. Castanopsis indica; K. Callicarpa arborea; L. Terminalia myriocarpa.
Plate: 9 A. Rhododendron barbatum; B. Rhododendron thomsonii; C. Rhododendron cinnabarinum; D. Rhododendron decipiens; E. Rhododendron wightii; F. Rhododendron wallichii; G. Rhododendron lanatum; H. Rhododendron campylocarpum; I. Rhododendron tubiforme; J. Rhododendron cyanocarpum; K. Rhododendron arboreum; L. Form of Rhododendron thomsonii.
Plate: 10 A. Dense subtropical forest; B.Steep slope rockey area of the study area; C. Dense Temprate forest of East District Sikkim; D. Vegetations nearby village; E. Vegetation along the river side; \mathbf{E}. Dense bamboo forest along the hill; G.Collection of specimen from alpine area; H. Alpine area covered by snow.

Chapter 1 INTRODUCTION

INTRODUCTION

The term "species" is the identity of each living things. There are different types of living organism in the earth. It is broadly divided into plant and animals, present studies are attempted to know the plant species richness and its relation with biomass along the altitude using the field data of East district of Sikkim

1.1 Biological Diversity

Biodiversity entails all forms of biological entities inhabiting the globe, including prokaryotes and eukaryotes, wild plants and animals, microorganisms, domesticated animals and cultivated plants and even genetic materials like seeds and germplasm (Kothari, 1992). Biodiversity refers to the variability among the living organisms like plants, animals and microbes from all sources including terrestrial and aquatic ecosystems and ecological complexes of which they are the parts. In brief, it refers to the versatilities within the species, among the species of plants, animals and micro-organisms, ecosystems and the ecological complexes on the earth. Biodiversity is the assemblage of different life forms. It can also be defined as the number of different organisms and their relative frequency in an ecological system. Diversity is composed of two elements: richness and evenness, it decrease and its endemic subset increased along the gradients (Behera \& Kushwaha, 2007). India has about 2,00,000 species of living organisms (Agrawal et al., 2002). Vegetation zones along the altitudinal gradient showed interesting differences in species richness (Hegary et al., 1998). Species diversity is measured as the total number of individual species habited in a study area (Pianka, 1966).

The world has at least 5-7 million different species of plants, animals and micro-organisms, out of these only about 1.7 million is known to humans (Subba, 2002). The Himalayas which is the largest and youngest mountain ranges in the world stretches across the north of sub-continent from Myanmar in the east to northern Pakistan in the west. On the north, they border the Tibetan plateau and on south by Indo-Gangetic low land. The rich biodiversity of the Himalayan states have not been studied so far upto the level of satisfaction (Subba, 2002). Only superficial studies of ferns and fern-allies, Gymnosperms, Angiosperms (including special groups like orchids, medicinal and Aromatic plants), Butterflies, Fishes, Amphibians, Reptiles, Aves (Birds) and Mammals have been attempt so far. There is an urgent need to study the rich and vulnerable biodiversity of the entire Himalayan range and their distribution pattern, especially in respect to elevation gradient in its different parts.

To understand theecological phenomena like environmental disturbance of the species, the term species diversity is used. The understanding of species richness pattern is important for the management of species diversity in the world that may become warmer owing to the human impact (Grytnes, 2003). To understand the common cause of species distribution species in various environmental gradients, researchers are working in different environment using various factors, the commonly known are latitudinal and altitudinal. Pianka (1966) reviewed a concept of latitudinal gradient in species diversity. Gaston (2000) and Rahbek and Graves (2001) studied the spatial patterns of latitudinal gradient in species richness.

To understand the distribution pattern of species along the elevation gradient, Kreft and Jetz (2007) observed the global pattern and determinants of vascular plant diversity. Liberman et al. (1996) studied the species pattern along the altitudinal gradient of Costa Rica. Among the various patterns of species richness along the altitude, the monotonic decline of hump-shaped patterns are most commonly recognized (Bhattarai \& Vetaas, 2003; Grytnes, 2006; Acharya et al., 2011).

Many factors, such as climatic variables like rainfall, temperature, soil conditions, moisture, nutrients, historic events, palaeo-climatic changes, interaction with fauna, competition between tree species for crown and root space as well as human influence have been considered as responsible for the elevational pattern and distribution of species richness. (Odland \& Birks, 1999; Kharkwal et al., 2005; Veenendaal et al., 2005; Brown, 2001)

High mountains offer a variety of steep environmental gradients over a relatively short distance (Peterson et al., 1997; Korner, 2003; Becker et al., 2005). The large environmental variation within a small geographical area makes altitudinal gradients ideal for investigating several ecological and biogeographical hypotheses (Korner, 2000). The Himalayan elevation gradient is the longest bio-climatic gradient in the world (Grytnes \& Vetaas, 2002). Several studies has been carried out in plant community and in altitudinal gradient in the Himalayan region (Grytnes \& Vetaas, 2002; Bhattarai \& Vetaas 2003;Shapoo et al., 2004; Kharkwal et al., 2005; Bhatnagar et al., 2006;) on variation of plant species richness composition along the altitudinal gradient.

Behera and Kushwaha (2007) analyzed trees along an elevational gradient covering a 2000 m elevation range (200 to 2200 m) in the Eastern Himalaya. Achraya et al. (2011) studied in Sikkim to analyse the tree diversity using the transects for sampling keeping the 150 m elevation distance between the two transects from the elevation range of $300-4700 \mathrm{~m}$, i.e. from tropical forests to alpine meadows.

The species diversity generally decreases with the increase in altitude (Odland \& Birks, 1999; Lieberman et al., 1996; Grytnes \& Vetaas, 2002); Achraya et al., 2011). The distribution of the species richness in the Himalayan region mostly depends on the altitude and climatic variables. The climatic conditions and the geography of the area are changes along the altitude (Kharkwal et al., 2005). The altitude, slope, aspect, rainfall and humidity had to play sole information of community composition. Besides, vertical canopies also play vital role in forest ecosystems (Kharkwal et al., 2005).

Species richness along the elevation gradient and underlying factors for the pattern are not properly explored and understood. Understanding elevational distribution pattern of species and the factors governing the same would help to understand biodiversity and aid in their conservation (Battarai et al., 2004; Hunter \& Yonzon, 1993). Elevation is an important factor in habitat diversity because it present changes in the availability of resources, to know correspondence between the physical conditions and natural communities that are found along a gradient of increasing elevation and those are found along a gradient of increasing elevation. Many researchers have explored biodiversity distribution pattern of plants and clarified that elevation has a role in regulating species richness patterns (Grytnes 2003; Oommen \& Shanker 2005).

A simple rule says that the species richness and altitude relationship follows the same principle as the analogous latitudinal pattern (Stevens, 1992; Colwell \& Hurtt, 1994). Species richness of various taxonomic groups decreases towards the poles or higher altitudes. It was long believed that a monotonic
decrease of species richness with increasing elevation was the universal pattern (Stevens, 1992). The plants and animal diversity is the lowest near the poles and increases towards tropics, reaching its peak in tropical rain forests and slowly decrease towards the sub-alpine and alpine regions.

Fig. 1.1. Biodiversity distribution pattern along the elevation gradient. Curve ' 1 ' shows that the biodiversity levels decrease with elevation and the maximum is at low elevations and curve ' 2 ' indicates that most diverse zones are in the mid-elevation (Adapted from: Weng et al., 2007)

Species richness generally decreases with elevation (Stevens, 1992; Brown \& Lomolino, 1998; Rahbek, 1995). Relationship between richness patterns and various ecological, geographical and other factors have been dealt in by many workers. Among the various patterns, monotonic decline and humpshaped pattern of species richness are most commonly recognized (Vetaas \& Grytnes, 2002; Rahbek, 2005 Acharya et al., 2011; Bhattarai \& Vetaas, 2003).

Fig. 1.2. Relation between tree species richness and elevation in central Nepal (Adapted from: Bhattarai \& Vetaas, 2003)

Fig. 1.3. Relation between tree species richness and elevation in central Nepal (Adapted from: Bhattarai \& Vetaas, 2006).

Many factors such as climate (Hawkins et al., 2007; McCain, 2007), productivity (Mittelbach et al., 2001), historic events (Brown, 2001; Hawkins et al., 2007) and isolation (Lomolino, 2001) have been considered as responsible for the elevational pattern of species richness. Vetaas and Grytnes, (2002) studied the distribution of vascular plant species richness along the elevation gradient of Nepal Himalaya, between 1000 to 5000m and found a hump-shaped pattern (Fig. 1.2-1.3). Acharya et al., (2011) have examined the relation between tree species richness along the elevation gradient of eastern Himalaya using the field data collected from different altitudinal range of Sikkim in 1 km transects using sample size 20x 10m (Fig. 1.4).

Fig. 1.4. Observed species richness of trees along the elevation gradient of Sikkim, Eastern Himalaya (Adapted from: Acharya et al., 2011)

The altitudinal/ latitudinal decrease in species richness has been known for over a century, species diversity as a whole and its distribution along the altitudinal gradient had been a subject of ecosystem (Hubbell et al., 1999; Kharkwal et al., 2005). Himalaya is one of the Hotspots of biodiversity in India, this region comprises several species of plants, with many of them being indigenous (Kharkwal et al. 2005). Lamolino (2001) studied the gamma diversity for the species richness for each elevation zone which is interpolating species presence between known elevation range limits has commonly been used to investigate species richness pattern along the elevation gradient. In tropical and subtropical latitudes, profound differences in climatic regime ranging from tropical tohigh-tundra, may occur within latitudinal distances of less than 100 km in mountainous region (Lacoul \& Freedman, 2006). Such large and steep altitudinal gradients have a great influence a biodiversity in mountainous region (Ormered et al., 1994).

Studies to establish relation between species richness and the altitude are lacking in the Sikkim Himalayan region which has a highest altitudinal gradient in India. In the present study, attempt has been made to understand the relationship between the plant species (trees, shrubs, herbs and epiphytes) richness along the altitudinal gradient of East Sikkim. Further, such kind of study will be helpful for the future research as it provide a comparative study of the change in species and species composition of plant community along the altitudinal gradient in the East district of Sikkim.

The number of species present, i.e. the "species richness" and species evenness with which the individuals are distributed among these species has also studied to understand the diversity of the species along the elevation gradient (i.e. species evenness, species equitability, or abundance of each species) by some workers (Margalef, 1958; Lloyd \& Ghelardi, 1964; Pielou,1966; Spellerberg, 1991).

1.2. Plant community structure

Diversity of a community can be assessed by the proportional species abundance data either by using statistical sampling theory (Preston, 1948; 1962) or by a variety of nonparametric measures (Simpson, 1949; Shannon, 1963). Owing to the complex nature and lack of theoretical justification for statistical sampling theory, the nonparametric measures have gained a great deal of popularity in the recent past (Magurran, 1988; Krebs, 1989). McNaughton and Wolf (1970) opined that dominance is an expression of ecological inequalities arising out of different exploitation strategies. The growth form or life-form composition of a community is the manifestation of the adaptation of its component species to the climatic condition of the area. Raunkiaer (1934) described plant communities in terms of life-form composition. Richards (1952) used the word 'Synusiae' to describe a group of plants having similar lifeform, which play similar role in the community to which they belong.

1.3. Topographical description

Topography is a field of geoscience and planetary science comprising the study of surface shape and features of the Earth. It also deals with the description of earth surface such as shape and features. Topography is widely related with the biodiversity; the topography of an area could also mean the surface shape and features, some commonly use topography for the biodiversity study are; elevation, slope, aspect, drainage, road etc. Relationship between biodiversity with topography is highlighted below.
1.3.1. Elevation: Elevation gradient provides the well-known correspondence between the physical conditions and natural communities those are found along a gradient of increasing latitude and those which are found along a gradient of increasing elevation (Huston, 1994), it is not surprising that species
diversity generally decreases with increasing elevation. General rules of thumb is for air temperature is that an increase in elevation of 1000 m results in a decrease in temperature $\left(6^{\circ} \mathrm{C}\right)$ equivalent to that associated with an increase in latitude corresponding to linear distance of 500 km to 750 km (Holdridge 1967; Whittaker \& Niering 1965). Many physical conditions in addition to mean temperature, such as the seasonal variability of those conditions also change along the altitudinal and latitudinal gradients.

Fig.1.5. Vegetation zones in the Himalayas as adapted from http://blog-yard-garden-news.extension.umn.edu/2009/02/in-rhododendron-fairyland-fantasy-of.html

The study of altitudinal gradient does not influence species diversity, but the explanatory mechanism must be related to some of the many physical and historical factors that changes along the altitudinal gradient, such as sun angle, day length, seasonality, temperature means and extremes, rainfall amount and timing, winds and storms, glacial history, etc. each of these, and other factors can interact with organism and their physical environment in complex way that could potentially influence species diversity. To understand the many reasons why diversity changes along this dramatic gradient, it is necessary to examine the effect of diversity of simpler gradients, and if possible for single factor (Huston, 1994). So, there are several factors which correlate the species diversity along the altitudinal gradient.

Moisture is also considered as one of the factors, when moisture (Relative Humidity) increases with the increasing elevation, but the greatest number of plant species of all growth form together per 0.1 ha sample was found at intermediate to low elevations and intermediate moisture level in open oak woodlands grasslands and in the Sonoran desert.
1.3.2. Slope and aspect: Slope is a characteristic feature of the mountains. Steepness of slope affects the amount of solar radiation received during the day and soil characteristics primarily through its effect on the rate of water flow. In the northern hemisphere, at higher Elevations, steepness of the slope
increases the exposure of the surface to sun on the southern slope, whereas the northern slopes remain cooler. This is due to the fact that the steep southern slopes receive the rays of the mid-day sun almost at right angles, whereas the northern slopes receive only oblique rays during morning and evening hours and sometimes none at all except for a short period during summer. This difference in solar radiation and consequent temperature values bring about changes in vegetation on the two slopes. Thus, northern slopes support virgin forest with hygrophilous ground vegetation. The local climatic differences on two slopes can play vital role in the health of the vegetation.
1.3.3. Drainage: Drainage has a major role to promote the development of new vegetation types with a dense ward of grasses, from which characteristic species of wet meadows disappear at different rates (Grootjansa, 2005). The presence of perennial rivers and turbulent streams in the region has helped in the luxuriant growth of forest in the region.
1.3.4. Road: Road is the lifeline of the civilizations it connecting the small towns and the capital city pass through the middle of the reserved forests small settlements. The expansion and construction of road networks is destroying the forests cover in the entire Himalayan region as it triggers small and large landslides during south west monsoon seasons as well as destroy the springs and catchments.
1.3.5. Edaphic conditions: Soil and vegetation has a complex interrelationship. Soil properties influence the vegetation and vice versa. Soil is one of most important ecological factors. Plants depend on it for the nutrient, water supply, and for anchorage. Soil is a natural body that exists as part of the pedosphere and which performs four important functions: it is a medium for plant growth; it is a means of water storage, supply and purification; it is a modifier of the atmosphere of Earth; and it is a habitat for organisms all of which modify the soil. Similarly, Selective absorption of nutrients by different tree species and their capacity which is return to the soil brings about changes in the soil properties. The temperature of soil is one of the most important factors for the growth of plants particularly that of the surface layers by its effects during germination (Richardson, 1958).

1.4. Biodiversity pattern

In order to monitor and conserve biological diversity, it is important to have ways of measuring it and documenting the levels of diversity in different parts of the world. We have to consider diversity at different levels. E.O. Wilson, 1988 was first used the term biodiversity in the literature, the concept of biological diversity from which it arose had been developing since the nineteenth century and continues to be widely used.

The major biological diversity pattern is discussed as below;
1.4.1. Latitudinal pattern: The latitudinal gradient was the pattern that first attracted scientific attention to species diversity. For most of the groups, the terrestrial plants and animals, diversity is lower near the poles and increases towards the tropics, reaching its peak in tropical rain forest.

There are many factors correlated with this gradient that could potentially affect species diversity, such as an average temperature and precipitation, the variability in temperature and precipitation, annual net primary productivity, and geological history. Some of the factors are positively correlated with latitude while others are negatively correlated. The latitudinal gradient in species diversity has been reported in
a wide variety of taxa. The most dramatic and biologically important latitudinal diversity gradient is that of plant species. Diversity of trees increases from the nearly non-specific boreal forests of the subarctic, to the overwhelming diversity of tropical rain forests. The same pattern of increasing diversity with decreasing latitude is also found in the nature (Monk, 1967; Glenn-Lewin, 1977; Currie, 1991; Silvertown, 1985). Diversity increases with decreasing latitude in most groups of plants.
1.4.2. Life-form composition pattern: Life-form plays the major role in the biological pattern, there are several types of plant growth forms or life-forms, the higher plants are trees and lower growth forms of plants are moss and lichen which are easily found in the field, the life-form of a plant species is usually a constant characteristic. The same species, however, may assume a different life-form when growing under very different environmental set-up. The life-form was originally developed for non-taxonomical comparison of vegetation types in different regions of the world. Klimes (2003) stated that many basic elements of life history of plants are strongly affected or even largely determined by the life-form, species pools and other associated environmental (soil texture nutrient substrate stability etc.) factors.

Plants of the same life-form growing together are likely to compete directly for the same space or niche (ecological role of a species in an environment). Their similarity in structure and form indicates a similarity in adaptation to the utilization of the environmental resources offered in a given space. The most extreme form of life-form similarity is shown among individuals of the same species. Wherever they grow close together, they are also the strongest competitors, because they are adapted to use the environmental resources in the same manner. Species of much unrelated families may also be of the same life-forms e.g., similar stem-succulents evolved in the families Cactaceae, Euphorbiaceae, Asclepiadaceae, and Agavaceae.
1.4.3. Factors correlated with diversity: Describing the variety of biodiversity patterns on the earth is relatively simple in comparison with understanding and explaining those patterns, some properties of the environment will be positively correlated with diversity and some negatively correlated with each other. Statistical analyses can never demonstrate causal relationships, but can often show strong correlations of diversity with factors that are marginally, if at all, related to the mechanisms responsible for the diversity gradient.
1.4.4. Ecotone zone: Ecotone is the transition zone between two adjacent ecological communities, such as forest and grassland. It has some of the characteristics of each bordering community and often contains species not found in the overlapping communities. An ecotone may exist along a broad belt or in a small pocket, such as a forest clearing, where two local communities blend together. The influence of the two bordering communities on each other is known as the edge effect. An ecotonal area often has a higher density of organisms and a greater number of species than are found in either flanking community.
1.4.5. Forest type variation: Different forest types may also play an impotent role for the diversity of plant species. Tropical, temperate and boreal forests offer widely due to the presence of diverse habitat conditions for plants, animals and micro-organisms.
1.4.6. Species distribution range: Even today, the number of plant species currently in existence in the world is not clear, but there are number of plant species distributed in different part of the world.

About 8.7 million living thing exist in the world out of which about 3.90 lakh plant species have been estimated in the world.
1.4.7. Biodiversity scale factor; Biodiversity patterns can be studied at three levels viz., global, focal and local. By studying spatial patterns of biodiversity we can identify some distinct spatial gradients in biodiversity. The description of each of those is given below:
A. Grain size: There is different scale to study the biodiversity. Grain size is one of those, in landscape ecology, grain describes the size of the smallest homogeneous unit of study and determines the resolution at which a landscape is studied.
B. Local scale: On a local scale, changes in the abundance of species in plant communities, be it fluctuations or trends, can be indicative of the fate of the local populations.
C. Global scale: The most striking gradient is a global one; there is an increase in species richness as one move from high latitudes at the poles to the lower latitudes of the tropics. A similar pattern is seen for higher taxonomic groups (genera, families). Various hypotheses have been raised to explain the greater species.

1.5. Community

Community analysis was carried out for further study of frequency, density, abundance and finally Importance Value Index (IVI)

1.5.1. Frequency and Relative Frequency:

Frequency: Various species of the community are recorded by different phytosociological methods by taking any sampling unit like quadrat transect and point, Frequency is the number of sampling units (as \%) in which a particular species occurs.

Relative Frequency: The relative frequency of an event is defined as the number of times that the event occurs during experimental trials, divided by the total number of trials conducted
1.5.2. Density and Relative Density: Density is an expression of the numerical strength of a species, where the total number of individuals of each species in all the quadrats is divided by the total number of quadrats studied is the density of the population.

Relative density: The Relative density is the study of numerical strength of a species in relation to the total number of individuals of all the species and can be calculated.

1.5.3. Abundance and Relative Abundance (Dominance):

Abundance: This is the number of individuals of any species per sampling unit of occurrence. Abundance may not be expressed generally in quantitative terms. Organisms, particularly plants are not found uniformly distributed in an area. They are found in smaller patches or groups depending upon the number of plants and degree of evenness of the neche.

Relative Abundance (Dominance): Ecological dominance is the degree to which a taxon is more numerous than its competitors in an ecological community, or makes up more of the biomass. Most ecological communities are recognized and defined by their dominant species.
1.5.4. Importance Value Index: This index is used to determine the overall importance of each species in the community structure. In calculating this index, the percentage values of the relative frequency, relative density and relative dominance are summed up together and this value is designated as the Importance Value Index or IVI of the species (Curtis, 1959).

1.6. Diversity Indices

Determining which community has greater species diversity is easy when either species richness or evenness is held constant while the other parameters vary, but often communities will vary in both richness and evenness. Scientists have developed a variety of mathematical equations (or indices) that incorporate both species richness and evenness into a single measure of species diversity (e.g., the Shannon-Wiener Index and Simpson's Index). Different diversity indices assign different weightings to species richness and evenness, so the most useful index to choose depends on the circumstances. In ecology, it is often used to quantify the biodiversity of a habitat. It takes into account the number of species present, as well as the large quantity of each species. It measures the probability that two individuals randomly selected from a sample will belong to the same species. Different indices have been used for the diversity (viz., Simpson's Index of Diversity 1-D, Shannon-Wiener index (H') [Diversity] (1949), Shannon's diversity index, Margalef index, etc.). The units of these indices differ greatly, making comparisons difficult and confusing.

1.7. Plant Biomass

Plant biomass is defined as the mass of living plant materials as per unit area; it is divided into two parts, above ground biomass and below-ground biomass. It can also be defined as the mass of living plant materials per unit area. Biomass assessment is necessary because forest is affected by various factors such as deforestation, fire, harvest, pests, silviculture and climatic change (Schroeder et al., 1997; IPCC, 2006), which cause changes in the forest ecosystem. However, the quantification of forest biomass becomes difficult due to different approaches, based on field measurements as well as remote sensing and GIS are available for biomass estimations ($\mathrm{Lu}, 2005$).

Measurement of biomass is carried out mainly by the following four techniques:

- Destructive sampling technique or Harvest mapping technique (Husch et al. 2003)
- Non-destructive sampling technique (Chave et al. (2005)
- Measurement based on remotely sensed data taken from airborne/spaceborne systems (Kale et al., 2002), and
- Semi-empirical modelling -estimation using models (Mette et al., 2003; Lee et al., 2003).
1.7.1. Destructive sampling technique or harvest mapping technique: This method involves felling of trees, the individual's trees can be harvested and separation into different components like branches, leaves, and stems finally the fresh and dry weights are taken. The ratio between dry and fresh weight used to calculate for the entire sample. Destructive approach is most accurate among all the other methods of biomass estimation, but this method cannot be used for the large forests because of destructive and high cost involved.
1.7.2. Non-destructive sampling technique: Non-destructive technique for biomass estimation is one widely used technique. In this method tree specific regression equation were involve viz. Tree diameter/circumference, tree height and basal area are used as independent variables. Brown et al. (1989) used non-destructive sampling technique to estimate the volume of the tree and then converted into biomass using the specific gravity of individual species. Sampling of tree to develop an equation has been carried out by several authors (Overmen et al., 1994). Day et al. (2013), used sampled tree $>10 \mathrm{~cm}$ dbh to calculate biomass of Central African rainforests. The non-destructive technique for estimation of biomass is time and cost effective, as compared to destructive method, but this method is generally used for the estimation of biomass for large forests.
1.7.2.1. The biomass assessment using the field data: To estimate the biomass the volumetric equations and the specific gravity of respective tree species is required. For remote sensing based biomass estimation we need remote Sensing data of the particular time frame.

Plants those dominate a site, in terms of biomass, is a reflection of the plants which are controlling the nutrient, water, and solar resources on the site. Therefore, biomass is often measured to assess the ecological status of a site.
1.7.3. Measurements based on remotely sensed data taken from airborne/ spaceborne systems: Satellite based estimation of biomass is the technique to estimate Above Ground Biomass. Rauste (2005) was mapping the forest biomass using Multi-temporal JERS SAR data, Ferrazoli and Guerriero (1995) use radar sensitivity to investigate tree geometry and wood volume. Pandey et al. (2010) used the Envisat ASAR data for biomass estimation in Dudhwa National Park of Lakhimpur-Kheri district in Uttar Pradesh state of India. Eriksson et al. (2003) also use Multitemporal JERS data for growingstock volume estimation of Siberian forest. Kale et al. (2002) also used remote sensing and Geographic Information System (GIS) to estimate the NPP at the patch level, which takes Intercepted Photosynthetically Active Radiation (IPAR). There are several studies conducted for the estimation of biomass using optical remote sensing data (Zheng et al., 2004; Schlerf et al., 2005; Foody et al., 2003; Devagiri et al., 2013).

The continuous nature and synoptic coverage of remotely sensed data have led to their increased application for AGB estimation over large areas, although the use of these data remains challenging in complex forest environments.
1.7.3.1. Satellite derived NPP Products: Forest productivity and biomass are expected to change drastically as global climate change (Singh et al., 1994). Average ecosystem productivity as a function of ecosystem redundancy can be greatly affected by both the species responses and the degree of synchronicity of their responses in the ecosystem (Yachi \& Loreau, 1999). Productivity of ecological system, community or any point there, is defined as the rate at which radiant energy is stored by photosynthetic and chemosynthetic activities of the producer organism in the form of organic substances which can be used as food material by the consumers. The relationship between bio-diversity and ecosystem functioning focused upon the effect of losses of plant diversity and productivity often declined with the diversity loss (Ruijven \& Berendse, 2005). The values of Net Primary Productivity (NPP) are much higher than in the natural forests of India (Singh \& Toky, 1995).

Vegetative productivity is the source of all food, fibre and fuel available for human consumption and therefore improves the habitability of this planet. The rate of conversion of light energy to plant biomass is termed as primary productivity. The sum total of the converted energy is called gross primary productivity (GPP). NPP is the difference between GPP and energy lost or used during respiration of plants (Campbell, 1990).

Global productivity can be estimated by combining remote sensing technique with carbon cycle processing. The U.S. National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) currently "produces a regular global estimate of gross primary productivity (GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1-km spatial resolution, 150 million cells, each having GPP and NPP computed individually" (Thornton et al., 2002; Running et al., 2004). For the estimation of GPP/NPP across the Earth's entire vegetated land surface. MOD17 algorithmMODIS project has been launched to provide continuous estimates of MOD17 GPP/NPP outputs that are useful for natural resource and land management, global carbon cycle analysis, ecosystem status assessment, and environmental change monitoring. MOD17 is part of the NASA's Earth Observation System (EOS) program and is the first satellite-driven dataset to monitor vegetation productivity on a global scale. Additionally, user guide for GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm had been developed in and around 2000 by Heinsch et al. (2002). The MOD17A2/ A3 User's Guide provides description of the GPP and NPP algorithms (MOD17A2/A3) designed for the MODIS sensor aboard the Aqua and Terra platforms. The resulting 8-day products are archived at a NASA DAAC (Distributed Active Archive Center). The document is intended to provide both a broad overview and sufficient detail to enable the successful use of the data in research and applications.
1.7.4. Semi-empirical modelling-Estimation using models: Semi-empirical methods are simplified versions of Hartree-Fock theory using empirical (= derived from experimental data) corrections in order to improve the performance. These methods are usually referred to through acronyms encoding some of the underlying theoretical assumptions.

On the other hand the relationship between species richness and above-ground biomass is emerging as a central theme in diversity studies (Peet \& Christensen, 1988). A critical challenge for ecology is to understand the mechanisms linking ecosystem functions and community dynamics (Loreau et al., 2001)

1.8. Relation between productivity and species richness

The relationship between the productivity and species richness (biodiversity) in plant community has two different perspectives (Bishoff et al., 2005), first one is the effect of species richness and productivity as a particular ecosystem function (Tilman et al., 2001), and the next perspective is the effect of the productivity and diversity of the plant communities. The relationship between species richness and NPP has been particularly controversial, with disagreement over whether productivity controls or is controlled by species richness (Waide et al., 1999; Loreau et al., 2001; Bond \& Chase, 2002). Species richness and productivity pattern is a function of various disturbance gradients. Although numerous empirical studies have been conducted to examine the effects of resource additions or disturbance regimes on species richness (Huston, 1999), difficulties arise in applying generalized theoretical models to patterns in natural environments because patterns may be scale-dependent (Waide et al., 1999). A few studies of productivity-species richness patterns in extremely species-rich communities were conducted across
natural resource gradients, particularly at scales intermediate between small plots and continents or within vegetation types (Abrams, 1995). Owing to scanty information on the mechanistic explanations of the relationship between species richness and productivity and predictions of conditions that produce monotonic or unimodal patterns remain unresolved (Huston, 1994; Abrams, 1995). Waide et al. (1999) and Weiner (1995) argued that examination of patterns at a local level is an essential first step in generating testable hypotheses regarding the basis of a species diversity gradient.

Fig. 1.6. Plot of effective number of species calculated from the Shannon Wiener index against AGB estimates; (Adapted from Day et. al, 2013).

1.9. Relationship between species richness with biomass along the elevation

The relationship between species richness and biomass has become a central issue of community and ecosystem ecology; there is no reason to expect any general relationship between species richness and productivity (Mouquet et al., 2002). There are many cases in which biomass are negatively correlated with species diversity. Some authors have predicted a positive relationship between productivity and species richness (Tilman et al., 1997; Loreau, 1998b) based on niche complementarily.

The difference between situations with positive versus negative correlations and diversity and biomass is an important step in understanding how diversity is regulated. The productivity can be either negatively or positively correlated with species diversity. In fact, in many systems a unimodal pattern is found with highest species diversity at intermediate levels of productivity and diversity decreasing with either an increase or decrease in productivity. In General, the productivity is either remaining constant or decrease as the number of locally coexisting species increases (Loreau \& Mouquet, 1999). The species richness and productivity relationship mainly depend upon the environmental context (Mouquet et al., 2002). There is no relationship between species richness and biomass under constant conditions but, when communities were exposed to experimental drought, biomass increased with species richness (Mulder et al., 2001).
1.9.1. Positive correlations of diversity and productivity: As per Reichle (1970), on the global scale, the primary productivity of terrestrial vegetation is positively correlated with plant species diversity. Productive forest ecosystems generally have more species than less-productive deserts or grasslands. The studies carried out in North America and America by Currie and Paquin (1987), Adams and Woodward (1989), and Currie (1991) on species richness and climatic conditions have shown strong correlations between the species richness of major taxonomic groups and simple climatic parameters. Similarly, positive correlation of seed-eating ants and rodents in North American desert has been reported by Brown and Davidson (1977).

Conversely, diversity does not always increase with productivity or the environmental conditions that influence productivity. Abramsky and Rosenzweig (1985) reported that in the desert of Israel, the species richness of desert rodent's first increases with increasing rainfall, then decreases at higher levels of rainfall with a maximum at intermediate levels.

Similar patterns of diversity have been noticed by Whittaker and Niering (1975) among the vascular plants in Arizona mountains.

In forests the primary productivity is positively correlated with plant species diversity, as compared with deserts and grasslands the productive forest ecosystems have more species as well as more productivity (Huston, 1994). Potential evapotranspiration is also correlated with plant productivity, but diversity does not always increase with productivity or the environmental conditions that manipulate productivity.
1.9.2. Negative correlation of diversity and productivity: A few studies have documented negative correlation of species diversity with productivity. This unexpected phenomenon was sometimes referred as 'the paradox of enrichment' (Rosenzweig, 1971; Riebesell, 1974). They opined that diversity often decreased when nutrients or other resources that increases productivity were added to a system. Additionally, oceanic ecosystem shows a similar phenomenon along the natural gradients of productivity. Thus, productivity can be either negatively or positively correlated with species diversity. In fact, in many systems a unimodel pattern is found with highest species diversity at intermediate levels of productivity, and diversity decreasing with either an increase or a decrease in productivity (Grime, 1973, 1979; Al-Mufti et al., 1977).

The diversity often decreases if increased amount of nutrients or other resources that increase productivity were added to the system. In aquatic system, though the addition of fertilizer to herbaceous plant communities often results in sharp decrease in species diversity, some pattern was found along the natural gradients of soil fertility (Huston, 1994). The central region of the open ocean is characterized by low productivity and a low density of individuals. However, the species diversity remains high in such areas. But in high productivity area there is high concentration of individuals though shows low species diversity. The productivity is either negatively or positively correlated with the species diversity (Huston, 1994). Total rate of photosynthesis, including the organic matter used up in respiration during the measurement period (Shukla \& Chandle, 2006). If plant growth continues then only the NPP is available for harvest by man and other animals. The Himalayan region is biologically extremely diverse and the efforts for conservation are somehow successful with both local global implications.

Fig.1.7. Qualitative predictions of growth-mortality trade-offs (a-b), biomass (c), diversity (d) and resulting BEF relationships (e-f) based on a successional niche model with only early- and latesuccessional specialists (e.g. two species, Kinzig and Pacala 2001). (a) Biomass growth declines with stand age. Early-successional specialists have higher productivity under abundant resources early, but cannot maintain productivity as stands age. (b) As resources decline with stand age, biomass mortality increases. Increased mortality is higher for early-successional species. (c) As a result, early-successional species biomass peaks early in succession but is supplanted by late-successional species. (d) Under the successional niche hypothesis, the highest diversity occurs in middle-aged stands transitioning from early to late-successional species. (e) Diversity relationship with biomass dynamics (Dbiomass) due to growth shifts from negative to positive across succession. (f) Diversity relationship with Dbiomass due to mortality shifts from positive to negative, due to dominance late in succession by low mortality species. [Adapted from: Lasky et al., 2014]

1.10. Summary of some related studies around the globe

There are several literature on the study of species richness along the altitudinal gradient in the globe some of them is as presented in 1.1.
Table 1.1. Summary of some related studies around the globe

Title	Site	Location	Elevation (amsl)	Important Result	Authors	Methodology
Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India	Central Himalaya	23:43:45 - $30: 20: 12$ N and $78: 44: 30$ - 80:18:45 E	$\begin{array}{\|l\|} \hline 200 \mathrm{~m} \\ \text { to } 5800 \mathrm{~m} \end{array}$	Distribution of the Species Richness in the central Himalayas depends on altitudinal and climatic variation	Kharkwal et al., 2005	Field sampling
Relationship between plant species richness and Biomass in an arid sub-alpine grassland of the Central Himalayas, Nepal	Central Himalaya Nepal	$\begin{aligned} & 28: 40 \mathrm{~N} \& \\ & 88: 01 \mathrm{E} \end{aligned}$	$\begin{aligned} & 3500 \mathrm{~m} \text { to } \\ & 7000 \mathrm{~m} \end{aligned}$	The hump shaped relationship in arid Himalayan grassland in linear model.	Bhattarai et al., 2004	200 sample were plots ($1 \times 1 \mathrm{~m}$) in two grassland site (site I and II), through random sampling, it followed a subjectively transect line, the central plots were made along the transect line
Density may alter Diversity-Productivity relationships in experimental plant communities				Aboveground, belowground and total biomass increased significantly with species richness and community density. However, a significant interaction between species richness and community density occurred for both total and aboveground biomass, indicating that the diversity productivity relationship was complementary at higher than at lower density.	He et al., 2005	Conducted a factorial experiment in which plant functional group richness was held constant at three, while plant species richness increased from three to six to 12 species and community density from 440 to 1050 to 2525 seedlings. Response variables included density, evenness and above- and belowground biomass at harvest.

Title	Site	Location	Elevation (amsl)	Important Result	Authors	Methodology
Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient	Himalaya n altitudina 1 gradient	$\begin{array}{lr} 26: 36 & - \\ 28: 13 \mathrm{~N} \text { and } \\ 88: 57 & - \\ 87: 30 \mathrm{E} & \end{array}$	$\begin{aligned} & 077 \mathrm{~m} \\ & \text { to } 4980 \mathrm{~m} \end{aligned}$	Arcto-tertiary floristic elements of the highest altitudinal region from the more widely distribution temperature and tropical species of lower regions.	 Freedma n 2006	Environmental variables were sampled in all seasons and the sampling was done using 10-20 (depending on lake size) quadrates of $1 \mathrm{~m}^{2}$, stratified according to the approximate area of obvious communities present. Total cover could not exceed 100%. Finally, the Species diversity was calculated using the Shannon index.
An analysis of altitudinal behaviour of tree species in Subansiri district, Eastern Himalaya	Eastern Himalaya	$\begin{array}{lr} 26: 55 & - \\ 28: 42 \mathrm{~N} \text { and } \\ 92: 41 & - \\ 94: 37 \mathrm{E} & \end{array}$	$\begin{aligned} & 200 \mathrm{~m} \\ & \text { to } 2200 \mathrm{~m} \end{aligned}$	Detailed floristic studies to determine the break of changes between adjacent forest type and details of local species richness in high diversity area.	Behera \& Kushwah a 2007	Field data was collected by randomly laid quadrants of $20 \times 20 \mathrm{~m}$ for tree species(> 15 cm cbh) was considered as tree in every 200 m steps with 8 quadrats per step
Altitudinal Pattern of Plant Species Diversity in Shennongjia Mountains, Central China	Shennon gjia mountain s central china	$\begin{aligned} & 31: 15 \quad- \\ & 31: 57 \mathrm{~N} \text { and } \\ & 109: 59- \\ & 110: 58 \mathrm{E} \end{aligned}$	470m to 3080 m	The relationship between the altitudinal pattern of plant diversity and the vegetation type in eastern china has been discussed	Zhoa et al., 2005.	Four main transects two in each southern and northern watershed, plots are in every 100 m asl, size of the plots was $20 \times 20 \mathrm{~m}, 10 \times 10 \mathrm{~m}$ and $5 \times 5 \mathrm{~m}$ for forest (tree), shrubs and meadow respectively. 160 plots were laid
Anthropogenic pressure on tree structure and biomass in the temperate forest of Mamlay watershed in Sikkim	Temperate forest Mamlay watershed in Sikkim	$\begin{array}{ll} 27: 10: 8 & - \\ 27: 14: 10 & \mathrm{~N} \\ \text { and } & 88: 19: 3 \\ \hline & 88: 24: 23 \\ \text { E } \end{array}$	300 m to 2650 m	Forest resource will become more desirable and many species are likely to disappear in due course of time.	Sundrial Sharma 1996	Tree sampling was done using $10 \times 10 \mathrm{~m}$ quadrants listed CBH and DBH separated in four categories, seedling, samplings, small trees and big tree and the tree height is measured with bamboo stick. Finally, Diversity index was measured following Shannon and weaver (1949).
Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in	Himalaya n elevation gradient in Nepal	Not available	$\begin{aligned} & 1000 \mathrm{~m} \text { to } \\ & 5000 \mathrm{~m} \end{aligned}$	The dynamic hard boundary may have cause an increase in the extinction rate above 4000 m the endemic species increase steadily from low to high	Vetaas \& Grytnes 2002	Compare different null models of species richness pattern paper and based on over $1,00,000$ herbarium specimen in addition field experience. The elevation gradient between sea

Title	Site	Location	Elevation (amsl)	Important Result	Authors	Methodology
Nepal				elevation		level and 6000 m was divided into 60 and 100 m vertical bond.
Biomass, Productivity, Leaf Longevity, and Forest Structure in the Central Himalaya	Central Himalaya	$\begin{array}{ll} 29: 7 & - \\ 30: 41 \mathrm{~N} \text { and } \\ 79: 15 & - \\ 79: 40 \mathrm{E} \end{array}$	$\begin{array}{l\|} \hline 300 \mathrm{~m} \\ \text { to } 3600 \mathrm{~m} \end{array}$	To summaries data on forest characteristics from foothills to timberlines in the Indian central Himalayas. The data base for forest properties especially for broad leaved evergreen forest.	Singh et al., 1994	Compilation of separate studies of forest structure, leaf phonology biomass and production.
Plant biodiversity patterns on Mountain, China	Helan Mountain, China	$\begin{aligned} & 38: 21 \quad- \\ & 39: 22 \mathrm{~N} \text { and } \\ & 105: 49- \\ & 106: 41 \mathrm{E} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~m} \text { to } \\ & 3556 \mathrm{~m} \end{aligned}$	The number of species initially increased and then declined, and the curve was markedly 'humped'. Richness was the highest between 1800 and 2000 m a.s.l. Similar pattern in the relationship between α diversity and environmental factors the variation of the Shannon-Weiner index highest at 1700 m a.s. 1 .	Jiang et $a l$,. 2007	Sampled all major vegetation communities, using quadrates, the size of which was $10 \times 10 \mathrm{~m}, 4 \times 4 \mathrm{~m}$ and 2 x 2 m and the field data were analyzed through CCA (Canonical Correspondence Analysis), and through Shannon-Weiner index for α-diversity and Sorensen index for β-diversity.
Plant diversity in the threatened sub-tropical grasslands of Nepal	sub- tropical grasslands of Nepal	$\begin{array}{ll} 26: 35 & - \\ 28: 57 \mathrm{~N} \text { and } \\ 80: 07 \quad- \\ 87: 04 \mathrm{E} \end{array}$	$\begin{aligned} & 75 \mathrm{~m} \text { to } \\ & 1441 \mathrm{~m} \end{aligned}$	In total 246 species from 48 families were recorded from the four protected areas. Changes in the impact of these disturbances, for example as a result of dam building or a change in the fire regime, will alter the diversity and distribution of the plant assemblages together with their associated fauna.	Peet $e t$ al., 1999	A total of 200 plots were randomly located in the grasslands, 50 in each of the four protected areas. Plot sizes of $8.5 \times 8.5 \mathrm{~m}$, In each plot all plant species were recorded and the percentage cover of each species was estimated approximately.
Relationship between plant species richness and	Central Himalaya, Nepal	Not available		A significant unimodal relationship between species richness and biomass only in 0 in	Bhattarai et al., 2004	Sampled two hundred plots ($\mathrm{lm} \times \mathrm{lm}$) in two different types of pastures: common pasture and old field, which

Title	Site	Location	Elevation (amsl)	Important Result	Authors	Methodology
Biomass in an arid subalpine grassland of the Central Nepal Himalayas,				the common pasture. The turnover was lower in the old field than in the common pasture.		both have similar grazing practices. DCA2 (detrended correspondence analysis) used.
Development of a twoband enhanced vegetation index without a blue band		Not available		Demonstrate that the differences between EVI and EVI2 are insignificant (within ± 0.02) over a very large sample of snow/ice-free land cover types, phenologies, and scales when atmospheric influences are insignificant, enabling EVI2 as an acceptable and accurate substitute of EVI. EVI2 can be used for sensors without a blue band,	$\begin{array}{ll} \hline \text { Jiang } & e t \\ \text { al., } & \\ 2008 & \end{array}$	A linearity-adjustment factor β is proposed and coupled with the soiladjustment factor L used in the Soil-adjusted vegetation index (SAVI) to develop EVI2.
Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes	-	Not available	-	EVI2 performed slightly better than NDVI when comparing tower derived vegetation indices to MODIS and spectroradiometer derived vegetation indices.	 Shaver 2009	Calculated VIs from solar and photosynthetically active radiation fluxes, and validated these calculations against Vis derived from the Terra MODIS and ground-based spectroradio-meter measurements.
Higher levels of multiple ecosystem services are found in forests with more tree species	different parts of the country	Not available	$\begin{aligned} & \hline 8 \text { (in the } \\ & \text { north) to } 4 \\ & \text { (in the } \\ & \text { south) } \end{aligned}$	Reported that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. Soil carbon storage and understory plant species richness increased with tree species richness	$\begin{aligned} & \text { Gamfeldt } \\ & \text { et al., } \\ & 2013 \end{aligned}$	Used a nationwide forest data set from the Swedish National Forest Inventory and the Swedish Survey of Forest Soils and Vegetation. The inventory uses a randomly planned regular sampling grid in a data set with a total of 4,335 sample plots distributed across 1,401 tracts

Title	Site	Location	Elevation (amsl)	Important Result	Authors	Methodology
Seasonal changes in the relationship between plant species richness and community biomass in early succession	Central German chernoze m region, 15 km southwest of Halle.	Not available	--		Bischoff et al., 2005	Sampling (10x10m) plots was conducted in three times, in May, June and July, all vascular plants were harvested in a circular area of 0.25 m 2 positioned at random within each plot. Care was taken that harvested areas were not sampled a second time. Plant species richness was determined and after drying at $80{ }^{\circ} \mathrm{C}$ for 48 hr . the biomass of each species was determined.
Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas)*	East Ladakh (NW Himalaya)	$\begin{array}{ll} \hline 32: 26 & - \\ 33: 36 & \mathrm{~N} \end{array} \text { and }$	$\begin{aligned} & 4180 \mathrm{~m} \text { to } \\ & 6622 \mathrm{~m} \end{aligned}$	404 species of vascular plant were recorded in which maximum species was found in 4500-4750m, the six different Raunkiaer life-form were distinguished among the total vascular flora in between 42004900m	Klimes Leos. 2003	The species number recorded in particular altitudinal intervals was randomly selected from a species pool which was defined as the set of species recorded in the whole study area.
Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway	western Norway	$\begin{aligned} & \text { 60:13 N and } \\ & 6: 15 \mathrm{E} \end{aligned}$	$\begin{aligned} & 310 \mathrm{~m} \\ & \text { to } 1135 \mathrm{~m} \end{aligned}$	1. Bryophytes species richness has no statistically significant trend. 2. Lichen richness increased from the lower point and up to the forest limit. 3. The vascular plant species richness peaked immediately above the forest limit. 4. bryophytes and lichen species richness responds local scale and shading from forest tree respectively	Grytnes et al., 2006	42 quadrates was laid each measuring 25 m 2 , placed along the transect at intervals of approximately 20 vascular meters, very dry and wet area were avoid when placing the plots.

Title	Site	Location	Elevation (amsl)	Important Result	Authors	Methodology
Vegetation, species diversity and floristic relations along an altitudinal gradient in south-west Saudi Arabia	south- west Saudi Arabia	Not available	$\begin{aligned} & 0 \mathrm{~m} \\ & \text { to } 3000 \mathrm{~m} \end{aligned}$	Species richness increase from lower elevation to higher elevation up to 2000 m highest in $2000-2500 \mathrm{~m}$, then the species diversity decreased while increasing elevation there is a remarkable change in vegetation species diversity and floristic relation	$\begin{aligned} & \hline \text { Hegazy } \\ & \text { et al., } \\ & 1998 \end{aligned}$	The 15 sampling site was studied, the quadrats size was $10 \times 10 \mathrm{~m}^{2}$ which is placed 300 m away from the motorable road, the sampling site was divided in six altitudinal belt in between $0-3000 \mathrm{~m}$ Elevation.
Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions		Not available			Foody et al., 2003	Three types of predictive relation, based on vegetation indices, multiple regression and feedforward neural networks, were developed for biomass estimation at each site. For each site, the strongest relationships between the biomass predicted and that measured from field survey was obtained with a neural network developed specifically for the site
Tropical Forest Structure and Composition on a Large-Scale Altitudinal Gradient in Costa Rica	Costa Rica.	$\begin{aligned} & 10: 24 \mathrm{~N} \text { and } \\ & 88: 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 30 \mathrm{~m} \\ & \text { to } 2600 \mathrm{~m} \end{aligned}$	Species richness, species diversity was highest in 300 m , decreased both above and below this latitude the range of lowland species was similar to that of montane species; the species of high-diversity assemblages were similar in altitudinal niche breadth to species of low-diversity assemblages.	Lieberma n et al., 1996	14 plots was placed with the total area 23.4 h ; tree $>10 \mathrm{Cm}$ dbh were tagged, identified, mapped and measured in diameter and height.

Title	Site	Location	Elevation (amsl)	Important Result	Authors	Methodology
Altitudinal distribution of alien plant species in the Swiss Alps	Swiss Alps	Not available	$\begin{aligned} & 200 \mathrm{~m} \\ & \text { to } 2470 \mathrm{~m} \end{aligned}$	155 species were recorded at 232 sites, the number of alien species per site declined strongly with increasing Elevation and there was no difference in species richness between road and railway sites, but there was a significant interaction with elevation.	Becker et al., 2005	Plant species are recorded from 232 sites of railways station and road sites, author recorded all alien vascular plant species.
Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India	Eastern Himalaya	$\begin{aligned} & 27: 30-28 \\ & : 70 \mathrm{~N} \text { and } \\ & 88: 03-88: \\ & 57 \mathrm{E} \end{aligned}$	$\begin{array}{\|lr} \hline 300 \\ 4700 \mathrm{~m} \end{array}$	Recorded 3874 individual trees belonging to 171 species and 58 families no trees were observed above 4000 m . Species richness of trees followed a hump-shaped relationship with elevation showing a peak at around 1500 m.	Acharya et al., 2011	Laid five transects each in four vegetation types keeping a minimum of 150 m elevational distance between any two transects. Quadrats at every 100 m interval, 10 quadrats were laid per transect. Sampled 230 quadrats covering 4.6 ha area (0.2 ha per transect).
What drives elevationa patterns of diversity? test of geometri constraints, climate and species poo effects for pteridophyte on an elevational gradient in Costa Rica	Costa Rica	Not available	$\begin{array}{ll\|} \hline 100 \mathrm{~m} & - \\ 3400 \mathrm{~m} \end{array}$	The species richness of the 48 recorded species showed a hump shaped pattern with elevatio with a richness peak at mid elevations at 1700 m) strongl. with climatic variables especially humidity and temperature. Area and specie pool were associated les strongly.	$\begin{aligned} & \text { Kluge et } \\ & \text { al., } 2006 \end{aligned}$	Analysed species richness on 156 plots of $20 \times 20 \mathrm{~m}$ and measured temperature and humidity at four elevations (40, 650, 1800 and 2800 m). Species richness patterns were regressed against climatic variables (temperature, humidity, precipitation and actual evapotranspiration).
Biomass and diversity of dry alpiner plant communities along altitudinal gradients in the	Ladakh, western Himalaya	Not available	$\begin{array}{\|l\|} \hline 4,500 \text { to } \\ 5,500 \quad \mathrm{~m} \\ \text { asl } \\ \hline \end{array}$	Observed unimodal relationship between plant species-richness and Elevation between 5,000 and $5,200 \mathrm{~m}$, while it peaked between 3,500 and $4,000 \mathrm{~m}$ at	$\begin{array}{ll} \hline \text { Namgail } \\ \text { et } & \text { al., } \\ 2012 & \end{array}$	Vertical transect at every 200 m alternatively on either side of a valley, starting at the valley-bottom. Along each of the vertical transects, we sampled phytomass in $2 \times 2 \mathrm{~m}$ plots at

Title	Site	Location	$\begin{gathered} \text { Elevation } \\ \text { (amsl) } \end{gathered}$	Important Result	Authors	Methodology
Himalayas				entire Ladakh level. Reported a hump shaped relationship between aboveground phytomass and Elevation.		50-m elevational intervals
Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India	west Himalaya	Not available	2800 - 3600 m asl	In all the sites, the mid Elevation stratum (3000 3200 m) showed high species diversity for all the life forms.	Gairola $e t$ al., 2008	
Variation in plant species richness of different life forms along subtropical elevation gradient in the Himalayas, east Nepal	South- Eastern part of Nepal	$26: 42 \quad \mathrm{~N} ;$ $87: 16-\mathrm{E})$, to $(26: 59-\mathrm{N} ;$ $87: 21 \mathrm{E})$	100 - 1500 m asl	Herbaceous species, including herbaceous climbers, was unrelated to any of the climate variables. PET was strongly negatively correlated with elevation, and the following relationships were found between increasing PET and richness: (i) shrubs, trees and total species (sum of all life forms) showed unimodal responses (ii) ferns decreased monotonically, and (iii) woody climbers monotonically increased	Bhattarai Vetaas, 2003	The number of species was counted in six plots (50x20m) in each of the 15100 m elevation bands covering the main physiognomic structures along an imaginary transect. Potential evapotranspiration (PET, i.e. energy), mean annual rainfall (MAR), and their ratio (MI $=$ moisture index) were evaluated as explanatory variables by means of generalized linear models (GLM)
Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya	Bhutan Himalaya	$\begin{array}{\|lrr\|} \hline 27: 30 & \mathrm{~N} & - \\ 89: 52 \mathrm{E} & \text { to } \\ 27: 28 \mathrm{~N} & - \\ 89: 45 \mathrm{E} & \\ \hline \end{array}$	$\begin{array}{lr} 1250 & \mathrm{~m} \\ 3550 & \mathrm{~m} \\ \text { asl } & \end{array}$	$\begin{array}{lllr}\text { recorded } 83 & \text { tree } \begin{array}{r}\text { species } \\ \text { comprising }\end{array} \text { of } & 37 & \text { evergreen }\end{array}$ broad-leaved, 40 deciduous broad-leaved and six coniferous species belonging to 35 families. regeneration pattern of major dominant species shifted from inverse-J (lower altitudes), to sporadic (mid-altitudes), and	 Ohsawa, 2006	Fifteen sampling plots (P1-P15) were established along the altitudinal gradient from lower, warm, dry pine forest to upper, cool, humid conifer forest. Plot size varied from $400 \mathrm{~m}^{2}$ to $800 \mathrm{~m}^{2}$ due to difficulties in setting up equally large plots in a complex topography.

Title	Site	Location	Elevation (amsl)	Important Result	Authors	Methodology
				to uni-modal type (upper altitudes) corresponding to three regeneration trends.		
Diversity increases carbon storage and tree productivity in Spanish	Continent al Spain.			A consistent positive effect o functional diversity on carbor storage and tree productivity wa observed in all seven forest type studied. This relationship was no linear, and the largest changes it carbon storage and tre productivity were observed a low levels of functional diversity Found a generally positive effec of diversity on carbon storag and tree productivity, supporte by both complementarity an selection mechanisms	Benito et al., 2014	Used 54,000 plots of the Spanish Forest Inventory and maximum likelihood techniques to quantify how climate, stand structure and diversity shape carbon storage and tree productivity
Altitudinalillustrate thepatterns mechanisms of alion plants in temperatemountain forests ofnorthern China	Mount Tai and Mount Lao, Shandon g Province, China.	Mount Tai, (N36:05 - N36:15 and E117:5- E117:24) and Mount Lao (N36:05 - N36:19, and E120:24 - E120:42).	Mount Tai 1532.5 m, Mount Lao 1132.7 m.	Two different richness patterns along the elevation gradient on Mount Tai and Mount Lao, alien species richness presented a consistent decreasing tendency with increasing elevation, suggesting that mechanisms driving native and alien species richness may be different. While native plants had many specialists at high altitudes and presented an obvious change of chorological groups along the elevation gradient.	$\begin{array}{ll} \hline \text { Zhang et } \\ \text { al., } & \\ 2015 & \end{array}$	In Mount Tai and Mount Lao, the altitudinal gradient was systematically divided into thirteen and nine 100 m wide elevation bands, respectively. A total of 38 plots were sampled in Mount Tai and 25 plots in Mount Lao.

1.11. Hills, Mountain and biodiversity

Mountain regions cover nearly one third of the earth's land-area and the Himalaya Hindu-Kush mountain regions comprised half of this area radiating from the Pamir knot. The Hindu-Kush mountain are rich in forest, flora and fauna, including biodiversity and vast natural recourses, which including the glaciated region and water recourse which remain still untapped (Dang \& Mamgain, 2003)

Himalayan range covers the entire northern part of India passing through five major states of the country and the biodiversity of this entire region need to study intensively. Biodiversity is the variety of all forms of life, from plant and animal species to ecosystems. Earth's biodiversity provides food, shelter, fresh water, medicines, and spiritual solace. The abundance of life is unevenly distributed around the world with the highest concentrations of species in the tropics. Biodiversity losses can upset ecological cycles and adversely affect people's quality of life. The life-form of both, plants and animals, that characterize these bio-geographical regions is unique and unparallel, perhaps in the whole world, ranging from streaming hot foothills to ice cold alpine meadows.

1.12. The Sikkim Himalaya

Sikkim is located in the Eastern Himalayas and is globally renowned for its biological diversity and the traditional knowledge associated with it. Sikkim is a part of the global biodiversity hotspot. The unique terrain, climate and biogeography of the state have resulted in the sustenance of varied eco-zones in close proximity. Also the harmonious presence of several ethnic groups having their distinct identity and practising their traditional livelihood adds to the treasure house of knowledge related to this biodiversity. (Arrawatia \& Tambe, 2011). Sikkim encompasses within its narrow belt a luxuriant floristic composition encountered nowhere else in a similar situation (Anonymous, 1994). Within the 75 km of aerial distance in Sikkim, the elevation is ranging from $284 \mathrm{~m}-8598 \mathrm{~m}$ (Fig. 2.2) and covers all type of vegetation zones viz. tropical, sub-tropical, temperate, sub-alpine, alpine meadow and permanent snow-covered region. Keeping in view of above facts, Sikkim Himalayas is considered as an ideal site for studying the biodiversity pattern along the altitude.

1.13. The Hypothesis

Productivity of the bio-diversity of Sikkim Himalaya must be based on accumulated bio-geographical knowledge about species distribution and its treasured uniqueness. This requires knowledge about variation in plant richness in relation to human use that points to the core questions in the current biodiversity debate; does species richness increase with productivity and increased biomass? Or, is species richness highest under intermediate productivity and intermediate biomass? Does controlled disturbance through utilization of vegetation reduce biomass and enhance species richness? This study would also aim at evaluating such research questions at local scales focussing upon the East district of Sikkim.

Chapter 2

 OBJ ECTIVES
Objectives

The biological diversity of the Sikkim part of the Himalayas is well-known for its extremely rich biological diversity, both plants and animals. Anonymous, 1994 Sikkim Himalaya is one unique region for the study of different physical and environmental gradients. (Acharya, et al., 2011) .However, till date, no such well-defined work has been conducted in this region. The present work is one such attempt to understand the patterns of biodiversity, the species richness and the production of biomass in the East District of Sikkim.

For the present study following three are the basic objectives:

1. To analyze the species diversity pattern along the elevation gradient
2. To estimate the biomass productivity pattern along the elevation gradient; and
3. To establish a relationship between species diversity and productivity pattern along the elevation gradient

The entire work will be done using the tools of Remote Sensing using suitable satellite imageries along with intensive ground trouthing to correlate and to explain the imagery and the actual vegetation condition

Chapter 3 STUDY AREA

STUDY AREA

The present study the small Himalayan state of India (Sikkim) was taken for the collection of field data, after analysis the collected field data was correlated with satellite product of the same area.

3.1. The Himalayan State of Sikkim

Sikkim, a small Himalayan state of India, with total area of $7096 \mathrm{~km}^{2}$ lies in geographical coordinates between $27^{\circ} 00246^{2}$ to $28^{\circ} 07248^{2} \mathrm{~N}$ latitudes and $88^{\circ} 00258^{2}$ to $88^{\circ} 55225^{2}$ E longitudes. The location of Sikkim state in India is shown in Figure 3.1.

Fig. 3.1. Location map of Sikkim

It is located north of the Darjeeling-hills of West Bengal, and shares international border with Nepal in the west, China in the north and north east and Bhutan in the east. The state is extending approximately 114 km from north to south and 64 km from east to west. The entire part of it is interlaced with jungle clad ridges and deep ravines created through major mountain peaks and the river valleys and extremely dense forests (Champion \& Seth, 1968). Sikkim is also referred as the "Abode of snow" by Risley, (1894) and it is also known as landform of resplendent floral and faunal aggregation. The state is predominantly mountainous virtually with no plain land. The altitudes Sikkim above mean sea level (amsl) varies between 284 m (at Melli) to 8598 m (summit of Mt. Kanchandzonga). Within the 75 km along the elevation one can cross the tropical to snowline area in the state figure 3.2.

Fig. 3.2. Profile along the altitude of Sikkim with the distance in Kilometers
The highest mountain Mt. Khangchendzonga (8598 m) adorns the state with its beautiful snow covered mountain range. Sikkim Himalaya is the drainage basin of mighty rivers Tista and Rangit. The
variation in altitude from south to north within a short distance has resulted in too much of micro-climatic variations. Sikkim can be divided into three botanical zones viz., tropical, temperate and alpine, depending on the elevation and characteristics of the vegetation. The foothills of Sikkim are covered with forests consisting of the species of Shorea, Haldina, Dalbergia, Dillenia, Artocarpus, Ficus, Bauhinia, Litsea; Lagerstroemia, Terminalia etc. In the lower hill ranges (600-1500 m) the forests chiefly include the species of Schima, Syzygium, Duabanga, Engelhardtia, Ficus, Castanopsis, Pandanus, Cyathea, Magnolia, Quercus, Saurauia, Photinia, Juglans, Leucosceptrum, etc. (ISRO, 1994).

The temperate vegetation comprises of forests dominating with the species of Alnus, Acer, Betula, Magnolia, Rhododendron, Larix, Berberis, Salix, Cotoneaster, Vaccinium, Daphne, Sorbus, Rubus and the herbaceous species of Aconitum, Anemone, Potentilla etc. Abies densa, Larix griffithiana, Tsuga dumosa, Picea spinulosa and Taxus wallichiana var. chinensis represents the coniferous belt in the altitudinal range of $2700-3900 \mathrm{~m}$. The Rhoddendron-Conifer forests comprise of the several species of Rhododendron, Daphine, Betula etc. mark the timberline at the altitude of 4000 m . The alpine vegetation which occurs above 4500 m and up to a limit of 5500 m is confined to moorlands of coarse meadows with many stunted and dwarf shrubby species of Rhododendron, prostrate plants of Juniperus squamata, and cushion-like herbaceous species of Arenaria, Androsace, Aconitum, Cassiope, Saxifraga, Primula, Pinguicula, Sedum, Rheum, Saussurea, Gentiana, Kobresia, Carex etc. (ISRO, 1994).

3.2. Distribution of Forest Vegetation vis-à-vis Elevation

Based on altitude, the vegetation of Sikkim is classified into following categories:
3.2.1. Low Hill Forests (tropical to sub-tropical, up to 900 m): From the base (244 m) to 900 m , semi-evergreen broad-leaved forests with trees, $24-36 \mathrm{~m}$ high are the main vegetation structure. The rainfall is heavy, even up to 500 cm annually. Epiphytes like orchids, aroids etc. are abundantly represented. The undergrowth is luxuriant and varied. Shorea robusta is very common, covering large tracts especially along the Tista and Rangit rivers. Schima wallichii, Bauhinia purpurea, Toona ciliata, Stereospermum tetragonum, Bombax ceiba, Dillenia pentagyna, Lagerstroemia parviflora, Sterculia villosa, Terminalia myriocarpa, Terminalia tomentosa and Albizia spp. are prominent components of these forests. Similarly, other trees occasionally met with includes Garuga pinnata, Aglaia spectabilis, Amoora rohituka, Chukrasia tabularis, Evodia meliifolia, Ailanthus integrifolia subsp. calycina, Duabanga grandiflora, Tetrameles nudiflora, Celtis tetrandra, Castanopsis indica, Syzygium formosum and Magnolia champaca together with laurels like Ocotea lancifolia, Phoebe hainesiana, Phoebe attenuata, Litsea monopetala and Cinnamomum bejolghota. Several species of Artocarpus such as Artocarpus integer and Artocarpus chama together with Bischofia javanica also occur. Large planted trees of Ficus elastica are often seen along the banks of the river Tista, alongside Pakyong road, and near Dickchu. Occasionally interspersed in the forest are Ficus semicordata and Pandanus furcatus Tree-ferns are not uncommon in the low-land forests of Sikkim (ISRO, 1994; Hajra \& Verma 1996).
3.2.2. Middle Hill Forests (subtropical, 750 - 1500 m): These are largely dominating with many evergreen species. The trees are usually $20-30 \mathrm{~m}$ height in this zone. Epiphytes and climbers occur in large numbers. The undergrowth is not usually dense and consists of numerous herbaceous and shrubby species. Castanopsis tribuloides, Castanopsis indica, Schima wallichii, and Phoebe
hainesiana are the commonest tree species between 750 m and 1200 m. Magnolia champaca and Stereospermum tetragonum may also seen in this region. Other prominent components of the forests of this region are Drimycarpus racemosus, Juglans regia, Engelhardtia spicata, Spondias mombin, Exbucklandia populnea, Magnolia cathcartii, Magnolia hodgsonii, Saurauia napaulensis, Ficus auriculata, Ficus semicordata, Betula alnoides, Alnus nepalensis, Terminalia spp., Macaranga sp., Litsea monopetala, Ocotea lancifolia, Phoebe attenuata, and members of Meliaceae. Large evergreen trees of Quercus glauca, Lithocarpus elegans, Quercus serrata and Quercus griffithii grow in dense formations between 1200 and 1600 m or above. Bamboos may also be found near human settlements in these hills. It will not be out of place to mention that Cryptomeria japonica is being extensively cultivated in this zone and that is creating problems with the survival of local species. It covers large areas and forms dense forests in areas between 1200 m and 2400 m . The ground vegetation underneath these forests is very little due to lack of sun light and unsuitable substratum. Only a few ferns are known to grow in the periphery these forests (ISRO, 1994; Hajra \& Verma 1996).

3.2.3. Upper Hill forests (Wet temperate, $\mathbf{1 5 0 0} \mathbf{- 2 7 0 0} \mathbf{~ m}$):

The forests are evergreen with medium-sized trees, rarely over 24 m height. There are a number of deciduous tree species but those form only a small proportion. Oaks and laurels form large patches in otherwise mixed forests. The oaks have branched spreading crowns and are abundantly covered with mosses and other epiphytes. The forests are extremely thick and the requisite amount of moisture is available for the ground growing as well as epiphytic vegetation. The shelter of trees provided shade and prevents rapid air movements to a considerable extent. This results in a prolific growth of small herbs, shrubs and ferns on the forest floor. Woody climbers are frequent but not conspicuous. Several altitudinal zones may be distinguished by the preponderance of certain species such as laurels between 1800 and 2100 m , Quercus lamellosa between 2100 and 2400 m and Lithocarpus pachyphyllus between 2400 and 2700 m , though freely overlapping. Magnolia cathcartii, Magnolia campbellii, Machilus edulis, Lithocarpus fenestratus and Castanopsis hystrix are quite common in all the forests up to 2100 m . Between 2100 and 2400 m of altitudes Quercus lamellosa, Castanopsis tribuloides, Acer campbellii, Magnolia doltsopa and Magnolia cathcartii are dominant species. Quercus lineata, Betula alnoides and Symplocos lucida are also frequently met with former being quite prominent species. The oaks constitute the greater part of the trees of top canopy and Lauraceae is usually relegated to the second storey, though numerically predominant. Laurels like Machilus gammieana, Machilus gamblei, Machilus edulis, Litsea sericea, Litsea elongata, Litsea kingii, Neolitsea zeylanica and Cinnamomum bejolghota Sweet are not uncommon. Alnus nepalensis grows mainly along water courses and is the chief colonizer of new landslip areas. Magnolia doltsopa is one well known timber tree of this zone (ISRO, 1994; Hajra \& Verma 1996).

Still higher up, between 2400 m and 2700 m or so Quercus lamellosa, Lithocarpus pachyphyllus, Castanopsis tribuloides, Acer campbellii, Magnolia campbellii, Symplocos lucida and Taxus wallichiana are the prominent elements of these forests. Above 2700 m in this zone Lithocarpus pachyphyllus occurs in pure formations. Under the shade of these trees Rhododendron griffithianum finds a favourable place. Dwarf bamboos, Arundinaria spp. are common as undergrowth at higher altitudes (ISRO, 1994; Hajra \& Verma 1996).

3.2.4. Rhododendron-Conifer Zone (cold temperate or sub-alpine, $\mathbf{2 7 0 0}$ - $\mathbf{3 6 0 0} \mathbf{~ m}$):

The forests of this zone are also evergreen, mainly composed of Rhododendrons and conifers. Quite often Lithocarpus pachyphyllus and Quercus lineata formations are extending above 2700 m altitude and Acer campbellii, Acer caudatum, Betula utilis and Magnolia campbellii may also be met with though very infrequently. As one proceeds higher up, there is a gradual replacement of oaks by Rhododendron arboreum, Rhododendron campanulatum, Rhododendron grande and other species of the genus. Betula utilis is occasionally found in the high level Rhododendron forests at the head of Lachen valley near or above Yumaysamdong (3300 m). Taxus wallichiana. grows in the forests as one proceeds above Lachung. At about $2700 \mathrm{~m}-3000 \mathrm{~m}$ in northen valley, Tsuga dumosa grows in abundance and is the dominant tree. It also grows at Tsokha, West Sikkim. Picea spinulosa grows abundantly on all the hills around Lachen intermixed with Tsuga dumosa but are not extended above 3000 m . The bamboo, Thamnocalamus spathiflorus forms dense undergrowth in silver-fir forests, especially where fire has destroyed the tree canopy. Abies densa also occurs almost in pure formations between Karponang and Chhangu (East Sikkim), and Yumaysamdong to Thangu (North Sikkim) extending upto 3600 m or a little above. Few trees of Salix disperma are also seen growing near Thangu along the streams. Rhododendron arboreum forms scrub on steeper slopes at about 3000 m . Above the tree-line, the vegetation is a sort of mosaic of Rhododendron campanulatum, Rhododendron wightii, Rhododendron thomsonii, Rhododendron cinnabarinum and Rhododendron decipiens scrubs on slopes near Tsomgo (3900 m) and near Thangu (4000 m). Rhododendron anthopogon, Rhododendron setosum and Rhododendron barbatum may also be occasionally met with in such formations. Grasslands are frequent at 2700 m altitude and above. Some species of Arisaema may be found in open places. Various species of Aconitum grows abundantly on the forest-floor underneath Rhododendrons at high altitudes especially around Thangu (ISRO, 1994; Hajra \& Verma 1996).

3.3. Occurrence and distribution of forest types

The forested vegetation of Sikkim, which is located entirely within the Eastern Himalaya, is with wide range of variations. The details of forest types in Sikkim are presented below in Table 3.1.

Table 3.1. Details of forest types found in Sikkim, Eastern Himalaya, India [Adapted from: Grierson \& Long, 1983; Champion \& Seth, 1968].

S. No.	Forest type as Long (1983)	Characteristic species	Altitud e range		Forest type as per Champion \& Seth (1968)	
1	Sal (Shorea robusta) forest	Shorea robusta Terminalia myriocarpa	Schima wallichii Phyllanthus emblica Mallotus philippensis Bombax ceiba	$300-$ 900	$3 \mathrm{C} / \mathrm{Ci}$ a	
East Himalayan sal forests						
2	Chir pine (Pinus roxburghii) forest	Pinus roxburghii Woodfordia fruticosa Phoenix acaulis	$500-$ 900	$9 / \mathrm{C}_{1 \mathrm{~b}}$	Himalayan chir pine forests	

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Forest type as per Grierson \& Long (1983)	Characteristic species	Altitud e range	Forest type as per Champion \& Seth (1968)	
3	Subtropical forest	Terminalia myriocarpa Tectona grandis Duabanga grandiflora Tetrameles nudiflora Dillenia pentagyna Ailanthus integrifolia	$\begin{gathered} 300- \\ 900 \end{gathered}$	$3 \mathrm{C} / \mathrm{C}_{3 \mathrm{~b}}$	East Himalayan moist deciduous forest
4	Warm broadleaved forest	Schima wallichii Engelhardtia spicata Macaranga nepalensis Castanopsis indica Choerospondias axillaris Ostodes paniculata	$\begin{gathered} 900- \\ 1700 \end{gathered}$	8B/C ${ }_{1}$	East Himalayan sub-tropical wet hill forest
5	Alder forest	Alnus nepalensis	$\begin{gathered} 1500- \\ 2000 \end{gathered}$	12/IS ${ }_{1}$	Alder forest
6	Evergreen Oak forest	Castonopsis sp., Quercus sp., Magnolia sp., Juglans regia Symplocos sp., Acer campbellii	$\begin{gathered} 1700- \\ 2800 \end{gathered}$	$11 \mathrm{~B} / \mathrm{C}_{1}$	East Himalayan wet temperate forests
7	Dwarf bamboo thicket	Arundinaria maling Thamnocalamus spathiflorus	$\begin{gathered} 2600- \\ 3100 \end{gathered}$	12/DS ${ }_{1}$	Montane bamboo brakes
8	Mixed conifer forest	Tsuga dumosa Lithocarpus pachyphyllus Larix griffithii Picea smithiana	$\begin{gathered} 2700- \\ 3100 \end{gathered}$	$12 / \mathrm{C}_{3 \mathrm{a}}$	East Himalayan moist temperate forest
9	Conifer forest	Abies densa Tsuga dumosa Sorbus macrophylla Prunus cornuta	$\begin{gathered} \hline 2800- \\ 3700 \end{gathered}$	$\begin{aligned} & 13 / \mathrm{C}_{6}, \\ & 14 / \mathrm{C}_{2} \end{aligned}$	East Himalayan dry temperate coniferous forest, Larch forest, East Himalayan subalpine forests
10	Alpine thicket	Rhododendron spp., Betula utilis, Acer spp., Juniperus sp.	$\begin{gathered} 3500- \\ 4500 \end{gathered}$	15/C ${ }_{1}$	Birch/Rhododendr on scrub
11	Alpine scrub	Juniperus sp., Rhododendron spp., Caragana sp., Ephedra gerardiana	$\begin{gathered} 4000- \\ 5500 \end{gathered}$	$\begin{aligned} & 15 / C_{2}, \\ & 16 / C_{1}, \\ & 16 / E_{1} \end{aligned}$	Dwarf Rhododendron scrub, Dry alpine scrub, Dwarf Juniper scrub

3.3.1 Forest Type Distribution as per Champion and Seth (1968)

Champion \& Seth (1968) characterized the forests of Sikkim also and the forests of east district of Sikkim were divided as under:

3.3.1.1. Tropical Semi-Evergreen Forests-3C/C1 (300 - 900 m):

The vegetation of tropical semi-evergreen zone, located between 300-900 m altitudes, consisting of mainly tropical dry deciduous to semi-evergreen species with Shorea robusta as a dominant species. Sal is mainly found upto Tista valley. Some of the common tree species are Terminalia myriocarpa, Dalbergia sissoo, Albizzia lucida, Haldina cordifolia, Callicarpa arborea and Anogeissus latifolia with certain bamboo species as undergrowth. In the East division, this forest type is restricted to the low elevation areas of Singtam Range, Rongli Range and Pakyong Range. This forest type is also found in Amba Reserved forest (RF), Pacheykhani RF, Bhasme RF, Dhanuke RF, Burdang RF, Ralep RF, Khamdong RF, Tinek RF, Burung RF, Song RF Salingay RF, Tumlabong RF, Linku RF, Dikling RF Khani RF, Sitey RF, and Tarpin RF.

3.3.1.2. Sub-Tropical Mixed Broad Leaved Hill Forests-8B/C1 (900 - 1800 m):

Some tall evergreen species like Schima wallichii Choisy, Alnus nepalensis, Prunus cerasoides, Engelhardtia spicata var. integra are associated with other trees including species of Macaranga, Castanopsis, Syzygium, Sapium etc, are also seen in this altitude zone. This forest type is mostly found in tree clad areas (area outside forest). In the forest areas it is found restricted in areas like Karthok RF and Sumin RF of Singtam and Pakyong Range.

3.3.1.3. Upper Hill-Himalayan Wet Temperate Forests-11B/C1 (1800 - 2400 m):

This is a transitional zone between sub-tropical mixed broad leaved to sub-temperate zone with species ranging from Machilus, Alnus, Quercus and Symplocos. The evergreen tree dominates this region and the undergrowth is mainly of species of bamboos. This is the most broadly distributed forest type in the Sikkim state and is occupying about $221.19 \mathrm{~km}^{2}$ of forest land, which is nearly half of the total forest area of $512 \mathrm{~km}^{2}$ (WPR, 2013). This forest type is found in 43 compartments in Gangtok Block, Pangthang Block, Pathing Block, Rangpo Block, Pakyong Block, Kyongnosla Block, Assam Block and Rongli Block.

3.3.1.4. Sub-alpine Forests ($\mathbf{2 4 0 0} \mathbf{- 3 0 0 0} \mathbf{~ m}$):

The typical temperate forests consists of species of Abies and Pinus mixed with Picea, Tsuga and Juniperus covering broad areas intermixed with species of Quercus, Rhododendron, Machilusand Betula. This forest type is distributed in Zuluk area and Kyongnosla area of East district of Sikkim.

3.3.1.5. Moist Alpine Forests ($\mathbf{2 7 0 0} \mathbf{- 3 7 0 0} \mathbf{~ m}$):

The Moist alpine forest zone mainly consists of Rhododendron species intermixed with temperate evergreen species of plants. The forest cover becomes sparse as altitude increases and often restricted to grooves of the hills. This forest type is mainly found in Kyongnosla Block and Phadamchen Range in East Sikkim.

3.3.1.6. Dry Alpine Forests ($\mathbf{3 7 0 0} \mathbf{- 4 5 0 0} \mathbf{~ m}$):

The vegetation of dry alpine vegetation is practically of scattered scrubs, often barren. Most of the species are of stunted thorny scrubs because of unfavorable conditions of a lesser amount of soil cover and severe frost. The species of Juniperus, Berberis and Salix are commonly available in this region. The forest type was divided into two zones. One is Alpine barren (without vegetative cover) and Alpine scrub (with bushes). This forest type is found in Tsomgu, Kupup, and Gnathang of East district Sikkim.

3.4. Location of East District

East district Sikkim lies at the south-eastern part of Sikkim. Geographical coordinate of the district is $27^{\circ} 08^{\prime} 2.8^{\prime \prime} \mathrm{N}$ to $27^{\circ} 25^{\prime} 32.28^{\prime \prime} \mathrm{N}$ latitudes and $88^{\circ} 26^{\prime} 26^{\prime \prime} \mathrm{E}$ to $88^{\circ} 54^{\prime} 25^{\prime \prime}$ E longitudes (Figure 3.3). The administrative jurisdiction of the East district of Sikkim spreads over a geographical area of 954 km^{2}. The total area comprises of $512.09 \mathrm{~km}^{2}$ of reserved forest, $63.29 \mathrm{~km}^{2}$ of Khasmal and Gorucharan forest land. A total area of $378.62 \mathrm{~km}^{2}$ is under non-forestry areas which include Agricultural land, roads and urban areas, etc.

The whole tract is very mountainous and consists of series of ridges and valleys. The general topography of the district is highly undulating. Slopes ranged from moderately steep to very steep. Due to the abrupt rise of mountains and ridges form the drainage channels which often flow through deep gorges, there is conspicuous absence of flat land within the slope range of 1% to 15%. The tract dealt with is drained by river Tista, Rangpo Chhu, Ratey Chhu and Reshi Khola ('chhu' \& 'khola' = river). The river Tista and Rangpo Chhu are the main rivers which have a number of perennial and seasonal tributaries. The famous Tsomgo and Mememcho lakes are the main sources of Rangpo Chu in the upstream. The detailed of forest range of East district Sikkim is in Table 3.2.

Table 3.2. Detailed of Forest Range of East Sikkim (Source: FEW\&MD, 2010)

Administrative unit	Forest Range	Area (ha)
East District	Gangtok	10408.97
	Kyongnosla	17980.97
	Pakyong	6452.09
	Pathing	3422.10
	Phadamchen	15733.12
	Rongli	12641.50
	Singtam	13873.72
	Tumin	5650.96
	Ranipool	9236.66
	Total	95400 ha

Fig. 3.3. Forest Range map of East Sikkim
East district of Sikkim shares the border with Bhutan, China and the state West Bengal. The border between China and Bhutan has several passes which had been used as the trade routes in the past. Important passes are Chola, Yak La, Nathula, Jelep La, Dong Chul La, and Batang La lying with China border and Dokala, Kephyak La, and Pangolakha with Bhutan border. In 2006 Nathula pass has been reopened for the trade related activities with China.
Recently, East district of Sikkim has been divided into four sub divisions viz.,
i. Gangtok sub-division with Gangtok Range, and Ranipool Range.
ii. Pakyong Sub-division with Pakyong Range and Pathing Range
iii. Rongli Sub-division with Rongli Range, Phadamchen Range; and
iv. Rangpo sub-division with Singtam Range and Rangpo forest block

The area of the reserved forest (RF) after excluding the RF of the protected areas is $301.33 \mathrm{~km}^{2}$. As per the records available from the Land Revenue Department, Government of Sikkim, the division has nine forests range and fifteen forest blocks (Fig.3.3). The concept of compartmentalization of reserved blocks into separate compartments has been initiated recently. There are a total of 90 compartments in the division. The average area of each compartment is approximately 335 ha .

The human population of the district is $2,45,040 \mathrm{~s}$ (DESM\&E, 2013) with diverse climate, topography and rich biodiversity. East district of Sikkim is bounded by riverTista in west, river Dichu and Rathechu in North, river Reshi and Rangpo with Darjeeling district of West Bengal in South and Chola range in the north-east and Bhutan in south-east.
3.4.1. Protected areas in East District: Sikkim holds 31% of the geographical area under the Protected Area Network (PAs), much higher than country's national average. In the east district of Sikkim, a network of protected area is pervasive. There are three PAs located within the boundary of East district and are Fembong Lho Wildlife Sanctuary, Kyongnosle Alpine Sanctuary and Pangolakha Wildlife Sanctuary (Lepcha \& Das 2012).

In East district of Sikkim elevation varies between 340 m at Rangpo to about 4649 m near Nathula. The lower part of the district has the tropical and sub-tropical evergreen forest (Rangpo, Singtam) followed by temperate forest and in the higher elevation the sub-alpine and alpine in (Gnathang, Nathula, Kupup and Chhangu). The landscape of the sub-alpine and alpine region being hilly terrain, rocks, covered with scrubs to thick forests in different areas, which ultimately turns out to be practically unfavorable for human settlements.

The vegetation of tropical and sub-tropical region of East district is consisting of the species of Shorea, Haldina, Dalbergia, Dillenia, Artocarpus, Ficus, Bauhinia, Litsea; Lagerstroemia, Terminalia, etc. In the lower hill ranges $(600-1500 \mathrm{~m})$ the forests chiefly include the species of Schima, Syzygium, Duabanga, Engelhardtia, Ficus, Castanopsis, Pandanus, Cyathea, Magnolia; Quercus, Saurauia, Photinia, Juglans, Leucosceptrum etc. The temperate vegetation comprises forests consisting of the species of Alnus, Acer, Betula, Magnolia, Rhododendron, Larix, Berberis, Salix, Cotoneaster, Vaccinium, Daphne, Sorbus, Rubus and the herbaceous species of Aconitum, Anemone, Potentilla, etc. Abies densa, Larix griffithii, Tsuga dumosa, Picea spinulosa and Taxus wallichiana represent the coniferous belt.

The vegetation of the alpine region of East district Sikkim is completely unusual. Abies, Salix, and Rhododendron scrubs are the most dominating type of vegetation supported by several minute spiny short herbs. Devoid of the predictable extremely harsh climate, it still supports a large number of animals including birds, mammals, fishes, etc. Perhaps it is also not wrong to say that it appears to be the home of some of the endemic animal species of Sikkim particularly of Sikkim Stag, Blue sheep, etc. Some notable places those fall under the region are Tsomgo lake, Kupup, Kyongnosla, Nathula, Memen Chho, Nathang, Padamchen, etc. As such, Tsomgo, Memen Chho, Bidang Chho, Lampokhkri etc. are some of the lakes those contribute substantially in terms of sustaining wildlife and promoting tourism. Most importantly, two important sanctuaries of Sikkim, namely Kyonglasha Alpine Sanctuary ($31 \mathrm{Km}^{2}$) and Pangolakha Wildlife Sanctuary ($128 \mathrm{Km}^{2}$) are located in this region. Some of the important nurseries of alpine medicinal plants are being developed in the nearby areas of these sanctuaries by the Forest Department, Government of Sikkim for ex-situ conservation of rare and endangered medicinal and other valuable plant species. Notable species under the conservation process includes Aconitum ferox, Bergenia ciliata, Neopicrorhiza scrophulariflora, Nardostachys jatamansi, Sinopodophyllum hexandrum, Panax pseudo-ginseng, etc.

As elsewhere, floristic components representing here is entirely diverse from the one that appear in temperate and tropical regions. It upholds a majority of highly valuable economical plants including medicinal and aromatic, dye yielding, timber yielding etc. Different species of Rhododendrons, known for their medicinal and aesthetic values, are the major floristic components of this region. Interestingly, rare orchids of some genera e.g. Orchis, Spiranthes, Habenaria etc. are also nicely represented in the vegetation.

The alpine region of East district of Sikkim including the places like Nathula, Jalepla, Baba Mandir, Men-men Chho and Tsomgo lake have been already been identified as important tourist hubs by the government of Sikkim. Apart from these, the reopening of the trade center at Sherathang near Nathula between India and China further enriches the importance of the area.

Alpine and sub-alpine regions of East district of Sikkim covers an important strategic international border with China and kingdom of Bhutan. As such, the major areas of this region have been occupied for the national army and for their camps, etc. However, a negligible number of the highlanders including Sherpas, Bhutias, Tibetans and others in the form of laborers, supplier etc. partially inhabit the area.

3.5. Plant diversity in the Sikkim Himalaya

Sikkim Himalayan region is characterized by a rich floral diversity (Hajra \& Verma 1996). This region is rich in floral diversity, housing many endemic elements and large number of species those have become rare, threatened or endangered (Pandey, 1991; Bhujel, 1996). Sikkim Himalaya is characterized by the rich forest cover and great drainage region of the rivers Tista and Rangit which constitutes the hills of Sikkim and Darjeeling district of West Bengal in the Eastern Himalaya. The area thus covers several ecological zones viz, subtropical, temperate, sub-alpine and alpine. In such a small area sharp climatic differences in different ecological zones have promoted a rich flora (Rai et al., 2000). Sikkim Himalaya together with Darjeeling hills of West Bengal has 577 species of trees, which come close to 20 species/ km^{2}. The timber trees, fodder trees, fuel-wood trees, Drug/dye/fiber trees, other plants consisting the young formation of Sikkim Himalayan system.

Sikkim is also rich in medicinal and aromatic plant diversity, with well over 500 species of medicinal plants, many of them are reported to be endemic in Sikkim Himalaya (Lepcha 2011) Medicinal and aromatic plants make up the largest economic resource being tapped in the Himalayan region (Sharma \& Sharma, 2010).

The Sikkim Himalaya is a synonym to Himalayan floral bounty and has the distinction of being recognized as one of the "Hotspots" in the Hindu Kush Himalaya for its high biological diversity (Arrawatia \& Tambe 2011). It harbors 4000 species of flowering plants comprising of 38 species of Rhododendron, 450 species of Orchids, 9 Conifer species and 300 species of pteridophytes. With only 0.2% of total landmass of India it harbors more than 26% of the total flowering plants of the country. This signifies the vast floral diversity of the state. The luxuriant forest cover also supports wide variety of non timber forest produces such as bamboos, canes, wild edible fruits and aromatic plants. The state is a repository of potential medicinal plants. Sikkim Himalaya is inhabited by three major ethnic communities Nepali, Lepcha and Bhutia each having distinct cultural heritage and excellent knowledge of the plant wealth in their environment. Initially, the Bhutia communities settled mostly in high mountains in alpine and sub alpine belts in north, the Lepchas restricted their settlement in dense forests in temperate and sub temperate forests of Dzongu, North Sikkim where as the majority of Nepalese lived in temperate and sub tropical belts. These ethnic groups lived in perfect harmony with nature worshipping high mountains, forests, rivers and lakes as their guardian deities to sustain their livelihood and protect themselves from famine, disease and other natural calamities. They made judicious use of the forests resources and forest produce for their basic necessities viz., food, fuel, fodder and timber (Verma, 2009)

3.5.1. Endangered plants

The flora of Sikkim in the last $10-15$ years were under great pressure due to biotic factors, mostly anthropogenic, like various developmental projects viz., construction activities, heavy deforestation by burning, tree-felling and clearing land for the preparation of agricultural fields. Landslides, forest fires, climate change, etc. are also partially due to anthropogenic activities and are increasing quite fast that is easily visible. These activities have destroyed many rich diversity centres. They led to environmental degradation due to which a large number of precious rare plants have been lost or endangered within a very short spell of time. These include: Acer sikkimense, Pimpinella tongloensis, Pimpinella wallichii, Pternopetalum radiatum, Tibetoseris depressa, Arenaria thangoensis, Dendrobium treutleri, Cymbidium eburneum, Cymbidium hookerianum, Cymbidium whiteae, Cymbidium elegans, Cypripedium himalaicum, Tipularia cunninghamii, Diplomeris hirsuta, Paphiopedilum venustum, Zeuxine pulchra, Aconitum ferox, Cotoneaster simonsii, Picrorhiza kurrooa, Acronema pseudotenera, Angelica bulbigena, Ceropegia hookeri, Ceropegia lucida, Codonopsis affinis, Rhopalocnemis phalloides, Carex sahnii, Lloydia himalensis, Neottia acuminata, Calanthe alpina, Ophiorrhiza lurida, Nardostachys jatamansi, Dennstaedtia elwesii, Hymenophyllum levingei, Panax pseudoginseng, Calamus nambariensis, Livistona jenkinsiana, Begonia tenuifolia, Begonia satrapis, B. sanctata, Lagerstroemia minuticarpa, Cyclogramma squamaestipes Tagawa, Oreopteris elwesii, Christiopteris tricuspis, Rhynchospora rugosa subsp. brownii etc. (Hajra \& Verma 1996).

3.5.1.1. Number and status of endangered plants

The lists of some of endangered and endemic flowering plants of the area has been provided in Table 3.3.

Table 3.3. Endangered and endemic flowering plants known to grow in the East district of Sikkim
(Source: FE\&WLMD; WPR. 2013)

Species	Family	Altitude (m)	Habit
Anemone demissa	Ranunculaceae	$3200-4600$	Herb
Clematis andersonii	Ranunculaceae	-	Herb
Ranunculus brotherusii var. tanguticus	Ranunculaceae	$3000-4300$	Herb
Ranunculus sikkimensis	Ranunculaceae	ca 4800	Herb
Arenaria thangoensis	Caryophyllaceae	ca 4500	Herb
Stellaria decumbens var. acicularis	Caryophyllaceae	Above 3300	Herb
Uvaria lurida var. sikkimensis	Annonaceae	Upto 800	Climber
Berberis concinna	Berberidaceae	$3350-3950$	Shrub
Berberis umbellata	Berberidaceae	$2000-3500$	Shrub
Sinopodophyllum sikkimensis	Berberidaceae	$3000-3500$	Herb

Species	Family	Altitude (m)	Habit
Mahonia napaulensis	Berberidaceae	ca 2500	Shrub
Corydalis cavei	Papaveraceae	$2700-4300$	Herb
Corydalis changuensis	Papaveraceae	$3660-3900$	Herb
Draba humillima	Brassicaceae	$4500-5000$	Herb
Draba stenobotrys	Brassicaceae	$4000-5000$	Herb
Solms-laubachia platycarpa	Brassicaceae	$2000-3000$	Herb
Viola placida	Violaceae	$2500-3000$	Herb
Hypericum monanthemum subsp. filicaule	Hypericaceae	$3500-4000$	Herb
Hypericum williamsii	Hypericaceae		Shrub
Sabia campanulata var. kingiana	Sabiaceae	$800-1600$	Climber
Astragalus zemuensis	Fabaceae	ca 3600	Herb
Brachycaulos simplicifolius	Rosaceae	ca 4575	Herb
Cotoneaster sikkimensis	Rosaceae		Shrub
Potentilla saundersiana var. subpinnata	Rosaceae	$4000-4900$	Herb
Spiraea subrotundifolia	Rosaceae	$3000-4300$	Shrub
Saxifraga coarctata	Saxifragaceae	ca 4570	Herb
Saxifraga melanocentra	Saxifragaceae	ca 4400	Herb
Saxifraga pulvinaria	Saxifragaceae	$4250-4570$	Herb
Saxifraga inconspicua	Saxifragaceae	$4265-5000$	Herb
Saxifraga umbellulata	Saxifragaceae	$3600-5300$	Herb
Epilobium gouldii	Onagraceae	$3600-4300$	Herb
Trichosanthes cucumerina	Cucurbitaceae	Up to 2500	Climber
Begonia satrapis	Begoniaceae	ca 3600	Herb
Acronema nemaefolia	Apiaceae	ca 3600	Herb
Acronema pseudotenera	Apiaceae	$3000-4000$	Herb
Pimpinella sikkimensis	Apiaceae	$1000-2600$	Herb
Acronema hookeri	Apiaceae	$2600-3600$	Herb
Pimpinella tongloensis	Apiaceae	-	Herb
Pternopelalurn radiatum	Apiaceae	ca 3600	Herb
Pleurospermopsis sikkimensis	$4300-5300$	Herb	
Angelica nubigena	ca 3800	Herb	
	Apaceae		

3.5.2. Endemic plants

Endemics constitute another important element of biologically interesting plants. Being confined to narrow and restricted ecological niches, they are quite prone to extinction due to prevailing adverse biotic and/ or natural factors. Sikkim as such has comparatively less number of endemics because many of them range from Nepal to Bhutan. It is estimated that the total number of endemics truly confined to Sikkim may be 2% of the total number in the floral elements. These include Calamagrostis debilis, Calamagrostis tripilifera, Catabrosa aquatica, Cyathopus sikkimensis, Drepanostachyum intermedium, Poa gammieana, Trisetum flavescens, Carex sahnii, Rhynchospora rugosa subsp. brownii, Dendrobium treutleri, Anaphalis cavei, Anaphalis hookeri, Anaphalis subumbellata, Artemisia thellungiana, Blumea sikkimensis, Cremanthodium decaisnei, Cremanthodium palmatum, Youngia stebbinsiana, Gentiana glabriuscula, Gentiana recurvata subsp. prainii, Gentiana pluviarum, Gentiana recurvata, Inula macrosperma, Jaeschkea microsperma, Ligularia dux, Ligularia hookeri, Ligularia pachycarpa, Saussurea fastuosa, Saussurea laneana, Saussurea nimborum, Saussurea obscura, Saussurea pantlingiana, Swertia ramosa, Swertia rex, etc. (Hajra \& Verma 1996)

To conserve the depleting resources of this region, several attempts have been made in the recent past by the Government of Sikkim. Kanchanjanga National Park, Fambonglo Wildlife Sanctuary, Kyonglasa Wildlife Sanctuary and Kabi Sacred Groove are good examples where several endangered taxa have been conserved. A few botanical gardens viz. Jawaharlal Nehru Botanical Garden, Saramsa Botanical Garden in East district of Sikkim wherein exist and insist conservation of many species. But, at present, the main emphasis is to relocate or recollect the threatened taxa and attempts should be made for their in situ conservation. However, in some cases the help of advance technologies viz., tissue culture, cryopreservation etc. can be used with advantage. In addition to this, the areas of diversity centres like Pangolakha Wildlife Sanctuary, Kyonglasa Alpine Sanctuary etc. should be brought under full protection with high level of restriction for the visitors (Lepcha \& Das 2012).

3.5.3. Medicinal plants

Sikkim Himalayan region is the abode of a large variety of medicinal plants. Prezwalskia tangutica, Nardostachys jatamansi, Picrorrhiza kurrooa, Aconitum luridum, Sinopodophyllum hexandrum, Dactylorhiza hatagirea, Taxus wallichiana, Ephedra gerardiana and Lycopodium clavatum constitute the most important medicinal plants of the alpine zone. Several medicinal plants like Dichroa febrifuga, Houttuynia cordata, Artemisia vulgaris, Rubia cordifolia, Panax pseudoginseng, Dioscroea deltoidea, Digitalis purpurea, Bergenia ciliata are quite common in temperate and subtemperate zones.

Tropical zone is also quite rich in the medicinal flora wherein plants viz. Chilocostus speciosus, Vitex negundo, Solanum viarum, Cissampelos pariera, Woodfordia fruticosa, Oroxylum indicum, Alstonia scholaris, Abroma augusta and to some extent Rauvolfia serpentina, Terminalia chebula, Holarrhena pubescens etc. grow in good number (Hajra \& Verma 1996).

3.6. Elevation

Elevation is one of the important parameter of this study. The elevation of East district Sikkim is ranging from 340 m at Rangpo to about 4649 m near Nathula. Aspect and slope are other important parameters of this study, during our study we see the vegetation types on different slope and aspect, most of the
study area covered in between 10° to 45° slope, over 60° slope is very less within the study area NRIS, 2006.

3.7. Soil

Soil is another important parameter to study the vegetation. The organic material of the soil has powerful effects on its development, fertility and moisture availability. Soil is the outer skins of the earth were all living and nonliving things exist to support the biological elements. Soil is classified in different classes, texture and types as per requirement. In the present study we used the soil data produced by the Soil Survey of India NRIS, 2006.

3.8. Climate

Temperature and rainfall are the major factors to study the vegetation of the study area. In Sikkim Indian Meteorological Department (IMD) have only two Meteorological Stations in Sikkim, viz. Gangtok and Tadong. Recently Indian Space Research Organization (ISRO) installed 18Automatic Weather Stations (AWS) in different parts of Sikkim. And, in the present study, both, IMD and ISRO-AWS data has been used.

3.9. Drainage System

There are two major river systems in the state of Sikkim. They are Tista and Rangit. The Singalila and the Chola Ranges of Eastern Himalaya determine the boundary of the two rivers. The 98 percent of the state is drained by Tista, Rangit and their tributaries and sub-tributaries. As per Geological Survey of India (GSI, 2012), on the eastern side of Tista valley water contributed by Rilli, Rongpo, Rani Chhu and Dickchu are spectacular. The Rongpo Chhu, the biggest eastern tributary is symmetric barring a small part constricted towards north which emanates from Memenchho Lake in the Rongli Sub-division. The other eastern tributaries are symmetric. The lengths of the eastern tributaries are smaller compared to the western tributaries. The drainage pattern in Tista and Rangpo Chhu is mostly a mixture of trellis and sub-dendritic and subparallel. However, in the northern part directional trellis type drainage pattern is observed. The important rivers and streams flowing through East district of Sikkim is given below in Table 3.4. Additionally, presence of 77 wetlands has been reported from the East district. The wetlands have been identified and mapped through satellite remote sensing. The lists of important wetlands are in Table 3.5.

Table 3.4. Important rivers of East district of Sikkim (Source: NRIS, 2006)

Name of the River/Stream	Name of the River/Stream	Name of the River/Stream
Rongli Khola	Hante Khola	Taksam Chu
Sukdang Khola	Khari Khola	Yalli Chu
Chhuba Khola	Khali Khola	Leh Khola
Chhungi Khola	Chunabhatti Khola	Ramitey/Mendu Khola
Sawa Khola	Simana Khola	Aksu Khola
Rishi Khola	Kue Khola	Rangchang Khola
Lingtam Khola	Rangpo Khola	Di-Chu

Name of the River/Stream	Name of the River/Stream	Name of the River/Stream
Rankey Chhu	Sage Chu	River Tista
Navey Chhu	Malten Chu	Rora Chu
Nathang Chhu	Chhange Chu	Reshi Khola
Byu Chhu	Sanu Chhange	Tsang Rang Chu/Kali Khola
Lungze Chhu	Rong Chu	Re Chu
Jaldhaka river (Di-Chhu)	Richu Khola	Chuba Khola
Danak khola	Ralong Khola	Samdong Chu
Pache Khola	Kali Khola	Ratey-Chu
Dikling Khola	Khani Khola	Lay Khola
Rangdu Khola	Sang Khola	Gop Chu
Martam Khola	Pagla Khola	Buthang Khola
Aho Khola	Namphe Khola	Setei Khola
Andheri Khola	Richu Khola	Thekabong Khola, etc.

The lakes are the important water bodies and are the major sources of drinking water for all the living beings existing under an ecosystem. As of now Sikkim has 534 wetlands and 104 rivers. They have been mapped at $1: 50 \mathrm{~K}$ scale including the smaller water bodies occupying less than 2.25ha, with total area of 7477 ha (Sharma et, al., 2010; NWA 2011; Panigrahy et, al., 2012). There are 77 wetlands with the total area of 905 ha in the East district (Figure 3.4). The wetland serves as source of water for the wild animals and human beings. Most of these high altitude lakes are often being snow fed and remain snow covered during winter. However, some lakes tend to remain snow covered almost round the year. The dimensions of these lakes vary from a few meters to around hundred meters in length, but most of these lakes appear to be shallow and deep as well. These are permanent water bodies and it seems to have formed through the continuous process of so-called "glaciations". Although all these lakes have their own specific names, some are devoid of, especially those, which are situated in isolated region. The lakes are pronounced as Pokhri or Jeel in Nepali, Chhoka or Tso or Chona in Bhutia; Chho or Dah by Lepchas. (Verma, 2009)

Some of the fascinating lakes of the East district in the alpine region are Tsomgo Chho, Bidang Chho, Men-men Chho etc. The congenial climate, rich biodiversity, blooming flowers, panoramic view of mountains and valleys, pristine lakes and forests contribute the growth of tourism in the state. It has been estimated that approximately 3-4 lakh tourists have visited this area in the recent past. The simulation based on the trend of tourists visited in past are expected to be jump up from 7.6 - 10.4 lakhs of tourists would visits Sikkim during the year 2017 (Joshi \& Dhyani, 2009).

Therefore, they have been considered as an important contributor for the tourism sector in Sikkim, These resourceful lakes will certainly play a crucial role for such steady rise in the inflow of tourists that may have direct or indirect impact on the economic growth of the state as well. The drainage/ stream map of east district of Sikkim is in Figure 3.5.

Table: 3.5. Lists of important lakes in East district Sikkim (Source NWA 2011)

Name of the Lake	Name of the Lake	
Aritar lake	Jelep Chho	Bitang Chho
Chumpo Chho (Jor Pokhari)	Nampo Chho	Lam Pokhari
Chhokhya Chho	Men-men Chho	Tsomgo Chho
Chham Chho	Namnang Chho	Rathechhungu Chho
Nangpo Chho	Sherathang	Kupuk Chho
Laba Chho	Syebiruka Chho	
Three Sister Chho		

Fig.3.4. Wetlands in East Sikkim

Fig. 3.5. Drainage/stream map of east district indicates very dense network

3.10. Communication network

Road is the most common and widespread among the modes of transportation. Roads are the arteries of a country and are most essential for progress. Roads of Sikkim are basically classified as national highways, state highways, district roads (major and minor) and village roads on their dimensions and functional status. Major roads of east district Sikkim along with NH-10 are shown in Figure 3.6.

Sikkim is one of the hilly states of the country under North East Region. There is only one National Highway linking the state with the other parts of India. NH- 10, along the bank of the River Tista, is the gateway to the rest of the world for Sikkim facilitating movement of goods and services. Thus, it may be considered as the lifeline of the state. The other important categories of roads in Sikkim are Border roads, State highways, district roads etc. Therefore, in Sikkim the roads affairs are being looked after by different organizations like Border Roads Organization, State PWD (Roads and Bridges), Rural Management and Development Department, etc. Apart of the NH-10 falls within East district, between Rangpo and Gangtok, while Jawaharlal Nehru road connects the capital city Gangtok with Nathula on the Sino-Indian international boarder (Verma, 2009).

3.11. Socio-economic status

Sikkim, earlier a protectorate of India with a monarchy government came into existence as $22^{\text {nd }}$ state of India in the year 1975. The population of the state is only $6,07,688$ as per the 2011census (DESM\&E 2013). Sikkim being very rich in cultural heritage, many communities, cultures and customs of different

Fig. 3.6. Road network in east district of Sikkim shows less density
hues intermingle freely here in State, where majority (68%) are Hindus, 28% of the population are Buddhists and rest 4% are others. In Sikkim, the predominant communities are Nepalis, Lepchas and Bhutias. In spite of many external influences, Sikkim has proved to be resilient accepting the benefits of progress while retaining their ethnic identity (Verma et al., 2009).

The socioeconomic conditions of a place mostly depend upon the livelihood pattern and economic scenario of the region, which mostly comes from employment, agriculture as well as the business sector, which all are attributing to the socio-economic condition any region. Agriculture is the most important aspect of livelihood and healthy livelihood comes from healthy agricultural productivity. Many studies have confirmed that major crops of Sikkim now-a-days are in great threat and crop productivity is continuously going down during the last three decades. Drastic loss in productivity of many crops in the recent times are creating major problem for the farmers in Sikkim.

At the same time, productivity of the some crops viz., paddy, maize, ginger, potatoes have been declining as compared to the previous decades in the state. On the other hand, green vegetables which grow in the winter months are now-a-days susceptible to various kinds of pests and diseases. At present, the decreasing production in the agriculture sector is the key concern in Sikkim.

The present study in Sikkim Himalaya covers the elevation range of 500-3300 m, that is from the tropical forests (upto 900 m) to temperate conifer forests (above 2800 m) of East district (Champion \& Seth, 1968). The Eastern Himalayan Mountain are part of IUCN recognized Himalaya Biodiversity Hotspot (Das et. al.,2013). With altitudinal range from the foot hills of the Himalaya, plains to the

Mount Everest, the climatic condition of these region is tropical hot to cold which cause wide distribution of verities of animals and vegetation types. In Sikkim within the 75 km distance one can cross the foot hills of Himalayas (284 m) to 8598 m (Mt. Kanchandzonga) (Figure 3.2). Within this very small extend of the geographical area all vegetation zone started from tropical to cold alpine meadows can be accessed easily. So, this is an ideal region to study the species richness along the elevation gradient.

We studied the diversity pattern of trees, shrubs, herbs and epiphytes along an elevation gradient in East district of Sikkim Himalaya in India. The aim of the present study was to determine the species richness and to analyze species composition of plant as well as the distribution pattern of life-forms along the altitudinal gradient in the Sikkim Himalayas.

3.12. Fauna

The forests of East Sikkim is one of the reservoir for the numerous faunal species including mammals, birds, butterflies, beetles, snakes etc. This district also supports a large number of species, which have been enlisted for highly vulnerable and volatile mammalian species. The Indian Bison, Takin, Serow, Goral, Barking Deer, Himalayan Langur, Red Panda, Leopard Cat, Large Indian Civet, etc. and Pheasant, Tragopan and flock of partridges as well as large numbers of migratory birds like ducks were reported from the area (Lachungpa, et al., 2011).

Interestingly, the study area has also recorded one of the noted establishments for the migratory route of tiger, through the Neora Valley National Park in West Bengal, which is situated in the southeast part of East district. The record reveals that the tigers have used this belt of forest for more than hundred years ago. The Red (Barking) deer in eastern Sikkim through the display of trophies and hunting records. The deer is identified as a sub-species of Cervus elephus, either C. elephus subsp. wallichi with the probable synonym C. elephus subsp. affinis. However, too little is been known about it probably now extinct in Sikkim (Dolan \& Killmar, 1988), considered it "almost as a mythical animal". However, R.F. Peacock in the 'Larger Deer of British India' (JBNHS 43(3): 1942) quotes a note from Col. F.M. Bailey for their appearance and distribution in between Chumbi Valley and Bhutan. According to him, occasional anthropogenic interference in the forests of Chumbi region (TAR) might have been driving those rare species of Deer back into Bhutan through the Pangolakha forest which he once noted in the summer of 1921 at above Lingmotang in the Chumbi Valley. Red Panda, Musk deer and Bharal (blue sheep) are among the highly endangered animals very rarely sighted during the last decade.

Chapter 4

MATERIALS AND METHODS

MATERIALSAND METHODS

The entire work is based on the data collected from different aspects of vegetation and remote sensing, particularly the satellite imageries. Apart from the imageries, all other data collected from the ground status following different techniques or gathered from secondary sources. Details of methodology are provided below.

4.1. Physiognomy, Climate, Edaphic and Forest Cover Mapping:

4.1.1. Elevation: The Digital Elevation Model (DEM) derived from SRTM (Shuttle Radar Topography Mission) and ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) data sources have been used to extract the elevation map using ERDAS-Imagine and Arc-GIS softwares. The district boundary of Sikkim was prepared using topographic map and an area of interest (AOI) for the study area (East district, Sikkim) was created. The ASTER-derived DEM was retained for further analysis, where the elevation varies from 340 m at Rangpo to about 4649 m near Nathula pass in the district. The district was divided into $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m elevation steps for field sampling and analysis. The area estimate of each elevation zone was done using the Arc-GIS software.
4.1.2. Slope and Aspect: Slope and aspect are other major components to study the vegetation of hilly terrain, so the slope and aspect maps of the study area were prepared using the ASTER derived DEM images.
4.1.3. Climate: The climate data are equally important for the study of forest vegetation, so the meteorological data collected from different official sources and was utilized to derive the following climatic layers.
4.1.3.1. Temperature and Precipitation: The location map of the automatic weather station (AWS) and other meteorological weather stations were prepared. Further, the minimum, maximum and average temperature and precipitation maps were generated using appropriate interpolation technique using Arc GIS software.
4.1.4. Soil: Considering the soil is also a major component of plant productivity and diversity, the soil map prepared by National Bureau of Soil Survey and Landuse Planning (NBSS\&LUP) was used to subset the soil map of East district, Sikkim in Arc-GIS format.
4.1.5. Forest type and density: Initially the Land use Land cover map of NRIS (Natural Resource Information System) Project of SSRSAC (Sikkim State Remote Sensing Application Centre) used for the field survey. Later on, the forest type and density maps prepared by Tambe et al.(2011) was used during the field survey. Sharma \& Das (2015) was used in final interpretation. Initially, Research permission
for survey obtained from Forests Environment and Wildlife Management Department, Government of Sikkim, before leaving to the field.

4.2. Plant diversity

The forest diversity of East district of Sikkim is mainly divided into five major classes i.e. (i)lower hill tropical semi-evergreen forests ($300-900 \mathrm{~m}$), (ii) middle hill sub-tropical mixed broad leaved hill forests ($900-1800 \mathrm{~m}$), (iii) upper hill-Himalayan wet temperate forests ($1800-2400 \mathrm{~m}$), (iv) sub alpine forests ($2400-3000 \mathrm{~m}$), (v) alpine vegetation (above 3000 m).[ISRO 1994]
4.2.1. Sampling design: Fieldwork, conducted using the nested quadrat design (Peet et al,. 1998; Das \& Lahiri, 1997; Rai. 2006). Each site comprises of $20 \times 20 \mathrm{~m}$ size for trees, $2 \times(5 \times 5 \mathrm{~m}$) for shrubs and $5 \times(1 \times 1 \mathrm{~m})$ for the ground covering plants (Fig.4.1). The epiphytes, lianas and host plants occurring inside the nested quadrat were noted according to their habit groups. The field format was designed to collect information on name, number, CBH and height of the trees using a Range Finder. Number of individual shrubs from two corners and number of herbs from the four corners and from the center of the sampling nested quadrat were recorded. Voucher specimens were collected for identification.

The field survey initiated with the optimum plans and information of the ridge including methods of collecting plant samples in the field (Jain \& Rao, 1977). Due to the location of study in a difficult terrain, the progress of the work was slightly slow in the beginning. Reserve forests of east district lie in the difficult terrains and practically inaccessible to its interior and it is almost impossible to explore without the help of local guides. Therefore, in every field trip the local field guides were trusted to assist in the field sampling. Villagers also informed us about the regular visit of Himalayan black bear in to their villages.
4.2.2. Sampling strategy: Sampling is an important component of any piece of field oriented research program as it involves data collection from nature. There are different types of sampling methods, amongst those stratified random sample (SRS) is the most used one. In the present studies, simple SRS method used for collection of field data (Hansen et al., 1953). SRS is a basic type of sampling, since it can be a component of other more complex sampling methods. The principle of SRS is that every object has the same probability of being chosen. The random sampling avoids the sources of bias. It has every chance of sampling a species within quadrats in use that normally consist of a square frame. The purpose of using a quadrat is to enable comparable samples to be obtained from areas of consistent size and shape. (Peet et al,. 1998 Sharma, 2005). Sampling was done across varied slope and aspect condition.

The choice of quadrat size depends largely on the type of survey being conducted and is generally determined experimentally in the field (Misra, 1968; Santra et al., 1989). But for the present work a standard and largely used quadrate sized used in the Eastern Himalayan region (Das \& Lahiri, 1997; Rai, 2006) has been used.

Equipment and material used in the field includes: GPS (GARMIN), Range Finder, measuring tape (100 m), tailor's tape (1.5 m), field note book, polythen bags (as substitute to a Vasculum), nylon rope, colored flags, secator, bamfok (cutter),blotting sheets, tags, pen, pencil, sharpener, eraser, data sheet, etc.
4.2.3. Field data collection: Attempts were made to lay the field sampling quadrat in relatively less or undisturbed areas located between 500-3300 m elevations AMSL steps that covers as much as 2800 m distance from the elevation point of view. In the lower elevation of $500-600 \mathrm{~m}, 600-700 \mathrm{~m}$ the data was collected from the Sang Khola, and Sumin Lingey forest range in the elevation range between $700-800 \mathrm{~m}, 800-900 \mathrm{~m}$ and $900-1000 \mathrm{~m}$. Data was also collected from 32 other places located near Namli, ninth mile and Namchebong forest block. In the elevation, range of $1000-1300 \mathrm{~m}$, data was collected from Linding, Lower Ranka and Middle Barbing forest block. Similarly, data pertaining to forest density was collected from Bhusuk, Ray, Perbing and Berbing representing elevation steps of 1300 - 1500 m segment of the study area. Yalli, Bhusuk, Ranka, PangthangTakshi, Bulbulay, TsangeySenti, PakyongKarthok, Upper Luing forest area were selected for the collection of data representing elevation range of 1500 - 1800 m . The forest areas of Barapathing, Assam Lingzey, GokthangRongli, ChaureyKharka, KyonglasaLatui have been selected to collect the data for the $1800-2400 \mathrm{~m}$ segment. Similarly, for the higher elevation range of 2400 - 3300 m the survey locations include Kyonglasa, Latui,

Assam Lingzey, Rongli, Yalli, Rachela, Padamchen, Bhusuk, and Pathing.

Fig. 4.1. Nested Quadrat design (20x20m for trees and lianas, $5 \times 5 \mathrm{~m}$ for shrubs and $1 \times 1 \mathrm{~m}$ for herbs)

Fig. 4.2. Field photograph taking the CBH of tree in steep slope (left) counting of herb and noted in the prescribe format (Right)
4.2.3.1. List-Count Data: The field data like name (Local/botanical) and number of individuals of each species representing in each quadrate were recorded. CBH and height for each individual (with of 10 cm CBH) of trees were also recorded for the volume and productivity calculation. The unidentified plant sample specimens were collected in the poly-bags for identification.

Many of the species could be identified on field. Some could be identified through their local/ vernacular names that were further translated using nomenclature conversion literature. Further, the unidentified specimen were properly tagged and collected for identification in the herbarium of Botanical Survey of India (BSHC), Sikkim, Gangtok and in the Taxonomy and Environmental Biology Laboratory, Department of Botany, University of North Bengal (NBU) Siliguri. Collected specimens were processed into mounted Herbarium specimens and were deposited in the NBU-Herbarium.

Further, for the nomenclature and the family delimitation for each species <http:// www.theplantlist.org/>was consulted.
3.2.4. Data entry and design: The Microsoft office excels software was used for the analysis of collected data. After data entry in tabular form, most of the statistical analysis also were made using this software. The entire data set of all life forms (tree, shrubs, herbs and lianas) of 28 elevation steps (each step has 8 quadrat) has been treated similarly.
3.2.5. Data analysis: For the calculation of species richness, data analysis was carried out in Microsoft excel. Collected field data was coded and tabulated into excel sheet. At first, data collected in the field targeting different elevation zone of the study area. Altogether, 224 ($20 \times 20 \mathrm{~m}$) plots eight each in every 100 m elevation step up to 3300 m elevation of study area (28 -elevation steps) is completed. The data includes tree species name, number and CBH. The shrubs species name and number from $5 \times 5 \mathrm{~m}$ quadrat, herbs species name and number from $1 \times 1 \mathrm{~m}$ quadrat as described above were entered into excel spread sheet. The epiphyte and lianas species and number data was collected as species name and total number of individual from each 20×20 m quadrat. All $224(20 \times 20 \mathrm{~m})$ quadrat for trees, 448 ($5 \times 5 \mathrm{~m}$) quadrat for shrubs, $1120(1 \times 1 \mathrm{~m})$ for herbs have been completed. After complete entry of about 16000 individual the data used for further analysis on biodiversity and biomass.
4.2.5.1. Dominance analysis: In order to assess the relative share of each species in plant community, Importance Value Index (IVI) for a total score of 300 has been calculated using the frequency, density, abundance, relative frequency, relative density and relative abundance. (Basistha et. al., 2010)
4.2.5.1.1. Frequency (\boldsymbol{F}) and Relative Frequency ($\boldsymbol{R F}$): Frequency(\%):The frequency refers to the degree of dispersion of individual species in an area and usually expressed in terms of percentage occurrence (Sharma, 2005, Basistha et. al., 2010). It is calculated using the equation:

Frequency $(\%)=\frac{\text { No. of quadrats in which the species occurred }}{\text { Total number of quadrats studied }} \times 100$
Frequency does not give the correct idea of the distribution of any species, unless it is correlated with other character (Sharma, 2005).

Relative Frequency $=\frac{\text { Frequency of the species }}{\text { Total frequency of all the species }} \quad \times 100$
4.2.5.1.2.Density (D) and Relative Density (RD): Density is an expression of the numerical strength of a species where the total number of individuals of each species in all the nested quadrat divided by the total number of nested quadrat studied (Sharma, 2005). Density is calculated by the equation:

Density $=\frac{\text { Total number of individuals of a species in all quadrats }}{\text { Total no of quadrats studied }}$

$$
\text { Relative Density }=\frac{\text { Density of the species }}{\text { Total density of all the species }} \times 100
$$

4.2.5.1.3.Abundance (A) and Relative Abundance (RA): It is the study of the number of individuals of different species in the community per unit area. The quadrat method, samplings are made at random at several places and the number of individuals of each species was summed up for all the quadrat divided by the total number of quadrat in which the species occurred. It is represented by the equation (Sharma, 2005):

$$
\text { Abundance }=\frac{\text { Total number of individuals of a species in all quadrats }}{\text { Total number of quadrats in which species occured }}
$$

The relative frequency, relative density and relative abundance has been calculated to calculate the IVI value

4.2.5.1.4. Important Value Index (IVI): The concept of 'Important Value Index (IVI)' has been developed for expressing the dominance and ecological success of any species, with a single
value (Mishra, 1968, Sharma, 2005). This index utilizes three characteristics, they are (i) Relative frequency,(ii) Relative density and (iii) Relative abundance. The three characteristics computed using frequency, density and abundance for all the species falling in all the quadrat by using the following formula.

$$
\mathrm{IVI}=\text { Relative frequency }+ \text { Relative abundance }+ \text { Relative density }[\mathrm{RF}+\mathrm{RA}+\mathrm{RD}]
$$

The IVI of all species, Genus, and Family has been calculated. The detail is given in (Annexure I, II, III).
4.2.5.2. Diversity Indices: For the assessment the species richness, diversity, evenness and dominance of the species different diversity indices like Shannon-Wiener diversity index (H), Margalef index species richness (M), Simpson's dominance index (D), and Pielou's index (E) (Evenness) were determined using following formulae.
4.2.5.2.1. Margalef index $(M)[S p$ Richness]: The margalef index (M) is study using the following formula

Margalef index (M)[Sp Richness] (Margalef, 1958) $=\mathrm{M}=\mathrm{n}-1 / \mathrm{lnN}$
Where: $\mathrm{M}=$ Margalef index
$\mathrm{n}=$ total number of species
$\mathrm{N}=$ total number of individual in the sample
$\ln =$ natural logarithm
The Margalef index has no limit value and it shows a variation depending upon the number of species
4.2.5.2.2. Simpson's index ($1 / D$) [dominance]:The Simpson index calculated using following formula

Simpson's index (1/D)[dominance] $=\mathrm{D}=\Sigma($ pi) 2
Simpson Index (1/D): It measures the probability that two individuals are randomly selected from a sample will belong to the same species. Simpson gave the probability of any two individuals drawn from clearly large community belonging to different species. It has been measured by the given formula: $\mathrm{D}=$ $\Sigma(p i) 2$

A value of D ranges from $0-1$; zero represents no dominance and 1 , for maximum dominance; viz: only one species in the sample data (Greenberg, 1956; Berger \& Parker, 1970).
For representing diversity (D), Simpson index are subtracted from their maximum value of 1 ; i.e. 1- λ
The Simpson's reciprocal index 1/D values start with 1 as lowest possible figure. This figure would represent a community containing only one species. The higher the value the greater the diversity.
4.2.5.2.3. Shannon-Wiener index (H')[Diversity] (1949)

Shannon-Wiener index $\left(H^{\prime}\right)[$ Diversity $]=H=-\sum_{i=1}^{s} \mathrm{Pi} \log \mathrm{Pi}$

Species evenness, richness, and diversity indices as Shannon-Weiner (Shannon \& Weaver, 1949) and Simpson Index (Simpson, 1949) were used to evaluate the plant species diversity.

Shannon- Weiner Index assumes that individuals are randomly sampled from the independent large population and all the species are represented in the sample. Shannon diversity is very widely used index to compare diversity between various habitats (Clarke \& Warwick, 2001). Shannon-Weiner diversity Index fall in between 0 to 5 . It was calculated in order to know the species diversity in different habitat (Hutchison,1970) based on the abundance of the species by the following formula:
$\mathrm{H}^{\prime}=-$ [" $\left.\mathrm{Pi} \operatorname{lnPi}\right]$ Where, $\mathrm{H}^{\prime}=$ Diversity Index; $\mathrm{Pi}=$ is proportion to each species in the sample; $\operatorname{lnPi}=$ natural logarithm of this proportion. The presence of the one individual species is not necessarily indicative of the species being present in a large number.
4.2.5.2.4. Pielou's index (e) [Evenness] (Pielou, 1966).

Pielou's index (e) [Evenness] (Pielou, 1966) $=\quad(\mathrm{E}=\mathrm{H} / \mathrm{lnn})$
For calculating the evenness of species, the Pielou's Evenness Index (e) was used (Pielou, 1966). Where $\mathrm{e}=\mathrm{H} / \ln n$
$\mathrm{H}=$ Shannon - Wiener diversity index
$\mathrm{n}=$ total number of species in the sample (Muhammad, 2009). The values of evenness ranges form 0 to 1 .

4.2.6. Species, Genera and Families richness along the altitude

The entire data sets has been divided into three different elevation bands for the analysis purpose, (i) 100 m elevation band, (ii) 200 m elevation band, (iii) 300 m elevation band along the altitude of East district, Sikkim. In 100m elevation, 28 elevation steps identified; in 200 m elevation band 14 elevation steps were identified and in 300 m 10 elevation steps were identified. The entire data in different bands compared to see the effect of scale along the elevation bands between $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m , respectively.
4.2.6.1. Along 100 m 200 m and 300 m elevation step: The final dataset of excel spreadsheet used for analysis of the species richness along the altitude of 100 m elevation steps using excel pivot table. The species richness, genera and family richness along the $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m elevation steps were also calculated. The result so obtained from the analysis was highlighted in the results. It was tried to fit in the $1^{\text {st }}$ order polynomials, but result was poor. Further, it then tried with second order polynomials (i.e. non-linear) that shows good fitness. Similar exercises were done in 200 and 300m elevation steps too.

4.3. Endemic species

The field data of the study area are taken for the selection of the endemic plant. The list of endemic plant species of this region were checked with Lepcha (2011). The final list of endemic plant species of this region was compared with our final list of plant species in the excel spreadsheet. Finally list of available endemic plants of study area was prepared.
4.4. Productivity (Biomass): There are several methods to estimate the biomass (Whittaker, 1966; Ovington, 1968).Some of the commonly employed methods can be divided into two categories, viz. (a) destructive and (b) non-destructive. In the present study, we used non-destructive method for biomass estimation. The height, Diameter at Breast Height (DBH) relationship to volume/biomass is well-formulated (Kira \& Ogava, 1971) in the non-destructive method. Conventional methods have the limitations of extrapolation at large level and destructive in nature. The generation of algometric equations involve cutting of tree, though, this method is impractical in view of the current environmental problems (Rawat \& Singh, 1988). So, non-destructive methods became clear with minimum or no damage to the trees.

Estimation of the total accumulated biomass any forest ecosystem is important for assessing the productivity and sustainability of the forest. The field data of excel spread sheet were used for further calculation of volume and biomass. First the trees above 10 cm CBH were segregated as individuals below this size were treated as saplings and below 5 cm CBH of tree species are considered as seedlings.
4.4.1. Name of the species: The first parameter recorded is the plant form, namely tree, shrub, herb or liana, followed by the name of the species. Among the trees, species differ in shape, size etc. It is also important to estimate the density of trees of each species in sample plots ($20 \times 20 \mathrm{~m}$). Biomass for tree species estimated using the volume equation of FSI (1996).
4.4.2. Circumference at Breast Height: The second most important parameter of field data is circumference at breast height/diameter at breast height of the tree, this parameter used to calculate the volume or weight of the tree, which can converted to biomass per unit area (tonnes/hectare). The diameter and height can be used for estimating the volume by simple equations.
4.4.3. Height of trees: Next to $\mathrm{DBH} / \mathrm{CBH}$, height is the most important indicator of the volume or weight of a tree and used in many allometric functions along with DBH. To measuring the height of tall trees, $4-5$ tall individuals were measured using the Range Finder and then for other tree species. Eye or ocular estimation was also practiced especially those with overlapping canopies.
4.4.4. Indicator parameters for non-tree species: Height and DBH are not measured for non-tree species such as herbs and grasses; where different data, such as species, total number individuals, etc. were recorded and were used for the calculation (Chaturvedi \& Singh, 1987; Rawat \& Singh, 1988; Singh \& Singh,1991) and the biomass is estimated in terms contribution of percentage.
4.4.5. Basal area: the basal area of individual tree is also calculated in Microsoft-excel using the CBH with the formula:
Basal area $=\pi r^{2}$
4.4.6. Volume estimation: The volume of all vascular plants of the study area was estimated using the final dataset of species richness. More column, such as $\mathrm{CBH} / \mathrm{DBH}$, tree height, volume formula equation and biomass formula equation has been added in excel sheet for calculation of volume. To calculate volume, the tree diameter was first calculated. The available volume equation formula, tree volume equation (FSI, 1996)was used for total volume estimation. In most of the trees, the local volume equation has been used for those volume equation was not available. In the present work also the volume equation for the species of trans-Himalayan region like- Nepal, Bhutan, Darjeeling, Arunachal Pradesh and some part of the Garhwal Himalaya, Uttarakhand were used for some of the trees. The list of volume equation formulae is provided in Annexure IV.
4.4.7. Biomass estimation: the biomass of the individual tree calculated using the volume of the tree. In order to calculate the biomass the specific gravity of some available local species of trees has been used. Such basic data was collected from the Forest Department, Government of Sikkim. The' general' specific gravity is used for those trees whose specific gravity was not available. The volume equation and specific gravity used in this study listed in Annexure IV.

The above ground biomass (AGB) of each 100m and its multiples were plotted across the elevation to adjudge the relationship.
4.4.7.1. Biomass along 100 m elevation steps: The final dataset of excel spreadsheet of biomass estimated used for analysis of the biomass along the altitude of 100 m elevation steps using excel pivot table. The biomass pattern in the form of graphs and tables are highlighted in the results chapter section.
4.4.7.2 Biomass along 200 m elevation steps: The dataset of excel spreadsheet of biomass estimated further used for analysis of the biomass along the altitude of 200 m elevation steps using excel pivot table. The biomass pattern in the form of graphs and tables are highlighted in the results chapter section.
4.4.7.3. Biomass long 300 m elevation step: The biomass of the study area along 300 m elevation also estimated in the same manner and was presented in the form of graphs and tables and are properly highlighted.

4.5. Satellite based productivity:

To estimate the productivity of the study, MODIS MOD 17 data, Landsat-8, data product was used. Net Primary Product (NPP) estimated by using Normalised Difference Vegetation Index (NDVI) EVI2, which considered as a surrogate of NPP and vegetative growth of terrestrial ecosystem. MODIS data with a spatial resolution of 1 km also used to estimate NPP and GPP (Gross Primary Productivity) of the study area.
4.5.1. MODIS Productivity: MODIS-Data, the Moderate Resolution Imaging Spectro- radiometer, or MODIS, sensor resides aboard the Terra and Aqua platforms, offering a view the Earth's surface every 1 -2days. The MODIS sensor collects data within 36 spectral bands, ranging in wavelengths from $0.4 \mu \mathrm{~m}$ to $14.4 \mu \mathrm{~m}$ provides us with imagery at a nominal resolution of 250 m at nadir for two bands, 500 m resolution for 5 bands, and the remaining 29 bands at 1 km .
4.5.2. MODIS Algorithms: As such the Algorithm Theoretical Basis Documents (ATBD's) serve as useful background for understanding the development of the MODIS products and their application in the study of land, ocean, atmosphere and Level 1 characteristics of the Earth-atmosphere systems. Some of the Algorithm Theoretical Basis Documents (ATBD's) are the original documents for a MODIS product while others have been updated or supplemented by other approaches that help the user community to effectively use the MODIS products. MODIS Level 1B Product User's Guide was used to know about the product and data.
4.5.3. Landsat-8 NDVI and EVI: On the other hand, the Lansat- 8 satellite imagery also use to calculate the EVI2 of the Sikkim Himalaya.
4.5.3.1. Data download and process: The cloud free Landsat satellite imagery of April, June, September and December 2013 has download from http://earthexplorer.usgs.gov/ in geo.tiff format. The image was further staked using Arc GIS software further using the ERDAS-Imagine software.
4.5.3.2. Normalised Difference Vegetation Index (NDVI): Using the cloud free satellite imageries of $6^{\text {th }}$ December 2013, the NDVI of the study area was generated, using the ERDAS-Imagine software and further NDVI value was extracted using Arc-GIS software for further analysis.
4.5.3.3. Enhanced Vegetation Index (EVI): EVI is often employed as an alternative to NDVI because it is less sensitive to some limitations. However, such data was not tested in EVI because of blue band issues. In this study it was decided to test the data in EVI2 because it needs only two bands (red and near-infrered).An index was generated as per the formula given by Jiang et al.(2008) to extract the EVI2 Value from Landsat imagery.

$$
\operatorname{EVI} 2=2.5 \frac{\mathrm{~N}-\mathrm{R}}{\mathrm{~N}+2.4 \mathrm{R}+1}
$$

Where, $\mathrm{N}=\mathrm{NIR}$ reflectance, and $\mathrm{R}=$ Red reflectance.
4.5.3.4. Data download and process: The website <http://modis.gsfc.nasa.gov/data/dataprod/ dataproducts.php?MOD_NUMBER=17> has been accessed to download the MODIS NPP data of the study area and the NPP value has been extracted in csv format for further analysis. The values required for the correlation of the data with other parameters.
4.5.4. Relationship between MODIS productivity field biomass: Finally, MODIS NPP extracted using Arc GIS software from MODIS data product to see the relationship between field productivity (Biomass) and MODIS Productivity NPP using Microsoft Excel. Both maps also prepared to see the difference between field based NPP (Biomass) and MODIS based NPP.
4.5.5. Relation between field biomass Satellite EVI: Finally, the maximum EVI2 value from out of the four month Landsat-8 imagery has taken for further analysis. Landsat EVI values were compared with field based biomass productivity.

4.6. Relation between species diversity and Plant productivity (biomass) along the altitude:

In the present study, a relationship was established between species diversity and Plant productivity (biomass) along the altitude of Sikkim Himalaya utilizing the data of species richness and the biomass dataset. Finally, the significance test for $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m elevation steps has been carried out using the second order polynomials.

4.7. Multivariate analysis:

Relation between species richness with other parameter (temperature, rainfall, aspect, slope elevation and soil) was done using the multivariate analysis using the R-software.

4.7.1. General Linear Model (GLM)

The relations between species richness environment relationships were tested using General Linear Model (GLM). The GLM usually refers to conventional linear regression models for a continuous response variable with respect to continuous and/or categorical predictors (McCullagh \& Nelder, 1989). The GLM is mathematically identical to a multiple regression analysis, but stresses its suitability for both multiple qualitative and quantitative variables. It implements any parametric statistical test with one
dependent variable, including any factorial ANOVA (Analysis of variance) as well as ANCOVA (covariance analysis) designs. Because of its flexibility to incorporate multiple quantitative and qualitative independent variables, GLM are a large class of statistical models for relating responses to linear combinations of predictor variables, including many commonly encountered types of dependent variables and error structures. In addition, GLM models for rates and proportions, binary, ordinal and multinomial variables and counts data were used. GLMs are frequently used by plant ecologists to model species response to environmental data (Yee \& Mitchell, 1991; Franklin, 1995). GLMs quantify relationships between the dependent variables and the predictors (Austin et al., 1996), and are commonly used for macro ecological analyses or to forecast its geographic distribution (Austin et al., 1996; Lobo et al., 2001; Lobo \& Martin-Piera, 2002). It is having great advantages for dealing with different error structures particularly the presence/absence data the common data type available for spatial modelling of species distributions (Rushton et al., 2004) and is commonly used in environmental research (Zimmermann \& Kienast, 1999).GLMs are an extension of the linear (least-square regression) modelling that allows models to be fitted to data with errors following other than (only) Normal distributions, and for dependent variables following other than a Normal distribution, such as the Poisson, Binomial and Multinomial models (McCullagh \& Nelder, 1989). GLMs of the binomial model family overcome this difficulty by linking the binary response to the explanatory covariates through the probability of either outcome, which varies continuously from 0 to 1 (Dobson, 2002). Other model families allow fitting response variables of different restricting characteristics (Poisson regression, etc.).

4.7.2. GLM Modelling in R

Maps have been extracted from each quadrat area by using the values of rainfall, temperature, elevation, slope, aspect and soil maps for each; and a csv file was prepared from Arc-GIS attribute table, as an input for modelling. GLM used to examine the relationships between species richness and elevation. The response variable, species richness, is a discrete data type (counts) may follow a Poisson error distribution with \log link function (McCullagh \& Nelder, 1989). Modelling was performed using R software (R Core Team).

The present study was based on the field data collected from different altitude range of East district of Sikkim. It was expected the hump shaped relation between species richness along the altitude. There are several studies around the globe; on species richness and biomass along the altitudinal gradients, where some projected the positive relationship and others projected the negative relationship. There are various ecological factors which directly and indirectly involve in the relationship between species richness and biomass accumulation along the altitude.

Chapter 5

RESULT:
SPECIES RICHNESS
ALONG THE ALTITUDE

RESULT:

SPECIES RICHNESS ALONG THE ALTITUDE

It was expected that the species richness will change along with the increase or decrease of altitude. The altitude of the entire study area vary from 340 to 4649 m , which covers from tropical to alpine-snowline areas. This is also linked with the topography, aspects, etc. Present study covered all such conditions to understand the species richness at different localities.

5.1. Topography

Topography consists of elevation, slope, aspect soil etc of the study area.
5.1.1. Elevation: Elevation of east district, Sikkim ranges from 340 m at Rangpo to about 4649 m near Nathula pass, the highest point of the district. However, about 70% area of the district is falling under the elevation range of $500-3300 \mathrm{~m}$. Study designed at $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m elevation steps helped in investigation and analysis across scale. An elevation zone map at each 200 m step has been shown in Fig.5.1; and their area statistics has been provided in Table 5.1.

Fig. 5.1. 200 m elevation steps map of the study area showing over 70% of the area of East district of Sikkim for the study

Table 5.1. Geographical area of each elevation band of study area

Elevation band, mid elevation value (m)	Area in ha.		
	100 m band	200 m band	300 m band
550	1284	3404	5581
650	2120		
750	2177	4707	
850	2530		9279
950	3437	6750	
1050	3313		
1150	4383	8264	13248
1250	3881		
1350	4983	8826	
1450	3842		11614
1550	4351	7771	
1650	3420		
1750	3284	7076	9977
1850	3792		
1950	2901	6127	
2050	3226		8012
2150	2300	4786	
2250	2485		
2350	1780	3456	5318
2450	1677		
2550	1862	3416	
2650	1554		4649
2750	1821	3096	
2850	1275		
2950	1329	2490	3848
3050	1161		
3150	1359	2442	
3250	1084		4067
3350	1247	2983	
3450	1736		

A maximum of 4983 ha area is available at $1300-1400 \mathrm{~m}$ elevation, whereas the minimum of 1084 ha area is available at $3200-3300 \mathrm{~m}$ elevation range. This followed the cumulative pattern of maximum area of 8826 ha and 13,248 ha at $1300-1500 \mathrm{~m}$ and $1100-1400 \mathrm{~m}$ respectively; and minimum area of 2442 ha and 3848 ha at $3000-3200 \mathrm{~m}$ and $2900-3200 \mathrm{~m}$ respectively (Table 5.1). In a mountainous area of East district, the available area at different elevation zones is important in the sense that the amount of area available for forest vegetation could have a direct bearing on species diversity content.

Fig. 5.2. Elevation step-wise area availability at 100 m elevation steps
It is found that Geographical area vary along the elevation with around 8000 ha , the highest, at the elevation of 1500 m . However, the geographic area then gradually decrease with the increase in elevation (Fig 5.2).

5.1.2. Slope and Aspect

Slope: Slope plays a key role in shaping the species diversity content. Slope of east district was classified as gentle $\left(1^{0}-15^{\circ}\right)$, moderately steep $\left(16^{0}-30^{\circ}\right)$, steep $\left(31^{0}-45^{\circ}\right)$ and very steep $\left(>46^{\circ}\right)$ categories. About 17% of the total geographical area falls under gentle slope category, $>50 \%$ land falls under moderately steep slope, about 27% falls under steep slope and around 3% of the district falls under very steep slope categories (Fig.4.3).

Aspect: Aspect is also an important factor in vegetation characterization and aspect of east district was divided into four classes i.e., NE (northeast $=0-90^{\circ}$, SE (southeast $=90-180^{\circ}$), SW (southwest $=$ $180-270^{\circ}$) and NW (northwest $=270-360^{\circ}$). The north-facing slope receives much less sunshine than the south-facing slope. The area increased from NE to SE, SW and NW while the southern slope

Fig. 5.3. Slope map of East district that indicates more area is under $15-30^{\circ}$ slope

Fig. 5.4. Percentage-wise distribution of slope of East district of Sikkim
occupies 54% area (Fig. 5.5 and Fig. 5.6). East Himalayan species tends to flourish in north or west aspect because they retain far more moisture and the vegetation on these aspects often merits attention in comparison to adjoining south or east aspects. The degree of moisture of a slope also controls the frequency of fire. Southern aspects with dry combustible under growth are often burnt, whereas northern aspect with damp undergrowth do not burn so easily. As a consequence, a southern aspect will frequently be treeless, while a neighbouring northern aspect will be forested. At higher altitudes, snow on northfacing slope exists for longer duration in spring season was shown to influence floral diversity due to higher snowfall. North facing area are mostly covered with fir trees (Abies densa).

Fig. 5.5. Aspect map of East district indicates less area is under NE slope

Fig. 5.6. (a) Percentage wise distribution of aspect; (b) distribution of northern and southern aspects of east district shown in a Pie diagram
5.1.3. Climate: Climate refers to conditions of the atmosphere at a particular location over a long period of time. The temperature and precipitation are the major component to understand the climate change.
5.1.3.1. Temperature: The climate changed from mid-hill temperate to severely cold alpine grassland. The climate was warm and humid during summer and monsoon season (June-October), and moderately cold during winter (December - February) at lower elevations. The winter months became severe as one goes up. Places like Nathula, Gnathang and Tsomgo remain almost snow covered during winter months. The perennial snowline, however, starts from 4500 m only. Most of the areas of the state are very wet during June to September with average annual rainfall ranged between $2000 \mathrm{~mm}-4000 \mathrm{~mm}$. The average minimum and maximum temperature varies between $4^{\circ} \mathrm{C}-17^{\circ} \mathrm{C}$ in winter and $13^{\circ} \mathrm{C}-24^{\circ}$ C in summer seasons respectively. The temperature at the lower belt of Rangpo, Singtam, Dikchu, Makha, Rorathang, Reshi and the places near Tista River and Rangpo Chhu begins to increase rapidly from the beginning of February and continues till the onset of monsoon in the late May to June. The maximum temperature is usually recorded during May and June and the minimum during the months of December and January. The field observations and from people's perception revealed that mountain range near Nathula, Zelepla and Tamzee remains under snow cover from December till late May. The average maximum and minimum temperature characteristics of Gangtok, the lone meteorology station for this study in east district of Sikkim is shown in (Fig.5.7).

Fig. 5.7. Average Maximum and Minimum temperature between 2000 and 2010 of Gangtok in East district, Sikkim

5.1.3.2. Precipitation

Precipitation is received mainly in two forms: Rainfall and snowfall. Snowfall does not occur in low altitude areas, i.e. below 2200 m , and increases with the increase of altitude.
Rainfall is heavy and well distributed during the months of May to September. Dikchu, Gangtok, Karponang, Rongli, Ganathang etc. are the maximum rainfall receiving areas, while the drought prone
regions near Rangpo and Singtam get comparatively low rainfall. The intensity of rainfall may vary from drizzle to torrential. During the months of March to May, occasional hail-storms occur. Fog is quite common and dense during rainy season, ground frost can be observed during the winter months above 1800 m altitude. The rainfall data of Gangtok during the years 2000 - 2010 showed monthly variation of 40 mm in January to 700 m in June (Fig. 5.8). An isohyets map of East district revealed maximum rainfall in the mid elevation ranges and a decreasing pattern towards upper and lower reaches in the district (Fig.5.9).

Fig. 5.8. Average rainfall at Gangtok during 2000 and 2010

5.1.4. Soil

Geologically, the area can be divided into six zones i.e., (i) the valley area, which is classified as lower glacio-fluvial valley and characterized by coarse-loamy Typic Haplumbrepts and coarse-loamy over fragmental Typic Udicorthents kind of soil family associations; (ii) the very steep side slope, moderately dissected with 40% forest cover characterized by coarse-loamy Typic Haplumbrepts and loamyskeletal Typic Udorthents family association; (iii) very steep side slope ($33-50 \%$), highly dissected with $20-40 \%$ forest cover characterized by coarse-loamy Pachic Haplumbrepts and fine-loamy Umbric Dystrochrepts; (iv) Periglaciated land, characterized by loamy-skeletal Lithic Cryorthents and coarse-loamy Cryumbrepts; (v) rocky cliffs, characterized by coarse-loamy Lithic Udorthents and solid rock; and (vi) very steep side slope (50%), highly dissected with 20% forest cover, characterized by coarse-loamy Typic Hapludolls and loamy-skeletal Typic Udorthents (NBSS \& LUP, 1996). The soil map of east district, Sikkim is shown in Fig. 5.10.

The description of the soil class is shown in Annexure VI.

Fig. 5.9. Average Annual Rainfall map of east district, Sikkim showing Isohyets of rainfall

Fig. 5.10. Soil map of East district based on NBSS \& LUP (1996) information

The soil developed from the gneissic group of rocks is brown clay, generally shallow and poor. The soil resulting from Daling group of rocks is dark grey, porous, rich and adaptable to most species. In the district forest soil is excellent, with adequate depth. The soil formation of valleys is due to decomposition of the Daling rocks. The resulting soil is sandy loam and dark grey with considerable amount of sand and is less acidic which supports sal and associated species. In higher reaches of steep slopes where the soil is predominantly of the gneissic group developed on the schist and humus podozols holds good for growth of numerous species of commercial importance. The greater portion of the East district, has gneissic rocks giving rise to different types of soil. The brown clayey soil is

Alnus, Engelhardtia,
Macaranga, etc. The dark brown soil is deep and more fertile and is usually found on the slopes and depressions. The soil on the ridges is shallow, poor and sticky and reddish yellow due to exposure of destruction of ground vegetation by natural calamities and anthropogenic interventions mainly through excessive grazing.

5.1.5. Forest type and density

The forest type zonation map of East district, Sikkim as per classification system is shown in figure 5.11. The forests of East District is broadly identified as Lower hill forests (Tropical and sub-Tropical), Middle hill forests (Temperate) and Upper hill forests (Alpine). The area covered by each forest types are presented in Table 5.2.

Fig. 5.11. Forest type zonation map of East district of Sikkim

Table 5.2. The area covered by each forest type in the East district of Sikkim

Forest type Zones	Area (ha)
$300-900$ (Lower Hill-Tropical Semi Evergreen Forest)	9800
$900-1800$ (Middle Hill-Sub-tropical Mixed Broad Leaved Hill Forest)	34600
$1800-2400$ (Upper Hill-Himalayan Wet Temperate Forest)	16300
$2400-3000$ (Sub Alpine Forest)	9400
$3000-$ Above (Alpine Forest)	25300
	Total:

5.2. Plant diversity

Plants were surveyed in the field using nested quadrate method, identified in the field and in the laboratory and was used for further analysis.

5.2.1. Data entry and design

The final data set of all, nested quadrat numbers, species, genus, family, locality, elevation, cbh, height etc. are entered into the excel sheet in a designed format which is used for further analyses.

5.2.2. Data analysis

First we see the distribution of plant species in different elevation, the average number of species, maximum number of species, minimum number of species, and the standard deviation of species in each of the eight plots in each elevation steps has been analysed (Fig. 5. 12)

There are 224 nested quadrats in 28 elevation steps, have been studied from each elevation steps. Eight quadrats of $20 \times 20 \mathrm{~m}$ size (from nested quadrat layout) were used for the collection of trees and Lianas. A total 66314 tree individual recorded from the field survey between 500 to 3300 m

Table 5.3. List of 10 dominant tree species along with their total counts

Sl. No.	Tree Species	Total Count during the field study
1	Schima wallichii	1246
2	Ostodes paniculata	420
3	Alnus nepalensis	351
4	Engelhardtia spicata	313
5	Castanopsis hystrix	312
6	Symplocos lucida	209
7	Macaranga indica	138
8	Acer campbellii	131
9	Rhododendron barbatum	125
10	Engelhardtia spicata	123

elevation steps, accounting to 159 species covering 106 Genera and 61 families. Schima wallichii contributed maximum number of stands fallowed by Ostodes paniculata. The top ten dominant contributor trees are listed in Table 5.3. The lianas recorded from the $20 \times 20 \mathrm{~m}$ plots, accounted to 3406 individuals with 13 families, 50 genera and 82 species.

Similarly shrubby species were collected from $448(5 \times 5 \mathrm{~m})$ quadrats from 28 elevation steps, all together 14357 individual shrub with 121 species were recorded from the study area. Yushania pantlingii contributed more than 1000 individuals fallowed by Dichroa febrifuga, Yushania maling, Boehmeria macrophylla, Arundinaria acerba, Mussaenda bevanii. Osbeckia crinita and Chimonocalamus griffithianus contribute more than 500 individuals in the East district, Sikkim.

On the other hand the herbaceous ground cover species were also collected from $1120(1 \times 1 \mathrm{~m})$ quadrats from 28 elevation steps. Altogether 66314 individual herbaceous plants covering 302 species were recorded from the study area. Amongst all herbs, Cynodon dactylon contributed more than 7000 individuals, followed by Nephrolepis cordifolia, Selaginella ciliaris, Ageratina adenophora, Dryopteris sikkimensis, Elatostema obtusum are other major contributor herbs of East district, Sikkim.

Fig. 5.12. Box plot of average maximum, minimum and standard deviation of every eight quadrat data in 28 elevation steps [5-32 $=(550-3250)]$

A maximum of 136 species recorded in $900-1000 \mathrm{~m}$ fallowed by 122 species at $800-900 \mathrm{~m}$ and minimum 6 species were recorded from $3200-3300 \mathrm{~m}$. The minimum standard deviation was 4 at $600-700 \mathrm{~m}$ and maximum slandered deviation 28 at $3000-3100 \mathrm{~m}$ elevation steps and the details are shown in figure 5.12.

The plant habit groups (trees, shrubs, herbs and lianas) were distributed in different altitudinal gradient. There is wide distribution of all habit groups within these regions. The herbaceous species are higher in the elevation between 1800 to 2900 m . The shrubby species decreased after $1800-1900 \mathrm{~m}$. The highest peak of species richness has been seen at the elevation of 950 m between $900-1000 \mathrm{~m}$, at $1,550 \mathrm{~m}$ within $1500-1600 \mathrm{~m}$ and at $2,250 \mathrm{~m}$ within $2200-2300 \mathrm{~m}$ elevation zones. This is because

Fig. 5.13. Habit group richness along the 100 m elevation gradient
of ecotone region of tropical as well as sub-tropical, warm broad-leaved forest/ alder forest (Temperate) and temperate and sub-alpine forests of the East district.

The percentage of herbs along the elevation gradient is higher as compared to other habit groups. However, with an increase in altitude the number of all habit groups also decreases. Herbs decline from the elevation of $2400-2600 \mathrm{~m}$. The major factor behind the decline of herb population could be attributed to the dense shrubby plants like Arundinaria acerba, Chimonocalamus griffithianus, Arundinaria racemosa etc., which does not allow other species to regenerate and grow up. All together, there are 664 plant species, 367 genera and 131 families have been recorded during the present study (Annexures I, II \& III).

5.2.2.1. Dominance analysis

Only nine species has been found in more than 20 elevation steps in East district of Sikkim, viz,, Castanopsis hystrix, Dichroa febrifuga, Ageratina adenophora, Nephrolepis cordifolia, Polygonum runcinatum, Polystichum lentum, Pteridium aquilinum, Setaria palmifolia, Tectaria gemmifera out of of them Pteridium aquilinum is found distribution in all elevation steps of the area studied. More than 190 species has been found in the single elevation gradient. The detailed list of herbs, shrubs and trees and epiphytes with every elevation steps are given in the Annexure- V.

Castanopsis hystrix, Engelhardtia spicata var. integra, Ostodes paniculata and Schima wallichii are the-dominant tree species of tropical forests. Similar species has reported by ISRO (1994) where as Boehmeria macrophylla, Ficus hirta, Mussaenda bevanii and Osbeckia crinita are the dominant shrub species of this region. Achyranthes bidentata, Commelina paludosa, Drymaria cordata, Dryopteris sikkimensis, Eupatorium cannabinum, Nephrolepis cordifolia, Polygonum runcinatum, Polystichum lentum, Pouzolzia viminea, Pteridium aquilinum, Setaria palmifolia,
and Tetrastigma rumicispermum are found to be dominant species up to 1000 m i.e. in tropical forests. (Annexure-II)

In the sub-tropical region (1000-1800 m), Alnus nepalensis Castanopsis hystrix, Engelhardtia spicata var. integra, Ostodes paniculata and Schima wallichii are found to be dominant species of trees. The species like Boehmeria macrophylla, Dichroa febrifuga, Ficus hirta, Mussaenda bevanii, Osbeckia crinita are dominant in the sub- tropical forest between (1000-1800 m) elevation range. The species of Digitaria ciliaris, Ageratina adenophora, Nephrolepis cordifolia, Polygonum runcinatum, Polystichum lentum, Pteridium aquilinum and Selaginella ciliaris are observed to be dominant herbs in this region.

As it see the dominant species of the temperate forests (1900-2400 m) of East district, dominance of Alnus nepalensis, Machilus edulis, Quercus lamellosa and Symplocos lucida were found. The species of Chimonocalamus griffithianus, Daphne papyracea, Dichroa febrifuga, Edgeworthia gardneri, Eurya japonica, Himalayacalamus hookerianus, Rubus ellipticus, Symplocos glomerata are dominant shrubs found in this eco-region. The species like Arisaema galeatum, Cissus repens, Elatostema obtusum, Elsholtzia flava, Eupatorium cannabinum, Fragaria rubiginosa, Lecanthus peduncularis, Polygonum runcinatum, Polystichum lentum, Pouzolzia viminea, Pteridium aquilinum, Setaria palmifolia, Tectaria gemmifera, Tetrastigma rumicispermum are dominant herbaceous species found in the wet Himalayan temperate forest.

The sub-alpine and moist alpine regions of Sikkim lay between (2500 - 3700 m). In this study, data up to 3300 m has been collected. So, dominant species of trees found in this eco- region are Acer campbellii, Magnolia campbellii, Rhododendron barbatum, and Viburnum cotinifolium. The species like Arundinaria acerba, Himalayacalamus falconeri, Polygonum molle, Viburnum cotinifolium, Viburnum erubescens and Yushania pantlingii are dominant species of shrubs in this eco-belt. The herbaceous plants, Cyperus distans, Cyperus tenuiculmis, Elatostema obtusum, Fragaria daltoniana, Nephrolepis cordifolia and Rubia wallichiana are dominant species of herbs of this region.
5.2.2.1.1. Frequency and Relative Frequency: In order to know the diversity of species, genera and families, the Frequency (F) and Relative Frequency (RF) of different species, genera and families were calculated, using the formulae as described in methodology. (Annexures I, II \& III)
Amongst all the 664 species, Pteridium aquilinum is recorded with 100% frequency followed by Polystichum lentum, Polygonum runcinatum, and Nephrolepis cordifolia with 82% and Dichroa febrifuga, Ageratina adenophora with 75% frequency. However, more than 100 species were recorded with less than 4% frequency.
5.2.2.1.2. Density and Relative Density: The Density (D) and Relative Density (RD) were also calculated in the excel sheet for the determination of Importance Value index (IVI) (Annexure I, II \& III) among all species Schima wallichii contribute maximum value followed by Ostodes paniculata and Alnus nepalensis.
5.2.2.1.3. Abundance and relative abundance: Similarly as above we calculate the abundance and relative abundance species, genera and families (Annexure I, II \& III)

5.2.2.1.4. Importance Value Index

The concept of Important Value Index (IVI) has been developed for expressing the dominance and ecological success of any species with a single value (Mishra, 1968). This index utilizes three characteristics, those are (1) Relative frequency, (2) Relative density and (3) Relative abundance. The three characteristics are computed using RF, RD and RA for all the species falling in all the quadrants by using the following formula.

$$
\mathrm{IVI}=\mathrm{RF}+\mathrm{RA}+\mathrm{RD}
$$

The IVI of all species, genus, and family has been calculated. The detail is in (Annexure I, II, \& III).
Among the species Schima wallichii, Ostodes paniculata, Alnus nepalensis, Castanopsis hystrix, Engelhardtia spicata var. integra and Nephrolepis cordifolia scored IVI value over 3 among all the recorded species. Schima wallichii scored the highest IVI 12.19, followed by Ostodes paniculata with 4.64.

At the generic level Schima, Rhododendron, Ostodes, Engelhardtia, Castanopsis, Viburnum, Alnus, Cyperus, Eupatorium, Selaginella, Symplocos, Nephrolepis, Polygonum, Dryopteris scored IVI more than 3 and among all Schima scored 14.33, followed by Rhododendron (6.12).

As it is observed, IVI at the family level, there are 32 families having the over 3 IVI score and 6 families viz. Theaceae, Poaceae, Euphorbiaceae, Urticaceae, Fagaceae, Ericaceae having the IVI value of more than seven, with Theaceae scored the highest (18.1).

5.2.2.2. Diversity Indices

The diversity of different groups of organism or different communities is useful not only to the extent that it contributes to the understanding of the process that structure those communities. The number of species in a sample is generally called species richness whereas the species in respect of the sample size of the area is species diversity. The diversity often described using statistical formula that combine both the components. The best known of these composite statistics is the Shannon-Wiener Index of 1949 and 1963. This index was selected for the analysis as it is widely used to express the species diversity and it is moderately sensitive to sample size (Castrezana \& Markow, 2001).
5.2.2.2.1. Margalef Index (MI): In the present study the total species richness i.e. Margalef Index (MI) (Margalef, 1958) were recorded from 6.79 to 19.33 across the $550-3250$ m elevation gradient. At the highest elevation, $3200-3300 \mathrm{~m}$ the minimum richness was 60 species and the MI calculated to 6.79 , while the maximum values of 155 species and MI 19.33 were recorded at the elevation of 2250 m (Fig. 5.14).

Above 3000 m elevation, both the parameters, species richness and MI decreased from 86 to 60 species and 10.50-6.79 exponentially with increase in elevation and subsequently dropped to a minimum at 3250 m elevation.
5.2.2.2.2. Simpson's Index (Simpson, 1949): In this of species dominance were in between the range 2.48 to 54.60 , higher the value more is the dominance. Recorded maximum value of 54.60 was from the 1850 m steps. The Simpson's Index 2.48 was recorded at 3250 m elevation. Shannon-Wiener Diversity Index (H^{\prime}) were recorded from 1.95 to 4.40 across the elevation gradient of $550-3250 \mathrm{~m}$.

The minimum values of 1.95 was recorded at 3250 m and the maximum value of 4.40 at 2250 m elevations (Fig. 5.15).
5.2.2.2.3. Shannon-Wiener index (\mathbf{H}^{\prime}): In the present analysis the value of Shannon Weiner Diversity Index (1949) falls between 1.9 and 4.4, only. In the tropical and sub-tropical region the value falls in between 3.7 to 4.3 (Fig 5.16). It would indicate that the numbers of individuals are evenly distributed between all the species in tropical and sub-tropical forest.
5.2.2.2.4. Pielou's Index (J) [Evenness] (Pielou, 1966): Evenness expresses how evenly the individuals in a community are distributed among the different species. It expresses the measurement of evenness pattern of species in the study area. It was recorded from 0.48 to 0.89 in $550-3250 \mathrm{~m}$ range with maximum of 0.89 at the 1850 m . The highest species richness has been observed in the elevation of 950 m . However, less evenness has been seen at the 950 m elevation plots (Fig. 5.17).

The details of the values of different Indices has been provided in Table 5.4.
Table. 5.4. Records of different diversity indices at different altitudinal steps in the East district of Sikkim.

Mid elevatio n Value	Total number of species (S)	Total number of individuals (N)	Natural \log of species (lnS)	Natural \log of Individual (lnN)	Margalef index (M) $[\mathrm{Sp}$ Richness]	Simpson's index (1/D)[dom -inance]	Shannon- Wiener index (H')[Dive rsity]	Pielou's index (J) [Evenness]
550	127	2822	4.84	7.95	15.86	30.80	4.05	0.84
650	96	2736	4.56	7.91	12.00	32.63	3.90	0.86
750	106	3049	4.66	8.02	13.09	31.95	3.90	0.84
850	121	3094	4.80	8.04	14.93	34.36	3.99	0.83
950	134	3606	4.90	8.19	16.24	19.20	3.79	0.77
1050	134	3259	4.90	8.09	16.44	39.96	4.15	0.85
1150	109	2997	4.69	8.01	13.49	29.47	3.85	0.82
1250	126	3572	4.84	8.18	15.28	32.49	4.00	0.83
1350	106	2510	4.66	7.83	13.41	23.91	3.77	0.81
1450	128	4026	4.85	8.30	15.30	31.93	3.97	0.82
1550	133	4361	4.89	8.38	15.75	38.88	4.13	0.84
1650	122	4350	4.80	8.38	14.44	29.79	3.93	0.82
1750	130	3173	4.87	8.06	16.00	30.48	4.04	0.83
1850	134	1712	4.90	7.45	17.86	54.60	4.35	0.89
1950	140	2971	4.94	8.00	17.38	28.65	4.09	0.83
2050	109	4181	4.69	8.34	12.95	31.59	3.95	0.84
2150	143	3181	4.96	8.07	17.61	43.78	4.25	0.86

Result: Species Richness along the altitude

Mid elevatio n Value	Total number of species (S)	Total number of individuals (N)	Natural \log of species ($\ln \mathrm{S}$)	Natural \log of Individual (lnN)	Margalef index (M) $[\mathrm{Sp}$ Richness]	Simpson's index (1/D)[dom -inance]	ShannonWiener index (H')[Dive rsity]	Pielou's index (J) [Evenness]
2250	155	2883	5.04	7.97	19.33	52.42	4.40	0.87
2350	109	3435	4.69	8.14	13.27	31.37	3.93	0.84
2450	146	3189	4.95	8.07	17.97	41.69	4.24	0.85
2550	119	3082	4.78	8.03	14.69	18.42	3.69	0.77
2650	142	2667	4.96	7.89	17.87	36.57	4.18	0.84
2750	124	3540	4.82	8.17	15.05	12.57	3.36	0.70
2850	102	2143	4.63	7.67	13.17	26.49	3.82	0.83
2950	112	2404	4.72	7.79	14.26	13.86	3.47	0.74
3050	86	3268	4.45	8.09	10.50	12.19	3.81	0.74
3150	80	2549	4.38	7.84	10.07	21.82	3.56	0.81
3250	60	5930	4.09	8.69	6.79	2.48	1.95	0.48

Mid elevation value shown (m)
Fig. 5.14. Margalef index (MI) of Species Richness along100 m elevation gradients

5.2.2.3. Richness of Species, Genus and Family along the altitude

In the present study the richness of the species genus and family has been analysis using data from three elevation steps viz. $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m .
5.2.2.3.1. Along 100 m elevation step: A total of 224 quadrants have been laid down in 28 elevation steps along the altitudinal gradient of $500-3300 \mathrm{~m}$. This has captured a variety of disturbed areas in the lower elevation, reserve forests, wildlife sanctuaries in the middle to higher elevation representing different slope and aspect in the East district of Sikkim (Fig. 5.18).

A total of 664 species, 367 genera and 131 families have been recorded in the present study, out of which 158 were tree species, 197 were shrubs, 91 epiphytic and 304 terrestrial herbs (Annexure- I, II \& III).

Fig. 5.15. Species dominance along the 100 m elevation gradients

Fig. 5.16. Shannon-Wiener index of species diversity along the 100 m elevation gradients

Fig. 5.17. Species Evenness along the 100 m elevation gradient

Vid clevation value shown (m)
Fig. 5.18. Plant species distribution along the 100 m elevation gradient
Species: A total of 60 species only at the elevation of 3250 m and the maximum of 155 species at the elevation of 2250 m have been recorded. There is a gradual increase in the species upwards from the lower elevation and reach up to 134 species in the elevation between $950-1050 \mathrm{~m}$ representing ecotone zone of tropical and sub-tropical forests of Sikkim. The dominant species of these two zones are Schima
wallichii, Castanopsis hystrix, Alnus nepalensis, Engelhardtia spicata var. integra etc. The species richness patterns, again, decreases slowly and again increases at the elevation between $1850-1950 \mathrm{~m}$ with the total number of species of 134 (at 1850 m) and 140 (at 1950 m), respectively. This zone corresponds to the ecotone zone of sub-tropical and template forests. The dominant species of ecotone zone are Alnus nepalensis, Engelhardtia spicata var. integra, Mallotus sp. Ostodes paniculata etc. The highest number of 155 species has been spotted at an elevation of 2250 m . In the ecotone of temperate and sub-temperate zones the dominant species were Quercus lamellosa, Machilus kurzii, Symplocos lucida, Viburnum sp . etc. The richness pattern gradually decreases upwards from the elevation of 2450 m .

Amongst the species richness pattern the contribution of Schima wallichii is the highest followed by Ostodes paniculata, Alnus nepalensis, Castanopsis hystrix, Engelhardtia spicata var. integra along the altitudinal gradient (Annexure-I).

For the 100 m elevation step data has been analysed and found statistically not significant $\left(\mathrm{R}^{2}\right.$ $=0.502$) (Fig.5.18), with a t -value of $\mathrm{t}=5.118$.

Fig. 5.19. Distribution of plant genera along the 100 m elevation gradient
Genus: Present study has recorded a total of 367 genera along the elevation gradient of east district, Sikkim. The Schima has contributed the highest Importance Value Index (IVI) followed by Rhododendron, Ostodes and Engelhardtia (Annexure II). In the elevation zone of $2250-2350 \mathrm{~m}$ the highest number of 121 genera has been recorded. In the ecotone of temperate and sub-temperate zones similar pattern has been observed. However, the least number of 46 genera has been located at $3,250 \mathrm{~m}$. A hump-shaped relationship with the elevation showing peak at around $1750-1850 \mathrm{~m}$ is given in Fig 5.19. In the lower and middle elevation band, genera like Schima, Alnus, Engelhardtia,

Castanopsis Ostodes etc. are dominating, while in the middle and higher elevation band Rhododendron, Viburnum, Quercus and Acer are dominants. However, in the second order polynomial regression $\left(\mathrm{R}^{2}=0.657\right)$ relation between genus along the 100 m elevation steps has been found insignificant with $\mathrm{t}=4.148$.

Fig. 5.20. Distribution of plant families along the 100 m elevation gradient
Family: Out of the recognized 131 families occurring in 28 elevation steps, maximum number of 70 families have been observed in the elevation band of $1400-1500 \mathrm{~m}$ and a minimum number of 33 families in the $3200-3300 \mathrm{~m}$ band. The number of individual families in each 100 m elevation steps have been plotted in figure 5.20, representing a hump- shaped relationship with a peak at around $1700-1800 \mathrm{~m}$. However, the second order of polynomial regression $\left(\mathrm{R}^{2}=0.765, \mathrm{p}<0.02\right)$ shows that the relation between the family and elevation in 100 m elevation step is statistically significant. Theaceae, Poaceae, Euphorbiaceae, Urticaceae, Fagaceae, Ericaceae, Juglandaceae etc. are the dominant families along the altitudinal gradient of 100 m in the East district of Sikkim (Annexure- III).
5.2.2.3.2.Along 200 m elevation step: The plot of the species richness along the elevation steps of 200 and 300 m elevation signify the relation between species richness along this elevation gradient. It was observed in the polynomial regression in 200 m elevation step with a $\mathrm{R}^{2}=0.553$, the relationship between species richness along the 200 m altitudinal band is statistically significant at $\mathrm{p}<0.01$ level (Fig.5.21) and in 300 m elevation the $\mathrm{R}^{2}=0.743$, $\mathrm{p}<0.01$ Fig.4.24. In 200 m elevation gradient, the highest peak occurred at around $1,800 \mathrm{~m}$ but in 300 m elevation the species richness gradually decrease upward from 1900 m elevation step.

Fig. 5.21. Distribution of plant species along the 200 m elevation gradient

Fig. 5.22. Distribution of plant genera along the 200 m elevation gradient

5.2.2.3.3. Along 300 m elevation step:

The similar pattern was observed for the genera as it was noticed along the elevation gradient of 200 m and 300 m , where $\mathrm{R}^{2}=0.764, \mathrm{p}<0.05$ and $\mathrm{R}^{2}=0.8621, \mathrm{p}<0.05$ has been calculated in polynomial regression equation (Fig. 5.22 and Fig. 5.25) respectively.

Fig. 5.23. Distribution of plant families along the 200 m elevation gradient

Fig. 5.24. Distribution of plant species along the 300 m elevation gradient
As the number of families were plotted along the gradient of 200 m and 300 m elevation steps, the number of families increases from lower elevation level i.e $500-600 \mathrm{~m}$ up to $1800-1900 \mathrm{~m}$. Afterwards the number of families decreases with the increase in elevation. In the polynomial regression equation the R^{2} value of 200 m elevation band is $\mathrm{R}^{2}=0.875$ and in 300 m elevation band $\mathrm{R}^{2}=0.907$ (Fig.5.23 \& Fig.5.26).

Fig. 5.25. Distribution of plant genera along the 300 m elevation gradient

Fig. 5.26. Distribution of plant families along the 300 m elevation gradient

5.2.2.4. Endemic species

More than 200 species of plants are reported as endemic in the Sikkim Himalaya (Lepcha \& Das 2011). The total number of individuals, species, genera and families observed were recorded from the East district during the present survey. A total of 224 plots were sampled randomly in various elevation

Result: Species Richness along the altitude 81
Table 5.5. List of endemic species recorded from the study area

$\begin{aligned} & \text { Sl. } \\ & \text { No } \end{aligned}$	Botanical Name	Family	Endemic for	5	6	7	8	9	10		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	3031	32	Range
1	Ampelocalamus patellaris	Poaceae	HR						$\sqrt{ }$					\checkmark																	1000-1600
2	Arisaema griffithil	Araceae	NER											\checkmark				$\sqrt{ }$		$\sqrt{ }$											1500-2200
3	Aucuba himalaica	Garryaceae	EH																				$\sqrt{ }$	V							2400-2600
4	Begonia paimaia	Begoniaccac	C\&EIIR										$\sqrt{1}$					$\sqrt{ }$				$\sqrt{ }$									1400-2400
5	Beilschmiedia sikkimensis	Lauraceae	SH																			$\sqrt{ }$									2300
6	Berberis angulosa	Berberidaceae	HR											$\sqrt{ }$															$\sqrt{ }$		1500-3200
7	Brassaiopsis hispida	Araliaceae	HR																	$\sqrt{ }$	\checkmark		$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$				2100-2900
8	Brassaiopsis mitis	Araliaceae	IR	$\sqrt{ }$			$\sqrt{ }$			$\sqrt{ }$				$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$			\checkmark	$\sqrt{ }$	\checkmark	V				$\sqrt{ }$			500-3000
9	Cephalostachyum capitatum	Poaceae	EH																								$\sqrt{ }$				2800
10	Digitaria ciliaris	Poaceae	HR		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$	\checkmark	7	$\sqrt{1}$	$\sqrt{ }$		$\sqrt{ }$	\checkmark						$\sqrt{ }$				600-2900				
11	Drepanostachyum intermedium	Poaceae	NER																						$\sqrt{ }$						2600
12	Heracleum wallichii	Apiaccae	HR														$\sqrt{ }$					$\sqrt{ }$			$\sqrt{ }$			$\sqrt{ }$			1800-3000
13	Himalayacalamus falconeri	Poaceae	HR																						$\sqrt{ }$	\checkmark	2600-3300				
14	Himalayacalamus hookerianus	Poaceae	SH												$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$									1600-2400
15	Holboellia latifolia	Berberidaceae	HR																\checkmark												2000
16	Liparis resupinata	Orchidazeae	SH											\checkmark	$\sqrt{ }$			$\sqrt{ }$	$\sqrt{ }$												1500-2100
17	Maesa chisia	Primulaceae	HR	$\sqrt{ }$		V	$\sqrt{ }$	7	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		\checkmark	$\sqrt{ }$	\checkmark		\checkmark		$\sqrt{ }$		V				500-2900				
18	Mahonia napavlensis	Berberidaceae	HR											$\sqrt{ }$							\checkmark							$\sqrt{ }$			1500-3000
19	Oberonia falcata	Orchidaseae	SH									\checkmark	\checkmark	\checkmark																	1300-1600
20	Pilea ternifolia	Urticaccae	HR																						$\sqrt{ }$				$\sqrt{ }$	\checkmark	2600-3300
21	Phododendron anthopogon	Ericacea	EH																									$\sqrt{ }$			2900
22	Phododendron barbatum	Ericacese	EH																	\checkmark			$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$	2100-3300
23	Phododendron dalhousieae	Ericacea	HR																											$\sqrt{ }$	3300
24	Phododendron falconeri	Ericacese	EH																							$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$	2700-3300
25	Phododendron griffithianum	Ericaceae	SH																					V				$\sqrt{ }$	$\sqrt{ } \sqrt{ }$	\checkmark	2500-3300

$\begin{aligned} & \text { Sl. } \\ & \text { No } \end{aligned}$	Botanical Name	Family	Endemic for		7	8	9	1011	12		1415			18	19	20	212	22			5	62	28	29	30		32	Range
26	Rhododendron thomsonii	Ericaceae	HR																					\checkmark	\checkmark		\checkmark	2900-3300
27	Rhododendron triflorum	Ericaceae	HR															\checkmark		$\checkmark \sqrt{ }$,	\checkmark			\checkmark			2200-3200
28	Rubus rugosus	Rosaceae	HR				\checkmark																					900
29	Satyrium nepalense	Orchidaceae	HR							\checkmark		\checkmark																1300-1800
30	Sorbus cuspidata	Rosaceae	HR																		\checkmark		\checkmark	\checkmark				2600-3000
31	Symplocos dryophila	Symplocaceae	EH											\checkmark				\checkmark		\checkmark			\checkmark	\checkmark	\checkmark			1800-3200
32	Symplocos glomerata	Symplocaceae	NER												\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								1800-2500
33	Symplocos lucida	Symplocaceae	HR												\checkmark		\checkmark		\checkmark			1800-3100						
34	Yushania pantlingii	Poaceae	HR																		,	\checkmark	\checkmark	\checkmark	\checkmark			2500-3100

$H R=H i m a l a y a n$ region; NER $=$ North eastern region; $\mathrm{EH}=$ Eastern Himalayas; C\&EHR=Central and Eastern Himalayan region; SH Sikkim
Himalayas;
bands and has recorded 664 species of plants, out of which 34 species were found to be endemic. There are 14 families out of which Poaceae and Ericaceae contributed more number of species followed by Orchidaceae. Table 4.5 shows the list of endemic species found in the study area.

Total 34 endamic species of the Himalaya region are recorded from the study area out of which 6 species recorded from single elevation steps. Brassaiopsis mitis found the largely extended species which is recorded from 500-3000 m elevation steps fallowed by Maesa chisia and Digitaria ciliaris recorded from $500-2900 \mathrm{~m}$ and $600-2900 \mathrm{~m}$ elevation steps respective

Chapter 6

RESULT:

BIOMASS
PRODUCTION ALONG
THE ALTITUDINAL GRADIENT

RESULT:

BIOMASS PRODUCTION ALONG THE ALTITUDINAL GRADIENT

Biomass is defined as the total amount of dry weight of forest cover per unit area of land at any time, and is expressed in terms of tonnes (Lodhiyal \& Lodhiyal, 2003). Also, it can be expressed as above ground biomass and below-ground biomass. It measures the change in forest structure (Schreuder et al., 1997; Husch et al., 2003). Several methods are in use to estimate forest biomass (Ovington 1968; Whittaker 1966): (1) Destructive and Non-destructive techniques (Foody et al., 2003; Zheng et al., 2004; Muukkonen \& Heiskanen, 2005) and (2) Sampled data based using Satellite imagery (Brown et al., 1999). The former method is commonly used for biomass estimation.

Non-destructive technique for biomass estimation is widely used technique using field based data (Hunter et al., 2013; Garcia et al., 1993). In this method tree specific regression equation were involve $v i z$. Tree diameter/circumference, tree height and basal area are used as independent variables. Brown et al. (1989) used non-destructive sampling technique to estimate the volume of the tree and then converted into biomass using the specific gravity of individual species. Rana et al. (1989) used the field based method for the estimation of biomass for Central Himalaya. Bhattarai et al. (2004) performed field study of alpine grassland of the Central Himalayan part of Nepal for the estimation of biomass. Wang et al. (2014) saw the variations in the live biomass and carbon pools of Abies georgei Hand._Mazz. (A. forestii Coltm.-Rog.) along an elevation gradient on the Tibetan Plateau, China. There are several factors which directly control the biomass of the plants; some of those are climate (Wang et al., 2014) anthropogenic activities etc. Sundriyal and Sharma (1996) observed the impact of anthropogenic pressure on tree structure and biomass production in the temperate forest of Mamlay watershed in the South district of Sikkim.

The estimates of forest live biomass are still an important source of uncertainty in the carbon balance from local to regional scale, partly due to the scarcity of reliable estimates of live biomass and its variation across landscapes and forest types (Alves et al., 2010; Wang et al., 2014). Biomass assessment is necessary because forests are affected by various factors like deforestation, fire, uncontrolled harvest of different minor forest produces, pests, silviculture and climatic change (Schroeder et al., 1997; Change, I.P.O.C. 2006.) those bring considerable changes in the forest ecosystem.

Many studies have been analysed to understand the forest biomass patterns along elevation gradients in tropical mountains, The use of elevation gradients within the same biogeographic zone
(tropical, temperate, boreal) is considered to be particularly powerful tool for improving biomass estimates across spatial variations and environment gradients (Wang et al., 2014).

Many environmental factors (e.g. rainfall, temperature, atmospheric pressure, solar radiation, wind velocity, etc.) change systematically with the change in elevation. Therefore, to test the ecological and evolutionary responses of biota to environmental changes the altitudinal gradients are among the most powerful techniques (Korner, 2007)

The above ground biomass and its dry weight decreases with the increasing elevation, and there are significant differences at different elevations (Jia et al., 2006). Goward and Dye (1987) opined that the integrated vegetation index can be related directly to the amount of vegetation (above ground phytomass) and primary productivity.

Chhabra et al. (2002) studied the average total growing stock volume density in India for the study years 1992-1993. Average total growing stock volume density in India was estimated as $74.42 \mathrm{~m} 3 \mathrm{t} / \mathrm{h}$; with a range of $7.1-224.5 \mathrm{~m} 3 \mathrm{t} / \mathrm{ha}$. The mean biomass density in Indian forests was estimated at $135.6 \mathrm{t} / \mathrm{ha}$ and amongst the states it varied from $27.4 \mathrm{t} / \mathrm{ha}$ in Punjab to $251.8 \mathrm{t} /$ ha in Jammu \& Kashmir. The total standing biomass (both, above and below ground) was estimated at 8683.7 Mt. The above ground and below ground biomass was estimated at 6865.1 and 1818.7 Mt ; contributing 79 percent and 21 percent to the total biomass. The study has also highlighted state level differences in forest biomass density in India (Chhabra et al., 2002). The total above and below ground forest biomass in all states and union territories were estimated as 6865.1 and 1818.7 Mt, respectively. Sikkim contributes 48.1 Mt . Total above ground biomass and below ground biomass has been calculated as 12.3 Mt and 60.4 Mt (Chhabra et al., 2002). Estimation of forest biomass is the key for understanding the exchange of energy flow, primary production and fluxes of nutrients in a forest ecosystem (Thakur, 2014).

Similarly, Sundriyal and Sharma (1996) recorded 8.32 tha- 1 for wood biomass and 1.80 t ha- 1 for floor phytomass during their studies in the temperate forest of Mamlay watershed in South Sikkim.

The effect of adjusting plot placement to include large diameter trees over estimates forest biomass because biomass per tree increases geometrically with increasing diameter (Haripriya, 2002) The minimum diameter of sampled trees in India is more than 10 cm , reflecting the dominant interest in inventories of commercial volumes (Brown et al., 1989). Though the smaller trees may have less volume than larger trees, they often contain relatively more trees than larger size classes and in certain cases they may contain important proportions of the total stand volume per biomass (Haripriya, 2002).

The above-ground biomass is mainly the largest carbon pool and it is directly affected by deforestation and forest degradation. Estimating the forest carbon stocks is mainly important to assess the magnitude of carbon exchange between the forest ecosystem and the atmosphere. Assessment of the amount of carbon sequestered by a forest will give us an estimate of the amount of carbon emitted into the atmosphere when this particular forest area is deforested or degraded. It will also help us to quantify the carbon stocks which in turn will enable us to understand the current status of carbon stock and also derive the near-future change in the carbon stock (Vashum \& Jayakumar, 2012).

Sun et al. (2013) and Khan et al. (2014) studied the alpine meadow area, they found that elevation and soil moisture are strongly negative effects on above ground biomass (AGB) where as abundance, and soil nitrogen content was positively related to the AGB distribution. This study has confirmed that the average shrub biomass declined with increasing altitude.

This chapter records the estimation of biomass along the altitudinal gradient of Sikkim Himalayas. As has already discussed in the previous chapter the altitudinal range of the study area is spreading over from 500 m to 3300 m in the east district of Sikkim. The present study has estimated the total above ground biomass of this district using growing stock assessment field inventory method. Biomass was estimated using the tree volume formula and tree volume equation developed by FSI (1996). The methodology used for the calculation of biomass in East Sikkim has been detailed in the methodology chapter.

6.1. Biomass Productivity

Amongst others, the two type of non-destructive method for estimation of above Ground biomass is used in this study are (1) using the field sampled data like species number, tree height, CBH etc. and (2) Using the satellite based data.

6.1.1. Field data

Field productivity of East district of Sikkim Himalaya estimated, using the field sample plots data. There are 224 quadrats laid while collecting the field data from where a total 664 plant species collected from 28 elevation steps ($500-3300 \mathrm{~m}$). The biomass of the study area has been estimated using the volume equation of FSI (1996). The estimated biomass is ranging from $6.3 \mathrm{t} / \mathrm{ha}$ at 3150 m and $68.6 \mathrm{t} / \mathrm{ha}$ at 2650 m in different elevation range in the East district. In an average $38 \mathrm{t} / \mathrm{ha}$ biomass estimated from our field data.
6.1.1.1. Circumference at Breast Height (CBH): The CBH of above 10 cm of plants are taken as trees to estimate the biomass. Lithocarpus pachyphyllus is the biggest tree with CBH of 557 cm . The other big trees were Castanopsis tribuloides, Quercus lineata, Quercus lamellosa etc. Those contributed more than 500 cm CBH . The Diameter at Breast Height (DBH) is calculated using the recorded CBH , which, in turn, used for further volume calculation.
6.1.1.2. Tree height: the tree height collected from the field using range finder for $6-7$ trees, than for other ocular estimation applied to estimate the tree height. The highest tree observe in the study area was Artocarpus lacucha and Schima wallichii with upto 37 m height followed by Quercus lamellosa, Lithocarpus pachyphyllus and Magnolia lanuginosa.
6.1.1.3. Basal area: It is similar to CBH and the Lithocarpus pachyphyllus found to possess the largest basal area in the study area.

6.1.1.4. Volume Estimation

Volume of the tree is a major component for the biomass/productivity estimation; first the individual tree volume was calculated in Microsoft excels using Volume equation formula of FSI, 1996 (Annexure IV). The volume is also correlated with CBH and basal area. Lithocarpus pachyphyllus found the largest one. The list of top 10 volume contributing trees are shown in Table 6.1.

Table 6.1. List of top ten volume contributor tree species from the East District of Sikkim

Sl. No	Plant Species	Volume contribution of the study area in \mathbf{M}^{3}
1	Castanopsis hystrix	780.69
2	Schima wallichii	702.90
3	Quercus lamellosa	586.91
4	Lithocarpus pachyphyllus	507.66
5	Alnus nepalensis	350.93
6	Acer campbellii	328.92
7	Engelhardtia spicata var. integra	283.42
8	Engelhardia aurifolia	152.63
9	Castanopsis tribuloides	152.26
10	Abies densa	107.78

6.1.1.5. Biomass estimation

Biomass (Productivity) of the study area calculated using the volume and specific gravity of trees (Annexure IV), the Quercus lamellosa contributed the highest biomass followed by Castanopsis hystrix the detail of top 9 species is given in the Table 6.2.

Table 6.2. List of tree species as per their contribution of biomass

Sl. No.	Plant name	Contribution of Biomass by individual species t/ha.
1	Quercus lamellosa	410.249
2	Castanopsis hystrix	402.053
3	Schima wallichii	349.343
4	Lithocarpus pachyphyllus	261.446
5	Acer campbellii	163.471
6	Engelhardtia spicata var. integra	140.860
7	Alnus nepalensis	111.947
8	Castanopsis tribuloides	78.414
9	Engelhardia aurifolia	75.858

6.1.1.5.1.Along 100 m elevation step: It was seen in 100 m elevation gradient the biomass production increases with altitude up to the limit of tropical forests. The negative pattern was observed in subtropical forests between 900-1400 m elevation section, the major human habitation areas also fall in this region. Then, the biomass t/ha suddenly increase and reach to about $60 \mathrm{t} / \mathrm{ha}$ at around 1700 m elevation. It again decreased to about $30 \mathrm{t} / \mathrm{h}$ at around 2000 m elevation. As we observed the overall
pattern of biomass production along the altitude increases along the elevation in the temperate forest zone. After that, the production decreases with the increased elevation.

As shown in figure 6.1 the relation between biomass and elevation, as the elevation increases the tree biomass decreases. Similarly, the number of trees in the sample area also decreases with increased elevation.

Result was found significant at $\mathrm{p}<0.10$, it shows that there was a poor relation of biomass along the elevation gradient of 100 m in the east district of Sikkim (Fig. 6.1).

Fig. 6.1. Relationship between biomass and altitude along 100 m elevation step
6.1.1.5.2. Along 200 m elevation step: The relation of biomass along the 200 m elevation gradient has been evaluated as shown in figure 6.2. In this step the relation of biomass and elevation $\mathrm{R}^{2}=0.410$, it shows that there is 41% chance to be a good relation of these two parameters.

Fig. 6.2. Relationship between biomass and altitude along 200 m elevation step
6.1.1.5.3.Along 300m elevation step: The relation of biomass along the 300 m elevation gradient has been shown in figure 6.3. The R^{2} at 0.58 is the expression of a good relation with altitude in 300 m elevation band. Here, a hump-shaped relation of biomass along the elevation gradient peak at around the 2500 m elevation is clearly visible.

Fig. 6.3. Relationship between biomass and altitude along 300 m elevation step

6.2. Satellite based relation of Biomass

Several works has been conducted with remote sensing imageries and their utility in the field of plant biomass. The remote sensing satellites are equipped with sensors looking down to the earth. They are the "eyes in the sky" constantly observing the earth as they go round in predictable orbits. There are different types of remote sensing satellite data, viz. Optical, Microwave, Infrared Radar, etc. This elucidate the relation between the satellite based plant productivity NPP with the field derive biomass. Zhang et al. (2009) observed the Global pattern of NPP to GPP ratio derived from MODIS data, they observed that geographically, the NPP/GPP ratio increased with altitude but in the Southern Hemisphere, the NPP/GPP ratio decreased along latitude. MOD17 product, are limited by the spatial resolution. Sims et al. (2006) shown that a model based solely on EVI provided as good or better estimates of productivity for most of the sites than did the much more complex MOD17 model . MODIS data inputs are best suited to assessments of large forested tracts of land where stand ages are relatively uniform (Potter et al. 2007).
6.2.1. Landsat-8 NDVI and EVI: Similarly, the range of NDVI values observed -0.053 to 0.488 this shows that the NDVI values was saturation up to 0.488 only on the other hand, the EVI2 derived value range shows 0.07 to 0.90 in different month data (Fig. 6.4).

Further there is a limitation of optical satellite data (Landsat imagery) is that fewer cloud-free dates are typically available that can be collected over the course of a growing season in most temperate and humid climate zones as compared to MODIS composite images. In contrast, MODIS composite images provided regular bimonthly time series
6.2.2. Relation between biomass and satellite EVI: Satellite remote sensing provides consistent and systematic observations of vegetation and ecosystems, and has played an increasing role in characterization of vegetation structure and estimation of productivity (Prince \& Goward, 1995; Rai, 2006).

Fig. 6.4. Landsat satellite imagery of $6^{\text {th }}$ December 2013 (A) and NDVI of same period (B)

Fig. 6.5. Relation between Biomass vs Landsat EVI in 300 m steps

The productivity predicted from Landsat satellite data of 30 -meter resolution and has been correlated with the field biomass which shows the significant correlation of R^{2} at 0.50 , in 300 m elevation steps when the result tested in linier equation (Fig. 6.5).

Further the field biomass and EVI tested using the polynomial regressions between EVI and field biomass were computed along the 100 m elevation steps of Sikkim Himalayas from 500 to 3200 m elevation range. The result is shown in figure 6.6. It was observed R^{2} at 0.322 .a in second order polynomial.

The second order regression polynomials between EVI and field based biomass along the 100 elevation steps of subtropical to sub alpine forest $(1200-3000 \mathrm{~m})$ of the study area was also performed. Correlation was seen R^{2} at 0.31 for EVI values and field values along the elevation (Fig. 6.7a). Further segregate of procured data for temperate and sub-alpine area ($2300-3000 \mathrm{~m}$) and tested in second order of regression polynomials. A better correlation between field biomass and satellite based EVI along the elevation was observed in (Fig. 6.7b). It is due to may be the moisture contain in the temperate and sub-alpine forest area of Sikkim Himalayas.

Though the derived result also shows the relation with biomass is not quite satisfactory it may due to the following factors:
i. Data acquisition date: The data collection date from the field and date of acquisition of satellite imagery may not be the same.
ii. Sample and Pixel sizes: The sample size for trees is $20 \times 20 \mathrm{~m}$ and the pixel size of satellite imagery is $30 \times 30 \mathrm{~m}$ which may mismatch with other pixels.

Fig. 6.6. Relation between field biomass vs EVI2 values along the 100 m elevation steps from 500 to 3300 m of Sikkim Himalaya

Fig. 6.7a. Relation between field biomass vs EVI2 values along the elevation steps from (A) 1200 3000 m and (B) $2300-3000$ of Sikkim Himalaya

Fig. 6.7b. Relation between field biomass vs EVI2 values along the elevation steps from (A) 1200

Fig. 6.8. Landsat satellite imagery of $26^{\text {th }}$ April 2013 (A) and (B) EVI of same period indicate the presence of more than 40% cloud cover.

Fig. 6.9. Landsat satellite imagery of $13^{\text {th }}$ June 2013 (A) and (B) EVI of same period

Fig. 6.10. Landsat satellite imagery of $17^{\text {th }}$ September 2013 (A) and (B) EVI of same period

Fig. 6.11. Landsat satellite imagery of $6^{\text {th }}$ December 2013 (A) and (B) EVI of same period

Fig. 6.13. MODIS Productivity imagery (A) and (B) MODIS NPP derive after interpolation

Fig. 6.12. Relation between MODIS NPP and Field derived biomass
iii. Anthropogenic disturbances: There are very less correlation in the tropical and temperate forest, it may be due to more anthropogenic disturbances.

The EVI's utility in satellite-driven primary production modelling has previously been demonstrated for several different biome types (Xiao et al. 2004) and the highly linear relationship observed in GPP can be estimated through a linear regression model for similar environments with relatively high accuracy, using only EVI as independent variables.
6.2.3. MODIS Productivity: At first the MODIS NPP were downloaded and compared with the field derived biomass. Then, tried to fit the MODIS NPP product in local scale of Sikkim Himalaya (Fig.6.12 \& 6.13). This product is also prone to be complicated by the mismatch in scale between ground-based NPP derived from the field and the coarse resolution (1 km) of the MODIS NPP product.
6.2.4. Relation MODIS Productivity with Biomass: The values of MODIS Productivity was not satisfactory as compared to other satellite products. The MODIS ($1 \mathrm{~km} \times 1 \mathrm{~km}$) data is not suitable for the estimation of productivity in local scale of study.

Chapter 7

 RESULT: RELATIONSHIP BETWEEN SPECIES RICHNESS AND BIOMASS ALONG THE ALTITUDE
RESULT:

RELATIONSHIP BETWEEN SPECIES RICHNESS AND BIOMASS ALONG THE ALTITUDE

7.1. Relation between species diversity and productivity

The mountain has different biotic and abiotic gradients. The changes in these factors in mountain are mainly due to the altitudinal gradients. The major trend in relation between elevation and species richness are: (i) decreasing richness with increasing elevation, (ii) plateaus in richness across low elevation then decreasing with or without a mid-elevation peak, and (iii) uni-modal pattern with mid elevational peak (McCain \& Grytes, 2010). The first details on changes in natural world with the changes in elevation was observed by Charles Darwin, Alfred Russel Wallace and Von Humboldt (Lomolino, 2001). Differences in the species richness with change in temperature are depending upon the latitude, size, shape and prevailing weather conditions in the mountain region. Air pressure and solar radiation are other factors those foreseeably vary with change in elevation. Precipitation trend in the form of rain, snow or condensation from clouds corresponds to the prevailing weather patterns, the slope and the proximity to the ocean or large water body (Barry, 2008). Other important determinant of species richness along the altitudinal gradients in the mountain may be area, cloud cover and soil quality. The interaction among these abiotic factors determine overall productivity of the species. Fridley et al. (2001) reported no consistent change in biomass is evident with the change of number of species.

Relationship between species richness and biomass along the altitudinal gradient is known from various parts of the world (Bhattarai \& Vetaas, 2003). Several studies have found negative correlation of species richness and elevation (e.g. Yoda, 1967;Alexander \& Hilliard, 1969; Hamilton, 1975; Wolda, 1987; Stevens, 1992; Patterson et al., 1998), whereas others have found a hump shaped relationship between species richness and elevation (e.g. Janzen, 1973; Whittaker \& Niering, 1975; Rahbek, 1995; Lieberman et al., 1996; Gutiérrez, 1997; Fleishman et al., 1998; Odland \& Birks, 1999; Grytnes \& Vetaas, 2002). Whereas, Fargione et al. (2007) reported that the selection to complementarily shifts in species richness affects biodiversity-productivity relationships in a long-term biodiversity experiment.

There are several other effects for negative and positive correlation between biomass and species richness along the altitude. Some authors classified it as sampling effect and others classify it as facilitation. Facilitation occurs when an individual attains greater biomass in the presence of inter-specific neighbours because of their beneficial effects on an intermediary resource (Fridley, 2001). Cardinale et al. (2007)
seen the impact of plant diversity on biomass, because of species complementary effects. The external factors such as moisture or other environmental conditions are thought to be of much more importance than the internal interactions (Bhattarai et al., 2004). The relation between biodiversity and biomass production has discuss for the grassland at local and regional scale in 'Grassland a global resource' and they suggested the requirement for up-scaling research in this aspect. Ruijven and Berendse (2005) discussed the effect on nutrient in diversity and productivity relationship.

Another major component is soil. There must be the link between species richness, biodiversity and ecosystem with soil (Coleman \& Whitman, 2005). The elevation gradient in the species richness pattern is commonly explained by similar factors to the latitudinal gradient, such as climatic factors, productivity, and other energy-related factors (Richerson \& Lum, 1980; Turner et al., 1987; Currie, 1991; Rohde, 1992; Wright et al., 1993; Grytnes et al., 1999; Lomolino, 2001) vary along the elevation gradients and ultimately create the variation in species richness.

The elevation gradient of species richness is intricately related to species-latitude and speciesarea relationships (Korner, 1999; Lomolino, 2001) and argues that elevation gradients can contribute important insights into developing a general theory of species diversity. The relationship between biomass and plant species richness has been extensively investigated (Thomas \& Bowman, 1998; Grytnes \& Vetaas 2000; Bhattarai et al., 2004; Han et al., 2007; Namgail et al., 2012).

Factors causing variation in species richness may differ between different organisms and between life-forms of plants. Huston (1994) found that trees and herbaceous species have different responses in Eastern compared to Central and North America. A comparison of various life-forms may allow a finer resolution of precise causal factors than studies on total plant richness.
7.1.1. Conditions in East district of Sikkim: Present study on species richness and biomass production in the East district of Sikkim was envisaged to analyse the plant species richness of along the elevation ranging from $500-3300 \mathrm{~m}$ amsl. In this study, it is also aimed to study the relationship between elevation change and species richness. The variation in species richness and biomass along the altitudinal gradient is due to the following factors (i) the number of individuals, (ii) the number of species in the species pool, and (iii) habitat heterogeneity (Simova et al., 2013).

To understand the relationship between species richness and biomass the two hypothesis was intended, (i) species richness and biomass vary along the elevation gradient, and (ii) species richness pattern is a function of abiotic factors prevailing along the altitudinal gradient.

The Himalayan elevation gradient is one of the longest bio-climatic elevation gradients in the world. In Sikkim within only 75 km one moves from a tropical to alpine zone (Fig. 2.2). Hills in Sikkim experience humid tropical to sub-tropical climate up to elevation of 1000 m . The range is characterised by agricultural land in tropical moist deciduous forests up to 900 m . The dominant species of this region are Shorea robusta, Syzygium formosum, Terminalia myriocarpa etc and in the sub-tropical forests from $900-1800 \mathrm{~m}$ the dominant species include Albizia chinensis, Alnus nepalensis. Castanopsis hystrix, Engelhardtia spicata var. integra, Macaranga indica and Schima wallichii. The elevation sector of $1800-2800 \mathrm{~m}$ is with temperate forests, $2800-3500 \mathrm{~m}$ with temperate conifers, 3500 4000 m as subalpine and above 4000 m as alpine forests/ vegetation (ISRO 1994).

In several studies, researcher had used plant community biomass to predict species richness with different degree of success. In the present study, 28 elevational band ranging from $500-3300 \mathrm{~m}$, at
every 100 m altitudinal gradient, were examined to analyse relationship between species richness and biomass (Fig. 7.1).

Fig. 7.1. Relation between species richness and biomass along 100 m elevation steps.

Fig. 7.2. Relation between species richness and biomass along 200 m elevation steps.

The relation between species richness and biomass study at 100 m elevation range, 28 elevational steps with 8 plots of $20 \times 20 \mathrm{~m}$, in 200 m elevation range 14 elevational steps with 16 plots of 20×20 m and in 300 m elevation range 10 elevation steps with 24 plots of $20 \times 20 \mathrm{~m}$ were studied. The second

Fig. 7.3. Relation between species richness and biomass along 300 m elevation steps.

7.2. Relation between species diversity and productivity along the altitude

Fig. 7.4. Relationship between biomass and species richness along the 100 m elevation steps.
order polynomial regression was tested for each scale $\left(\mathrm{R}^{2}=0.30\right)$ indicates that only 30.0% of variation in biomass is attributed to change in biomass along the altitude. It may be affirm that there exists no variation in biomass within 100 m elevation steps (Fig. 7.1). Similarly, the study of relationship between species richness in biomass at 200 m and 300 m elevation steps revealed that there exist significantly higher attributes of biomass towards, species richness. Regression coefficient, $\mathrm{R}^{2}=0.41 .0$ in 200 elevation steps and $\mathrm{R}^{2}=0.58 .0$ in 300 elevation steps indicates 41% and 58% variation in species richness is attributed to the biomass (Fig.7.2 \& Fig. 7.3).

Fig. 7.5. Relationship between biomass and species richness along the 200 m elevation steps.

Fig. 7.6. Relationship between biomass and species richness along the 300 m elevation steps.

No significant relationship of biomass and species richness along the 100 m elevational gradient $\mathrm{R}^{2}=0.2795$, (Fig 7.4) in 200 m elevation gradient $\mathrm{R}^{2}=0.4109$ (Fig. 7.5) was established. As moved to further higher scale in 300 m the relation was improved up to $\mathrm{R}^{2}=58.0$ (Fig.7.6.).

7.3. Relation between species richness and other environmental variables-multivariate analysis

The above studies, helped to understand the importance of sample elevation steps to establish the relationship between species richness in biomass.
7.3.1. Correlation of species richness with other factors: The correlation between richness and variables viz; temperature, rainfall, slope, soil, elevation, aspect and biomass was studied.

Table 7.1. Correlation Matrix of species richness with other factors in the East District of Sikkim

	Species Richness	Temperature	Rainfall Slope	Soil	Elevation	Aspect	Bioma	
Species Richness	1							
Temperature	0.527	1						
Rainfall	-0.007	-0.379	1					
Slope	-0.083	-0.094	-0.352	1				
Soil	0.308	0.32	-0.1	0.01	1			
Elevation	-0.542	-0.853	0.466	-0.099	-0.532	1		
Aspect	-0.053	-0.239	-0.012	-0.033	0.295	-0.005	1	
Biomass	0.119	0.025	0.098	-0.02	-0.017	0.042	-0.035	1

The correlation matrix (Table 7.1) compared the multiple data using the GLM model with response variable (Species richness) with other explanatory variables, were found to have strong relationship of species richness with temperature and elevation and the strong relationship between temperature and elevation followed by rainfall. There is also good relation of elevation with soil.

The relationship of biomass with other variable is poor as compare with the species richness.
Table 7.2. Coefficients GLM of Species Richness with other variable

	Estimate	Std. Error t	t value	$\operatorname{Pr}(>\mid \mathbf{t})$	
(Intercept)	-9.447	14.061	-0.672	0.502	
Temperature	0.595	0.422	1.411	0.160	
Rainfall	0.020	0.004	4.441	0.000	$* * *$
Slope	-0.012	0.058	-0.206	0.837	
Soil	0.001	0.033	0.030	0.976	
Elevation	-0.006	0.002	-3.804	0.000	$* * *$
Aspect	-0.001	0.006	-0.092	0.926	
Biomass	0.078	0.039	2.000	0.047	$*$

Significant Codes: 0 ‘***’ 0.001 '**’ $0.01^{\prime * \prime} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
7.3.2. Relationships between species richness and other variables: The relationships between species richness and other variables are shown in Table 7.2 and figure 7.7. Total species richness has unimodal relationship with other variables, indicated by a statistically significant second order term in the GLM analysis. It was understood that the relationship of species richness with rainfall, soil and biomass tests are significant as compare to other variables.

The unimodal or hump-shaped relationship between species richness and biomass is tested with data from 200 m and 300 m elevation steps in East district of Sikkim. The result agrees with earlier studies (Grime, 1973, 1997; Al-Mufti et al., 1977; Gross et al., 2000; Bhattarai et al., 2004). However, there was no strong relationship between species richness and biomass at 100 m elevation gradient figure 7.4 which may be the expression of local effects.

Fig. 7.7. Relationship between species richness and other variables (Temperature rainfall slope, rainfall, soil, elevation aspect and biomass)

Generalized Linear Model (GLM; Mc Cullagh \& Nelder, 1989; Dobson, 2002) was used to relate species richness to the explanatory variables. The response variable, species richness, takes the form of discrete data (counts) and may have a poisson distribution of error (McCullagh \& Nelder, 1989).

The relation between species richness and other variables like temperature rainfall, soil, elevation aspect etc. tested in GLM (Fig. 7.7 \& Table 7.3). The temperatures play a major role among the other variables. The interpretation of the elevation gradient with climate data showed strong correlation between elevation and mean annual temperature (Bhattarai \& Vetaas, 2003). This indicates that the temperature and elevation can play a major role in the relation between species richness and biomass along the altitude.

Table 7.3. Analysis of deviance among the response variables
Model: Gaussian, link: identity

Response: Species Richness

	Df	Deviance	Resid. Df	Resid. Dev
NULL	1		223	17587
Temperature	1	4886.8	222	12700
Rainfall	1	762.0	221	11938
Slope	1	63.3	220	11874
Soil	1	338.5	219	11536
Elevation	1	693.3	218	10842
Aspect	1	0.0	217	10842
Biomass	197.2	216	10645	

Null deviance: 17587 on 223 degrees of freedom; Residual deviance: 10645 on 216 degrees of freedom AIC: 1518.6
7.3.3. Relation between diversity with temperature, precipitation and area: Model predictions showed that individual predictors (area, precipitation and temperature) were critical to species diversity. Area was predicted to be the most important factor followed by precipitation; and both the variables were statistically significant $(\mathrm{p}<0.00)$. The temperature was also found to contribute, but less significantly ($\mathrm{p}<0.01$). However, considering two variables simultaneously, both precipitation and temperature were highly influencing the species richness pattern ($<\mathrm{p}<0.00$). In other two modelling approaches, the predicted area was highly contributory and significant (p<0.00). In contrast, both climatic variables i.e. temperature

A

B

C

Fig.7.8. Richness pattern along 200m elevation steps for (A) Species, (B) Genera and (C) Families based on best fitted second order polynomial regression model. All models were statistically significant ($\mathrm{p}<0.01$) and peaked at 1800 m altitude.

Fig. 7.9. Residual vs. predicted values plot showing species richness at 200 m elevation steps in relation to: (A) Temperature, (B) Precipitation and (C) Area using generalized linear model fitted with Poisson error distribution. The non-linear pattern is clearly indicated with no heteroscedasticity in modelling. Points having values are outliers.
and precipitation were not statistically significant when area was a constituent variable along with these factors. Similarly, the combined effect of three predictors was not statistically significant to explain the species richness pattern along the elevation gradient.

The residual vs. fitted values plots showed curve pattern and the values were well distributed along both sides of the curve.

Chapter $\mathcal{8}$

DISCUSSION

DISCUSSION

The floristic diversity, richness and originality of the second smallest state of India, Sikkim, is well known (Lama, 2004; Lepcha, 2011; Lepcha \& Das, 2012; Das, 2011, 2013; Das \& Ghosh, 2007, 2011; Das et al., 2010).The state is experiencing almost all types of climatic conditions, except hot desert, starting from tropical to permanent snow covered areas with polar environmental conditions. The sharp change in altitude (284 to 8598) m within short distance is also important that is directly affecting the structure, function and composition of vegetation in different and innumerable ecological niches in the state. The multi-pronged progress of civilization at the, so far, fastest speed is seriously affecting the Sikkim's original green wealth. With this back ground, it is now prime time to understand (i) the pattern of distribution of biological elements, (ii) species richness areas, (iii) how different species respond to changes in temperature, precipitation and altitude, etc.
8.1. Topology: In East district of Sikkim the elevation is ranging from 340 m to 4649 m . For the present study an elevation sector of $500-3300 \mathrm{~m}$ was taken, as 70% of the areas are covered under this range. The elevation wise geographical areas of East district of Sikkim has also been calculated using the GIS software in each 500 m elevation band (Figure 8.1). Slope, Aspect and climatic parameters were also taken in the present study to understand the effect of other variables with species richness and biomass production along the change of altitude. The forest type map prepared as per Champion \& Seth (1968) for forest classification was used as a base map to layout the quadrats in the field) Fig. 5.11.The landuse and Landcover maps prepared by Sharma and Das (2015) were used for final analysis (Fig. 8.2). The collected data was analyzed in Microsoft excel.
8.2. Plant diversity: The field data was collected mostly from non-disturbed forest areas using 224 nested quadrat samples in 28 elevation steps from where 664 vascular plant species covering 367 genera and 131 Families. A maximum number of 155 species recorded from the elevation of 2200 2300 m and minimum number of 60 species recorded from $3200-3300 \mathrm{~m}$ elevation steps. Schima wallichii contributed the maximum number stands amongst the recorded tree species. The elevation wise number species, Genus and Family has been given in Table 8.1.
8.3. Dominance analysis: The dominant trees recorded from this region include Castanopsis hystrix, Engelhardtia spicata, Ostodes paniculata and Schima wallichii. Alnus nepalensis and Ostodes paniculata are the dominant tree species of tropical and temperate forests and the similar observation has been reported by ISRO in 1994.

Fig. 8.1. Elevation wise geographical area distribution map of east district of Sikkim
Table 8.1. Detail of vascular plant species Genus and Family in each elevation steps

Elevation Steps	Number Species	Number Genus	Number Family
550	129	108	59
650	96	85	47
750	106	89	53
850	121	103	64
950	134	110	68
1050	134	110	63
1150	109	95	59
1250	126	104	56
1350	106	92	57
1450	128	105	70
1550	133	111	64
1650	122	95	64
1750	130	101	60
1850	134	106	69
1950	140	103	66
2050	109	90	56
2150	143	106	65
2250	155	121	69

Elevation Steps	Number Species	Number Genus	Number Family
2350	109	86	57
2450	146	106	63
2550	119	87	53
2650	142	99	56
2750	124	93	51
2850	102	84	48
2950	112	85	48
3050	86	60	36
3150	80	54	36
3250	60	46	33

Fig. 8.2. Landuse and landcover map of East district of Sikkim

The Frequency, Relative Frequency, Density, Relative Density, Abundance, Relative Abundance and Importance value Index were also determined for the East district of Sikkim, where Pteridium aquilinum is recorded with 100% frequency but Schima wallichii contributed maximum density with highest IVI score of 12.19 followed by Ostodes paniculata with IVI score of 4.64.The highest IVI scores of 10 top vascular plant with the IVI is given in Table 8.2.

Table 8.2. List of the highest IVI scores of 10 vascular plants

S1 No.	Botanical Name	F	D	A	RF	RD	RDM	IVI
1	Schima wallichii	50.000	44.500	89.000	0.420	7.830	3.941	12.190
2	Ostodes paniculata	42.857	15.357	35.833	0.360	2.702	1.587	4.649
3	Alnus nepalensis	57.143	12.607	22.063	0.480	2.218	0.977	3.675
4	Castanopsis hystrix	71.429	11.607	16.250	0.600	2.042	0.719	3.362
5	Engelhardtia spicata	53.571	11.214	20.933	0.450	1.973	0.927	3.350
6	Nephrolepis cordifolia	82.143	10.786	13.130	0.690	1.898	0.581	3.169
7	Symplocos lucida	39.286	8.071	20.545	0.330	1.420	0.910	2.660
8	Eupatorium adenophorum	75.000	8.607	11.476	0.630	1.514	0.508	2.652
9	Dryopteris sikkimensis	64.286	8.286	12.889	0.540	1.458	0.571	2.568
10	Selaginella ciliaris	64.286	7.893	12.278	0.540	1.389	0.544	2.472

8.4. Diversity Indices: Different vascular plant species recorded in different elevation gradient of East district of Sikkim are not with uniform pattern of distribution. This is influencing the changes in diversity indices in different locations and in different vegetations. To know the plant diversity viz. richness, dominance, evenness, etc., the diversity indices like Margalef Index (MI), Simpson's Index (D), ShannonWiener Index (H) and Pielou's Index (J) also analysed. The Margalef diversity index showed very high values at all elevation bands with the highest reaching at 2200-2300 m; whereas Shannon Weiner Diversity Index values varied between 3.4 and 4.4 [except at the highest elevation band, where the values was the lowest (1.9)] with the highest value of 4.4 at $2200-2300 \mathrm{~m}$. Through this the highest species richness was observed at 950 m elevation. The values of different diversity indices in different altitudinal bands has been presented in (Fig. 5.14 to 5.17) which shows the diversity is higher in the elevation at $1050 \mathrm{~m}, 1850 \mathrm{~m}$ and 2250 m , then decrease slowly. This indicate that the diversity is more in the ecotonal regions. The value each indices is given in the Table 5.4.

8.5. Species Richness and Elevation

Maximum area spread is found to be in $1100-1500 \mathrm{~m}$ elevation range, especially at $1300-1400 \mathrm{~m}$ band; whereas the north-eastern aspect occupies minimum area with north western aspect occupying maximum area in East district of Sikkim. Schima wallichii is found to be occurring abundantly in subtropical belt of the district with 1246 counts. A minimum of 60 and maximum of 155 species were noted in $3200-3300 \mathrm{~m}$ and $2200-2300 \mathrm{~m}$ elevation bands. At $1800-1900 \mathrm{~m}$ elevation band a minimum of 29 and maximum of 63 species were noted pointing to an intermediate minima. At $600-700 \mathrm{~m}$ elevation band, the standard deviation of species range is found to be below 5 indicating greater abundance
of species. In general, the number of shrub, herb and lianas decreased from lower to higher elevations with lianas almost absent beyond 3200 m elevation. The number of tree species was found to follow a mixed trend, coinciding to the level of disturbance and other abiotic factors. Pteridium quilinum is found in all elevation bands indicating maximum tolerance and adaptability, whereas 190 species found with single appearance in one elevation band have narrow tolerance and adaptability range.

A study conducted by Behera and Kushwaha (2007) in Arunachal Pradesh of Eastern Himalaya using data on the tree species (cbh e" 15 cm) gathered at every 200 m steps between 200 m and 2200 m gradients. Tree diversity demonstrated a greater variation along the gradients with a total of 336 species belonging to 185 genera and 78 families. While studying in Helan Mountain, China, Jiang et al. (2007) found that the number of species initially increased and then declined, and the curve was markedly 'humped'. They observed richness was the highest between 1800 and 2000 m amsl.
8.5.1. Species richness: In any biodiversitically rich vegetation and flora occurrence and distribution of different species can't be uniform. It certainly respond to different prevailing factors in the habitat. From a study in the 500-3300 m elevational range of habitat in the East district of Sikkim led to the record of 664 species of vascular plants. This include almost all habit groups, harbs, shrubs, climbers, lianas, trees, and epiphytes. Major part of the natural vegetation, especially in the tropical to warm temperate belt is dominated by trees. It was noted that at least 158 species of trees, 197 species of Shrubs 91 species of lianas and 304 species of herbs are growing in the study area. To understand the scaling effect the field data is divided into three different scale viz. 100 m elevation steps 200 m elevation steps and 300 m elevation steps. The species richness along the 100 m elevation gradient shown in figure. 8.3.

Fig. 8.3. Species richness along the 100 m elevation steps
8.6. Distribution of Trees Shrubs and Herbs along the altitude: A total of 664 species of vascular plants were recorded from the East district of Sikkim, out of which only Pteridium aquilinum has been found in all the elevation steps, 8 species are found in more than 20 elevations steps and 25 species are found in more than 15 elevations steps and 195 species are found in only single elevation step (AnnexureV). In general, 24 tree species are found only in single elevation band, whereas Acer campbellii and Schima wallichii are found in more than 14 elevation steps and Albizia chinensis, Macaranga indica
are found in more than 10 elevation steps of the study area. It was also observed that 14 species of shrubs were found in more than 10 elevation steps, whereas 59 species of shrubs occurs only in single elevation step. Similarly, 21 species of herbs are recorded in more than 15 elevation steps and 79 species of herbs are found only in single elevation steps. Table 8.3 showing the list of all vascular plant recorded from each elevation band of East district of Sikkim.

Table 8.3. List of tree, shrubs, herbs and epiphyte of the study area

Elevation Steps	Number of Tree	Number of Shrubs	Number of Herbs	Number of Epiphyte
550	20	34	57	25
650	18	16	52	14
750	18	21	59	12
850	28	34	56	8
950	36	40	61	8
1050	30	35	65	12
1150	24	28	54	6
1250	27	31	61	13
1350	18	23	58	9
1450	21	33	69	8
1550	22	43	59	13
1650	25	26	63	10
1750	19	38	68	12
1850	31	28	69	11
1950	19	41	69	13
2050	21	38	42	13
2150	42	30	63	11
2250	33	30	82	15
2350	16	27	65	10
2450	30	28	86	10
2550	24	17	69	9
2650	33	23	84	8
2750	28	19	75	9
2850	12	18	68	10
2950	34	17	59	8
3050	28	19	38	8
3150	21	17	47	0
3250	15	15	35	0

8.7. Species richness along elevation gradient

In general, the species richness showed a gentle mid-elevation peak with a fast declining trend beyond mid-elevation. The pattern became prominent when adjudged from 100 m to 200 m and 300 m elevation bands with R^{2} values of $0.502,0.553$ and 0.743 respectively; indicating realisation
of scale effect. Similarly, the genera and family richness pattern followed the mirror image of species with mid-elevation peak. The R^{2} values increased when plotted from 100 m to 200 m and 300 m elevation bands for genera ($0.657,0.764$ and 0.862) and families ($0.765,0.875$ and 0.907). Though, the species richness pattern along elevation gradient non-linear polynomial relationship, it clearly confirmed the pattern of mid-elevation peak across the taxonomic spectrum (i.e., species, genera and families), and grain size ($100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m elevation bands).

This pattern is in contrast to a hump-shaped pattern found by Vetaas and Grytnes (2002), while studying the distribution of vascular plant species richness along the elevation gradient of Nepal Himalaya, between 1000 to 5000 m and found a hump-shaped pattern. Another study by Bhattarai and Vetaas (2006) showed drastic decrease in tree species richness up to 4000 m elevation in central Himalaya. Behera and Kushwaha (2007) in Arunachal Pradesh of Eastern Himalaya found that the alpha diversity demonstrated a decreasing pattern with two maxima (i.e., elevational peaks) along the gradients; one in 601-1000 m and the other in $1601-1800 \mathrm{~m}$, corresponding to transition zones between tropical-subtropical and subtropical-temperate forests. Acharya et al., (2011) observed increase in tree species richness pattern till 1500 m and drastic decrease beyond till 3800 m in Sikkim state. However, the pattern differs once the other life-forms such as shrubs, herbs and lianas are considered. Namgail et al. (2012) while analysing the dry alpine communities between 4500 m and 5500 m in Ladakh of Western Himalaya found unimodal relationship between plant species-richness and Elevation between 5,000 and $5,200 \mathrm{~m}$, while it peaked between 3,500 and $4,000 \mathrm{~m}$ at entire Ladakh level. In south west Saudi Arabia, the species richness increased from lower elevation to higher elevation up to 2000 m highest in 2000-2500 m, then the species diversity decreased while increasing elevation there is a remarkable change in vegetation species diversity and floristic relation (Hegazy et al., 1998). In Costa Rica, Kluge et al. (2006) observed that the species richness of the 484 recorded species showed a hump-shaped pattern with elevation (with a richness peak at mid-elevations at 1700 m) related strongly with climatic variables, especially humidity and temperature; while area and species pool were associated less strongly.

In present studies showed that quadrats falling in the transition zones between two forest types possess significantly larger number of species than other steps (Fig. 5.18) with elevations of $900 \mathrm{~m}, 1800 \mathrm{~m}$ and 2200 m . This corresponds to the transition zones between tropical-subtropical and temperate and sub-temperate zone. The 100 m elevation steps there is no direct correlation of elevation with the richness of different ranks of taxa, namely species, genus and family. This may be due to the impact of scale factor. In general, there is no clear idea regarding the species richness along the 100 m elevation gradient (Fig. 5.18).The R^{2} value was 0.50 in second order polynomial, but the relation seen increasing in the initial stage but it decreases with the increase of elevation from temperate forest transition zone, which is located at around 2200 m altitude in the East district Sikkim.

Through this study, species richness found increasing along the altitudinal gradient of lower elevation from tropical forest and up to the sub-tropical forest, i.e. up to 1900-2000 m elevation. In the temperate zone the number of species decreases with an increase in elevation. List of vascular in each elevation band is presented in Table 8.4.

Table 8.4. List of the number vascular plant species in each 100 m 200 m , and 300 m elevation steps.

$\begin{gathered} \text { Elevation step } \\ (\mathbf{m}) \end{gathered}$	No. of Species ($\mathbf{1 0 0} \mathrm{m}$)	No. of Species ($\mathbf{2 0 0} \mathbf{~ m}$)	No. of Species ($\mathbf{3 0 0} \mathrm{m}$)
550	127	163	204
650	96		
750	106	167	227
850	121		
950	134	194	
1050	134		
1150	109	166	196
1250	126		
1350	106	245	224
1450	128		
1550	133	163	
1650	122		
1750	130	187	242
1850	134		
1950	140	203	249
2050	109		
2150	143	194	
2250	155		
2350	109	206	227
2450	146		
2550	119	198	150
2650	142		
2750	124	166	
2850	102		
2950	112	150	108
3050	86		
3150	80	108	
3250	60		

8.7.1. Along 100 m elevation step: Statistical test has been carried out targeting the elevation bands of $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m to find out the species richness in three different classes at species, genus and family levels. In every 100 m elevation steps there are eight sample plots which seems less to see the pattern of species richness curve. The species richness pattern in 100 m elevation band is statically not significant (R^{2} Value is 0.502) owing to the effects of local factors in the Eastern Himalayan region as well as topographic factors (steep slope/shortest elevation zone) along this elevation band.
8.7.2. Along 200 m and 300 m elevation steps: Additionally, statistical tests have been carried out targeting the elevation bands of 200 m and 300 m with 16 sample plots and with 24 sample plots of 20 x 20 m , respectively. In the second polynomial regression equation, the relation between species richness in 200 m is $\mathrm{R}^{2}=0.553$ and $\mathrm{p}<0.01$ and for 300 m it is $\mathrm{R}^{2}=0.73$ and $\mathrm{P}<0.01$, which are statically
significant and express that the relation between species richness and elevation is improving in the combined data set or in courser resolution or number of sample size may be increased to produce the better result. Behera and Kushwaha (2007) discussed that the fine resolution data may improve the result in the eastern Himalaya. It can been seen that along 100 m elevation step, data set of eight plots of $20 \times 20 \mathrm{~m}$ are not sufficient to understand the actual relationship between species richness along the elevation step of 100 m in the Eastern Himalaya Sikkim. The list of number vascular plant species in each $100 \mathrm{~m}, 200$ $\mathrm{m}, 300 \mathrm{~m}$ elevation steps are given in Table 8.4.

Though the species richness followed the hump-shaped relationship with elevation showing a peak in between $1500-1800 \mathrm{~m}$ for species genera and families (Fig. 5.19 \& Fig. 5.20).

Obviously, a few studies have assumed that a species with particular altitudinal range will be present within each 100 m band of that range and thus interpolation violates control over sampling area and intensity. Such type of studies have clearly ignored the local ecological factors those might have significant impact on the alpha as well as beta diversity of a place. Furthermore, the magnitudes of change of microclimatic conditions in the 100 m bands are not remarkable compared to that of an individual plot. According to (Ricklefs, 2004; Whittakeret al., 2001) the characteristics of biodiversity generally result from two factors, evolutionary history and contemporary ecological conditions. If it assume that evolutionary history is identical, it can understand that the species groups that have the same or similar ecological requirement and ways of adapting or responding to the environment may also exhibit the same or similar distribution of diversity in space. Conversely, Whittaker et al. (2010) and Meentemeyer (1989) opined that ecological phenomena are hierarchically structured, which are related closely to the scale of observation. The challenge to contemporary ecology and biogeography is to document scale dependence or independence in different systems. The species pool is regarded as an important factor in determining community richness (Eriksson, 1993). This was seen in the elevation of 950 m where number of individual is less but numbers of species are more as compared to other bands.

The low elevation sites were relatively densely populated probably because of human interferences in these areas facilitates the introduction and establishment of non-native species (Rawal \& Pangtey, 1994). These spaces may intensify the establishment of shade intolerant species and enhance the regeneration of mixed pine-broadleaved forests (Wangda \& Ohsawa, 2006). As a result of which the maximum species were encountered at lower elevation compared to higher elevation sites. The human impact at lower altitudes was evident in the form of open spaces left after felling of selective species.

8.8. Effect of the forest ecotone

Lomolino, (2001) has studies an ecotone effect (high diversity in the ecotone due to significant overlap between communities) in the context of elevational gradients and source-sink dynamics. The proportion of species shared and the amount of overlap between communities can play a significant role in determining the unimodal pattern of species richness by shifting of species to ecotone zones, which can also be explored further by looking at the contribution of marginal/sink species to the richness dynamics in the zones of overlap. Along a local gradient, richness in the ecotone was likely to be composed of ecotone specialists and a number of low abundance sink species contributed by spill over from adjoining biomes as shown by rescue effect as reported by Brown \& Brown (1977) .

Similarly, the floristic and ecological importance of the forest in phytogeographical zonation has remained unquestioned (Odland \& Birks, 1999). The plant species richness with the distance is often associated with abrupt change in climatic and other environmental conditions (Kirkpatrick \& Brown, 1987).

The Himalayan region is a unique physiogeographical region with an average elevation above 4000 m . Zheng et al. (1981) reported that the monsoon and westerly are strongly influenced by climatic zones. The topographic configuration and atmospheric circulation determine the horizontal separation of natural vegetation segments. The vegetation changes successively from southeast to northwest with decreasing moisture from montane forest, are gradually changing through high-altitude scrubs, alpine meadows, and alpine steppes to alpine deserts.

8.9. Species Richness and Environmental Parameters

A main aim of this study was to investigate the evident incompatibility between the need for implements that correctly predict ecological consequences of forest management and the current ecological knowledge and available environmental data. The approach taken in this study is experiential and uses observed environmental and altitudinal distribution patterns as a starting point for generating maps for such studies. This method requires accurate maps of species richness parameters in high resolution. Altitude itself is not an environmental gradient and therefore, is itself virtually nothing to life (Kroner, 2000; Brown, 2001). However, several environmental gradients, either singly or in inter-correlations, act significantly along the changing elevation and therefore, it represents a composite gradient of those environmental variables. It is very difficult to explore the drivers of the complex biological patterns seen along the elevation gradients from the independent effects of single overriding forces (Lomolino, 2001). However, many studies have explored plausible driving factors for the prevailing patterns (Grime, 1997).

This study was undertaken along the high elevation range of East district of Sikkim focusing upon prevailing species richness and production of biomass. Anthropogenic and natural factors (e.g., wild fire, landslide, trekking, tourism, cattle grazing, strong wind, snow avalanche, etc.) responsible for disturbance of forest ecosystem have been identified through field survey. Bedsides, other factors may also have a bearing on sampling effect, facilitation and complementarily.

Total species richness, i.e. of all life-forms or habit-groups, has a significant hump-shaped pattern along the altitudinal gradient (elevation). Maximum species richness occurs at optimal elevation of 2100 -2200 m , which is the trans-ecotone zone of two type of forests or vegetation. It has been observed that species richness varies in elevation between $1100-1200 \mathrm{~m}$ and $1300-1400 \mathrm{~m}$ owing to human interference as well as changing climatic conditions. It has been reported that in Sikkim Himalaya, the species decreases along the altitude starting from the elevation range of $2400-2600 \mathrm{~m}$ (Acharaya $e t$ al., 2011). As per field observation, the north facing slopes have more species compared to the south facing slopes. Shrubby species decreases after $1800-1900 \mathrm{~m}$ as the area above 2000 m are mostly covered with different species of bamboos like Arundinaria acerba, Chimonocalamus griffithianus and Arundinaria racemosa. Owing to the dense population of these species in this region there is a less regeneration of other tree and shrub species. In majority of the cases, not a single shrub has been found in $20 \times 20 \mathrm{~m}$ plots were these species were dominated. The variation of herbs in the region is attributed to the increasing anthropogenic activities or with the aggressive bamboo cover and it may also be due to changing climatic conditions.

Further, studies were also conducted the on geographical area and the species richness along the elevation was observed that the geographical area can play the major role for species richness along the elevation gradient in the Sikkim Himalaya, but further research needed to conclude the relation between geographical area and species richness in such mountainous regions.

8.10. Biomass along altitudinal (Elevation) gradient

Biomass is described as the plant material produced as a result of photosynthesis and its accumulation in different forms in the plant body. Its measurement is based on commonly accepted principles of forest inventory and ecological survey. Good estimation of stem volume forest biomass on account of its ever changing nature remains an interesting and challenging task for the researchers. The field data like forest type, density, stem diameter at breast height and the tree height are normally collected to calculate the biomass. The field inventory is not only a tedious and time consuming task, it becomes too complicated to carry out field survey manually in heterogeneous forests as the number of species within the stand increases.

Biomass has been calculated using the volume of different tree species in the study area using the FSI-2006 volume equation. After calculating the volume of each species, the specific gravity of the tree has been used to calculation the biomass. The general volume equation was used for the trees whose volume formula was not available. The biomass also shows the unimodal relationship along the altitudinal gradient in the study sites.

The biomass of herbs, shrubs and epiphytes were also calculated using the percentile factor among different forest types (Chaturvedi \& Singh, 1987; Rawat \& Singh, 1988; Singh \& Singh, 1991). Data has tested at different elevation bands with $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m elevation steps to see the effect of scale. The relationship between biomass along the altitude in different elevation bands were shown in Figs. 5.27, $5.28 \& 5.29$.

The biomass ranging from 6.3 t /ha at 3150 m and $68.6 \mathrm{t} / \mathrm{ha}$ at 2650 m in different elevation range of SikkimHimalaya. Sundriyal and Sharma (1996) recorded 8.32 tha woody biomass from Mamlay watershed in South Sikkim. In the present investigation, the average biomass of East Sikkim was determined to 38.8t/ ha, whereas Chhabra et al. (2002) reported that Sikkim contributes 48.1Mt/ha.

The above ground (AG) biomass distribution pattern showed alternate increasing and decreasing pattern along the elevation gradient. In general, the AG biomass showed a smooth increase up to midelevation and decrease further. The R^{2} values increased (i.e., $0.28,0.41$ and 0.58) when plotted from 100 m to 200 m and 300 m elevation bands. The AG biomass pattern along elevation gradient showed nonlinear polynomial relationship, where in it confirmed the pattern of mid-elevation peak in the East district. Here, the primary productivity measured by the AG biomass is found to be positively correlated with plant species diversity as the productive forest ecosystems have more species, there by more productivity (Huston, 1994).

Bhattarai et al., (2004) observed a significant unimodal relationship between species richness and biomass in an arid sub-alpine grassland of the Central Himalayas, Nepal. They observed lower turnover in the old field than in the common pasture. Namgail et al.,(2012) while analyzing the dry alpine communities between 4500 m and 5500 m in Ladakh of Western Himalaya reported a hump shaped relationship between aboveground phytomass and Elevation between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Benito et al., (2014) used 54,000 plots of the Spanish Forest

Inventory and maximum likelihood techniques to quantify how climate, stand structure and diversity shape carbon storage and tree productivity. They found a consistent positive effect of functional diversity on carbon storage and tree productivity was observed in all seven forest types studied. This relationship was not linear, and the largest changes in carbon storage and tree productivity were observed at low levels of functional diversity. They also found a generally positive effect of diversity on carbon storage and tree productivity, supported by both complementarity and selection mechanisms (Benito et al., 2014).

Relationship between biomass along the 100 m elevation step has been presented in Fig. 5.27.As it was seen, the pattern of biomass along the altitude in the lower elevation of $500-600 \mathrm{~m}$ starts from $29.1 \mathrm{t} / \mathrm{ha}$. It increases slowly and has reached around $40.0 \mathrm{t} / \mathrm{ha}$ in the elevation of step of $800-900 \mathrm{~m}$ which represent the ecotone region of tropical and sub-tropical forest and again it decreases with increasing the elevation zone at 1400 m . Between 1000 m to 1500 m there are major human habitations in East district. And, the decrease of biomass has been attributed to the anthropogenic activities in this ecoregion. Besides, there are limited numbers of big trees in this eco-region as most of the trees were harvested for human consumption. The biomass, t/ha, again increases and reached to around 60.0t/ha at the elevation step of $1600-1700 \mathrm{~m}$ which is the second ecotone for sub-tropical and temperate forests. Again, the biomass decreases down to 35.0t/ha at the elevation step of $1900-2000 \mathrm{~m}$ and then starts increasing with the increase of elevation and it reached around 69.0t/ha at the elevation step of $2600-2700 \mathrm{~m}$ which is the highest pick of biomass production. After the elevation step of 2700 m the biomass production decreases and it becomes less than 10.0t/ha in the elevation step of 3100-3200 m . The overall pattern indicated that the biomass decreases with increase in the elevation excluding the ecotone areas. Similar observation was also reported by Wang et al. (2014) who have conducted study above 3100 m ranging up to 4300 m in the elevation gradient on the Tibetan Plateau.

8.11. Satellite based correlation

Geometric and radiometric corrected optical data was procured for the present experiment. The processed data were further used for the assessment of EVI2 (a proxy for biomass). The data was tested in simple linear equation, the pattern of field derived biomass and EVI2 derived from Landsat, shows the positive relationship with $\mathrm{R}^{2}=0.5$ as shown in figure 4.31. Similar result was found by Tan et al. (2007) during their study on satellite based estimation of biomass for north-east china. They tested their finding using the regression model for NDVI and field based biomass. But, Devagiri et al. (2013) and Zheng et al. (2004) found the NDVI and area weighted above ground biomass (AGB) $\mathrm{R}^{2}=0.8$. The presently collected data was segregated in three different categories or classes: (a) EVI and field derived biomass in 100 m elevation steps, where the R^{2} value was 0.32 ; (b) present data for above subtropical forest to subalpine forest were tested to see relationship and that was found to be $\mathrm{R}^{2}=0.31$; (c) such data was again tested for the relation between temperate forest to subalpine forest that showed $\mathrm{R}^{2}=0.80$. This result shows even the fragmented data from different forest zones, the relation of biomass and EVI showed no any recognizable difference. But, if moved further towards the higher elevation the relation shows significant result. This may be due to the high moisture contents in the un- or low disturbed forests of high altitude areas. In such areas disturbances are caused mostly by the large number of visiting tourists and the activities of plant hunters. The field derived biomass production and MODIS productivity ($1 \mathrm{~km} \times 1 \mathrm{~km}$) was not found good relationship, it may due to the scale effect (i.e. the total geographical area of the study are is very small 954 sq km)

To understand the better relationship the further extensive research is needed to evaluate the climate change related studies in different sectors of the Sikkim Himalayan regions.

8.12. Relationship between Species Richness and Biomass Production along the altitude

The relationship between species richness and biomass is tested in three different scales, as it was discussed above. It has been observed that there was a better relation in regional scale as compared to the local scale. In first 8 nested quadrats in each of the 28 different elevation steps the R^{2} is less than 40%. But, if another eight quadrat in the same points are added the relation becomes more than 50%. Similarly, if further 8 quadrats are added then the relation between biomass and species richness increases to over 80%. This shows that there is major role of scale between biomass and species richness in determining the relationship, which can be referred as multi-scale dependant mechanism (Simova et al. 2013). They found that, at the smaller spatial scale of individual plots, there was significant curve that shows linear negative relationship between species richness and productivity. Whereas, at the larger site scale it is turning into a non-significant relationship.

The relation between species richness and biomass along the elevation gradient has also been tested using the second order polynomial regression equation, and the determined relation is $27 \%, 30$ $\%$ and 58% respectively for $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m elevation steps.

The result has also been tested with different environmental variables. It was observed that there is a positive relationship of species richness and biomass along the altitude, as it was tested along the $100 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m elevation gradients.

The data has been tested in the GLM model with seven variables. It was found that temperature plays the most important role for the relationship between species richness and biomass accumulation along the elevation gradient. Similar observation has been reported by Bhattarai in 2004. There are several ecological factors those might different types of impacts on different relationships. The relationship between diversity and productivity is based on the ecological effects of complementarity and 'sampling'.complementarity suggests that species richness enhances productivity because of niche differentiation (for example, complementarity) or positive interactions (for example, facilitation) between species and therefore more of the available resources can be exploited. 'Sampling' means that morediverse communities are, by chance, more likely to contain species with higher average productivity than are with low diverse communities (Venaill et al., 2008).

Both species richness and AG biomass co-vary along elevation gradient showing strongly positive relationships. The relationship became prominent with increasing elevation and grain size of elevation bands i.e., from 100 m to 200 m and 300 m (with R^{2} value increase i.e., $0.31,0.53$ and 0.80). Hence, productivity, one of the important factors is found to be correlated with elevation gradient potentially influencing species diversity.

8.13. Relation of diversity with Temperature, Precipitation and Area

The effect of area was highly conspicuous which supports the geographic area hypothesis that in higher areas availability facilitates more species to co-exist. Simultaneously, the crucial impact of precipitation and temperature, both at individual and combined conditions, explain the local effect of climate on species diversity. The non-linear spatial distribution of precipitation greatly affects moisture gradient
characterise species diversity along the elevation in tropical areas (Brown, 1988). The precipitation that affects the moisture gradient, influencing high species diversity for epiphytes in tropical Andes (Gentry \& Dodson, 1987), in moist temperate forests of Pakistan (Shaheen et al., 2012) and in the grasslands (Cornwell \& Grubb, 2003) have been reported. Since, the study was within elevational range of 500 to 3300 m , the influence of temperature was comparatively less significant. At higher elevation, the effect of temperature is significant as adiabatic lapse rate becomes lethal to plant physiology. It was assumed that the effect of candidate variables along elevation behave in non-linear fashion was substantiated by the curve pattern. Additionally, heteroscedasticity could be accounted by choosing appropriate poisson error distribution.

Despite combined effects of direct or indirect environmental variables no single parameter could explain the species richness pattern along the elevation (Whittaker, 1972). The more detailed study involving a wide range of ecologically significant variables can provide better explanations to the observed conditions of species richness along the gradients of elevation.

8.14. Status of Conservation in the Study area

Protected Areas (PA) are, and have been, the cornerstones of biodiversity conservation in the present era. Following IUCN guideline (Dudley, 2008) the Govt. of India has recently taken up some serious measures for the conservation of biodiversity by declaring many biodiversity rich areas as Protected or Reserve Areas for in situ conservation. As such, the proper management of these PAs, after notification, needed to be maintained with effective monitoring and strong enforcement of laws. Considering this fact, Govt. of Sikkim has declared (i) 01 Biosphere Reserve,(ii) 01 National Park, (iii) 06 Wildlife Sanctuaries and (iv) 01 Bird Sanctuary (Table 8.5).

Table 8.5. Protected area networks in Sikkim

Name of the protected area	$\begin{gathered} \hline \text { Location } \\ \text { and } \\ \text { district } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Area } \\ & \left(\mathbf{k m}^{2}\right) \end{aligned}$	Biogeographic Province	Altitude (m)	Year of Notification
Kanchendzonga National Park	North and West	1784	1B	-	1977
Fambong Lho Wildlife Sanctuary	East Sikkim	51.76	2C	$\begin{aligned} & 1524- \\ & 2749 \end{aligned}$	1984
Shingba Rhododendron Sanctuary	North Sikkim	43	1B	$\begin{gathered} 3048- \\ 4575 \end{gathered}$	1992
Kyongnosla Alpine Sanctuary	East Sikkim	31	2 C	$\begin{gathered} 3292- \\ 4116 \end{gathered}$	1993
Maenam Wildlife Sanctuary	South Sikkim	35.34	2C	$\begin{gathered} 2300- \\ 3263 \end{gathered}$	1987
Barsey Rhododendron Sanctuary	West Sikkim	104	2C	$\begin{gathered} 2200- \\ 4100 \\ \hline \end{gathered}$	1996
Pangolakha Wildlife Sanctuary	East Sikkim	128	2C		2000
Kitam Bird Sanctuary	South Sikkim	6	-	320-875	2005
Kanchendzonga Biosphere Reserve	North and West	2620	$1 \mathrm{~B} \& 1 \mathrm{C}$	$\begin{gathered} 2725- \\ 5537 \end{gathered}$	1997

Source: Lepcha \& Das, 2012

Apart from these, many small pockets of forests, mostly located around the monasteries, village herbal gardens are forming part of traditional biodiversity conservation system in Sikkim. There are three sanctuaries [viz. Pangolakha Wildlife Sanctuary, Fambong Lho Wildlife Sanctuary and Kyongnosla Alpine Sanctuary] and some botanical and herbal gardens present in the East district of Sikkim for the conservation of biodiversity of the area.

Chapter 9 CONCLUSIONS

CONCLUSION

The survey conducted in Sikkim part of the Eastern Himalaya, covering the altitudinal range of 5003300 m in the East district, which covers wide range of climatic zones from tropical to sub-alpine conditions. The work was aimed to understand the relation between species richness and biomass production with the change of altitude, that is, in turn, linked to different environmental set-up.

After completion of the work and analysis of data, it is now clear that the species composition in the study area changes with the increase or decrease of altitude. During the survey, highest number of species has been recorded from the vegetation located around the 2200 m elevation. However, highest number of tree species has been spotted at the junction of tropical and sub-tropical conditions at around 900 m altitude. At the same time, distribution pattern of different species of trees changes with change of elevation that expresses the degree of adoptability of each and every species to the altitude based changes in the habitat. With the increase or decrease of altitude most of the environmental parameters get affected and those, in turn, again lead to the modification of some other elements of the habitat including soil organic matter, rate of decomposition of rock, water holding capacity of soil, pH of soil and water etc. And, all these are basic factors for the selection of species for any particular habitat. So, a habitat with sharp change in altitude over a very small distance show quick change in nature of vegetation including the participating species of plants.

The species richness was also linked to availability of water, aspect, exposure to strong wind and, of course, with the degree of anthropogenic disturbances including location of human settlements and their type of road link with the urban areas. After altitude, in Sikkim Himalaya, water is a very important factor which is available in sufficient amount for the vegetation in most of the areas. So, apparently, water cannot be the very important factor behind the selection of species especially up to the temperate region. But, aspect of the habitat is extremely important as it is related to the availability of sun-light, facing strong wind or even the severity of snow fall.

Strong wind is very important as it is responsible for soil erosion, land slide, establishment of individual plants, distribution of seeds, availability of pollinators, accumulation and melting of snow, etc. So, in wind-facing and opposite side's vegetation formation will be completely different. Almost no soft soil will be available on the surface and that will work against the establishment of shallow rooted plants, especially those are without rhizome/ runner/ lower prostrate stem producing numerous adventitious root system. That means, strong wind interfere with the anchoring and settlement of plants in the habitat.

The Himalaya Biodiversity Hotspot is also recognised as one 'Hottest of Hotspots' due to excessive loss of natural habitat. It is also true for the Sikkim part of the Himalayas. Anthropogenic activities are the most serious influences and factors for the change of numerous habitat conditions, removal and
introduction of species, selection of species, etc. Anthropogenic interference is quite high in many parts of the study area. This directly influence the species richness of an area and is also found true in the East district of Sikkim.

The direct field-based methods for determining the (i) relation between species richness against elevation, and (ii) relation between species richness against biomass accumulation, has resulted almost uniform and acceptable result. Both, species richness and above ground biomass, along the elevation gradient showing strongly positive relationships. So, direct method, in most cases, produce the most reliable and usable result where-ever it is possible to take up.

At the same time, the indirect method of determining such relations using remote sensing techniques using satellite imageries also known to produce similar and reliable results for larges geographical areas. However, for the present investigation, the result was little different mostly due to the utilization of different scales for data collection in field and in remote sensing methods or may be due to the small coverage geographical area of the study.

This proves that through the use of satellite imageries along with suitable ground trothing can also be used effectively to establish such relationships. But, for this proper adjustment between two scales need to develop with some suitable modifications in the methodology. The result produced through this method is more laboratory oriented and can be repeated in quick succession. This method also can indicate the sudden changes in vegetation if any and can raise necessary alarm so that necessary steps can be taken on emergency basis if such a situation arises any time.

However, the essence of the entire work can be summarised as:

1. The flora of the study area has been characterised with quite high species richness
2. The species richness is high in the middle and low altitude areas
3. It decreases with the increase of elevation after 2200 m elevation
4. Species richness and biomass accumulation along the elevation gradient are showing strong positive relationship
5. Tree diversity also reduces fast with the increase of altitude
6. Scaling effect has been seen in the species diversity and biomass along the altitude
7. More intensive research is needed in different scale for better understanding the relationship between species richness and productivity along the altitudinal gradient in the mountainous regions like Sikkim
8. Remote sensing (using Satellite imagery) derived biomass production not showing good relation with field derived result of biomass production, which may be due to differences in scale and also due to the smaller geographical area under study
9. In multivariate analysis of temperature showed strong relationship with species richness along the altitude that, vis-à-vis also shows relation with the biomass production
10. It is essential to conduct such studies in other districts of the state and in regular intervals to monitor the changes if any and for developing proper strategies for effective conservation that is too much important for Sikkim that is well known for its extremely high biodiversity..

Photo Plates

PLATE 1: A. Girardinia diversifolia; B. Laphangium affine; C. Cheilocostus speciosus; D. Houttuynia cordata; E. Nepeta connata; F. Impatiens glandulifera; G. Aconitum ferox; H.Oxalis acetosella; I. Fragaria nubicola; J. Persicaria chinensis; K. Potentilla fulgens; L. Onopordum acanthium.

PLATE 2: A. Clematis montana; B. Arisaema propinquum; C. Pilea umbrosa; D. Piper boehmeriifolium; E. Myricaria rosea; F. Oxalis corniculata; G. Taraxacum campylodes; H. .Impatiens urticifolia; I. Ranunculus laetus; J. Anaphalis busua; K. Ageratum houstonianum; L. Didymocarpus albicalyx.

PLATE 3: A. Ageratina adenophora; B. Swertia chirayita; C. Dobinea vulgaris; D. Panax pseudoginseng; E. Rheum aciminatum; F. Streptopus simplex; G. Achyranthes bidentata; H. Selinum wallichianum; I. Aster himalaicus; J. Cassiope fastigiata; K. Erigeron bellidioides; L. Rhaphidophora decursiva; M. Euphorbia sikkimensis.

PLATE 4: A. Primula capitata; B. Primula drummondiana; C. Primula edgeworthii; D. Primula calderiana; E. Primula macrophylla; F. Mikania micrantha; G. Elsholtzia fruticosa; H. Artemisia nilagirica; I. Inula orientalis; J. Polygonum molle; K. Pseudocyclosorus canus; L. Lycopodium japonicum.

PLATE 5: A.Anemone obtusiloba; B. Anemone rivularis; C. Elsholtzia fruticosa; D. Hedychium thyrsiforme; E. Cautleya spicata; F. Hedychium coccineum; G. Hedychium greenii; H. Aeschynanthus hookeri; I. Dendrobium denneanum; J. Equisetum arvense; K. Pleione praecox; L.Clintonia Spp; M. Liparis Spp.

PLATE 6: A. Solanum viarum; B. Rubus buergeri; C. Rosa brunonii; D. Mussaenda roxburghii; E. Aster albescens; F. Brugmansia suaveolens; G. Daphne bholua; H. Viburnum erubescens; I. Zanthoxylum nepalense; J. Maesa chisia; K. Hypericum uralum; L. Erythrina arborescens; M. Callicarpa macrophylla.

PLATE 7: A. Osbeckia crinita; B. Mahonia napaulensis; C. Oxyspora paniculata; D. Leucosceptrum canum; E. Symplocos ramosissima; F. Engelhardtia spicata; G. Magnolia doltsopa; H. Edgeworthia gardneri; I. Litsea cubeba; J. Castanopsis indica; K. Callicarpa arborea; L. Terminalia myriocarpa.

PLATE 7: A. Osbeckia crinita; B. Mahonia napaulensis; C. Oxyspora paniculata; D. Leucosceptrum canum; E. Symplocos ramosissima; F. Engelhardtia spicata; G. Magnolia doltsopa; H. Edgeworthia gardneri; I. Litsea cubeba; J. Castanopsis indica; K. Callicarpa arborea; L. Terminalia myriocarpa.

PLATE 9: A. Rhododendron barbatum; B. Rhododendron thomsonii; C. Rhododendron cinnabarinum; D. Rhododendron decipiens; E. Rhododendron wightii; F. Rhododendron wallichii; G. Rhododendron lanatum; H. Rhododendron campylocarpum; I. Rhododendron tubiforme; J. Rhododendron cyanocarpum; K. Rhododendron arboreum; L. Form of Rhododendron thomsonii.

PLATE 10: A. Dense subtropical forest; B.Steep slope rockey area of the study area; C. Dense Temprate forest of East District Sikkim; D. Vegetations near by village; E. Vegetation along the river side; E. Dense bamboo forest along the hill; G.Collection of specimen from alpine area; H. Alpine area covered by snow.

Bíbliography

BIBLIOGRAPHY

Abrams, P.A. 1988. Resource productivity-consumer species diversity: simple models of competition in spatially heterogeneous environments. Ecology 69(5): 1418-1433.
Abramsky, Z.; Rosenzweig, M.L. and Brand, S. 1985. Habitat selection of Israel desert rodents: comparison of a traditional and a new method of analysis. Oikos 45: 79-88.
Acharya, B.K.; Chettri, B. and Vijayan, L. 2011. Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. Acta Oecologica 37(4): 329-336.
Adams, J.M. and Woodward, F.I. 1989. Patterns in tree species richness as a test of the glacial extinction hypothesis. Nature, 339(6227): 699-701.
Agrawal, S.K.; Tiwari, S. and Dubey, P.S. 2002. Biodiversity and Environment. A.P.H. Publishing Corporation, New Delhi.
Alexander, G. and Hilliard, J.R. 1969. Altitudinal and seasonal distribution of Orthoptera in the Rocky Mountains of northern Colorado. Ecological Monographs, 39(4): 385-432.
Al-Mufti, M.M.; Sydes, C.L.; Furness, S.B.; Grime, J.P. and Band, S.R. 1977. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. The Journal of Ecology, 65: 759 - 791 .

Alves, L.F.; Vieira, S.A.; Scaranello, M.A.; Camargo, P.B.; Santos, F.A.; Joly, C.A. and Martinelli, L.A. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management, 260(5): 679 691.

Arrawatia, M.L. and Tambe, S. 2011. Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot. Government of Sikkim, Gangtok
Austin, M.P. and Meyers, J.A. 1996. Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. Forest Ecology and Management, 85(1):95-106.
Austin, M.P.; Pausas, J.G. and Nicholls, A.O. 1996. Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia. Australian Journal of Ecology, 21(2): 154-164.

Barry, R.G. 2008. Mountain Weather and Climate. Cambridge University Press Cambridge, UK.
Basistha, B.C.; Sharma, N.P.; Lepcha, L.; Arrawatia, M.L. and Sen, A. 2010. Ecology of Hippophaesalicifolia D. Don of temperate and sub-alpine forests of North Sikkim Himalayas-a case study. Symbiosis, 50(1-2): 87-95.

Becker, T.; Dietz, H.; Billeter, R.; Buschmann, H. and Edwards, P.J. 2005. Altitudinal distribution of alien plant species in the Swiss Alps. Perspectives in Plant Ecology, Evolution and Systematics, 7(3): 173 - 183.

Behera, M.D. and Kushwaha, S.P.S. 2007. An analysis of altitudinal behaviour of tree species in Subansiri district, Eastern Himalaya. Biodiversity and Conservation, 16(6): 1851-1865.

Berger, W.H. and Parker, F.L. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science, 168(3937): 1345-1347.
Bhatnagar, Y.V.; Wangchuk, R.; Prins, H.H.;Van Wieren, S.E. and Mishra, C. 2006. Perceived conflicts between pastoralism and conservation of the kiang Equus kiang in the Ladakh Trans-Himalaya, India. Environmental Management, 38(6): 934-941.
Bhattarai, K.R. and Vetaas, O.R. 2003. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography, 12(4): 327-340.
Bhattarai, K.R. and Vetaas, O.R. 2006. Can Rapoport's rule explain tree species richness along the Himalayan elevation gradient, Nepal? Diversity and Distributions, 12(4): 373-378.
Bhattarai, K.R.; Vetaas, O.R. and Grytnes, J.A. 2004. Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography, 31(3): 389-400
Bhattarai, K.R.; Vetaas, O.R. and Grytnes, J.A. 2004. Relationship between plant species richness and biomass in arid sub-alpine grassland of the central Himalayas, Nepal. Folia Geobotanica, 39(1): 57-71.

Bhujel, R.B. 1996. Studies on the Dicotyledonous Flora of Darjeeling district.Ph. D. Thesis, University of North Bengal,Darjeeling.
Bischoff, A.; Auge, H. and Mahn, E.G. 2005. Seasonal changes in the relationship between plant species richness and community biomass in early succession. Basic and Applied Ecology, 6(4):385 394.

Bond, E.M. and Chase, J.M. 2002. Biodiversity and ecosystem functioning at local and regional spatial scales. Ecology letters, 5(4): 467 - 470.
Brown, J.H. 1988. Species diversity. Analytical biogeography: an integrated approach to the study of animal and plant distribution. In: A.A. Myers \& P.S. Giller, Pp. 57 - 89. Chapman \& Hall, New York

Brown, J.H. 2001. Mammals on mountainsides: elevational patterns of diversity. Global Ecology and Biogeography, 10(1): 101 - 109.
Brown, J.H. and Davidson, D.W. 1977. Competition between seed-eating rodents and ants in desert ecosystems. Science, 196(4292): 880-882.
Brown, J.H. and Kodric-Brown, A. 1977. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology, 58(2): 445-449.

Brown, J.H. and Lomolino, M.V.1998. Biogeography $2^{\text {nd }}$ ed. Sinauer, Sunderland, Mass.
Brown, S.; Gillespie, A.J. and Lugo, A.E. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest science, 35(4): 881 - 902.

Brown, S.L.; Schroeder, P. and Kern, J.S. 1999. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management,123(1): 81 - 90.
Cardinale, B.J.; Wright, J.P.;Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M. and Weis, J.J. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences,104(46): 18123-18128.

Castrezana, S. and Markow, T.A. 2001. Arthropod diversity in necrotic tissue of three species of columnar cacti (Cactaceae). The Canadian Entomologist, 133(03):301 - 309.
Champion, S.H. and Seth, S.K. 1968. A Revised Survey of the Forest Types of India.Manager of Publications, Delhi.
Change, I.P.O.C. 2006. 2006 IPCC guidelines for national greenhouse gas inventories. 2013-0428]. http://www. ipcc-nggip. iges. or. jp./public/2006gl/index. html.
Chaturvedi, O.P. and Singh, J.S. 1987. The structure and function of pine forest in Central Himalaya. I. Dry matter dynamics. Annals of Botany, 60(3): 237-252.
Chaturvedi, O.P. and Singh, J.S. 1987. The Structure and Function of Pine Forest in Central Himalaya. II Nutrient Dynamics. Annals of Botany, 60(3): 253-267.
Chave, J.; Andalo, C.; Brown, S.; Cairns, M. A.; Chambers, J. Q.; Eamus, D.; Folster, H.; Fromard, F.; Higuchi, N.; Kira, T.; Lescure, J.-P.; Nelson, B. W.; Ogawa, H.; Puig, H.; Riéra, B.; and Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests, Ecosystem Ecology, 145: 87-99
Chhabra, A.; Palria, S. and Dadhwal, V.K. 2002. Growing stock-based forest biomass estimate for India. Biomass and bioenergy, 22(3): 187-194.
Clarke, K.R. and Warwick, R.M. 2001.An approach to statistical analysis and interpretation. Change in Marine Communities, $2^{\text {d }}$ edition, Primer-e Ltd, UK..
Coleman, D.C. and Whitman, W.B. 2005.Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia, 49(6): 479-497.
Colwell, R.K. and Hurtt, G.C. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144(4): 570-595.
Cornwell, W.K. and Grubb, P.J. 2003. Regional and local patterns in plant species richness with respect to resource availability. Oikos, 100(3): 417-428.
Currie, D.J. 1991. Energy and large-scale patterns of animal-and plant-species richness. The American Naturalist, 137(1): 27 - 49
Currie, D.J. and Paquin, V. 1987. Large-scale biogeographical patterns of species richness of trees. Nature, 329(6137): 326-327.
Curtis, J.T. 1959. The vegetation of Wisconsin: an ordination of plant communities. University of Wisconsin Pres. United State
Dang, H. 2003. Himalayan Environment, Issues and Concerns of Conservation and Development. Indian Publishers Distributors. New Delhi

Das, A.P. 2011. Conservation efforts for East Himalayan Biodiversity and need for the establishment of corridors. In C. Ghosh and A.P. Das, Recent Studies in Biodiversity and Traditional Knowledge in India. Sarat Book House, Kolkata. Pp. 329 - 346.
Das, A.P. 2013. The present status of the flowering plants of Darjiling and Sikkim. In: Asha Gupta (ed.), Biodiversity Conservation and Utilisation. Pointer Publishers, Jaipur. Pp. 83-96.
Das, A.P. and Ghosh, C. 2007. Flora of Darjiling and Sikkim in the background of changing environment. In the Proceedings of State level seminar on "Urban Biodiversity and Management of Natural Resources", Department of Botany, R. D. National College, Mumbai. Pp.2-15.
Das, A.P. and Lahiri, A.K. 1997. Phytosociological studies of the ground covering flora in different types of vegetation in Tiger Hill, Darjeeling District, West Bengal (India). Indian Forester, 123 (12): 1176-1187.

Das, A.P.; Samanta, A.K. and Ghosh, C. 2010. A checklist of Angiospermic Climbers of Darjiling and Sikkim parts of Eastern Himalaya including Terai and Duars. Pleione 4(2): 185-206.
Das, N. and Chattopadhyay, K..K.. 2013. Change in Climate-A threat to Eastern Himalayan biodiversity. Journal of Today's Biological Sciences: Research \& Review, 2(2):.89-107.
Day, M.; Baldauf, C.; Rutishauser, E. and Sunderland, T.C. 2014. Relationships between tree species diversity and above-ground biomass in Central African rainforests: implications for REDD. Environmental Conservation, 41(01): 64-72.
DESM\&E, 2013.Sikkim A Statistical Profile. Department of Statistics Monitoring \& Evaluation, Government of Sikkim, Gangtok.
Devagiri, G.M.; Money, S.; Singh, S.; Dadhawal, V.K.; Patil, P.; Khaple, A.;Devakumar, A.S. and Hubballi, S. 2013. Assessment of above ground biomass and carbon pool in different vegetation types of south western part of Karnataka, India using spectral modeling. Tropical Ecology, 54(2): 149 - 165.

Dobson, A.J. 2002. An Introduction to Generalized Linear Models(2 ${ }^{\text {nd }}$ ed.). FLChapman and Hall/ CRC, Florida. pp. 225.
Dolan, J.M. and Killmar, L.E. 1988. The shou, Cervuselaphuswallichi Cuvier, 1825, a rare and littleknown cervid, with remarks on three additional Asiatic elaphines. ZoolGart NF, 58: 84-96.
Dudley, N., 2008. Guidelines for applying protected area management categories. IUCN.
Eriksson, L.E., Santoro, M., Wiesmann, A. and Schmullius, C.C., 2003. Multitemporal JERS repeatpass coherence for growing-stock volume estimation of Siberian forest. IEEE Transactions on Geoscience and Remote Sensing, 41(7): 1561-1570.
Eriksson, O. 1993. The species-pool hypothesis and plant community diversity. Oikos, 68:371-374.
Fargione, J.;Tilman, D.; Dybzinski, R.;Lambers, J.H.R.; Clark, C.;Harpole, W.S.; Knops, J.M.; Reich, P.B. and Loreau, M. 2007. From selection to complementarity: shifts in the causes of biodiversityproductivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society of London B: Biological Sciences, 274(1611): 871-876.
Ferrazzoli, P. and Guerriero, L., 1995. Radar sensitivity to tree geometry and woody volume: a model analysis. IEEE Transactions on Geoscience and Remote Sensing, 33(2): 360-371.

Fleishman, E.; Austin, G.T. and Weiss, A.D. 1998. An empirical test of Rapoport's rule: elevational gradients in montane butterfly communities. Ecology, 79(7): 2482-2493.
Foody, G.M.; Boyd, D.S. and Cutler, M.E. 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85(4): 463-474.

Franklin, J. 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19(4): 474-499.

Fridley, J.D. 2001. The influence of species diversity on ecosystem productivity: how, where, and why? Oikos, 93(3): 514-526.
FSI. 1996. Volume Equations for Forests of India, Nepal and Bhutan. Forest Survey of India, Ministry of Environment and Forests, Govt. of India, Dehradun, India.

Gairola, S.; Rawal, R.S. and Todaria, N.P. 2008. Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. African Journal of Plant Science, 2(6): 42-48.

Gamfeldt, L.; Snäll, T.;Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruiz-Jaen, M.C.;Fröberg, M.; Stendahl, J.;Philipson, C.D. and Mikusiñski, G. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4: 1340.

García, L.V.; Marañón, T.; Moreno, A. and Clemente, L. 1993. Above-ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science, 4(3):417-424.
Gaston, K.J. 2000. Global patterns in biodiversity. Nature, 405(6783): 220-227.
Gentry, A.H. and Dodson, C.H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74(2): 205-233.
Glenn-Lewin, D.C. 1977. Species diversity in North American temperate forests. Vegetatio, 33(2-3): 153-162.

Goward, S.N. and Dye, D.G. 1987. Evaluating North American net primary productivity with satellite observations. Advances in Space Research, 7(11): 165-174.
Greenberg, J.H. 1956. The measurement of linguistic diversity. Language, 32(1): 109-115.
Grierson, A.J.C. and Long, D.G. 1983-2000. Flora of Bhutan, Vol. I. Parts 1 - 3; Vol. II. Parts (13). Royal Botanic Garden, Edinburgh

Grime, J.P. 1973. Control of species density in herbaceous vegetation. Journal Environ Manage, 1: 151-167.

Grime, J.P. 1997. The humped-back model: a response to Oksanen. Journal of Ecology, 85(1): 97 98.

Gross, K.L.; Willig, M.R.; Gough, L.; Inouye, R. and Cox, S.B. 2000. Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos, 89(3): 417-427.
Grytnes, J.A. 2000. Fine-scale vascular plant species richness in different alpine vegetation types: relationships with biomass and cover. Journal of Vegetation Science, 11(1): 87-92.

Grytnes, J.A. 2003. Species richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography, 26(3): 291-300.

Grytnes, J.A. and Vetaas, O.R. 2002. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist,159(3): 294 - 304.
Grytnes, J.A.; Birks, H.J.B. and Peglar, S.M. 1999. Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. Nordic Journal of Botany, 19(4): 489-503.
Grytnes, J.A.; Heegaard, E. and Ihlen, P.G. 2006. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecologica, 29(3): 241-246.
Gutierrez, D. 1997. Importance of historical factors on species richness and composition of butterfly assemblages (Lepidoptera: Rhopalocera) in a northern Iberian mountain range. Journal of Biogeography, 24(1): 77-88.
Hajra, P.K. and Verma D.M. (eds.) 1996.Flora of Sikkim, vol. 1.(Monocotyledons). Flora of India series, 2. Botanical Survey of India, Calcutta.
Hamilton, A.C. 1975. A quantitative analysis of altitudinal zonation in Uganda forests. Vegetatio, 30(2): 99-106.
Han, W.;Luo, Y. and Du, G. 2007. Effects of clipping on diversity and above ground biomass associated with soil fertility on an alpine meadow in the eastern region of the Qinghai Tibetan Plateau. New Zealand Journal of Agricultural Research, 50(3): 361-368.
Hansen, M.H.; Hurwitz, W.N. and Madow, W.G. 1953. Sample Survey Methods and Theory. Volumes I and II, John Wiley \& Sons. New York
Haripriya, G.S. 2002. Biomass carbon of truncated diameter classes in Indian forests. Forest Ecology and Management, 168(1): $1-13$.
Hawkins, B.A.; Diniz Filho, J.A.F.; Jaramillo, C.A. and Soeller, S.A. 2007. Climate, niche conservatism, and the global bird diversity gradient. The American Naturalist, 170(S2): S16-S27.
He, J.S.; Wolfe-Bellin, K.S.; Schmid, B. and Bazzaz, F.A. 2005. Density may alter diversity-productivity relationships in experimental plant communities. Basic and Applied Ecology, 6(6): 505-517.
Hegazy, A.K.; El-Demerdash, M.A. and Hosni, H.A. 1998. Vegetation, species diversity and floristic relations along an altitudinal gradient in south-west Saudi Arabia. Journal of Arid Environments, 38(1): 3-13.
Heinsch, F.A.; Reeves, M.; Votava, P.; Kang, S.; Milesi, C.; Zhao, M.; Glassy, J.; Jolly, W.M.; Loehman, R.; Bowker, C.F. and Kimball, J.S. 2003. GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm.MOD17 User's Guide, The University of Montana, Missoula MT, Pp 1-57

Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2): 427 - 432.

Holdridge, L.R. 1967. Life zone ecology., (rev. ed.). Tropical Science Center San Jose, Costa Rica
Hubbell, S.P.; Foster, R.B.; O’Brien, S.T.; Harms, K.E.; Condit, R.; Wechsler, B.; Wright, S.J. and De Lao, S.L. 1999. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283(5401): 554-557.
Hunter, M.L. and Yonzon, P. 1993. Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. Conservation Biology, 7(2): 420-423.

Hunter, M.O.; Keller, M.; Victoria, D. and Morton, D.C. 2013. Tree height and tropical forest biomass estimation. Biogeosciences, 10(12): 8385-8399.
Husch, B.; Beers, T.W. and Kershaw, J.A. 2003. Forest Mensuration: 4th ed. John Wiley \& Sons, New Jersey, United States
Huston, M.A. 1999. Local processes and regional patterns: Appropriate scales for understanding variation in the diversity of plants and animals. Oikos 83 (3): 393-401.
Huston, M.A. and Huston, M.A. 1994. Biological diversity: the coexistence of species. Cambridge University Press. New York
Hutcheson, K. 1970. A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology, 29(1): 151-154.
Inskipp, T.P.; Lindsey, N. and Duckworth, W. 1996. An annotated checklist of the birds of the Oriental region. Oriental Bird Club. United Kingdom
ISRO. 1994. Forest Cover Mapping through Digital Image Processing of Indian Remote Sensing Satellite data with Special Reference of Sikkim—Procedural Manual and Inventory: Joint Collaboration Project of Forest Department, Government of Sikkim and Regional Remote Sensing Service Centre, Kharagpur, Indian Space Research Organization, Department of Space, Government of India,
Jain, S.K. and Rao, R.R., 1977. A handbook offield and herbarium methods. Illus.. General: Today and Tomorrow's Printers and Publishers xvi, Pp. 157 New Delhi
Janzen, D.H. 1973. Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology, 54(3): 687-708.
Jiang, Y.; Kang, M.; Zhu, Y. and Xu, G. 2007. Plant biodiversity patterns on Helan Mountain, China. Acta Oecologica, 32(2): 125-133.
Jiang, Z.; Huete, A.R.; Didan, K. and Miura, T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10): 3833-3845.
Joshi, R. and Dhyani, P.P. 2009. Environmental sustainability and tourism-implications of trend synergies of tourism in Sikkim Himalaya. Current Science, 97(1): 33-41.
Kale, M.P.; Singh, S. and Roy, P.S. 2002. Biomass and productivity estimation using aerospace data and Geographic Information System. Tropical Ecology, 43(1): 123-136.
Khan, M.; Hussain, F. and Musharaf, S. 2014. Ground biomass assessment of shrub species in tehsil takht-e-nasrati, pakistan. Pakistan Journal of Botany, 46(3): 921 - 926.
Kharkwal, G.; Mehrotra, P.; Rawat, Y.S. and Pangtey, Y.P.S. 2005. Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India. Current Science, 89(5): 873.
Kira, T. and Ogawa, H. 1971. Assessment of primary production in tropical forests. Edited by P. Duvigneaiid, Proceedings on Productivity of Forest Ecosystems, Brussels-1969, UNESCO Publication. Pp. 319-322.
Kirkpatrick, J.B. and Brown, M.J. 1987. The nature of the transition from sedgeland to alpine vegetation in south-west Tasmania. I. Altitudinal vegetation change on four mountains. Journal of Biogeography, 14(6): 539-549.

Klimes, L. 2003. Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic and Applied Ecology, 4(4):317-328.
Kluge, J.; Kessler, M. and Dunn, R.R. 2006. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Global Ecology and Biogeography, 15(4): 358-371.
Körner, C. 1999 Alpine plant life. Springer Verlag, Berlin.
Körner, C. 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology \& Evolution, 15(12): 513-514.
Körner, C. 2007. The use of 'altitude' in ecological research. Trends in ecology and Evolution, 22(11): 569-574.
Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables. Springer Science \& Business Media. Germany
Kothari A. 1992. The Diversity Conservation; an Indian Viewpoint. Santuary, 12(3): 34-43.
Krebs, C.J. 1989. Ecological Methodology (No. QH541. 15. S72. K74 1999). Harper \& Row, New York.
Kreft, H. and Jetz, W. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104(14): 5925-5930.
Lachungpa U.; Rahmani, A.R. and Islam, M.Z. 2011. Eleven priority areas for conservation: Important bird areas of Sikkim . In: Arrawatia M. Land Tambe S, Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot. Information and Public Relations Department Government of Sikkim Pp: 542
Lacoul, P. and Freedman, B. 2006. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquatic Botany, 84(1): 3-16.
Lama, D. 2004. Taxonomical, Distributional and Ecological Studies of Acer L. (Aceraceae) In the Darjeeling- Sikkim Himalayas. Ph.D. thesis, University of North Bengal, India.
Lama, M.P. 2001. Human development report: Sikkim. Government of Sikkim, Gangtok.
Lasky, J.R.; Uriarte, M.;Boukili, V.K.; Erickson, D.L.; John Kress, W. and Chazdon, R.L. 2014. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17(9): 1158-1167.
Lee, J.S.; Cloude, S.R.; Papathanassiou, K.P.; Grunes, M.R.; and Woodhouse, I.H. 2003. Speckle Filtering and Coherence Estimation of Polarimetric SAR Interferometry Data forForest Applications: IEEE Transactions on Geoscience and Remote Sensing: 41(10): 2254 - 2263
Lepcha, S.R. 2011. Studies of the Angiospermic Flora of Alpine East Sikkim with Special Reference to Pangolakha Wild Life Sanctuary. Ph.D. thesis, University of North Bengal, India.
Lepcha, S.R. and Das, A.P. 2012. Protected areas of Sikkim Himalaya and their perspective management strategies. In: P. Tamang, Srivastava \& S.R. Lepcha, Sikkim Biodiversity: Significance \& Sustainability. Sikkim State Council of Science \& Technology, Government of Sikkim, Gangtok. Pp. 209-215.
Lieberman, D.;Lieberman, M.;Peralta, R. and Hartshorn, GS. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology, 84: 137-152.

Lloyd, M. and Ghelardi, R.J. 1964. A Table for Calculating theEquitability'Component of Species Diversity. The Journal of Animal Ecology, 33(2): 217-225.
Lobo, J.M. and Martín Piera, F. 2002. Searching for a predictive model for species richness of Iberian dung beetle based on spatial and environmental variables. Conservation Biology, 16(1): 158-173.
Lobo, J.M.; Castro, I. and Moreno, J.C. 2001. Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biological Journal of the Linnean Society, 73(2): 233-253.
Lodhiyal, N. and Lodhiyal, L.S. 2003. Biomass and net primary productivity of BhabarShisham forests in central Himalaya, India. Forest Ecology and Management, 176(1): 217-235.
Lomolino, M.A.R.K. 2001. Elevation gradients of species density: historical and prospective views. Global Ecology and Biogeography, 10(1): 3-13.
Loreau, M. and Mouquet, N. 1999. Immigration and the maintenance of local species diversity. The American Naturalist, 154(4): 427 - 440.
Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.;Raffaelli, D.; Schmid, B. and Tilman, D. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294(5543): 804-808.
Lu, D. 2005. Integration of vegetation inventory data and Landsat TM image for vegetation classification in the western Brazilian Amazon. Forest Ecology and Management, 213(1): 369-383.
Magurran, A.E. 1988. Ecological Diversity and Its Measurement, Princeton Univ. Pres§ Princeton.
Margalef, D.R. 1958. Information theory in ecology. Society for General Systems Research. file:/// C:/Users/HP/Downloads/139371.pdf
Margalef, R. 1958. Temporal succession and spatial heterogeneity in phytoplankton. University of California press. USA.
McCain C.M. and Grytnes, J.A. 2010. Elevational gradients in species richness. In: Encyclopedia of life sciences (ELS). John Wiley \& Sons, Ltd: Chichester.
McCain, C.M. 2007. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16(1): 1-13.
McCullagh, P. and Nelder, J.A. 1989. Generalized linearmodels (Vol. 37). CRC press. Boca Raton, FL: Chapman \& Hall London UK
McNaughton, S.J. and Wolf, L.L. 1970. Dominance and the niche in ecological systems. Science, 167(3915): 13-139
Meentemeyer, V. 1989. Geographical perspectives of space, time, and scale. Landscape Ecology, 3(34): 163-173.

Mette, T.; Papathanassiou, K.P.; Hajnsek, I. and Zimmermann, R. 2003. April. Forest biomass estimation using polarimetric SAR interferometry. In Applications of SAR Polarimetry and Polarimetric Interferometry, 529: 818-819
Mishra, R.1968. Ecology Work Book. Oxford and IBH Publishing Co., New Delhi.
Mittelbach, G.G.; Steiner, C.F.; Scheiner, S.M.; Gross, K.L.; Reynolds, H.L.; Waide, R.B.; Willig, M.R.; Dodson, S.I. and Gough, L. 2001. What is the observed relationship between species richness and productivity?. Ecology, 82(9): 2381-2396.

Monk, C.D. 1967. Tree species diversity in the eastern deciduous forest with particular reference to north central Florida. American Naturalist, 101: 173-187.
Mouquet, N.; Moore, J.L. and Loreau, M. 2002. Plant species richness and community productivity: why the mechanism that promotes coexistence matters. Ecology Letters, 5(1): 56-65.
Mulder, C.P.H.; Uliassi, D.D. and Doak, D.F. 2001. Physical stress and diversity-productivity relationships: the role of positive interactions.Proceedings of the National Academy of Sciences, 98(12): 6704-6708.
Muukkonen, P. and Heiskanen, J. 2005. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. Remote Sensing of Environment, 99(4): 434 - 447.

Namgail, T.; Rawat, G.S.; Mishra, C.; van Wieren, S.E. and Prins, H.H. 2012. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas. Journal of plant research, 125(1): 93-101.
NBSS\&LUP, 1996. Soils of Sikkim for Optimising Land Use National Bureau of Soil Survey and Land Use Planning, Government of India Kolkata ISBN: 81-85460-39-6.
NRIS, 2006. National (Natural) Resource Information System: Sikkim State, Department of Space, Government of India, Kharagpur.
NWA, 2011. National Wetland Atlas: Sikkim. SAC/EPSA/ABHY/NWIA/ATLAS/36/2011.SAC (ISRO), Ahmadabad, India.
Odland, A. and Birks, H.J.B. 1999. The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography, 22(5): 548-566.
Oommen, M.A. and Shanker, K. 2005. Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology, 86(11): 3039-3047.
Ormerod, S.J.; Rundle, S.D.; Wilkinson, S.M.; Daly, G.P.; Dale, K.M. and Juttner, I. 1994. Altitudinal trends in the diatoms, bryophytes, macroinvertebrates and fish of a Nepalese river system. Freshwater Biology, 32(2): 309-322.
Overman, J.P.M.; Witte, H.J.L. and Saldarriaga, J.G. 1994. Evaluation of regression models for aboveground biomass determination in Amazon rainforest. Journal of tropical Ecology, 10(02): 207218.

Ovington, J.D. 1968. Some factors affecting nutrient distribution within ecosystems. Functioning of terrestrial ecosystems of the primary production level, Paris: UNESCO, 95-105. Parrish JT
Pandey V.N. 1991. Medico- ethno botanical exploration in Sikkim Himalaya, Central Council for research in Ayurveda \& Siddha, $1^{\text {st }}$ edn. Pp. 137-189.
Pandey, U.; Kushwaha, S.P.S.; Kachhwaha, T.S.; Kunwar, P. and Dadhwal, V.K. 2010. Potential of Envisat ASAR data for woody biomass assessment. Tropical Ecology, 51(1): 117 - 124.
Panigrahy, S.; Patel, J.G. and Parihar, J.S. 2012. National Wetland Atlas: High Altitude Lakes of India. Space Applications Centre, ISRO, Ahmedabad, India.
Patterson, B.D.; Stotz, D.F.; Solari, S.; Fitzpatrick, J.W. and Pacheco, V. 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. Journal of Biogeography, 25(3): 593-607.

Peet, N.B.; Watkinson, A.R.; Bell, D.J. and Kattel, B.J. 1999. Plant diversity in the threatened subtropical grasslands of Nepal. Biological Conservation, 88(2): 193-206.
Peet, R.K. and Christensen, N.L. 1988.Changes in species diversity during secondary forest succession on the North Carolina piedmont. In During, H.J. and Werger, M.J.(eds.), Diversity and Pattern in Plant Communities, SPB Academic Publishing: The Hague, The Netherlands, Pp. 233 245.

Peet, R.K.; Wentworth, T.R. and White, P.S. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea, 63(3): 262-274.
Peterson, D.L.; Schreiner, E.G. and Buckingham, N.M. 1997. Gradients, vegetation and climate: spatial and temporal dynamics in the Olympic Mountains, USA. Global Ecology and Biogeography Letters, 6(1): 7 - 17.
Pianka,E.R. 1966. Latitudinal gradients in species diversity: a review of concepts. American Naturalist, 100(910): 33-46.
Pielou, E.C. 1966. The measurement of diversity in different types of biological collections., Journal of Theoretical Biology, 13: 131-44.
Potter, C.; Gross, P.; Genovese, V. and Smith, M.L. 2007. Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data. Carbon Balance and Management, 2(1): 1.
Preston, F.W. 1948. The commonness and rarity of species. Ecology, 29(3): 254-283.
Preston, F.W. 1962. The canonical distribution of commonness and rarity: Part I. Ecology, 43(2): 185 -215 .
Prince, S.D. and Goward, S.N. 1995. Global primary production: a remote sensing approach. Journal of Biogeography, 22: 815-835.
Rahbek, C. 1995. The elevational gradient of species richness: a uniform pattern? Ecography, 18(2): 200-205.
Rahbek, C. 2005. The role of spatial scale and the perception of large scale species richness patterns. Ecology Letters, 8(2): 224-239.
Rahbek, C. and Graves, G.R. 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences, 98(8): 4534-4539.
Rai, L.K.; Prasad, P. and Sharma, E. 2000. Conservation threats to some important medicinal plants of the Sikkim Himalaya. Biological Conservation, 93(1): 27-33.
Rai. U.2006. Characterisation of Plant Biodiversity in Darjiling Hills Using Remote Sensing Techniques, Ph.D. thesis, University of North Bengal, India.
Rana, B.S.; Singh, S.P. and Singh, R.P. 1989. Biomass and net primary productivity in Central Himalayan forests along an altitudinal gradient. Forest Ecology and Management, 27(3): 199-218.
Raunkiaer, C. 1934. The life forms of plants and statistical plant geography; Clarendon Press, Oxford UK.
Rauste, Y. 2005. Multi-temporal JERS SAR data in boreal forest biomass mapping. Remote Sensing of Environment, 97(2): 263 - 275.

Rawal, R.S. and Pangtey, Y.P.S. 1994. High Altitude Forest in a Part of Kumaun in Central Himalaya: Analysis along Altitudinal Gradient. Proceedings of the Indian National Science Academy, Part B, 60: 557-564.
Rawat, Y.S. and Singh, J.S. 1988. Structure and function of oak forests in central Himalaya. I. Dry matter dynamics. Annals of Botany, 62(4): 397-411.
Rawat, Y.S. and Singh, J.S. 1988. Structure and function of oak forests in central Himalaya. Annals of Botany, 62 (4): 397-411.
Reichle, D.E. 1970. Analysis of temperate forest ecosystems. Springer-Verlag Berlin Heidelberg, New York.
Richerson, P.J. and Lum, K.L. 1980. Patterns of plant species diversity in California: relation to weather and topography. American Naturalist, 116: 504-536.
Ricklefs, R.E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7(1): 1-15.
Riebesell, J.F. 1974. Paradox of enrichment in competitive systems. Ecology, 55: 183-187.
Risley, H.H. 1894. The gazetteer of Sikhim. Printed at the Bengal secretariat Press, Calcutta.
Rocha, A.V. and Shaver, G.R. 2009. Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 149(9): 1560 - 1563.

Rohde, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65: 514-527.
Rosenzweig, M.L. 1971.Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171(3969): 385-387.
Ruiz Benito, P.; Gómez Aparicio, L.; Paquette, A.; Messier, C.; Kattge, J. and Zavala, M.A. 2014. Diversity increases carbon storage and tree productivity in Spanish forests. Global Ecology and Biogeography, 23(3): 311-322.
Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M. and Hashimoto, H. 2004. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54(6): 547 - 560.
Rushton, S.P.; Ormerod, S.J. and Kerby, G. 2004. New paradigms for modelling species distributions? Journal of Applied Ecology, 41(2): 193-200.
Schlerf, M.; Atzberger, C. and Hill, J. 2005. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, 95(2): 177-194.
Schreuder, H.; Tardif, C.; Trump-Kallmeyer, S.; Soffientini, A.; Sarubbi, E.; Akeson, A., Bowlin, T.; Yanofsky, S. and Barrett, R.W. 1997. A new cytokine-receptor binding mode revealed by the crystal structure of the IL-1 receptor with an antagonist. Letter to Nature. Nature, 386: 194 200
Shaheen, H.; Ullah, Z.; Khan, S.M. and Harper, D.M. 2012. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. Forest Ecology and Management, 278: 138-145.

Shannon, C.E. \& Weiner, W. 1963. Mathematical Theory of Communication. The University of Illinois Press. Urbana, USA.
Shannon, C.E. and Weaver, W. 1949. The Mathematical Theory of Communication, University of Illinois press, Illinios, USA.
Shapoo, G.A.; Kaloo, Z.A.; Singh, S.;Ganie, A.H. and Padder, B.M. 2014. Evaluation of diversity and habitat types of some orchid species growing in Kashmir Himalaya. History 10(22): 8-13.
Sharma, N.; Das, A.P. and Shrestha, D.G., 2015. Landuse and Landcover mapping of East District of Sikkim using IRS P6 satellite imagery . Pleione 9(1): 193-200
Sharma, N.; Pradhan, S.; Arrawatia, M.L. and Shrestha, D.G., 2010. Study on types and distribution of wetlands in Sikkim Himalayas using satellite imagery with remote sensing and GIS technique. Proceedings of the Lake 2010: Wetlands, Biodiversity and Climate Change, IISc Banglore.
Sharma, P.D. 2005. Ecology and environment. Rastogi Publications, Meerat.
Shukla, R.S. and Chandel, P.S. 2008. A textbook of plant ecology, including ethnobotany and soil science. S. Chand and Company, New Delhi.
Silvertown, J. 1985. History of a latitudinal diversity gradient: woody plants in Europe 13,000-1000 years BP. Journal of Biogeography, 12: 519-525.
Šímová, I.; Li, Y.M. and Storch, D. 2013. Relationship between species richness and productivity in plants: the role of sampling effect, heterogeneity and species pool. Journal of Ecology, 101(1): 161-170.
Simpson, E.H. 1949. Measurement of diversity. ed. Charles H. Smith's from Nature, 163 (1949): 688, Macmillan Publishers Ltd. http://people.wku.edu/charles. smith/biogeog/ SIMP1949.pdf
Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El Masri, B.Z.; Baldocchi, D.D.; Flanagan, L.B., Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; Monson, R.K. and Oechel, W.C. 2006. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. Journal of Geophysical Research: Biogeosciences (2005-2012): 111(G4).
Singh, L. and Singh, J.S. 1991. Species structure, dry matter dynamics and carbon flux of a dry tropical forest in India. Annals of Botany, 68(3): 263-273.
Singh, S.P.; Adhikari, B.S. and Zobel, D.B. 1994. Biomass, productivity, leaf longevity, and forest structure in the central Himalaya. Ecological Monographs, 64(4): 401-421.
Singh, V. and Toky, O.P. 1995. Biomass and net primary productivity in Leucaena, Acacia and Eucalyptus, short rotation, high density ('energy') plantations in arid India. Journal of Arid Environments, 31(3): 301-309.
Spellerberg, I.F. 1991. Monitoring ecological change Cambridge University Press. Cambridge, UK.
Stevens, G.C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. American naturalist, 140(6): 893-911.
Subba, J.R. 2002. Biodiversity of the Sikkim Himalayas. Government of Sikkim, Gangtok
Sun, J.; Cheng, G.W. and Li, W.P. 2013. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences, 10(3): $1707-1715$.

Sundriyal, R.C. and Sharma, E. 1996. Anthropogenic pressure on tree structure and biomass in the temperate forest of Mamlay watershed in Sikkim. Forest Ecology and Management, 81(1): 113-134.

Tambe, S.; Arrawatia, M.L. and Sharma, N. 2011. Assessing the priorities for sustainable forest management in the Sikkim Himalaya, India: a remote sensing based approach. Journal of the Indian Society of Remote Sensing, 39(4): 555 - 564.

Tan, K.; Piao, S.; Peng, C. and Fang, J. 2007. Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999. Forest ecology and management, 240(1): 114-121.
Thakur, T.K. 2014. Litter decomposition and nutrient release pattern of dry tropical forest ecosystem. International Journal of Environment and Natural Science, 2: 9-12.
Thomas, B.D. and Bowman, W.D. 1998. Influence of N2-fixing Trifolium on plant species composition and biomass production in alpine tundra. Oecologia, 115(1-2): 26-31.
Thornton, P.E.; Law, B.E.; Gholz, H.L.; Clark, K.L.;Falge, E.; Ellsworth, D.S.; Goldstein, A.H.; Monson, R.K.; Hollinger, D.; Falk, M. and Chen, J. 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology, 113(1): 185 - 222.

Tilman, D.; Lehman, C.L. and Thomson, K.T. 1997. Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences, 94(5): 1857 - 1861.
Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T. and Lehman, C. 2001. Diversity and productivity in a long-term grassland experiment. Science, 294(5543): 843-845.
Turner, J. R. G.; Gatehouse, C. M. and Corey, C.A. 1987. Does solar energy control organic diversity? butterflies, moths, and the British climate. Oikos 48:195-205.
van Ruijven, J. and Berendse, F. 2005. Diversity-productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 102(3): 695-700.
Vashum, K.T. and Jayakumar, S. 2012. Methods to estimate above-ground biomass and carbon stock in natural forests-a review. Journal of Ecosystem \& Ecography, 2(116): 1-7.
Venail, P.A.; MacLean, R.C.; Bouvier, T.; Brockhurst, M.A.; Hochberg, M.E. and Mouquet, N. 2008. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature, 452(7184): 210-214.
Verma, Rajesh 2009. Sikkim: A Guide and Handbook, Narendra Bhatia \& Company. New Delhi
Verma, S.; Bhatnagar, T.; Mahawar, K.L. and Bhatnagar, R., 2009. October. Use of Electronic Resources in the Library of Sikkim Manipal Institute of Technology (SMIT), Sikkim: A Study. International Conference on Academic Libraries (ICAL), Delhi. Pp. 660 - 663. http://crl.du.ac.in/ical09/ papers/index_files/ical-114_102_231_2_RV.pdf
Vetaas, O.R. and Grytnes, J.A. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11(4): 291-301.

Waide, R.B.; Willig, M.R.; Steiner, C.F.; Mittelbach, G.; Gough, L.; Dodson, S.I.; Juday, G.P. and Parmenter, R. 1999. The relationship between productivity and species richness. Annual review of Ecology and Systematics, 30: 257 - 300.
Wang, G; Ran, F.; Chang, R.; Yang, Y.; Luo, J. and Jianrong, F. 2014. Variations in the live biomass and carbon pools of Abies georgei along an elevation gradient on the Tibetan Plateau, China. Forest Ecology and Management, 329: 255-263.
Wangda, P. and Ohsawa, M. 2006. Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. Forest Ecology and Management, 230(1): 136 - 150.
Weiner, J. 1995. On the practice of ecology. Journal of Ecology, 83: 153-158.
Weng, C.; Hooghiemstra, H. and Duivenvoorden, J.F. 2007. Response of pollen diversity to the climatedriven altitudinal shift of vegetation in the Colombian Andes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1478): 253-262.
Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon, 21(2/3): 213-251.
Whittaker, R.H. and Niering, W.A. 1965. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology, 46(4): 429-452.
Whittaker, R.H. and Niering, W.A. 1975. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology, 56(4): 771-790.
Whittaker, R.H., 1966. Forest dimensions and production in the Great Smoky Mountains. Ecology, 47: 103-121.

Whittaker, R.J.; Willis, K.J. and Field, R. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28(4): 453-470.
Wilson, E.O and Peter, F.M. 1988. Biodiversity. Harvard University, National Academy of Sciences/ Smithsonian Institution. National Academy Press Washington, D.C. Pp. 538.
WPR 2013. Working Plan Report; Forests, Environment \& Wildlife Management Department Government ofSikkim.
Wright, D.H.; Currie, D.J. and Maurer, B.A. 1993. Energy supply and patterns of species richness on local and regional scales. In: R.E. Ricklefs and D. Schluter (eds), Species diversity in ecological communities: historical and geographical perspectives, University of Chicago Press, Chicago.
Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q. and Moore, B. 2004. Satellitebased modeling of gross primary production in an evergreen needle-leaf forest. Remote Sensing of Environment, 89(4): 519-534
Yachi, S. and Loreau, M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences, 96(4): 1463 1468.

Yee, T.W. and Mitchell, N.D. 1991. Generalized additive models in plant ecology. Journal of Vegetation Science, 2(5): 587-602.
Yoda, K. 1967.A preliminary survey of the forest vegetation of eastern Nepal. Journal of Art and Science. Chiba University National Science, 5(1): 99 - 140.

Zhang, W.; Yin, D.; Huang, D.; Du, N.; Liu, J.; Guo, W. and Wang, R. 2015. Altitudinal patterns illustrate the invasion mechanisms of alien plants in temperate mountain forests of northern China. Forest Ecology and Management, 351: 1-8.
Zhang, Y.; Xu, M.; Chen, H. and Adams, J. 2009. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Global Ecology and Biogeography, 18(3): .280-290.
Zhao, C.M.; Chen, W.L.; Tian, Z.Q. and Xie, Z.Q. 2005. Altitudinal pattern of plant species diversity in Shennongjia Mountains, Central China. Journal of Integrative Plant Biology, 47(12): 1431 - 1449.

Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J. and Ryu, S.R. 2004. Estimating aboveground biomass using Landsat 7 ETM + data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93(3): 402-411.
Zimmermann, N.E. and Kienast, F. 1999. Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science, 10: 469-482.

$\mathcal{A} \mathcal{N N} E X U R E I$

Annexure I

Importance Value Index of Species of the study area

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
1	Schima wallichii Choisy	50	44.5	89	0.42	7.92	3.96	12.31
2	Ostodes paniculata Blume	42.86	15.36	35.83	0.36	2.73	1.6	4.69
3	Alnus nepalensis D.Don	57.14	12.61	22.06	0.48	2.24	0.98	3.71
4	Castanopsis hystrix Hook.f. \& Thomson ex A.DC.	71.43	11.61	16.25	0.6	2.07	0.72	3.39
5	Engelhardtia spicata var. integra (Kurz) W.E.Manning ex Steenis	53.57	11.21	20.93	0.45	2	0.93	3.38
6	Nephrolepis cordifolia (L.) C. Presel	82.14	10.79	13.13	0.69	1.92	0.58	3.2
7	Symplocos lucida (Thunb.) Siebold \& Zucc.	39.29	8.07	20.55	0.33	1.44	0.91	2.68
8	Ageratina adenophora (Spreng.) R.M.King \& H.Rob.	75	8.61	11.48	0.63	1.53	0.51	2.68
9	Dryopteris sikkimensis (Bedd.) Kuntze	64.29	8.29	12.89	0.54	1.47	0.57	2.59
10	Selaginella ciliaris (Retz.) Spring	64.29	7.89	12.28	0.54	1.41	0.55	2.49
11	Polygonum runcinatum Buch.-Ham. ex D. Don	82.14	7.75	9.43	0.69	1.38	0.42	2.49
12	Pteridium aquilinum (L.) Kuhn	100	5.75	5.75	0.84	1.02	0.26	2.12
13	Elatostema obtusum Wedd.	64.29	6.18	9.61	0.54	1.1	0.43	2.07
14	Pouzolzia zeylanica (L.) Benn.	67.86	6.07	8.95	0.57	1.08	0.4	2.05
15	Polystichum lentum (D. Don) T. Moore	82.14	5.79	7.04	0.69	1.03	0.31	2.04
16	Helicia nilagirica Bedd.	21.43	4.32	20.17	0.18	0.77	0.9	1.85
17	Cryptomeria japonica (Thunb. ex L.f.) D.Don	21.43	4.25	19.83	0.18	0.76	0.88	1.82
18	Syzygium venosum DC.	25	4.46	17.86	0.21	0.79	0.79	1.8
19	Macaranga indica Wight	35.71	4.93	13.8	0.3	0.88	0.61	1.79
20	Rhododendron barbatum Wall. ex G. Don	32.14	4.71	14.67	0.27	0.84	0.65	1.76
21	Acer campbellii Hook.f. \& Thomson ex Hiern	53.57	4.68	8.73	0.45	0.83	0.39	1.67
22	Viburnum mullaha Buch.-Ham.ex D. Don	7.14	2	28	0.06	0.36	1.25	1.66
23	Mallotus roxburghianus Müll.-Arg.	17.86	3.54	19.8	0.15	0.63	0.88	1.66
24	Dichroa febrifuga Lour.	75	4.29	5.71	0.63	0.76	0.25	1.65
25	Viburnum cylindricum Buch.-Ham. ex D. Don	14.29	3.11	21.75	0.12	0.55	0.97	1.64
26	Boehmeria platyphylla D.Don	67.86	4.39	6.47	0.57	0.78	0.29	1.64
27	Lithocarpus pachyphyllus (Kurz) Rehder	21.43	3.71	17.33	0.18	0.66	0.77	1.61
28	Eupatorium cannabinum L.	64.29	4.11	6.39	0.54	0.73	0.28	1.56
29	Mussaenda treutleri Stapf	67.86	3.96	5.84	0.57	0.71	0.26	1.54

Annexure I

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
30	Commelina paludosa Blume	67.86	3.86	5.68	0.57	0.69	0.25	1.51
31	Quercus lamellosa Sm.	46.43	4	8.62	0.39	0.71	0.38	1.49
32	Pandanus furcatus Roxb.	21.43	3.21	15	0.18	0.57	0.67	1.42
33	Setaria palmifolia (J.Koenig) Stapf	71.43	3.32	4.65	0.6	0.59	0.21	1.4
34	Rhododendron arboretum Sm.	21.43	3.14	14.67	0.18	0.56	0.65	1.39
35	Viburnum cotinifolium D.Don	42.86	3.61	8.42	0.36	0.64	0.37	1.38
36	Magnolia hodgsonii (Hook.f.\& Thomson) H.Keng	10.71	2.11	19.67	0.09	0.38	0.88	1.34
37	Brachiaria distachya (L.) Stapf	57.14	3.32	5.81	0.48	0.59	0.26	1.33
38	Viburnum erubescens Wall.	42.86	3.36	7.83	0.36	0.6	0.35	1.31
39	Osbeckia crinite Benth. ex C.B. Clarke	64.29	3	4.67	0.54	0.53	0.21	1.28
40	Cynodon dactylon (L.) Pers.	60.71	3	4.94	0.51	0.53	0.22	1.27
41	Lecanthus peduncularis (Wall. ex Royle) Wedd.	67.86	2.86	4.21	0.57	0.51	0.19	1.27
42	Digitaria ciliaris (Retz.) Koeler	60.71	2.96	4.88	0.51	0.53	0.22	1.26
43	Cyperus tenuiculmis Boeck.	25	2.93	11.71	0.21	0.52	0.52	1.25
44	Tectaria gemmifera (Fée) Alston	71.43	2.57	3.6	0.6	0.46	0.16	1.22
45	Albizia chinensis (Osbeck) Merr.	35.71	3	8.4	0.3	0.53	0.37	1.21
46	Castanopsis tribuloides (Sm.) A.DC.	50	2.96	5.93	0.42	0.53	0.26	1.21
47	Eurya japonica Thunb.	64.29	2.64	4.11	0.54	0.47	0.18	1.2
48	Terminalia myriocarpa Van Heurck \& Müll.-Arg.	35.71	2.82	7.9	0.3	0.5	0.35	1.16
49	Tetrastigma rumicispermum (M.A.Lawson) Planch.	67.86	2.39	3.53	0.57	0.43	0.16	1.16
50	Cupressus torulosa D.Don	3.57	0.79	22	0.03	0.14	0.98	1.15
51	Pteris biaurita L.	46.43	2.71	5.85	0.39	0.48	0.26	1.14
52	Machilus kurzii King ex Hook.f.	21.43	2.46	11.5	0.18	0.44	0.51	1.13
53	Maesa chisia Buch.-Ham. ex D. Don	67.86	2.18	3.21	0.57	0.39	0.14	1.1
54	Ficus hirta Vahl	60.71	2.29	3.76	0.51	0.41	0.17	1.09
55	Rubus ellipticus Sm.	64.29	2.18	3.39	0.54	0.39	0.15	1.08
56	Digitaria longiflora (Retz.) Pers.	35.71	2.43	6.8	0.3	0.43	0.3	1.04
57	Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross	46.43	2.29	4.92	0.39	0.41	0.22	1.02
58	Edgeworthia gardneri (Wall.) Meisn.	50	2.25	4.5	0.42	0.4	0.2	1.02
59	Machilus edulis King ex Hook.f.	32.14	2.32	7.22	0.27	0.41	0.32	1.01
60	Drymaria cordata (L.) Willd. ex Schult.	53.57	2.07	3.87	0.45	0.37	0.17	0.99
61	Populus gamblei Dode	21.43	2.07	9.67	0.18	0.37	0.43	0.98
62	Achyranthes aspera L.	50	2.11	4.21	0.42	0.38	0.19	0.98
63	Piper betleoides C.DC.	53.57	1.96	3.67	0.45	0.35	0.16	0.97
64	Rhus succedanea L.	25	2.11	8.43	0.21	0.38	0.38	0.96
65	Isachne globosa (Thunb.) Kuntze	21.43	2	9.33	0.18	0.36	0.42	0.95

Annexure I

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
66	Quercus lineata Blume	39.29	2.11	5.36	0.33	0.38	0.24	0.95
67	Isachne himalaica Hook.f	35.71	2.04	5.7	0.3	0.36	0.25	0.92
68	Rubia manjith Roxb. ex Fleming	46.43	1.89	4.08	0.39	0.34	0.18	0.91
69	Rhododendron thomsonii Hook.f.	14.29	1.54	10.75	0.12	0.27	0.48	0.87
70	Alangium chinense (Lour.) Harms	53.57	1.61	3	0.45	0.29	0.13	0.87
71	Lyonia ovalifolia (Wall.) Drude	46.43	1.68	3.62	0.39	0.3	0.16	0.85
72	Imperata cylindrica (L.) Raeusch	46.43	1.68	3.62	0.39	0.3	0.16	0.85
73	Daphne papyracea Wall. ex G.Don	50	1.61	3.21	0.42	0.29	0.14	0.85
74	Alocasia macrorrhizos (L.) G.Don	50	1.61	3.21	0.42	0.29	0.14	0.85
75	Cyperus cyperoides (Retz.) Kuntze	28.57	1.79	6.25	0.24	0.32	0.28	0.84
76	Cyperus distans L.	50	1.57	3.14	0.42	0.28	0.14	0.84
77	Rhododendron griffithianum Wight	17.86	1.57	8.8	0.15	0.28	0.39	0.82
78	Polygonum molle D.Don	39.29	1.64	4.18	0.33	0.29	0.19	0.81
79	Triumfetta rhomboidea Jacq.	42.86	1.61	3.75	0.36	0.29	0.17	0.81
80	Oplismenus compositus (L.) P.Beauv.	42.86	1.61	3.75	0.36	0.29	0.17	0.81
81	Rhododendron hodgsonii Hook.f.	21.43	1.61	7.5	0.18	0.29	0.33	0.8
82	Rhododendron triflorum Hook.f.	25	1.61	6.43	0.21	0.29	0.29	0.78
83	Abies densa Griff.	25	1.57	6.29	0.21	0.28	0.28	0.77
84	Selliguea griffithiana (Hook.) Fraser-Jenk.	50	1.29	2.57	0.42	0.23	0.11	0.77
85	Betula utilis D.Don	17.86	1.43	8	0.15	0.25	0.36	0.76
86	Dioscorea bulbifera L.	32.14	1.54	4.78	0.27	0.27	0.21	0.76
87	Loxogramme involuta (D.Don)C.Presl	46.43	1.36	2.92	0.39	0.24	0.13	0.76
88	Heracleum wallichii DC.	14.29	1.29	9	0.12	0.23	0.4	0.75
89	Begonia picta Sm.	25	1.5	6	0.21	0.27	0.27	0.75
90	Melastoma malabathricum L.	50	1.21	2.43	0.42	0.22	0.11	0.75
91	Smilax bracteata subsp. veruculosa (Merr.) T.Koyama	53.57	1.14	2.13	0.45	0.2	0.09	0.75
92	Diplazium dilatatum Blume	3.57	0.5	14	0.03	0.09	0.62	0.74
93	Pilea glaberrima (Blume) Blume	50	1.18	2.36	0.42	0.21	0.1	0.74
94	Meliosma dilleniifolia (Wight \& Arn.) Walp.	10.71	1.07	10	0.09	0.19	0.45	0.73
95	Callicarpa arborea Roxb.	25	1.46	5.86	0.21	0.26	0.26	0.73
96	Christella parasitica H.Lév.	32.14	1.46	4.56	0.27	0.26	0.2	0.73
97	Hydrocotyle javanica Thunb.	46.43	1.25	2.69	0.39	0.22	0.12	0.73
98	Eragrostis unioloides (Retz.) Nees ex Steud.	17.86	1.32	7.4	0.15	0.24	0.33	0.72
99	Antidesma acidum Retz.	35.71	1.36	3.8	0.3	0.24	0.17	0.71
100	Selaginella pallescens (C.Presl) Spring	35.71	1.32	3.7	0.3	0.24	0.16	0.7
101	Fragaria vesca L.	39.29	1.21	3.09	0.33	0.22	0.14	0.69
102	Plantago asiatica subsp. erosa (Wall.) Z.Yu Li	32.14	1.29	4	0.27	0.23	0.18	0.68

Annexure I

$\begin{array}{\|l\|} \hline \mathbf{S l} \\ \mathbf{N o} \end{array}$	Botanical Name	F	D	A	RF	RD	RA	IVI
103	Betula alnoides Buch.-Ham.	35.71	1.25	3.5	0.3	0.22	0.16	0.68
104	Ehretia acuminate R.Br.	17.86	1.21	6.8	0.15	0.22	0.3	0.67
105	Eragrostis atrovirens (Desf.) Trin.	28.57	1.29	4.5	0.24	0.23	0.2	0.67
106	Arundinella hookeri Munro \& Keng	28.57	1.29	4.5	0.24	0.23	0.2	0.67
107	Rubus insignis Hook.f.	42.86	1.11	2.58	0.36	0.2	0.11	0.67
108	Artemisia japonica Thunb.	46.43	1	2.15	0.39	0.18	0.1	0.67
109	Isachne albens Trin.	21.43	1.25	5.83	0.18	0.22	0.26	0.66
110	Acer oblongum Wall. ex DC.	21.43	1.25	5.83	0.18	0.22	0.26	0.66
111	Symplocos glomerata King ex C.B.Clarke	25	1.25	5	0.21	0.22	0.22	0.66
112	Bombax ceiba L.	25	1.25	5	0.21	0.22	0.22	0.66
113	Anaphalis contorta (D.Don) Hook.f	25	1.25	5	0.21	0.22	0.22	0.66
114	Cyperus alopecuroides Rottb.	28.57	1.25	4.38	0.24	0.22	0.19	0.66
115	Arisaema galeatum N.E.Br.	35.71	1.18	3.3	0.3	0.21	0.15	0.66
116	Urtica dioica L.	39.29	1.14	2.91	0.33	0.2	0.13	0.66
117	Cyperus longus L.	28.57	1.21	4.25	0.24	0.22	0.19	0.65
118	Pteris longipes D.Don	35.71	1.14	3.2	0.3	0.2	0.14	0.65
119	Bidens pilosa L.	35.71	1.14	3.2	0.3	0.2	0.14	0.65
120	Drypetes longifolia (Blume) Pax \& K.Hoffm.	21.43	1.18	5.5	0.18	0.21	0.24	0.64
121	Prunus cerasoides Buch.-Ham. ex D.Don	42.86	1	2.33	0.36	0.18	0.1	0.64
122	Brassaiopsis mitis C.B. Clarke	42.86	1	2.33	0.36	0.18	0.1	0.64
123	Cissus repens Lam.	46.43	0.89	1.92	0.39	0.16	0.09	0.64
124	Cyperus difformis L.	7.14	0.71	10	0.06	0.13	0.45	0.63
125	Fragaria daltoniana J. Gay	28.57	1.18	4.13	0.24	0.21	0.18	0.63
126	Rhododendron falconeri Hook.f.	17.86	1.11	6.2	0.15	0.2	0.28	0.62
127	Cyperus rotundus L.	28.57	1.14	4	0.24	0.2	0.18	0.62
128	Juniperus procera Hochst.	14.29	1	7	0.12	0.18	0.31	0.61
129	Lycopodium clavatum L.	25	1.11	4.43	0.21	0.2	0.2	0.61
130	Swertia chirayita (Roxb.) Buch.-Ham. ex C.B.Clarke	28.57	1.11	3.88	0.24	0.2	0.17	0.61
131	Mikania micrantha Kunth	32.14	1.07	3.33	0.27	0.19	0.15	0.61
132	Cymbopogon microthecus (Hook.f.) A.Camus	32.14	1.07	3.33	0.27	0.19	0.15	0.61
133	Cyperus odoratus L.	7.14	0.68	9.5	0.06	0.12	0.42	0.6
134	Leucosceptrum canum Sm.	28.57	1.07	3.75	0.24	0.19	0.17	0.6
135	Bischofia javanica Blume	28.57	1.07	3.75	0.24	0.19	0.17	0.6
136	Selaginella martensii Spring	32.14	1.04	3.22	0.27	0.18	0.14	0.6
137	Liparis viridifolia (B1.) Lindl.	35.71	1	2.8	0.3	0.18	0.12	0.6
138	Shorea robusta Gaertn.	3.57	0.39	11	0.03	0.07	0.49	0.59
139	Selaginella willdenovii (Desv. ex Poir.) Baker	14.29	0.96	6.75	0.12	0.17	0.3	0.59

Annexure I

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
140	Drynaria coronans (Wall. ex Mett.) T.Moore	28.57	1.04	3.63	0.24	0.18	0.16	0.59
141	Magnolia cathcartii (Hook.f. \& Thomson) Noot.	7.14	0.64	9	0.06	0.11	0.4	0.58
142	Mallotus tetracoccus (Roxb.) Kurz	14.29	0.93	6.5	0.12	0.17	0.29	0.58
143	Cyperus cuspidatus Kunth	14.29	0.93	6.5	0.12	0.17	0.29	0.58
144	Eragrostis nigra Nees ex Steud.	17.86	1	5.6	0.15	0.18	0.25	0.58
145	Litsea sericea (Wall.ex Nees) Hook.f.	25	1.04	4.14	0.21	0.18	0.18	0.58
146	Magnolia campbellii Hook.f.\& Thomson	32.14	0.96	3	0.27	0.17	0.13	0.58
147	Cymbidium mastersii Griff. ex. Lindl.	32.14	0.96	3	0.27	0.17	0.13	0.58
148	Oxalis corniculata L.	42.86	0.79	1.83	0.36	0.14	0.08	0.58
149	Machilus glaucescens (T.Nees) H.W. Li	21.43	1	4.67	0.18	0.18	0.21	0.57
150	Elsholtzia flava Benth.	39.29	0.82	2.09	0.33	0.15	0.09	0.57
151	Oplismenus burmanni (Retz.) P. Beauv.	10.71	0.79	7.33	0.09	0.14	0.33	0.56
152	Dioscorea pentaphylla L.	17.86	0.93	5.2	0.15	0.17	0.23	0.55
153	Arundinella nepalensis Trin.	28.57	0.93	3.25	0.24	0.17	0.14	0.55
154	Pilea umbrosa Blume	35.71	0.82	2.3	0.3	0.15	0.1	0.55
155	Brachiaria villosa (Lam.) A. Camus	35.71	0.82	2.3	0.3	0.15	0.1	0.55
156	Rhododendron campylocarpum Hook.f.	3.57	0.36	10	0.03	0.06	0.45	0.54
157	Pteris linearis Poir.	21.43	0.93	4.33	0.18	0.17	0.19	0.54
158	Leucas lanata Benth.	39.29	0.71	1.82	0.33	0.13	0.08	0.54
159	Persicaria polystachya Opiz	32.14	0.82	2.56	0.27	0.15	0.11	0.53
160	Tinospora sinensis (Lour.) Merr.	35.71	0.75	2.1	0.3	0.13	0.09	0.53
161	Actinodaphne sikkimensis Meisn.	7.14	0.57	8	0.06	0.1	0.36	0.52
162	Swertia angustifolia Buch.-Ham.ex D.Don	32.14	0.79	2.44	0.27	0.14	0.11	0.52
163	Glochidion acuminatum Müll.-Arg.	32.14	0.79	2.44	0.27	0.14	0.11	0.52
164	Apios carnea (Wall.) Benth.	39.29	0.64	1.64	0.33	0.11	0.07	0.52
165	Anaphalis margaritacea (L.) Benth. \& Hook.f.	14.29	0.79	5.5	0.12	0.14	0.24	0.51
166	Premna barbata Wall. ex Schauer	32.14	0.75	2.33	0.27	0.13	0.1	0.51
167	Cirrhopetalum wallichii Lindl.	32.14	0.75	2.33	0.27	0.13	0.1	0.51
168	Albizia lucidior (Steud.) I.C.Nielsen	39.29	0.61	1.55	0.33	0.11	0.07	0.51
169	Magnolia lanuginosa (Wall.) Figlar \& Noot.	17.86	0.82	4.6	0.15	0.15	0.2	0.5
170	Syzygium formosum (Wall.) Masam.	25	0.82	3.29	0.21	0.15	0.15	0.5
171	Axonopus compressus (Swartz) P.Beauv.	25	0.82	3.29	0.21	0.15	0.15	0.5
172	Symplocos cochinchinensis (Lour.) S.Moore	28.57	0.79	2.75	0.24	0.14	0.12	0.5
173	Reevesia pubescens Mast.	35.71	0.64	1.8	0.3	0.11	0.08	0.5
174	Garuga floribunda Decne.	17.86	0.79	4.4	0.15	0.14	0.2	0.49
175	Remusatia hookeriana Schott	25	0.79	3.14	0.21	0.14	0.14	0.49
176	Prunus nepalensis Ser.	25	0.79	3.14	0.21	0.14	0.14	0.49

Annexure I 157

$\begin{aligned} & \hline \text { Sl } \\ & \text { No } \\ & \hline \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
177	Persicaria lapathifolia (L.) Delarbre	25	0.79	3.14	0.21	0.14	0.14	0.49
178	Persicaria amplexicaulis (D.Don) Ronse Decr.	25	0.79	3.14	0.21	0.14	0.14	0.49
179	Elatostema platyphyllum Wedd.	25	0.79	3.14	0.21	0.14	0.14	0.49
180	Plectranthus barbatus Andrews	28.57	0.75	2.63	0.24	0.13	0.12	0.49
181	Ageratum conyzoides (L.) L.	28.57	0.75	2.63	0.24	0.13	0.12	0.49
182	Isachne mauritiana Kunth	21.43	0.79	3.67	0.18	0.14	0.16	0.48
183	Astilbe rivularis Buch.-Ham.	21.43	0.79	3.67	0.18	0.14	0.16	0.48
184	Arundinaria racemosa Munro	21.43	0.79	3.67	0.18	0.14	0.16	0.48
185	Thysanolaena latifolia (Roxb. ex Hornem.) Honda	28.57	0.71	2.5	0.24	0.13	0.11	0.48
186	Strobilanthes atropurpureus Nees	14.29	0.71	5	0.12	0.13	0.22	0.47
187	Yushania pantlingii (Gamble) R.B.Majumdar	21.43	0.75	3.5	0.18	0.13	0.16	0.47
188	Syzygium cumini (L.) Skeels	25	0.71	2.86	0.21	0.13	0.13	0.47
189	Anisomeles indica (L.) Kuntze	25	0.71	2.86	0.21	0.13	0.13	0.47
190	Peranema paleolulata (Pic.Serm.) FraserJenk.	28.57	0.68	2.38	0.24	0.12	0.11	0.47
191	Colebrookea oppositifolia Sm.	17.86	0.71	4	0.15	0.13	0.18	0.46
192	Walsura tubulata Hiern	21.43	0.71	3.33	0.18	0.13	0.15	0.46
193	Morus alba L.	21.43	0.71	3.33	0.18	0.13	0.15	0.46
194	Yushania maling (Gamble) R.B.Majumdar \& Karthik	14.29	0.68	4.75	0.12	0.12	0.21	0.45
195	Sorbusthomsonii (King ex Hook.f.) Rehder	14.29	0.68	4.75	0.12	0.12	0.21	0.45
196	Rubus nepalensis (Hook.f.) Kuntze	25	0.68	2.71	0.21	0.12	0.12	0.45
197	Paspalum scrobiculatum L.	25	0.68	2.71	0.21	0.12	0.12	0.45
198	Osbeckia stellata Buch.-Ham. ex Ker Gawl.	35.71	0.5	1.4	0.3	0.09	0.06	0.45
199	Oxyspora paniculata (D.Don) DC.	17.86	0.68	3.8	0.15	0.12	0.17	0.44
200	Pavetta indica L.	21.43	0.68	3.17	0.18	0.12	0.14	0.44
201	Chimonocalamus griffithianus (Munro) Hsueh \&T.P.Yi	21.43	0.68	3.17	0.18	0.12	0.14	0.44
202	Tectaria macrodonta C.Chr.	25	0.64	2.57	0.21	0.11	0.11	0.44
203	Rhododendron vaccinioides Hook.	25	0.64	2.57	0.21	0.11	0.11	0.44
204	Crassocephalum crepidioides (Benth.) S.Moore	28.57	0.61	2.13	0.24	0.11	0.09	0.44
205	Eurya cerasifolia (D.Don) Kobuski	10.71	0.57	5.33	0.09	0.1	0.24	0.43
206	Dendrobium densiflorum Lindl.	17.86	0.64	3.6	0.15	0.11	0.16	0.43
207	Chrysopogon aciculatus (Retz.) Trin.	17.86	0.64	3.6	0.15	0.11	0.16	0.43
208	Bridelia retusa (L.) Juss.	21.43	0.64	3	0.18	0.11	0.13	0.43
209	Adiantum capillus-veneris L.	21.43	0.64	3	0.18	0.11	0.13	0.43
210	Houttuynia cordata Thunb.	25	0.61	2.43	0.21	0.11	0.11	0.43
211	Clerodendrum glandulosum Lindl.	25	0.61	2.43	0.21	0.11	0.11	0.43
212	Rohdea nepalensis (Raf.) N.Tanaka	28.57	0.57	2	0.24	0.1	0.09	0.43
213	Impatiens urticifolia Wall.	14.29	0.61	4.25	0.12	0.11	0.19	0.42

Annexure I 158

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
214	Solanum aculeatissimum Jacq.	21.43	0.61	2.83	0.18	0.11	0.13	0.42
215	Rubus phengodes Focke	28.57	0.54	1.88	0.24	0.1	0.08	0.42
216	Lepisorus loriformis (Wall. ex Mett.)Ching	32.14	0.46	1.44	0.27	0.08	0.06	0.42
217	Oleandra wallichii (Hook.) C.Presl	17.86	0.61	3.4	0.15	0.11	0.15	0.41
218	Pogonatherum crinitum (Thunb.) Kunth	25	0.57	2.29	0.21	0.1	0.1	0.41
219	Himalayacalamus hookerianus (Munro) Stapleton	25	0.57	2.29	0.21	0.1	0.1	0.41
220	Brassaiopsis hispida Seem.	25	0.57	2.29	0.21	0.1	0.1	0.41
221	Arthromeris wallichiana (Spreng.) Ching	25	0.57	2.29	0.21	0.1	0.1	0.41
222	Leucostegia truncata (D.Don) Fraser-Jenk.	7.14	0.43	6	0.06	0.08	0.27	0.4
223	Brucea javanica (L.) Merr.	14.29	0.57	4	0.12	0.1	0.18	0.4
224	Viburnum grandiflorum Wall. ex DC.	21.43	0.57	2.67	0.18	0.1	0.12	0.4
225	Litsea albescens (Hook.f.) D.G.Long	21.43	0.57	2.67	0.18	0.1	0.12	0.4
226	Erythrina stricta Roxb.	21.43	0.57	2.67	0.18	0.1	0.12	0.4
227	Quercus glauca Thunb.	25	0.54	2.14	0.21	0.1	0.1	0.4
228	Huperzia pulcherrima (Wall. ex Hook. \& Grev.) T.Sen \& U.Sen	25	0.54	2.14	0.21	0.1	0.1	0.4
229	Dendrobium fuscescens Griff.	25	0.54	2.14	0.21	0.1	0.1	0.4
230	Ageratum houstonianum Mill.	25	0.54	2.14	0.21	0.1	0.1	0.4
231	Begonia palmata D.Don	10.71	0.5	4.67	0.09	0.09	0.21	0.39
232	Pogonatherum paniceum (Lam.) Hack.	21.43	0.54	2.5	0.18	0.1	0.11	0.39
233	Ficus neriifolia Sm.	21.43	0.54	2.5	0.18	0.1	0.11	0.39
234	Elatostema acuminatum (Poir.) Brongn.	21.43	0.54	2.5	0.18	0.1	0.11	0.39
235	Choerospondias axillaris (Roxb.) B.L.Burtt \& A.W.Hill	21.43	0.54	2.5	0.18	0.1	0.11	0.39
236	Acer caudatum Wall.	21.43	0.54	2.5	0.18	0.1	0.11	0.39
237	Woodsia obtusa Torr.	25	0.5	2	0.21	0.09	0.09	0.39
238	Symplocos dryophila C.B.Clarke	25	0.5	2	0.21	0.09	0.09	0.39
239	Bambusa nutans Wall. ex Munro	25	0.5	2	0.21	0.09	0.09	0.39
240	Aleuritopteris subdimorpha (C.B.Clarke \& Baker) Fraser-Jenk.	25	0.5	2	0.21	0.09	0.09	0.39
241	Azadirachta indica Juss.	7.14	0.39	5.5	0.06	0.07	0.24	0.38
242	Rhamnus napalensis (Wall.) M.A.Lawson	14.29	0.54	3.75	0.12	0.1	0.17	0.38
243	Pteracanthus urticifolius (Wall. ex Kuntze) Bremek.	17.86	0.54	3	0.15	0.1	0.13	0.38
244	Persicaria hydropiper (L.) Delarbre	25	0.46	1.86	0.21	0.08	0.08	0.38
245	Girardinia diversifolia (Link) Friis	25	0.46	1.86	0.21	0.08	0.08	0.38
246	Pouzolzia hirta Blume ex Hassk.	28.57	0.43	1.5	0.24	0.08	0.07	0.38
247	Nyssa javanica (Blume) Wangerin	10.71	0.46	4.33	0.09	0.08	0.19	0.37
248	Globba clarkei Baker	10.71	0.46	4.33	0.09	0.08	0.19	0.37
249	Aster albescens (DC.) Wall.ex Hand.-Mazz	10.71	0.46	4.33	0.09	0.08	0.19	0.37
250	Persicaria glabra (Willd.) M.Gómez	14.29	0.5	3.5	0.12	0.09	0.16	0.37
251	Rhaphidophora decursiva (Roxb.) Schott	21.43	0.5	2.33	0.18	0.09	0.1	0.37

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
252	Dioscorea hamiltonii Hook.f.	21.43	0.5	2.33	0.18	0.09	0.1	0.37
253	Vaccinium vacciniaceum (Roxb.) Sleumer	28.57	0.39	1.38	0.24	0.07	0.06	0.37
254	Woodwardia unigemmata (Makino) Nakai	17.86	0.5	2.8	0.15	0.09	0.12	0.36
255	Toxicodendron hookeri (K.C.Sahni \& Bahadur) C.Y. Wu \& T.L.Ming	17.86	0.5	2.8	0.15	0.09	0.12	0.36
256	Duchesnea indica (Jacks.) Focke	17.86	0.5	2.8	0.15	0.09	0.12	0.36
257	Cymbidium longifolium D.Don	17.86	0.5	2.8	0.15	0.09	0.12	0.36
258	Pyrrosia porosa (C.Presl) Hovenkamp	21.43	0.46	2.17	0.18	0.08	0.1	0.36
259	Porana paniculata Roxb.	21.43	0.46	2.17	0.18	0.08	0.1	0.36
260	Vaccinium nummularia Hook.f. \& Thoms. ex C.B.Clarke	25	0.43	1.71	0.21	0.08	0.08	0.36
261	Cyperus squarrosus L.	25	0.43	1.71	0.21	0.08	0.08	0.36
262	Adiantum incisum Forssk.	25	0.43	1.71	0.21	0.08	0.08	0.36
263	Boehmeria macrophylla Hornem.	28.57	0.36	1.25	0.24	0.06	0.06	0.36
264	Tectaria polymorpha (Wall. ex Hook.) Copeland	7.14	0.36	5	0.06	0.06	0.22	0.35
265	Odontosoria chinensis (L.) Sm.	7.14	0.36	5	0.06	0.06	0.22	0.35
266	Albizia procera (Roxb.) Benth.	7.14	0.36	5	0.06	0.06	0.22	0.35
267	Viola betonicifolia Sm.	14.29	0.46	3.25	0.12	0.08	0.14	0.35
268	Eucalyptus tereticornis Sm.	14.29	0.46	3.25	0.12	0.08	0.14	0.35
269	Arundo donax L.	17.86	0.46	2.6	0.15	0.08	0.12	0.35
270	Anaphalis busua (Buch.-Ham.) DC.	17.86	0.46	2.6	0.15	0.08	0.12	0.35
271	Drynaria guercifolia (L.) Sm.	21.43	0.43	2	0.18	0.08	0.09	0.35
272	Asplenium gueinzianum Mett. ex Kuhn	21.43	0.43	2	0.18	0.08	0.09	0.35
273	Actinidia callosa Lindl.	21.43	0.43	2	0.18	0.08	0.09	0.35
274	Mimosa himalayana Gamble	25	0.39	1.57	0.21	0.07	0.07	0.35
275	Cautleya gracilis (Sm.) Dandy	25	0.39	1.57	0.21	0.07	0.07	0.35
276	Cardiocrinum giganteum (Wall.) Makino	3.57	0.21	6	0.03	0.04	0.27	0.34
277	Dendrocalamus hamiltonii T.Nees \& Arn.ex Munro	25	0.36	1.43	0.21	0.06	0.06	0.34
278	Paederia foetida L.	14.29	0.43	3	0.12	0.08	0.13	0.33
279	Elatostema sessile J.R.Forst. \& G.Forst.	17.86	0.43	2.4	0.15	0.08	0.11	0.33
280	Davallodes membrunulosa (Wall. ex Hook.) Copel	17.86	0.43	2.4	0.15	0.08	0.11	0.33
281	Arisaema tortuosum (Wall.) Schott	17.86	0.43	2.4	0.15	0.08	0.11	0.33
282	Viola canescens Wall.	21.43	0.39	1.83	0.18	0.07	0.08	0.33
283	Dicranopteris linearis (Burm.f.) Underw.	21.43	0.39	1.83	0.18	0.07	0.08	0.33
284	Achyranthes bidentata Blume	21.43	0.39	1.83	0.18	0.07	0.08	0.33
285	Hedychium coccineum Buch.-Ham. ex Sm.	25	0.32	1.29	0.21	0.06	0.06	0.33
286	Rubus acuminatus Sm.	7.14	0.32	4.5	0.06	0.06	0.2	0.32
287	Elaphoglossum marginatum (Wall. ex Fee)T.Moore	7.14	0.32	4.5	0.06	0.06	0.2	0.32
288	Persicaria nepalensis (Meisn.) Miyabe	10.71	0.39	3.67	0.09	0.07	0.16	0.32

Annexure I 160

$\begin{aligned} & \hline \mathbf{S l} \\ & \mathbf{N o} \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
289	Allantodia spectabilis (Wall.ex Mett.) Ching	10.71	0.39	3.67	0.09	0.07	0.16	0.32
290	Lemmaphyllum rostratum (Bedd.) Tagawa	10.71	0.39	3.67	0.09	0.07	0.16	0.32
291	Plantago rugelii Decne.	17.86	0.39	2.2	0.15	0.07	0.1	0.32
292	Microsorum punctatum (L.) Copel.	17.86	0.39	2.2	0.15	0.07	0.1	0.32
293	Toona ciliata M.Roem.	21.43	0.36	1.67	0.18	0.06	0.07	0.32
294	Saurauia fasciculate Wall.	21.43	0.36	1.67	0.18	0.06	0.07	0.32
295	Rumex nepalensis Spreng.	21.43	0.36	1.67	0.18	0.06	0.07	0.32
296	Hemiphragma heterophyllum Wall.	21.43	0.36	1.67	0.18	0.06	0.07	0.32
297	Viola pilosa Blume	14.29	0.39	2.75	0.12	0.07	0.12	0.31
298	Lithocarpus fenestratus (Roxb.) Rehder	14.29	0.39	2.75	0.12	0.07	0.12	0.31
299	Himalaiella deltoidea (DC.) Raab-Straube	14.29	0.39	2.75	0.12	0.07	0.12	0.31
300	Elsholtzia fruticosa (D.Don) Rehder	10.71	0.36	3.33	0.09	0.06	0.15	0.3
301	Viburnum nervosum D.Don	14.29	0.36	2.5	0.12	0.06	0.11	0.3
302	Liparis resupinata Ridl.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
303	Impatiens racemosa DC.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
304	Berchemia floribunda (Wall.) Brongn.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
305	Berberisvirescens Hook.f.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
306	Arctium lappa L.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
307	Antidesma acuminatum Wall	14.29	0.36	2.5	0.12	0.06	0.11	0.3
308	Allantodia stoliczkae (Bedd.) Ching	14.29	0.36	2.5	0.12	0.06	0.11	0.3
309	Tsuga dumosa (D.Don) Eichl.	17.86	0.36	2	0.15	0.06	0.09	0.3
310	Phegopteris hexagonoptera (Michx.) Fée	17.86	0.36	2	0.15	0.06	0.09	0.3
311	Lantana camara L.	17.86	0.36	2	0.15	0.06	0.09	0.3
312	Ilex dipyrena Wall.	17.86	0.36	2	0.15	0.06	0.09	0.3
313	Cautleya spicata (Sm.) Baker	17.86	0.36	2	0.15	0.06	0.09	0.3
314	Athyrium filix-femina (L.) Roth	17.86	0.36	2	0.15	0.06	0.09	0.3
315	Cyanotis vaga (Lour.) Schult..\& Schult.f.	21.43	0.32	1.5	0.18	0.06	0.07	0.3
316	Trichosanthes lepiniana (Naudin) Cogniaux	25	0.25	1	0.21	0.04	0.04	0.3
317	Premula pulchra Watt	7.14	0.29	4	0.06	0.05	0.18	0.29
318	Polystichum acrostichoides (Michx.) Schott	7.14	0.29	4	0.06	0.05	0.18	0.29
319	Lindenbergia grandiflora (Buch.-Ham.ex D. Don) Benth.	7.14	0.29	4	0.06	0.05	0.18	0.29
320	Cyathula capitata Moq.	7.14	0.29	4	0.06	0.05	0.18	0.29
321	Pyrrosia costata (C.Presl) Tagawa \& K.Iwats	17.86	0.32	1.8	0.15	0.06	0.08	0.29
322	Potentilla fulgens Trevir.	17.86	0.32	1.8	0.15	0.06	0.08	0.29
323	Magnolia champaca (L.) Baill. ex Pierre	17.86	0.32	1.8	0.15	0.06	0.08	0.29
324	Litsea salicifolia (J.Roxb. ex Nees) Hook.f.	17.86	0.32	1.8	0.15	0.06	0.08	0.29
325	Hemarthria compressa (L.f.) R.Br.	17.86	0.32	1.8	0.15	0.06	0.08	0.29
326	Evodia fraxinifolia (Hook.) Benth.	17.86	0.32	1.8	0.15	0.06	0.08	0.29

Annexure I 161

$\begin{aligned} & \begin{array}{l} \text { SI } \\ \text { No } \end{array} \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
327	Elaeocarpus rugosus Roxb. ex G.Don	17.86	0.32	1.8	0.15	0.06	0.08	0.29
328	Cinnamomum impressinervium Meisn.	17.86	0.32	1.8	0.15	0.06	0.08	0.29
329	Balantium antarcticum (Labill.) C.Presl	17.86	0.32	1.8	0.15	0.06	0.08	0.29
330	Aster sikkimmensis Hook.f.\& Thomson	17.86	0.32	1.8	0.15	0.06	0.08	0.29
331	Rubus calycinoides Kuntze	21.43	0.29	1.33	0.18	0.05	0.06	0.29
332	Himalayacalamus falconeri (Hook.f. ex Munro) Keng.f.	21.43	0.29	1.33	0.18	0.05	0.06	0.29
333	Buddleja asiatica Lour.	3.57	0.18	5	0.03	0.03	0.22	0.28
334	Trichomanes accedens C. Presl	3.57	0.18	5	0.03	0.03	0.22	0.28
335	Pyrrosia lanceolata (L.) Farw.	10.71	0.32	3	0.09	0.06	0.13	0.28
336	Persicaria vivipara (L.) Ronse Decr.	10.71	0.32	3	0.09	0.06	0.13	0.28
337	Mallotus nepalensis Müll.-Arg.	10.71	0.32	3	0.09	0.06	0.13	0.28
338	Bulbophyllum guttulatum (Hook.f) N.P.Balkr.	10.71	0.32	3	0.09	0.06	0.13	0.28
339	Athyrium foliolosum T.Moore ex R. Sim	10.71	0.32	3	0.09	0.06	0.13	0.28
340	Arisaema nepenthoides (Wall.) Mart.	10.71	0.32	3	0.09	0.06	0.13	0.28
341	Holmskioldia sanguine Retz.	14.29	0.32	2.25	0.12	0.06	0.1	0.28
342	Ficus sarmentosa Buch.-Ham. ex Sm.	14.29	0.32	2.25	0.12	0.06	0.1	0.28
343	Cyperus compressus L.	14.29	0.32	2.25	0.12	0.06	0.1	0.28
344	Strobilanthes capitata (Nees) T. Anderson	21.43	0.25	1.17	0.18	0.04	0.05	0.28
345	Meliosma simplicifolia (Roxb.) Walp.	17.86	0.29	1.6	0.15	0.05	0.07	0.27
346	Quercus laurifolia Michx.	7.14	0.25	3.5	0.06	0.04	0.16	0.26
347	Persicaria alpina (All.) H.Gross	7.14	0.25	3.5	0.06	0.04	0.16	0.26
348	Drynaria propinqua (Wall. ex Mett.) J.Sm	7.14	0.25	3.5	0.06	0.04	0.16	0.26
349	Curcuma angustifolia Roxb.	7.14	0.25	3.5	0.06	0.04	0.16	0.26
350	Caelogyne stricta D.Don	7.14	0.25	3.5	0.06	0.04	0.16	0.26
351	Sorbus cuspidata (Spach.) Hedl.	10.71	0.29	2.67	0.09	0.05	0.12	0.26
352	Primula denticulate Sm.	10.71	0.29	2.67	0.09	0.05	0.12	0.26
353	Premula capitata Hook.f	10.71	0.29	2.67	0.09	0.05	0.12	0.26
354	Machilus gamblei King ex Hook.f.	10.71	0.29	2.67	0.09	0.05	0.12	0.26
355	Asplenium tenuifolium D.Don	10.71	0.29	2.67	0.09	0.05	0.12	0.26
356	Artocarpus lacucha Buch.-Ham.	10.71	0.29	2.67	0.09	0.05	0.12	0.26
357	Exbucklandia populnea (R.Br. ex Griff.) R.W.Br.	14.29	0.29	2	0.12	0.05	0.09	0.26
358	Equisetum arvense L.	14.29	0.29	2	0.12	0.05	0.09	0.26
359	Pyrrosia mannii (Giesenh.) Ching	17.86	0.25	1.4	0.15	0.04	0.06	0.26
360	Hydrocotyle sibthorpioides Lam.	17.86	0.25	1.4	0.15	0.04	0.06	0.26
361	Cissampelos pareira L.	17.86	0.25	1.4	0.15	0.04	0.06	0.26
362	Astragalus stipulatus (L.) A. Gray	17.86	0.25	1.4	0.15	0.04	0.06	0.26
363	Artemisia vulgaris L.	17.86	0.25	1.4	0.15	0.04	0.06	0.26

Annexure I 162

$\begin{aligned} & \mathbf{S I} \\ & \mathbf{N o} \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
364	Pilea scripta (Buch.-Ham. ex D. Don) Wedd.	10.71	0.25	2.33	0.09	0.04	0.1	0.24
365	Oberonia falcata King \& Pantl.	10.71	0.25	2.33	0.09	0.04	0.1	0.24
366	Melochia corchorifolia L.	10.71	0.25	2.33	0.09	0.04	0.1	0.24
367	Aster trinervis Roxb.	10.71	0.25	2.33	0.09	0.04	0.1	0.24
368	Arisaema griffithii Schott	10.71	0.25	2.33	0.09	0.04	0.1	0.24
369	Primula petiolaris Wall.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
370	Litsea cubeba (Lour.) Pers.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
371	Impatiens discolour DC.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
372	Dendrobium longicornu Lindl.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
373	Clematis buchananiana DC.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
374	Begonia malabarica Lam.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
375	Sinopodophyllum hexandrum (Royle) T.S.Ying	17.86	0.21	1.2	0.15	0.04	0.05	0.24
376	Ficus subincisa Buch.-Ham. ex Sm.	17.86	0.21	1.2	0.15	0.04	0.05	0.24
377	Coelogyne corymbosa Lindl.	17.86	0.21	1.2	0.15	0.04	0.05	0.24
378	Pyrrosia flocculosa (D.Don) Ching	3.57	0.14	4	0.03	0.03	0.18	0.23
379	Lepisorus sublinearis (Baker ex Takeda) Ching	3.57	0.14	4	0.03	0.03	0.18	0.23
380	Dendrocnide sinuata (Blume) Chew	3.57	0.14	4	0.03	0.03	0.18	0.23
381	Bulbophyllum sterile (Lam.) Suresh	3.57	0.14	4	0.03	0.03	0.18	0.23
382	Terminalia chebula Retz.	7.14	0.21	3	0.06	0.04	0.13	0.23
383	Ulmus lanceifolia Roxb. ex Wall.	7.14	0.21	3	0.06	0.04	0.13	0.23
384	Pholidota imbricate Lindl.	7.14	0.21	3	0.06	0.04	0.13	0.23
385	Pichisermollodes albopes (C. Chr. \& Ching) Fraser-Jenk	7.14	0.21	3	0.06	0.04	0.13	0.23
386	Lepisorus clathretus (C.B.Clarke) Ching	7.14	0.21	3	0.06	0.04	0.13	0.23
387	Terminalia crenulata Roth	14.29	0.21	1.5	0.12	0.04	0.07	0.23
388	Selaginella acanthostachys Baker	14.29	0.21	1.5	0.12	0.04	0.07	0.23
389	Piper boehmeriifolium (Miq.) Wall. ex C. DC	14.29	0.21	1.5	0.12	0.04	0.07	0.23
390	Lepisorus mehrae Fraser-Jenk.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
391	Ageratina ligustrina (DC.) R.M.King \& H.Rob.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
392	Galium elegans Wall. ex Roxb.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
393	Fraxinus floribunda Wall.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
394	Dryopsis apiciflora (Wall. ex Mett.) Holttum \& P.J. Edwards	14.29	0.21	1.5	0.12	0.04	0.07	0.23
395	Dioscorea deltoidea Wall. ex Griseb.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
396	Cyrtomium hookerianum C.Chr.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
397	Castanopsis indica A.DC.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
398	Brugmansia suaveolens (Humboldt \& Bonpland ex Willd.) Berchtold \& J.Presl	14.29	0.21	1.5	0.12	0.04	0.07	0.23
399	Asplenium yoshinagae Makino	14.29	0.21	1.5	0.12	0.04	0.07	0.23

Annexure I 163

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
400	Urtica hyperborea Jacq. ex Wedd.	10.71	0.21	2	0.09	0.04	0.09	0.22
401	Stephania elegans Hook.f.\& Thomson	10.71	0.21	2	0.09	0.04	0.09	0.22
402	Pilea ternifolia Wedd.	10.71	0.21	2	0.09	0.04	0.09	0.22
403	Pholidota articulate Lindl.	10.71	0.21	2	0.09	0.04	0.09	0.22
404	Erigeron karvinskianus DC.	10.71	0.21	2	0.09	0.04	0.09	0.22
405	Coniogramme procera Fee	10.71	0.21	2	0.09	0.04	0.09	0.22
406	Aralia leschenaultii (DC.) J.Wen	10.71	0.21	2	0.09	0.04	0.09	0.22
407	Rubus kumaonensis N.P. Balkr.	14.29	0.18	1.25	0.12	0.03	0.06	0.21
408	Magnolia doltsopa (Buch.-Ham. exDC.) Figlar	14.29	0.18	1.25	0.12	0.03	0.06	0.21
409	Glochidion thomsonii (Müll.-Arg.) Hook.f.	14.29	0.18	1.25	0.12	0.03	0.06	0.21
410	Daphne glacialis (W.W.Sm. \& Cave) A.P. Das	14.29	0.18	1.25	0.12	0.03	0.06	0.21
411	Dittoceras andersonii Hook.f.	14.29	0.18	1.25	0.12	0.03	0.06	0.21
412	Zanthoxylum acanthopodium DC.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
413	Vittaria sikkimensis Kuhn	7.14	0.18	2.5	0.06	0.03	0.11	0.2
414	Uncifera obtusifolia Lindl.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
415	Pilea approximata CB. Clarke	7.14	0.18	2.5	0.06	0.03	0.11	0.2
416	Myrsine semiserrata Wall.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
417	Lygodium flexuosum (L.) Sw.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
418	Hydrangea robusta Hook.f. \& Thomson	7.14	0.18	2.5	0.06	0.03	0.11	0.2
419	Huperzia hamiltonii (Spring) Trev.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
420	Gynocardia odorata R.Br.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
421	Elaeocarpus lanceifolius Roxb.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
422	Cyperus niveus Retz.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
423	Cyperus haspan L .	7.14	0.18	2.5	0.06	0.03	0.11	0.2
424	Veronica serpyllifolia L .	10.71	0.18	1.67	0.09	0.03	0.07	0.2
425	Setaria pumila (Poir.) Roemer \& Schult.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
426	Poa annua L.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
427	Microlepia strigosa (Thunb.) C.Presl	10.71	0.18	1.67	0.09	0.03	0.07	0.2
428	Juniperus recurva Buch.-Ham. ex D.Don	10.71	0.18	1.67	0.09	0.03	0.07	0.2
429	Juglans regia L.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
430	Ficus roxburghii Lour.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
431	Erigeron Canadensis L.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
432	Cyathea chinensis Copel.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
433	Bulbophyllum yoksunense J.J. Sm.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
434	Arisaema intermedium Blume	10.71	0.18	1.67	0.09	0.03	0.07	0.2
435	Abies spectabilis (D.Don) Mirb.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
436	Mallotus philippensis (Lam.) Müll.-Arg.	14.29	0.14	1	0.12	0.03	0.04	0.19
437	Emilia sonchifolia (L.) DC.	14.29	0.14	1	0.12	0.03	0.04	0.19

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
438	Zanthoxylum rhetsa DC.	3.57	0.11	3	0.03	0.02	0.13	0.18
439	Vittaria doniana Hieron.	3.57	0.11	3	0.03	0.02	0.13	0.18
440	Sterculia lanceifolia G. Don	3.57	0.11	3	0.03	0.02	0.13	0.18
441	Pyrularia edulis (Wall.) A.DC.	3.57	0.11	3	0.03	0.02	0.13	0.18
442	Oenanthe thomsonii C.B.Clarke	3.57	0.11	3	0.03	0.02	0.13	0.18
443	Mahonia napaulensis DC.	3.57	0.11	3	0.03	0.02	0.13	0.18
444	Laphangium affine (D.Don) Tzvelev	3.57	0.11	3	0.03	0.02	0.13	0.18
445	Knema cinerea var. glauca (Blume) Y.H.Li	3.57	0.11	3	0.03	0.02	0.13	0.18
446	Ixeris polycephala Cassini	3.57	0.11	3	0.03	0.02	0.13	0.18
447	Impatiens puberula DC.	3.57	0.11	3	0.03	0.02	0.13	0.18
448	Fragaria nubicola (Lindl. ex Hook.f.) Lacaita	3.57	0.11	3	0.03	0.02	0.13	0.18
449	Duabanga grandiflora (DC.) Walp.	3.57	0.11	3	0.03	0.02	0.13	0.18
450	Acer laevigatum Wall.	3.57	0.11	3	0.03	0.02	0.13	0.18
451	Acampe rigida (Buch.-Ham. ex. Sm.) P.F.Hunt	3.57	0.11	3	0.03	0.02	0.13	0.18
452	Acampe ochracea Lindl.	3.57	0.11	3	0.03	0.02	0.13	0.18
453	Pteris wallichiana J. Agardh	10.71	0.14	1.33	0.09	0.03	0.06	0.18
454	Piper suipigua D.Don	10.71	0.14	1.33	0.09	0.03	0.06	0.18
455	Persicaria tinctoria (Aiton) H.Gross	10.71	0.14	1.33	0.09	0.03	0.06	0.18
456	Mucuna macrocarpa Wall.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
457	Berberis asiatica DC.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
458	Lindsaea odorata Roxb.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
459	Dendrobium hookerianum Lindl.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
460	Daphne bholua Buch.-Ham. ex D.Don	10.71	0.14	1.33	0.09	0.03	0.06	0.18
461	Bauhinia scandens L.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
462	Arisaema flavum (Forssk.) Schott	10.71	0.14	1.33	0.09	0.03	0.06	0.18
463	Stachys melissifolia Benth.	7.14	0.14	2	0.06	0.03	0.09	0.17
464	Polypodium polypodioides (L.) Watt	7.14	0.14	2	0.06	0.03	0.09	0.17
465	Polypodiodes amoena (Wall. ex Mett.) Ching	7.14	0.14	2	0.06	0.03	0.09	0.17
466	Persea odoratissima (Nees) Kosterm.	7.14	0.14	2	0.06	0.03	0.09	0.17
467	Panisea demissa (D.Don) Pfitzer	7.14	0.14	2	0.06	0.03	0.09	0.17
468	Meliosma pinnata (Roxb.) Maxim.	7.14	0.14	2	0.06	0.03	0.09	0.17
469	Lasiococca symphyllifolia (Kurz) Hook.f.	7.14	0.14	2	0.06	0.03	0.09	0.17
470	Impatiens sulcata Wall.	7.14	0.14	2	0.06	0.03	0.09	0.17
471	Eriobotrya petiolata Hook.f.	7.14	0.14	2	0.06	0.03	0.09	0.17
472	Dryopteris filix-mas (L.) Schott	7.14	0.14	2	0.06	0.03	0.09	0.17
473	Casearia glomerata Roxb.	7.14	0.14	2	0.06	0.03	0.09	0.17
474	Berberis angulosa Wall. ex Hook.\& Thomson	7.14	0.14	2	0.06	0.03	0.09	0.17
475	Aucuba himalaica Hook.f. \& Thomson	7.14	0.14	2	0.06	0.03	0.09	0.17

Annexure I

$\begin{aligned} & \begin{array}{l} \text { SI } \\ \text { No } \end{array} \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
476	Arthromeris himalayensis (Hook.) Ching	7.14	0.14	2	0.06	0.03	0.09	0.17
477	Rubus splendidissimus H.Hara	7.14	0.11	1.5	0.06	0.02	0.07	0.15
478	Toxicodendron griffithii (Hook. f.) Kuntze	7.14	0.11	1.5	0.06	0.02	0.07	0.15
479	Rhododendron fulgens Hook.f.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
480	Remusatia pumila (D.Don) H.Li \& A.Hay	7.14	0.11	1.5	0.06	0.02	0.07	0.15
481	Quercus robur L .	7.14	0.11	1.5	0.06	0.02	0.07	0.15
482	Pteris spinescens C.Presl	7.14	0.11	1.5	0.06	0.02	0.07	0.15
483	Pseudognaphalium hypoleucum (DC.) Hilliard\& B.L.Burtt	7.14	0.11	1.5	0.06	0.02	0.07	0.15
484	Pogostemon fraternus Miq.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
485	Physalis divaricata D.Don	7.14	0.11	1.5	0.06	0.02	0.07	0.15
486	Phlebodium aureum (L.) Sm.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
487	Lyonia villosa (Wall. ex C.B.Clarke) Hand.Mazz.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
488	Impatiens scabrida DC	7.14	0.11	1.5	0.06	0.02	0.07	0.15
489	Hippochaete debilis (Roxb. ex Vaucher) Ching	7.14	0.11	1.5	0.06	0.02	0.07	0.15
490	Hedychium spicatum Sm.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
491	Diploknema butyracea (Roxb.) H.J.Lam	7.14	0.11	1.5	0.06	0.02	0.07	0.15
492	Coelogyne prolifera Lindl.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
493	Citrus maxima (Burm.f.) Merr.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
494	Carex caryophyllea Latourr.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
495	Brassaiopsis glomerulata (Blume) Regel	7.14	0.11	1.5	0.06	0.02	0.07	0.15
496	Brachiaria subquadripara (Trin.) Hitchc.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
497	Berberis hookeri Lem.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
498	Begonia josephi DC.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
499	Bauhinia purpurea L.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
500	Asplenium phyllitidis D.Don	7.14	0.11	1.5	0.06	0.02	0.07	0.15
501	Adiantum lunulatum Burm.f.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
502	Rubus lineatus Reinw.ex Blume	10.71	0.11	1	0.09	0.02	0.04	0.15
503	Pleione humilis (Sm.) D.Don	10.71	0.11	1	0.09	0.02	0.04	0.15
504	Maianthemum oleraceum (Baker) LaFrankie	10.71	0.11	1	0.09	0.02	0.04	0.15
505	Leea macrophylla Roxb.exHornem.	10.71	0.11	1	0.09	0.02	0.04	0.15
506	Laportea bulbifera (Siebold \&Zucc.) Wedd.	10.71	0.11	1	0.09	0.02	0.04	0.15
507	Erythrina arborescens Roxb.	10.71	0.11	1	0.09	0.02	0.04	0.15
508	Dennstaedtia appendiculata (Wall.exHook.) J.Sm	10.71	0.11	1	0.09	0.02	0.04	0.15
509	Digitaria sanguinalis (L.) Scop.	10.71	0.11	1	0.09	0.02	0.04	0.15
510	Arisaema speciosum (Wall.) Mart.	10.71	0.11	1	0.09	0.02	0.04	0.15
511	Vittaria taeniophylla Copel.	3.57	0.07	2	0.03	0.01	0.09	0.13

Annexure I 166

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
512	Synotis cappa (Buch.-Ham.ex D.Don) C. Jeffrey \& Y.L.Chen	3.57	0.07	2	0.03	0.01	0.09	0.13
513	Symplosos theifolia D.Don	3.57	0.07	2	0.03	0.01	0.09	0.13
514	Swertia paniculata Wall.	3.57	0.07	2	0.03	0.01	0.09	0.13
515	Senna tora (L.) Roxb.	3.57	0.07	2	0.03	0.01	0.09	0.13
516	Rhododendron dalhousieae Hook.f.	3.57	0.07	2	0.03	0.01	0.09	0.13
517	Rhododendron anthopogon D.Don	3.57	0.07	2	0.03	0.01	0.09	0.13
518	Phyllanthus emblica L.	3.57	0.07	2	0.03	0.01	0.09	0.13
519	Persicaria bistorta (L.) Samp.	3.57	0.07	2	0.03	0.01	0.09	0.13
520	Machilus gammieana King	3.57	0.07	2	0.03	0.01	0.09	0.13
521	Litsea monopetala (Roxb.) Pers.	3.57	0.07	2	0.03	0.01	0.09	0.13
522	Lithocarpus elegans (Blume) Hatus. ex Soepadmo	3.57	0.07	2	0.03	0.01	0.09	0.13
523	Ione bicolour Lindl.	3.57	0.07	2	0.03	0.01	0.09	0.13
524	Huperzia serrata (Thunb.) Trevis.	3.57	0.07	2	0.03	0.01	0.09	0.13
525	Grewia serrulata DC.	3.57	0.07	2	0.03	0.01	0.09	0.13
526	Flemingia strobilifera (L.) W.T.Aiton	3.57	0.07	2	0.03	0.01	0.09	0.13
527	Esmeralda cathcartii (Lindl.) Rchb.f.	3.57	0.07	2	0.03	0.01	0.09	0.13
528	Drymaria villosa Schltdl. \& Cham.	3.57	0.07	2	0.03	0.01	0.09	0.13
529	Diplazium muricatum Alderw.	3.57	0.07	2	0.03	0.01	0.09	0.13
530	Dendrobium eriiflorum Griff.	3.57	0.07	2	0.03	0.01	0.09	0.13
531	Cheilocostus speciosus (J.Koenig) C.D.Specht	3.57	0.07	2	0.03	0.01	0.09	0.13
532	Bulbophyllum thomsonii Hook.f.	3.57	0.07	2	0.03	0.01	0.09	0.13
533	Berberis wallichiana DC.	3.57	0.07	2	0.03	0.01	0.09	0.13
534	Beilschmiedia sikkimensis King ex Hook.f.	3.57	0.07	2	0.03	0.01	0.09	0.13
535	Aster tricephalus C.B.Clarke	3.57	0.07	2	0.03	0.01	0.09	0.13
536	Arundina graminifolia (D.Don) Hochr.	3.57	0.07	2	0.03	0.01	0.09	0.13
537	Arisaema echinatum (Wall.) Schott	3.57	0.07	2	0.03	0.01	0.09	0.13
538	Arachniodes davalliaeformis (Christ) Nakaike	3.57	0.07	2	0.03	0.01	0.09	0.13
539	Aleuritopteris dubia (C.Hope) Ching	3.57	0.07	2	0.03	0.01	0.09	0.13
540	Zanthoxylum oxyphyllum Edgw.	7.14	0.07	1	0.06	0.01	0.04	0.12
541	Vittaria flexuosa Fée	7.14	0.07	1	0.06	0.01	0.04	0.12
542	Tetrastigma serrulatum (Roxb.) Planch.	7.14	0.07	1	0.06	0.01	0.04	0.12
543	Tetrastigma obtectum (Wall. ex M.A. Lawson) Planch. ex Franch.	7.14	0.07	1	0.06	0.01	0.04	0.12
544	Steriochilus hirtus Lindl.	7.14	0.07	1	0.06	0.01	0.04	0.12
545	Senna occidentalis (L.) Link	7.14	0.07	1	0.06	0.01	0.04	0.12
546	Selliguea oxyloba (Wall.ex Kunze.) FraserJenk	7.14	0.07	1	0.06	0.01	0.04	0.12
547	Satyrium nepalense D.Don	7.14	0.07	1	0.06	0.01	0.04	0.12

Annexure I

$\begin{aligned} & \text { Sl } \\ & \text { No } \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
548	Pteris scabririgens Fraser-Jenk., S.C.Verma \& T.G. Walker	7.14	0.07	1	0.06	0.01	0.04	0.12
549	Prunus persica (L.) Batsch	7.14	0.07	1	0.06	0.01	0.04	0.12
550	Plagiogyria pycnophylla (Kuntze) Mett.	7.14	0.07	1	0.06	0.01	0.04	0.12
551	Neyraudia arundinacea (L.) Henrard	7.14	0.07	1	0.06	0.01	0.04	0.12
552	Nepeta lamiopsis Benth. ex Hook.f.	7.14	0.07	1	0.06	0.01	0.04	0.12
553	Lonicera standishii Jacques	7.14	0.07	1	0.06	0.01	0.04	0.12
554	Leptodermis kumaonensis R.Parker	7.14	0.07	1	0.06	0.01	0.04	0.12
555	Isachne sikkimensis Bor	7.14	0.07	1	0.06	0.01	0.04	0.12
556	Huperzia squarrosa (Forst.) Trev.	7.14	0.07	1	0.06	0.01	0.04	0.12
557	Hedychium gracile Roxb.	7.14	0.07	1	0.06	0.01	0.04	0.12
558	Habenaria pectinata D.Don	7.14	0.07	1	0.06	0.01	0.04	0.12
559	Eurya acuminate DC.	7.14	0.07	1	0.06	0.01	0.04	0.12
560	Coelogyne flaccid Lindl.	7.14	0.07	1	0.06	0.01	0.04	0.12
561	Clerodendrum infortunatum L.	7.14	0.07	1	0.06	0.01	0.04	0.12
562	Ardisia macrocarpa Wall.	7.14	0.07	1	0.06	0.01	0.04	0.12
563	Angelica archangelica L .	7.14	0.07	1	0.06	0.01	0.04	0.12
564	Ampelocalamus patellaris (Gamble) Stapleton	7.14	0.07	1	0.06	0.01	0.04	0.12
565	Agave Americana L.	7.14	0.07	1	0.06	0.01	0.04	0.12
566	Zanthoxylum bungeanum Maxim.	3.57	0.04	1	0.03	0.01	0.04	0.08
567	Zanthoxylum armatum DC.	3.57	0.04	1	0.03	0.01	0.04	0.08
568	Xanthium strumarium L.	3.57	0.04	1	0.03	0.01	0.04	0.08
569	Vanda pumila Hook.f.	3.57	0.04	1	0.03	0.01	0.04	0.08
570	Urtica parviflora Roxb.	3.57	0.04	1	0.03	0.01	0.04	0.08
571	Trichotosia pulvinata (Lindl.) Kraenzl.	3.57	0.04	1	0.03	0.01	0.04	0.08
572	Cymbopogon pendulus (Nees ex Steud.) J.F. Watson	3.57	0.04	1	0.03	0.01	0.04	0.08
573	Thunia bracteata (Roxb.) Schltr.	3.57	0.04	1	0.03	0.01	0.04	0.08
574	Tetrastigma bracteolatum (Wall.) Planch.	3.57	0.04	1	0.03	0.01	0.04	0.08
575	Magnolia globosa Hook.f. \& Thomson	3.57	0.04	1	0.03	0.01	0.04	0.08
576	Syzygium kurzii (Duthie) N.P.Balakr.	3.57	0.04	1	0.03	0.01	0.04	0.08
577	Styrax hookeri C.B.Clarke	3.57	0.04	1	0.03	0.01	0.04	0.08
578	Strobilanthes urticifolia Wall. ex Kuntze	3.57	0.04	1	0.03	0.01	0.04	0.08
579	Spiranthes sinensis (Pers.) Ames	3.57	0.04	1	0.03	0.01	0.04	0.08
580	Sphenomeris chinensis (L.) Maxon	3.57	0.04	1	0.03	0.01	0.04	0.08
581	Solanum torvum Sw.	3.57	0.04	1	0.03	0.01	0.04	0.08
582	Sigesbeckia orientalis L.	3.57	0.04	1	0.03	0.01	0.04	0.08
583	Sida acuta Burm.f.	3.57	0.04	1	0.03	0.01	0.04	0.08
584	Senecio buimalia Buch.-Ham. ex D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08

Annexure I

$\begin{array}{\|l\|} \hline \text { SI } \\ \text { No } \\ \hline \end{array}$	Botanical Name	F	D	A	RF	RD	RA	IVI
585	Schisandra grandiflora (Wall.) Hook.f.\& Thomson	3.57	0.04	1	0.03	0.01	0.04	0.08
586	Sauropus androgynus (L.) Merr.	3.57	0.04	1	0.03	0.01	0.04	0.08
587	Sapindus rarak DC.	3.57	0.04	1	0.03	0.01	0.04	0.08
588	Sambucus javanica Blume	3.57	0.04	1	0.03	0.01	0.04	0.08
589	Rubus rugosus Sm .	3.57	0.04	1	0.03	0.01	0.04	0.08
590	Rubus niveus Thunb.	3.57	0.04	1	0.03	0.01	0.04	0.08
591	Rubus fragarioides Bertol.	3.57	0.04	1	0.03	0.01	0.04	0.08
592	Ranunculus laetus Wall. ex Hook.f. \& J.W.Thomson	3.57	0.04	1	0.03	0.01	0.04	0.08
593	Pteridium revolutum (Blume) Nakai	3.57	0.04	1	0.03	0.01	0.04	0.08
594	Prunus wallichii Steud.	3.57	0.04	1	0.03	0.01	0.04	0.08
595	Prinsepia utilis Royle	3.57	0.04	1	0.03	0.01	0.04	0.08
596	Selinum wallichianum (DC.) Raizada \& H.O. Saxena	3.57	0.04	1	0.03	0.01	0.04	0.08
597	Potentilla multifida L.	3.57	0.04	1	0.03	0.01	0.04	0.08
598	Porpax elwesii (Rchb.f) Rolfe	3.57	0.04	1	0.03	0.01	0.04	0.08
599	Persicaria campanulata (Hook.f.) Ronse Decr.	3.57	0.04	1	0.03	0.01	0.04	0.08
600	Pogostemon benghalensis (Burm.f.) Kuntze	3.57	0.04	1	0.03	0.01	0.04	0.08
601	Podochilus cultratus Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
602	Podocarpus neriifolius D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08
603	Pleione praecox (Sm.) D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08
604	Platanthera arcuata Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
605	Pilea bracteosa Wedd.	3.57	0.04	1	0.03	0.01	0.04	0.08
606	Phalaenopsis mannii Rchb.f.	3.57	0.04	1	0.03	0.01	0.04	0.08
607	Persicaria chinensis (L.) H.Gross	3.57	0.04	1	0.03	0.01	0.04	0.08
608	Peristrophe fera C.B.Clarke	3.57	0.04	1	0.03	0.01	0.04	0.08
609	Parthenium hysterophorus L.	3.57	0.04	1	0.03	0.01	0.04	0.08
610	Panisea uniflora Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
611	Panax pseudo-ginseng Wall.	3.57	0.04	1	0.03	0.01	0.04	0.08
612	Oroxylum indicum (L.) Kurz	3.57	0.04	1	0.03	0.01	0.04	0.08
613	Oberonia rufilabris Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
614	Oberonia obcordata Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
615	Nerium oleander L.	3.57	0.04	1	0.03	0.01	0.04	0.08
616	Nasturtium officinale R.Br.	3.57	0.04	1	0.03	0.01	0.04	0.08
617	Musa paradisiacal L.	3.57	0.04	1	0.03	0.01	0.04	0.08
618	Morus indica L .	3.57	0.04	1	0.03	0.01	0.04	0.08
619	Micropera mannii (Hook.f.)Tang \& F.T.Wang	3.57	0.04	1	0.03	0.01	0.04	0.08
620	Meizotropis buteiformis Voigt	3.57	0.04	1	0.03	0.01	0.04	0.08
621	Meconopsis simplicifolia (D. Don) Walp.	3.57	0.04	1	0.03	0.01	0.04	0.08

Annexure I

$\begin{aligned} & \mathbf{S I} \\ & \mathbf{N o} \end{aligned}$	Botanical Name	F	D	A	RF	RD	RA	IVI
622	Marsilea minuta L .	3.57	0.04	1	0.03	0.01	0.04	0.08
623	Malaxis muscifera (Lindl.) Kuntze	3.57	0.04	1	0.03	0.01	0.04	0.08
624	Lepidagathis incurve Buch.-Ham. ex D. Don	3.57	0.04	1	0.03	0.01	0.04	0.08
625	Juncus prismatocarpus R.Br.	3.57	0.04	1	0.03	0.01	0.04	0.08
626	Holboellia latifolia Wall.	3.57	0.04	1	0.03	0.01	0.04	0.08
627	Henckelia urticifolia (Buch.-Ham. ex D.Don) Dietrich	3.57	0.04	1	0.03	0.01	0.04	0.08
628	Hedychium ellipticum Buch.-Ham. ex Sm.	3.57	0.04	1	0.03	0.01	0.04	0.08
629	Hedera nepalensis K.Koch	3.57	0.04	1	0.03	0.01	0.04	0.08
630	Gastrochilus calceolaris (Sm.) D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08
631	Ficus religiosa L.	3.57	0.04	1	0.03	0.01	0.04	0.08
632	Ficus nemoralis Wall.	3.57	0.04	1	0.03	0.01	0.04	0.08
633	Euphorbia hirta L.	3.57	0.04	1	0.03	0.01	0.04	0.08
634	Eria stricta Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
635	Eria lasiopetala (Willd.) Ormerod	3.57	0.04	1	0.03	0.01	0.04	0.08
636	Epipactis royleana Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
637	Elsholtzia eriostachya Benth	3.57	0.04	1	0.03	0.01	0.04	0.08
638	Drepanostachyum intermedium (Munro) Keng f.	3.57	0.04	1	0.03	0.01	0.04	0.08
639	Diplazium esculentum (Retz.) Sw.	3.57	0.04	1	0.03	0.01	0.04	0.08
640	Dioscorea oppositifolia L.	3.57	0.04	1	0.03	0.01	0.04	0.08
641	Desmodium multiflorum DC.	3.57	0.04	1	0.03	0.01	0.04	0.08
642	Dennstaedtia scabra (Wall. ex Hook.) T moore	3.57	0.04	1	0.03	0.01	0.04	0.08
643	Datura metel L.	3.57	0.04	1	0.03	0.01	0.04	0.08
644	Cyrtomium caryotideum (Wall. ex Hook.f. \& Grev.) C. Presl	3.57	0.04	1	0.03	0.01	0.04	0.08
645	Cymbidium iridioides D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08
646	Cymbidium eburneum Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
647	Cymbidium aloifolium (L.) Sw.	3.57	0.04	1	0.03	0.01	0.04	0.08
648	Cyathea spinulosa Wall. ex Hook..	3.57	0.04	1	0.03	0.01	0.04	0.08
649	Clerodendrum japonicum (Thunb.) Sweet	3.57	0.04	1	0.03	0.01	0.04	0.08
650	Cinnamonum caudatum Nees	3.57	0.04	1	0.03	0.01	0.04	0.08
651	Cinnamomum tamala (Buch.-Ham.) T.Nees \& Eberm.	3.57	0.04	1	0.03	0.01	0.04	0.08
652	Cheilanthes farinosa (Forssk.) Kaulf.	3.57	0.04	1	0.03	0.01	0.04	0.08
653	Cephalostachyum capitatum Munro	3.57	0.04	1	0.03	0.01	0.04	0.08
654	Celtis tetrandra Roxb.	3.57	0.04	1	0.03	0.01	0.04	0.08
655	Boehmeria rugulosa Wedd.	3.57	0.04	1	0.03	0.01	0.04	0.08
656	Beaumontia grandiflora Wall.	3.57	0.04	1	0.03	0.01	0.04	0.08
657	Aster flaccidus Bunge	3.57	0.04	1	0.03	0.01	0.04	0.08

Sl No	Botanical Name	F	D	A	RF	RD	RA	IVI
658	Arisaema concinnum Schott	3.57	0.04	1	0.03	0.01	0.04	0.08
659	Enkianthus deflexus (Griff.) C.K. Schneid.	3.57	0.04	1	0.03	0.01	0.04	0.08
660	Amomum subulatum Roxb.	3.57	0.04	1	0.03	0.01	0.04	0.08
661	Aleuritopteris albomarginata (C.B.Clarke) Ching	3.57	0.04	1	0.03	0.01	0.04	0.08
662	 Cave	3.57	0.04	1	0.03	0.01	0.04	0.08
663	Aesculus indica (Wall.ex Cambess.)Hook.	3.57	0.04	1	0.03	0.01	0.04	0.08
664	Acorus calamus L.	3.57	0.04	1	0.03	0.01	0.04	0.08

$\mathcal{A N N} E X U R E I I$

Annexure II

Importance Value Index at Genus level in the Study area

SI No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
1	Schima	50.00	44.50	89.00	0.54	7.92	6.00	14.46
2	Rhododendron	39.29	16.54	42.09	0.42	2.94	2.84	6.20
3	Ostodes	42.86	15.36	35.83	0.46	2.73	2.42	5.61
4	Engelhardtia	53.57	15.68	29.27	0.57	2.79	1.97	5.34
5	Castanopsis	85.71	14.79	17.25	0.92	2.63	1.16	4.71
6	Viburnum	60.71	13.00	21.41	0.65	2.31	1.44	4.41
7	Alnus	57.14	12.61	22.06	0.61	2.24	1.49	4.34
8	Cyperus	96.43	13.32	13.81	1.03	2.37	0.93	4.34
9	Eupatorium	85.71	12.71	14.83	0.92	2.26	1.00	4.18
10	Selaginella	85.71	11.43	13.33	0.92	2.03	0.90	3.85
11	Symplocos	57.14	10.68	18.69	0.61	1.90	1.26	3.77
12	Nephrolepis	82.14	10.79	13.13	0.88	1.92	0.89	3.69
13	Polygonum	96.43	9.43	9.78	1.03	1.68	0.66	3.37
14	Dryopteris	67.86	8.43	12.42	0.73	1.50	0.84	3.06
15	Elatostema	75.00	7.93	10.57	0.80	1.41	0.71	2.93
16	Isachne	75.00	7.14	9.52	0.80	1.27	0.64	2.72
17	Quercus	71.43	7.00	9.80	0.76	1.25	0.66	2.67
18	Persicaria	82.14	6.86	8.35	0.88	1.22	0.56	2.66
19	Acer	60.71	6.57	10.82	0.65	1.17	0.73	2.55
20	Pouzolzia	75.00	6.50	8.67	0.80	1.16	0.58	2.54
21	Machilus	42.86	6.14	14.33	0.46	1.09	0.97	2.52
22	Pteridium	100.00	5.79	5.79	1.07	1.03	0.39	2.49
23	Polystichum	82.14	6.07	7.39	0.88	1.08	0.50	2.46
24	Rubus	92.86	5.61	6.04	0.99	1.00	0.41	2.40
25	Helicia	21.43	4.32	20.17	0.23	0.77	1.36	2.36
26	Cryptomeria	21.43	4.25	19.83	0.23	0.76	1.34	2.32
27	Pteris	85.71	5.11	5.96	0.92	0.91	0.40	2.23
28	Digitaria	67.86	5.39	7.95	0.73	0.96	0.54	2.22
29	Macaranga	35.71	4.93	13.80	0.38	0.88	0.93	2.19
30	Magnolia	57.14	5.04	8.81	0.61	0.90	0.59	2.10
31	Lithocarpus	21.43	3.79	17.67	0.23	0.67	1.19	2.09
32	Mallotus	46.43	4.93	10.62	0.50	0.88	0.72	2.09
33	Boehmeria	67.86	4.79	7.05	0.73	0.85	0.48	2.05
34	Dichroa	75.00	4.29	5.71	0.80	0.76	0.39	1.95
35	Arisaema	85.71	3.96	4.63	0.92	0.71	0.31	1.94

Annexure II

$\begin{aligned} & \hline \text { Sl } \\ & \text { No. } \\ & \hline \end{aligned}$	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
36	Brachiaria	71.43	4.25	5.95	0.76	0.76	0.40	1.92
37	Mussaenda	67.86	3.96	5.84	0.73	0.71	0.39	1.83
38	Pandanus	21.43	3.21	15.00	0.23	0.57	1.01	1.81
39	Commelina	67.86	3.86	5.68	0.73	0.69	0.38	1.80
40	Albizia	57.14	3.96	6.94	0.61	0.71	0.47	1.79
41	Tectaria	78.57	3.57	4.55	0.84	0.64	0.31	1.78
42	Ficus	67.86	3.61	5.32	0.73	0.64	0.36	1.73
43	Osbeckia	71.43	3.50	4.90	0.76	0.62	0.33	1.72
44	Setaria	71.43	3.50	4.90	0.76	0.62	0.33	1.72
45	Eurya	67.86	3.29	4.84	0.73	0.58	0.33	1.64
46	Pilea	78.57	2.68	3.41	0.84	0.48	0.23	1.55
47	Terminalia	46.43	3.25	7.00	0.50	0.58	0.47	1.55
48	Dioscorea	50.00	3.21	6.43	0.54	0.57	0.43	1.54
49	Ageratum	67.86	2.93	4.32	0.73	0.52	0.29	1.54
50	Lecanthus	67.86	2.86	4.21	0.73	0.51	0.28	1.52
51	Cynodon	60.71	3.00	4.94	0.65	0.53	0.33	1.52
52	Fragaria	53.57	3.00	5.60	0.57	0.53	0.38	1.49
53	Tetrastigma	71.43	2.57	3.60	0.76	0.46	0.24	1.47
54	Melastoma	64.29	2.71	4.22	0.69	0.48	0.28	1.46
55	Betula	53.57	2.68	5.00	0.57	0.48	0.34	1.39
56	Piper	67.86	2.32	3.42	0.73	0.41	0.23	1.37
57	Achyranthes	53.57	2.50	4.67	0.57	0.45	0.31	1.33
58	Eragrostis	42.86	2.61	6.08	0.46	0.46	0.41	1.33
59	Maesa	67.86	2.18	3.21	0.73	0.39	0.22	1.33
60	Edgeworthia	57.14	2.43	4.25	0.61	0.43	0.29	1.33
61	Litsea	60.71	2.25	3.71	0.65	0.40	0.25	1.30
62	Anaphalis	35.71	2.50	7.00	0.38	0.45	0.47	1.30
63	Prunus	71.43	1.89	2.65	0.76	0.34	0.18	1.28
64	Oplismenus	42.86	2.39	5.58	0.46	0.43	0.38	1.26
65	Rhus	25.00	2.21	8.86	0.27	0.39	0.60	1.26
66	Populus	21.43	2.07	9.67	0.23	0.37	0.65	1.25
67	Begonia	35.71	2.36	6.60	0.38	0.42	0.45	1.25
68	Cupressus	7.14	1.04	14.50	0.08	0.18	0.98	1.24
69	Drymaria	53.57	2.14	4.00	0.57	0.38	0.27	1.22
70	Arundinaria	32.14	2.07	6.44	0.34	0.37	0.43	1.15
71	Swertia	46.43	1.96	4.23	0.50	0.35	0.29	1.13
72	Rubia	46.43	1.89	4.08	0.50	0.34	0.27	1.11
73	Brassaiopsis	57.14	1.68	2.94	0.61	0.30	0.20	1.11
74	Daphne	53.57	1.75	3.27	0.57	0.31	0.22	1.11
75	Lyonia	50.00	1.79	3.57	0.54	0.32	0.24	1.09

Annexure II 1

SI No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
76	Plantago	50.00	1.68	3.36	0.54	0.30	0.23	1.06
77	Hydrocotyle	57.14	1.50	2.63	0.61	0.27	0.18	1.06
78	Imperata	46.43	1.68	3.62	0.50	0.30	0.24	1.04
79	Alocasia	50.00	1.61	3.21	0.54	0.29	0.22	1.04
80	Antidesma	42.86	1.71	4.00	0.46	0.31	0.27	1.03
81	Abies	35.71	1.75	4.90	0.38	0.31	0.33	1.02
82	Drynaria	39.29	1.71	4.36	0.42	0.31	0.29	1.02
83	Cymbidium	46.43	1.57	3.38	0.50	0.28	0.23	1.01
84	Triumfetta	42.86	1.61	3.75	0.46	0.29	0.25	1.00
85	Heracleum	14.29	1.29	9.00	0.15	0.23	0.61	0.99
86	Impatiens	42.86	1.57	3.67	0.46	0.28	0.25	0.99
87	Pyrrosia	46.43	1.50	3.23	0.50	0.27	0.22	0.98
88	Selliguea	50.00	1.36	2.71	0.54	0.24	0.18	0.96
89	Syzygium	35.71	1.57	4.40	0.38	0.28	0.30	0.96
90	Urtica	42.86	1.39	3.25	0.46	0.25	0.22	0.93
91	Callicarpa	25.00	1.46	5.86	0.27	0.26	0.40	0.92
92	Smilax	53.57	1.14	2.13	0.57	0.20	0.14	0.92
93	Christella	32.14	1.46	4.56	0.34	0.26	0.31	0.91
94	Yushania	25.00	1.43	5.71	0.27	0.25	0.39	0.91
95	Elsholtzia	46.43	1.21	2.62	0.50	0.22	0.18	0.89
96	Liparis	35.71	1.36	3.80	0.38	0.24	0.26	0.88
97	Pogonatherum	42.86	1.25	2.92	0.46	0.22	0.20	0.88
98	Ehretia	17.86	1.21	6.80	0.19	0.22	0.46	0.87
99	Adiantum	42.86	1.18	2.75	0.46	0.21	0.19	0.85
100	Shorea	3.57	0.39	11.00	0.04	0.07	0.74	0.85
101	Walsura	39.29	1.21	3.09	0.42	0.22	0.21	0.85
102	Lepisorus	46.43	1.04	2.23	0.50	0.18	0.15	0.83
103	Dendrobium	42.86	1.11	2.58	0.46	0.20	0.17	0.83
104	Bombax	25.00	1.25	5.00	0.27	0.22	0.34	0.83
105	Viola	28.57	1.25	4.38	0.31	0.22	0.30	0.82
106	Drypetes	21.43	1.18	5.50	0.23	0.21	0.37	0.81
107	Juniperus	21.43	1.18	5.50	0.23	0.21	0.37	0.81
108	Glochidion	46.43	0.96	2.08	0.50	0.17	0.14	0.81
109	Asplenium	42.86	1.04	2.42	0.46	0.18	0.16	0.81
110	Aster	35.71	1.14	3.20	0.38	0.20	0.22	0.80
111	Bidens	35.71	1.14	3.20	0.38	0.20	0.22	0.80
112	Cissus	46.43	0.89	1.92	0.50	0.16	0.13	0.79
113	Himalayacalamus	46.43	0.86	1.85	0.50	0.15	0.12	0.77
114	Primula	28.57	1.11	3.88	0.31	0.20	0.26	0.76
115	Lycopodium	25.00	1.11	4.43	0.27	0.20	0.30	0.76
9								

$\begin{aligned} & \hline \text { Sl } \\ & \text { No. } \end{aligned}$	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
116	Vaccinium	46.43	0.82	1.77	0.50	0.15	0.12	0.76
117	Cymbopogon	32.14	1.07	3.33	0.34	0.19	0.22	0.76
118	Mikania	32.14	1.07	3.33	0.34	0.19	0.22	0.76
119	Diplazium	7.14	0.61	8.50	0.08	0.11	0.57	0.76
120	Bischofia	28.57	1.07	3.75	0.31	0.19	0.25	0.75
121	Leucosceptrum	28.57	1.07	3.75	0.31	0.19	0.25	0.75
122	Oxalis	42.86	0.79	1.83	0.46	0.14	0.12	0.72
123	Strobilanthes	28.57	1.00	3.50	0.31	0.18	0.24	0.72
124	Actinodaphne	7.14	0.57	8.00	0.08	0.10	0.54	0.72
125	Loxogramme	25.00	0.96	3.86	0.27	0.17	0.26	0.70
126	Huperzia	35.71	0.86	2.40	0.38	0.15	0.16	0.70
127	Arundinella	28.57	0.93	3.25	0.31	0.17	0.22	0.69
128	Axonopus	28.57	0.93	3.25	0.31	0.17	0.22	0.69
129	Cautleya	39.29	0.75	1.91	0.42	0.13	0.13	0.68
130	Remusatia	28.57	0.89	3.13	0.31	0.16	0.21	0.68
131	Leucas	39.29	0.71	1.82	0.42	0.13	0.12	0.67
132	Girardinia	39.29	0.68	1.73	0.42	0.12	0.12	0.66
133	Tinospora	35.71	0.75	2.10	0.38	0.13	0.14	0.66
134	Apios	39.29	0.64	1.64	0.42	0.11	0.11	0.65
135	Clerodendrum	35.71	0.71	2.00	0.38	0.13	0.13	0.64
136	Cirrhopetalum	32.14	0.75	2.33	0.34	0.13	0.16	0.64
137	Premna	32.14	0.75	2.33	0.34	0.13	0.16	0.64
138	Garuga	17.86	0.79	4.40	0.19	0.14	0.30	0.63
139	Arthromeris	32.14	0.71	2.22	0.34	0.13	0.15	0.62
140	Reevesia	35.71	0.64	1.80	0.38	0.11	0.12	0.62
141	Astilbe	21.43	0.79	3.67	0.23	0.14	0.25	0.62
142	Plectranthus	28.57	0.75	2.63	0.31	0.13	0.18	0.62
143	Thysanolaena	28.57	0.75	2.63	0.31	0.13	0.18	0.62
144	Morus	25.00	0.75	3.00	0.27	0.13	0.20	0.60
145	Eeagrostis	14.29	0.68	4.75	0.15	0.12	0.32	0.59
146	Colebrookea	17.86	0.71	4.00	0.19	0.13	0.27	0.59
147	Anisomeles	25.00	0.71	2.86	0.27	0.13	0.19	0.59
148	Berberis	28.57	0.68	2.38	0.31	0.12	0.16	0.59
149	Erythrina	28.57	0.68	2.38	0.31	0.12	0.16	0.59
150	Peranema	28.57	0.68	2.38	0.31	0.12	0.16	0.59
151	Bulbophyllum	21.43	0.71	3.33	0.23	0.13	0.22	0.58
152	Hedychium	35.71	0.54	1.50	0.38	0.10	0.10	0.58
153	Paspalum	25.00	0.68	2.71	0.27	0.12	0.18	0.57
154	Oxyspora	17.86	0.68	3.80	0.19	0.12	0.26	0.57
155	Athyrium	21.43	0.68	3.17	0.23	0.12	0.21	0.56

Annexure II
175

$\begin{aligned} & \text { SI } \\ & \text { No. } \end{aligned}$	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
156	Chimonocalamus	21.43	0.68	3.17	0.23	0.12	0.21	0.56
157	Pavetta	21.43	0.68	3.17	0.23	0.12	0.21	0.56
158	Leucostegia	7.14	0.43	6.00	0.08	0.08	0.40	0.56
159	Aleuritopteris	28.57	0.61	2.13	0.31	0.11	0.14	0.56
160	Crassocephalum	28.57	0.61	2.13	0.31	0.11	0.14	0.56
161	Solanum	25.00	0.64	2.57	0.27	0.11	0.17	0.56
162	Chrysopogon	17.86	0.64	3.60	0.19	0.11	0.24	0.55
163	Bridelia	21.43	0.64	3.00	0.23	0.11	0.20	0.55
164	Rohdea	28.57	0.57	2.00	0.31	0.10	0.13	0.54
165	Houttuynia	25.00	0.61	2.43	0.27	0.11	0.16	0.54
166	Enkianthus	21.43	0.61	2.83	0.23	0.11	0.19	0.53
167	Oleandra	17.86	0.61	3.40	0.19	0.11	0.23	0.53
168	Brucea	14.29	0.57	4.00	0.15	0.10	0.27	0.52
169	Azadirachta	7.14	0.39	5.50	0.08	0.07	0.37	0.52
170	Epegenium	25.00	0.54	2.14	0.27	0.10	0.14	0.51
171	Rhamnus	14.29	0.54	3.75	0.15	0.10	0.25	0.50
172	Choerospondias	21.43	0.54	2.50	0.23	0.10	0.17	0.49
173	Bambusa	25.00	0.50	2.00	0.27	0.09	0.13	0.49
174	Elaeocarpus	25.00	0.50	2.00	0.27	0.09	0.13	0.49
175	Globba	10.71	0.46	4.33	0.11	0.08	0.29	0.49
176	Nyssa	10.71	0.46	4.33	0.11	0.08	0.29	0.49
177	Allantodia	17.86	0.54	3.00	0.19	0.10	0.20	0.49
178	Pteracanthus	17.86	0.54	3.00	0.19	0.10	0.20	0.49
179	Acampe	3.57	0.21	6.00	0.04	0.04	0.40	0.48
180	Alangium	3.57	0.21	6.00	0.04	0.04	0.40	0.48
181	Odontosoria	7.14	0.36	5.00	0.08	0.06	0.34	0.48
182	Toxicodendron	17.86	0.50	2.80	0.19	0.09	0.19	0.47
183	Woodwardia	17.86	0.50	2.80	0.19	0.09	0.19	0.47
184	Coelogyne	28.57	0.39	1.38	0.31	0.07	0.09	0.47
185	Zanthoxylum	10.71	0.43	4.00	0.11	0.08	0.27	0.46
186	Porana	21.43	0.46	2.17	0.23	0.08	0.15	0.46
187	Artemisia	21.43	0.46	2.17	0.23	0.08	0.15	0.46
188	Eucalyptus	14.29	0.46	3.25	0.15	0.08	0.22	0.45
189	Arundo	17.86	0.46	2.60	0.19	0.08	0.18	0.45
190	Cinnamomum	25.00	0.39	1.57	0.27	0.07	0.11	0.44
191	Mimosa	25.00	0.39	1.57	0.27	0.07	0.11	0.44
192	Actinidia	21.43	0.43	2.00	0.23	0.08	0.13	0.44
193	Elaphoglossum	7.14	0.32	4.50	0.08	0.06	0.30	0.44
194	Lemmaphyllum	10.71	0.39	3.67	0.11	0.07	0.25	0.43
195	Woodsia	10.71	0.39	3.67	0.11	0.07	0.25	0.43

Annexure II 176

SI No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
196	Paederia	14.29	0.43	3.00	0.15	0.08	0.20	0.43
197	Davallodes	17.86	0.43	2.40	0.19	0.08	0.16	0.43
198	Pholidota	17.86	0.43	2.40	0.19	0.08	0.16	0.43
199	Vittaria	17.86	0.43	2.40	0.19	0.08	0.16	0.43
200	Dendrocalamus	25.00	0.36	1.43	0.27	0.06	0.10	0.43
201	Dicranopteris	21.43	0.39	1.83	0.23	0.07	0.12	0.42
202	Erigeron	21.43	0.39	1.83	0.23	0.07	0.12	0.42
203	Microsorum	17.86	0.39	2.20	0.19	0.07	0.15	0.41
204	Himalaiella	14.29	0.39	2.75	0.15	0.07	0.19	0.41
205	Pyrularia	14.29	0.39	2.75	0.15	0.07	0.19	0.41
206	Buddleja	3.57	0.18	5.00	0.04	0.03	0.34	0.41
207	Hemiphragma	21.43	0.36	1.67	0.23	0.06	0.11	0.41
208	Rumex	21.43	0.36	1.67	0.23	0.06	0.11	0.41
209	Saurauia	21.43	0.36	1.67	0.23	0.06	0.11	0.41
210	Toona	21.43	0.36	1.67	0.23	0.06	0.11	0.41
211	Curcuma	7.14	0.29	4.00	0.08	0.05	0.27	0.40
212	Lindenbergia	7.14	0.29	4.00	0.08	0.05	0.27	0.40
213	Ilex	17.86	0.36	2.00	0.19	0.06	0.13	0.39
214	Lantana	17.86	0.36	2.00	0.19	0.06	0.13	0.39
215	Phegopteris	17.86	0.36	2.00	0.19	0.06	0.13	0.39
216	Potentilla	17.86	0.36	2.00	0.19	0.06	0.13	0.39
217	Tsuga	17.86	0.36	2.00	0.19	0.06	0.13	0.39
218	Cyanotis	21.43	0.32	1.50	0.23	0.06	0.10	0.39
219	Arctium	14.29	0.36	2.50	0.15	0.06	0.17	0.39
220	Berchemia	14.29	0.36	2.50	0.15	0.06	0.17	0.39
221	Trichosanthes	25.00	0.25	1.00	0.27	0.04	0.07	0.38
222	Balantium	17.86	0.32	1.80	0.19	0.06	0.12	0.37
223	Evodia	17.86	0.32	1.80	0.19	0.06	0.12	0.37
224	Hemarthria	17.86	0.32	1.80	0.19	0.06	0.12	0.37
225	Oberonia	17.86	0.32	1.80	0.19	0.06	0.12	0.37
226	Holmskioldia	14.29	0.32	2.25	0.15	0.06	0.15	0.36
227	Cardiocrinum	7.14	0.25	3.50	0.08	0.04	0.24	0.36
228	Artocarpus	10.71	0.29	2.67	0.11	0.05	0.18	0.35
229	Sorbus	10.71	0.29	2.67	0.11	0.05	0.18	0.35
230	Equisetum	14.29	0.29	2.00	0.15	0.05	0.13	0.34
231	Exbucklandia	14.29	0.29	2.00	0.15	0.05	0.13	0.34
232	Dendrocnide	3.57	0.14	4.00	0.04	0.03	0.27	0.33
233	Astragalus	17.86	0.25	1.40	0.19	0.04	0.09	0.33
234	Bauhinia	17.86	0.25	1.40	0.19	0.04	0.09	0.33
235	Cissampelos	17.86	0.25	1.40	0.19	0.04	0.09	0.33

$\begin{aligned} & \hline \text { Sl } \\ & \text { No. } \\ & \hline \end{aligned}$	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
236	Cyrtomium	17.86	0.25	1.40	0.19	0.04	0.09	0.33
237	Pogostemon	7.14	0.21	3.00	0.08	0.04	0.20	0.32
238	Melochia	10.71	0.25	2.33	0.11	0.04	0.16	0.32
239	Clematis	14.29	0.25	1.75	0.15	0.04	0.12	0.32
240	Mahonia	14.29	0.25	1.75	0.15	0.04	0.12	0.32
241	Sinopodophyllum	17.86	0.21	1.20	0.19	0.04	0.08	0.31
242	Brugmansia	14.29	0.21	1.50	0.15	0.04	0.10	0.29
243	Dryopsis	14.29	0.21	1.50	0.15	0.04	0.10	0.29
244	Fraxinus	14.29	0.21	1.50	0.15	0.04	0.10	0.29
245	Gallium	14.29	0.21	1.50	0.15	0.04	0.10	0.29
246	Aralia	10.71	0.21	2.00	0.11	0.04	0.13	0.29
247	Coniogramme	10.71	0.21	2.00	0.11	0.04	0.13	0.29
248	Cyathea	10.71	0.21	2.00	0.11	0.04	0.13	0.29
249	Stephania	10.71	0.21	2.00	0.11	0.04	0.13	0.29
250	Gynocardia	7.14	0.18	2.50	0.08	0.03	0.17	0.28
251	Hydrangea	7.14	0.18	2.50	0.08	0.03	0.17	0.28
252	Lygodium	7.14	0.18	2.50	0.08	0.03	0.17	0.28
253	Myrsine	7.14	0.18	2.50	0.08	0.03	0.17	0.28
254	Uncifera	7.14	0.18	2.50	0.08	0.03	0.17	0.28
255	Dittoceras	14.29	0.18	1.25	0.15	0.03	0.08	0.27
256	Citrus	3.57	0.11	3.00	0.04	0.02	0.20	0.26
257	Duabanga	3.57	0.11	3.00	0.04	0.02	0.20	0.26
258	Ixeris	3.57	0.11	3.00	0.04	0.02	0.20	0.26
259	Knema	3.57	0.11	3.00	0.04	0.02	0.20	0.26
260	Laphangium	3.57	0.11	3.00	0.04	0.02	0.20	0.26
261	Oenanthe	3.57	0.11	3.00	0.04	0.02	0.20	0.26
262	Selinum	3.57	0.11	3.00	0.04	0.02	0.20	0.26
263	Sterculia	3.57	0.11	3.00	0.04	0.02	0.20	0.26
264	Juglans	10.71	0.18	1.67	0.11	0.03	0.11	0.26
265	Microlepia	10.71	0.18	1.67	0.11	0.03	0.11	0.26
266	Panisea	10.71	0.18	1.67	0.11	0.03	0.11	0.26
267	Poa	10.71	0.18	1.67	0.11	0.03	0.11	0.26
268	Veronica	10.71	0.18	1.67	0.11	0.03	0.11	0.26
269	Emilia	14.29	0.14	1.00	0.15	0.03	0.07	0.25
270	Aucuba	7.14	0.14	2.00	0.08	0.03	0.13	0.24
271	Casearia	7.14	0.14	2.00	0.08	0.03	0.13	0.24
272	Eriobotrya	7.14	0.14	2.00	0.08	0.03	0.13	0.24
273	Lasiococca	7.14	0.14	2.00	0.08	0.03	0.13	0.24
274	Persea	7.14	0.14	2.00	0.08	0.03	0.13	0.24
275	Polypodiodes	7.14	0.14	2.00	0.08	0.03	0.13	0.24

Annexure II 178

$\begin{aligned} & \text { SI } \\ & \text { No. } \end{aligned}$	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
276	Polypodium	7.14	0.14	2.00	0.08	0.03	0.13	0.24
277	Stachys	7.14	0.14	2.00	0.08	0.03	0.13	0.24
278	Dennstaedtia	10.71	0.14	1.33	0.11	0.03	0.09	0.23
279	Lindsaea	10.71	0.14	1.33	0.11	0.03	0.09	0.23
280	Mucuna	10.71	0.14	1.33	0.11	0.03	0.09	0.23
281	Pleione	10.71	0.14	1.33	0.11	0.03	0.09	0.23
282	Senna	10.71	0.14	1.33	0.11	0.03	0.09	0.23
283	Laportea	10.71	0.11	1.00	0.11	0.02	0.07	0.20
284	Leea	10.71	0.11	1.00	0.11	0.02	0.07	0.20
285	Maianthemum	10.71	0.11	1.00	0.11	0.02	0.07	0.20
286	Carex	7.14	0.11	1.50	0.08	0.02	0.10	0.20
287	Diploknema	7.14	0.11	1.50	0.08	0.02	0.10	0.20
288	Hippochaete	7.14	0.11	1.50	0.08	0.02	0.10	0.20
289	Phlebodium	7.14	0.11	1.50	0.08	0.02	0.10	0.20
290	Physalis	7.14	0.11	1.50	0.08	0.02	0.10	0.20
291	Pseudognaphalium	7.14	0.11	1.50	0.08	0.02	0.10	0.20
292	Arachniodes	3.57	0.07	2.00	0.04	0.01	0.13	0.19
293	Arundina	3.57	0.07	2.00	0.04	0.01	0.13	0.19
294	Beilschmiedia	3.57	0.07	2.00	0.04	0.01	0.13	0.19
295	Cheilocostus	3.57	0.07	2.00	0.04	0.01	0.13	0.19
296	Eria	3.57	0.07	2.00	0.04	0.01	0.13	0.19
297	Esmeralda	3.57	0.07	2.00	0.04	0.01	0.13	0.19
298	Flemingia	3.57	0.07	2.00	0.04	0.01	0.13	0.19
299	Grewia	3.57	0.07	2.00	0.04	0.01	0.13	0.19
300	Ione	3.57	0.07	2.00	0.04	0.01	0.13	0.19
301	Phyllanthus	3.57	0.07	2.00	0.04	0.01	0.13	0.19
302	Synotis	3.57	0.07	2.00	0.04	0.01	0.13	0.19
303	Agave	7.14	0.07	1.00	0.08	0.01	0.07	0.16
304	Ampelocalamus	7.14	0.07	1.00	0.08	0.01	0.07	0.16
305	Angelica	7.14	0.07	1.00	0.08	0.01	0.07	0.16
306	Ardisia	7.14	0.07	1.00	0.08	0.01	0.07	0.16
307	Habenaria	7.14	0.07	1.00	0.08	0.01	0.07	0.16
308	Leptodermis	7.14	0.07	1.00	0.08	0.01	0.07	0.16
309	Lonicera	7.14	0.07	1.00	0.08	0.01	0.07	0.16
310	Meconopsis	7.14	0.07	1.00	0.08	0.01	0.07	0.16
311	Nepeta	7.14	0.07	1.00	0.08	0.01	0.07	0.16
312	Neyraudia	7.14	0.07	1.00	0.08	0.01	0.07	0.16
313	Plagiogyria	7.14	0.07	1.00	0.08	0.01	0.07	0.16
314	Satyrium	7.14	0.07	1.00	0.08	0.01	0.07	0.16
315	Sphenomeris	7.14	0.07	1.00	0.08	0.01	0.07	0.16

$\begin{aligned} & \hline \text { SI } \\ & \text { No. } \\ & \hline \end{aligned}$	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
316	Steriochilus	7.14	0.07	1.00	0.08	0.01	0.07	0.16
317	Acorus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
318	Aesculus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
319	Amomum	3.57	0.04	1.00	0.04	0.01	0.07	0.11
320	Ageratina	3.57	0.04	1.00	0.04	0.01	0.07	0.11
321	Beaumontia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
322	Celtis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
323	Cephalostachyum	3.57	0.04	1.00	0.04	0.01	0.07	0.11
324	Cheilanthes	3.57	0.04	1.00	0.04	0.01	0.07	0.11
325	Datura	3.57	0.04	1.00	0.04	0.01	0.07	0.11
326	Desmodium	3.57	0.04	1.00	0.04	0.01	0.07	0.11
327	Drepanostachyum	3.57	0.04	1.00	0.04	0.01	0.07	0.11
328	Epipactis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
329	Euphorbia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
330	Gastrochilus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
331	Hedera	3.57	0.04	1.00	0.04	0.01	0.07	0.11
332	Henckelia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
333	Holboellia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
334	Juncus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
335	Lepidagathis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
336	Malaxis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
337	Marsilea	3.57	0.04	1.00	0.04	0.01	0.07	0.11
338	Micropera	3.57	0.04	1.00	0.04	0.01	0.07	0.11
339	Musa	3.57	0.04	1.00	0.04	0.01	0.07	0.11
340	Nasturtium	3.57	0.04	1.00	0.04	0.01	0.07	0.11
341	Nerium	3.57	0.04	1.00	0.04	0.01	0.07	0.11
342	Oroxylum	3.57	0.04	1.00	0.04	0.01	0.07	0.11
343	Panax	3.57	0.04	1.00	0.04	0.01	0.07	0.11
344	Parthenium	3.57	0.04	1.00	0.04	0.01	0.07	0.11
345	Peristrophe	3.57	0.04	1.00	0.04	0.01	0.07	0.11
346	Phalaenopsis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
347	Platanthera	3.57	0.04	1.00	0.04	0.01	0.07	0.11
348	Podocarpus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
349	Podochilus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
350	Porpax	3.57	0.04	1.00	0.04	0.01	0.07	0.11
351	Ulmus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
352	Prinsepia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
353	Ranunculus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
354	Rhaphidophora	3.57	0.04	1.00	0.04	0.01	0.07	0.11
355	Sambucus	3.57	0.04	1.00	0.04	0.01	0.07	0.11

Annexure II 180

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
356	Sapindus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
357	Sauropus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
358	Schisandra	3.57	0.04	1.00	0.04	0.01	0.07	0.11
359	Senecio	3.57	0.04	1.00	0.04	0.01	0.07	0.11
360	Sida	3.57	0.04	1.00	0.04	0.01	0.07	0.11
361	Sigesbeckia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
362	Styrax	3.57	0.04	1.00	0.04	0.01	0.07	0.11
363	Meliosma	3.57	0.04	1.00	0.04	0.01	0.07	0.11
364	Thunia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
365	Trichotosia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
366	Vanda	3.57	0.04	1.00	0.04	0.01	0.07	0.11
367	Xanthium	3.57	0.04	1.00	0.04	0.01	0.07	0.11

$\mathcal{A N N E X U R E ~ I I I ~}$

IVI of recorded plant Families of the study area

Sl. No.	Families	Frequency	Density	Abundance	RF	RD	RDM	IVI
1	Theaceae	50.00	44.71	89.43	0.93	7.96	9.68	18.57
2	Poaceae	100.00	43.89	43.89	1.86	7.81	4.75	14.42
3	Euphorbiaceae	75.00	25.79	34.38	1.39	4.59	3.72	9.70
4	Urticaceae	100.00	27.07	27.07	1.86	4.82	2.93	9.61
5	Fagaceae	89.29	25.57	28.64	1.66	4.55	3.10	9.31
6	Asteraceae	96.43	23.54	24.41	1.79	4.19	2.64	8.62
7	Ericaceae	75.00	19.18	25.57	1.39	3.41	2.77	7.57
8	Juglandaceae	57.14	15.86	27.75	1.06	2.82	3.00	6.89
9	Polygonaceae	100.00	16.82	16.82	1.86	2.99	1.82	6.67
10	Dryopteridaceae	100.00	16.36	16.36	1.86	2.91	1.77	6.54
11	Betulaceae	78.57	15.29	19.45	1.46	2.72	2.11	6.29
12	Adoxaceae	64.29	13.04	20.28	1.19	2.32	2.20	5.71
13	Cyperaceae	96.43	13.43	13.93	1.79	2.39	1.51	5.69
14	Rosaceae	96.43	12.00	12.44	1.79	2.14	1.35	5.27
15	Selaginellaceae	85.71	11.43	13.33	1.59	2.03	1.44	5.07
16	Symplocaceae	57.14	10.68	18.69	1.06	1.90	2.02	4.98
17	Nephrolepidaceae	82.14	10.79	13.13	1.53	1.92	1.42	4.87
18	Lauraceae	75.00	9.57	12.76	1.39	1.70	1.38	4.48
19	Polypodiaceae	100.00	9.11	9.11	1.86	1.62	0.99	4.46
20	Orchidaceae	89.29	9.07	10.16	1.66	1.61	1.10	4.37
21	Lamiaceae	92.86	8.71	9.38	1.72	1.55	1.02	4.29
22	Pteridaceae	96.43	7.82	8.11	1.79	1.39	0.88	4.06
23	Rubiaceae	92.86	7.25	7.81	1.72	1.29	0.85	3.86
24	Cupressaceae	35.71	6.21	17.40	0.66	1.11	1.88	3.65
25	Leguminosae	100.00	6.07	6.07	1.86	1.08	0.66	3.59
26	Fabaceae	82.14	6.64	8.09	1.53	1.18	0.88	3.58
27	Sapindaceae	64.29	6.64	10.33	1.19	1.18	1.12	3.49
28	Proteaceae	21.43	4.32	20.17	0.40	0.77	2.18	3.35
29	Araceae	71.43	5.71	8.00	1.33	1.02	0.87	3.21
30	Melastomataceae	78.57	5.39	6.86	1.46	0.96	0.74	3.16
31	Magnoliaceae	57.14	5.07	8.88	1.06	0.90	0.96	2.92
32	Hydrangeaceae	78.57	4.46	5.68	1.46	0.79	0.62	2.87
33	Moraceae	67.86	4.64	6.84	1.26	0.83	0.74	2.83
34	Commelinaceae	78.57	4.18	5.32	1.46	0.74	0.58	2.78

Annexure III 182

Sl. No.	Families	Frequency	Density	Abundance	RF	RD	RDM	IVI
35	Primulaceae	92.86	3.54	3.81	1.72	0.63	0.41	2.77
36	Phyllanthaceae	75.00	4.11	5.48	1.39	0.73	0.59	2.72
37	Araliaceae	89.29	3.46	3.88	1.66	0.62	0.42	2.69
38	Thymelaeaceae	64.29	4.18	6.50	1.19	0.74	0.70	2.64
39	Malvaceae	75.00	3.86	5.14	1.39	0.69	0.56	2.64
40	Vitaceae	82.14	3.57	4.35	1.53	0.64	0.47	2.63
41	Pandanaceae	21.43	3.21	15.00	0.40	0.57	1.62	2.59
42	Pentaphylacaceae	67.86	3.07	4.53	1.26	0.55	0.49	2.30
43	Tectariaceae	71.43	2.93	4.10	1.33	0.52	0.44	2.29
44	Anacardiaceae	57.14	3.25	5.69	1.06	0.58	0.62	2.26
45	Combretaceae	46.43	3.25	7.00	0.86	0.58	0.76	2.20
46	Dioscoreaceae	50.00	3.21	6.43	0.93	0.57	0.70	2.20
47	Amaranthaceae	60.71	2.79	4.59	1.13	0.50	0.50	2.12
48	Plantaginaceae	67.86	2.50	3.68	1.26	0.44	0.40	2.10
49	Piperaceae	67.86	2.32	3.42	1.26	0.41	0.37	2.04
50	Cornaceae	60.71	2.07	3.41	1.13	0.37	0.37	1.87
51	Zingiberaceae	60.71	2.04	3.35	1.13	0.36	0.36	1.85
52	Athyriaceae	25.00	2.21	8.86	0.46	0.39	0.96	1.82
53	Caryophyllaceae	53.57	2.14	4.00	0.99	0.38	0.43	1.81
54	Begoniaceae	35.71	2.36	6.60	0.66	0.42	0.71	1.80
55	Salicaceae	28.57	2.21	7.75	0.53	0.39	0.84	1.76
56	Pinaceae	50.00	2.11	4.21	0.93	0.37	0.46	1.76
57	Lycopodiaceae	53.57	1.96	3.67	0.99	0.35	0.40	1.74
58	Myrtaceae	42.86	2.04	4.75	0.80	0.36	0.51	1.67
59	Gentianaceae	46.43	1.96	4.23	0.86	0.35	0.46	1.67
60	Thelypteridaceae	50.00	1.82	3.64	0.93	0.32	0.39	1.65
61	Balsaminaceae	42.86	1.57	3.67	0.80	0.28	0.40	1.47
62	Acanthaceae	39.29	1.61	4.09	0.73	0.29	0.44	1.46
63	Sabiaceae	32.14	1.50	4.67	0.60	0.27	0.51	1.37
64	Meliaceae	35.71	1.46	4.10	0.66	0.26	0.44	1.37
65	Apiaceae	28.57	1.50	5.25	0.53	0.27	0.57	1.37
66	Dipterocarpaceae	3.57	0.39	11.00	0.07	0.07	1.19	1.33
67	Berberidaceae	42.86	1.18	2.75	0.80	0.21	0.30	1.30
68	Aspleniaceae	46.43	1.07	2.31	0.86	0.19	0.25	1.30
69	Boraginaceae	17.86	1.21	6.80	0.33	0.22	0.74	1.28
70	Violaceae	28.57	1.25	4.38	0.53	0.22	0.47	1.23
71	Solanaceae	42.86	1.00	2.33	0.80	0.18	0.25	1.23
72	Smilacaceae	42.86	0.96	2.25	0.80	0.17	0.24	1.21
73	Putranjivaceae	21.43	1.18	5.50	0.40	0.21	0.60	1.20
74	Oxalidaceae	42.86	0.79	1.83	0.80	0.14	0.20	1.13

Annexure III 183

SI. No.	Families	Frequency	Density	Abundance	RF	RD	RDM	IVI
75	Asparagaceae	39.29	0.75	1.91	0.73	0.13	0.21	1.07
76	Actinidiaceae	35.71	0.79	2.20	0.66	0.14	0.24	1.04
77	Rhamnaceae	28.57	0.89	3.13	0.53	0.16	0.34	1.03
78	Rutaceae	28.57	0.86	3.00	0.53	0.15	0.32	1.01
79	Burseraceae	17.86	0.79	4.40	0.33	0.14	0.48	0.95
80	Saxifragaceae	21.43	0.79	3.67	0.40	0.14	0.40	0.93
81	Saururaceae	25.00	0.61	2.43	0.46	0.11	0.26	0.84
82	Davalliaceae	17.86	0.61	3.40	0.33	0.11	0.37	0.81
83	Simaroubaceae	14.29	0.57	4.00	0.27	0.10	0.43	0.80
84	Elaeocarpaceae	25.00	0.50	2.00	0.46	0.09	0.22	0.77
85	Woodsiaceae	25.00	0.50	2.00	0.46	0.09	0.22	0.77
86	Lindsaeaceae	21.43	0.54	2.50	0.40	0.10	0.27	0.76
87	Oleandraceae	17.86	0.54	3.00	0.33	0.10	0.32	0.75
88	Blechnaceae	17.86	0.50	2.80	0.33	0.09	0.30	0.72
89	Santalaceae	17.86	0.50	2.80	0.33	0.09	0.30	0.72
90	Convolvulaceae	21.43	0.46	2.17	0.40	0.08	0.23	0.72
91	Menispermaceae	21.43	0.46	2.17	0.40	0.08	0.23	0.72
92	Lomariopsidaceae	7.14	0.32	4.50	0.13	0.06	0.49	0.68
93	Equisetaceae	21.43	0.39	1.83	0.40	0.07	0.20	0.67
94	Gleicheniaceae	21.43	0.39	1.83	0.40	0.07	0.20	0.67
95	Liliaceae	17.86	0.39	2.20	0.33	0.07	0.24	0.64
96	Scrophulariaceae	3.57	0.18	5.00	0.07	0.03	0.54	0.64
97	Cucurbitaceae	25.00	0.25	1.00	0.46	0.04	0.11	0.62
98	Aquifoliaceae	17.86	0.36	2.00	0.33	0.06	0.22	0.61
99	Verbenaceae	17.86	0.36	2.00	0.33	0.06	0.22	0.61
100	Dicksoniaceae	17.86	0.32	1.80	0.33	0.06	0.19	0.58
101	Hamamelidaceae	14.29	0.29	2.00	0.27	0.05	0.22	0.53
102	Ranunculaceae	14.29	0.29	2.00	0.27	0.05	0.22	0.53
103	Apocynaceae	17.86	0.25	1.40	0.33	0.04	0.15	0.53
104	Platanaceae	7.14	0.21	3.00	0.13	0.04	0.32	0.50
105	Oleaceae	14.29	0.21	1.50	0.27	0.04	0.16	0.47
106	Cyatheaceae	10.71	0.21	2.00	0.20	0.04	0.22	0.45
107	Achariaceae	7.14	0.18	2.50	0.13	0.03	0.27	0.44
108	Lygodiaceae	7.14	0.18	2.50	0.13	0.03	0.27	0.44
109	Lythraceae	3.57	0.11	3.00	0.07	0.02	0.32	0.41
110	Myristicaceae	3.57	0.11	3.00	0.07	0.02	0.32	0.41
111	Sterculiaceae	3.57	0.11	3.00	0.07	0.02	0.32	0.41
112	Garryaceae	7.14	0.14	2.00	0.13	0.03	0.22	0.37
113	Sapotaceae	7.14	0.11	1.50	0.13	0.02	0.16	0.31
114	Costaceae	3.57	0.07	2.00	0.07	0.01	0.22	0.30

Annexure III 184

Sl. No.	Families	Frequency	Density	Abundance	RF	RD	RDM	IVI
115	Caprifoliaceae	7.14	0.07	1.00	0.13	0.01	0.11	0.25
116	Plagiogyriaceae	7.14	0.07	1.00	0.13	0.01	0.11	0.25
117	Acoraceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
118	Alangiaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
119	Bignoniaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
120	Brassicaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
121	Cannabaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
122	Dennstaedtiaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
123	Gesneriaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
124	Juncaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
125	Marsileaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
126	Musaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
127	Nyctaginaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
128	Papaveraceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
129	Podocarpaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
130	Schisandraceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
131	Styracaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18

$\mathcal{A N} \mathcal{N} E X U R E 1 V$

Volume Equation used for trees of the study area

$\begin{array}{\|l\|l} \hline \mathbf{S I} \\ \mathbf{N o} \end{array}$	Name of Tree Species	Volume equation used
1	Abies densa Griff.	$\mathrm{V}=0.12167-0.0114 \mathrm{D}+0.000812 \mathrm{D}^{2}$ (cm)
2	Acer caesium Wall. ex Brandis	$\sqrt{V}=-0.162945+3.109717 \mathrm{D}$
3	Acer campbellii Hook.f. \& Thomson ex Hiern Cinnamomum impressinervium Meisn. Evodia fraxinifolia (Hook.) Benth. Exbucklandia populnea (R.Br. ex Griff.) R.W.Br. Juglans regia L. Macaranga indica Wight Syzygium cumini (L.) Skeels	$\mathrm{V} / \mathrm{D}^{2}=0.06674 / \mathrm{D}^{2}-0.02039 / \mathrm{D}+0.001559(\mathrm{~cm})$
4	Acer caudatum Wall.	$\sqrt{ } \mathrm{V}=-0.162945+3.109717 \mathrm{D}$
5	Albizia chinensis (Osbeck) Merr.	$\mathrm{V}=0.29208+0.00092412 \mathrm{D}^{2}$
6	Albizia procera (Roxb.) Benth.	$\sqrt{ } \mathrm{V}=-0.469497+3.698566 \mathrm{D}$
7	Alnus nepalensis D.Don	$\mathrm{V}=0.7287-0.042628 \mathrm{D}+0.00137 \mathrm{D}^{2}$ (cm)
8	Artocarpus lacuchaBuch.-Ham.	$\sqrt{ } \mathrm{V}=0.06692+2.61991 \mathrm{D}$
9	Beilschmiedia sikkimensis King ex Hooker Elaeocarpus lanceifolius Roxb. Engelhardtia spicata var. integra (Kurz) W.E.Manning ex Steenis Rhododendron hodgsonii Hook.f.	$\begin{aligned} & \mathrm{V} / \mathrm{D}^{2}=0.25564 / \mathrm{D}^{2}-0.030418 / \mathrm{D}+0.0012897 \\ & (\mathrm{~cm}) \end{aligned}$
10	Betula alnoidesBuch.-Ham.	$\mathrm{V}=(-0.1211+1.58826) \mathrm{D}+1.96643 \mathrm{D}^{2}$
11	Betula utilis D.Don Litsea cubeba (Lour.) Pers. Litsea sericea (Wall.ex Nees) Hook.f. Machilus edulis King ex Hook.f. Machilus gammieana King Nyssa javanica (Blume) Wangerin Persea odoratissima (T.Nees) Kosterm. Prunus nepalensis Ser.	$\mathrm{V}=0.12652-0.018037 \mathrm{D}+0.000956 \mathrm{D}^{2}(\mathrm{~cm})$
12	Bischofia javanica Blume	$\sqrt{\mathrm{V}}=(-0.00273)+2.56199 \mathrm{D}$
13	Castanopsis hystrix Hook.f. \& Thomson ex A. DC.	$\checkmark \mathrm{V}=0.3464+3.99269 \mathrm{D}-1.64666 \mathrm{D}$
14	Castanopsis tribuloides (Sm.) A.DC. Lithocarpus pachyphyllus (Kurz) Rehder Quercus lamellosa Sm. Quercus lineata Blume	$\mathrm{V} / \mathrm{D}^{2}=0.001184+0.1812 / \mathrm{D}^{2}-0.02348 / \mathrm{D}(\mathrm{cm})$
15	Cinnamomum tamala (Buch.-Ham.) T.Nees \& Eberm.	$\mathrm{V}=0.1097-0.88666 \mathrm{D}+6.097 \mathrm{D}^{2}-1.62672 \mathrm{D}^{3}$

16	Cryptomeria japonica (Thunb.) D.Don	$\mathrm{V}=-0.01097+5.30991 \mathrm{D}^{2}$
17	Ficus hirta Vahl Ficus neriifoliaSm. Ficus religiosaL. Ficus roxburghiiLour. Ficus subincisa Buch.-Ham. ex Sm.	$\checkmark \mathrm{V}=0.3629+3.95389 \mathrm{D}-0.84421 \mathrm{D}^{2}$
18	Lyonia ovalifolia (Wall.) Drude	$\mathrm{V}=0.1456-2.10543 \mathrm{D}+11.81097 \mathrm{D}^{2}-6.56089 \mathrm{D}^{3}$
19	Machilus gambleiKing ex Hook.f. Machilus glaucescens (T.Nees) H.W. Li Machilus kurzii King ex Hook.f.	$\mathrm{V} / \mathrm{D}^{2}=4.84009-0.02402 \mathrm{D}^{2}$
20	$\begin{aligned} & \text { Magnolia doltsopa (Buch.-Ham. ex DC.) } \\ & \text { Figlar } \end{aligned}$	$\begin{aligned} & \mathrm{V}^{\mathrm{V}} \mathrm{D}^{2}=0.0002138+0.002517 / \mathrm{D}+0.00001064 \mathrm{D}- \\ & 0.00000004 \mathrm{D}^{2} \end{aligned}$
21	Rhododendron arboreumSm. Rhododendron barbatum Wall. ex G.Don Rhododendron campylocarpum Hook.f. Rhododendron dalhousieae Hook.f. Rhododendron falconeri Hook.f. Rhododendron griffithianum Wight Rhododendron thomsonii Hook.f. Rhododendron triflorum Hook.f. Rhododendron vaccinioides Hook.	$\checkmark \mathrm{V}=0.306492+4.31536 \mathrm{D}-1.749908 \operatorname{logD}$
22	Schima wallichii Choisy	$\sqrt{ } \mathrm{V}=0.28069+4.6198 \mathrm{D}-1.65381 \operatorname{logD}$
23	Shorea robusta Gaert.	$\mathrm{V} / \mathrm{D}^{2}=-0.32546 / \mathrm{D}^{2}+9.78645$
24	Symplocos lucida (Thunb.) Siebold \& Zucc.	$\mathrm{V}=0.03754+0.000587 \mathrm{D}^{2}$
25	Terminalia crenulata Roth	$\checkmark \mathrm{V}=0.14325+3.07937 \mathrm{D}$
26	Toona ciliata M.Roem.	$\checkmark \mathrm{V}=-0.27525+3.0319 \mathrm{D}$
27	General volume formula	$\mathrm{V}=0.3555-0.037 \mathrm{D}+0.001259 \mathrm{D}^{2}$ (cm)

$\mathcal{A} \mathcal{N} \mathcal{N} E X U R \mathcal{V} \mathcal{V}$
List of plants species along the altitude showing the species distribution range (lower elevation 500 and upper elevation range 3300 (5 to 32)

$\begin{array}{\|l\|} \hline \mathbf{S l .} \\ \text { No } \end{array}$	Botanical Name	Family	5		718		910\|1																29			Range
1	Abies densa Griff.	Pinaceae												\checkmark			\checkmark		\checkmark			\checkmark	\checkmark	\checkmark		1800-3300
2	Abies spectabilis (D.Don) Mirb.	Pinaceae									\checkmark					\checkmark										1500-2100
3	Acampe ochracea Lindl.	Orchidaceae	\checkmark																							500
4	Acampe rigida (Buch.-Ham.ex. Sm.) P.F. Hunt	Orchidaceae	\checkmark																							500
5	Acer campbellii Hook.f. \& Thomson ex Hiern	Sapindaceae									\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		1500-3300							
6	Acer caudatum Wall.	Sapindaceae													\checkmark				\checkmark		\checkmark			\checkmark		1900-3300
7	Acer laevigatum Wall.	Sapindaceae																	\checkmark							2400
8	Acer oblongum Wall. ex DC.	Sapindaceae								\checkmark							\checkmark	\checkmark	\checkmark				\checkmark			1400-2900
9	Achyranthes aspera L .	Amaranthaceae	\checkmark	\checkmark	$\checkmark \checkmark$	\checkmark	$\checkmark \sqrt{ }$,	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark									500-2200

Annexure V

$\begin{array}{\|l\|} \hline \text { Sl. } \\ \text { No } \end{array}$	Botanical Name	Family	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	31	32	Range
19	Ageratina adenophora (Spreng.) R.M.King \& H.Rob.	Asteraceae	\checkmark		\checkmark	\checkmark				$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	\checkmark		500-3200
20	Ageratina ligustrina (DC.) R.M.King \& H.Rob.	Urticaceae				\checkmark		\checkmark						$\sqrt{ }$								\checkmark								800-2500
21	Ageratum conyzoides (L.) L.	Asteraceae			\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark		\checkmark	\checkmark																	700-1600
22	Ageratum houstonianum Mill.	Asteraceae					\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark						\checkmark											900-2200
23	Alangium alpinum (C.B. Clarke) W.W. Sm. \& Cave	Alangiaceae									\checkmark																			1300
24	Alangium chinense (Lour.) Harms	Alangiaceae	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$		\checkmark		$\sqrt{ }$			\checkmark			\checkmark		$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$						500-2700
25	Albizia chinensis (Osbeck) Merr.	Leguminosae	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark			\checkmark												500-2100
26	Albizia lucidior (Steud.) I.C.Nielsen	Leguminosae	\checkmark	\checkmark		\checkmark	\checkmark		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$				$\sqrt{ }$	$\sqrt{ }$	\checkmark			\checkmark										500-2300
27	Albizia procera (Roxb.) Benth.	Leguminosae		\checkmark					\checkmark																					600-1200
28	Aleuritopteris albomarginata (C.B.Clarke) Ching	Pteridaceae																								\checkmark				2800
29	Aleuritopteris dubia (C. Hope) Ching	Pteridaceae								\checkmark																				1200
30	Aleuritopteris subdimorpha (C.B.Clarke \& Baker) FraserJenk.	Pteridaceae	\checkmark				\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark																		500-1500
31	Allantodia spectabilis (Wall. ex Mett.) Ching	Athyriaceae																							\checkmark	\checkmark	\checkmark			2700-3000
32	Allantodia stoliczkae (Bedd.) Ching	Athyriaceae																						\checkmark	\checkmark	$\sqrt{ }$	\checkmark			2600-3000
33	Allantodia succulenta (Clarke) Ching	Athyriaceae																			\checkmark									2300
34	Alnus nepalensis D.Don	Betulaceae					\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark		$\sqrt{ }$		\checkmark			\checkmark			900-3000
35	Alocasia macrorrhizos (L.) G. Don	Araceae	\checkmark	$\sqrt{ }$	\checkmark			\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			$\sqrt{ }$				\checkmark		\checkmark		500-3100
36	Amomum subulatum Roxb.	Zingiberaceae											\checkmark																	1500
37	Ampelocalamus patellaris	Poaceae						\checkmark					\checkmark																	1000-1600

Annexure V 189

Sl. No	Botanical Name	Family	5	6	7	8	9	10	112	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	293	31	32	Range
38	Anaphalis busua (Buch.-Ham.) DC.	Asteraceae																	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark			2200-3000
39	Anaphalis contorta (D.Don) Hook.f	Asteraceae											\checkmark		\checkmark						\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	1600-3300
40	Anaphalis margaritacea (L.) Benth. \& Hook. f.	Asteraceae																	\checkmark			\checkmark		\checkmark			\checkmark		2200-3200
41	Angelica archangelica L.	Apiaceae																	$\sqrt{ }$									$\sqrt{ }$	2200-3300
42	Anisomeles indica (L.) Kuntze	Lamiaceae		\checkmark		\checkmark							\checkmark	\checkmark	\checkmark					$\sqrt{ }$			\checkmark						600-2700
43	Antidesma acidum Retz.	Phyllanthaceae	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark														500-1900
44	Antidesma acuminatum Wall.	Euphorbiaceae						\checkmark	\checkmark							\checkmark													1100-2000
45	Apios carnea (Wall.) Benth.	Leguminosae	\checkmark			$\sqrt{ }$	\checkmark		\checkmark													500-2000							
46	Arachniodes davalliaeformis (Christ) Nakaike	Dryopteridaceae																		\checkmark									2300
47	Aralia leschenaultii (DC.) J.Wen	Araliaceae													\checkmark			\checkmark					\checkmark						1800-2700
48	Arctium lappa L.	Asteraceae															\checkmark									\checkmark	\checkmark	\checkmark	2000-3300
49	Ardisia macrocarpa Wall.	Myristicaceae								\checkmark	\checkmark																		1300-1500
50	Arisaema concinnum Schott	Araceae									\checkmark																		1400
51	Arisaema echinatum (Wall.) Schott	Araceae																					\checkmark						2600
52	Arisaema flavum (Forssk.) Schott	Araceae										$\sqrt{ }$									\checkmark		\checkmark						1500-2700
53	Arisaema galeatum N.E. Br.	Araceae										\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark		$\sqrt{ }$	\checkmark		\checkmark						1500-2700
54	Arisaema griffithii Schott	Araceae										\checkmark				\checkmark		\checkmark											1500-2200
55	Arisaema intermedium Blume	Araceae																	\checkmark		\checkmark				\checkmark				2200-2900
56	Arisaema nepenthoides (Wall.) Martius	Araceae									\checkmark	\checkmark	$\sqrt{ }$																1400-1700
57	Arisaema speciosum (Wall.) Martius	Araceae													\checkmark	$\sqrt{ }$					\checkmark								1800-2500
58	Arisaema tortuosum (Wall.) Schott	Araceae									\checkmark		\checkmark	\checkmark	\checkmark			\checkmark											1400-2200

Sl. No	Botanical Name	Family	5	6	7	8	9			12		14	15			18	19	20	21	22	23	24	25	26	28	29	30	31	32	Range
59	Artemisia japonica Thunb.	Asteraceae			$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	$\sqrt{ }$										$\sqrt{ }$			\checkmark	700-3300
60	Artemisia vulgaris L.	Asteraceae																		\checkmark		$\sqrt{ } \sqrt{ }$	$\sqrt{ }$					\checkmark	$\sqrt{ }$	2200-3300
61	Arthromeris himalayensis (Hook.) Ching	Polypodiaceae																								\checkmark	$\sqrt{ }$			2900-3100
62	Arthromeris wallichiana (Spreng.) Ching	Polypodiaceae										$\sqrt{ }$	\checkmark		\checkmark									\checkmark	\checkmark			\checkmark	\checkmark	1400-3300
63	Artocarpus lacucha Buch.Ham.	Moraceae	\checkmark	\checkmark				\checkmark																						500-1100
64	Arundina graminifolia (D.Don) Hochr.	Orchidaceae	\checkmark																											500
65	Arundinaria racemosa Munro	Poaceae																	$\sqrt{ }$		\checkmark				\checkmark	\checkmark	$\sqrt{ }$	\checkmark		2100-3200
66	Arundinella hookeri Munro \& Keng	Poaceae																			\checkmark		\checkmark	$\sqrt{ } \sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark		2300-3200
67	Arundinella nepalensis Trin.	Poaceae			\checkmark	\checkmark	$\sqrt{ }$		$\sqrt{ }$						\checkmark	$\sqrt{ }$	\checkmark	\checkmark												2100-2300
68	Arundo donax L .	Poaceae				\checkmark	\checkmark										\checkmark		\checkmark					\checkmark						800-2800
69	Asplenium gueinzianum Kunze ex Mett.	Aspleniaceae											\checkmark		\checkmark	$\sqrt{ }$	\checkmark	\checkmark				\checkmark								1500-2500
70	Asplenium phyllitidis D.Don	Aspleniaceae	\checkmark	\checkmark																										500-700
71	Asplenium tenuifolium D. Don	Aspleniaceae									\checkmark					$\sqrt{ }$				\checkmark										1300-2300
72	Asplenium yoshinagae Makino	Aspleniaceae		$\sqrt{ }$	\checkmark										\checkmark															600-1800
73	Aster albescens (DC.) Wall.ex Hand.-Mazz.	Asteraceae					\checkmark						\checkmark					\checkmark												900-2100
74	Aster flaccidus Bunge	Asteraceae																							\checkmark					2800
75	Aster sikkimmensis Hook.f. \& Thomson	Asteraceae																					\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		2500-3200
76	Aster tricephalus C.B.Clarke	Asteraceae																			\checkmark									2300
77	Aster trinervis Roxb.	Asteraceae																						$\sqrt{ } \sqrt{ }$				\checkmark		2600-3200
78	Astilbe rivularis Buch.-Ham.	Saxifragaceae												\checkmark		\checkmark				\checkmark				\checkmark				\checkmark	\checkmark	1600-3300
79	Astragalus stipulatus (L.) A.Gray	Leguminosae		\checkmark	\checkmark	\checkmark	\checkmark					\checkmark																		600-1500

Annexure V 191

$\begin{array}{\|l\|} \hline \text { Sl. } \\ \text { No } \end{array}$	Botanical Name	Family	5	6	7	8	9			12	13	14	15		17		19	21	22	23	24	25	26	27	28	30	31	32	Range
80	Athyrium filix-femina (L.) Roth	Athyriaceae																				$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark				2500-3000
81	Athyrium foliolosum T. Moore ex R.Sim	Athyriaceae																		\checkmark			\checkmark	\checkmark					2300-2800
82	Aucuba himalaica Hook.f. \&Thomson	Garryaceae																			$\sqrt{ }$	\checkmark							2400-2600
83	Axonopus compressus (Sw.) P. Beauv.	Poaceae	$\sqrt{ }$		\checkmark		\checkmark			\checkmark	\checkmark	$\sqrt{ }$										$\sqrt{ }$							500-2600
84	Azadirachta indica Juss.	Meliaceae	\checkmark			$\sqrt{ }$																							800
85	Balantium antarcticum (Labill.) C. Presl	Dicksoniaceae		\checkmark				$\sqrt{ }$			$\sqrt{ }$	\checkmark											$\sqrt{ }$						600-2700
86	Bambusa nutans Wall.ex Munro	Poaceae	\checkmark		\checkmark						$\sqrt{ }$	\checkmark	$\sqrt{ }$		\checkmark														500-1800
87	Bauhinia purpurea L.	Leguminosae	\checkmark				\checkmark																						500-1000
88	Bauhinia scandens L.	Leguminosae																	\checkmark		\checkmark	\checkmark							2200-2500
89	Beaumontia grandiflora Wall.	Apocynaceae			\checkmark																								700
90	Begonia josephii DC.	Begoniaceae																				\checkmark		\checkmark					2500-2800
91	Begonia malabarica Lam.	Begoniaceae										$\sqrt{ }$		\checkmark						$\sqrt{ }$	\checkmark								1400-2500
92	Begonia palmata D.Don	Begoniaceae										\checkmark					\checkmark			\checkmark									1400-2400
93	Begonia picta Sm.	Begoniaceae								\checkmark									\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark					1200-2800
94	Beilschmiedia sikkimensis King ex Hook.f.	Lauraceae																		\checkmark									2300
95	Berberis angulosa Wall.exHook.f. \& Thomson	Berberidaceae											\checkmark														$\sqrt{ }$		1500-3200
96	Berberis asiatica DC.	Berberidaceae	\checkmark						\checkmark																				500-1100
97	Berberis hookeri Lem.	Berberidaceae																								\checkmark		$\sqrt{ }$	3100-3300
98	Berberisvirescens Hook.f.	Berberidaceae								\checkmark		$\sqrt{ }$							\checkmark		$\sqrt{ }$								1200-2500
99	Berberis wallichiana DC.	Berberidaceae																	\checkmark										2300
100	Berchemia floribunda (Wall.) Brongn.	Rhamnaceae					$\sqrt{ }$						\checkmark				\checkmark												900-2000

$\begin{array}{\|l\|} \hline \mathrm{Sl} . \\ \mathrm{No} \end{array}$	Botanical Name	Family	5	6	7	8	9	10		12	13		15	16	17	18	19	02	22	23	24	25	26	27	28	29	303	32	Range
101	Betula alnoides Buch.-Ham.	Betulaceae					\checkmark	$\sqrt{ }$					$\sqrt{ }$	\checkmark	\checkmark		\checkmark	\checkmark				\checkmark	\checkmark	\checkmark					900-2800
102	Betula utilis D.Don	Betulaceae																							$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	2800-3300
103	Bidens pilosa L .	Asteraceae			$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark				\checkmark			\checkmark										700-2300
104	Bischofia javanica Blume	Phyllanthaceae	$\sqrt{ }$	\checkmark		\checkmark		\checkmark	$\sqrt{ }$	\checkmark	\checkmark		\checkmark																500-1600
105	Boehmeria macrophylla Hornem.	Urticaceae						\checkmark	$\sqrt{ }$	\checkmark		$\sqrt{ }$	\checkmark	\checkmark	\checkmark		\checkmark												1000-2000
106	Boehmeria platyphylla D.Don	Urticaceae	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark								500-2500
107	Boehmeria rugulosa Wedd.	Urticaceae																	\checkmark										2200
108	Bombax ceiba L.	Malvaceae	\checkmark	\checkmark	\checkmark		\checkmark								$\sqrt{ }$			\checkmark											500-2200
109	Brachiaria ramosa (L.) Stapf	Poaceae		\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			$\sqrt{ }$	\checkmark		V	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				600-2900
110	Brachiaria subquadripara (Trin.) Hitchc.	Poaceae						\checkmark			\checkmark																		1000-1400
111	Brachiaria villosa (Lam.) A. Camus	Poaceae	\checkmark	$\sqrt{ }$				\checkmark							\checkmark	$\sqrt{ }$				\checkmark				\checkmark			\checkmark	\checkmark	500-3300
112	Brassaiopsis glomerulata (Blume) Regel	Araliaceae	\checkmark										$\sqrt{ }$																500-1600
113	Brassaiopsis hispida Seem.	Araliaceae																\checkmark	\checkmark		\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$				2100-2900
114	Brassaiopsis mitis C.B.Clarke	Araliaceae	\checkmark			\checkmark		\checkmark	$\sqrt{ }$				$\sqrt{ }$	\checkmark			\checkmark		\checkmark	$\sqrt{ }$	\checkmark	\checkmark				\checkmark			500-3000
115	Bridelia retusa (L.) Juss.	Phyllanthaceae	\checkmark			\checkmark	\checkmark	\checkmark	$\sqrt{ }$					\checkmark															500-1700
116	Brucea javanica (L.) Merr.	Simaroubaceae			\checkmark	\checkmark	$\sqrt{ }$		$\sqrt{ }$																				700-1200
117	Brugmansia suaveolens (Humb. \& Bonpl. ex Willd.) Bercht. \& J.Presl	Solanaceae			\checkmark				\checkmark				\checkmark	\checkmark															700-1700
118	Buddleja asiatica Lour.	Scrophulariaceae																									\checkmark		3100
119	Bulbophyllum guttulatum (Hook.f.)N.P.Balakr.	Orchidaceae	\checkmark	\checkmark	\checkmark																								500-800
120	Bulbophyllum sterile (Lam.) Suresh	Orchidaceae	\checkmark																										500
121	Bulbophyllum thomsonii Hook.f.	Orchidaceae	\checkmark																										500

Annexure V 193

$\left.\begin{array}{\|l\|} \hline \mathrm{Sl} . \\ \mathrm{No} \end{array} \right\rvert\,$	Botanical Name	Family					910										21		24	25		27.28	2930			Range
122	Bulbophyllum yoksunense J.J.Sm.	Orchidaceae																	\checkmark	\checkmark		\checkmark				2400-2800
123	Callicarpa arborea Roxb.	Lamiaceae	\checkmark	\checkmark			\checkmark		\checkmark		\checkmark		\checkmark			\checkmark										500-2100
124	Cardiocrinum giganteum (Wall.) Makino	Liliaceae																\checkmark								300
125	Carex caryophyllea Latourr.	Cyperaceae				\checkmark	\checkmark										\checkmark									900-2300
126	Casearia glomerata Roxb.	Salicaceae												\checkmark			\checkmark									1800-2400
127	Castanopsis hystrix Hook.f. \& Thomson ex A.DC.	Fagaceae	\checkmark				\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark			500-3000
128	Castanopsis indica A.DC.	Fagaceae							\checkmark	$\checkmark 1$	\checkmark				\checkmark											1200-2000
129	Castanopsis tribuloides (Sm.) A.DC.	Fagaceae					\checkmark				\checkmark		\checkmark			\checkmark	\checkmark			700-3100						
130	Cautleya spicata (Sm.) Baker	Zingiberaceae							\checkmark								\checkmark	\checkmark	\checkmark		\checkmark					1200-2700
131	Cautleya gracilis (Sm.) Dandy	Zingiberaceae			\checkmark			\checkmark	\checkmark	$\sqrt{ }$	V V														\checkmark	700-3300
132	Celtis tetrandra Roxb.	Cannabaceae					\checkmark																			1000
133	Cephalostachyumcapitatum Munro	Poaceae																				\checkmark				280
134	Cheilanthes farinosa (Forssk.) Kaulf.	Pteridaceae							\checkmark																	1200
135	Cheilocostus speciosus (J.Koenig) C.D.Specht	Costaceae	\checkmark																							500
136	Chimonocalamusgriffithianus (Munro) Hsueh \& T.P.Yi	Poaceae														\checkmark	\checkmark	\checkmark	\checkmark				\checkmark			2000-3100
137	Choerospondias axillaris (Roxb.) B.L.Burtt \& A.W.Hill	Anacardiaceae	\checkmark							\checkmark																500-1400
138	Christella parasitica H.Lev.	Thelypteridaceae									\checkmark	\checkmark			\checkmark		\checkmark							\checkmark	\checkmark	$800-3300$
139	Chrysopogon aciculatus (Retz.) Trin.	Poaceae	\checkmark			\checkmark					\checkmark				\checkmark											500-2200
140	Cinnamomum impressinervium Meissn.	Lauraceae														\checkmark	\checkmark			\checkmark	\checkmark	\checkmark				2000-2800
141	Cinnamomum tamala (Buch.Ham.) T.Nees \& Eberm.	Lauraceae																	\checkmark							240

$\begin{array}{\|l\|} \hline \text { Sl. } \\ \text { No } \\ \hline \end{array}$	Botanical Name	Family	5	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	32	Range
142	Cinnamonum caudatum Nees	Lauraceae										\checkmark																		1400
143	Cirrhopetalum wallichii Lindl.	Orchidaceae																		\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark		2200-3100
144	Cissampelos pareira L.	Menispermaceae	\checkmark	$\sqrt{ }$	\checkmark	\checkmark													\checkmark											500-2200
145	Cissus repens Lam.	Vitaceae	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark					\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	$\sqrt{ }$	\checkmark			\checkmark					500-2800
146	Citrus maxima (Burm.f.) Merr.	Rutaceae							\checkmark																					1100
147	Clematis buchananiana DC	Ranunculaceae																		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$					\checkmark			2200-3000
148	Clerodendrum glandulosum Lindl.	Lamiaceae						\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark																1000-1700
149	Clerodendrum infortunatum L.	Lamiaceae	\checkmark			\checkmark																								500-900
150	Clerodendrum japonicum (Thunb.) Sweet	Lamiaceae		\checkmark					\checkmark																					600-1200
151	Coelogyne corymbosa Lindl.	Orchidaceae																				\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark				2400-2900
152	Coelogyne flaccid Lindl.	Orchidaceae						\checkmark									\checkmark													1000-3000
153	Coelogyne prolifera Lindl.	Orchidaceae					\checkmark	$\sqrt{ }$																						1000-1200
154	Coelogynestricta(D.Don) Schltr.	Orchidaceae						\checkmark		\checkmark																				1000-1300
155	Colebrookea oppositifolia Sm.	Lamiaceae	\checkmark	\checkmark						$\sqrt{ }$								\checkmark	$\sqrt{ }$											500-2200
156	Commelina paludosa Blume	Commelinaceae	\checkmark	$\sqrt{ }$	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark		\checkmark		$\sqrt{ }$	\checkmark	\checkmark			500-3000								
157	Coniogramme procera Fee	Pteridaceae																		\checkmark		\checkmark		\checkmark						2200-2700
158	Crassocephalum crepidioides (Benth.) S.Moore	Asteraceae		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark								$\sqrt{ }$		$\sqrt{ }$										600-2300
159	Cryptomeria japonica (Thunb. ex L.f.) D.Don	Cupressaceae												$\sqrt{ }$		\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark										1600-2300
160	Cupressus torulosa D.Don	Cupressaceae															$\sqrt{ }$													1900
161	Curcuma angustifolia Roxb.	Zingiberaceae															\checkmark					\checkmark								1900-2500
162	Cyanotis vaga (Lour.) Schult. \& Schult.f.	Commelinaceae							\checkmark			\checkmark	\checkmark			\checkmark				\checkmark		\checkmark								1100-2500
163	Cyathea chinensis Copel.	Cyatheaceae															\checkmark				\checkmark	\checkmark								1900-2500

Annexure V 195

$\begin{array}{\|c\|} \mathrm{Sl} . \\ \mathrm{No} \end{array}$	Botanical Name	Family	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
164	Cyathea spinulosa Wall. ex Hook.	Cyatheaceae																			$\sqrt{ }$										2200
165	Cyathula capitata Moq.	Amaranthaceae																				$\sqrt{ }$		\checkmark							2400-2700
166	Cymbidium aloifolium (L.) Sw.	Orchidaceae	\checkmark																												500
167	Cymbidium eburneum Lindl.	Orchidaceae	\checkmark																												500
168	Cymbidium iridioides D.Don	Orchidaceae								$\sqrt{ }$																					1200
169	Cymbidium longifolium D.Don	Orchidaceae													\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$												1700-2200
170	Cymbidium mastersii Griff. ex. Lindl.	Orchidaceae						$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	\checkmark															1000-1900				
171	Cymbopogon flexuosus (Nees ex Steud.) J.F. Watson	Poaceae	\checkmark		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$																			500-1500
172	Cymbopogon pendulus (Nees ex Steud.) J.F. Watson	Poaceae							$\sqrt{ }$																						1100
173	Cynodon dactylon (L.) Pers.	Poaceae					$\sqrt{ }$		\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$				\checkmark			$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	900-3300					
174	Cyperus alopecuroides Rottb.	Cyperaceae	$\sqrt{ }$		$\sqrt{ }$	\checkmark																				500-1400					
175	Cyperus compressus L .	Cyperaceae	\checkmark																	$\sqrt{ }$								$\sqrt{ }$	$\sqrt{ }$		500-3200
176	Cyperus cuspidatus Kunth	Cyperaceae																				$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$					2400-2900
177	Cyperus cyperoides (Retz.) Kuntze	Cyperaceae			$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	\checkmark			$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$				$\sqrt{ }$													700-2100
178	Cyperus difformis L.	Cyperaceae																					$\sqrt{ }$	\checkmark							2500-2700
179	Cyperus distans L.	Cyperaceae		$\sqrt{ }$	\checkmark		$\sqrt{ }$									$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$		600-3200				
180	Cyperus haspan L .	Cyperaceae														$\sqrt{ }$									$\sqrt{ }$						1800-2800
181	Cyperus longus L.	Cyperaceae	$\sqrt{ }$		$\sqrt{ }$			$\sqrt{ }$		$\sqrt{ }$				$\sqrt{ }$	$\sqrt{ }$				$\sqrt{ }$									$\sqrt{ }$			500-3100
182	Cyperus niveus Retz.	Cyperaceae																		$\sqrt{ }$				$\sqrt{ }$							2200-2700
183	Cyperus odoratus L.	Cyperaceae																											$\sqrt{ }$	$\sqrt{ }$	3100-3300
184	Cyperus rotundus L.	Cyperaceae					$\sqrt{ }$		V						$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$							900-2700
185	Cyperus squarrosus L.	Cyperaceae									$\sqrt{ }$				$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$			$\sqrt{ }$					$\sqrt{ }$		$\sqrt{ }$		1300-3200

$\left\lvert\, \begin{array}{l\|} \text { Sl. } \\ \text { No } \end{array}\right.$	Botanical Name	Family	5	6	7		8				12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
186	Cyperus tenuiculmis Boeck.	Cyperaceae																							\checkmark	$\sqrt{ }$	2600-3300					
187	Cyrtomium caryotideum (Wall. ex Hook. \& Grev.) C. Presl	Dryopteridaceae															\checkmark															1800
188	Cyrtomium hookerianum C.Chr.	Dryopteridaceae																						\checkmark	\checkmark	\checkmark		\checkmark				2500-3000
189	Daphne bholua Buch.-Ham. ex D.Don	Thymelaeaceae																\checkmark		\checkmark										\checkmark		1900-3200
190	Daphne glacialis (W.W.Sm. \& Cave) A.P. Das	Thymelaeaceae																									\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark		2800-3200
191	Daphne papyracea Wall.ex G . Don	Thymelaeaceae												\checkmark			\checkmark	$\sqrt{ }$		$\sqrt{ }$	\checkmark		$\sqrt{ }$	1500-3300								
192	Datura metel L.	Solanaceae				\checkmark	\checkmark																									800
193	Davallodes membrunulosa (Wall. ex Hook.) Copel	Davalliaceae	\checkmark	\checkmark	\checkmark			\checkmark				\checkmark																				500-1400
194	Dendrobium densiflorum Lindl.	Orchidaceae	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark																								500-1000
195	Dendrobium eriiflorum Griff.	Orchidaceae																$\sqrt{ }$														1900
196	Dendrobium hookerianum Lindl.	Orchidaceae																						\checkmark	\checkmark	\checkmark						2500-2800
197	Dendrobium longicornu Lindl.	Orchidaceae																\checkmark	\checkmark	\checkmark								\checkmark				1900-3000
198	Dendrocalamus hamiltonii T.Nees \& Arn. ex Munro	Poaceae		\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark		\checkmark																600-1800
199	Dendrocnide sinuata (Blume) Chew	Urticaceae	\checkmark																													500
200	Dennstaedtia appendiculata (Wall. ex Hook.) J. Sm	Dennstaedtiaceae											\checkmark		$\sqrt{ }$							\checkmark										1400-2400
201	Dennstaedtia scabra (Wall. ex Hook.) T. Moore	Dennsaedtiaceae																				\checkmark										2300
202	Desmodium multiflorum DC.	Leguminosae																				\checkmark										2300
203	Dichroa febrifuga Lour.	Hydrangeaceae			\checkmark	$\sqrt{ }$	\checkmark		\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark		\checkmark					$\sqrt{ }$	700-3300				
204	Dicranopteris linearis (Burm.f.) Underw.	Gleicheniaceae											\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark											1400-2300
205	Digitaria ciliaris (Retz.)	Poaceae		$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$		$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$						$\sqrt{ }$					600-2900

Annexure V 197

$\begin{array}{\|l\|} \hline \text { SI. } \\ \text { No } \end{array}$	Botanical Name	Family	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		25	27	28	29	3031	32	Range
206	Digitaria longiflora (Retz.) Pers.	Poaceae	$\sqrt{ }$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		$\sqrt{ }$	\checkmark					\checkmark		$\sqrt{ }$										500-2200
207	Digitaria sanguinalis (L.) Scop.	Poaceae			\checkmark					\checkmark								\checkmark											700-2100
208	Dioscorea bulbifera L .	Dioscoreaceae	$\sqrt{ }$	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	$\sqrt{ }$		\checkmark		$\sqrt{ }$												500-2000
209	Dioscorea deltoidea Wall. ex Griseb.	Dioscoreaceae				\checkmark	\checkmark		\checkmark														$\sqrt{ }$						800-2600
210	Dioscorea hamiltonii Hook.f.	Dioscoreaceae				\checkmark	\checkmark						\checkmark		\checkmark				$\sqrt{ }$										800-2200
211	Dioscorea oppositifolia L.	Dioscoreaceae	\checkmark																										500
212	Dioscorea pentaphylla L .	Dioscoreaceae	\checkmark	$\sqrt{ }$							\checkmark			\checkmark		$\sqrt{ }$													500-1900
213	Diplazium dilatatum Burm.f.	Athyriaceae																			\checkmark								2300
214	Diplazium esculentum (Retz.) Sw.	Athyriaceae																			\checkmark								2300
215	Diplazium muricatum Alderw.	Athyriaceae														\checkmark													1800
216	Diploknema butyracea (Roxb.) H.J.Lam	Sapotaceae					\checkmark			\checkmark																			900-1300
217	Dittoceras andersonii Hook.f.	Apocynaceae			\checkmark																\checkmark			\checkmark	$\sqrt{ }$				700-2900
218	Drepanostachyum intermedium (Munro) Keng f.	Poaceae																					\checkmark						2600
219	Drymaria cordata (L.) Willd. ex Schult.	Caryophyllaceae	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark				$\sqrt{ }$	\checkmark									500-2300
220	Drymaria villosa Schltdl. \& Cham.	Caryophyllaceae											\checkmark																1500
221	Drynaria coronans (Wall. ex Mett.) T. Moore	Polypodiaceae	$\sqrt{ }$			\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$		\checkmark	$\sqrt{ }$																500-1600
222	Drynaria propinqua (Wall .ex Mett.) J.Sm	Polypodiaceae																\checkmark	\checkmark										2000-2200
223	Drynaria quercifolia (L) J.Sm	Polypodiaceae	$\sqrt{ }$	\checkmark		\checkmark	$\sqrt{ }$	\checkmark		$\sqrt{ }$																			500-1300
224	Dryopsis apiciflora (Wall. ex Mett.) Holttum \& P.J. Edwards	Dryopteridaceae																			\checkmark		\checkmark				\checkmark	$\sqrt{ }$	2300-3300
225	Dryopteris filix-mas (L.) Schott	Dryopteridaceae			\checkmark																					\checkmark			700-3000

$\begin{array}{\|c\|} \hline \mathrm{Sl} . \\ \mathrm{No} \end{array}$	Botanical Name	Family	5	6	7	78							14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	313	32	Range
226	Dryopteris sikkimensis (Bedd.) Kuntze	Dryopteridaceae	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark									500-2500						
227	Drypetes longifolia (Burm.f.) Pax \& K.Hoffm.	Putranjivaceae					\checkmark	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark																	900-1700
228	Duabanga grandiflora (DC.) Walp.	Lythraceae							\checkmark																							1100
229	Duchesnea indica (Jacks.) Focke	Rosaceae															\checkmark											$\sqrt{ }$	\checkmark	$\sqrt{ } \sqrt{ }$	\checkmark	1800-3300
230	Edgeworthia gardneri (Wall.) Meisn.	Thymelaeaceae											\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$		\checkmark				\checkmark	\checkmark		1300-3200
231	Eeagrostis multicaulis Steud.	Poaceae				\checkmark				\checkmark	\checkmark	\checkmark														\checkmark			$\sqrt{ }$	\checkmark		800-3200
232	Ehretia acuminate R.Br.	Boraginaceae	$\sqrt{ }$		\checkmark				$\sqrt{ }$					\checkmark	\checkmark																	500-1700
233	Elaeocarpus lanceifolius Roxb.	Elaeocarpaceae							\checkmark								\checkmark															1100-1900
234	Elaeocarpus rugosus Roxb.ex G.Don	Elaeocarpaceae			\checkmark	\checkmark	\checkmark							\checkmark					\checkmark													700-2100
235	Elaphoglossum marginatum T.Moore	Lomariopsidaceae										\checkmark	$\sqrt{ }$																			1300-1500
236	Elatostema acuminatum (Poir.) Brongn.	Urticaceae														\checkmark	\checkmark		\checkmark	$\sqrt{ }$						$\sqrt{ }$						900-2800
237	Elatostema obtusum Wedd.	Urticaceae		\checkmark				\checkmark	$\checkmark \sqrt{ }$						\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark		600-3200
238	Elatostema platyphyllum Wedd.	Urticaceae													\checkmark	\checkmark		\checkmark		\checkmark												1600-2200
239	Elatostema sessile J.R.Forst. \& G.Forst	Urticaceae						\checkmark	$\sqrt{ }$				\checkmark		\checkmark							\checkmark			\checkmark							1000-2700
240	Elsholtzia eriostachya Benth.	Nyctaginaceae																												\checkmark		3100
241	Elsholtzia flava Benth.	Lamiaceae										\checkmark		\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark		\checkmark				1300-3000
242	Elsholtzia fruticosa (D.Don) Rehder	Lamiaceae																\checkmark	\checkmark				\checkmark									1900-2500
243	Emilia sonchifolia (L.) DC.	Asteraceae		\checkmark					\checkmark			\checkmark			\checkmark																	600-1700
244	Engelhardia spicata var. integra (Kurz) W.E.Manning ex Steenis	Juglandaceae	\checkmark	\checkmark					$\sqrt{ }$,		\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark		\checkmark													500-2100

Annexure V 199

Sl. No	Botanical Name	Family	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
245	Enkianthus deflexus (Griff.) C.K. Schneid.	Ericaceae																	$\sqrt{ }$												2100
246	Epegenium fuscescens Griff.	Orchidaceae																		$\sqrt{ }$					2200-2900						
247	Epipactis royleana Lindl.	Orchidaceae																			$\sqrt{ }$										2800
248	Equisetum arvense L.	Equisetaceae							$\sqrt{ }$			$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$															1100-1900
249	Eragrostis atrovirens (Desf.) Trin.	Poaceae	$\sqrt{ }$							$\sqrt{ }$				$\sqrt{ }$				$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$					500-2900
250	Eragrostis nigra Nees ex Steud.	Poaceae												$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$										1600-2400
251	Eragrostis unioloides (Retz.) Nees ex Steud.	Poaceae		$\sqrt{ }$			$\sqrt{ }$		$\sqrt{ }$					$\sqrt{ }$					$\sqrt{ }$												600-2200
252	$\begin{aligned} & \text { Eria lasiopetala (Willd.) } \\ & \text { Ormerod } \end{aligned}$	Orchidaceae	$\sqrt{ }$																												500
253	Eria stricta Lindl.	Orchidaceae	$\sqrt{ }$																												500
254	Erigeron Canadensis L.	Asteraceae							$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$																				1100-1400
255	Erigeron karvinskianus DC.	Asteraceae	$\sqrt{ }$											$\sqrt{ }$							$\sqrt{ }$										500-2400
256	Eriobotrya petiolata Hook.f.	Rosaceae																$\sqrt{ }$		$\sqrt{ }$											2000-2300
257	Erythrina arborescens W.Roxb.	Leguminosae	$\sqrt{ }$												$\sqrt{ }$		$\sqrt{ }$														500-2000
258	Erythrina stricta W.Roxb.	Leguminosae			$\sqrt{ }$						$\sqrt{ }$			$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$				$\sqrt{ }$											700-2300
259	Esmeralda cathcartii (Lindl.) Rchb.f.	Orchidaceae	$\sqrt{ }$																												500
260	Eucalyptus tereticornis Sm.	Myristicaceae	$\sqrt{ }$	$\sqrt{ }$						$\sqrt{ }$						$\sqrt{ }$															500-1900
261	Eupatorium cannabinum L.	Asteraceae	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$									500-2500									
262	Euphorbia hirta L.	Euphorbiaceae														$\sqrt{ }$															1800
263	Eurya acuminate DC.	Pentaphylacaceae					$\sqrt{ }$													$\sqrt{ }$											900-2300
264	Eurya cerasifolia (D.Don) Kobuski	Pentaphylacaceae																$\sqrt{ }$	$\sqrt{ }$						$\sqrt{ }$						2000-2800
265	Eurya japonica Thunb.	Pentaphylacaceae			$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$			$\sqrt{ }$				700-3000												

$\begin{array}{\|l\|} \mathbf{S l} . \\ \text { No } \end{array}$	Botanical Name	Family	5	6	7	8	9	10	11	12	13		15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
266	Evodia fraxinifolia (Hook.) Benth.	Rutaceae					\checkmark									\checkmark		\checkmark	\checkmark			\checkmark									900-2500
267	Exbucklandia populnea (R.Br. ex Griff.) R.W.Br.	Hamamelidaceae				\checkmark													\checkmark						\checkmark		\checkmark				800-3000
268	Ficus hirta Vahl	Moraceae	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark		$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark			\checkmark									500-2500
269	Ficus nemoralis Wall.	Moraceae																	\checkmark												2100
270	Ficus neriifolia Sm.	Moraceae												\checkmark		\checkmark		$\sqrt{ }$		\checkmark	\checkmark	\checkmark									1600-2500
271	Ficus religiosa L.	Moraceae								\checkmark																					1200
272	Ficus roxburghii Lour.	Moraceae	\checkmark					\checkmark		\checkmark																					500-1300
273	Ficus sarmentosa Buch.-Ham. ex Sm .	Moraceae												\checkmark			\checkmark	\checkmark			\checkmark										1600-2400
274	Ficus subincisa Buch.-Ham. ex Sm.	Moraceae										$\sqrt{ }$		\checkmark		\checkmark	\checkmark		\checkmark												1400-2200
275	Flemingia strobilifera (L.) W.T.Aiton	Leguminosae		\checkmark																											600
276	Fragaria daltoniana J.Gay	Rosaceae																				\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark		2400-3200
277	Fragaria nubicola (Lindl. ex Hook.) Lacaita	Rosaceae																					\checkmark								2500
278	Fragaria vesca L.	Rosaceae													\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			$\sqrt{ }$	1700-3300
279	Fraxinus floribunda Wall.	Oleaceae											$\sqrt{ }$		\checkmark		\checkmark														1500-2000
280	Galium elegans Wall. ex Roxb.	Rubiaceae																					\checkmark		\checkmark	\checkmark	\checkmark				2500-3000
281	Garuga floribunda Decne.	Burseraceae														\checkmark		\checkmark	\checkmark	\checkmark	\checkmark										1800-2400
282	Gastrochilus calceolaris (Sm.) D.Don	Orchidaceae																\checkmark													2000
283	Girardinia diversifolia (Link) Friis	Urticaceae			\checkmark						\checkmark				\checkmark		\checkmark		\checkmark				$\sqrt{ }$			\checkmark					700-2900
284	Globba clarkei Baker	Zingiberaceae											\checkmark	$\sqrt{ }$	$\sqrt{ }$																1500-1800
285	Glochidion acuminatum Müll.Arg.	Phyllanthaceae														\checkmark		\checkmark	\checkmark	\checkmark				\checkmark	\checkmark		$\sqrt{ }$	$\sqrt{ }$	\checkmark		1800-3200
286	Glochidion thomsonii (Müll.Arg.) Hook.f.	Phyllanthaceae					\checkmark				$\sqrt{ }$		\checkmark																		800-1600

Annexure V 201

	por			\|o৪	$\begin{aligned} & \hline 8 \\ & 0 \\ & \mathbf{o} \\ & \text { ón } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 80 \\ & \hline i n \end{aligned}$				$\begin{aligned} & \underset{8}{8} \\ & \frac{\infty}{1} \\ & \underset{\sim}{8} \\ & \hline \end{aligned}$						$\begin{aligned} & \hline 8 \\ & \text { O} \\ & \text { N } \\ & \text { ód } \\ & \text { O} \end{aligned}$					
ल											\bigcirc			7	$>$						
m											7										
m															7		$>$				
సे													7		7						
-											7				7					7	
N											7			7	7						
N													7	7	7						
\cdots											7										
I											7								7		
N								$?$					7			7					7
N								$?$								$?$	$?$				7
ন									7							7				7	
ले				\rightarrow					\geq							7		7	7		
9					7											7				7	
\cdots													7	7						7	
N					7					7						7				$>$	
$\stackrel{1}{\square}$										$>$						7				7	
10					7														7	7	
\pm									7	7											
\cdots			$>$		$>$				7	7											
N							7		7	7											
\exists																					
9		$?$	\rightarrow						$>$												
9		$>$			7																
∞					7		7												$>$		
\cdots																					
\bigcirc																					
in	$>$				7	$>$						7									
宏										$\begin{array}{\|l} \stackrel{\ddot{\dddot{y}}}{\ddot{\tilde{0}}} \\ \text { O} \\ \hline \end{array}$						$\begin{array}{\|l\|l} \ddot{0} \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$					
	$\begin{array}{\|c} \mid 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$																	Holboellia latifolia Wall.		0 0 0 0 0 0 0 0 0 0 0 0 0 0	
家 8	$\dot{\sim}_{\infty}^{\infty}$	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \hline \end{gathered}$	$\underset{\sim}{\infty}$	io	$\bar{\lambda}$	İ	N্নি	$$	$1 \stackrel{n}{2}$	$\begin{aligned} & \text { io } \\ & \hline \end{aligned}$	$\hat{\mathrm{N}}$	$\underset{\substack{\infty \\ \cdots \\ \hline}}{ }$	ì	$\begin{aligned} & \mathrm{P} \\ & \hline 1 \\ & \hline \end{aligned}$	$\underset{m}{\mid \stackrel{\rightharpoonup}{m}}$	Noid	ôom	$\underset{~ ৷ ~}{\text { ৷ }}$	$\underset{\sim}{n}$	\|o	\|è

Annexure V 202

$\begin{aligned} & \text { 荡 } \\ & \stackrel{1}{\tilde{\sim}} \end{aligned}$		$\begin{aligned} & \hline 8 \\ & \hline i n \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & \vdots \\ & \hline 8 \\ & \hline 8 \end{aligned}$		$\begin{array}{\|c\|} \hline 8 \\ 0 \\ \underset{1}{2} \\ \stackrel{1}{2} \\ \end{array}$		$\begin{aligned} & \underset{1}{8} \\ & \text { N } \\ & \underset{\sim}{8} \\ & \underset{\sim}{8} \\ & \hline \end{aligned}$	$$	\|o	$\begin{aligned} & \frac{8}{8} \\ & \frac{n}{8} \\ & \frac{8}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{8} \\ & \underset{y}{8} \\ & \underset{\sim}{8} \\ & \hline \end{aligned}$		$\begin{aligned} & 8 \\ & \hline 0 \\ & 1 \\ & 1 \\ & \hline 8 \\ & \hline 8 \\ & \hline 1 \end{aligned}$				$\begin{aligned} & 8 \\ & \frac{8}{0} \\ & \frac{1}{8} \\ & 8 \end{aligned}$			$\begin{aligned} & \mathrm{Q} \\ & \text { in } \end{aligned}$	8 8 0 8 0 1
m						$>$								\bigcirc				$>$			
m							7											7			
m				7		7															
ते						7															$>$
－														$>$							
へ					7		$>$														
\cdots					7	$>$			7										$>$		
n								7				$>$	$>$							7	
I					7							7	7								
N	$?$				7	7	7												7		
N	7			7	7		7						$>$		7						
N																$?$					
ले	7													7		7					
9	7							7													
\cdots	7						7	$\stackrel{ }{7}$					7	7							
\bigcirc	\bigcirc				\bigcirc											\bigcirc					
$\underline{\square}$	7													$>$		$?$					7
12					$>$											7		7			7
\pm					7					7				$>$		7	$>$	7			
\cdots										7	7			7			7				
I					7						7			7			$>$				
\square					7					7				7				7			
9					7					$>$				7			7	7			
9					5									5				7			
∞			$>$																		
\bigcirc			$?$		$>$									$>$			7	$>$			
6								7									7	7			
in		7												7				$?$			
公																		$\begin{aligned} & \stackrel{\ddot{0}}{\stackrel{0}{0}} \\ & \stackrel{\tilde{O}}{2} \\ & \hline \end{aligned}$			
								$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ . ~ \\ 0 \\ 0 \\ 0 \\ \\ \hline \end{array}$									$\overparen{0}$ 0 0 0 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
家 8	∞	俞	$\frac{1}{\mathrm{~m}}$	$\stackrel{\rightharpoonup}{\mathrm{m}}$	$\frac{\mathrm{N}}{\mathrm{~m}}$	$\frac{m}{m}$	$\frac{ \pm}{m}$	$\frac{n}{m}$	$\frac{1}{m}$	$\frac{1}{\mathrm{~m}}$	$\frac{\infty}{m}$	$\frac{1}{\mathrm{~m}}$		ন্লে	$\underset{\sim}{N}$	$\underset{\text { N}}{\substack{n}}$	$\stackrel{\text { c }}{\text { c }}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \mathbf{N} \\ & \hline \mathbf{m} \end{aligned}$	त	cic

Annexure V 203

$\begin{array}{\|l\|} \hline \mathrm{Sl} . \\ \mathrm{No} \\ \hline \end{array}$	Botanical Name	Family	5	6	7	8	9	10		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
329	Juncus prismatocarpus R.Br.	Juncaceae																					\checkmark								2500
330	Juniperus procera Hochst.	Cupressaceae															\checkmark		\checkmark								$\sqrt{ }$		\checkmark		1900-3200
331	Juniperus recurva Buch.-Ham. ex D.Don	Cupressaceae																								\checkmark			\checkmark	$\sqrt{ }$	2800-3300
332	Knema cinerea var. glauca (Blume) Y.H. Li	Myristicaceae				\checkmark																									800
333	Lantana camara L.	Verbenaceae		\checkmark			\checkmark			\checkmark	\checkmark	\checkmark																			600-1500
334	Laphangium affine (D.Don) Tzvelev	Asteraceae																												$\sqrt{ }$	3200-3300
335	Laportea bulbifera (Siebold \& Zucc.) Wedd.	Urticaceae	$\sqrt{ }$			$\sqrt{ }$									\checkmark																500-1800
336	Lasiococca symphyllifolia (Kurz) Hook. f.	Euphorbiaceae	\checkmark			\checkmark																									500-800
337	Lecanthus peduncularis (Wall.ex Royle) Wedd.	Urticaceae	$\sqrt{ }$	\checkmark		\checkmark				\checkmark				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$			\checkmark	\checkmark				500-3000
338	Leea macrophylla Roxb. ex Hornem.	Vitaceae			\checkmark	\checkmark	\checkmark																								700-1000
339	Lemmaphyllum rostratum (Bedd.) Tagawa	Polypodiaceae								$\sqrt{ }$	$\sqrt{ }$	\checkmark																			1200-1500
340	Lepidagathis incurve Buch.Ham. ex D. Don	Acanthaceae															\checkmark														1900
341	Lepisorus clathretus (C.B.Clarke) Ching	Polypodiaceae																									\checkmark	\checkmark			2900-3100
342	Lepisorus loriformis (Wall. ex Mett.) Ching	Polypodiaceae																		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		2200-3200
343	Lepisorus mehrae Fraser-Jenk.	Polypodiaceae														\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$												1800-2200
344	Lepisorus sublinearis (Baker) Ching	Polypodiaceae																	\checkmark												2100
345	Leptodermis kumaonensis R.Parker	Rubiaceae														\checkmark				\checkmark											1800-2300
346	Leucas lanata Benth.	Lamiaceae		\checkmark			\checkmark			\checkmark					$\sqrt{ }$	\checkmark	\checkmark				\checkmark	$\sqrt{ }$		\checkmark	\checkmark		\checkmark				600-3000
347	Leucosceptrum canum Sm.	Lamiaceae														\checkmark			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	$\sqrt{ }$				1800-3000

Annexure V 204

$\begin{array}{\|l\|} \hline \text { SI. } \\ \text { No } \\ \hline \end{array}$	Botanical Name	Family	5	6	7	8	9		11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
348	Leucostegia truncata (D.Don) Fraser-Jenk.	Davalliaceae	\checkmark	\checkmark																											500-700
349	Lindenbergia grandiflora (Buch.-Ham.ex D. Don) Benth.	Plantaginaceae					\checkmark		$\sqrt{ }$																						900-1200
350	Lindsaea odorata Roxb.	Lindsaeaceae														\checkmark			\checkmark						$\sqrt{ }$						1800-2800
351	Liparis resupinata Ridl.	Orchidaceae											\checkmark	$\sqrt{ }$			\checkmark	\checkmark													1500-2100
352	Liparis viridifolia (Blume) Lindl.	Orchidaceae								\checkmark	$\sqrt{ }$	\checkmark												1200-2200							
353	Lithocarpus elegans (Blume) Hatus. ex Soepadmo	Fagaceae																						$\sqrt{ }$							2600
354	Lithocarpus fenestratus (Roxb.) Rehder	Fagaceae					\checkmark					\checkmark	$\sqrt{ }$	$\sqrt{ }$																	900-1700
355	Lithocarpus pachyphyllus (Kurz) Rehder	Fagaceae																				$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark				2400-3000
356	Litsea albescens (Hook.f.) D.G Long	Lauraceae															\checkmark		$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark								1900-2600
357	Litsea cubeba (Lour.) Pers.	Lauraceae					\checkmark								\checkmark					\checkmark				\checkmark							900-2600
358	Litsea monopetala (Roxb.) Pers.	Lauraceae				\checkmark																									800
359	Litsea salicifolia (J.Roxb. ex Nees) Hook.f.	Lauraceae					\checkmark	\checkmark	$\sqrt{ }$									$\sqrt{ }$											\checkmark		900-3200
360	Litsea sericea (Wall. ex Nees) Hook.f.	Lauraceae																	$\sqrt{ }$	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark			2100-3100
361	Lonicera acuminate Wall.	Caprifoliaceae																					\checkmark	\checkmark							2500-2700
362	Loxogramme cuspidata (Zenker) M.G. Price	Polypodiaceae													\checkmark	$\sqrt{ }$															1700-1900
363	Loxogramme involuta (D.Don) C.Presl	Polypodiaceae		\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark														600-2000
364	Lycopodium clavatum L.	Lycopodiaceae															\checkmark			\checkmark		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark	1900-3300
365	Lygodium flexuosum (L.) Sw.	Lygodiaceae			\checkmark	$\sqrt{ }$																									700-900
366	Lyonia ovalifolia (Wall.) Drude	Ericaceae				\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$										$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	800-3300

Annexure V 205

		$\begin{aligned} & 8 \\ & \frac{8}{1} \\ & 8 \\ & \hline 8 \end{aligned}$			$\frac{\stackrel{Q}{\mathrm{~N}}}{}$								$\frac{8}{\sim}$	$\begin{aligned} & \underset{\sim}{8} \\ & \stackrel{1}{1} \\ & \underset{\sim}{2} \end{aligned}$				স্ষু
N																		
m									7									
－							7		7									
ते			7			$>$			7							7		$>$
N								7	7								$>$	
へ	7		7		7				7			7					7	
N			7	17		7	7	7	7								7	
\cdots						7	7		7									
$\stackrel{7}{\text { N }}$			7	7			7	7	7			$>$			7			
へ							7											
त			7				7	7							7	7		
へ	$>$		7	7		7		7	$?$			7	7		7			
సె			7					7										
2			7			7				7								
\cdots			$>$			7		7		$?$		7			7			
N								7			7							
\cdots		7						7							$>$			
10		7						7			$>$					7		
\pm		7						7										
\cdots								7			7							
\sim		$>$						7						$>$				
\square		7						7										
$\underline{-}$		7						7										
9		7						7						7				
∞		7						7						7				
－								5										
6		7																
in								7										
								\qquad										
जं ${ }^{\circ}$	－	$\stackrel{\infty}{\infty}$	olo	$\underset{\sim}{9}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\underset{\sim}{N}$	$\stackrel{m}{\mathrm{~m}}$	$\underset{m}{\text { t }}$	$\frac{n}{n}$	$\begin{aligned} & \frac{0}{m} \\ & \hline \end{aligned}$	$\underset{\sim}{N}$	$\frac{\infty}{\infty}$	$\frac{2}{2}$	$\underset{\sim}{\infty}$	\bar{m}	$\underset{\sim}{\infty}$	$\underset{m}{\infty}$	$\underset{\sim}{\prime-}$

Sl. No	Botanical Name	Family	5	6	$6 \mid 7$		8 9					13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	303	32	Range
385	Mallotus nepalensis Müll.-Arg.	Euphorbiaceae											\checkmark												\checkmark			\checkmark			1400-3000
386	Mallotus philippensis (Lam.) Müll.-Arg.	Euphorbiaceae	\checkmark				\checkmark		\checkmark										\checkmark												500-2100
387	Mallotus roxburghianus Müll.Arg.	Euphorbiaceae			\checkmark	\checkmark									$\sqrt{ }$	\checkmark															700-1800
388	Mallotus tetracoccus (Roxb.) Kurz	Euphorbiaceae					\checkmark			\checkmark						\checkmark															900-1800
389	Marsilea minuta L .	Marsileaceae																					\checkmark								2400
390	Meconopsis simplicifolia (D.Don) Walp.	Papaveraceae																							\checkmark						2600
391	Meizotropis buteiformis Voigt	Leguminosae									\checkmark																				1200
392	Melastoma malabathricum L.	Melastomataceae			\checkmark	\checkmark	,		$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark							700-2600
393	Meliosma dilleniifolia (Wight \& Arn.) Walp.	Sabiaceae																\checkmark	$\sqrt{ }$	\checkmark											1900-2200
394	Meliosma pinnata (Roxb.) Maxim.	Sabiaceae																					\checkmark							\checkmark	2400-3300
395	Meliosma simplicifolia (Roxb.) Walp.	Sabiaceae					\checkmark							\checkmark		$\sqrt{ }$	\checkmark	\checkmark													900-2000
396	Melochia corchorifolia L.	Malvaceae					\checkmark						\checkmark								$\sqrt{ }$										900-2300
397	Microlepia strigosa (Thunb.) C. Presl	Dennstaedtiaceae															\checkmark				\checkmark		$\sqrt{ }$								1800-2500
398	Micropera manni (Hook.f.)Tang \& F.T. Wang	Orchidaceae		\checkmark																											600
399	Microsorum punctatum (L.) Copel	Polypodiaceae			\checkmark																										700-1300
400	Mikania micrantha Kunth	Asteraceae	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark											\checkmark						\checkmark	\checkmark				500-2900
401	Mimosa himalayana Gamble	Leguminosae					\checkmark			$\sqrt{ }$	\checkmark					$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$				$\sqrt{ }$									900-2400
402	Morus alba L .	Moraceae	$\sqrt{ }$	\checkmark	\checkmark	\checkmark			\checkmark		$\sqrt{ }$																				500-1300
403	Morus indica L .	Moraceae															$\sqrt{ }$														1800
404	Mucuna macrocarpa Wall.	Leguminosae																							\checkmark	\checkmark	$\sqrt{ }$				2600-2900
405	Musa xparadisiaca L.	Musaceae													\checkmark																1600

Annexure V 207

			$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{N} \\ & \hline \end{aligned}$			∞				8	$\underset{\sim}{2}$		$\underset{\sim}{\underset{\sim}{c}}$		$\begin{aligned} & \underset{\sim}{2} \\ & \frac{2}{2} \\ & \underset{\infty}{1} \\ & \hline \end{aligned}$		ুু			$\begin{aligned} & \hline 8 \\ & \frac{8}{8} \\ & \frac{1}{8} \\ & i n \end{aligned}$	
rer																					
m					\geq																
m																7					
ते				7	7											7					
－					7									7		7					
N					7									7		7					
\cdots			$>$		7									7							
－	$>$				7									7				7			
\＃	7				$?$			7					$?$	7				7	7		
N		7		7																	
N	7	7					$?$					$?$									
\cdots	7																	7			7
సे					7													7	7		
9	$>$				7			7										7	7		
$\stackrel{\infty}{-1}$	7				7			7										7			7
\bigcirc	$>$				7		$>$									$>$		7	7	$>$	7
$\underline{\square}$	7				7							$>$						7			7
19	7				7				7									7	7	7	$>$
\pm	7				7				7							7		7		7	7
9	7				7				7									7		7	
O	$>$				7						$>$				7	7		7		7	
I	\rangle				7													7		7	7
9	7				7											7		7		$>$	7
9	5				7										7	7	5	5	7	7	
∞	7				7	5									7	7		7	7	7	7
\cdots	7				7											7		7	7	$>$	7
6	7				7					7						7				7	7
in	7				7													7		7	7
蘦																$\begin{array}{\|l\|l} \ddot{0} \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$					
					$\begin{aligned} & 0 \\ & \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ 0.0 \\ 0 \\ 0} \end{aligned}$																
जं ${ }^{\text {a }}$	$\begin{aligned} & 6 \\ & \hline \% \\ & \hline \end{aligned}$	人	$\begin{array}{\|l\|} \infty \\ 子 \\ 子 \end{array}$	合	$\frac{9}{7}$	\exists	$\underset{\mathrm{F}}{\mathrm{~F}}$	$\frac{9}{7}$	$\underset{子}{7}$	$\frac{n}{7}$	$\frac{7}{7}$	$\overline{7}$	$\frac{\infty}{7}$	$\frac{9}{7}$	$\begin{array}{\|c} \hline \underset{\text { IN}}{2} \\ \hline \end{array}$	$\underset{\text { I }}{ }$	$\begin{array}{\|c\|c\|} \hline \text { I } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \hline \end{aligned}$	$$		－

$\begin{aligned} & \text { 唯 } \\ & \underset{\sim}{\approx} \end{aligned}$			$\begin{aligned} & \hline \stackrel{8}{\mathrm{o}} \mathrm{p} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \frac{2}{2} \\ & \vdots 8 \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \\ & \text { N } \\ & \text { ó } \\ & \text { Ǹ } \end{aligned}$	8	8		$\begin{aligned} & \mathrm{O} \\ & \underset{N}{2} \\ & \hat{\delta} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \text { n } \\ & \underset{\sim}{8} \\ & \underset{n}{2} \end{aligned}$	\|ৃ⿱宀八犬		$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { ה } \\ & \text { ód } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { din } \\ & \text { d} \\ & \text { s} \\ & \text { din } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{0} \\ & \hline \end{aligned}$	ষ্ন		$\stackrel{8}{\approx}$		
ल										7										
m														7						
¢			7																	
సे										7				$>$						
－														7						
へ										$?$				$>$					7	$>$
N										7					7		7		7	
\cdots										7		7		7			7			7
A		7						7		7			7	7			$>$		7	$>$
\cdots																				
స								$>$		7			$>$	7		7			7	
त		$>$			7												7			7
ले	7	\geq			7				7		7						7			7
9	$>$							7												
∞								7												
N	7							7										7		
\cdots	7							7									7			$>$
12	7									7		$>$					7			
\pm								7									7			
\cdots																	7			
$\underset{\sim}{7}$				$>$					$>$								7			
I																	7			
9				$>$		7	$>$		$>$								$>$			
9		$>$		$>$					$>$											
∞									7											
－				$>$																7
6				5													7			
in				7					$>$											
\mid						$\begin{array}{\|l} \ddot{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ 0 \\ \hline \end{array}$							$\begin{aligned} & \ddot{\ddot{y}} \\ & \stackrel{\ddot{\tilde{W}}}{0} \\ & \underset{0}{0} \\ & \stackrel{0}{2} \\ & 0 \\ & \hline \end{aligned}$					$\begin{aligned} & \stackrel{y}{\ddot{0}} \\ & \stackrel{0}{\tilde{E}} \\ & \stackrel{0}{0} \\ & \stackrel{0}{2} \\ & \frac{0}{0} \\ & \hline \end{aligned}$		
	$\begin{array}{\|c} \hline \overline{0} \\ 0 \end{array}$					宗														
\％ 8	İ	$\underset{\substack{\infty \\ \underset{子}{2} \\ \hline}}{ }$	$\stackrel{\rightharpoonup}{\mathrm{y}}$	$\underset{\sim}{\underset{子}{2}}$	$\underset{子}{\underset{子}{\prime}}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\prime}$	$\begin{array}{\|l\|} \hline \stackrel{y}{*} \\ \hline \end{array}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\stackrel{\rightharpoonup}{\gamma}}$		$\begin{array}{\|l\|} \hline \infty \\ \underset{子}{2} \\ \hline \end{array}$	$\underset{\Im}{\stackrel{\rightharpoonup}{子}}$	18	$\overline{7}$	$\underset{~ I ~}{I}$	\mathfrak{F}	$1 寸$	夺	10

Annexure V 209

$\begin{array}{\|l\|} \hline \text { Sl. } \\ \text { No } \\ \hline \end{array}$	Botanical Name	Family	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
447	Persicaria lapathifolia (L.) Delarbre	Polygonaceae			$\sqrt{ }$								$\sqrt{ }$	$\sqrt{ }$					$\sqrt{ }$						\checkmark			\checkmark	$\sqrt{ }$		700-3200
448	Persicaria nepalensis (Meisn.) Miyabe	Polygonaceae																	$\sqrt{ }$			$\sqrt{ }$			$\sqrt{ }$						2100-2800
449	Persicaria polystachya Opiz	Polygonaceae													V	V	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	\checkmark					1700-2900
450	Persicaria tinctoria (Aiton) H.Gross	Polygonaceae							$\sqrt{ }$			$\sqrt{ }$		$\sqrt{ }$																	1100-1700
451	Persicaria vivipara (L.) Ronse Decr.	Polygonaceae																					\checkmark		\checkmark		$\sqrt{ }$				2500-3000
452	Phalaenopsis mannii Rchb.f.	Orchidaceae	$\sqrt{ }$																												500
453	Phegopteris hexagonoptera (Michx.) Fée	Thelypteridaceae														$\sqrt{ }$				$\sqrt{ }$		$\sqrt{ }$				$\sqrt{ }$		\checkmark			1800-3100
454	Phlebodium aureum (L.) Sm.	Polypodiaceae	$\sqrt{ }$			$\sqrt{ }$																									500-900
455	Pholidota articulate Lindl.	Orchidaceae				\checkmark	$\sqrt{ }$		\checkmark																						800-1200
456	Pholidota imbricate Lindl.	Orchidaceae						$\sqrt{ }$											$\sqrt{ }$												1000-2200
457	Phyllanthus emblica L.	Phyllanthaceae																											$\sqrt{ }$		3100
458	Physalis divaricata D. Don	Solanaceae																			$\sqrt{ }$						$\sqrt{ }$				2300-3000
459	Pilea approximata CB.Clarke	Urticaceae																						$\sqrt{ }$						$\sqrt{ }$	2600-3300
460	Pilea bracteosa Wedd.	Urticaceae																		$\sqrt{ }$											2200
461	Pilea glaberrima (Blume) Blume	Urticaceae		\checkmark		$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$		$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark		$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	\checkmark		\checkmark					$\sqrt{ }$			600-3100
462	Pilea scripta (Buch.-Ham. ex D. Don) Wedd.	Urticaceae																		$\sqrt{ }$	\checkmark	$\sqrt{ }$									2200-2500
463	Pilea ternifolia Wedd.	Urticaceae																						$\sqrt{ }$					\checkmark	$\sqrt{ }$	2600-3300
464	Pilea umbrosa Blume	Urticaceae												\checkmark		\checkmark	$\sqrt{ }$			$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$			$\sqrt{ }$	\checkmark			1600-3100
465	Piper betleoides C.DC.	Piperaceae	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	\checkmark		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$						$\sqrt{ }$						500-2800
466	Piper suipigua D.Don	Piperaceae																	$\sqrt{ }$	$\sqrt{ }$						$\sqrt{ }$					2100-2800
467	Piper boehmeriifolium (Miq.) Wall. ex C. DC	Piperaceae														$\sqrt{ }$		\checkmark				$\sqrt{ }$				$\sqrt{ }$					1800-2900

$\begin{array}{\|l\|} \hline \text { Sl. } \\ \text { No } \\ \hline \end{array}$	Botanical Name	Family	5	6	7	8		10	111	112	12			15	16	17	18	19	20	21	22	23	24	25	26	28	29	30	31	32	Range
468	Plagiogyria pycnophylla (Kunze) Mett.	Plagiogyriaceae														$\sqrt{ }$				$\sqrt{ }$											1700-2200
469	Plantago asiatica subsp. erosa (Wall.) Z. Yu Li	Plantaginaceae	\checkmark		\checkmark	\checkmark		\checkmark						\checkmark		$\sqrt{ }$		\checkmark	$\sqrt{ }$	$\sqrt{ }$											500-2200
470	Plantago depressa Willd.	Plantaginaceae																			\checkmark			\checkmark	\checkmark	\checkmark		\checkmark			2200-3100
471	Platanthera arcuata Lindl.	Orchidaceae																						\checkmark							2500
472	Plectranthus barbatus Andrews	Lamiaceae															\checkmark				\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		1800-3200
473	Pleione humilis (Sm.) D.Don	Orchidaceae																			\checkmark						\checkmark	\checkmark			2200-3100
474	Pleione praecox (Sm.) D.Don	Orchidaceae																									\checkmark				2900
475	Poa annиa L.	Poaceae															\checkmark				\checkmark							\checkmark			1800-3100
476	Podocarpus neriifolius D.Don	Podocarpaceae	\checkmark																												500
477	Podochilus cultratus Lindl.	Orchidaceae			\checkmark																										700
478	Pogonatherum crinitum (Thunb.) Kunth	Poaceae				\checkmark	$\sqrt{ }$			\checkmark						\checkmark		\checkmark		\checkmark								\checkmark			800-3100
479	Pogonatherum paniceum (Lam.) Hack	Poaceae	\checkmark			$\sqrt{ }$	$\sqrt{ }$		\checkmark	\checkmark			\checkmark																		500-1500
480	Pogostemon benghalensis (Burm.f.) Kuntze	Lamiaceae							\checkmark																						1100
481	Pogostemon fraternus Miq.	Lamiaceae																			\checkmark		\checkmark								2200-2500
482	Polygonum molle D. Don	Polygonaceae														$\sqrt{ }$	$\sqrt{ }$				\checkmark		\checkmark		$\sqrt{ } \sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	1700-3300
483	Polygonum runcinatum Buch.Ham.ex D Don	Polygonaceae	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		500-3200
484	Polypodiodes amoena (Wall.ex Mett.) Ching	Polypodiaceae												\checkmark						\checkmark											1500-2200
485	Polypodium polypodioides (L.) Watt	Polypodiaceae															\checkmark						\checkmark								1800-2400
486	Polystichum acrostichoides (Michx.) Schott	Dryopteridaceae																					$\sqrt{ }$	\checkmark							2400-2600
487	Polystichum lentum (D. Don) T. Moore	Dryopteridaceae	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	\checkmark		\checkmark		$\sqrt{ }$	$\sqrt{ }$		500-3200

		$\begin{aligned} & \hline 8 \\ & \frac{8}{2} \\ & \frac{1}{8} \\ & \hline \end{aligned}$	$\stackrel{8}{2}$		\|o্ট				$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { N } \\ & \text { on } \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$				$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{2}$				\|ön	$\begin{aligned} & \text { O} \\ & 0 \\ & \text { N} \\ & \text { o } \\ & \text { N} \\ & \hline \end{aligned}$			৪৪্ণী	
r									7	7				7						7		
m												$>$			7					7		
m				7	7				7			$>$			7					7		
సे											$>$				7					7	7	
－						$?$			7	\geq										7		
N				7		7					7		$>$		7				7	7		
N				\bigcirc		7	$>$	7			$>$				1					7		
N										7	$>$				7					7		
I																		7		$>$		
N				7			$>$													7		
N						$?$	7	7									\rightarrow	7	7	7		
$\stackrel{\rightharpoonup}{\text { N }}$							7							7						$>$		
ले						7	7							7						7		7
9							7							7					$>$	7		7
$\stackrel{\infty}{\sim}$							7							7	\bigcirc				7	7		
N				\bigcirc		$?$	$>$													7		
						7	7	$>$						7						7		7
19							7							7		$>$				7		7
士	7	7					7	7											7	7		$>$
\cdots	7	7						7												7		7
O	7	7					7							$>$						7		7
I	7	7					7	7						$?$						7		7
9	$>$						7	7						7						7		7
9		7				7	7	7						7						7		
∞		$>$					7							7						$>$		7
\cdots			$>$				7									$>$				7		7
6							7													7		7
in	7						7	7												7		7
蘦		$$											$\begin{array}{\|l} \mathscr{O} \\ \ddot{0} \\ \underset{\ddot{W}}{0} \\ 0 \\ 0 \end{array}$									免
	$\begin{aligned} & \text { In } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$												$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.3 \\ & 0.3 \\ & 0 \\ & 0 \end{aligned}$							en		
嫁 8	$\underset{+}{\infty}$	$\stackrel{\rightharpoonup}{\stackrel{\infty}{+}}$	$\stackrel{\rightharpoonup}{\mathrm{q}}$	$\overline{\vec{q}}$	$\underset{\sigma}{\prime 2}$	$\underset{q}{9}$			$\begin{array}{r} 9 \\ \hline \stackrel{子}{9} \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{\mathrm{F}}$		产	$\begin{aligned} & \hline 8 \\ & \hline 8 \\ & \hline \end{aligned}$	$\overline{\bar{n}}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{n} \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & i n \\ & \hline \end{aligned}$	$\underset{i}{i}$	$\begin{aligned} & n \\ & \stackrel{n}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { o} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \hat{i} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & i n \\ & n \\ & \hline \end{aligned}$	会

Annexure V 212

$\begin{aligned} & \hline \text { Sl. } \\ & \text { No } \\ & \hline \end{aligned}$	Botanical Name	Family	5	6	7	8	9			12	13		15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	$30 \mid 31$	32	Range
510	Pteris linearis Poir.	Pteridaceae								$\sqrt{ }$	\checkmark	$\sqrt{ }$		$\sqrt{ }$	\checkmark				\checkmark											1200-2200
511	Pteris longipes D. Don	Pteridaceae										\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$		\checkmark	$\sqrt{ }$					$\sqrt{ }$	\checkmark		\checkmark			1400-3000
512	Pteris scabririgens FraserJenk., S.C. Verma \& T.G. Walker	Pteridaceae																				\checkmark	\checkmark							2400-2600
513	Pteris spinescens C. Presl	Pteridaceae																										$\sqrt{ }$	\checkmark	3100-3300
514	Pteris wallichiana J. Agardh	Pteridaceae						\checkmark				\checkmark														\checkmark				1000-2900
515	Pyrrosia costata (C.Presl) Tagawa \& K.Iwats.	Polypodiaceae	\checkmark	\checkmark				\checkmark		$\sqrt{ }$	\checkmark																			500-1400
516	Pyrrosia flocculosa (D.Don) Ching	Polypodiaceae				\checkmark																								800
517	Pyrrosia lanceolata (L.) Farw.	Polypodiaceae	\checkmark	\checkmark	\checkmark																									500-800
518	Pyrrosia mannii (Giesenh.) Ching	Polypodiaceae	\checkmark		\checkmark	\checkmark					\checkmark		\checkmark																	500-1600
519	Pyrrosia porosa (C.Presl) Hovankamp	Polypodiaceae				\checkmark								\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$												800-2100
520	Pyrularia edulis (Wall.) A.DC.	Santalaceae																					\checkmark							2500
521	Quercus glauca Thunb.	Fagaceae				\checkmark	\checkmark	\checkmark		\checkmark		\checkmark			\checkmark		\checkmark													800-2000
522	Quercus lamellose Sm.	Fagaceae														\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$		1800-3100				
523	Quercus lanata Sm.	Fagaceae						\checkmark										\checkmark												1000-2100
524	Quercus laurifolia Michx.	Fagaceae																	\checkmark					\checkmark						2100-2700
525	Quercus lineata Blume	Fagaceae				$\sqrt{ }$	\checkmark		\checkmark	$\sqrt{ }$					\checkmark				\checkmark	\checkmark	\checkmark		$\sqrt{ }$	$\sqrt{ }$	\checkmark					800-2800
526	Ranunculus laetus Wall. ex Hook.f. \& J.W. Thomson	Ranunculaceae																			\checkmark									2300
527	Reevesia pubescens Mast.	Malvaceae	\checkmark					\checkmark		$\sqrt{ }$			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$			\checkmark							500-2600
528	Remusatia hookeriana Schott	Araceae										\checkmark	$\sqrt{ }$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark											1400-2200
529	Remusatia pumila (D.Don) H.Li \& A.Hay	Araceae														\checkmark	\checkmark													1800-2000
530	Rhamnus napalensis (Wall.) M.A. Lawson	Rhamnaceae	\checkmark	\checkmark		\checkmark												\checkmark												500-2100

Annexure V 213

$\begin{array}{\|l\|} \hline \text { Sl. } \\ \text { No } \\ \hline \end{array}$	Botanical Name	Family	5	6	7	8		1011	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
531	Rhaphidophora decursiva (Roxb.) Schott	Araceae							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark																1200-1800
532	Rhododendron anthopogon D. Don	Ericaceae																								\checkmark				2900
533	Rhododendron arboretum Sm.	Ericaceae																$\sqrt{ }$							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2100-3300
534	Rhododendron barbatum Wall. ex G. Don	Ericaceae																$\sqrt{ }$			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2100-3300
535	Rhododendron campylocarpum Hook.f.	Ericaceae																									$\sqrt{ }$			3000
536	Rhododendron dalhousieae Hook.f.	Ericaceae																											\checkmark	3300
537	Rhododendron falconeri Hook.f.	Ericaceae																						\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	2700-3300
538	Rhododendron fulgens Hook.f.	Ericaceae																										\checkmark	\checkmark	3100-3300
539	Rhododendron griffithianum Wight	Ericaceae																				\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	2500-3300
540	Rhododendron hodgsonii Hook.f.	Ericaceae																				$\sqrt{ }$	\checkmark	$\sqrt{ }$		\checkmark	$\sqrt{ }$	\checkmark		2500-3200
541	Rhododendron thomsonii Hook.f.	Ericaceae																								\checkmark	\checkmark	\checkmark	\checkmark	2900-3300
542	Rhododendron triflorum Hook.f.	Ericaceae																	\checkmark		$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$			\checkmark	\checkmark		2200-3200
543	Rhododendron vaccinioides Hook.	Ericaceae																				$\sqrt{ }$	\checkmark		\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	2500-3300
544	Rhus succedanea L.	Anacardiaceae									$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	\checkmark	$\sqrt{ }$												1400-2200
545	Rohdea nepalensis (Raf.) N.Tanaka	Asparagaceae						\checkmark			\checkmark	\checkmark							\checkmark				\checkmark	\checkmark		\checkmark	\checkmark			1100-3100
546	Rubia manjith Roxb. ex Fleming	Rubiaceae								\checkmark		$\sqrt{ }$	$\sqrt{ }$				$\sqrt{ }$		\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark			\checkmark	1300-3300
547	Rubus acuminatus Sm.	Rosaceae													\checkmark				$\sqrt{ }$											1800-2300
548	Rubus calycinoides Kuntze	Rosaceae				\checkmark		$\sqrt{ }$								\checkmark					$\sqrt{ }$		\checkmark					\checkmark		800-3200
549	Rubus ellipticus Sm.	Rosaceae				\checkmark		\checkmark	\checkmark		$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$		$\sqrt{ }$	\checkmark	$\sqrt{ }$			\checkmark	\checkmark		\checkmark	800-3300

Annexure V 214

SI.	Botanical Name	Family																				26		28				Range
550	Rubus fragarioides Bertol.	Rosaceae																	\checkmark									2300
551	Rubus insignis Hook.f.	Rosaceae						\checkmark V				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark						\checkmark	900-3300
552	Rubus kumaonensis N.P. Balkr.	Rosaceae											\checkmark	\checkmark		\checkmark	\checkmark											1600-2200
553	Rubus lineatus Reinw.ex Blume	Rosaceae					\checkmark							\checkmark								\checkmark						900-2700
554	Rubus nepalensis (Hook.f.) Kuntze	Rosaceae		\checkmark																\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			600-3000
555	Rubus niveusThunb.	Rosaceae																				\checkmark						2600
556	Rubus phengodes Focke	Rosaceae						\checkmark		\checkmark	\checkmark						\checkmark	\checkmark						\checkmark	\checkmark	\checkmark		1100-3200
557	Rubus rugosus Sm.	Rosaceae					\checkmark																					900
558	Rubus splendidissimus H.Hara	Rosaceae																							\checkmark	\checkmark		3000-3200
559	Rumex nepalensis Spreng.	Polygonaceae														\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	\checkmark				1900-2900
560	Sambucus javanica Blume	Adoxaceae								\checkmark																		1300
561	Sapindus rarak DC.	Sapindaceae						\checkmark																				1000
562	Satyrium nepalense D.Don	Orchidaceae								\checkmark				\checkmark														1300-1800
563	Saurauia fasciculate Wall.	Actinidiaceae					\checkmark		\checkmark	\checkmark								\checkmark			\checkmark				\checkmark			900-3000
564	Sauropus androgynus (L.) Merr.	Euphorbiaceae		\checkmark																								600
565	Schima wallichii Choisy	Theaceae		$\sqrt{ }$	\checkmark	\checkmark		$\checkmark \checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark											500-2200
566	Schisandra grandiflora (Wall.) Hook.f. \& Thomson	Schisandraceae																				\checkmark						2600
567	Selaginella acanthostachys Baker	Selaginellaceae																			\checkmark	\checkmark	\checkmark				\checkmark	2500-3300
568	Selaginella ciliaris (Retz.) Spring	Selaginellaceae			\checkmark				\checkmark	\checkmark	$\sqrt{ }$	\checkmark					\checkmark			\checkmark	\checkmark				\checkmark			700-3000
569	Selaginella martensii Spring	Selaginellaceae			\checkmark		\checkmark		\checkmark		\checkmark	\checkmark		\checkmark					\checkmark				\checkmark					700-2800
570	Selaginella pallescens (C. Presl) Spring	Selaginellaceae			\checkmark												\checkmark				\checkmark		\checkmark		\checkmark	\checkmark		700-3200

Annexure V 215

	$\begin{aligned} & 8 \\ & \frac{8}{3} \\ & \frac{1}{8} \\ & 8 \end{aligned}$	\|o৪			$\begin{aligned} & \hline 8 \\ & \hline \mathbf{C} \\ & \hline \end{aligned}$		কু		$\begin{aligned} & 8 \\ & \frac{8}{8} \\ & \hline 8 \\ & \hline 8 \end{aligned}$	∞	응	৪ু				$\stackrel{8}{\underline{\theta}}$	$\begin{aligned} & \hline 8 \\ & \hline \mathbf{8} \\ & \hline \mathbf{N} \\ & \hline 8 \\ & \hline \mathbf{O} \\ & \hline \mathbf{N} \end{aligned}$		8	$$
N																		\bigcirc		
m			7											$>$				7		
m		$>$	7										7					7		
సे			7					7						7	7		7	7		
N			7														$>$			
సิ			7																	
N			7		\bigcirc			7							$>$		$>$			
\cdots			7					7							$>$					
A			7					7							$>$					
へ			7	7		$>$								$>$						
त			7	7				7						7	$>$					
స								7						7						
సิ								7												
9			$?$					7						\bigcirc						
∞								7												
5			1					1						7	\rightarrow					
\cdots			7											7						
12			7					7	7											
\pm	7							$?$	7				7	7						
\cdots	7													7						7
N	7							7					7	7						
\square								$?$					7	7		$?$				
9	$>$							7	7		$>$		7	7					7	
9							7	7				$>$		7						
∞								7		7										
－						$>$		7						$>$						
6								7												
in								7												
离		$\begin{aligned} & \ddot{\ddot{0}} \\ & \stackrel{\ddot{W}}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \hline \end{aligned}$																		
जं ${ }^{\circ}$	京	$\underset{i n}{i n}$	\sqrt{n}	in	$\frac{n}{i n}$	$\begin{aligned} & \hline 0 \\ & \text { in } \\ & \hline \end{aligned}$	$\stackrel{N}{\mathrm{~N}}$	$\begin{array}{\|l\|} \hline \infty \\ \text { in } \end{array}$	$\begin{aligned} & \text { on } \\ & i n \end{aligned}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \mathrm{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \hline \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \circ \\ & \hline \stackrel{\infty}{\circ} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & 10 \\ & i n \\ & \hline \end{aligned}$

Annexure V 216

$\begin{array}{\|l} \hline \text { Sl. } \\ \text { No } \end{array}$	Botanical Name	Family	5	6	7	8	9			12	13	14				819	20	21	22	23	24	25	26	27	29	30	31	32	Range
591	Stachys melissifolia Benth.	Lamiaceae									\checkmark		$\sqrt{ }$																1300-1600
592	Stephania elegans Hook.f. \& Thomson	Menispermaceae	$\sqrt{ }$		\checkmark			\checkmark																					500-1100
593	Sterculia lanceifolia G. Don	Sterculiaceae																					\checkmark						2600
594	Steriochilus hirtus Lindl.	Orchidaceae	$\sqrt{ }$	\checkmark																									500-700
595	Strobilanthes atropurpureus Nees	Acanthaceae						\checkmark							\checkmark				\checkmark	$\sqrt{ }$									1000-2400
596	Strobilanthes capitata (Nees) T. Anderson	Acanthaceae													\checkmark				\checkmark		\checkmark		\checkmark	\checkmark					1800-2900
597	Strobilanthes urticifolia Wall. ex Kuntze	Acanthaceae																					\checkmark						2600
598	Styrax hookeri C.B.Clarke	Styracaceae													\checkmark														1700
599	Swertia angustifolia Buch.Ham. ex D. Don	Gentianaceae												\checkmark		\checkmark				\checkmark	\checkmark	\checkmark	\checkmark						1600-2700
660	Swertia chirayita (Roxb.) Buch.-Ham. ex C.B.Clarke	Gentianaceae													\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						1800-2700
601	Swertia paniculata Wall.	Gentianaceae																							\checkmark				2900
602	Symplocos cochinchinensis (Lour.) S. Moore	Symplocaceae										\checkmark	\checkmark			\checkmark			$\sqrt{ }$										1400-2300
603	Symplocos dryophila C.B. Clarke	Symplocaceae													\checkmark				$\sqrt{ }$			$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark		1800-3200
604	Symplocos glomerata King ex C.B. Clarke	Symplocaceae													\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								1800-2500
605	Symplocos lucida (Thunb.) Siebold \& Zucc.	Symplocaceae													\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			1800-3100
606	Symplosos theifolia D.Don	Symplocaceae																		$\sqrt{ }$									2300
607	Synotis cappa (Buch.-Ham. ex D.Don) C.Jeffrey \& Y.L.Chen	Asteraceae																		\checkmark									2300
608	Syzygium cumini (L.) Skeels	Myristicaceae	\checkmark		$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark																		500-1400
609	Syzygium formosum (Wall.) Masam.	Myristicaceae	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark															500-1700

SI. No	Botanical Name	Family	5	6	7	8	9	10		12	13	14	15	16	17	18		21	22	23	24	25	26	27	28	293	31	32	Range
610	Syzygium kurzii (Duthie) N.P.Balakr.	Myristicaceae				\checkmark																							800
611	Syzygium venosum DC.	Myrtaceae			$\sqrt{ }$			$\sqrt{ }$				\checkmark	\checkmark	$\sqrt{ }$	\checkmark		\checkmark												700-2100
612	Tectaria gemmifera (Fée) Alston	Tectariaceae	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	\checkmark			500-3000
613	Tectaria macrodonta C.Chr.	Dryopteridaceae		\checkmark						\checkmark			\checkmark							\checkmark	$\sqrt{ }$	\checkmark	\checkmark						600-2700
614	Tectaria polymorpha (Wall. ex Hook.) Copel.	Tectariaceae	\checkmark	\checkmark																									500-700
615	Terminalia chebula Retz.	Combretaceae				\checkmark								\checkmark															800-1700
616	Terminalia crenulata Roth	Combretaceae					\checkmark											\checkmark		\checkmark					\checkmark				900-2900
617	Terminalia myriocarpaVan Heurck \& Müll.-Arg.	Combretaceae		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				$\sqrt{ }$	\checkmark	\checkmark													600-1900
618	Tetrastigma bracteolatum (Wall.) Planch.	Vitaceae						\checkmark																					1000
619	Tetrastigma obtectum (Wall. ex M.A. Lawson) Planch. ex Franch.	Vitaceae															\checkmark						\checkmark						1900-2700
620	Tetrastigma rumicispermum (M.A.Lawson) Planch.	Vitaceae	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark		$\sqrt{ } \sqrt{ }$	\checkmark		\checkmark	\checkmark		\checkmark						500-2700
621	Tetrastigma serrulatum (Roxb.) Planch.	Vitaceae	\checkmark																						\checkmark				500-2900
622	Thunia bracteata (Roxb.) Schltr.	Orchidaceae						\checkmark																					1000
623	Thysanolaena latifolia (Roxb. ex Hornem.) Honda	Poaceae		\checkmark	\checkmark		\checkmark	$\sqrt{ }$	\checkmark	\checkmark			\checkmark	\checkmark															600-1700
624	Tinospora sinensis (Lour.) Merr.	Menispermaceae	\checkmark	\checkmark	\checkmark																								500-800
625	Toona ciliate M.Roem.	Meliaceae					\checkmark	\checkmark					\checkmark				$\sqrt{ } \sqrt{ }$					\checkmark							900-2600
626	Toxicodendron griffithii (Hook. f.) Kuntze	Anacardiaceae													\checkmark		\checkmark												1700-2000
627	Toxicodendron hookeri (K.C. Sahni \& Bahadur) C.Y. Wu \& T.L. Ming	Anacardiaceae	$\sqrt{ }$															\checkmark	\checkmark	\checkmark			\checkmark						500-2700

Sl. No	Botanical Name	Family	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
628	Trichosanthes lepiniana (Naudin) Cogn.	Cucurbitaceae	\checkmark	\checkmark				$\sqrt{ }$							$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$			$\sqrt{ }$											500-2300
629	Trichotosia pulvinata (Lind.) Kraenzl.	Orchidaceae			$\sqrt{ }$																										700
630	Triumfetta rhomboidea Jacq.	Malvaceae	$\sqrt{ }$		\checkmark	\checkmark	\checkmark		$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark			\checkmark						\checkmark				\checkmark					500-2900
631	Tsuga dumosa (D.Don) Eichler	Pinaceae																		\checkmark			$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark					2200-2900
632	Ulmus lanceifolia Roxb. ex Wall.	Ulmaceae	\checkmark			\checkmark																									500-900
633	Uncifera obtusifolia Lindl.	Orchidaceae							$\sqrt{ }$,																					1100-1300
634	Urtica dioica L.	Urticaceae			\checkmark										$\sqrt{ }$	\checkmark	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$		\checkmark		$\sqrt{ }$	$\sqrt{ }$	\checkmark			$\sqrt{ }$		700-3200
635	Urtica hyperborean Jacq. ex Wedd.	Urticaceae																		\checkmark		\checkmark							\checkmark		2200-3200
636	Urtica parviflora Roxb.	Urticaceae														\checkmark															1800
637	Vaccinium nummularia Hook.f. \&Thoms. ex C.B.Clarke	Ericaceae																		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			2200-3100
638	Vaccinium vacciniaceum (Roxb.) Sleumer	Ericaceae														\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$		$\sqrt{ }$	\checkmark							1700-2700
639	Vanda pumila Hook.f.	Orchidaceae		\checkmark																											600
640	Veronica serpyllifolia L.	Plantaginaceae																		\checkmark		\checkmark			$\sqrt{ }$						2200-2800
641	Viburnum cotinifolium D. Don	Adoxaceae												$\sqrt{ }$			\checkmark		$\sqrt{ }$		$\sqrt{ }$	\checkmark		\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	1600-3300
642	Viburnum cylindricum Buch.Ham. ex D. Don	Adoxaceae											\checkmark				\checkmark	\checkmark	\checkmark												1500-2200
643	Viburnum erubescens Wall.	Adoxaceae														\checkmark	$\sqrt{ }$			\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	\checkmark		1800-3200
644	Viburnum grandiflorum Wall. ex DC.	Adoxaceae											\checkmark				\checkmark				$\sqrt{ }$			\checkmark		\checkmark		\checkmark			1500-3100
645	Viburnum mullaha Buch.Ham.ex D. Don	Adoxaceae											\checkmark	\checkmark																	1500-1700
646	Viburnum nervosum D. Don	Adoxaceae												\checkmark			\checkmark	\checkmark							\checkmark						2600-2800
647	Viola betonicifolia Sm.	Violaceae																						\checkmark	$\sqrt{ }$	\checkmark	\checkmark				2600-3000
648	Viola canescens Wall.	Violaceae																		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\sqrt{ }$						2200-2800

$\begin{array}{\|l\|} \hline \text { Sl. } \\ \text { No } \end{array}$	Botanical Name	Family	5	6	7	8	9		11	12	13	14	15	16		18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Range
649	Viola pilosa Blume	Violaceae																					\checkmark	$\sqrt{ }$	\checkmark	\checkmark					2500-2900
650	Vittaria doniana Hieron.	Vitaceae	$\sqrt{ }$																												500
651	Vittaria flexuosa Fée	Vitaceae											\checkmark							\checkmark											1500-2300
652	Vittaria sikkimensis Kuhn	Vitaceae	\checkmark	$\sqrt{ }$																											500-700
653	Vittaria taeniophylla Copel.	Vitaceae																										$\sqrt{ }$			3000
654	Walsura tubulata Hiern	Meliaceae				\checkmark	$\sqrt{ }$	$\sqrt{ }$				$\sqrt{ }$	\checkmark								\checkmark										800-2400
655	Woodsia obtusa Torrey	Woodsiaceae	\checkmark	\checkmark				\checkmark	\checkmark		\checkmark		\checkmark		\checkmark																500-1800
656	Woodwardia unigemmata (Makino) Nakai	Blechnaceae																		\checkmark		\checkmark				\checkmark	\checkmark		\checkmark		2200-3200
657	Xanthium strumarium L.	Asteraceae				\checkmark																									800
658	Yushania maling (Gamble) R.B.Majumdar \& Karthik.	Poaceae																				$\sqrt{ }$	\checkmark	\checkmark	\checkmark						2400-2800
659	Yushania pantlingii (Gamble) R.B.Majumdar	Poaceae																					\checkmark	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$			2500-3100
660	Zanthoxylum acanthopodium DC.	Rutaceae																\checkmark							\checkmark						2000-2800
661	Zanthoxylum armatum DC.	Rutaceae																\checkmark													2000
662	Zanthoxylum bungeanum Maxim.	Rutaceae																								\checkmark					2800
663	Zanthoxylum oxyphyllum Edgw.	Rutaceae																							\checkmark	\checkmark					2700-2900
664	Zanthoxylum rhetsa DC.	Rutaceae																\checkmark													2000

$\mathcal{A N} \mathcal{N} E X U R E$ VI

Annexure VI

Detail description of Soil Classes found in Sikkim

Source: NBSS\&LUP, 1996

Soil Unit	Description	Soil class
1	Moderately shallow, somewhat excessively drained, coarse-loamy over fragmental soils on steep slope($30-50 \%$) with loamy surface, slight surface stoniness and moderate erosion	Coarse-loamy over fragmental, thermic Typic Haplumbrepts
	Associated with shallow, somewhat excessively drained, coarseloamy soils with loamy surface, moderate stoniness and moderate erosion.	Coarse-loamy, thermic Lithic Udorthents
3	Deep, well drained, fine-loamy soils on steep slope ($30-50 \%$) with foamy surface, slight stoniness and moderate erosion; associated with deep, somewhat excessively drained, coarseloamy soils with -loamy surface, moderate stoniness and moderate erosion	Fine-loamy, thermic Pachic Haplumbrepts Coarse-loamy, thermic Entic Haplumbrepts
4	Moderately deep., well drained, fine-loamy soils on steep slope (30$50 \%$ with loamy surface, slight stoniness and moderate erosion	Fine-loamy, thermic Typic Haplumbrepts
	Associated with moderately shallow, somewhat excessively drained, loamy-skeletal soils with gravelly loamy surface, moderate stoniness and severe erosion.	Loamy-skeletal thermic Umbric Dystrochrepts
6	Deep, well moderately steep slope (15-30\%; with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Hapludolls
	Associated with moderately deep, excessively drained, coarseloamy soils with sandy surface, severe erosion and slight stoniness.	Coarse-loamy, thermic Typic Udorthents
7	Moderately deep, somewhat excessively drained, fine-loamy soils on moderately steep slope ($15-30 \%$) with loamy surface, moderate erosion and slight stoniness Associated with moderately deep, some-what excessively drained, loamy-skeletal soils with loamy surface, moderate erosion and slight stoniness.	Fine-loamy, thermic Cumulic Haplumbrepts
8	Deep, excessively drained, fine-loamy soils $\quad Q$ on moderately steep slope $<15-30 \% \mathrm{~V}$ with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Pachic Haplumbrepts
	Associated with moderately deep, excessively drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Typic Haplumbrepts

Soil Unit	Description	Soil class
10	Deep, somewhat excessively drained, fine-loamy soils on very steep slope (>50\%) with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Haplumbrepts
	Associated with moderately deep, somewhat excessively drained, coarse-loamy over fragmental soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy over fragmental thermic Typic Udorthents
11	Deep, somewhat excessively drained, coarse-loamy soils on very steep slope (>50\%) with loamy surface, moderate erosion and slight stoniness	Coarse-loamy thermic Typic Hapludolls
	associated with deep, somewhat excessively drained, coarse-loamy over f fragmental soils with loamy surface., moderate erosion and slight stoniness	Coarse-loamy, over fragmented thermic Entic Hapludolls.
13	Deep, somewhat excessively drained, coarse-loamy soils on very steep slope ($>50 \%$) with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Mollic Udarents
	Associated with moderate erosion, excessively drained, coarseloamy soils with gravelly loamy surface, severe erosion and strong stoniness	Coarse-loamy, thermic Entic Hapludolls
14	Moderately deep, "well drained, fins-loamy soils on very steep slope $>50 \%$ with loamy surface, severe erosion and slight stoniness	Fine-Loamy, thermic Typic Dystrochrepts
	Associated with deep, somewhat excessively drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Typic Haplumbrepts
15	Deep, somewhat excessively drained, coarse-loamy soils on very steep slope (>50\%) with loamy surface, severe erosion and moderate stoniness	Coarse-loamy, thermic Typic Hapludolls
	Associated with deep, somewhat excessively drained, coarse loamy soils with gravelly loamy surface, severe erosion and moderate stoniness	Coarse-loamy, thermic Dystric Eurochrepts
16	Moderately deep, somewhat excessively drained, coarse-loamy over fragmental soils very steep slope (>50\%) with loamy, moderate erosion and stoniness	Coarse-loamy over Fragmental thermic Typic Udorthents
	Associated with shallow, somewhat excessively drained, coarse-loamy soils with foamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Lithic Haplumbrepts
17	Deep, well drained, fine soils on very steep slope (>50\%) with loamy surface, moderate erosion and slight stoniness	Fine, thermic Umbric Dystrochrepts
	Associated with deep, somewhat excessively drained, fineloamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Umbric Dystrochrepts
18	Moderately deep, somewhat excessively drained, coarse loamy soils on very steep slope (>50\%) with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Entic Hapludolls
	Associated with deep, somewhat excessively drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Dystric Eurochrepts

Soil Unit	Description	Soil class
19	Deep, somewhat excessively drained coarse-loamy soils on very steep slope ($>50 \%$) with loamy surface, severe erosion and moderate stoniness	Coarse-loamy, thermic Typic Hapludolls
	Associated with deep, somewhat excessively drained, dark brown to brown, moderately acidic coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Entic Hapludolls
21	Deep, somewhat excessively drained, coarse loamy soils on very steep slope (>50\%), with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Typic Hapludolls
	Associated with moderately shallow, somewhat excessively drained, loamy-skeletal soils with gravelly loamy surface, severe erosion and slight stoniness	Loamy-skeletal, thermic Entic Hapludolls
23	Moderately shallow, somewhat excessively drained coarse-loamy soils on very steep slope ($>50 \%$)with loamy surface, moderate stoniness	Coarse-loamy, thermic Typic Haplumbrepts
	Associated with moderately deep, somewhat excessively drained, coarse- silty soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Lithic Udorthents
24	Moderately shallow, somewhat excessively drained coarse-loamy soils on very steep slope ($>50 \%$)with loamy surface, moderate stoniness	Loamy, skeletal mesic Typic Haplumbrepts
	Associated with moderately deep, somewhat excessively drained, coarse- silty soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, mesic Typic Udorthents
25	Moderately deep somewhat excessively loamy soils on very steep slope ($>50 \%$) with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Typic Haplumbrepts
	Associated with moderately shallow, somewhat excessively drained, coarse-loamy soils with gravelly loamy surface, severe erosion and moderate stoniness	Coarse-loamy, thermic Typic Udorthents
28	Moderately shallow somewhat excessively drained, coarse-loamy soils on very steep slope ($>50 \%$) with gravelly loamy surface, severe erosion and moderate stoniness	Coarse-loamy, thermic Umbric Dystrochrepts
	associated with moderately shadow, excessively drained, coarseloamy soils with loamy surface, moderate erosion and slight stoniness	Loamy-skeletal, over fragmental, thermic Entic Hapludolls
29	Moderately deep somewhat excessively drained, coarse-loamy soils on escarpments with loamy surface and moderate erosion	Coarse-loamy, thermic Typic Hapludolls
	associated with deep, somewhat excessively drained fine loamy soils with loamy surface and severe erosion	Fine- loamy, thermic Umbric Dystrochrepts
30	Moderately deep excessively drained, fine-loamy soils on escarpments with gravelly loamy surface and moderate erosion	Fine- loamy, thermic Umbric Dystrochrepts
	Associated with deep, somewhat excessively drained, fineloamy surface and severe erosion	Loamy- skeletal, thermic Entic Haplumbrepts

Soil Unit	Description	Soil class
31	Deep, somewhat excessively drained, fine -loamy soils on escarpments with loamy surface and moderate erosion	Fine- loamy, thermic Umbric Dystrochrepts
	Associated with moderately deep, excessively drained, sandy soils with loamy surface and severe erosion	Thermic Typic Udipsamments
32	Moderately shallow excessively drained, fine loamy soils on escarpments with loamy surface and severe erosion	Loamy-skeletal, thermic Typic Udorthents
	Associated with deep, somewhat excessively drained, fine-loamy soils with loamy surface and moderate erosion	Fine-loamy, thermic Typic Dystrochrepts
33	Moderately deep, excessively drained, loamy-skeletal soils on escarpments with gravelly loamy surface and severe erosion	Loamy-skeletal, thermic Typic Udorthents
	Associated with moderately deep, excessively drained, loamy-skeletal soils with gravelly loamy surface and severe erosion	Loamy-skeletal, thermic Entic Hapludolls
35	Moderately deep, excessively drained, loamy-skeletal soils on escarpments with gravelly loamy surface, moderate erosion and slight stoniness	Loamy-skeletal, thermic Entic Hapludolls
	Associated with moderately shallow, excessively drained, loamy-skeletal soils with gravelly loamy surface, severe erosion and moderate stoniness	Loamy-skeletal, thermic Typic Udorthents
36	Moderately shallow, excessively drained, line-loamy soils on escarpments with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Haplumbrepts
	Associated with moderately shallow, excessively drained, fine-loamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Umbric Dystrochrepts
37	Deep, well drained, fine-loamy soils steep slopes (30-50 \%) with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Paleudolls
	Associated with deep, well drained, fine-loamy soils with gravelly loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Hapludolls
38	Deep, somewhat excessively drained, fine-loamy soils on steep slope ($30-50 \%$! with gravelly loamy surface, severe erosion and slight stoniness	Fine-loamy, thermic Entic Haplumbrepts
	Associated with deep, somewhat excessively drained, loamy-skeletal soils with gravelly loamy surface, severe erosion and moderate stoniness	Loamy-skeletal, thermic Umbric Dystrochrepts
40	Moderately shallow, somewhat excessively drained, coarseloamy soils on steep slope ($30-50 \%$) with loamy surface, moderate erosion and moderate stoniness	Coarse-loamy, thermic Cumulic Haplumbrepts
	Associated with moderately deep, well drained, fineloamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Haplumbrepts

Soil Unit	Description	Soil class
41	Moderately deep, somewhat excessively drained, coarse-loamy soils on steep slope ($30-50 \%$ > with loamy surface, moderate erosion and slight stoniness	Coarse-foamy, thermic Cumulic Haplumbrepts
	Associated with shallow, somewhat excessively drained, fine-loamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Lithic Haplumbrepts
42	Deep, somewhat excessively drained, loamy-skeletal soils on steep slope ($30-50 \%$ \} with gravelly loamy surface, severe erosion and moderate stoniness	Loamy skeletal, thermic Umbric Dystrochrepts
	Associated with moderately shallow, somewhat excessively drained, loamy-skeletal soil, with gravelly loamy surface, severe erosion and moderate stoniness	Loamy-skeletal, thermic Typic Dystrochrepts
43	Deep, well drained, fine-silty soils on steep slopes ($30-50 \%$) with loamy surface, moderate erosion and slight stoniness	Fine-silty, thermic Pachic Haplumbrepts
	associated with moderately deep, well drained, fine-loamy soils with loamy surface, moderate erosion and moderate stoniness	Fine-loamy, thermic Typic C
44	Moderately shallow, well drained, fine-silty soils on steep slope (30$50 \%$) with loamy surface, moderate erosion and slight stoniness	Fine-silty, thermic Typic Haplumbrepts
	associated with moderately deep, well drained, fine-loamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Umbric Dystrochrepts
45	Deep, somewhat excessively drained, coarse-loamy soils on steep slope ($30-50 \%$) with loamy surface, moderate erosion and slight stoniness	Coarse loamy, thermic Typic Haplumbrepts
	Associated with deep, somewhat excessively drained, coarseloamy soils with loamy surface, severe erosion and moderate stoniness	Coarse loamy, thermic Umbric Dystrochrepts
46	Deep, well drained, fine-loamy soils on steep slope (30-50\%) with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Argudolls
	Associated with deep, well drained, fine-loamy soils with gravelly loamy surface, moderate erosion and slight stoniness	Fine-foamy, thermic Cumulic Hapludolls
47	Deep, somewhat excessively drained, coarse-loamy soils on steep slope ($30-50 \%$) with gravelly loamy surface, moderate erosion and moderate stoniness	Coarse-loamy, thermic Pachic Haplumbrepts
	Associated with deep, well drained, fine-- loamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Umbric Dystrochrepts
48	Deep, somewhat excessively drained, loamy-skeletal soils on steep slope ($30-50 \%$) with gravelly loamy surface, moderate erosion and slight stoniness	Loamy-skeletal, thermic. Typic Hapludolls
	Associated with shallow, somewhat excessively drained, coarse-loamy soils with gravelly loamy surface, severe erosion and moderate stoniness	Coarse-loamy, thermic Lithic Udorthents

Soil Unit	Description	Soil class
49	Deep, well drained, fine-loamy soils on steep slope (30-50\%) with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Haplumbrepts
	Associated with moderately deep, somewhat excessively drained, sandy-skeletal over fragmental soils with gravelly loamy surface, severe erosion and moderate stoniness	Sandy-skeletal, over fragmental, thermic Typic Udorthents
52	Deep, somewhat excessively drained, fine-loamy soils on steep slope (30-50\%) with loamy surface, moderate erosion and slight stoniness Associated with deep, somewhat excessively drained, fine loamy soils with loamy surface, slight erosion and stoniness	Fine-loamy, thermic Typic Hapludolls Fine-loamy, thermic Typic Argiudolls
53	Moderately deep, somewhat drained, coarse-loamy soils on steep slope (30-50\%) with loamy surface, slight erosion and slight stoniness	Coarse-loamy, mesic Cumulic Haplumbrepts
	Associated with moderately shallow, somewhat excessively drained, loamy-skeletal soils with gravelly loamy surface, severe erosion and slight stoniness	Loamy-skeletal mesic Typic Udorthents
55	Moderately shallow, somewhat excessively drained, coarse-loamy soils on steep slope ($30-50 \%$) with gravelly loamy surface, moderate erosion and moderate stoniness	Coarse-loamy, mesic Typic Haplumbrepts
	Associated with shallow, somewhat excessively drained, loamyskeletal soils with gravelly loamy surface, severe erosion and moderate stoniness	Loamy-skeletal, mesic Lithic Udorthents
57	Shallow, excessively drained, loamy-skeletal soils on steep slope (30-50\%) with gravelly loamy surface, severe erosion and strong stoniness; associated with boulders and morrains	Loamy-skeletal, mesic Lithic Udorthents
58	Deep, well drained, fine-loamy over fragmental soils on moderately steep slope ($15-30 \%$) with loamy surface, moderate erosion and slight stoniness	Fine-loamy, over fragmental, thermic Typic Haplumbrepts
	Associated with deep, well drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Moilic Udarents
59	Moderately deep, somewhat excessively drained, coarseloamy soils on moderately steep slope $05-30 \%$) with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Cumulic Hapludolls
	Associated with deep, well drained, tine-loamy soils with gravelly loamy surface, moderate erosion and moderate stoniness	Fine-loamy, thermic Typic Argiudolls
60	Moderately deep, somewhat excessively drained, coarse-loamy soils on moderately steep slope (15-30\%) with loamy surface, moderate erosion and slight stoniness	Coarse loamy thermic Cumulic Haplumbrepts
	Associated with deep, well drained, fine-silty soils with loamy surface, moderate erosion and slight stoniness.	Fine-silty, thermic Cumulic Haplumbrepts

Annexure VI 226

Soil Unit	Description	Soil class
61	Deep, well drained, fine-loamy moderately steep slope $(15-30 \%)$ with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Fluventic Eurochrepts
	Associated with shallow, somewhat excessively drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Lithic Hapludolls
64	Moderately shallow, somewhat excessively drained, loamy-skeletal soils on moderately steep slope j 15-30\%) with loamy surface, moderate erosion and slight stoniness	Loamy-skeletal, thermic Cumulic Hapludolls
	Associated with moderately deep, somewhat excessively drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Typic Udorthents
66	Shallow, excessively drained, loamy-skeletal soils with gravelly loamy surface, very severe erosion and moderate stoniness; associated with rocks	Loamy-skeletal, thermic Lithic Udorthents
67	Shallow, excessively drained, loamy-skeletal soils on cliff with gravelly loamy surface, severe erosion and slight stoniness	Loamy Skeletal Thermic Lithic Haplumbrepts
	Associated with very shallow, excessively drained, coarse-- loamy soil with loamy surface and severe erosion	Coarse-loamy, thermic Lithic Udorthents
68	Very shallow, excessively drained, loamy-skeletal soils on cliff with gravelly loamy surface, severe erosion and slight stoniness; associated with rocks Glaciers/ice sheet/perpetual snow cover	

ANNNEXURE VII PUBLICATIONS

LIST OF PUBLICATIONS

Publications based on thesis:

Sharma, N.; Das, A.P. and Shrestha, D.G., 2015. Landuse and Landcover mapping of East District of Sikkim using IRS P6 satellite imagery. Pleione 9(1): 193-200

Publications outside the thesis work:

Tambe, S.; Arrawatia, M.L. and Sharma, N. 2011. Assessing the priorities for sustainable forest management in the Sikkim Himalaya, India: a remote sensing based approach. Journal of the Indian Society of Remote Sensing, 39(4): 555-564.

Basistha, B.C.; Sharma, N.P.; Lepcha, L.; Arrawatia, M.L. and Sen, A. 2010. Ecology of Hippophaesalicifolia D. Don of temperate and sub-alpine forests of North Sikkim Himalayas-a case study. Symbiosis, 50(1-2): 87-95.

Radha Krishna Sharma, Dharmendra Lamsal, Narpati Sharma, D.G.Shrestha, M.L. Arrawatia, 2010. Frequency studies of different shade trees in large cardamom plantations of three districts of Sikkim together with shrubs, herbs and climbers. Pleione 4(2): 221-229.

Lepcha, L.; Mandal, P.; Misra, T.K. and Sharma, N.P. 2010. Comparative study of Plant Biodiversity and Physico-chemical Parameters of Soils of Landslide Prone areas. International Journal of Ecology \& Development ${ }^{\mathrm{TM}}$, 17(F10), pp.66-76.

Narpati Sharma, N.; Sharma, R.K.;Luitel, K.K.; Arrawatia,M. L.; Shrestha, D.G.; Pradhan S. 2010. Study of Forest Fires of Sikkim Himalayas using Remote Sensing and GIS Techniques. Proceeding of International workshop on Biodiversity and Climate change, IIT Kharagpur.

Sharma, N.; Pradhan, S.; Arrawatia, M.L. and Shrestha, D.G., 2010. Study on types and distribution of wetlands in Sikkim Himalayas using satellite imagery with remote sensing and GIS technique. Proceedings of the Lake 2010: Wetlands, Biodiversity and Climate Change, IISc Banglore.

Landuse and Landcover mapping of East District of Sikkim using IRS P6 satellite imagery

Narpati Sharma ${ }^{1,3}$, A. P. Das ${ }^{\mathbf{2}}$ and D. G. Shrestha ${ }^{1}$
${ }^{1}$ Department of Science, Technology \& Climate Change, Vigyan Bhawan, Gangtok 737102, Sikkim, India
${ }^{2}$ Department of Botany North Bengal University, Siliguri 734013, Darjeeling, West Bengal, India
${ }^{3}$ Correspondence author: E-mail: nareshhvs@ gmail.com

[Received 01.11.2014; Revised 12.06.2015; Accepted 15.06.2015; Published 30.06.2015]

Abstract

Satellite based remote sensing technology is the best methods to estimate the forest cover/ Landuse and land cover mapping in the hilly areas. East Sikkim, having the total geographical area of 954 sq km , ranging over the altitude 300 m (Rangpo) to 4500 m (Nathula), is having tropical to alpine forests. Based on altitude, these forests can be divided into three types viz. Lower Hill forest, Middle Hill forest and Upper Hill forest. Present work used clouds free IRS P6 Jan 26, 2006 satellite imagery was used. The imagery was geo- referenced to Survey of India (SOI) topomaps with less RMS error and knowledge based classified using the slandered vegetation classification legend. A ground based vegetation classes were used during the image classification. The vegetation types when compared with the altitudinal zones of the area shows good relationship. The LISS III image was classified using the ERDAS Imagine (9.1) software by applying two different method of classification in a GIS environment viz. visual interpretation technique and supervised classification. These classification showed 83.72% overall accuracy.

Key words: Landuse and Landcover, East Sikkim, Satellite Imagery

INTRODUCTION

Land use is influenced by economic, cultural, political, environmental, historical and many other factors at multiple scales. On the other hand, land cover is one of the many biophysical attributes of the land that affect how ecosystems functions (Turner et al. 1995).

The accurate, meaningful, current data on land use are essential for planning and management of critical concern area such as flood plains and wetlands, energy resource development and production areas, wildlife habitat, recreational lands, and areas such as major residential and industrial development sites etc. (Anderson 1976)

The forest vegetation is largely disturbed because of the increasing rate of deforestation due to unsustainable extraction of timber, fuel wood and fodder as well as encroachment for settlements (SER 2013; ISE 2001).

Land use deals to man's activities and the various use which are carried on land, and on the other hand, land cover deals to natural vegetation, water bodies, rocks, soils etc. The land use information is an important element in forming policies regarding economic, demographic and environmental issues; but a very good skill is required to classify the different land use and land cover using the satellite imagery. An individual land use and land cover categories are formed from collection of diverse objects, features, and structures that are

194 Forest vegetation characterization of East Sikkim
often not individually resolved and the image. The Remote Sensing technology along with GIS is a perfect device to identify, locate and map various types of lands associated with different landform units (Sharma et al. 2009).

The visual interpretation using the satellite imagery provides the idea of the basic distribution of vegetation dynamics (Ravan et al. 1995). Identification of changed area in landuse and landcover is possible with less time, at low cost and with better accuracy using Satellite based Remote Sensing Technology (Roy\& Giriraj 2008).

Study Area:

East district of Sikkim, India, lies between the coordinates $27^{\circ} 08^{\prime} 08.39^{\prime \prime} \mathrm{N}$ to $27^{\circ} 25^{\prime} 26.86^{\prime \prime}$ N and $88^{\circ} 26^{\prime} 26.02^{\prime \prime} \mathrm{E}$ to $88^{\circ} 55^{\prime} 22.81^{\prime \prime} \mathrm{E}$ and covers an area of 954 sq km . The elevation of study area is ranging from 300 m in the foot hills (at Rangpo) to 4500 m (at Nathula - the trade route with China). The study area bounded in the west River Teesta, River Dikchu/ Rateychu in the north, in south River Rangpo and in east Bhutan and Tibet/china.

Fig. 1. Location of East Sikkim district of Sikkim, India

METHODOLOGY

The IRS P6 January 26, 2006 imagery was used in the classification of LULCs through ERDAS Imagine software (9.1). The images were geometrically corrected and geo-coded to the Universal Transverse Mercator (UTM) Co-ordinate system, using 1:50000 scale, approximately 20 evenly distributed ground control points were selected from the image. These were used to spatially resample the images using a nearest neighbor algorithm, which takes the value of pixels in the input image that is closest to the computed co-ordinate. This method is fast and does not alter the original pixel values. The transformation had a root mean square (RMS) error of between 0.4 and 0.7 pixel, indicating that the image rectification was accurate to within one pixel. After registration, the TIFF imagery was converted into Image format imagery which describes all the information of the image like scale, resolution, projection etc. checking the image with the help of projected topomap.

The boundary of East district of Sikkim was generated with the help of Toposheet and Satellite imagery. The western boundary of the study area was bounded by River Teesta which is clearly seen in the satellite imagery, the northern boundary is bounded by River Dikchu/ Rateychu, the half of the southern boundary is bounded with River Rangpo Chu and the other half boundary is shared with Bhutan and the eastern boundary is shared with Tibet Autonomous Region (TAR) boarder.

The imagery was subset by using the AOI (Area of Interest) of the study area boundary. The acquired images were classified based on onscreen/ head's up interpretation using image interpretation keys. Semi-automated approach was also considered while analyzing few categories at local level.

In onscreen visual interpretation, the imagery is displayed onto computer screen (normally as FCC) and intended classes are delineated based on image interpretation elements, ancillary and legacy data. (Anderson 1976) Resultant output from this will be vector format, which supports complex GIS analysis and has smaller file size. Advantages of visual/ manual interpretation approaches are as follows (NRSA 2012)

1. Context/ texture/ pattern based classes can be delineated
2. Various enhancement options are possible to exploit the capability of multiband/ multi-season data
3. Minimizes issue of sensor radiometry and date of pass
4. Polygons of change only to be updated on T1 output using T2 data
5. Temporal assessment is time effective
6. Adoptability and operational feasibility is high.

Visual interpretation

Much interpretation and identification of targets in remote sensing is performed manually or visually, i.e. by a human interpreter. In many cases, this is done using imagery displayed in a pictorial or photograph-type format, independent of what type of sensor was used to collect the data and how the data were collected. In this case we refer to the data as being in analog format. Visual interpretation may also be performed by examining digital imagery displayed on a computer screen. Both analogue and digital imagery can be displayed as black and white (i.e. monochromes) images, or as colour images by combining different channels or bands representing the different wavelengths. Visual interpretation requires little, if any specialized equipment, whereas digital analysis requires specialized and often expensive equipment (Anderson 1976).

Manual interpretation is often limited to analyzing only a single channel of data or a single image at a time due to difficulty in performing visual interpretation with multiple images. This Visual interpretation is a subjective process, meaning that the results will vary with different interpreters (NRSA 2012). The supervised classification technique is also use to cross-check the visual interpretation layer, for shadow and snow cover areas.

RESULT AND DISCUSSION

Through onscreen interpretation (visual interpretation), the different class polygons were digitized based on terrain knowledge acquired during fieldwork and distributed throughout the study area. The interpretation elements like tone (light, medium, dark, very light, very dark), texture (course, medium, fine, even, uneven, mottled, uniform), colour (brighter, gray, light blue, grayish white, dull white, light pink, yellowish white), patterns (discrete-contiguous

Fig. 2: Flow-chart of detail methodology
patches), size (small, medium, large, uniform or varied), shape (compact, regular, elongate, square, irregular, rectangular), association etc, were kept in mind during visual interpretation of the image.

On the basis of IRS P6 images, LULCs of the study region was classified into six categories in level I viz.: built-up, agricultural land, forest, barren rocky, water-bodies, snowglacial area and in level II the six classes of level I were further classified into 13 different categories these are shown in Table 1. During the classification of the satellite imagery, some elements of the image interpretation were keeping in mind like (small, medium, large, uniform or varied), shape (compact, regular, elongate, square, irregular, rectangular), tone (light, medium, dark, very light, very dark) texture (course, medium, fine, even, uneven, mottled, uniform), association, shadow, site, pattern etc.

Fig. 3. A. False Color Composite of IRS P6 January 2006 of East Sikkim;B. Landuse and Landcover Map of East Sikkim

The total study area was mapped and classified into 13 land use types using IRS P6 Raw Satellite Image. The total geographical area of East district of Sikkim is 95400 ha, of which 40124 ha is under Dense Forest, which is slightly over 42% of total area of East district; 17160 ha land is under Agricultural cropland, which is nearly 18% of the district's area. Similarly, 18509 ha of land was classified as Open Scrub land which is over 19% of the total area. This is followed by 10874 ha (i.e. 11%) area under Barren Rocky wasteland.

PLATE - I. Snaps on different land features of East District of Sikkim: A. Open Forest with Agricultural land; B. Alpine Grass Land and Grazing Land; C. Dense Forest; D. Agriciltural Land; E. Kupup Lake of East Sikkim; F. Built up urban Residential area

Also, 6226 ha or 6% area was classified as Grassland and Rangeland. Other land use types were classified as Built up Urban Residential, Forest Blank, Forest Plantation, Lakes, Mixed Built up area, Permanent Snow/Glacier, River/Stream and Wasteland and each of them contribute less than 1% of total geographical area of East Sikkim (Table 1).

Precision, as it pertains to agreement between observers (interobserver agreement), is often reported as a kappa statistic (Cohen 1960). Kappa is intended to give the reader a quantitative measure of the magnitude of agreement between observers. Accuracy assessment was done following Kappa Statistics method (Table 2).

Table 1. Land use and Land cover type of East Sikkim with area

Sl. No.	Land use Type	Area in Ha.	\% of Area
1.	Agricultural Crop Land	17160	17.99
2.	Barren rocky waste	10874	11.40
3.	Built Up Urban Residential	701	0.73
4.	Dense Forest	40124	42.06
5.	Forest Blank	233	0.24
6.	Forest Plantation	98	0.10
7.	Grassland \& Grazing Land	6226	6.53
8.	Lakes	165	0.17
9.	Mixed Built Up area	641	0.67
10.	Open Scrub	18509	19.40
11.	Permanent Snow/Glacier	20	0.02
12.	River/Stream	642	0.67
13.	Wasteland	7	0.01
	Total	$\mathbf{9 5 4 0 0}$	$\mathbf{1 0 0 . 0 0}$

Table 2. Accuracy assessment table using Kappa statistics

	Agricu- lture	Built up	Forest	Alpine	Waste- land	Snow $\&$ glacier	Water bodies	TOTAL
Agriculture	$\mathbf{2 2}$	1	1	0	0	0	0	24
Built up	1	$\mathbf{1 7}$	0	0	1	0	0	19
Forest	0	0	$\mathbf{1 9}$	1	0	0	0	20
Alpine	1	1	1	$\mathbf{1 0}$	1	1	0	15
Wasteland	1	1	2	1	$\mathbf{1 3}$	1	1	20
Snow glacier	0	0	0	1	0	$\mathbf{1 3}$	2	16
Water bodies	0	0	0	0	0	1	$\mathbf{1 4}$	15
TOTAL	25	20	23	13	15	16	17	$\mathbf{1 2 9}$

Kappa assessment Sum of the observation on which the class occur/total no. of Observation x 100

$$
\frac{108}{129} \times 100=83.72
$$

The overall accuracy assessment of vegetation classification of East Sikkim is 83.72\%

[Abbreviations

SER -State of the environment report
ISE -Indian state of Environment
TIFF-Tagged image file format IRS- Indian Remote Sensing]

CONCLUSION

In this study the Land-use and land-cover pattern of east Sikkim using IRS LISS III imagery was studied and showed the natural vegetation cover is restricted to 42% of the area of the East District of Sikkim as it was on January 26, 2006. On the other hand, settlements has covered 1% area, and the total land used for cultivation is 18%. This is little old data, but the modification of natural habitat is taking place very fast and, it is expected that the present scenario will be little different, with much more areas now urbanized and occupied for cultivation, industry, etc.

This picture is not impressive as it translate the too much of anthropogenic pressure of the survival of extremely rich biodiversity of Sikkim Himalaya, which is a part of the Himalaya Hotspot for Biodiversity Conservation. It is now important for planners and policy makers to decide wheather the Sikkim biodiversity will preserved in which way. The pictures showed the changes are not restricted only to the previous city areas, even the land-use is quite fast even in remote areas and numerous new townships are appearing.

So, the present set of generated data will be helpful for better modeling and forecasting the land-use and land-cover change over the time. This will also speak for the direct and indirect impact on environment, which are expected cause due to rampant change in landuse pattern.

LITERATURE CITED

Anderson, J.R. 1976. A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.
Cohen, J. 1960. A coefficient of agreement for nominal scales. Edu. Psychol. Measur. 20(1): 37-46.
ISE 2001. Indian State of Environment 2001 at http://www.envfor.nic.in/soer/2001/ ind_land.pdf

NRSA 2006, Manual of National Land Use Land Cover Mapping Using Multi-Temporal Satellite Data. Department of Space, Hyderabad
Ravan, S.A.; Roy, P.S. \& Sharma, C.M. 1995. Space remote sensing for spatial vegetation characterization. J. Biosci. 20(3): 427 - 438.
Roy, P.S. \& Giriraj, A. 2008. Land use and land cover analysis in Indian Context. J. Appl. Sci. 8: 1346-1353.
SER 2013. State of the Environment Report at http://parisara.kar.nic.in/PDF/Forest.pdf.
Sharma, A.; Joshi, V.; Parkash, S. \& Krishna, A.P. 2009. Land Use Pattern mapping using Remote Sensing and GIS in Gangtok area, Sikkim Himalaya, India, GIS development.net Application Environment. http://geospatialworld.net/Paper/Application/ ArticleView.aspx?aid=440
Turner, D.P.; Koerper, G.J.; Harmon, M.E. \& Lee, J.J. 1995. A carbon budget for forests of the conterminous United States. Ecol. Applic. 5(2): 421-436.

Assessing the Priorities for Sustainable Forest Management in the Sikkim Himalaya, India: A Remote Sensing Based Approach

Sandeep Tambe • M. L. Arrawatia • Narpati Sharma

Received: 16 October 2010 / Accepted: 11 April 2011 /Published online: 10 June 2011
(C) Indian Society of Remote Sensing 2011

Abstract

Sikkim is a small, mountainous, Indian state $\left(7,096 \mathrm{~km}^{2}\right)$ located in the eastern Himalayan region. Though a global biodiversity hotspot, it has been relatively less studied. A detailed forest type, density and change dynamics study was undertaken, using SATELLITE remote sensing data and intensive field verification. The landscape was found to be dominated by alpine and nival ecosystems, with a large portion above the tree line, considerable snow cover, and a sizeable area under forest cover (72%, $5,094 \mathrm{~km}^{2}$). A total of 18 landscape components including 14 vegetation classes were delineated, with the major ones being oak forest, alpine meadow, alpine scrub, conifer forest and alder-cardamom agroforestry. Of the $3,154 \mathrm{~km}^{2}$ of forests below the tree

[^0]line, 40% were found to be dense ($>40 \%$ tree canopy cover). A sizeable portion of the non dense forests below the tree line was contributed by the degradation of oak forests, which was confirmed by change detection analysis. However on a positive front over the past decade, ban on grazing and felling of trees in forests has been implemented. In order to expand the extent of dense forests, further efforts are needed for the restoration of oak forests such as fire protection, providing alternatives to firewood use, promotion of alder-cardamom agro-forestry in the private lands and protection of the small-sized, fragmented forest patches in the subtropical belt.

Keywords Eastern Himalaya • Spatial analysis Change detection • Vegetation mapping • Oak forest

Introduction

Sikkim is a small north-eastern Indian state that lies between $27^{\circ} 04^{\prime} 46^{\prime \prime}$ to $28^{\circ} 07^{\prime} 48^{\prime \prime} \mathrm{N}$ latitudes and $88^{\circ} 00^{\prime} 58^{\prime \prime}$ and $88^{\circ} 55^{\prime} 25^{\prime \prime}$ E longitudes, covering an area of just $7,096 \mathrm{~km}^{2}$ (Fig. 1). The elevation ranges from 300 to $8,586 \mathrm{~m}$, with the dominant feature being Mt. Khangchendzonga ($8,586 \mathrm{~m}$), the third highest peak in the world and the highest in the country. The state is a part of the eastern Himalayan region which is one of the 34 global biodiversity hotspots of the world (Myers et al. 2000; Mittermeier et al. 2004). The sharp altitudinal gradient and complex topography
has manifested in 12 forest types (Table 1). It harbours nearly one third of the national flowering plants diversity, an estimated 5,000 species of flowering plants (Hajra and Verma 1996).

Remote sensing technique and associated spatial analysis tools are highly useful in conservation planning (Roy et al. 1999; Singh et al. 2002; Turner et al. 2003), landscape ecology (Quattrochi and Pelletier 1990; Roy and Tomar 2000) and assessing the impacts of climate change (Kulkarni et al. 2007). Multi-spectral and multi-temporal data obtained from satellite remote sensing allows integration of several layers and change detection more quickly and effectively (Blamont and Méring 1987). These tools are particularly useful for areas located in the Himalaya, where adequate field sampling is often negated by non-negotiable rugged terrain. The present study used satellite data and is backed by extensive field verification compared to the pervious studies (ISRO 1994; IIRS 2002; Kushwaha et al. 2005). Mapping of major forest types has been attempted using a systematic approach covering the entire state.

Our goals in this paper are threefold. First, we delineate the forest types, their density and patterns of change in vegetation cover. Secondly we provide evidence which reveals that considerable portions of the temperate and subalpine forests have been converted into thickets, scrub and blanks, and thereby adversely impacted in recent times. Thirdly we compare our assessment with contemporary studies done by various agencies. We also propose management strategies that need to be prioritized for effective conservation of forested landscapes in this global biodiversity hotspot.

Data Used and Methodology

Field Data Collection

The study area was surveyed over a 6 year period from 2003 to 2008. A total of 497 well distributed ground reference points along with attribute data on location and vegetation characteristics were recorded using a hand-held Garmin Global Positioning System (GPS; 12-channel Garmin Etrex-Summit mode). Field surveys helped in creating a database of about 400 digital photographs of the landscape which helped during visual interpretation especially of areas under shadow.

Spatial Data and Image Processing
For landcover mapping, multispectral satellite images from Indian Remote Sensing satellite (IRS-1C) LISS III data with 23 m spatial resolution, of Jan and Feb, 2002 were used. Ground control points (GCPs), covering all the landuse types as well as covering the shadow areas were collected with the help of GPS (Garmin, etrex-summit, 12 channel). The spectral signatures of GCPs sites thus collected during ground checks were used for supervised classification in Erdas Imagine (version 8.5) software using standard techniques (Roy and Tomar 2000). We identified dense forests as vegetated areas with $>40 \%$ of tree canopy cover, open forests as those with $10-40 \%$ tree canopy cover, very open forests as those with $5-10 \%$ tree canopy cover, scrub as areas devoid of tree cover with less than 5% cover and blank as barren areas devoid of tree and shrub cover (FSI 2005). Total forest cover refers to the combined areas of dense, open and very open forests including alpine thickets, alpine scrub and alpine meadows in forest and private lands. Image rectification, enhancement, hybrid classification and smoothening with adequate ground truthing were carried out to map the broad landcover classes. Classification and interpretation of shadow classes was done separately. For areas with deep shadows support of ground truthing, aerial photographs and digital photographs were also taken. For delineation of oak and conifer forests, band 4 (1.55$1.70 \mu \mathrm{~m}$ wavelength range) was found to be very useful. The mixing of classes was reduced by masking the forest and non forest areas separately into 6 elevation zones $(0-1,000 \mathrm{~m}, 1,000-1,500 \mathrm{~m}$, $1,500-2,000 \mathrm{~m}, 2,000-2,500 \mathrm{~m}, 2,500-3,000 \mathrm{~m}$ and greater than $3,000 \mathrm{~m}$). For the areas above $3,000 \mathrm{~m}$, the Jan image was used since the Feb image showed extensive seasonal snow cover. Thereafter reclassification was carried out using a subset of the landcover categories which were known to occur in a given elevation zone was then done. This was followed by manual recoding to remove the drop lines, clouds and their shadow. Finally a mosaic of these 12 separately classified images was done to obtain a composite image, and finally area statistics were calculated after normalization. This hybrid approach, combining digital supervised classification, reclassification using elevation and visual interpretation resulted in the final 21 broad landcover classes. Quality of the classifica-

Fig. 1 Map showing the spatial distribution of areas with more than 10% decrease in NDVI (shown in red) between 1977 and 2000 along with Reserve Forest (RF) boundary and elevation zones in Sikkim, Eastern Himalaya, India
tion was found using the accuracy assessment option of the classifier module. ArcGIS (version 9) was used for integration of the various layers on a GIS platform.

Temporal Change Detection

The georeferenced Landsat time series data of 23rd January, 1977 (NASA Landsat Program 1977) and 26th December, 2000 (NASA Landsat Program 2000) were used for temporal change detection. Atmospheric correction was performed with Idrisi Kilimanjaro (v14) using the ATMOSC module. All imagery was corrected using the $\cos (\mathrm{t})$ model with input parameters reported in the metadata supplied by Landsat (Chavez 1996). The 30 m resolution Landsat ETM + (2000) image was degraded to 60 m using the utilities option in the image interpreter module of Erdas to match with the Landsat MSS (1977) image. NDVI was calculated for each of the images using the spectral enhancement option,
followed by change detection using the utilities option in the image interpreter module of Erdas (Lillesand and Kiefer 2000). The 2000 image had less snow cover in the alpine zone especially in the greater Himalayan portion. Because of this reduction in winter snow cover, the alpine vegetation that was concealed under snow in the older image was visible in the new image, causing the NDVI to show a positive bias in the snow covered areas. There was variation in the shadow intensity as well, with the 2000 image showing lighter shadows as compared to the 1977 image. Change detection in shadow areas was seriously hampered by variability in shadow intensity along with low spectral reflectance of vegetation. Hence all shadow areas were erroneously classified as a positive change (i.e. gain in vegetation cover) between the 1997 and 2000. To overcome these challenges inferences from change detection analysis using NDVI were drawn only from the negative changes highlighted in the map, since the positive changes could be due to reduction in shadow

Table 1 Details of forest types found in Sikkim, Eastern Himalaya, India (Adapted from Grierson and Long (1983), Champion and Seth (1968))

S. no.	Forest type adapted from Grierson and Long (1983)	Characteristic species	Altitude range	Forest type adapted from Champion and Seth (1968)	
1	Sal (Shorea robusta) forest	Shorea robusta, Terminalia myriocarpa, Schima wallichii, Phyllanthus emblica, Mallotus philippensis, Bombax ceiba	300-900	3C/Cia	East Himalayan sal forests
2	Chir pine (Pinus roxburghi) forest	Pinus roxburghi, Woodfordia fruticosa, Phoenix acaulis	500-900	$9 / \mathrm{C}_{1 \mathrm{~b}}$	Himalayan chir pine forests
3	Subtropical forest	Terminalia myriocarpa, Alstonia grandis, Duabanga grandiflora, Tetrameles nudiflora, Dillenia pentagyna, Ailanthes grandis	300-900	$3 \mathrm{C} / \mathrm{C}_{3 \mathrm{~b}}$	East Himalayan moist deciduous forest
4	Warm broad-leaved forest	Schima wallichii, Engelhardia spicata, Macaranga nepalensis, Castanopsis indica, Spondias axillaris, Ostodes paniculatus	900-1,700	$8 \mathrm{~B} / \mathrm{C}_{1}$	East Himalayan sub-tropical wet hill forest
5	Alder forest	Alnus nepalensis	1,500-2,000	$12 / \mathrm{IS}_{1}$	Alder forest
6	Evergreen Oak forest	Castonopsis sp., Quercus sp., Michelia sp., Juglans regia, Symplocos sp., Acer campbellii	1,700-2,800	$11 \mathrm{~B} / \mathrm{C}_{1}$	East Himalayan wet temperate forests
7	Dwarf bamboo thicket	Arundinaria maling, Thamnocalamus aristata, Thamnocalamus spathiflorus	2,600-3,100	$12 / \mathrm{DS}_{1}$	Montane bamboo brakes
8	Mixed conifer forest	Tsuga dumosa, Quercus pachyphylla, Larix griffithiana, Picea smithiana	2,700-3,100	$12 / \mathrm{C}_{3 \mathrm{a}}$	East Himalayan moist temperate forest, East Himalayan dry temperate coniferous forest, Larch forest
9	Conifer forest	Abies densa, Juniperus recurva, Betula utilis, Sorbus macrophylla, Prunus cornuta	2,800-3,700	$13 / \mathrm{C}_{6}, 14 / \mathrm{C}_{2}$	East Himalayan sub-alpine forests
10	Alpine thicket	Rhododendron sp., Betula utilis, Acer sp.	3,500-4,500	15/C C_{1}	Birch/Rhododendron scrub
11	Alpine scrub	Juniperus sp., Rhododendron sp., Caragana sp., Ephedra gerardiana	4,000-5,500	$15 / \mathrm{C}_{2}, 16 / \mathrm{C}_{1}, 16 / \mathrm{E}_{1}$	Dwarf Rhododendron scrub, Dry alpine scrub, Dwarf Juniper scrub
12	Alpine meadow	Kobresia sp., Carex sp., Stipa sp., Poa sp.	4,000-5,500	15/C3	Alpine pastures

intensity or decrease in snow cover between the two images.

Results

Landcover Types

About 79% of the geographical area of the state has been classified as reserve forests having a total extent
of $5,589 \mathrm{~km}^{2}$. However of this only $2,292 \mathrm{~km}^{2}(41 \%)$ occurs below the tree line. The reserve forests occurred in 58 discrete patches comprising of one large chunk with an extent of $5,385 \mathrm{~km}^{2}$ (Fig. 1). The next big patch was the Fambong lho with an area of $55 \mathrm{~km}^{2}$. The mean area of the reserve forest patches is $95 \pm 707 \mathrm{~km}^{2}$ which indicates a large variation. However without these two large polygons the extent of the remaining 56 reserve forest polygons reduced to $88 \mathrm{~km}^{2}$ and the mean area to $1.6 \pm 2.4 \mathrm{~km}^{2}$.

About $47 \%\left(3,323 \mathrm{~km}^{2}\right)$ of the geographical area of the state is above the tree line which is at $3,800 \pm$ 200 m . The forest cover including alpine thickets, alpine scrub and alpine meadows stood at $72 \%\left(5,094 \mathrm{~km}^{2}\right)$ of the geographical area. The forest cover when calculated for the area below the tree line $\left(3,783 \mathrm{~km}^{2}\right)$ increased to $76 \%\left(2,893 \mathrm{~km}^{2}\right)$ of which 23% occurs outside reserve forests. The final classified image of the study area had 16 classes or landscape components (Table 2, Fig. 2), with the dominant ones being oak forest (16.15%), alpine scrub (13.53%), alpine meadow (13.44%), conifer forest (11.02%), agriculture (8.33%), cardamom-alder agro-forestry (6.51%), mixed conifer (6.35%) and a high proportion (14.73%) of snow.

Forest Density

Of the forests below the tree line, $40.2 \%\left(1,268 \mathrm{~km}^{2}\right)$ were found to be dense ($>40 \%$ canopy cover), 26% ($820 \mathrm{~km}^{2}$) open (10 to 40% canopy cover), 10.3% ($326 \mathrm{~km}^{2}$) very open (5 to 10% canopy cover), 15.2% ($479 \mathrm{~km}^{2}$) thickets, $4.2 \% ~\left(133 \mathrm{~km}^{2}\right.$) scrub (< than 5% canopy cover) and 4.1% ($128 \mathrm{~km}^{2}$) blank (Fig. 3, Table 2). Shorea robusta (sal) forests (91%), mixed conifer forests (90%), subtropical forests (68%) and
warm broad-leaved forests (64%) were found to be the most non dense. Oak forests contributed significantly ($32 \%, 608 \mathrm{~km}^{2}$) to the total non dense forests below the tree line. Subtropical forests that have a total extent of $110 \mathrm{~km}^{2}$ are the only natural forests that occur mostly (80%) outside reserve forests. Forests which are most extensive in non reserve forest lands are the cardamom-alder agro-forests with an extent of $272 \mathrm{~km}^{2}$ and comprise 17% of the total forests in private lands.

Temporal Change Detection

Out of a total $7,096 \mathrm{~km}^{2}$ of the state's area, $317 \mathrm{~km}^{2}$ (4.57\%) was found to be impacted by a decrease of greater than 10% in NDVI (Fig. 1, Table 3). This decrease was found to be $209 \mathrm{~km}^{2}(3.8 \%)$ in reserve forest area and $108 \mathrm{~km}^{2}(6.9 \%)$ in other areas. However, this change was not uniform, for instance, as much as $30 \mathrm{~km}^{2}(12.7 \%)$ of the reserve forest area between 1,500 to $2,000 \mathrm{~m}, 61 \mathrm{~km}^{2}(12.1 \%)$ between 2,000 to $2,500 \mathrm{~m}$ and $54 \mathrm{~km}^{2}$ (9.9\%) between 2,500 to $3,000 \mathrm{~m}$ showed a decline in forest cover, while less than 1.5% of the area in the zone above $3,000 \mathrm{~m}$ showed a negative change.

Table 2 Broad landcover types, their density and extent (in km^{2}) in Sikkim, Eastern Himalaya, India

Landcover type	Extent in km^{2}							
	Dense	Open	Very open	Thicket	Scrub	Blank	Total	\% of Total
Alpine meadow							953.36	13.44\%
Alpine scrub							959.56	13.53\%
Alpine thicket							260.04	3.66\%
Conifer forest	449.94	304.01	0.00	28.21	0.00	0.00	782.16	11.02\%
Mixed conifer forest	46.13	90.71	0.00	256.27	0.00	57.62	450.72	6.35\%
Oak forest	538.50	213.52	169.89	176.64	0.00	47.58	1146.13	16.15\%
Alder forest	141.18	131.31	110.55	78.85	0.00	0.00	461.88	6.51\%
Warm broad-leaved forest	51.64	29.11	16.87	39.08	3.88	2.93	143.50	2.02\%
Subtropical forest	35.01	50.18	16.17	0.00	8.53	0.00	109.89	1.55\%
Sal forest	5.39	1.44	12.83	10.72	10.02	19.76	60.15	0.85\%
Agriculture							591.99	8.34\%
Rock							101.32	1.43\%
Sand							37.16	0.52\%
Lake							27.98	0.39\%
Snow							1045.59	14.73\%
Total	1250.43	740.21	326.00	590.84	24.14	188.94	7096.00	100\%

Fig. 2 Forest type map of Sikkim, Eastern Himalaya, India

Discussions

Mountain regions like Sikkim pose several challenges for the natural resource managers and ecologists in terms of understanding linkages between the landscape features and spatio-temporal changes in the
composition and extent of vegetation caused by both natural and anthropogenic factors. A substantial proportion of the Eastern Himalaya remains largely inaccessible for physical verification as many areas are far from roads, not easily approached on account of un-forded rivers and steep terrain. Despite the

Fig. 3 Forest density map of Sikkim, Eastern Himalaya, India

Table 3 Extent of area (in km^{2}) with more than 10% decrease in NDVI between 1977 and 2000 presented altitude wise in Sikkim, Eastern Himalaya, India

Elevation	300-1,000 m		1,000-1,500 m		1,500-2,000 m		2,000-2,500 m		2,500-3,000 m		$>3,000 \mathrm{~m}$		Total	
Area in km^{2}	RF	Non RF	RF	Non RF	RF	Non RF	RF	Non RF	RF	Non RF	RF	Non RF	RF	Non RF
Total area	66.74	361.09	23.71	606.08	233.26	478.35	507.71	92.88	542.32	18.77	4140.37	24.72	5514.10	1581.90
Negative change	3.77	20.88	2.37	35.12	29.65	41.24	61.34	9.00	53.66	1.36	57.90	0.69	208.70	108.29
\% Negative change	5.65\%	5.78\%	9.99\%	5.80\%	12.71\%	8.62\%	12.08\%	9.69\%	9.89\%	7.27\%	1.40\%	2.77\%	3.78\%	6.85\%

advantages of remote sensing tools, relief-induced factors limit utilization of potential of these tools (Buchrointhner 1995). Reflected signal values carry high variability and distortion caused by terrain complexity, shadow effects and cloud and snow cover. Persistent cloud cover during the summer months and snowfall in winter create only a small window of 2-3 months in early winter when the alpine zone can be adequately remotely sensed by satellites. Though these challenges result in certain uncertainty in the accuracy of vegetation classification, careful choice of the images, hybrid classification procedure and few post processing steps could overcome some of these problems. Extensive field surveys of vegetation structure and knowledge of altitudinal variation in major formations coupled with intensive ground truthing proved necessary to enhance the accuracy of classification. The classification accuracy of the various landuse types using the above approaches was found to be 86.32% (Table 4).

The reserve forest area of $5,589 \mathrm{~km}^{2}$ was reasonably close to the recorded reserve forest area $5,451 \mathrm{~km}^{2}$. The FSI (2005) study is based on 23.5 m resolution IRS P6 satellite data of December 2004, while our study is based on 23 m resolution IRS-1C satellite data of February 2002, hence the source and resolution of the two datasets are quite similar. The area under dense forests as per our study comes to only $1,268 \mathrm{~km}^{2}$. FSI (2005) assessed the area under very dense ($498 \mathrm{~km}^{2}$) and moderately dense forests $\left(1,912 \mathrm{~km}^{2}\right)$ in the state to be significantly higher at $2,410 \mathrm{~km}^{2}$. Our assessment is nearer to other contemporary, satellite data based forest mapping studies like Pandit et al. (2007), who assessed extent of dense forests to be $1,040 \mathrm{~km}^{2}$ based on the satellite image of the year 2000. Other studies by Kushwaha et al. (2005) in the south west portion of Sikkim also highlight the fragmentation of temperate forests. Earlier studies by ISRO (1994) using 72.5 m IRS-1A satellite data assess the extent of dense forests in the state to be $975 \mathrm{~km}^{2}$.

Due to the steep elevation gradient the various vegetation classes were found to be telescoped together making the landscape heterogeneous. 56 of the 58 reserve forest polygons are considerably small (mean extent of $1.6 \mathrm{~km}^{2}$), and comprise just 1.6% ($88 \mathrm{~km}^{2}$) of the total reserve forest area. These are distributed in the lower elevation, having Shorea robusta (sal), subtropical forests and warm broad leaved forests as the dominant landuse and sur-

Table 4 Classification accuracy of the various landuse types as indicated by the confusion matrix

Class name	Reference totals	Classified totals	Number correct	Producers accuracy	Users accuracy
Alpine meadow	13	13	13	100.00%	100.00%
Alpine scrub	5	5	5	100.00%	100.00%
Alpine thicket	9	8	7	77.78%	87.50%
Conifer forest	33	35	28	84.85%	80.00%
Mixed conifer forest	25	19	18	72.00%	94.74%
Oak forest	250	245	230	92.00%	93.88%
Alder forest	23	15	65.22%	68.18%	
Middle hill forest	33	34	26	78.79%	76.47%
Subtropical forest	8	12	6	75.00%	50.00%
Sal forest	52	58	86.54%	93.75%	
Forest thicket	61	56	81.97%	89.29%	
Forest scrub	8	14	6	87.50%	50.00%
Forest blank	8	14	75.00%	42.86%	
Agriculture	38	10	86.84%	94.29%	
Snow	12	5	75.00%	90.00%	
Rock	2	2	50.00%	20.00%	
Sand	2	1	50.00%	50.00%	
	497			86.32%	86.32%

rounded by agricultural fields. There is an urgent need to protect and regenerate these small sized, fragmented forests, as they are susceptible to encroachment and degradation. Out of the 15 forest classes, 3 classes namely sal forest, subtropical forest and warm broadleaved forest were found to have a limited extent (area less than $145 \mathrm{~km}^{2}$) and relatively higher degree of degradation. Protection of these forests is critical to prevent the loss of the characteristic biodiversity that they possess.

Cardamom farming is a perennial, low-volume, high-value, non-perishable, cash crop and it demands less nutrients and other inputs in comparison to other crops. Alder forest occurs in private lands and is grown as a shade tree for large cardamom-a valuable native horticulture plant (Sharma et al. 2000). In this zone, these forests have a sizeable extent of $272 \mathrm{~km}^{2}$ which can be potentially increased to $462 \mathrm{~km}^{2}$ by encouraging this landuse to bring more and more areas under forest cover and also to have an eco-friendly buffer to shield the temperate oak forests.

During the last three decades of the 20th century, $317 \mathrm{~km}^{2}$ of degradation has taken place, with the impacts mostly concentrated ($196 \mathrm{~km}^{2}, 62 \%$) in the temperate oak forests, which have been converted into thickets, scrub and blank areas. This degradation was
caused mainly due to open grazing, forest fires, selective felling of commercially important mature trees from forests and clear felling of temperate forests for meeting the demand for timber, firewood and charcoal. Thickets of secondary, unpalatable shrubs and bamboos have increased substantially in these degraded forests. Since 1995, several conservation initiatives have been taken up like implementation of the ban on open grazing in reserve forests and ban on green felling of trees in forests.

The main cause of degradation and fragmentation of the temperate oak and subalpine conifer forests is the heavy dependence for firewood and timber, high grazing pressure, vulnerability to forest fire, poor natural regeneration and naturally slow growing nature. While impacts of pastoralism on these forests has been substantially reduced with the removal of about 10,000 cows along with the 500 herders between 2001 and 2006 (Tambe and Rawat 2009), reducing firewood extraction by local communities and road construction labour force and preventing forest fire still needs to be prioritized. Chettri et al. (2006) documented that there is an unregulated extraction of firewood from the forests of the state, and estimated the annual dependence per rural household to be 6-8 tonnes (dry weight). Greater
emphasis is needed for promoting solar water heaters, LPG and ensuring access to alternate and cheap forms of energy and fuel efficient devices will help in substantially reducing the pressure on these forests. Also there is a pressing need to take up a long term restoration program to artificially regenerate these slow growing temperate and sub-alpine conifer forests.

Unlike in other parts of the country, the long dry winter from December to March is the major fire season in the state. Offlate incidence of forest fires in temperate forests which are unaccustomed to forest fire is increasing. There is a pressing need for a greater dissemination of mountain specific fire management technology using participatory approaches.

Conclusions

To conclude, we propose the following priorities for forest management in the Sikkim Himalaya. Firstly initiate a long term restoration program for the degraded oak and conifer forests. Secondly expand the extent of dense forests by reducing the pressure from firewood extraction, grazing and fire hazard. The extent of dense forests jointly with forest cover should be used as an impact indicator. Thirdly take special steps to protect and regenerate the several small-sized, fragmented forest patches in the lower belt. Fourthly promote alder-cardamom agro-forestry in the private lands as an eco-friendly buffer and lastly protect rare forest types (sal forests, subtropical forests and warm broad leaved forest) which are being increasingly degraded and under danger of losing their characteristic biodiversity.

Acknowledgements We gratefully acknowledge the support received from Indian Institute of Technology- Kharagpur and the Department of Forest, Environment and Wildlife Management, Government of Sikkim.

References

Blamont, D., \& Méring, C. (1987). Use of remote sensing for vegetation and landuse mapping in mountainous areas: the case of central Nepal. Advances in Space Research, 7(3), 41-46.
Buchrointhner, M. F. (1995). Problems of mountain hazard mapping using spaceborne remote sensing techniques. Advances in Space Research, 15(11), 57-66.

Champion, F. W., \& Seth, S. K. (1968). A revised survey of the forest types of India. Nasik: Manager, Government of India Press.
Chavez, P. S. (1996). Image based atmospheric correctionsrevisited and improved. Photogrammetric Engineering and Remote Sensing, 62, 1025-1036.
Chettri, S. K., Singh, K. K., \& Krishna, A. P. (2006). Anthropogenic pressures on the natural resources in fringe areas of the Khangchendzonga Biosphere Reserve. International Journal of Ecology and Environmental Sciences, 32(3), 229-240.
FSI (Forest Survey of India). (2005). The State of Forest Report 2005. Dehradun, FSI, Ministry of Environment and Forests, Government of India (pp 126-128).
Grierson, A. J. C., \& Long, D. G. (1983-1991). Flora of Bhutan vols $1-3$. Edinburgh, UK: Royal Botanical Garden.
Hajra, P. K., \& Verma, D. M. (1996). Flora of Sikkim: Volume 1: Monocotyledons (336 pp).
IIRS. (2002). Biodiversity Characterization at Landscape Level in North East India using Satellite Remote Sensing and Geographic Information System, Project Report-Phase I, Indian Institute of Remote Sensing, Department of Space, Government of India, 2002.
ISRO. (1994). Forest Cover Mapping through Digital Image Processing of Indian Remote Sensing Satellite data with Special Reference of Sikkim-Procedural Manual and Inventory: Joint Collaboration Project of Forest Department, Government of Sikkim and Regional Remote Sensing Service Centre, Kharagpur, Indian Space Research Organization, Department of Space, Government of India, 1994.
Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., \& Dhar, S. (2007). Glacial retreat in Himalaya using Indian Remote Sensing satellite data. Current Science, 92(1), 69-74.
Kushwaha, S. P. S., Padmanaban, P., Kumar, D., \& Roy, P. S. (2005). Geospatial modelling of plant richness in Barsey Rhododendron Sanctuary in Sikkim Himalaya. Geocarto International, 20(2).
Lillesand, T. M., \& Kiefer, R. W. (2000). Remote sensing and image interpretation (4th ed.). Singapore: John Wiley and Sons (ASIA) Pvt. Ltd.
Mittermeier, R. A., Gils, P. R., Hoffman, M., Pilgrim, J., Brooks, T., \& Mittermeier, C. G. (Eds.) (2004). Hotspots revisited. Earth's biologically richest and most endangered terrestrial ecoregions. USA: CEMEX.
Myers, N., Mittermier, R. A., Mittermier, C. G., Da-Fonseca, G. A. B., \& Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 40, 853-858.
NASA Landsat Program. (1977). Landsat MSS scene p149r41_2m19770123, Orthorectified, GeoCover, USGS, Sioux Falls, 01/23/1977.
NASA Landsat Program. (2000). Landsat ETM + scene p139r041_7t20001226, Orthorectified, GeoCover, USGS, Sioux Falls, 12/26/2000.
Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A., \& Brook, B. W. (2007). Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation, 16, 153163.

Quattrochi, D. A., \& Pelletier, R. E. (1990). Remote sensing for analysis of landscapes: an introduction. In M. G. Turner \& R. H. Gardner (Eds.), Quantitative methods in landscape ecology: The analysis and interpretation of landscape heterogeneity. Ecological studies series. New York: Springer-Verlag.
Roy, P. S., \& Tomar, S. (2000). Biodiversity characterization at landscape level using geospatial modelling technique. Biological Conservation, 95(1), 95-109.
Roy, P. S., Singh, S., Dutt, C. B. S., Jeganathan, C., Jadav, R. N., \& Ravan, S. A. (1999). Biodiversity Characterization at Landscape level using Satellite Remote Sensing and Geographic Information System, DOS-DBT Users Manual, Indian Institute of Remote Sensing (NRSA), Dept. of Space, Govt. of India, Dehradun, 1999.

Sharma, E., Sharma, R., Singh, K. K., \& Sharma, G. (2000). A boon for mountain populations. Mountain Research and Development, 20(2), 108-111.
Singh, T. P., Singh, S., Roy, P. S., \& Rao, B. S. P. (2002). Vegetation mapping and characterization in West Siang District of Arunachal Pradesh, India-a satellite remote sensing-based approach. Current Science, 83(10), 25 November 2002.
Tambe, S., \& Rawat, G. S. (2009). Ecology, economics and equity of the pastoral systems in the Khangchendzonga National Park, Sikkim Himalaya, India. Ambio, 38(2), 95100.

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., \& Steininger, M. (2003). Remote Sensing for biodiversity science and conservation. Trends in Ecology \& Evolution, 18, 306-314.

[^0]: S. Tambe

 Department of Forest, Environment and Wildlife Management, Government of Sikkim, Forest Secretariat,
 Gangtok 737102, Sikkim, India
 M. L. Arrawatia \cdot N. Sharma

 Department of Science and Technology and Climate Change, Government of Sikkim, Development Area, Gangtok 737102, Sikkim, India
 S. Tambe (\triangle)

 8 Unit, Class I, Government Quarters, Behind Sangram Hall, Development Area, Gangtok, Sikkim 737101, India
 e-mail: sandeep_tambe@yahoo.com

