SPECIES RICHNESS AND PRODUCTIVITY PATTERN ALONG ALTITUDINAL GRADIENTS IN EAST DISTRICT OF SIKKIM, INDIA

A THESIS SUBMITTED TO THE UNIVERSITY OF NORTH BENGAL FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN BOTANY

By NARPATI SHARMA

Under the Supervision of

Dr. A.P. Das

Professor UNIVERSITY OF NORTH BENGAL

&

Dr. M.D. Behera

Associate Professor INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

DEPARTMENT OF STUDIES IN BOTANY UNIVERSITY OF NORTH BENGAL

December, 2016

Declaration

I declare that the thesis entitled "*Species Richness and Productivity Pattern along Altitudinal Gradients in East District of Sikkim, India*" has been prepared by me under the guidance of **Dr. A. P. Das,** Professor, Taxonomy and Environmental Biology laboratory, Department of Studies in Botany, University of North Bengal and **Dr. M. D. Behera,** Associate Professor, Indian Institute of Technology, Kharagpur. No part of this thesis has formed the basis for the award of any degree or fellowship previously.

[Narpati Sharma]

Department of Botany University of North Bengal Raja Rammohunpur, Dist. Darjeeling West Bengal, India, 734013 Date: 25 11/2016 A.P. DAS MSC, DIIT, PhD, FLS (London), FIAT FASCT, FEHT, FES, ISCON **Professor** (Retired) Member: SSC-IUCN Executive Editor: PLEIONE Former President: IAAT Taxonomy & Environmental Biology Laboratory **North Bengal University** Darjeeling 734 430 WB India Phone: 091-353-2581847 (R), 2776337 (O) Mobile: 091-9434061591; FAX: 091-353- 2699001 e-mail: apdas.nbu@gmail.com

25.11.2016

CERTIFICATE

I certify that Sri Narpati Sharma has prepared the thesis entitled "Species Richness and Productivity Pattern along Altitudinal Gradients in East District of Sikkim, India", for the award of the degree of Doctor of Philosophy of the University of North Bengal, under my guidance, he has carried out the work at the Taxonomy and Environmental Biology Laboratory, Department of Botany, University of North Bengal.

016 [Dr. A. P. Das]

भारतीय प्रौद्योगिकी संस्थान खड़गपुर

Centre for Oceans, Rivers Atmosphere and Land Sciences (CORAL)

Dr MD Behera Associate Professor

CERTIFICATE

This is to certify that the thesis entitled **Species Richness and Productivity Pattern Along with Altitudinal Gradients in East District of Sikkim, India,** submitted by Narpati Sharma to Department of Botany, University of North Bengal, Raja Rammohunpur, West Bengal is a record of bona fide research work under our supervision and we consider it worthy of consideration for award of degree of Doctor of Philosophy of the University.

Date 21 11 2016

Prof. MD Behera

(Formerly, Scientist/ Engineer-SD RRSSC-ISRO, Kharagpur, W.B.)

Acknowledgements

I express my heartiest gratitude to my respected teacher, mentor and supervisor, Prof. Abhaya Prasad Das of Plant Taxonomy and Environmental Biology Laboratory, Department of Botany, North Bengal University for his inspiration, motivation, suggestion and continuous encouragement, co-operation and invaluable guidance, which were tremendously helpful for me to take up and to complete the present work.

I would also like to thank equally to my Co-Supervisor, Dr. M. D. Behera, Associate Professor, Center for Oceans, Rivers, Atmosphere and Land Sciences (CORAL), Indian Institute of Technology (IIT), Kharagpur, his consistent encouragement and all sorts of support and suggestions throughout the research program led the work to reach its completion stage.

I would like to extend my heartiest thank and gratitude to all the Heads of the Department of Botany, North Bengal University, to whom I interacted during my research and all other respected teachers, namely Prof. B.N. Chakraborty, Prof. P.K. Sarkar, Prof. U. Chakraborty, Dr. A. Saha, Dr. A. Sen, Dr. S.C. Roy, Dr. P. Mandal and Dr. M. Chowdhury for their constant supports and suggestions.

I wish a deep gratitude to the former and present Secretaries, Department of Science & Technology, Govt. of Sikkim viz., , Shri O.P. Singhi, Shri M. L. Arrawatia, Shri R. Teleng, Shri, A. K. Shreewastva, Shri, D, Anandhan, Shri S. K. Shilal, Shri P.T Euthenpa & Dr. Anil Mainra, without their kind support and encouragement this work might have not been completed.

It is my pleasure to acknowledge the Secretary cum PCCF, Department of Forest, Govt. of Sikkim and all other concern officials for permitting me to visit the entire East Sikkim to complete the field survey especially in the remote locations.

I express my heartiest thanks to our senior scholar (Didi) Dr. Chandra Ghosh, Head, Botany Department, Gour Mahavidayalaya, Malda for her kind advices and cooperation.

I would like to extend my heartiest thanks to all the scholars in the Taxonomy and Environmental Biology Laboratory, namely, Dr. Sonam Rinchen Lepcha, Dr. Animesh Sarkar, Mr. Suman Nirola, Dr. Ajita Sarkar, Mr. Rajib Biswas, Mr. Saurav Moktan, Mr. Dibakar Choudhury, Mr Anurag Chowdhury, Mr. Amalesh Bijali, Mr. Kishor Biswas, Mrs. Baishakhi Sarkar, Miss Payel Paul, Mrs Ihuma Sutradhan and Miss Deepika Chettri for their continuous help and support.

I extend my thanks to Mr. Binod Singha and Mrs. Sangita Oraon, the laboratory attendants in the Taxonomy and Environmental Biology Laboratory for their assistance in different laboratory works.

I sincerely thank Shri D.G. Shrestha, Additional Director and entire team of Remote Sensing Centre, namely Shri Benoy Pradhan, Shri Dilli Ram Dahal, Shri Pranay Pradhan, Shri R.K. Sharma, Shri Dinesh Dhakal, Shri Bandan Ghagmer and Shri Safal Pradhan for providing all the essential support during my work. Equally, I am thankful to Shri R.M. Panda, Ms. Punam, Ms. Swapna and Shri Pulakesh of COREL, IIT-Kharagpur for their all types of help and co-operation whenever I was there for my works.

I would also like to thank Dr. B. C. Bashista, and Shri Dorjee T. Bhutia Additional Directors, and Dr. S.R. Lepcha Dy. Director, Shri K.B. Subba, Dr. Shiva Kumar Sharma, Shri Laydong Lepcha, Shri Sushan Pradhan and other staff members of Department of Science and Technology, Govt. of Sikkim for their constant support during my research work.

During my work, I have came across and acquainted with numerous helpful and nature effecting personalities including Dr. Sandeep Tambee, Dr. Tika Prasad Sharma and Ms. Anjali Sharma. All of them deserve my sincere gratitude for their constant cordial support.

I also thank the Scientist-in-Charge, Sikkim Himalayan Circle, of Botanical Survey of India, Gangtok and their entire team of scientists who helped me all the time whenever I approached them for the identification of my specimens and litrature.

In this connection, I would like to extend my thanks to Dr. Laxuman Sharma my other friends, Shri R.C Sharma, Shri Ganesh Sharma, and Shri Bishnu Sharma for their constant support during my work.

Finally, although numerous to mentioned by name, I certainly owe to all of them, whose names might not have been included in this account, who had taught me so much as they caught on how wonders and valuable are our plants for our future and for the survival of the entire biosphere. I will always fondly keep them in my memory in every moments of my life.

Now, at the end of all out-of-home supports, I remember my parents Shri Dilli Ram Sharma, and Smt. Dilli Maya Sharma with deepest sense of love and gratitude, without their affection, encouragement and blessings it would not have been possible to complete by research work. My sincere thanks to my beloved wife, Chandrakala, for her encouragement and support at each and every step of the journey towards the completion of my research work. I shall remain grateful to all other family members for their encouragement and support especially, to my, brothers Bhola daju, Ram and Jagan, and my sister in law Sushma, Muna who always wish to see my success in my every endeavors.

[Narpatisharma] Navbatishorma

Department of Botany, University of North Bengal Raja Rammohunpur, Dist. Darjeeling West Bengal, India, 734013 Date: 25 11/2016

Abstract

The present work "Species Richness and Productivity Pattern along Altitudinal Gradients in East District of Sikkim, India" is based on the field data collected from the different altitudinal gradient of East district of Sikkim. The elevation of East district of Sikkim is ranging from 340 m at Rangpo to 4649 m near Nathula and the total geographical area is 954 sq km. Within the very short distance the all kind of climatic zones viz. tropical, sub-tropical, temperate, sub-alpine, alpine and permanent snow line area were cover within this district. For the present work, field data were collected through nested quadrats within an altitudinal range of 500 - 3300 m elevation gradient located within the district. The field data collected mostly from the undisturbed vegetation tracts including reserve forest (RF), wildlife sanctuary, khasmal and gorucharan (rangeland), located at least 500 m away from the human habitat areas. Altogether there are 224 nested quadrats of 20 x 20 m size laid out in the field for trees. The data from two 5 x 5 m quadrats [located within 20 x 20 m] for shrubs and five 1 x 1 m [also within 20 x 20 m] for herbs/ ground cover were collected. The field data was collected in the designed field format and the voucher specimens were collected for identification. A total of 664 species of vascular plants were recorded through such sampling, which include almost all habit groups like herbs, shrubs, climbers, lianas, trees and epiphytes. Major part of the natural vegetation, especially in the tropical to warm temperate belt is dominated by trees. Out of the recorded 664 species 34 species are found to be endemic to different sections of the Himalayan region.

Slope, aspect, climatic elements and soil were also taken into consideration during the analysis. The field data was divided in three elevation categories (grain size) *viz*. 100 m elevation steps, 200 m elevation steps and 300 m elevation steps with three taxonomic spectra (i.e., species, genus and family). As much as 159 species of trees, 121 shrub species, 302 herbaceous species and 82 epiphytes and lianas were recorded from the field. *Schima wallichii* Choisy is found to be occurring with highest abundance in sub-tropical belt of the district with recorded 1246 counts. A minimum of 60 and maximum of 155 species were noted in 3200 – 3300 m and 2200 – 2300 m elevation bands respectively. *Castanopsis hystrix* Hook.f. & Thomson ex A.DC., *Engelhardtia spicata* Hook.f. & Thomson ex A.DC., *Ostodes paniculata* Blume, *Alnus nepalensis* D.Don and *Schima wallichii* Choisy are the dominant tree species of tropical and temperate forests.

Schima wallichii Choisy contributed highest IVI score of 12.19 followed by *Ostodes paniculata* Blume with 4.64 in phytosocological analysis.

Pteridium quilinum (L.) Kuhn is found in all the elevation bands indicating maximum tolerance and adaptability with its extremely broad ecological amplitude. On the other hand, 190 species were found with single appearance in one elevation band and have very narrow tolerance and adaptability ranges. The Margalef diversity index showed very high values at all elevation bands with the highest 19.33 reaching at 2200 - 2300 m; whereas Shannon Weiner Diversity Index values varied between 3.4 and 4.4 (except at the highest elevation band, where the value was the lowest, 1.9) with the highest value of 4.4 recorded at 2200 - 2300 m.

The species richness pattern along the altitude analysis became prominent when adjudged from 100 m to 200 m and 300 m elevation bands with R^2 values of 0.502, 0.553 and 0.743 respectively. The species richness showed a gentle mid-elevation peak with a fast declining trend beyond mid-elevation. The pattern became prominent when adjudged from 100 m to 200 m and 300 m elevation bands with R^2 values of 0.502, 0.553 and 0.743 respectively; indicating realisation of scale effect. Similarly, the genus and family richness pattern followed the mirror image of species with mid-elevation peak. The R^2 values increased when plotted from 100 m to 200 m and 300 m elevation bands for genera (0.657, 0.764 and 0.862) and families (0.765, 0.875 and 0.907). Though, the species richness pattern along elevation gradient showed non-linear polynomial relationship, it clearly confirmed the pattern of mid-elevation peak across the taxonomic spectrum (i.e., species, genera and families), and grain size (100 m, 200 m and 300 m elevation bands).

The above ground (AG) biomass distribution pattern showed alternate increasing and decreasing pattern along the elevation gradient in the study area. In general, the AG biomass showed a smooth increase up to mid-elevation and then decreases further. The R² values increased (i.e., 0.28, 0.41 and 0.58) when plotted from 100 m to 200 m and 300 m elevation bands. Species richness and AG biomass along elevation gradient shows strong positive relationships.

Species richness and above ground biomass vary in similar direction along the elevation gradient showing strongly positive relationships. The relationship became prominent with increasing elevation and grain size of different elevation bands i.e. from 100 m to 200 m and 300 m (along with the increase of R^2 values i.e., 0.31, 0.53 and 0.80).

Satellite remote sensing data, in the form of imageries, provide consistent and systematic observations on vegetation and ecosystems. So, as a proxy of biomass NDVI and EVI were calculated using the Landsat data of different dates, where the R² at 0.322 has been observed in second order polynomial in 100 m elevation band. But the field derived biomass and MODIS productivity was not showing the good relationship.

The multivariate analysis was also performed using the GLM model, to understand the correlation between species richness and other variables *viz*. temperature, rainfall, slope, soil, elevation, aspect and biomass. The good relationship between species richness with temperature and elevation were observed through such analysis.

Finally, it was suggested that more research in different scale is required to know the better relationship between species richness and productivity pattern along the altitudinal gradient in the biodiversity rich mountainous regions like Sikkim.

TABLE OF CONTENTS

Conten Declara	nts ations	Page No
Ackno	wledgements	
Abstra	ct	i – ii
List of	Tables	ix
List of	Figures	x – xii
List of	Annexures	xiii
List of	Plates	xiv – xv
Chap	ter -1	
INŤI	RODUCTION	01 - 26
1.1.	Biological Diversity	01
1.2.	Plant community structure	05
1.3.	Topographical description	05
	1.3.1. Elevation	05
	1.3.2. Slope and aspect	06
	1.3.3. Drainage	07
	1.3.4. Road	07
	1.3.5. Edaphic conditions	07
1.4.	Biodiversity pattern	07
	1.4.1. Latitudinal pattern	07
	1.4.2. Life-form composition pattern	08
	1.4.3. Factors correlated with diversity	08
	1.4.4. Ecotone zone	08
	1.4.5. Forest type variation	08
	1.4.6. Species distribution range	08
	1.4.7. Biodiversity scale factor	09
1.5.	Community	09
	1.5.1. Frequency and Relative Frequency	09
	1.5.2. Density and Relative Density	09
	1.5.3. Abundance and Relative Abundance (Dominance)	09
	1.5.4. Importance Value Index	10
1.6.	Diversity Indices	10

1.7.	Plant Biomass	10
	1.7.1. Destructive sampling technique or harvest mapping	
	technique	10
	1.7.2. Non-destructive sampling technique	11
	1.7.2.1. The biomass assessment using the field data	11
	1.7.3. Measurements based on remotely sensed data taken from	
	airborne/ space borne systems	11
	1.7.3.1. Satellite derived NPP Products	11
	1.7.4. Semi-empirical modelling – Estimation using models	12
1.8.	Relation between productivity and species richness	12
1.9.	Relationship between species richness with biomass along the	
	elevation	13
	1.9.1. Positive correlations of diversity and productivity	14
	1.9.2. Negative correlation of diversity and productivity	14
1.10.	Summary of some related studies around the globe	15
1.11.	Hills, Mountain and biodiversity	25
1.12.	The Sikkim Himalaya	25
1.13.	The Hypothesis	25

Chapter - 2 **OBJECTIVES**

Chapter	- 3		
STUDY	AREA	N	27 - 46
3.1.	The Hi	malayan State of Sikkim	27
3.2.	Distrib	ution of Forest Vegetation vis-à-vis Elevation	29
	3.2.1.	Low Hill Forests (tropical to sub-tropical, up to 900 m)	29
	3.2.2.	Middle Hill Forests (subtropical, 750 – 1500 m)	29
	3.2.3.	Upper Hill forests (Wet temperate, 1500 – 2700 m)	30
	3.2.4.	Rhododendron-Conifer Zone (cold temperate or sub-	
		alpine, 2700 – 3600 m)	31
3.3.	Occurr	ence and distribution of forest types	31
	3.3.1	Forest Type Distribution as per Champion and Seth (1968)	33
		3.3.1.1. Tropical Semi-Evergreen Forests-3C/C1 (300 – 900 m)	33
		3.3.1.2. Sub-Tropical Mixed Broad Leaved Hill Forests-	
		8B/C1 (900 – 1800 m)	33
		3.3.1.3. Upper Hill Himalayan Wet Temperate Forests-	
		11B/C1 (1800 – 2400 m)	33
		3.3.1.4. Sub-alpine Forests (2400 – 3000 m)	33
		3.3.1.5. Moist Alpine Forests (2700 – 3700 m)	33

26

Contents V

	3.3.1.6. Dry Alpine Forests (3700 – 4500 m)	34
3.4.	Location of East District of Sikkim	34
	3.4.1. Protected areas in East District	36
3.5.	Plant diversity in the Sikkim Himalaya	37
	3.5.1. Endangered plants	38
	3.5.1.1. Number and status of endangered plants	38
	3.5.2. Endemic plants	40
	3.5.3. Medicinal plants	40
3.6.	Elevation	40
3.7.	Soil	41
3.8.	Climate	41
3.9.	Drainage System	41
3.10.	Communication network	44
3.11.	Socio-economic status	44
3.12.	Fauna	46

Chapter - 4 MATERIALS AND METHODS

MAT	ERIALS	AND METHOD	S	47 – 57
4.1.	Physio	gnomy, Climate, Eda	aphic and Forest Cover Mapping	47
	4.1.1.	Elevation		47
	4.1.2.	Slope and Aspect		47
	4.1.3.	Climate		47
		4.1.3.1. Temperatu	re and Precipitation	47
	4.1.4.	Soil		47
	4.1.5.	Forest type and den	sity	47
4.2.	Plant d	liversity		48
	4.2.1.	Sampling design		48
	4.2.2.	Sampling strategy		48
	4.2.3.	Field data collection	n	49
		4.2.3.1. List-Count	t Data	50
	4.2.4.	Data entry and desi	50	
	4.2.5.	Data analysis		50
		4.2.5.1. Dominanc	e analysis	51
		4.2.5.1.1.	Frequency (F) and Relative Frequency (RF)	51
		4.2.5.1.2.	Density (D) and Relative Density (RD)	51
		4.2.5.1.3.	Abundance (A) and Relative Abundance $(\mathbf{P}\mathbf{A})$	51
		4.2.5.1.4.	Important Value Index (IVI)	51
		4.2.5.2. Diversity l	Indices	52
		4.2.5.2.1.	Margalef Index (M)[Sp Richness]	52

	•
Contente	V/1
Contents	V 1

		4.2.5.2.2. Simpson's Index (1/D)[dominance]	52
		4.2.5.2.3. Shannon-Wiener Index	
		(H')[Diversity]	52
		4.2.5.2.4. Pielou's Index (e) [Evenness]	53
	4.2.6.	Species, Genera and Families richness along the altitude	53
		4.2.6.1. Along 100 m 200 m and 300 m elevation steps	53
4.3.	Endem	iic species	53
4.4.	Produc	ctivity (Biomass)	54
	4.4.1.	Name of the species	54
	4.4.2.	Circumference at Breast Height (CBH)	54
	4.4.3.	Height of trees	54
	4.4.4.	Indicator parameters for non-tree species	54
	4.4.5.	Basal area	54
	4.4.6.	Volume estimation	54
	4.4.7.	Biomass estimation	55
		4.4.7.1. Biomass along 100 m elevation steps	55
		4.4.7.2. Biomass along 200 m elevation steps	55
		4.4.7.3. Biomass long 300 m elevation step	55
4.5.	Satelli	te based productivity	55
	4.5.1.	MODIS Productivity	55
	4.5.2.	MODIS Algorithms	55
	4.5.3.	Landsat-8 NDVI and EVI	55
		4.5.3.1. Data download and process	55
		4.5.3.2. Normalised Difference Vegetation Index (NDVI)	56
		4.5.3.3. Enhanced Vegetation Index (EVI)	56
		4.5.3.4. Data download and process: The website	
		http://modis.gsfc.nasa.gov/data/dataprod/	
		dataproducts. php?MOD_NUMBER=17>	56
	4.5.4.	Relationship between MODIS productivity field biomass	56
	4.5.5.	Relation between field biomass Satellite EVI	56
4.6.	Relatio	on between species diversity and Plant productivity	
	(bioma	ass) along the altitude	56
4.7.	Multiv	ariate analysis	56
	4.7.1.	General Linear Model (GLM)	56
	4.7.2.	GLM Modelling in R	57
Chapt	er - 5		
RESU	LT: SPI	ECIES RICHNESS ALONG THE ALTITUDE	58 - 83
5.1.	Topog	raphy	58

Topography	58
5.1.1. Elevation	58
5.1.2. Slope and Aspect	60
5.1.3. Climate	63
5.1.3.1. Temperature	63

					Contents
		5.1.3.2.	Precipitati	on	63
	5.1.4.	Soil			64
	5.1.5.	Forest ty	ype and den	isity	66
5.2.	Plant c	liversity			67
	5.2.1.	Data ent	try and desi	gn	67
	5.2.2.	Data ana	alysis		67
		4.2.2.1.	Dominanc	e analysis	69
			5.2.2.1.1.	Frequency and Relative Frequency	70
			5.2.2.1.2.	Density and Relative Density	70
			5.2.2.1.3.	Abundance and relative abundance	70
			5.2.2.1.4.	Importance Value Index	71
		5.2.2.2.	Diversity 1	Indices	71
			5.2.2.2.1.	Margalef Index (MI)	71
			5.2.2.2.2.	Simpson's Index	71
			5.2.2.3.	Shannon-Wiener Index (H')	72
			5.2.2.2.4.	Pielou's Index (J) [Evenness]	72
		5.2.2.3.	Richness of	of Species, Genus and Family along the	
			altitude		73
			5.2.2.3.1.	Along 100 m elevation step	73
			5.2.2.3.2.	Along 200 m elevation step	77
			5.2.2.3.3.	Along 300 m elevation step	78
		5.2.2.4.	Endemic s	pecies	80
Chapt	er - 6				
RESU	JLT: PR	ODUCT	TION OF	BIOMASS ALONG THE	84 - 98
	AL	TITUD	INAL GI	RADIENT	
6.1.	Bioma	ss Produc	tivity		86
	6.1.1.	Field da	ta		86
		6.1.1.1.	Circumfer	ence at Breast Height (CBH)	86
		6.1.1.2.	Tree heigh	nt	86
		6.1.1.3.	Basal area		86
		6.1.1.4.	Volume E	stimation	86
		6.1.1.5.	Biomass e	stimation	87
			6.1.1.5.1.	Along 100 m elevation step	87
			6.1.1.5.2.	Along 200 m elevation step	88
			6.1.1.5.3.	Along 300m elevation step	89
6.2.	Satelli	te based r	elation of E	Biomass	89
	6.2.1.	Landsat	-8 NDVI ar	nd EVI	89
	6.2.2.	Relation	h between b	iomass and satellite EVI	90

6.2.3. MODIS Productivity

6.2.4. Relation MODIS Productivity with Biomass

vii

90

98

98

Contents Viii

Chapter - 7 **RESULT: RELATIONSHIP BETWEEN SPECIES RICHNESS AND BIOMASS ALONG THE ALTITUDE** 99 - 1087.1. Relation between species diversity and productivity 99 7.1.1. Conditions in East district of Sikkim 100 7.2. Relation between species diversity and productivity along the altitude 102 Relation between species richness and other environmental 7.3. variables – multivariate analysis 104 7.3.1. Correlation of species richness with other factors 104 7.3.2. Relationships between species richness and other variables 105 Relation between diversity with temperature, precipitation 7.3.3. and area 106

Chapter - 8

DISCU	JSSION	109 - 123
8.1.	Topology	109
8.2.	Plant diversity	109
8.3.	Dominance analysis	109
8.4.	Diversity Indices	112
8.5.	Species Richness and Elevation	112
	8.5.1. Species richness	113
8.6.	Distribution of Trees Shrubs and Herbs along the altitude	113
8.7.	Species richness along elevation gradient	114
	8.7.1. Along 100 m elevation step	116
	8.7.2. Along 200 m and 300 m elevation Steps	116
8.8.	Effect of the forest ecotone	117
8.9.	Species Richness and Environmental Parameters	118
8.10.	Biomass along Altitudinal (Elevation) Gradient	119
8.11.	Satellite based correlation	120
8.12.	Relationship between Species Richness and Biomass Production	
	along the altitude	121
8.13.	Relation of diversity with Temperature, Precipitation and Area	121
8.14.	Status of Conservation in the Study area	122

Chapter - 9 123 – 124 CONCLUSION 123 – 124 PHOTO PLATES 126 – 135 BIBLIOGRAPHY 136 – 151 ANNEXURES 152 – 226 Publications 227

LIST OF TABLES

Table 1.1.	Summary of some related studies around the globe	16 - 24
Table 3.1.	Details of forest types found in Sikkim, Eastern Himalaya, India	31 - 32
Table 3.2.	Detailed of Forest Range of East Sikkim	34
Table 3.3.	Endangered and endemic flowering plants known to grow in the East	
	district of Sikkim	38 - 39
Table 3.4.	Important rivers of East district of Sikkim	41 - 42
Table 3.5.	Lists of important lakes in East district Sikkim	43
Table 5.1.	Geographical area of each elevation band of study area	59
Table 5.2.	The area covered by each forest type in the East district of Sikkim	67
Table 5.3.	List of 10 dominant tree species along with their total counts	67
Table 5.4.	Records of different diversity indices at different altitudinal steps in the	
	East district of Sikkim.	72 - 73
Table 5.5.	List of endemic species recorded from the study area	81 - 82
Table 6.1.	List of 10 maximum volume contributed tree species of east district	
	Sikkim	87
Table 6.2.	List of tree species as per their contribution of biomass	87
Table 7.1.	Correlation Matrix of species richness with other factor in East district	
	of Sikkim	104
Table 7.2.	Coefficients GLM of Species Richness with other variable	104
Table 7.3.	Analysis of deviance among the response variable	106
Table 8.1.	Detail of vascular plant species Genus and Family in each elevation	
	steps	110 – 111
Table 8.2.	List of the highest IVI scores of 10 vascular plants	112
Table 8.3.	List of tree, shrubs, herbs and epiphyte of the study area	114
Table 8.4.	List of the number vascular plant species in each 100 m 200 m, and 300	
	m elevation steps.	116
Table 8.5.	Protected area networks in Sikkim	122

LIST OF FIGURES

Page No

Fig. 1.1.	Biodiversity distribution pattern along the elevation gradient. Curve '1' shows that the biodiversity levels decrease with elevation and the maximum is at low elevations and curve '2' indicates that most diverse zones are in the mid-elevation (Adapted from; Weng et al. 2007)	2
Fig. 1.2.	Relation between tree species richness and elevation in central Nepal (<i>Adapted from</i> : Bhattarai & Vetaas, 2003)	3
Fig. 1.3.	Relation between tree species richness and elevation in central Nepal (<i>Adapted from</i> : Bhattarai & Vetaas, 2006).	4
Fig. 1.4.	Observed species richness of trees along the elevation gradient of Sikkim, Eastern Himalaya (Adapted from: Acharya <i>et al.</i> , 2011)	4
Fig.1.5.	Vegetation zones in the Himalayas as adapted from http://blog-yard-garden-news.extension.umn.edu/2009/02/in-rhododendron-fairyland-fantasy-	
Fig. 1.6.	of.html Plot of effective number of species calculated from the Shannon Wiener	6
•	index against AGB estimates; (Adapted from Day et. al, 2013).	13
Fig.1.7.	Qualitative predictions of growth-mortality trade-offs (a–b), biomass (c), diversity (d) and resulting BEF relationships (e–f) based on a successional niche model with only early- and late-successional specialists (e.g. two species, Kinzig and Pacala 2001). (a) Biomass growth declines with stand age. Early-successional specialists have higher productivity under abundant resources early, but cannot maintain productivity as stands age. (b) As resources decline with stand age, biomass mortality increases. Increased mortality is higher for early-successional species. (c) As a result, early- successional species biomass peaks early in succession but is supplanted by late-successional species. (d) Under the successional niche hypothesis, the highest diversity occurs in middle-aged stands transitioning from early to late-successional species. (e) Diversity relationship with biomass dynamics (Dbiomass) due to growth shifts from negative to positive across succession. (f) Diversity relationship with Dbiomass due to mortality shifts from positive to negative, due to dominance late in succession by low mortality	
	species. [Adapted from: Lasky <i>et al.</i> , 2014]	15
Fig. 3.1.	Location map of Sikkim	27
Fig. 3.2.	Profile along the altitude of Sikkim with the distance in Kilometers	28
Fig. 3.3.	Forest Range map of East Sikkim	35
Fig. 3.4.	Wetlands in East Sikkim	43
Fig. 3.5.	Drainage/stream map of east district indicates very dense network	44

	•
Contents	X1

Fig. 3.6. Fig. 4.1.	Road network in east district of Sikkim shows less density Nested Quadrat design (20x20m for trees and lianas, 5x5m for shrubs and 1x1 m for herbs)	45
Fig. 4.2.	Field photograph taking the CBH of tree in steep slope (left) counting of herb and noted in the prescribe format (Right)	49 50
Fig. 5.1.	200 m elevation steps map of the study area showing over 70 % of the area of East district of Sikkim for the study	58
Fig. 5.2.	Elevation step-wise area availability at 100 m elevation steps	50 60
Fig. 5.3.	Slope map of East district that indicates more area is under $15 - 30^{\circ}$ slope	61
Fig. 5.4.	Percentage-wise distribution of slope of East district of Sikkim	61
Fig. 5.5.	Aspect map of East district indicates less area is under NE slope	62
Fig. 5.6.	(a) Percentage wise distribution of aspect; (b) distribution of northern and southern aspects of east district shown in a Pie diagram	62
Fig. 5.7.	Average Maximum and Minimum temperature between 2000 and 2010 of Gangtok in East district, Sikkim	63
Fig 58	Average rainfall at Gangtok during 2000 and 2010	64
Fig. 5.9.	Average Annual Rainfall map of east district, Sikkim showing Isohyets of rainfall	04
Fig. 5.10	Soil map of East district based on NRSS & LUP (1006) information	65
Fig. 5.10.	Forest type zonation man of East district of Sikkim	66
Fig. 5.12.	Box plot of average maximum, minimum and standard deviation of every eight quadrat data in 28 elevation steps $[5-32=(550-3250)]$	69
E ~ 512	Ushit group rishness along the 100 m aloustion andient	00
Fig. 5.15. Fig. 5.14	Magazalaf in day (MI) of Species Dishrass along 100 m aloustion gradient	09 72
Γ_{12}^{i} , J_{11}^{i} , Γ_{12}^{i} , J_{11}^{i} , Γ_{12}^{i} ,	Species dominance along the 100 m elevation gradients	13
Fig. 5.15 Fig. 5.16.	Shannon-Wiener index of species diversity along the 100 m elevation gradients	74 74
Fig 5 17	Species Evenness along the 100 m elevation gradient	75
Fig. 5.17.	Plant species distribution along the 100 m elevation gradient	75
Fig. 5.10.	Distribution of plant genera along the 100 m elevation gradient	76
Fig. 5.19.	Distribution of plant families along the 100 m elevation gradient	70 77
Fig. 5.20.	Distribution of plant species along the 200 m elevation gradient	78
Fig. 5.21.	Distribution of plant genera along the 200 m elevation gradient	78
Fig. 5.22.	Distribution of plant families along the 200 m elevation gradient	70
Fig. 5.23.	Distribution of plant species along the 300m elevation gradient	79
Fig. 5.24.	Distribution of plant species along the 300 m elevation gradient	80
Fig. 5.25.	Distribution of plant families along the 300 m elevation gradient	80
Fig. 6.1	Relationship between biomass and altitude along 100 m elevation step	88
Fig. 6.2.	Relationship between biomass and altitude along 200 m elevation step	88
Fig. 6.3.	Relationship between biomass and altitude along 300 m elevation step	89
Fig. 6.4.	Landsat satellite imagery of 6 th December 2013 (A) and NDVI of same period (B)	90

	••
Contents	X11

Fig. 6.5. Fig. 6.6.	Relation between Biomass vs Landsat EVI in 300m steps Relation between field biomass vs EVI2 values along the100 m elevation steps from 500 to 3300 m of Sikkim Himalaya	91
Eig 670	Polation between field biomage vs EVI2 values along the elevation stars	92
Fig. 0.7a.	from (A) 1200 – 3000 m and (B) 2300 – 3000 of Sikkim Himalaya	92
Fig. 6.7b.	Relation between field biomass vs EVI2 values along the elevation steps from (A) 1200 – 3000 m and (B) 2300 – 3000 m of Sikkim Himalaya	92
Fig. 6.8.	Landsat satellite imagery of 26 th April 2013 (A) and (B) EVI of same period indicate the presence of more than 40 % cloud cover.	93
Fig. 6.9.	Landsat satellite imagery of 13 th June 2013 (A) and (B) EVI of same period	94
Fig. 6.10.	Landsat satellite imagery of 17 th September 2013 (A) and (B) EVI of same period	95
Fig. 6.11.	Landsat satellite imagery of 6 th December 2013 (A) and (B) EVI of same period	96
Fig 612	Relation between MODIS NPP and Field derived biomass	98
Fig. 6.13.	MODIS Productivity imagery (A) and (B) MODIS NPP derive after	70
	interpolation	97
Fig. 7.1.	Relation between species richness and biomass along 100 m elevation steps.	101
Fig. 7.2.	Relation between species richness and biomass along 200 m elevation steps.	101
Fig. 7.3	Relation between species richness and biomass along 300 m elevation steps.	102
Fig. 7.4.	Relationship between biomass and species richness along the 100 m elevation steps.	102
Fig. 7.5.	Relationship between biomass and species richness along the 200 m elevation steps.	103
Fig. 7.6.	Relationship between biomass and species richness along the 300 m elevation steps.	103
Fig. 7.7.	Relationship between species richness and other variables (Temperature rainfall slope, rainfall, soil, elevation aspect and biomass)	105
Fig.7.8.	Richness pattern along 200m elevation steps for (A) Species, (B) Genera and (C) Families based on best fitted second order polynomial regression model. All models were statistically significant (p<0.01) and peaked at1800	
	m altitude.	106 – 107
Fig. 7.9.	Residual vs. predicted values plot showing species richness at 200 m elevation steps in relation to: (A) Temperature, (B) Precipitation and (C) Area using generalized linear model fitted with Poisson error distribution. The non-linear pattern is clearly indicated with no heteroscedasticity in	
	modelling. Points having values are outliers	107 – 108
Fig. 8.1.	Elevation wise geographical area distribution map of east district of Sikkim	110
Fig. 8.2.	Landuse and landcover map of East district of Sikkim	111
Fig. 8.3.	Species richness along the 100m elevation steps	113

LIST OF ANNEXURE

Page No.

Annexure I:	Importance Value Index of Species of the study area	152 - 170
Annexure II:	Importance Value Index at Genus level in the Study area	171 – 180
Annexure III:	IVI of recorded plant Families of the study area	181 - 184
Annexure IV:	Volume Equation used for trees of the study area	185 – 186
Annexure V:	List of plants species along the altitude showing the species distribution range (lower elevation 500 and upper elevation range 3300 (5 to 32)	186 – 219
Annexure VI:	Detail description of Soil Classes found in Sikkim	220 - 226
Annexure VII:	List of Publication	227

LIST OF PHOTO PLATES

Page No.

Plate: 1	A. Girardinia diversifolia; B. Laphangium affine; C. Cheilocostus speciosus; D. Houttuynia cordata; E. Nepeta connata; F. Impatiens	
	glandulifera; G. Aconitum ferox; H.Oxalis acetosella; I. Fragaria nubicola; J. Persicaria chinensis; K. Potentilla fulgens; L. Onopordum	126
	acanthium.	
Plate: 2	A. Clematis montana; B. Arisaema propinquum; C. Pilea umbrosa; D.	
	Piper boehmeriifolium; E. Myricaria rosea; F. Oxalis corniculata; G.	
	Taraxacum campylodes; H. Impatiens urticifolia; I. Ranunculus laetus; J.	127
	Anaphalis busua; K. Ageratum houstonianum; L. Didymocarpus albicalyx.	
Plate: 3	A. Ageratina adenophora; B. Swertia chirayita; C. Dobinea vulgaris;	
	D. Panax pseudoginseng; E . Rheum aciminatum; F . Streptopus simplex; G .	
	Achyranthes bidentata; H. Selinum wallichianum; I. Aster himalaicus; J.	128
	Cassiope fastigiata; K. Erigeron bellidioides; L. Rhaphidophora	
	decursiva; M. Euphorbia sikkimensis.	
Plate: 4	A. Primula capitata; B. Primula drummondiana; C. Primula edgeworthii;	
	D. Primula calderiana; E. Primula macrophylla; F. Mikania micrantha; G.	120
	Elsholtzia fruticosa; H. Artemisia nilagirica; I. Inula orientalis; J.	129
	Polygonum molle; K. Pseudocyclosorus canus; L. Lycopodium japonicum.	
Plate: 5	A. Anemone obtusiloba; B. Anemone rivularis; C. Elsholtzia fruticosa; D.	
	Hedychium thyrsiforme; E. Cautleya spicata; F. Hedychium coccineum; G.	
	Hedychium greenii; H. Aeschynanthus hookeri; I. Dendrobium denneanum;	130
	J. Equisetum arvense; K. Pleione praecox; L.Clintonia Spp; M. Liparis	
	Spp.	
Plate: 6	A. Solanum viarum; B. Rubus buergeri; C. Rosa brunonii; D. Mussaenda	
	roxburghii; E. Aster albescens; F. Brugmansia suaveolens; G. Daphne	
	bholua; H. Viburnum erubescens; I. Zanthoxylum nepalense; J. Maesa	131
	chisia; K. Hypericum uralum; L. Erythrina arborescens; M. Callicarpa macrophylla.	
Plate: 7	A. Osbeckia crinita; B. Mahonia napaulensis; C. Oxyspora paniculata; D.	
	Leucosceptrum canum; E. Symplocos ramosissima; F. Engelhardtia	120
	spicata; G. Magnolia doltsopa; H. Edgeworthia gardneri; I. Litsea cubeba;	132
	J. Castanopsis indica; K. Callicarpa arborea; L. Terminalia myriocarpa.	

- Plate: 8 A. Osbeckia crinita; B. Mahonia napaulensis; C. Oxyspora paniculata; D. Leucosceptrum canum; E. Symplocos ramosissima; F. Engelhardtia spicata; G. Magnolia doltsopa; H. Edgeworthia gardneri; I. Litsea cubeba; J. Castanopsis indica; K. Callicarpa arborea; L. Terminalia myriocarpa.
- Plate: 9 *Rhododendron* barbatum; B. Rhododendron thomsonii; A. С. Rhododendron Rhododendron decipiens; cinnabarinum; **D**. E. Rhododendron wightii; F. Rhododendron wallichii; G. Rhododendron 134 lanatum; H. Rhododendron campylocarpum; I. Rhododendron tubiforme; J. Rhododendron cvanocarpum; K. Rhododendron arboreum; L. Form of Rhododendron thomsonii.
- Plate: 10 A. Dense subtropical forest; B.Steep slope rockey area of the study area;
 C. Dense Temprate forest of East District Sikkim; D. Vegetations nearby village; E. Vegetation along the river side; E. Dense bamboo forest along 135 the hill; G.Collection of specimen from alpine area; H. Alpine area covered by snow.

133

Chapter 1 INTRODUCTION

INTRODUCTION

The term "species" is the identity of each living things. There are different types of living organism in the earth. It is broadly divided into plant and animals, present studies are attempted to know the plant species richness and its relation with biomass along the altitude using the field data of East district of Sikkim

1.1 Biological Diversity

Biodiversity entails all forms of biological entities inhabiting the globe, including prokaryotes and eukaryotes, wild plants and animals, microorganisms, domesticated animals and cultivated plants and even genetic materials like seeds and germplasm (Kothari, 1992). Biodiversity refers to the variability among the living organisms like plants, animals and microbes from all sources including terrestrial and aquatic ecosystems and ecological complexes of which they are the parts. In brief, it refers to the versatilities within the species, among the species of plants, animals and micro-organisms, ecosystems and the ecological complexes on the earth. Biodiversity is the assemblage of different life forms. It can also be defined as the number of different organisms and their relative frequency in an ecological system. Diversity is composed of two elements: *richness* and *evenness*, it decrease and its endemic subset increased along the gradients (Behera & Kushwaha, 2007). India has about 2,00,000 species of living organisms (Agrawal *et al.*, 2002). Vegetation zones along the altitudinal gradient showed interesting differences in species richness (Hegary *et al.*, 1998). Species diversity is measured as the total number of individual species habited in a study area (Pianka, 1966).

The world has at least 5-7 million different species of plants, animals and micro-organisms, out of these only about 1.7 million is known to humans (Subba, 2002). The Himalayas which is the largest and youngest mountain ranges in the world stretches across the north of sub-continent from Myanmar in the east to northern Pakistan in the west. On the north, they border the Tibetan plateau and on south by Indo-Gangetic low land. The rich biodiversity of the Himalayan states have not been studied so far upto the level of satisfaction (Subba, 2002). Only superficial studies of ferns and fern-allies, Gymnosperms, Angiosperms (including special groups like orchids, medicinal and Aromatic plants), Butterflies, Fishes, Amphibians, Reptiles, Aves (Birds) and Mammals have been attempt so far. There is an urgent need to study the rich and vulnerable biodiversity of the entire Himalayan range and their distribution pattern, especially in respect to elevation gradient in its different parts.

To understand the ecological phenomena like environmental disturbance of the species, the term species diversity is used. The understanding of species richness pattern is important for the management of species diversity in the world that may become warmer owing to the human impact (Grytnes, 2003). To understand the common cause of species distribution species in various environmental gradients, researchers are working in different environment using various factors, the commonly known are latitudinal and altitudinal. Pianka (1966) reviewed a concept of latitudinal gradient in species diversity. Gaston (2000) and Rahbek and Graves (2001) studied the spatial patterns of latitudinal gradient in species richness.

Introduction 2

To understand the distribution pattern of species along the elevation gradient, Kreft and Jetz (2007) observed the global pattern and determinants of vascular plant diversity. Liberman *et al.* (1996) studied the species pattern along the altitudinal gradient of Costa Rica. Among the various patterns of species richness along the altitude, the monotonic decline of hump-shaped patterns are most commonly recognized (Bhattarai & Vetaas, 2003; Grytnes, 2006; Acharya *et al.*, 2011).

Many factors, such as climatic variables like rainfall, temperature, soil conditions, moisture, nutrients, historic events, palaeo-climatic changes, interaction with fauna, competition between tree species for crown and root space as well as human influence have been considered as responsible for the elevational pattern and distribution of species richness. (Odland & Birks, 1999; Kharkwal *et al.*, 2005; Veenendaal *et al.*, 2005; Brown, 2001)

High mountains offer a variety of steep environmental gradients over a relatively short distance (Peterson *et al.*, 1997; Korner, 2003; Becker *et al.*, 2005). The large environmental variation within a small geographical area makes altitudinal gradients ideal for investigating several ecological and biogeographical hypotheses (Korner, 2000). The Himalayan elevation gradient is the longest bio-climatic gradient in the world (Grytnes & Vetaas, 2002). Several studies has been carried out in plant community and in altitudinal gradient in the Himalayan region (Grytnes & Vetaas, 2002; Bhattarai & Vetaas 2003;Shapoo *et al.*, 2004; Kharkwal *et al.*, 2005; Bhatnagar *et al.*, 2006;) on variation of plant species richness composition along the altitudinal gradient.

Behera and Kushwaha (2007) analyzed trees along an elevational gradient covering a 2000 m elevation range (200 to 2200 m) in the Eastern Himalaya. Achraya *et al.* (2011) studied in Sikkim to analyse the tree diversity using the transects for sampling keeping the 150 m elevation distance between the two transects from the elevation range of 300-4700 m, i.e. from tropical forests to alpine meadows.

The species diversity generally decreases with the increase in altitude (Odland & Birks, 1999; Lieberman *et al.*, 1996; Grytnes & Vetaas, 2002); Achraya *et al.*, 2011). The distribution of the species richness in the Himalayan region mostly depends on the altitude and climatic variables. The climatic conditions and the geography of the area are changes along the altitude (Kharkwal *et al.*, 2005). The altitude, slope, aspect, rainfall and humidity had to play sole information of community composition. Besides, vertical canopies also play vital role in forest ecosystems (Kharkwal *et al.*, 2005).

Species richness along the elevation gradient and underlying factors for the pattern are not properly explored and understood. Understanding elevational distribution pattern of species and the factors governing the same would help to understand biodiversity and aid in their conservation (Battarai *et al.*, 2004; Hunter & Yonzon, 1993). Elevation is an important factor in habitat diversity because it present changes in the availability of resources, to know correspondence between the physical conditions and natural communities that are found along a gradient of increasing elevation and those are found along a gradient of increasing elevation pattern of plants and clarified that elevation has a role in regulating species richness patterns (Grytnes 2003; Oommen & Shanker 2005).

A simple rule says that the species richness and altitude relationship follows the same principle as the analogous latitudinal pattern (Stevens, 1992; Colwell & Hurtt, 1994). Species richness of various taxonomic groups decreases towards the poles or higher altitudes. It was long believed that a monotonic

decrease of species richness with increasing elevation was the universal pattern (Stevens, 1992). The plants and animal diversity is the lowest near the poles and increases towards tropics, reaching its peak in tropical rain forests and slowly decrease towards the sub-alpine and alpine regions.

Fig. 1.1. Biodiversity distribution pattern along the elevation gradient. Curve '1' shows that the biodiversity levels decrease with elevation and the maximum is at low elevations and curve '2' indicates that most diverse zones are in the mid-elevation (*Adapted from*: Weng *et al.*, 2007)

Species richness generally decreases with elevation (Stevens, 1992; Brown & Lomolino, 1998; Rahbek, 1995). Relationship between richness patterns and various ecological, geographical and other factors have been dealt in by many workers. Among the various patterns, monotonic decline and hump-shaped pattern of species richness are most commonly recognized (Vetaas & Grytnes, 2002; Rahbek, 2005 Acharya *et al.*, 2011; Bhattarai & Vetaas, 2003).

Fig. 1.2. Relation between tree species richness and elevation in central Nepal (*Adapted from*: Bhattarai & Vetaas, 2003)

Fig. 1.3. Relation between tree species richness and elevation in central Nepal (*Adapted from*: Bhattarai & Vetaas, 2006).

Many factors such as climate (Hawkins *et al.*, 2007; McCain, 2007), productivity (Mittelbach *et al.*, 2001), historic events (Brown, 2001; Hawkins *et al.*, 2007) and isolation (Lomolino, 2001) have been considered as responsible for the elevational pattern of species richness. Vetaas and Grytnes, (2002) studied the distribution of vascular plant species richness along the elevation gradient of Nepal Himalaya, between 1000 to 5000m and found a hump-shaped pattern (Fig. 1.2 - 1.3). Acharya *et al.*, (2011) have examined the relation between tree species richness along the elevation gradient of eastern Himalaya using the field data collected from different altitudinal range of Sikkim in 1km transects using sample size 20x10m (Fig. 1.4).

Fig. 1.4. Observed species richness of trees along the elevation gradient of Sikkim, Eastern Himalaya (Adapted from: Acharya *et al.*, 2011)

The altitudinal/latitudinal decrease in species richness has been known for over a century, species diversity as a whole and its distribution along the altitudinal gradient had been a subject of ecosystem (Hubbell *et al.*, 1999; Kharkwal *et al.*, 2005). Himalaya is one of the Hotspots of biodiversity in India, this region comprises several species of plants, with many of them being indigenous (Kharkwal *et al.* 2005). Lamolino (2001) studied the gamma diversity for the species richness for each elevation zone which is interpolating species presence between known elevation range limits has commonly been used to investigate species richness pattern along the elevation gradient. In tropical and subtropical latitudes, profound differences in climatic regime ranging from tropical to high-tundra, may occur within latitudinal distances of less than 100 km in mountainous region (Lacoul & Freedman, 2006). Such large and steep altitudinal gradients have a great influence a biodiversity in mountainous region (Ormered *et al.*, 1994).

Studies to establish relation between species richness and the altitude are lacking in the Sikkim Himalayan region which has a highest altitudinal gradient in India. In the present study, attempt has been made to understand the relationship between the plant species (trees, shrubs, herbs and epiphytes) richness along the altitudinal gradient of East Sikkim. Further, such kind of study will be helpful for the future research as it provide a comparative study of the change in species and species composition of plant community along the altitudinal gradient in the East district of Sikkim.

The number of species present, i.e. the "species richness" and species evenness with which the individuals are distributed among these species has also studied to understand the diversity of the species along the elevation gradient (i.e. species evenness, species equitability, or abundance of each species) by some workers (Margalef, 1958; Lloyd & Ghelardi, 1964; Pielou, 1966; Spellerberg, 1991).

1.2. Plant community structure

Diversity of a community can be assessed by the proportional species abundance data either by using statistical sampling theory (Preston, 1948; 1962) or by a variety of nonparametric measures (Simpson, 1949; Shannon, 1963). Owing to the complex nature and lack of theoretical justification for statistical sampling theory, the nonparametric measures have gained a great deal of popularity in the recent past (Magurran, 1988; Krebs, 1989). McNaughton and Wolf (1970) opined that dominance is an expression of ecological inequalities arising out of different exploitation strategies. The growth form or life-form composition of a community is the manifestation of the adaptation of its component species to the climatic condition of the area. Raunkiaer (1934) described plant communities in terms of life-form composition. Richards (1952) used the word 'Synusiae' to describe a group of plants having similar life-form, which play similar role in the community to which they belong.

1.3. Topographical description

Topography is a field of geoscience and planetary science comprising the study of surface shape and features of the Earth. It also deals with the description of earth surface such as shape and features. Topography is widely related with the biodiversity; the topography of an area could also mean the surface shape and features, some commonly use topography for the biodiversity study are; elevation, slope, aspect, drainage, road etc. Relationship between biodiversity with topography is highlighted below.

1.3.1. Elevation: Elevation gradient provides the well-known correspondence between the physical conditions and natural communities those are found along a gradient of increasing latitude and those which are found along a gradient of increasing elevation (Huston, 1994), it is not surprising that species

diversity generally decreases with increasing elevation. General rules of thumb is for air temperature is that an increase in elevation of 1000 m results in a decrease in temperature (6° C) equivalent to that associated with an increase in latitude corresponding to linear distance of 500 km to 750 km (Holdridge 1967; Whittaker & Niering 1965). Many physical conditions in addition to mean temperature, such as the seasonal variability of those conditions also change along the altitudinal and latitudinal gradients.

Fig.1.5. Vegetation zones in the Himalayas as adapted from http://blog-yard-garden-news.extension.umn.edu/2009/02/in-rhododendron-fairyland-fantasy-of.html

The study of altitudinal gradient does not influence species diversity, but the explanatory mechanism must be related to some of the many physical and historical factors that changes along the altitudinal gradient, such as sun angle, day length, seasonality, temperature means and extremes, rainfall amount and timing, winds and storms, glacial history, etc. each of these, and other factors can interact with organism and their physical environment in complex way that could potentially influence species diversity. To understand the many reasons why diversity changes along this dramatic gradient, it is necessary to examine the effect of diversity of simpler gradients, and if possible for single factor (Huston, 1994). So, there are several factors which correlate the species diversity along the altitudinal gradient.

Moisture is also considered as one of the factors, when moisture (Relative Humidity) increases with the increasing elevation, but the greatest number of plant species of all growth form together per 0.1ha sample was found at intermediate to low elevations and intermediate moisture level in open oak woodlands grasslands and in the Sonoran desert.

1.3.2. Slope and aspect: Slope is a characteristic feature of the mountains. Steepness of slope affects the amount of solar radiation received during the day and soil characteristics primarily through its effect on the rate of water flow. In the northern hemisphere, at higher Elevations, steepness of the slope

increases the exposure of the surface to sun on the southern slope, whereas the northern slopes remain cooler. This is due to the fact that the steep southern slopes receive the rays of the mid-day sun almost at right angles, whereas the northern slopes receive only oblique rays during morning and evening hours and sometimes none at all except for a short period during summer. This difference in solar radiation and consequent temperature values bring about changes in vegetation on the two slopes. Thus, northern slopes support virgin forest with hygrophilous ground vegetation. The local climatic differences on two slopes can play vital role in the health of the vegetation.

1.3.3. Drainage: Drainage has a major role to promote the development of new vegetation types with a dense ward of grasses, from which characteristic species of wet meadows disappear at different rates (Grootjansa, 2005). The presence of perennial rivers and turbulent streams in the region has helped in the luxuriant growth of forest in the region.

1.3.4. Road: Road is the lifeline of the civilizations it connecting the small towns and the capital city pass through the middle of the reserved forests small settlements. The expansion and construction of road networks is destroying the forests cover in the entire Himalayan region as it triggers small and large landslides during south west monsoon seasons as well as destroy the springs and catchments.

1.3.5. Edaphic conditions: Soil and vegetation has a complex interrelationship. Soil properties influence the vegetation and vice versa. Soil is one of most important ecological factors. Plants depend on it for the nutrient, water supply, and for anchorage. Soil is a natural body that exists as part of the pedosphere and which performs four important functions: it is a medium for plant growth; it is a means of water storage, supply and purification; it is a modifier of the atmosphere of Earth; and it is a habitat for organisms all of which modify the soil. Similarly, Selective absorption of nutrients by different tree species and their capacity which is return to the soil brings about changes in the soil properties. The temperature of soil is one of the most important factors for the growth of plants particularly that of the surface layers by its effects during germination (Richardson, 1958).

1.4. Biodiversity pattern

In order to monitor and conserve biological diversity, it is important to have ways of measuring it and documenting the levels of diversity in different parts of the world. We have to consider diversity at different levels. E.O. Wilson, 1988 was first used the term biodiversity in the literature, the concept of biological diversity from which it arose had been developing since the nineteenth century and continues to be widely used.

The major biological diversity pattern is discussed as below;

1.4.1. Latitudinal pattern: The latitudinal gradient was the pattern that first attracted scientific attention to species diversity. For most of the groups, the terrestrial plants and animals, diversity is lower near the poles and increases towards the tropics, reaching its peak in tropical rain forest.

There are many factors correlated with this gradient that could potentially affect species diversity, such as an average temperature and precipitation, the variability in temperature and precipitation, annual net primary productivity, and geological history. Some of the factors are positively correlated with latitude while others are negatively correlated. The latitudinal gradient in species diversity has been reported in

a wide variety of taxa. The most dramatic and biologically important latitudinal diversity gradient is that of plant species. Diversity of trees increases from the nearly non-specific boreal forests of the subarctic, to the overwhelming diversity of tropical rain forests. The same pattern of increasing diversity with decreasing latitude is also found in the nature (Monk, 1967; Glenn-Lewin, 1977; Currie, 1991; Silvertown, 1985). Diversity increases with decreasing latitude in most groups of plants.

1.4.2. Life-form composition pattern: Life-form plays the major role in the biological pattern, there are several types of plant growth forms or life-forms, the higher plants are trees and lower growth forms of plants are moss and lichen which are easily found in the field, the life-form of a plant species is usually a constant characteristic. The same species, however, may assume a different life-form when growing under very different environmental set-up. The life-form was originally developed for non-taxonomical comparison of vegetation types in different regions of the world. Klimes (2003) stated that many basic elements of life history of plants are strongly affected or even largely determined by the life-form, species pools and other associated environmental (soil texture nutrient substrate stability etc.) factors.

Plants of the same life-form growing together are likely to compete directly for the same space or niche (ecological role of a species in an environment). Their similarity in structure and form indicates a similarity in adaptation to the utilization of the environmental resources offered in a given space. The most extreme form of life-form similarity is shown among individuals of the same species. Wherever they grow close together, they are also the strongest competitors, because they are adapted to use the environmental resources in the same manner. Species of much unrelated families may also be of the same life-forms e.g., similar stem-succulents evolved in the families Cactaceae, Euphorbiaceae, Asclepiadaceae, and Agavaceae.

1.4.3. Factors correlated with diversity: Describing the variety of biodiversity patterns on the earth is relatively simple in comparison with understanding and explaining those patterns, some properties of the environment will be positively correlated with diversity and some negatively correlated with each other. Statistical analyses can never demonstrate causal relationships, but can often show strong correlations of diversity with factors that are marginally, if at all, related to the mechanisms responsible for the diversity gradient.

1.4.4. Ecotone zone: Ecotone is the transition zone between two adjacent ecological communities, such as forest and grassland. It has some of the characteristics of each bordering community and often contains species not found in the overlapping communities. An ecotone may exist along a broad belt or in a small pocket, such as a forest clearing, where two local communities blend together. The influence of the two bordering communities on each other is known as the edge effect. An ecotonal area often has a higher density of organisms and a greater number of species than are found in either flanking community.

1.4.5. Forest type variation: Different forest types may also play an impotent role for the diversity of plant species. Tropical, temperate and boreal forests offer widely due to the presence of diverse habitat conditions for plants, animals and micro-organisms.

1.4.6. Species distribution range: Even today, the number of plant species currently in existence in the world is not clear, but there are number of plant species distributed in different part of the world.

About 8.7 million living thing exist in the world out of which about 3.90 lakh plant species have been estimated in the world.

1.4.7. Biodiversity scale factor; Biodiversity patterns can be studied at three levels viz., global, focal and local. By studying spatial patterns of biodiversity we can identify some distinct spatial gradients in biodiversity. The description of each of those is given below:

A. Grain size: There is different scale to study the biodiversity. Grain size is one of those, in landscape ecology, grain describes the size of the smallest homogeneous unit of study and determines the resolution at which a landscape is studied.

B. Local scale: On a local scale, changes in the abundance of species in plant communities, be it fluctuations or trends, can be indicative of the fate of the local populations.

C. Global scale: The most striking gradient is a global one; there is an increase in species richness as one move from high latitudes at the poles to the lower latitudes of the tropics. A similar pattern is seen for higher taxonomic groups (genera, families). Various hypotheses have been raised to explain the greater species.

1.5. Community

Community analysis was carried out for further study of frequency, density, abundance and finally Importance Value Index (IVI)

1.5.1. Frequency and Relative Frequency:

Frequency: Various species of the community are recorded by different phytosociological methods by taking any sampling unit like quadrat transect and point, Frequency is the number of sampling units (as %) in which a particular species occurs.

Relative Frequency: The relative frequency of an event is defined as the number of times that the event occurs during experimental trials, divided by the total number of trials conducted

1.5.2. Density and Relative Density: Density is an expression of the numerical strength of a species, where the total number of individuals of each species in all the quadrats is divided by the total number of quadrats studied is the density of the population.

Relative density: The Relative density is the study of numerical strength of a species in relation to the total number of individuals of all the species and can be calculated.

1.5.3. Abundance and Relative Abundance (Dominance):

Abundance: This is the number of individuals of any species per sampling unit of occurrence. Abundance may not be expressed generally in quantitative terms. Organisms, particularly plants are not found uniformly distributed in an area. They are found in smaller patches or groups depending upon the number of plants and degree of evenness of the neche.

Relative Abundance (Dominance): Ecological dominance is the degree to which a taxon is more numerous than its competitors in an ecological community, or makes up more of the biomass. Most ecological communities are recognized and defined by their dominant species.

1.5.4. Importance Value Index: This index is used to determine the overall importance of each species in the community structure. In calculating this index, the percentage values of the relative frequency, relative density and relative dominance are summed up together and this value is designated as the Importance Value Index or IVI of the species (Curtis, 1959).

1.6. Diversity Indices

Determining which community has greater species diversity is easy when either species richness or evenness is held constant while the other parameters vary, but often communities will vary in both richness and evenness. Scientists have developed a variety of mathematical equations (or indices) that incorporate both species richness and evenness into a single measure of species diversity (e.g., the Shannon-Wiener Index and Simpson's Index). Different diversity indices assign different weightings to species richness and evenness, so the most useful index to choose depends on the circumstances. In ecology, it is often used to quantify the biodiversity of a habitat. It takes into account the number of species present, as well as the large quantity of each species. It measures the probability that two individuals randomly selected from a sample will belong to the same species. Different indices have been used for the diversity (*viz.*, Simpson's Index of Diversity 1- D, Shannon-Wiener index (H') [Diversity] (1949), Shannon's diversity index, Margalef index, etc.). The units of these indices differ greatly, making comparisons difficult and confusing.

1.7. Plant Biomass

Plant biomass is defined as the mass of living plant materials as per unit area; it is divided into two parts, above ground biomass and below-ground biomass. It can also be defined as the mass of living plant materials per unit area. Biomass assessment is necessary because forest is affected by various factors such as deforestation, fire, harvest, pests, silviculture and climatic change (Schroeder *et al.*, 1997; IPCC, 2006), which cause changes in the forest ecosystem. However, the quantification of forest biomass becomes difficult due to different approaches, based on field measurements as well as remote sensing and GIS are available for biomass estimations (Lu, 2005).

Measurement of biomass is carried out mainly by the following four techniques:

• Destructive sampling technique or Harvest mapping technique (Husch et al. 2003)

 \cdot Non-destructive sampling technique (Chave et al. (2005)

 $\cdot\,$ Measurement based on remotely sensed data taken from airborne/spaceborne systems (Kale et al., 2002), and

· Semi-empirical modelling -estimation using models (Mette et al., 2003; Lee et al., 2003).

1.7.1. Destructive sampling technique or harvest mapping technique: This method involves felling of trees, the individual's trees can be harvested and separation into different components like branches, leaves, and stems finally the fresh and dry weights are taken. The ratio between dry and fresh weight used to calculate for the entire sample. Destructive approach is most accurate among all the other methods of biomass estimation, but this method cannot be used for the large forests because of destructive and high cost involved.

1.7.2. Non-destructive sampling technique: Non-destructive technique for biomass estimation is one widely used technique. In this method tree specific regression equation were involve viz. Tree diameter/circumference, tree height and basal area are used as independent variables. Brown *et al.* (1989) used non-destructive sampling technique to estimate the volume of the tree and then converted into biomass using the specific gravity of individual species. Sampling of tree to develop an equation has been carried out by several authors (Overmen *et al.*, 1994). Day *et al.* (2013), used sampled tree >10cm dbh to calculate biomass of Central African rainforests. The non-destructive technique for estimation of biomass is time and cost effective, as compared to destructive method, but this method is generally used for the estimation of biomass for large forests.

1.7.2.1. The biomass assessment using the field data: To estimate the biomass the volumetric equations and the specific gravity of respective tree species is required. For remote sensing based biomass estimation we need remote Sensing data of the particular time frame.

Plants those dominate a site, in terms of biomass, is a reflection of the plants which are controlling the nutrient, water, and solar resources on the site. Therefore, biomass is often measured to assess the ecological status of a site.

1.7.3. Measurements based on remotely sensed data taken from airborne/ spaceborne systems: Satellite based estimation of biomass is the technique to estimate Above Ground Biomass. Rauste (2005) was mapping the forest biomass using Multi-temporal JERS SAR data, Ferrazoli and Guerriero (1995) use radar sensitivity to investigate tree geometry and wood volume. Pandey *et al.* (2010) used the Envisat ASAR data for biomass estimation in Dudhwa National Park of Lakhimpur-Kheri district in Uttar Pradesh state of India. Eriksson *et al.* (2003) also use Multitemporal JERS data for growing-stock volume estimation of Siberian forest. Kale *et al.* (2002) also used remote sensing and Geographic Information System (GIS) to estimate the NPP at the patch level, which takes Intercepted Photosynthetically Active Radiation (IPAR). There are several studies conducted for the estimation of biomass using optical remote sensing data (Zheng *et al.*, 2004; Schlerf *et al.*, 2005; Foody *et al.*, 2003; Devagiri *et al.*, 2013).

The continuous nature and synoptic coverage of remotely sensed data have led to their increased application for AGB estimation over large areas, although the use of these data remains challenging in complex forest environments.

1.7.3.1. Satellite derived NPP Products: Forest productivity and biomass are expected to change drastically as global climate change (Singh *et al.*, 1994). Average ecosystem productivity as a function of ecosystem redundancy can be greatly affected by both the species responses and the degree of synchronicity of their responses in the ecosystem (Yachi & Loreau, 1999). Productivity of ecological system, community or any point there, is defined as the rate at which radiant energy is stored by photosynthetic and chemosynthetic activities of the producer organism in the form of organic substances which can be used as food material by the consumers. The relationship between bio-diversity and ecosystem functioning focused upon the effect of losses of plant diversity and productivity often declined with the diversity loss (Ruijven & Berendse, 2005). The values of Net Primary Productivity (NPP) are much higher than in the natural forests of India (Singh & Toky, 1995).

Introduction 12

Vegetative productivity is the source of all food, fibre and fuel available for human consumption and therefore improves the habitability of this planet. The rate of conversion of light energy to plant biomass is termed as primary productivity. The sum total of the converted energy is called gross primary productivity (GPP). NPP is the difference between GPP and energy lost or used during respiration of plants (Campbell, 1990).

Global productivity can be estimated by combining remote sensing technique with carbon cycle processing. The U.S. National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) currently "produces a regular global estimate of gross primary productivity (GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1-km spatial resolution, 150 million cells, each having GPP and NPP computed individually" (Thornton et al., 2002; Running et al., 2004). For the estimation of GPP/NPP across the Earth's entire vegetated land surface. MOD17 algorithm-MODIS project has been launched to provide continuous estimates of MOD17 GPP/NPP outputs that are useful for natural resource and land management, global carbon cycle analysis, ecosystem status assessment, and environmental change monitoring. MOD17 is part of the NASA's Earth Observation System (EOS) program and is the first satellite-driven dataset to monitor vegetation productivity on a global scale. Additionally, user guide for GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm had been developed in and around 2000 by Heinsch et al. (2002). The MOD17A2/ A3 User's Guide provides description of the GPP and NPP algorithms (MOD17A2/A3) designed for the MODIS sensor aboard the Aqua and Terra platforms. The resulting 8-day products are archived at a NASA DAAC (Distributed Active Archive Center). The document is intended to provide both a broad overview and sufficient detail to enable the successful use of the data in research and applications.

1.7.4. Semi-empirical modelling – Estimation using models: Semi-empirical methods are simplified versions of Hartree-Fock theory using empirical (= derived from experimental data) corrections in order to improve the performance. These methods are usually referred to through acronyms encoding some of the underlying theoretical assumptions.

On the other hand the relationship between species richness and above-ground biomass is emerging as a central theme in diversity studies (Peet & Christensen, 1988). A critical challenge for ecology is to understand the mechanisms linking ecosystem functions and community dynamics (Loreau *et al.*, 2001)

1.8. Relation between productivity and species richness

The relationship between the productivity and species richness (biodiversity) in plant community has two different perspectives (Bishoff *et al.*, 2005), first one is the effect of species richness and productivity as a particular ecosystem function (Tilman *et al.*, 2001), and the next perspective is the effect of the productivity and diversity of the plant communities. The relationship between species richness and NPP has been particularly controversial, with disagreement over whether productivity controls or is controlled by species richness (Waide *et al.*, 1999; Loreau *et al.*, 2001; Bond & Chase, 2002). Species richness and productivity pattern is a function of various disturbance gradients. Although numerous empirical studies have been conducted to examine the effects of resource additions or disturbance regimes on species richness (Huston, 1999), difficulties arise in applying generalized theoretical models to patterns in natural environments because patterns may be scale-dependent (Waide *et al.*, 1999). A few studies of productivity-species richness patterns in extremely species-rich communities were conducted across

natural resource gradients, particularly at scales intermediate between small plots and continents or within vegetation types (Abrams, 1995). Owing to scanty information on the mechanistic explanations of the relationship between species richness and productivity and predictions of conditions that produce monotonic or unimodal patterns remain unresolved (Huston, 1994; Abrams, 1995). Waide *et al.* (1999) and Weiner (1995) argued that examination of patterns at a local level is an essential first step in generating testable hypotheses regarding the basis of a species diversity gradient.

Fig. 1.6. Plot of effective number of species calculated from the Shannon Wiener index against AGB estimates; (Adapted from Day et. al, 2013).

1.9. Relationship between species richness with biomass along the elevation

The relationship between species richness and biomass has become a central issue of community and ecosystem ecology; there is no reason to expect any general relationship between species richness and productivity (Mouquet *et al.*, 2002). There are many cases in which biomass are negatively correlated with species diversity. Some authors have predicted a positive relationship between productivity and species richness (Tilman *et al.*, 1997; Loreau, 1998b) based on niche complementarily.

The difference between situations with positive versus negative correlations and diversity and biomass is an important step in understanding how diversity is regulated. The productivity can be either negatively or positively correlated with species diversity. In fact, in many systems a unimodal pattern is found with highest species diversity at intermediate levels of productivity and diversity decreasing with either an increase or decrease in productivity. In General, the productivity is either remaining constant or decrease as the number of locally coexisting species increases (Loreau & Mouquet, 1999). The species richness and productivity relationship mainly depend upon the environmental context (Mouquet *et al.*, 2002). There is no relationship between species richness and biomass under constant conditions but, when communities were exposed to experimental drought, biomass increased with species richness (Mulder et al., 2001).

1.9.1. Positive correlations of diversity and productivity: As per Reichle (1970), on the global scale, the primary productivity of terrestrial vegetation is positively correlated with plant species diversity. Productive forest ecosystems generally have more species than less-productive deserts or grasslands. The studies carried out in North America and America by Currie and Paquin (1987), Adams and Woodward (1989), and Currie (1991) on species richness and climatic conditions have shown strong correlations between the species richness of major taxonomic groups and simple climatic parameters. Similarly, positive correlation of seed-eating ants and rodents in North American desert has been reported by Brown and Davidson (1977).

Conversely, diversity does not always increase with productivity or the environmental conditions that influence productivity. Abramsky and Rosenzweig (1985) reported that in the desert of Israel, the species richness of desert rodent's first increases with increasing rainfall, then decreases at higher levels of rainfall with a maximum at intermediate levels.

Similar patterns of diversity have been noticed by Whittaker and Niering (1975) among the vascular plants in Arizona mountains.

In forests the primary productivity is positively correlated with plant species diversity, as compared with deserts and grasslands the productive forest ecosystems have more species as well as more productivity (Huston, 1994). Potential evapotranspiration is also correlated with plant productivity, but diversity does not always increase with productivity or the environmental conditions that manipulate productivity.

1.9.2. Negative correlation of diversity and productivity: A few studies have documented negative correlation of species diversity with productivity. This unexpected phenomenon was sometimes referred as 'the paradox of enrichment' (Rosenzweig, 1971; Riebesell, 1974). They opined that diversity often decreased when nutrients or other resources that increases productivity were added to a system. Additionally, oceanic ecosystem shows a similar phenomenon along the natural gradients of productivity. Thus, productivity can be either negatively or positively correlated with species diversity. In fact, in many systems a unimodel pattern is found with highest species diversity at intermediate levels of productivity, and diversity decreasing with either an increase or a decrease in productivity (Grime, 1973, 1979; Al-Mufti *et al.*, 1977).

The diversity often decreases if increased amount of nutrients or other resources that increase productivity were added to the system. In aquatic system, though the addition of fertilizer to herbaceous plant communities often results in sharp decrease in species diversity, some pattern was found along the natural gradients of soil fertility (Huston, 1994). The central region of the open ocean is characterized by low productivity and a low density of individuals. However, the species diversity remains high in such areas. But in high productivity area there is high concentration of individuals though shows low species diversity. The productivity is either negatively or positively correlated with the species diversity (Huston, 1994). Total rate of photosynthesis, including the organic matter used up in respiration during the measurement period (Shukla & Chandle, 2006). If plant growth continues then only the NPP is available for harvest by man and other animals. The Himalayan region is biologically extremely diverse and the efforts for conservation are somehow successful with both local global implications.

Fig.1.7. Qualitative predictions of growth–mortality trade-offs (a–b), biomass (c), diversity (d) and resulting BEF relationships (e–f) based on a successional niche model with only early- and late-successional specialists (e.g. two species, Kinzig and Pacala 2001). (a) Biomass growth declines with stand age. Early-successional specialists have higher productivity under abundant resources early, but cannot maintain productivity as stands age. (b) As resources decline with stand age, biomass mortality increases. Increased mortality is higher for early-successional species. (c) As a result, early-successional species biomass peaks early in succession but is supplanted by late-successional species. (d) Under the successional niche hypothesis, the highest diversity occurs in middle-aged stands transitioning from early to late-successional species. (e) Diversity relationship with biomass dynamics (Dbiomass) due to growth shifts from negative to positive across succession. (f) Diversity relationship with Dbiomass due to mortality shifts from positive to negative, due to dominance late in succession by low mortality species. [Adapted from: Lasky *et al.*, 2014]

1.10. Summary of some related studies around the globe

There are several literature on the study of species richness along the altitudinal gradient in the globe some of them is as presented in 1.1.

Title Site	Location	Elevation	Important Result	Authors	Methodology
		(amsl)			
Phytodiversity and Central	23:43:45 -	200 m	Distribution of the Species k	Kharkwal	Field sampling
growth form in relation Himalaya	30:20:12 N	to 5800 m	Richness in the central e	at $al.,$	
to altitudinal gradient in	and		Himalayas depends on 2	2005	
the Central Himalayan	78:44:30 -		altitudinal and climatic		
(Kumaun) region of	80:18:45 E		variation		
India					
Relationship between Central	28:40 N &	3500 m to	The hump shaped relationship E	3hattarai	200 sample were plots (1x1m) in two
plant species richness Himalaya	88: 01 E	7000 m	in arid Himalayan grassland in e	et al.,	grassland site (site I and II), through
and Biomass in an arid Nepal			linear model.	2004	random sampling, it followed a
sub-alpine grassland of					subjectively transect line, the central
the Central Himalayas,					plots were made along the transect line
Nepal					
Density may alter			Aboveground, belowground and F	He et al.,	Conducted a factorial experiment ir
Diversity–Productivity			total biomass increased 2	2005	which plant functional group richness
relationships in			significantly with species		was held constant at three, while plant
experimental plant			richness and community		species richness increased from three to
communities			density. However, a significant		six to 12 species and community
			interaction between species		density from 440 to 1050 to 2525
			richness and community density		seedlings. Response variables included
			occurred for both total and		density, evenness and above- and
			aboveground biomass,		belowground biomass at
			indicating that the diversity -		harvest.
			productivity relationship was		
			complementary at higher than at		
			lower density.		

Table 1.1. Summary of some related studies around the globe

Title	Site	Location	Elevation	Important Result	Authors	Methodoloov
			(amsl)			<u> </u>
Relationships between	Himalaya	26:36 -	077m	Arcto-tertiary floristic elements	Lacoul &	Environmental variables were sampled
aquatic plants and	u	28:13 N and	to 4980m	of the highest altitudinal region	Freedma	in all seasons and the sampling was
environmental factors	altitudina	88:57 -		from the more widely	n	done using 10-20 (depending on lake
arong a sucep rumanayan altitudinal gradient	l gradient	87:30 E		distribution temperature and	0007	size) quadrates of 1m ² , stratified
				tropical species of lower		according to the approximate area of
				regions.		obvious communities present. Total
						cover could not exceed 100%. Finally,
						the Species diversity was calculated
						using the Shannon index.
An analysis of altitudinal	Eastern	26:55 -	200m	Detailed floristic studies to	Behera &	Field data was collected by randomly
behaviour of tree species	Himalaya	28:42 N and	to 2200m	determine the break of changes	Kushwah	laid quadrants of 20x20m for tree
in Subansiri district,		92:41 –		between adjacent forest type	а	species(> 15cm cbh) was considered as
Eastern Himalaya		94:37 E		and details of local species	2007	tree in every 200m steps with 8-
				richness in high diversity area.		quadrats per step
Altitudinal Pattern of	Shennon	31:15 –	470m	The relationship between the	Zhoa et	Four main transects two in each
Plant Species Diversity	gjia	31:57 N and	to 3080m	altitudinal pattern of plant	al., 2005.	southern and northern watershed, plots
in Shennongjia	mountain	109:59 -		diversity and the vegetation		are in every 100m asl, size of the plots
Mountains, Central	s central	110: 58 E		type in eastern china has been		was 20x20m, 10x10m and 5x5m for
China	china			discussed		forest (tree), shrubs and meadow
						respectively. 160 plots were laid
Anthropogenic pressure	Temperate	27:10:8 -	300m	Forest resource will become	Sundrial	Tree sampling was done using 10x10m
on tree structure and	forest o	27:14:10 N	to 2650m	more desirable and many	&	quadrants listed CBH and DBH
biomass in the temperate	Mamlay	and 88:19:3		species are likely to disappear	Sharma	separated in four categories, seedling,
forest of Mamlay	watershed	- 88:24:23		in due course of time.	1996	samplings, small trees and big tree and
watershed in Sikkim	in Sikkim	Е				the tree height is measured with
						bamboo stick. Finally, Diversity index
						was measured following Shannon and
						weaver (1949).
Distribution of vascular	Himalaya		1000m to	The dynamic hard boundary	Vetaas &	Compare different null models of
plant species richness	u	Not	5000m	may have cause an increase in	Grytnes	species richness pattern paper and
and endemic richness	elevation	available		the extinction rate above 4000m	2002	based on over 1,00,000 herbarium
along the Himalayan	gradient			the endemic species increase		specimen in addition field experience.
elevation gradient in	in Nepal			steadily from low to high		The elevation gradient between sea

T:41.0	Cito	I acation	Floretion	Imnoutant Docult	مىمەللىرى م	Mathadalaari
	2010	LUCAUUI	(amsl)		simme	Agonomoutotat
Nepal				elevation		level and 6000m was divided into 60 and 100m vertical bond.
Biomass, Productivity,	Central	29:7 –	300m	To summaries data on forest	Singh et	Compilation of separate studies of
Leaf Longevity, and	Himalaya	30:41 N and	to 3600m	characteristics from foothills to	al.,	forest structure, leaf phonology
Central Himalaya		79:40 E		Himalayas. The data base for	1994	
3				forest properties especially for		
				broad leaved evergreen forest.		
Plant biodiversity	Helan	38: 21 –	1000m to	The number of species initially		Sampled all major vegetation
patterns on Helan	Mountain,	39:22 N and	3556 m	increased and then declined,	Jiang et	communities, using quadrates, the size
Mountain, China	China	105:49-		and the curve was markedly	al,.	of which was 10 x10 m, 4 x 4m and 2
		106:41 E		'humped'. Richness was the	2007	x2m and the field data were analyzed
				highest between 1800 and		through CCA (Canonical
				2000m a.s.l. Similar pattern in		Correspondence Analysis), and through
				the relationship between -		Shannon-Weiner index for -diversity
				diversity and environmental		and Sorensen index for -diversity.
				factors the variation of the		
				Shannon-Weiner index highest		
				at 1700m a.s.l.		
Plant diversity in the	sub-	26:35 -	75m to	In total 246 species from 48	Peet et	A total of 200 plots were randomly
threatened sub-tropical	tropical	28:57 N and	1441 m	families were recorded from the	al.,	located in the grasslands, 50 in each of
grasslands of Nepal	grasslands	80:07 -		four protected areas. Changes in	1999	the four protected areas. Plot sizes of
	of Nepal	87:04 E		the impact of these		8.5x8.5 m, In each plot all plant species
				disturbances, for example as a		were recorded and the percentage cover
				result of dam building or a		of each species was estimated
				change in the fire regime, will		approximately.
				alter the diversity and		
				distribution of the plant		
				assemblages together with their		
				associated fauna.		
Relationship between	Central	Not	I	A significant unimodal	Bhattarai	Sampled two hundred plots (lm x lm) in
plant species richness	Himalaya,	available		relationship between species	et al.,	two different types of pastures:
and	Nepal			richness and biomass only in	2004	common pasture and old field, which

Title	Site	Location	Elevation	Important Result	Authors	Methodology
			(amsl)	4		20
Biomass in an arid sub-				the common pasture. The		both have similar grazing practices.
alpine grassland of the				turnover was lower in the old		DCA2 (detrended correspondence
Central Himalayas,				field than in the common		analysis) used.
Nepal				pasture.		
Development of a two-		Not		Demonstrate that the	Jiang et	A linearity-adjustment factor is
band enhanced		available		differences between EVI and	al.,	proposed and coupled with the soil-
vegetation index without				EVI2 are insignificant (within	2008	adjustment factor L used in the
a blue band				± 0.02) over a very large sample		Soil-adjusted vegetation index (SAVI)
				of snow/ice-free land cover		to develop EVI2.
				types, phenologies, and scales		
				when atmospheric influences		
				are insignificant, enabling EVI2		
				as an acceptable and accurate		
				substitute of EVI. EVI2 can be		
				used for sensors without a blue		
				band,		
Advantages of a two	1	Not	1	EVI2 performed slightly better	Rocha &	Calculated VIs from solar and
band EVI calculated		available		than NDVI when comparing	Shaver	photosynthetically active
from solar and				tower derived vegetation	2009	radiation fluxes, and validated these
photosynthetically				indices to MODIS and		calculations against Vis derived from
active radiation fluxes				spectroradiometer derived		the Terra MODIS and ground-based
				vegetation indices.		spectroradio-meter measurements.
Higher levels of multiple	different	Not	8 (in the	Reported that tree species	Gamfeldt	Used a nationwide forest data set from
ecosystem services are	parts of	available	north) to 4	richness in production forests	et al.,	the Swedish National Forest Inventory
found in forests with	the		(in the	shows positive to positively	2013	and the Swedish Survey of Forest Soils
more tree species	country		south)	hump-shaped relationships with		and Vegetation. The inventory uses a
				multiple ecosystem services.		randomly planned regular sampling
				Soil carbon storage and		grid in a data set with a total of 4,335
				understory plant species		sample plots distributed across 1,401
				richness increased with tree		tracts
				species richness		

Title	Site	Location	Elevation	Important Result	Authors	Methodology
			(amsl)			
Seasonal changes in the	Central	Not		This study demonstrated the	Bischoff	Sampling (10x10m) plots was
relationship between	German	available		importance of temporal	et al.,	conducted in three times, in May, June
plant species richness	chernoze			dynamics and regional	2005	and July, all vascular plants were
and community biomass	m region,			processes in understanding		harvested in a circular area of 0.25m2
in early succession	15 km			species richness productivity		positioned at random within each plot.
	southwest			patterns. Between-species		Care was taken that harvested areas
	of Halle.			differences in individual		were not sampled a second time. Plant
				number-community biomass		species richness was determined and
				relationships and their seasonal		after drying at 80 °C for 48 hr. the
				dynamics revealed ''interspecific		biomass of each species was
				competitive exclusion'' even		determined.
				though the species richness-		
				biomass relationships were not		
				negative or hump-shaped		
Life-forms and clonality	East	32:26 –	4180m to	404 species of vascular plant	Klimes	The species number recorded in
of vascular plants along	Ladakh	33:36 N and	6622m	were recorded in which	Leos.	particular altitudinal intervals was
an altitudinal gradient in	(NW	77:18 –		maximum species was found in	2003	randomly selected from a species pool
E Ladakh (NW	Himalaya)	78:30 E		4500-4750m, the six different		which was defined as the set of species
Himalayas)*				Raunkiaer life-form were		recorded in the whole study area.
				distinguished among the total		
				vascular flora in between 4200-		
				4900m		
Species richness of	western	60:13 N and	310m	1. Bryophytes species richness	Grytnes	42 quadrates was laid each measuring
vascular plants,	Norway	6:15 E	to 1135m	has no statistically significant	et al.,	25m2, placed along the transect at
bryophytes, and lichens				trend. 2. Lichen richness	2006	intervals of approximately 20 vascular
along an altitudinal				increased from the lower point		meters, very dry and wet area were
gradient in western				and up to the forest limit. 3. The		avoid when placing the plots.
Norway				vascular plant species richness		
				peaked immediately above the		
				forest limit. 4. bryophytes and		
				lichen species richness responds		
				local scale and shading from		
				forest tree respectively		

Title	Site	Location	Elevation	Important Result	Authors	Methodology
			(amsl)			
Vegetation, species	south-	Not	0 m	Species richness increase from I	Hegazy	The 15 sampling site was studied, the
diversity and floristic	west	available	to 3000m	lower elevation to higher	et al.,	quadrats size was 10x10m ² which is
relations along an	Saudi			elevation up to 2000m highest	1998	placed 300m away from the motorable
altitudinal gradient in	Arabia			in 2000-2500m, then the species		road, the sampling site was divided in
south-west Saudi Arabia				diversity decreased while		six altitudinal belt in between 0-3000m
				increasing elevation there is a		Elevation.
				remarkable change in		
				vegetation species diversity and		
				floristic relation		
Predictive relations of		Not		The relationship between I	Foody et	Three types of predictive relation,
tropical forest biomass		available		predicted and measured α	al., 2003	based on vegetation indices, multiple
from Landsat TM data				biomass derived from		regression and feedforward neural
and their transferability				vegetation indices differed		networks, were developed for biomass
between regions				markedly in both strength and		estimation at each site. For each site,
				direction between sites.		the strongest relationships between the
				Although the incorporation of		biomass predicted and that measured
				test site location information		from field survey was obtained with a
				into an analysis resulted in an		neural network developed specifically
				increase in the strength of the		for the site
				relationship between predicted		
				and actual biomass,		
				considerable further research		
Tropical Forest Structure	Costa	10:24 N and	30m	Species richness, species I	Lieberma	14 plots was placed with the total area
and Composition on a	Rica.	88:00 W	to 2600m	diversity was highest in 300m, r	n <i>et al.</i> ,	23.4h; tree >10Cm dbh were tagged,
Large-Scale Altitudinal				decreased both above and below]	1996	identified, mapped and measured in
Gradient in Costa Rica				this latitude the range of		diameter and height.
				lowland species was similar to		
				that of montane species; the		
				species of high-diversity		
				assemblages were similar in		
				altitudinal niche breadth to		
				species of low-diversity		
				assemblages.		

Title	Site	Location	Elevation	Important Result	Authors	Methodology
			(amsl)			
Altitudinal distribution of	Swiss	Not	200m	155 species were recorded at]	Becker	Plant species are recorded from 232
alien plant species in the	Alps	available	to 2470m	232 sites, the number of alien	et al.,	sites of railways station and road sites,
Swiss Alps	•			species per site declined	2005	author recorded all alien vascular plant
	_			strongly with increasing		species.
	_			Elevation and there was no		
	_			difference in species richness		
	_			between road and railway sites,		
	_			but there was a significant		
	_			interaction with elevation.		
Distribution pattern of	Eastern	27:30-28	300 to	Recorded 3874 individual trees	Acharya	Laid five transects each in four
trees along an elevation	Himalaya	:70 N and	4700 m	belonging to 171 species and 58 α	et al.,	vegetation types keeping a minimum of
gradient of Eastern	_	88:03-88:		families	2011	150 m elevational distance between any
Himalaya, India	_	57 E		no trees were observed above		two transects.
	_			4000 m. Species richness of		Quadrats at every 100 m interval, 10
	_			trees followed a hump-shaped		quadrats were laid per transect.
	_			relationship with elevation		Sampled 230 quadrats covering 4.6 ha
	_			showing a peak at around 1500		area (0.2 ha per transect).
	_			m.		
What drives elevationa	Costa	Not	100 m -	The species richness of the 48 ⁴	Kluge et	Analysed species richness on 156 plots
patterns of diversity? A	Rica	available	3400 m	recorded species showed a hump	al., 2006	of 20x20 m and measured temperature
test of geometric	_			shaped pattern with elevation		and humidity at four elevations (40,
constraints,	_			with a richness peak at mid		650, 1800 and 2800 m). Species
climate and species poo	_			elevations at 1700 m) strongly		richness patterns were regressed against
effects for pteridophyte	_			with climatic variables		climatic variables (temperature,
on an elevational gradient	_			especially humidity and		humidity, precipitation and actual
in Costa Rica	_			temperature. Area and species		evapotranspiration).
	_			pool were associated lest		
	_			strongly.		
Biomass and diversity of	Ladakh,	Not	4,500 to	Observed unimodal relationship	Namgail	Vertical transect at every 200 m
dry alpine plant	western	available	5,500 m	between plant species-richness 4	et al.,	alternatively on either side of a valley,
communities	Himalaya		asl	and Elevation between 5,000	2012	starting at the valley-bottom. Along
along altitudinal	_			and 5,200 m, while it peaked		each of the vertical transects, we
gradients in the				between 3,500 and 4,000 m at		sampled phytomass in 2 x 2 m plots at

ratio (MI = moisture index) were means of generalized linear models from lower, warm, dry pine forest to - Herbaceous species, including Bhattarai | The number of species was counted in m elevation bands covering the main mean annual rainfall (MAR), and their evaluated as explanatory variables by Fifteen sampling plots (P1-P15) were established along the altitudinal gradient size varied from 400 m^2 to 800 m^2 due to difficulties in setting up equally large six plots (50x20m) in each of the 15 100 Potential upper, cool, humid conifer forest. Plot evapotranspiration (PET, i.e. energy), physiognomic structures along plots in a complex topography. 50-m elevational intervals transect. imaginary (GLM) mid Gairola et tree species Wangda al., 2008 40 deciduous Ohsawa, unrelated to any of the climate Vetaas, broad-leaved and six coniferous 2006 variables. PET was strongly 2003 37 evergreen & m herbaceous climbers, was & entire Ladakh level. Reported a hump shaped relationship elevation, and the following total species (sum of all life monotonically, and (iii) woody species belonging to 35 aboveground 3200 m) showed high species relationships were found responses (ii) ferns decreased increased negatively correlated with between increasing PET and richness: (i) shrubs, trees and showed unimodal amilies. regeneration pattern of major dominant species shifted from inverse-J (lower altitudes), to sporadic (mid-altitudes), and diversity for all the life forms. the sites, the m Elevation stratum (3000 – phytomass and Elevation. m comprising of 27:30 N - 1250 m - recorded 83 monotonically broad-leaved, climbers forms) In all between (amsl) 2800 3600 regeneration dynamics of Himalaya | 89 : 52 E to | 3550 87:16-E), to 1500 N; 100 asl asl asl of (26:59-N; an Himalaya available 87:21E) 89:45E 26:42 27:28N Not and Bhutan richness of different life Eastern Variation in plant species Southelevation Nepal along a part vegetation west in sub-alpine zone of in the altitudinal gradient in a dry valley slopes of the dominant tree species Himalayas, east Nepal vest Himalaya, India along altitudinal gradient Bhutan Himalaya subtropical Himalayas Structure gradient oatterns orms Forest along

Methodology

Authors

Important Result

Elevation

Location

Site

Title

Title	Site	Location	Elevation	Important Result Authors Methodology
			(amsl)	
				to uni-modal type (upper
				altitudes) corresponding to three
				regeneration trends.
Diversity increases (Continent			A consistent positive effect o Benito et Used 54,000 plots of the Spanish Forest
carbon storage and tree ;	al Spain.			functional diversity on carbon al., 2014 Inventory and maximum likelihood
productivity in Spanish				storage and tree productivity was techniques to quantify how climate,
forests				observed in all seven forest type stand structure and diversity shape
				studied. This relationship was no carbon storage and tree productivity
				linear, and the largest changes ir
				carbon storage and tree
				productivity were observed a
				low levels of functional diversity
				Found a generally positive effec
				of diversity on carbon storage
				and tree productivity, supported
				by both complementarity and
				selection mechanisms
Altitudinal patterns	Mount	Mount Tai,	Mount Tai	Two different richness patterns Zhang et In Mount Tai and Mount Lao, the
illustrate the invasion	Tai and	(N36:05 –	1532.5 m,	along the elevation gradient on al , altitudinal gradient was systematically
mechanisms of alien l	Mount	N36:15 and		Mount Tai and Mount Lao, 2015 divided into thirteen and nine 100 m-
plants in temperate l	Lao,	E117:5-	Mount	alien species richness presented wide elevation bands, respectively. A
mountain forests of	Shandon	E117:24)	Lao	a consistent decreasing total of 38 plots were sampled in Mount
northern China	80	and Mount	1132.7 m.	tendency with increasing Tai and 25 plots in Mount Lao.
	Province,	Lao		elevation, suggesting that
<u> </u>	China.	(N36:05 –		mechanisms driving native and
		N36:19, and		alien species richness may be
		E120:24 –		different. While native plants
		E120:42).		had many specialists at high
				altitudes and presented an
				obvious change of chorological
				groups along the elevation
				gradient.

24

1.11. Hills, Mountain and biodiversity

Mountain regions cover nearly one third of the earth's land-area and the Himalaya Hindu-Kush mountain regions comprised half of this area radiating from the Pamir knot. The Hindu-Kush mountain are rich in forest, flora and fauna, including biodiversity and vast natural recourses, which including the glaciated region and water recourse which remain still untapped (Dang & Mamgain, 2003)

Himalayan range covers the entire northern part of India passing through five major states of the country and the biodiversity of this entire region need to study intensively. Biodiversity is the variety of all forms of life, from plant and animal species to ecosystems. Earth's biodiversity provides food, shelter, fresh water, medicines, and spiritual solace. The abundance of life is unevenly distributed around the world with the highest concentrations of species in the tropics. Biodiversity losses can upset ecological cycles and adversely affect people's quality of life. The life-form of both, plants and animals, that characterize these bio-geographical regions is unique and unparallel, perhaps in the whole world, ranging from streaming hot foothills to ice cold alpine meadows.

1.12. The Sikkim Himalaya

Sikkim is located in the Eastern Himalayas and is globally renowned for its biological diversity and the traditional knowledge associated with it. Sikkim is a part of the global biodiversity hotspot. The unique terrain, climate and biogeography of the state have resulted in the sustenance of varied eco-zones in close proximity. Also the harmonious presence of several ethnic groups having their distinct identity and practising their traditional livelihood adds to the treasure house of knowledge related to this biodiversity. (Arrawatia & Tambe, 2011). Sikkim encompasses within its narrow belt a luxuriant floristic composition encountered nowhere else in a similar situation (Anonymous, 1994). Within the 75 km of aerial distance in Sikkim, the elevation is ranging from 284 m – 8598 m (Fig. 2.2) and covers all type of vegetation zones viz. tropical, sub-tropical, temperate, sub-alpine, alpine meadow and permanent snow-covered region. Keeping in view of above facts, Sikkim Himalayas is considered as an ideal site for studying the biodiversity pattern along the altitude.

1.13. The Hypothesis

Productivity of the bio-diversity of Sikkim Himalaya must be based on accumulated bio-geographical knowledge about species distribution and its treasured uniqueness. This requires knowledge about variation in plant richness in relation to human use that points to the core questions in the current biodiversity debate; does species richness increase with productivity and increased biomass? Or, is species richness highest under intermediate productivity and intermediate biomass? Does controlled disturbance through utilization of vegetation reduce biomass and enhance species richness? This study would also aim at evaluating such research questions at local scales focussing upon the East district of Sikkim.

Chapter 2 **OBJECTIVES**

Objectives

The biological diversity of the Sikkim part of the Himalayas is well-known for its extremely rich biological diversity, both plants and animals. Anonymous, 1994 Sikkim Himalaya is one unique region for the study of different physical and environmental gradients. (Acharya, et al., 2011). However, till date, no such well-defined work has been conducted in this region. The present work is one such attempt to understand the patterns of biodiversity, the species richness and the production of biomass in the East District of Sikkim.

For the present study following three are the basic objectives:

- 1. To analyze the species diversity pattern along the elevation gradient
- 2. To estimate the biomass productivity pattern along the elevation gradient; and
- 3. To establish a relationship between species diversity and productivity pattern along the elevation gradient

The entire work will be done using the tools of Remote Sensing using suitable satellite imageries along with intensive ground trouthing to correlate and to explain the imagery and the actual vegetation condition

Chapter 3 STUDY AREA

STUDY AREA

The present study the small Himalayan state of India (Sikkim) was taken for the collection of field data, after analysis the collected field data was correlated with satellite product of the same area.

3.1. The Himalayan State of Sikkim

Sikkim, a small Himalayan state of India, with total area of 7096 km² lies in geographical coordinates between $27^{\circ} 002 \, 46^2$ to $28^{\circ} 072 \, 48^2$ N latitudes and $88^{\circ} 002 \, 58^2$ to $88^{\circ} 552 \, 25^2$ E longitudes. The location of Sikkim state in India is shown in Figure 3.1.

Fig. 3.1. Location map of Sikkim

It is located north of the Darjeeling-hills of West Bengal, and shares international border with Nepal in the west, China in the north and north east and Bhutan in the east. The state is extending approximately 114 km from north to south and 64 km from east to west. The entire part of it is interlaced with jungle clad ridges and deep ravines created through major mountain peaks and the river valleys and extremely dense forests (Champion & Seth, 1968). Sikkim is also referred as the "Abode of snow" by Risley, (1894) and it is also known as landform of resplendent floral and faunal aggregation. The state is predominantly mountainous virtually with no plain land. The altitudes Sikkim above mean sea level (amsl) varies between 284 m (at Melli) to 8598m (summit of Mt. Kanchandzonga). Within the 75km along the elevation one can cross the tropical to snowline area in the state figure 3.2.

Fig. 3.2. Profile along the altitude of Sikkim with the distance in Kilometers

The highest mountain Mt. Khangchendzonga (8598 m) adorns the state with its beautiful snow covered mountain range. Sikkim Himalaya is the drainage basin of mighty rivers Tista and Rangit. The

variation in altitude from south to north within a short distance has resulted in too much of micro-climatic variations. Sikkim can be divided into three botanical zones *viz.*, tropical, temperate and alpine, depending on the elevation and characteristics of the vegetation. The foothills of Sikkim are covered with forests consisting of the species of *Shorea*, *Haldina*, *Dalbergia*, *Dillenia*, *Artocarpus*, *Ficus*, *Bauhinia*, *Litsea*; *Lagerstroemia*, *Terminalia* etc. In the lower hill ranges (600 – 1500 m) the forests chiefly include the species of Schima, *Syzygium*, *Duabanga*, *Engelhardtia*, *Ficus*, *Castanopsis*, *Pandanus*, *Cyathea*, *Magnolia*, *Quercus*, *Saurauia*, *Photinia*, *Juglans*, *Leucosceptrum*, etc. (ISRO, 1994).

The temperate vegetation comprises of forests dominating with the species of *Alnus, Acer, Betula, Magnolia, Rhododendron, Larix, Berberis, Salix, Cotoneaster, Vaccinium, Daphne, Sorbus, Rubus* and the herbaceous species of *Aconitum, Anemone, Potentilla* etc. *Abies densa, Larix griffithiana, Tsuga dumosa, Picea spinulosa* and *Taxus wallichiana* var. *chinensis* represents the coniferous belt in the altitudinal range of 2700 – 3900 m. The Rhoddendron-Conifer forests comprise of the several species of *Rhododendron, Daphine, Betula* etc. mark the timberline at the altitude of 4000 m. The alpine vegetation which occurs above 4500 m and up to a limit of 5500 m is confined to moorlands of coarse meadows with many stunted and dwarf shrubby species of *Rhododendron, Cassiope, Saxifraga, Primula, Pinguicula, Sedum, Rheum, Saussurea, Gentiana, Kobresia, Carex* etc. (ISRO, 1994).

3.2. Distribution of Forest Vegetation vis-à-vis Elevation

Based on altitude, the vegetation of Sikkim is classified into following categories:

3.2.1. Low Hill Forests (tropical to sub-tropical, up to 900 m): From the base (244 m) to 900 m, semi-evergreen broad-leaved forests with trees, 24 - 36 m high are the main vegetation structure. The rainfall is heavy, even up to 500 cm annually. Epiphytes like orchids, aroids etc. are abundantly represented. The undergrowth is luxuriant and varied. Shorea robusta is very common, covering large tracts especially along the Tista and Rangit rivers. Schima wallichii, Bauhinia purpurea, Toona ciliata, Stereospermum tetragonum, Bombax ceiba, Dillenia pentagyna, Lagerstroemia parviflora, Sterculia villosa, Terminalia myriocarpa, Terminalia tomentosa and Albizia spp. are prominent components of these forests. Similarly, other trees occasionally met with includes Garuga pinnata, Aglaia spectabilis, Amoora rohituka, Chukrasia tabularis, Evodia meliifolia, Ailanthus integrifolia subsp. calycina, Duabanga grandiflora, Tetrameles nudiflora, Celtis tetrandra, Castanopsis indica, Syzygium formosum and Magnolia champaca together with laurels like Ocotea lancifolia, Phoebe hainesiana, Phoebe attenuata, Litsea monopetala and Cinnamomum bejolghota. Several species of Artocarpus such as Artocarpus integer and Artocarpus chama together with Bischofia javanica also occur. Large planted trees of Ficus elastica are often seen along the banks of the river Tista, alongside Pakyong road, and near Dickchu. Occasionally interspersed in the forest are Ficus semicordata and Pandanus furcatus Tree-ferns are not uncommon in the low-land forests of Sikkim (ISRO, 1994; Hajra & Verma 1996).

3.2.2. Middle Hill Forests (subtropical, 750 – 1500 m): These are largely dominating with many evergreen species. The trees are usually 20 – 30 m height in this zone. Epiphytes and climbers occur in large numbers. The undergrowth is not usually dense and consists of numerous herbaceous and shrubby species. *Castanopsis tribuloides, Castanopsis indica, Schima wallichii*, and *Phoebe*

hainesiana are the commonest tree species between 750 m and 1200 m. *Magnolia champaca* and *Stereospermum tetragonum* may also seen in this region. Other prominent components of the forests of this region are *Drimycarpus racemosus*, *Juglans regia*, *Engelhardtia spicata*, *Spondias mombin*, *Exbucklandia populnea*, *Magnolia cathcartii*, *Magnolia hodgsonii*, *Saurauia napaulensis*, *Ficus auriculata*, *Ficus semicordata*, *Betula alnoides*, *Alnus nepalensis*, *Terminalia* spp., *Macaranga* sp., *Litsea monopetala*, *Ocotea lancifolia*, *Phoebe attenuata*, and members of Meliaceae. Large evergreen trees of *Quercus glauca*, Lithocarpus elegans, *Quercus serrata* and *Quercus griffithii* grow in dense formations between 1200 and 1600 m or above. Bamboos may also be found near human settlements in these hills. It will not be out of place to mention that *Cryptomeria japonica* is being extensively cultivated in this zone and that is creating problems with the survival of local species. It covers large areas and forms dense forests in areas between 1200 m and 2400 m. The ground vegetation underneath these forests is very little due to lack of sun light and unsuitable substratum. Only a few ferns are known to grow in the periphery these forests (ISRO, 1994; Hajra & Verma 1996).

3.2.3. Upper Hill forests (Wet temperate, 1500 – 2700 m):

The forests are evergreen with medium-sized trees, rarely over 24 m height. There are a number of deciduous tree species but those form only a small proportion. Oaks and laurels form large patches in otherwise mixed forests. The oaks have branched spreading crowns and are abundantly covered with mosses and other epiphytes. The forests are extremely thick and the requisite amount of moisture is available for the ground growing as well as epiphytic vegetation. The shelter of trees provided shade and prevents rapid air movements to a considerable extent. This results in a prolific growth of small herbs, shrubs and ferns on the forest floor. Woody climbers are frequent but not conspicuous. Several altitudinal zones may be distinguished by the preponderance of certain species such as laurels between 1800 and 2100 m, Quercus lamellosa between 2100 and 2400 m and Lithocarpus pachyphyllus between 2400 and 2700 m, though freely overlapping. Magnolia cathcartii, Magnolia campbellii, Machilus edulis, Lithocarpus fenestratus and Castanopsis hystrix are quite common in all the forests up to 2100 m. Between 2100 and 2400 m of altitudes Quercus lamellosa, Castanopsis tribuloides, Acer campbellii, Magnolia doltsopa and Magnolia cathcartii are dominant species. *Quercus lineata*, *Betula alnoides* and *Symplocos lucida* are also frequently met with former being quite prominent species. The oaks constitute the greater part of the trees of top canopy and Lauraceae is usually relegated to the second storey, though numerically predominant. Laurels like Machilus gammieana, Machilus gamblei, Machilus edulis, Litsea sericea, Litsea elongata, Litsea kingii, Neolitsea zeylanica and Cinnamomum bejolghota Sweet are not uncommon. Alnus nepalensis grows mainly along water courses and is the chief colonizer of new landslip areas. Magnolia doltsopa is one well known timber tree of this zone (ISRO, 1994; Hajra & Verma 1996).

Still higher up, between 2400 m and 2700 m or so *Quercus lamellosa*, *Lithocarpus pachyphyllus*, *Castanopsis tribuloides*, *Acer campbellii*, *Magnolia campbellii*, *Symplocos lucida* and *Taxus wallichiana* are the prominent elements of these forests. Above 2700 m in this zone *Lithocarpus pachyphyllus* occurs in pure formations. Under the shade of these trees *Rhododendron griffithianum* finds a favourable place. Dwarf bamboos, *Arundinaria* spp. are common as undergrowth at higher altitudes (ISRO, 1994; Hajra & Verma 1996).

3.2.4. Rhododendron-Conifer Zone (cold temperate or sub-alpine, 2700 – 3600 m):

The forests of this zone are also evergreen, mainly composed of Rhododendrons and conifers. Quite often *Lithocarpus pachyphyllus* and *Quercus lineata* formations are extending above 2700 m altitude and Acer campbellii, Acer caudatum, Betula utilis and Magnolia campbellii may also be met with though very infrequently. As one proceeds higher up, there is a gradual replacement of oaks by Rhododendron arboreum, Rhododendron campanulatum, Rhododendron grande and other species of the genus. Betula utilis is occasionally found in the high level Rhododendron forests at the head of Lachen valley near or above Yumaysamdong (3300 m). Taxus wallichiana. grows in the forests as one proceeds above Lachung. At about 2700m – 3000 m in northen valley, *Tsuga dumosa* grows in abundance and is the dominant tree. It also grows at Tsokha, West Sikkim. Picea spinulosa grows abundantly on all the hills around Lachen intermixed with Tsuga dumosa but are not extended above 3000 m. The bamboo, Thamnocalamus spathiflorus forms dense undergrowth in silver-fir forests, especially where fire has destroyed the tree canopy. Abies densa also occurs almost in pure formations between Karponang and Chhangu (East Sikkim), and Yumaysamdong to Thangu (North Sikkim) extending up to 3600 m or a little above. Few trees of Salix disperma are also seen growing near Thangu along the streams. Rhododendron arboreum forms scrub on steeper slopes at about 3000 m. Above the tree-line, the vegetation is a sort of mosaic of Rhododendron campanulatum, Rhododendron wightii, Rhododendron thomsonii, Rhododendron cinnabarinum and Rhododendron decipiens scrubs on slopes near Tsomgo (3900 m) and near Thangu (4000 m). Rhododendron anthopogon, Rhododendron setosum and *Rhododendron barbatum* may also be occasionally met with in such formations. Grasslands are frequent at 2700 m altitude and above. Some species of Arisaema may be found in open places. Various species of Aconitum grows abundantly on the forest-floor underneath Rhododendrons at high altitudes especially around Thangu (ISRO, 1994; Hajra & Verma 1996).

3.3. Occurrence and distribution of forest types

The forested vegetation of Sikkim, which is located entirely within the Eastern Himalaya, is with wide range of variations. The details of forest types in Sikkim are presented below in Table 3.1.

Table 3.1. Details of forest types found in Sikkim, Eastern Himalaya, India [Adapted from: Grierson &Long, 1983; Champion & Seth, 1968].

S. No.	Forest type as per Grierson & Long (1983)	Characteristic species	Altitud e range	Fo Cham	prest type as per pion & Seth (1968)
1	Sal (Shorea robusta) forest	Shorea robusta Terminalia myriocarpa Schima wallichii Phyllanthus emblica Mallotus philippensis Bombax ceiba	300 – 900	3C/Ci a	East Himalayan sal forests
2	Chir pine (<i>Pinus roxburghii</i>) forest	Pinus roxburghii Woodfordia fruticosa Phoenix acaulis	500 – 900	9/C _{1b}	Himalayan chir pine forests

Study area 32

S. No.	Forest type as per Grierson &	Characteristic species	Altitud e range	For Chamr	est type as per bion & Seth (1968)
110.	Long (1983)		e range	Champ	1900)
3	Subtropical forest	Terminalia myriocarpa Tectona grandis	300 – 900	3C/C _{3b}	East Himalayan moist deciduous
		Duabanga grandiflora Tetrameles nudiflora Dillenia pentagyna Ailanthus integrifolia			forest
4	Warm broad- leaved forest	Schima wallichii Engelhardtia spicata Macaranga nepalensis Castanopsis indica Choerospondias axillaris Ostodes paniculata	900 – 1700	8B/C ₁	East Himalayan sub-tropical wet hill forest
5	Alder forest	Alnus nepalensis	1500 – 2000	12/IS ₁	Alder forest
6	Evergreen Oak forest	Castonopsis sp., Quercus sp., Magnolia sp., Juglans regia Symplocos sp., Acer campbellii	1700 – 2800	11B/C ₁	East Himalayan wet temperate forests
7	Dwarf bamboo thicket	Arundinaria maling Thamnocalamus spathiflorus	2600 – 3100	12/DS ₁	Montane bamboo brakes
8	Mixed conifer forest	Tsuga dumosa Lithocarpus pachyphyllus Larix griffithii Picea smithiana	2700 – 3100	12/C _{3a}	East Himalayan moist temperate forest
9	Conifer forest	Abies densa Tsuga dumosa Sorbus macrophylla Prunus cornuta	2800 – 3700	13/C ₆ , 14/C ₂	East Himalayan dry temperate coniferous forest, Larch forest, East Himalayan sub- alpine forests
10	Alpine thicket	Rhododendron spp., Betula utilis, Acer spp., Juniperus sp.	3500 – 4500	15/C ₁	Birch/Rhododendr on scrub
11	Alpine scrub	Juniperus sp., Rhododendron spp., Caragana sp., Ephedra gerardiana	4000 – 5500	15/C ₂ , 16/C ₁ , 16/E ₁	Dwarf <i>Rhododendron</i> scrub, Dry alpine scrub, Dwarf Juniper scrub

3.3.1 Forest Type Distribution as per Champion and Seth (1968)

Champion & Seth (1968) characterized the forests of Sikkim also and the forests of east district of Sikkim were divided as under:

3.3.1.1. Tropical Semi-Evergreen Forests-3C/C1 (300 – 900 m):

The vegetation of tropical semi-evergreen zone, located between 300 - 900 m altitudes, consisting of mainly tropical dry deciduous to semi-evergreen species with *Shorea robusta* as a dominant species. Sal is mainly found upto Tista valley. Some of the common tree species are *Terminalia myriocarpa*, *Dalbergia sissoo*, *Albizzia lucida*, *Haldina cordifolia*, *Callicarpa arborea* and *Anogeissus latifolia* with certain bamboo species as undergrowth. In the East division, this forest type is restricted to the low elevation areas of Singtam Range, Rongli Range and Pakyong Range. This forest type is also found in Amba Reserved forest (RF), Pacheykhani RF, Bhasme RF, Dhanuke RF, Burdang RF, Ralep RF, Khamdong RF, Tinek RF, Burung RF, Song RF Salingay RF, Tumlabong RF, Linku RF, Dikling RF Khani RF, Sitey RF, and Tarpin RF.

3.3.1.2. Sub-Tropical Mixed Broad Leaved Hill Forests-8B/C1 (900 – 1800 m):

Some tall evergreen species like *Schima wallichii* Choisy, *Alnus nepalensis*, *Prunus cerasoides*, *Engelhardtia spicata* var. *integra* are associated with other trees including species of *Macaranga*, *Castanopsis*, *Syzygium*, *Sapium* etc, are also seen in this altitude zone. This forest type is mostly found in tree clad areas (area outside forest). In the forest areas it is found restricted in areas like Karthok RF and Sumin RF of Singtam and Pakyong Range.

3.3.1.3. Upper Hill-Himalayan Wet Temperate Forests-11B/C1 (1800 – 2400 m):

This is a transitional zone between sub-tropical mixed broad leaved to sub-temperate zone with species ranging from *Machilus, Alnus, Quercus* and *Symplocos*. The evergreen tree dominates this region and the undergrowth is mainly of species of bamboos. This is the most broadly distributed forest type in the Sikkim state and is occupying about 221.19 km² of forest land, which is nearly half of the total forest area of 512 km² (WPR, 2013). This forest type is found in 43 compartments in Gangtok Block, Pangthang Block, Pathing Block, Rangpo Block, Pakyong Block, Kyongnosla Block, Assam Block and Rongli Block.

3.3.1.4. Sub-alpine Forests (2400 – 3000 m):

The typical temperate forests consists of species of *Abies* and *Pinus* mixed with *Picea, Tsuga* and *Juniperus* covering broad areas intermixed with species of *Quercus, Rhododendron, Machilus* and *Betula*. This forest type is distributed in Zuluk area and Kyongnosla area of East district of Sikkim.

3.3.1.5. Moist Alpine Forests (2700 – 3700 m):

The Moist alpine forest zone mainly consists of *Rhododendron* species intermixed with temperate evergreen species of plants. The forest cover becomes sparse as altitude increases and often restricted to grooves of the hills. This forest type is mainly found in Kyongnosla Block and Phadamchen Range in East Sikkim.

3.3.1.6. Dry Alpine Forests (3700 – 4500 m):

The vegetation of dry alpine vegetation is practically of scattered scrubs, often barren. Most of the species are of stunted thorny scrubs because of unfavorable conditions of a lesser amount of soil cover and severe frost. The species of *Juniperus, Berberis* and *Salix* are commonly available in this region. The forest type was divided into two zones. One is Alpine barren (without vegetative cover) and Alpine scrub (with bushes). This forest type is found in Tsomgu, Kupup, and Gnathang of East district Sikkim.

3.4. Location of East District

East district Sikkim lies at the south-eastern part of Sikkim. Geographical coordinate of the district is 27° 08'2.88" N to 27°25'32.28" N latitudes and 88°26'26" E to 88°54'25" E longitudes (Figure 3.3). The administrative jurisdiction of the East district of Sikkim spreads over a geographical area of 954 km². The total area comprises of 512.09 km² of reserved forest, 63.29 km² of *Khasmal* and *Gorucharan* forest land. A total area of 378.62 km² is under non-forestry areas which include Agricultural land, roads and urban areas, etc.

The whole tract is very mountainous and consists of series of ridges and valleys. The general topography of the district is highly undulating. Slopes ranged from moderately steep to very steep. Due to the abrupt rise of mountains and ridges form the drainage channels which often flow through deep gorges, there is conspicuous absence of flat land within the slope range of 1 % to 15 %. The tract dealt with is drained by river Tista, Rangpo Chhu, Ratey Chhu and Reshi Khola ('chhu' & 'khola' = river). The river Tista and Rangpo Chhu are the main rivers which have a number of perennial and seasonal tributaries. The famous Tsomgo and Mememcho lakes are the main sources of Rangpo Chu in the upstream. The detailed of forest range of East district Sikkim is in Table 3.2.

Administrative unit	Forest Range	Area (ha)
	Gangtok	10408.97
	Kyongnosla	17980.97
East District	Pakyong	6452.09
	Pathing	3422.10
	Phadamchen	15733.12
	Rongli	12641.50
	Singtam	13873.72
	Tumin	5650.96
	Ranipool	9236.66
	Total	95400 ha

Fig. 3.3. Forest Range map of East Sikkim

East district of Sikkim shares the border with Bhutan, China and the state West Bengal. The border between China and Bhutan has several passes which had been used as the trade routes in the past. Important passes are Chola, Yak La, Nathula, Jelep La, Dong Chul La, and Batang La lying with China border and Dokala, Kephyak La, and Pangolakha with Bhutan border. In 2006 Nathula pass has been reopened for the trade related activities with China.

Recently, East district of Sikkim has been divided into four sub divisions viz.,

- i. Gangtok sub-division with Gangtok Range, and Ranipool Range.
- ii. Pakyong Sub-division with Pakyong Range and Pathing Range
- iii. Rongli Sub-division with Rongli Range, Phadamchen Range; and
- iv. Rangpo sub-division with Singtam Range and Rangpo forest block

The area of the reserved forest (RF) after excluding the RF of the protected areas is 301.33 km². As per the records available from the Land Revenue Department, Government of Sikkim, the division has nine forests range and fifteen forest blocks (Fig.3.3). The concept of compartmentalization of reserved blocks into separate compartments has been initiated recently. There are a total of 90 compartments in the division. The average area of each compartment is approximately 335 ha.

The human population of the district is 2, 45,040 s (DESM&E, 2013) with diverse climate, topography and rich biodiversity. East district of Sikkim is bounded by river Tista in west, river Dichu and Rathechu in North, river Reshi and Rangpo with Darjeeling district of West Bengal in South and Chola range in the north-east and Bhutan in south-east.

3.4.1. Protected areas in East District: Sikkim holds 31% of the geographical area under the Protected Area Network (PAs), much higher than country's national average. In the east district of Sikkim, a network of protected area is pervasive. There are three PAs located within the boundary of East district and are Fembong Lho Wildlife Sanctuary, Kyongnosle Alpine Sanctuary and Pangolakha Wildlife Sanctuary (Lepcha & Das 2012).

In East district of Sikkim elevation varies between 340 m at Rangpo to about 4649 m near Nathula. The lower part of the district has the tropical and sub-tropical evergreen forest (Rangpo, Singtam) followed by temperate forest and in the higher elevation the sub-alpine and alpine in (Gnathang, Nathula, Kupup and Chhangu). The landscape of the sub-alpine and alpine region being hilly terrain, rocks, covered with scrubs to thick forests in different areas, which ultimately turns out to be practically unfavorable for human settlements.

The vegetation of tropical and sub-tropical region of East district is consisting of the species of Shorea, Haldina, Dalbergia, Dillenia, Artocarpus, Ficus, Bauhinia, Litsea; Lagerstroemia, Terminalia, etc. In the lower hill ranges (600 – 1500 m) the forests chiefly include the species of Schima, Syzygium, Duabanga, Engelhardtia, Ficus, Castanopsis, Pandanus, Cyathea, Magnolia; Quercus, Saurauia, Photinia, Juglans, Leucosceptrum etc. The temperate vegetation comprises forests consisting of the species of Alnus, Acer, Betula, Magnolia, Rhododendron, Larix, Berberis, Salix, Cotoneaster, Vaccinium, Daphne, Sorbus, Rubus and the herbaceous species of Aconitum, Anemone, Potentilla, etc. Abies densa, Larix griffithii, Tsuga dumosa, Picea spinulosa and Taxus wallichiana represent the coniferous belt.

The vegetation of the alpine region of East district Sikkim is completely unusual. *Abies, Salix,* and *Rhododendron* scrubs are the most dominating type of vegetation supported by several minute spiny short herbs. Devoid of the predictable extremely harsh climate, it still supports a large number of animals including birds, mammals, fishes, etc. Perhaps it is also not wrong to say that it appears to be the home of some of the endemic animal species of Sikkim particularly of *Sikkim Stag, Blue sheep,* etc. Some notable places those fall under the region are Tsomgo lake, Kupup, Kyongnosla, Nathula, Memen Chho, Nathang, Padamchen, etc. As such, Tsomgo, Memen Chho, Bidang Chho, Lampokhkri etc. are some of the lakes those contribute substantially in terms of sustaining wildlife and promoting tourism. Most importantly, two important sanctuaries of Sikkim, namely Kyonglasha Alpine Sanctuary (31 Km²) and Pangolakha Wildlife Sanctuary (128 Km²) are located in this region. Some of the important nurseries of alpine medicinal plants are being developed in the nearby areas of these sanctuaries by the Forest Department, Government of Sikkim for *ex-situ* conservation of rare and endangered medicinal and other valuable plant species. Notable species under the conservation process includes *Aconitum ferox, Bergenia ciliata, Neopicrorhiza scrophulariiflora, Nardostachys jatamansi, Sinopodophyllum hexandrum, Panax pseudo-ginseng*, etc.

As elsewhere, floristic components representing here is entirely diverse from the one that appear in temperate and tropical regions. It upholds a majority of highly valuable economical plants including medicinal and aromatic, dye yielding, timber yielding etc. Different species of Rhododendrons, known for their medicinal and aesthetic values, are the major floristic components of this region. Interestingly, rare orchids of some genera e.g. *Orchis, Spiranthes, Habenaria* etc. are also nicely represented in the vegetation. The alpine region of East district of Sikkim including the places like Nathula, Jalepla, Baba Mandir, Men-men Chho and Tsomgo lake have been already been identified as important tourist hubs by the government of Sikkim. Apart from these, the reopening of the trade center at Sherathang near Nathula between India and China further enriches the importance of the area.

Alpine and sub-alpine regions of East district of Sikkim covers an important strategic international border with China and kingdom of Bhutan. As such, the major areas of this region have been occupied for the national army and for their camps, etc. However, a negligible number of the highlanders including Sherpas, Bhutias, Tibetans and others in the form of laborers, supplier etc. partially inhabit the area.

3.5. Plant diversity in the Sikkim Himalaya

Sikkim Himalayan region is characterized by a rich floral diversity (Hajra & Verma 1996). This region is rich in floral diversity, housing many endemic elements and large number of species those have become rare, threatened or endangered (Pandey, 1991; Bhujel, 1996). Sikkim Himalaya is characterized by the rich forest cover and great drainage region of the rivers Tista and Rangit which constitutes the hills of Sikkim and Darjeeling district of West Bengal in the Eastern Himalaya. The area thus covers several ecological zones *viz.*, subtropical, temperate, sub-alpine and alpine. In such a small area sharp climatic differences in different ecological zones have promoted a rich flora (Rai *et al.*, 2000). Sikkim Himalaya together with Darjeeling hills of West Bengal has 577 species of trees, which come close to 20 species/km². The timber trees, fodder trees, fuel-wood trees, Drug/dye/fiber trees, other plants consisting the young formation of Sikkim Himalayan system.

Sikkim is also rich in medicinal and aromatic plant diversity, with well over 500 species of medicinal plants, many of them are reported to be endemic in Sikkim Himalaya (Lepcha 2011) Medicinal and aromatic plants make up the largest economic resource being tapped in the Himalayan region (Sharma & Sharma, 2010).

The Sikkim Himalaya is a synonym to Himalayan floral bounty and has the distinction of being recognized as one of the "Hotspots" in the Hindu Kush Himalaya for its high biological diversity (Arrawatia & Tambe 2011). It harbors 4000 species of flowering plants comprising of 38 species of Rhododendron, 450 species of Orchids, 9 Conifer species and 300 species of pteridophytes. With only 0.2% of total landmass of India it harbors more than 26% of the total flowering plants of the country. This signifies the vast floral diversity of the state. The luxuriant forest cover also supports wide variety of non timber forest produces such as bamboos, canes, wild edible fruits and aromatic plants. The state is a repository of potential medicinal plants. Sikkim Himalaya is inhabited by three major ethnic communities Nepali, Lepcha and Bhutia each having distinct cultural heritage and excellent knowledge of the plant wealth in their environment. Initially, the Bhutia communities settled mostly in high mountains in alpine and sub alpine belts in north, the Lepchas restricted their settlement in dense forests in temperate and sub temperate forests of Dzongu, North Sikkim where as the majority of Nepalese lived in temperate and sub tropical belts. These ethnic groups lived in perfect harmony with nature worshipping high mountains, forests, rivers and lakes as their guardian deities to sustain their livelihood and protect themselves from famine, disease and other natural calamities. They made judicious use of the forests resources and forest produce for their basic necessities viz., food, fuel, fodder and timber (Verma, 2009)

3.5.1. Endangered plants

The flora of Sikkim in the last 10-15 years were under great pressure due to biotic factors, mostly anthropogenic, like various developmental projects viz., construction activities, heavy deforestation by burning, tree-felling and clearing land for the preparation of agricultural fields. Landslides, forest fires, climate change, etc. are also partially due to anthropogenic activities and are increasing quite fast that is easily visible. These activities have destroyed many rich diversity centres. They led to environmental degradation due to which a large number of precious rare plants have been lost or endangered within a very short spell of time. These include: Acer sikkimense, Pimpinella tongloensis, Pimpinella wallichii, Pternopetalum radiatum, Tibetoseris depressa, Arenaria thangoensis, Dendrobium treutleri, Cymbidium eburneum, Cymbidium hookerianum, Cymbidium whiteae, Cymbidium elegans, Cypripedium himalaicum, Tipularia cunninghamii, Diplomeris hirsuta, Paphiopedilum venustum, Zeuxine pulchra, Aconitum ferox, Cotoneaster simonsii, Picrorhiza kurrooa, Acronema pseudotenera, Angelica bulbigena, Ceropegia hookeri, Ceropegia lucida, Codonopsis affinis, Rhopalocnemis phalloides, Carex sahnii, Lloydia himalensis, Neottia acuminata, Calanthe alpina, Ophiorrhiza lurida, Nardostachys jatamansi, Dennstaedtia elwesii, Hymenophyllum levingei, Panax pseudoginseng, Calamus nambariensis, Livistona jenkinsiana, Begonia tenuifolia, Begonia satrapis, B. sanctata, Lagerstroemia minuticarpa, Cyclogramma squamaestipes Tagawa, Oreopteris elwesii, Christiopteris tricuspis, Rhynchospora rugosa subsp. brownii etc. (Hajra & Verma 1996).

3.5.1.1. Number and status of endangered plants

The lists of some of endangered and endemic flowering plants of the area has been provided in Table 3.3.

Table 3.3. Endangered and endemic flowering plants known to grow in the East district of Sikkim

 (Source: FE&WLMD; WPR. 2013)

Species	Family	Altitude (m)	Habit
Anemone demissa	Ranunculaceae	3200-4600	Herb
Clematis andersonii	Ranunculaceae	-	Herb
Ranunculus brotherusii var. tanguticus	Ranunculaceae	3000-4300	Herb
Ranunculus sikkimensis	Ranunculaceae	ca 4800	Herb
Arenaria thangoensis	Caryophyllaceae	ca 4500	Herb
Stellaria decumbens var. acicularis	Caryophyllaceae	Above 3300	Herb
Uvaria lurida var. sikkimensis	Annonaceae	Upto 800	Climber
Berberis concinna	Berberidaceae	3350-3950	Shrub
Berberis umbellata	Berberidaceae	2000-3500	Shrub
Sinopodophyllum sikkimensis	Berberidaceae	3000-3500	Herb

Study area 39

Species	Family	Altitude (m)	Habit
Mahonia napaulensis	Berberidaceae	ca 2500	Shrub
Corydalis cavei	Papaveraceae	2700-4300	Herb
Corydalis changuensis	Papaveraceae	3660-3900	Herb
Draba humillima	Brassicaceae	4500-5000	Herb
Draba stenobotrys	Brassicaceae	4000-5000	Herb
Solms-laubachia platycarpa	Brassicaceae	2000-3000	Herb
Viola placida	Violaceae	2500-3000	Herb
Hypericum monanthemum subsp. filicaule	Hypericaceae	3500-4000	Herb
Hypericum williamsii	Hypericaceae		Shrub
Sabia campanulata var. kingiana	Sabiaceae	800-1600	Climber
Astragalus zemuensis	Fabaceae	ca 3600	Herb
Brachycaulos simplicifolius	Rosaceae	ca 4575	Herb
Cotoneaster sikkimensis	Rosaceae		Shrub
Potentilla saundersiana var. subpinnata	Rosaceae	4000-4900	Herb
Spiraea subrotundifolia	Rosaceae	3000-4300	Shrub
Saxifraga coarctata	Saxifragaceae	ca 4570	Herb
Saxifraga melanocentra	Saxifragaceae	ca 4400	Herb
Saxifraga pulvinaria	Saxifragaceae	4250-4570	Herb
Saxifraga inconspicua	Saxifragaceae	4265-5000	Herb
Saxifraga umbellulata	Saxifragaceae	3600-5300	Herb
Epilobium gouldii	Onagraceae	3600-4300	Herb
Trichosanthes cucumerina	Cucurbitaceae	Up to 2500	Climber
Begonia satrapis	Begoniaceae	ca 3600	Herb
Acronema nemaefolia	Apiaceae	ca 3600	Herb
Acronema pseudotenera	Apiaceae	3000-4000	Herb
Pimpinella sikkimensis	Apiaceae	1000-2600	Herb
Acronema hookeri	Apiaceae	2600-3600	Herb
Pimpinella tongloensis	Apiaceae	-	Herb
Pternopelalurn radiatum	Apiaceae	ca 3600	Herb
Pleurospermopsis sikkimensis	Apiaceae	4300-5300	Herb
Angelica nubigena	Apiaceae	ca 3800	Herb

3.5.2. Endemic plants

Endemics constitute another important element of biologically interesting plants. Being confined to narrow and restricted ecological niches, they are quite prone to extinction due to prevailing adverse biotic and/ or natural factors. Sikkim as such has comparatively less number of endemics because many of them range from Nepal to Bhutan. It is estimated that the total number of endemics truly confined to Sikkim may be 2% of the total number in the floral elements. These include *Calamagrostis debilis*, *Calamagrostis tripilifera*, *Catabrosa aquatica*, *Cyathopus sikkimensis*, *Drepanostachyum intermedium*, *Poa gammieana*, *Trisetum flavescens*, *Carex sahnii*, *Rhynchospora rugosa* subsp. *brownii*, *Dendrobium treutleri*, *Anaphalis cavei*, *Anaphalis hookeri*, *Anaphalis subumbellata*, *Artemisia thellungiana*, *Blumea sikkimensis*, *Cremanthodium decaisnei*, *Cremanthodium palmatum*, *Youngia stebbinsiana*, *Gentiana glabriuscula*, *Gentiana recurvata* subsp. *prainii*, *Gentiana pluviarum*, *Gentiana recurvata*, *Inula macrosperma*, *Jaeschkea microsperma*, *Ligularia dux*, *Ligularia hookeri*, *Ligularia pachycarpa*, *Saussurea fastuosa*, *Swertia ramosa*, *Swertia rex*, etc. (Hajra & Verma 1996)

To conserve the depleting resources of this region, several attempts have been made in the recent past by the Government of Sikkim. Kanchanjanga National Park, Fambonglo Wildlife Sanctuary, Kyonglasa Wildlife Sanctuary and Kabi Sacred Groove are good examples where several endangered taxa have been conserved. A few botanical gardens viz. Jawaharlal Nehru Botanical Garden, Saramsa Botanical Garden in East district of Sikkim wherein exist and insist conservation of many species. But, at present, the main emphasis is to relocate or recollect the threatened taxa and attempts should be made for their *in situ* conservation. However, in some cases the help of advance technologies *viz.*, tissue culture, cryopreservation etc. can be used with advantage. In addition to this, the areas of diversity centres like Pangolakha Wildlife Sanctuary, Kyonglasa Alpine Sanctuary etc. should be brought under full protection with high level of restriction for the visitors (Lepcha & Das 2012).

3.5.3. Medicinal plants

Sikkim Himalayan region is the abode of a large variety of medicinal plants. *Prezwalskia tangutica, Nardostachys jatamansi, Picrorrhiza kurrooa, Aconitum luridum, Sinopodophyllum hexandrum, Dactylorhiza hatagirea, Taxus wallichiana, Ephedra gerardiana* and *Lycopodium clavatum* constitute the most important medicinal plants of the alpine zone. Several medicinal plants like *Dichroa febrifuga, Houttuynia cordata, Artemisia vulgaris, Rubia cordifolia, Panax pseudoginseng, Dioscroea deltoidea, Digitalis purpurea, Bergenia ciliata* are quite common in temperate and sub-temperate zones.

Tropical zone is also quite rich in the medicinal flora wherein plants viz. *Chilocostus speciosus, Vitex negundo, Solanum viarum, Cissampelos pariera, Woodfordia fruticosa, Oroxylum indicum, Alstonia scholaris, Abroma augusta* and to some extent *Rauvolfia serpentina, Terminalia chebula, Holarrhena pubescens* etc. grow in good number (Hajra & Verma 1996).

3.6. Elevation

Elevation is one of the important parameter of this study. The elevation of East district Sikkim is ranging from 340 m at Rangpo to about 4649 m near Nathula. Aspect and slope are other important parameters of this study, during our study we see the vegetation types on different slope and aspect, most of the

study area covered in between 10° to 45° slope, over 60° slope is very less within the study area NRIS, 2006.

3.7. Soil

Soil is another important parameter to study the vegetation. The organic material of the soil has powerful effects on its development, fertility and moisture availability. Soil is the outer skins of the earth were all living and nonliving things exist to support the biological elements. Soil is classified in different classes, texture and types as per requirement. In the present study we used the soil data produced by the Soil Survey of India NRIS, 2006.

3.8. Climate

Temperature and rainfall are the major factors to study the vegetation of the study area. In Sikkim Indian Meteorological Department (IMD) have only two Meteorological Stations in Sikkim, *viz*. Gangtok and Tadong. Recently Indian Space Research Organization (ISRO) installed 18 Automatic Weather Stations (AWS) in different parts of Sikkim. And, in the present study, both, IMD and ISRO-AWS data has been used.

3.9. Drainage System

There are two major river systems in the state of Sikkim. They are Tista and Rangit. The Singalila and the Chola Ranges of Eastern Himalaya determine the boundary of the two rivers. The 98 percent of the state is drained by Tista, Rangit and their tributaries and sub-tributaries. As per Geological Survey of India (GSI, 2012), on the eastern side of Tista valley water contributed by Rilli, Rongpo, Rani Chhu and Dickchu are spectacular. The Rongpo Chhu, the biggest eastern tributary is symmetric barring a small part constricted towards north which emanates from Memenchho Lake in the Rongli Sub-division. The other eastern tributaries are symmetric. The lengths of the eastern tributaries are smaller compared to the western tributaries. The drainage pattern in Tista and Rangpo Chhu is mostly a mixture of trellis and sub-dendritic and sub-parallel. However, in the northern part directional trellis type drainage pattern is observed. The important rivers and streams flowing through East district of Sikkim is given below in Table 3.4. Additionally, presence of 77 wetlands has been reported from the East district. The wetlands have been identified and mapped

through satellite remote sensing. The lists of important wetlands are in Table 3.5.

	7	-
Name of the River/Stream	Name of the River/Stream	Name of the River/Stream
Rongli Khola	Hante Khola	Taksam Chu
Sukdang Khola	Khari Khola	Yalli Chu
Chhuba Khola	Khali Khola	Leh Khola
Chhungi Khola	Chunabhatti Khola	Ramitey/Mendu Khola
Sawa Khola	Simana Khola	Aksu Khola
Rishi Khola	Kue Khola	Rangchang Khola
Lingtam Khola	Rangpo Khola	Di-Chu

Table 3.4. Important rivers of East district of Sikkim (Source: NRIS, 2006)

Name of the River/Stream	Name of the River/Stream	Name of the River/Stream
Rankey Chhu	Sage Chu	River Tista
Navey Chhu	Malten Chu	Rora Chu
Nathang Chhu	Chhange Chu	Reshi Khola
Byu Chhu	Sanu Chhange	Tsang Rang Chu/Kali Khola
Lungze Chhu	Rong Chu	Re Chu
Jaldhaka river (Di-Chhu)	Richu Khola	Chuba Khola
Danak khola	Ralong Khola	Samdong Chu
Pache Khola	Kali Khola	Ratey-Chu
Dikling Khola	Khani Khola	Lay Khola
Rangdu Khola	Sang Khola	Gop Chu
Martam Khola	Pagla Khola	Buthang Khola
Aho Khola	Namphe Khola	Setei Khola
Andheri Khola	Richu Khola	Thekabong Khola, etc.

The lakes are the important water bodies and are the major sources of drinking water for all the living beings existing under an ecosystem. As of now Sikkim has 534 wetlands and 104 rivers. They have been mapped at 1:50K scale including the smaller water bodies occupying less than 2.25ha, with total area of 7477 ha (Sharma *et, al.,* 2010; NWA 2011; Panigrahy *et, al.,* 2012). There are 77 wetlands with the total area of 905 ha in the East district (Figure 3.4). The wetland serves as source of water for the wild animals and human beings. Most of these high altitude lakes are often being snow fed and remain snow covered during winter. However, some lakes tend to remain snow covered almost round the year. The dimensions of these lakes vary from a few meters to around hundred meters in length, but most of these lakes appear to be shallow and deep as well. These are permanent water bodies and it seems to have formed through the continuous process of so-called "glaciations". Although all these lakes have their own specific names, some are devoid of, especially those, which are situated in isolated region. The lakes are pronounced as *Pokhri* or *Jeel* in Nepali, *Chhoka* or *Tso* or *Chona* in Bhutia; *Chho* or *Dah* by Lepchas. (Verma, 2009)

Some of the fascinating lakes of the East district in the alpine region are Tsomgo Chho, Bidang Chho, Men-men Chho etc. The congenial climate, rich biodiversity, blooming flowers, panoramic view of mountains and valleys, pristine lakes and forests contribute the growth of tourism in the state. It has been estimated that approximately 3 - 4 lakh tourists have visited this area in the recent past. The simulation based on the trend of tourists visited in past are expected to be jump up from 7.6 - 10.4 lakhs of tourists would visits Sikkim during the year 2017 (Joshi & Dhyani, 2009). Therefore, they have been considered as an important contributor for the tourism sector in Sikkim, These resourceful lakes will certainly play a crucial role for such steady rise in the inflow of tourists that may have direct or indirect impact on the economic growth of the state as well. The drainage/ stream map of east district of Sikkim is in Figure 3.5.

Name of the Lake	Name of the Lake	
Aritar lake	Jelep Chho	Bitang Chho
Chumpo Chho (Jor Pokhari)	Nampo Chho	Lam Pokhari
Chhokhya Chho	Men-men Chho	Tsomgo Chho
Chham Chho	Namnang Chho	Rathechhungu Chho
Nangpo Chho	Sherathang	Kupuk Chho
Laba Chho	Syebiruka Chho	
Three Sister Chho		

Table: 3.5. Lists of important lakes in East district Sikkim (Source NWA 2011)

Fig.3.4. Wetlands in East Sikkim

Study area 44

Fig. 3.5. Drainage/stream map of east district indicates very dense network

3.10. Communication network

Road is the most common and widespread among the modes of transportation. Roads are the arteries of a country and are most essential for progress. Roads of Sikkim are basically classified as national highways, state highways, district roads (major and minor) and village roads on their dimensions and functional status. Major roads of east district Sikkim along with NH-10 are shown in Figure 3.6.

Sikkim is one of the hilly states of the country under North East Region. There is only one National Highway linking the state with the other parts of India. NH- 10, along the bank of the River Tista, is the gateway to the rest of the world for Sikkim facilitating movement of goods and services. Thus, it may be considered as the lifeline of the state. The other important categories of roads in Sikkim are Border roads, State highways, district roads etc. Therefore, in Sikkim the roads affairs are being looked after by different organizations like Border Roads Organization, State PWD (Roads and Bridges), Rural Management and Development Department, etc. A part of the NH-10 falls within East district, between Rangpo and Gangtok, while Jawaharlal Nehru road connects the capital city Gangtok with Nathula on the Sino. Indian international boarder (Verma, 2009)

the Sino-Indian international boarder (Verma, 2009).

3.11. Socio-economic status

Sikkim, earlier a protectorate of India with a monarchy government came into existence as 22nd state of India in the year 1975. The population of the state is only 6, 07,688 as per the 2011census (DESM&E 2013). Sikkim being very rich in cultural heritage, many communities, cultures and customs of different

Fig. 3.6. Road network in east district of Sikkim shows less density

hues intermingle freely here in State, where majority (68 %) are Hindus, 28 % of the population are Buddhists and rest 4 % are others. In Sikkim, the predominant communities are Nepalis, Lepchas and Bhutias. In spite of many external influences, Sikkim has proved to be resilient accepting the benefits of progress while retaining their ethnic identity (Verma *et al.*, 2009).

The socioeconomic conditions of a place mostly depend upon the livelihood pattern and economic scenario of the region, which mostly comes from employment, agriculture as well as the business sector, which all are attributing to the socio-economic condition any region. Agriculture is the most important aspect of livelihood and healthy livelihood comes from healthy agricultural productivity. Many studies have confirmed that major crops of Sikkim now-a-days are in great threat and crop productivity is continuously going down during the last three decades. Drastic loss in productivity of many crops in the recent times are creating major problem for the farmers in Sikkim.

At the same time, productivity of the some crops viz., paddy, maize, ginger, potatoes have been declining as compared to the previous decades in the state. On the other hand, green vegetables which grow in the winter months are now-a-days susceptible to various kinds of pests and diseases. At present, the decreasing production in the agriculture sector is the key concern in Sikkim.

The present study in Sikkim Himalaya covers the elevation range of 500 – 3300 m, that is from the tropical forests (upto 900 m) to temperate conifer forests (above 2800 m) of East district (Champion & Seth, 1968). The Eastern Himalayan Mountain are part of IUCN recognized Himalaya Biodiversity Hotspot (Das *et. al.*, 2013). With altitudinal range from the foot hills of the Himalaya, plains to the

Mount Everest, the climatic condition of these region is tropical hot to cold which cause wide distribution of verities of animals and vegetation types. In Sikkim within the 75 km distance one can cross the foot hills of Himalayas (284 m) to 8598m (Mt. Kanchandzonga) (Figure 3.2). Within this very small extend of the geographical area all vegetation zone started from tropical to cold alpine meadows can be accessed easily. So, this is an ideal region to study the species richness along the elevation gradient.

We studied the diversity pattern of trees, shrubs, herbs and epiphytes along an elevation gradient in East district of Sikkim Himalaya in India. The aim of the present study was to determine the species richness and to analyze species composition of plant as well as the distribution pattern of life-forms along the altitudinal gradient in the Sikkim Himalayas.

3.12. Fauna

The forests of East Sikkim is one of the reservoir for the numerous faunal species including mammals, birds, butterflies, beetles, snakes etc. This district also supports a large number of species, which have been enlisted for highly vulnerable and volatile mammalian species. The Indian Bison, Takin, Serow, Goral, Barking Deer, Himalayan Langur, Red Panda, Leopard Cat, Large Indian Civet, etc. and Pheasant, Tragopan and flock of partridges as well as large numbers of migratory birds like ducks were reported from the area (Lachungpa, *et al.*, 2011).

Interestingly, the study area has also recorded one of the noted establishments for the migratory route of tiger, through the Neora Valley National Park in West Bengal, which is situated in the southeast part of East district. The record reveals that the tigers have used this belt of forest for more than hundred years ago. The Red (Barking) deer in eastern Sikkim through the display of trophies and hunting records. The deer is identified as a sub-species of *Cervus elephus*, either *C. elephus* subsp. *wallichi* with the probable synonym *C. elephus* subsp. *affinis*. However, too little is been known about it probably now extinct in Sikkim (Dolan & Killmar, 1988), considered it "almost as a mythical animal". However, R.F. Peacock in the 'Larger Deer of British India' (JBNHS 43(3): 1942) quotes a note from Col. F.M. Bailey for their appearance and distribution in between Chumbi Valley and Bhutan. According to him, occasional anthropogenic interference in the forests of Chumbi region (TAR) might have been driving those rare species of Deer back into Bhutan through the Pangolakha forest which he once noted in the summer of 1921 at above Lingmotang in the Chumbi Valley. Red Panda, Musk deer and Bharal (blue sheep) are among the highly endangered animals very rarely sighted during the last decade.

Chapter 4

MATERIALS AND METHODS

MATERIALS AND METHODS

The entire work is based on the data collected from different aspects of vegetation and remote sensing, particularly the satellite imageries. Apart from the imageries, all other data collected from the ground status following different techniques or gathered from secondary sources. Details of methodology are provided below.

4.1. Physiognomy, Climate, Edaphic and Forest Cover Mapping:

4.1.1. Elevation: The Digital Elevation Model (DEM) derived from SRTM (*Shuttle Radar Topography Mission*) and ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) data sources have been used to extract the elevation map using ERDAS-Imagine and Arc-GIS softwares. The district boundary of Sikkim was prepared using topographic map and an area of interest (AOI) for the study area (East district, Sikkim) was created. The ASTER-derived DEM was retained for further analysis, where the elevation varies from 340 m at Rangpo to about 4649 m near Nathula pass in the district. The district was divided into 100 m, 200 m and 300 m elevation steps for field sampling and analysis. The area estimate of each elevation zone was done using the Arc-GIS software.

4.1.2. Slope and Aspect: Slope and aspect are other major components to study the vegetation of hilly terrain, so the slope and aspect maps of the study area were prepared using the ASTER derived DEM images.

4.1.3. Climate: The climate data are equally important for the study of forest vegetation, so the meteorological data collected from different official sources and was utilized to derive the following climatic layers.

4.1.3.1. Temperature and Precipitation: The location map of the automatic weather station (AWS) and other meteorological weather stations were prepared. Further, the minimum, maximum and average temperature and precipitation maps were generated using appropriate interpolation technique using Arc GIS software.

4.1.4. Soil: Considering the soil is also a major component of plant productivity and diversity, the soil map prepared by National Bureau of Soil Survey and Landuse Planning (NBSS&LUP) was used to subset the soil map of East district, Sikkim in Arc-GIS format.

4.1.5. Forest type and density: Initially the Land use Land cover map of NRIS (Natural Resource Information System) Project of SSRSAC (Sikkim State Remote Sensing Application Centre) used for the field survey. Later on, the forest type and density maps prepared by Tambe *et al.*(2011) was used during the field survey. Sharma & Das (2015) was used in final interpretation. Initially, Research permission
for survey obtained from Forests Environment and Wildlife Management Department, Government of Sikkim, before leaving to the field.

4.2. Plant diversity

The forest diversity of East district of Sikkim is mainly divided into five major classes i.e. (i)lower hill tropical semi-evergreen forests (300 - 900 m), (ii) middle hill sub-tropical mixed broad leaved hill forests (900 - 1800 m), (iii) upper hill-Himalayan wet temperate forests (1800 - 2400 m), (iv) sub alpine forests (2400 - 3000 m), (v) alpine vegetation (above 3000 m).[ISRO 1994]

4.2.1. Sampling design: Fieldwork, conducted using the nested quadrat design (Peet *et al*, 1998; Das & Lahiri, 1997; Rai. 2006). Each site comprises of 20×20 m size for trees, $2 \times (5 \times 5 \text{ m})$ for shrubs and $5 \times (1 \times 1 \text{ m})$ for the ground covering plants (Fig.4.1). The epiphytes, lianas and host plants occurring inside the nested quadrat were noted according to their habit groups. The field format was designed to collect information on name, number, CBH and height of the trees using a Range Finder. Number of individual shrubs from two corners and number of herbs from the four corners and from the center of the sampling nested quadrat were recorded. Voucher specimens were collected for identification.

The field survey initiated with the optimum plans and information of the ridge including methods of collecting plant samples in the field (Jain & Rao, 1977). Due to the location of study in a difficult terrain, the progress of the work was slightly slow in the beginning. Reserve forests of east district lie in the difficult terrains and practically inaccessible to its interior and it is almost impossible to explore without the help of local guides. Therefore, in every field trip the local field guides were trusted to assist in the field sampling. Villagers also informed us about the regular visit of Himalayan black bear in to their villages.

4.2.2. Sampling strategy: Sampling is an important component of any piece of field oriented research program as it involves data collection from nature. There are different types of sampling methods, amongst those stratified random sample (SRS) is the most used one. In the present studies, simple SRS method used for collection of field data (Hansen *et al.*, 1953). SRS is a basic type of sampling, since it can be a component of other more complex sampling methods. The principle of SRS is that every object has the same probability of being chosen. The random sampling avoids the sources of bias. It has every chance of sampling a species within quadrats in use that normally consist of a square frame. The purpose of using a quadrat is to enable comparable samples to be obtained from areas of consistent size and shape. (Peet *et al*, 1998 Sharma, 2005). Sampling was done across varied slope and aspect condition.

The choice of quadrat size depends largely on the type of survey being conducted and is generally determined experimentally in the field (Misra, 1968; Santra et al., 1989). But for the present work a standard and largely used quadrate sized used in the Eastern Himalayan region (Das & Lahiri, 1997; Rai, 2006) has been used.

Equipment and material used in the field includes: GPS (GARMIN), Range Finder, measuring tape (100 m), tailor's tape (1.5 m), field note book, polythen bags (as substitute to a Vasculum), nylon rope, colored flags, secator, bamfok (cutter), blotting sheets, tags, pen, pencil, sharpener, eraser, data sheet, etc.

4.2.3. Field data collection: Attempts were made to lay the field sampling quadrat in relatively less or undisturbed areas located between 500 - 3300 m elevations AMSL steps that covers as much as 2800 m distance from the elevation point of view. In the lower elevation of 500 - 600 m, 600 - 700 m the data was collected from the Sang Khola, and Sumin Lingey forest range in the elevation range between 700 - 800 m, 800 - 900 m and 900 - 1000 m. Data was also collected from 32 other places located near Namli, ninth mile and Namchebong forest block. In the elevation, range of 1000 - 1300 m, data was collected from Linding, Lower Ranka and Middle Barbing forest block. Similarly, data pertaining to forest density was collected from Bhusuk, Ray, Perbing and Berbing representing elevation steps of 1300 - 1500 m segment of the study area. Yalli, Bhusuk, Ranka, PangthangTakshi, Bulbulay, TsangeySenti, PakyongKarthok, Upper Luing forest area were selected for the collection of data representing elevation range of 1500 - 1800 m. The forest areas of Barapathing, Assam Lingzey, GokthangRongli, ChaureyKharka, KyonglasaLatui have been selected to collect the data for the 1800 - 2400 m segment. Similarly, for the higher elevation range of 2400 - 3300 m the survey locations include Kyonglasa, Latui, Assam Lingzey, Rongli, Yalli, Rachela, Padamchen, Bhusuk, and Pathing.

Fig. 4.1. Nested Quadrat design (20x20m for trees and lianas, 5x5m for shrubs and 1x1 m for herbs)

Material and Methods 50

Fig. 4.2. Field photograph taking the CBH of tree in steep slope (left) counting of herb and noted in the prescribe format (Right)

4.2.3.1. List-Count Data: The field data like name (Local/botanical) and number of individuals of each species representing in each quadrate were recorded. CBH and height for each individual (with of 10 cm CBH) of trees were also recorded for the volume and productivity calculation. The unidentified plant sample specimens were collected in the poly-bags for identification.

Many of the species could be identified on field. Some could be identified through their local/ vernacular names that were further translated using nomenclature conversion literature. Further, the unidentified specimen were properly tagged and collected for identification in the herbarium of Botanical Survey of India (BSHC), Sikkim, Gangtok and in the Taxonomy and Environmental Biology Laboratory, Department of Botany, University of North Bengal (NBU) Siliguri. Collected specimens were processed into mounted Herbarium specimens and were deposited in the NBU-Herbarium.

Further, for the nomenclature and the family delimitation for each species *<http://www.theplantlist.org/>was* consulted.

3.2.4. Data entry and design: The Microsoft office excels software was used for the analysis of collected data. After data entry in tabular form, most of the statistical analysis also were made using this software. The entire data set of all life forms (tree, shrubs, herbs and lianas) of 28 elevation steps (each step has 8 quadrat) has been treated similarly.

3.2.5. Data analysis: For the calculation of species richness, data analysis was carried out in Microsoft excel. Collected field data was coded and tabulated into excel sheet. At first, data collected in the field targeting different elevation zone of the study area. Altogether, 224 (20 x 20 m) plots eight each in every 100 m elevation step up to 3300 m elevation of study area (28-elevation steps) is completed. The data includes tree species name, number and CBH. The shrubs species name and number from 5 x 5 m quadrat, herbs species name and number from 1 x 1 m quadrat as described above were entered into excel spread sheet. The epiphyte and lianas species and number data was collected as species name and total number of individual from each20 x 20 m quadrat. All 224 (20 x 20 m) quadrat for trees, 448 (5 x 5 m) quadrat for shrubs, 1120 (1 x 1 m) for herbs have been completed. After complete entry of about 16000 individual the data used for further analysis on biodiversity and biomass.

4.2.5.1. Dominance analysis: In order to assess the relative share of each species in plant community, Importance Value Index (IVI) for a total score of 300 has been calculated using the frequency, density, abundance, relative frequency, relative density and relative abundance. (Basistha *et. al.*, 2010)

4.2.5.1.1. *Frequency (F) and Relative Frequency (RF)*: Frequency(%): The frequency refers to the degree of dispersion of individual species in an area and usually expressed in terms of percentage occurrence (Sharma, 2005, Basistha *et. al.*, 2010). It is calculated using the equation:

Frequency (%) = $\frac{\text{No. of quadrats in which the species occurred}}{\text{Total number of quadrats studied}} \times 100$

Frequency does not give the correct idea of the distribution of any species, unless it is correlated with other character (Sharma, 2005).

Relative Frequency = $\frac{\text{Frequency of the species}}{\text{Total frequency of all the species}} \times 100$

4.2.5.1.2. *Density (D) and Relative Density (RD)*: Density is an expression of the numerical strength of a species where the total number of individuals of each species in all the nested quadrat divided by the total number of nested quadrat studied (Sharma, 2005). Density is calculated by the equation:

Density = Total number of individuals of a species in all quadrats Total no of quadrats studied

Relative Density = $\frac{\text{Density of the species}}{\text{Total density of all the species}} \times 100$

4.2.5.1.3. *Abundance* (*A*) *and Relative Abundance* (*RA*): It is the study of the number of individuals of different species in the community per unit area. The quadrat method, samplings are made at random at several places and the number of individuals of each species was summed up for all the quadrat divided by the total number of quadrat in which the species occurred. It is represented by the equation (Sharma, 2005):

Abundance = Total number of individuals of a species in all quadrats Total number of quadrats in which species occured

The relative frequency, relative density and relative abundance has been calculated to calculate the IVI value

Relative Abundance = Abundance of the species x 100 Total abundance of all the species

4.2.5.1.4. *Important Value Index* (IVI): The concept of 'Important Value Index (IVI)' has been developed for expressing the dominance and ecological success of any species, with a single

value (Mishra, 1968, Sharma, 2005). This index utilizes three characteristics, they are (i) Relative frequency,(ii) Relative density and (iii) Relative abundance. The three characteristics computed using frequency, density and abundance for all the species falling in all the quadrat by using the following formula.

IVI = Relative frequency + Relative abundance + Relative density [RF + RA + RD]

The IVI of all species, Genus, and Family has been calculated. The detail is given in (**Annexure I, II**, **III**).

4.2.5.2. Diversity Indices: For the assessment the species richness, diversity, evenness and dominance of the species different diversity indices like Shannon-Wiener diversity index (H), Margalef index species richness (M), Simpson's dominance index (D), and Pielou's index (E) (Evenness) were determined using following formulae.

4.2.5.2.1. *Margalef index (M)[Sp Richness]:* The margalef index (M) is study using the following formula

Margalef index (M)[Sp Richness] (Margalef, 1958) = M=n-1/lnN

Where: M = Margalefindex

n = total number of species

N= total number of individual in the sample

ln= natural logarithm

The Margalef index has no limit value and it shows a variation depending upon the number of species **4.2.5.2.2.** *Simpson's index (1/D)[dominance]*: The Simpson index calculated using following formula

Simpson's index (1/D)[dominance] = D= (pi)2

Simpson Index (1/D): It measures the probability that two individuals are randomly selected from a sample will belong to the same species. Simpson gave the probability of any two individuals drawn from clearly large community belonging to different species. It has been measured by the given formula: D = (pi)2

A value of D ranges from 0-1; zero represents no dominance and 1, for maximum dominance; viz: only one species in the sample data (Greenberg, 1956; Berger & Parker, 1970).

For representing diversity (D), Simpson index are subtracted from their maximum value of 1; i.e. 1-

The Simpson's reciprocal index 1/D values start with 1 as lowest possible figure. This figure would represent a community containing only one species. The higher the value the greater the diversity.

4.2.5.2.3. *Shannon-Wiener index (H')*[*Diversity*] (1949)

Shannon-Wiener index (H')[Diversity] = $H = -\sum_{i=1}^{s} Pi \log Pi$

Species evenness, richness, and diversity indices as Shannon-Weiner (Shannon & Weaver, 1949) and Simpson Index (Simpson, 1949) were used to evaluate the plant species diversity.

Shannon-Weiner Index assumes that individuals are randomly sampled from the independent large population and all the species are represented in the sample. Shannon diversity is very widely used index to compare diversity between various habitats (Clarke & Warwick, 2001). Shannon-Weiner diversity Index fall in between 0 to 5. It was calculated in order to know the species diversity in different habitat (Hutchison, 1970) based on the abundance of the species by the following formula:

H' = -["Pi lnPi] Where, H' = Diversity Index; Pi = is proportion to each species in the sample;InPi = natural logarithm of this proportion. The presence of the one individual species is not necessarilyindicative of the species being present in a large number.

4.2.5.2.4. Pielou's index (e) [Evenness] (Pielou, 1966).

Pielou's index (e) [Evenness] (Pielou, 1966) = (E=H/lnn)

For calculating the evenness of species, the Pielou's Evenness Index (e) was used (Pielou, 1966). Where e = H / lnn

H = Shannon – Wiener diversity index

n = total number of species in the sample (Muhammad, 2009). The values of evenness ranges form 0 to 1.

4.2.6. Species, Genera and Families richness along the altitude

The entire data sets has been divided into three different elevation bands for the analysis purpose, (i) 100m elevation band, (ii) 200m elevation band, (iii) 300m elevation band along the altitude of East district, Sikkim. In 100m elevation, 28 elevation steps identified; in 200 m elevation band 14 elevation steps were identified and in 300 m 10 elevation steps were identified. The entire data in different bands compared to see the effect of scale along the elevation bands between 100m, 200m and 300m, respectively.

4.2.6.1. Along 100 m 200 m and 300 m elevation step: The final dataset of excel spreadsheet used for analysis of the species richness along the altitude of 100 m elevation steps using excel pivot table. The species richness, genera and family richness along the 100m, 200m and 300m elevation steps were also calculated. The result so obtained from the analysis was highlighted in the results. It was tried to fit in the 1st order polynomials, but result was poor. Further, it then tried with second order polynomials (i.e. non-linear) that shows good fitness. Similar exercises were done in 200 and 300m elevation steps too.

4.3. Endemic species

The field data of the study area are taken for the selection of the endemic plant. The list of endemic plant species of this region were checked with Lepcha (2011). The final list of endemic plant species of this region was compared with our final list of plant species in the excel spreadsheet. Finally list of available endemic plants of study area was prepared.

4.4. Productivity (Biomass): There are several methods to estimate the biomass (Whittaker, 1966; Ovington, 1968).Some of the commonly employed methods can be divided into two categories, viz. (a) destructive and (b) non-destructive. In the present study, we used non-destructive method for biomass estimation. The height, Diameter at Breast Height (DBH) relationship to volume/biomass is well-formulated (Kira & Ogava, 1971) in the non-destructive method. Conventional methods have the limitations of extrapolation at large level and destructive in nature. The generation of algometric equations involve cutting of tree, though, this method is impractical in view of the current environmental problems (Rawat & Singh, 1988). So, non-destructive methods became clear with minimum or no damage to the trees.

Estimation of the total accumulated biomass any forest ecosystem is important for assessing the productivity and sustainability of the forest. The field data of excel spread sheet were used for further calculation of volume and biomass. First the trees above 10cm CBH were segregated as individuals below this size were treated as saplings and below 5cm CBH of tree species are considered as seedlings.

4.4.1. Name of the species: The first parameter recorded is the plant form, namely tree, shrub, herb or liana, followed by the name of the species. Among the trees, species differ in shape, size etc. It is also important to estimate the density of trees of each species in sample plots (20 x 20 m). Biomass for tree species estimated using the volume equation of FSI (1996).

4.4.2. Circumference at Breast Height: The second most important parameter of field data is circumference at breast height/diameter at breast height of the tree, this parameter used to calculate the volume or weight of the tree, which can converted to biomass per unit area (tonnes/hectare). The diameter and height can be used for estimating the volume by simple equations.

4.4.3. Height of trees: Next to DBH/CBH, height is the most important indicator of the volume or weight of a tree and used in many allometric functions along with DBH. To measuring the height of tall trees, 4-5 tall individuals were measured using the Range Finder and then for other tree species. Eye or ocular estimation was also practiced especially those with overlapping canopies.

4.4.4. Indicator parameters for non-tree species: Height and DBH are not measured for non-tree species such as herbs and grasses; where different data, such as species, total number individuals, etc. were recorded and were used for the calculation (Chaturvedi & Singh, 1987; Rawat & Singh, 1988; Singh & Singh, 1991) and the biomass is estimated in terms contribution of percentage.

4.4.5. Basal area: the basal area of individual tree is also calculated in Microsoft-excel using the CBH with the formula:

Basal area = πr^2

4.4.6. Volume estimation: The volume of all vascular plants of the study area was estimated using the final dataset of species richness. More column, such as CBH/DBH, tree height, volume formula equation and biomass formula equation has been added in excel sheet for calculation of volume. To calculate volume, the tree diameter was first calculated. The available volume equation formula, tree volume equation (FSI, 1996)was used for total volume estimation. In most of the trees, the local volume equation has been used for those volume equation was not available. In the present work also the volume equation for the species of trans-Himalayan region like-Nepal, Bhutan, Darjeeling, Arunachal Pradesh and some part of the Garhwal Himalaya, Uttarakhand were used for some of the trees. The list of volume equation formulae is provided in **Annexure IV**.

4.4.7. Biomass estimation: the biomass of the individual tree calculated using the volume of the tree. In order to calculate the biomass the specific gravity of some available local species of trees has been used. Such basic data was collected from the Forest Department, Government of Sikkim. The' general' specific gravity is used for those trees whose specific gravity was not available. The volume equation and specific gravity used in this study listed in **Annexure IV**.

The above ground biomass (AGB) of each 100m and its multiples were plotted across the elevation to adjudge the relationship.

4.4.7.1. Biomass along 100 m elevation steps: The final dataset of excel spreadsheet of biomass estimated used for analysis of the biomass along the altitude of 100 m elevation steps using excel pivot table. The biomass pattern in the form of graphs and tables are highlighted in the results chapter section.

4.4.7.2. Biomass along 200 m elevation steps: The dataset of excel spreadsheet of biomass estimated further used for analysis of the biomass along the altitude of 200 m elevation steps using excel pivot table. The biomass pattern in the form of graphs and tables are highlighted in the results chapter section.

4.4.7.3. Biomass long 300 m elevation step: The biomass of the study area along 300 m elevation also estimated in the same manner and was presented in the form of graphs and tables and are properly highlighted.

4.5. Satellite based productivity:

To estimate the productivity of the study, MODIS MOD 17 data, Landsat-8, data product was used. Net Primary Product (NPP) estimated by using Normalised Difference Vegetation Index (NDVI) EVI2, which considered as a surrogate of NPP and vegetative growth of terrestrial ecosystem. MODIS data with a spatial resolution of 1km also used to estimate NPP and GPP (Gross Primary Productivity) of the study area.

4.5.1. MODIS Productivity: MODIS-Data, the Moderate Resolution Imaging Spectro- radiometer, or MODIS, sensor resides aboard the Terra and Aqua platforms, offering a view the Earth's surface every 1 - 2days. The MODIS sensor collects data within 36 spectral bands, ranging in wavelengths from 0.4 μ m to 14.4 μ m provides us with imagery at a nominal resolution of 250m at nadir for two bands, 500m resolution for 5 bands, and the remaining 29 bands at 1 km.

4.5.2. MODIS Algorithms: As such the Algorithm Theoretical Basis Documents (ATBD's) serve as useful background for understanding the development of the MODIS products and their application in the study of land, ocean, atmosphere and Level 1 characteristics of the Earth-atmosphere systems. Some of the Algorithm Theoretical Basis Documents (ATBD's) are the original documents for a MODIS product while others have been updated or supplemented by other approaches that help the user community to effectively use the MODIS products. MODIS Level 1B Product User's Guide was used to know about the product and data.

4.5.3. Landsat-8 NDVI and EVI: On the other hand, the Lansat-8 satellite imagery also use to calculate the EVI2 of the Sikkim Himalaya.

4.5.3.1. Data download and process: The cloud free Landsat satellite imagery of April, June, September and December 2013 has download from http://earthexplorer.usgs.gov/ in geo.tiff format. The image was further staked using Arc GIS software further using the ERDAS-Imagine software.

4.5.3.2. Normalised Difference Vegetation Index (NDVI): Using the cloud free satellite imageries of 6th December 2013, the NDVI of the study area was generated, using the *ERDAS-Imagine software and* further NDVI value was extracted using Arc-GIS software for further analysis.

4.5.3.3. *Enhanced Vegetation Index (EVI)*: EVI is often employed as an alternative to NDVI because it is less sensitive to some limitations. However, such data was not tested in EVI because of blue band issues. In this study it was decided to test the data in EVI2 because it needs only two bands (red and near-infrered). An index was generated as per the formula given by Jiang et al.(2008) to extract the EVI2 Value from Landsat imagery.

EVI 2 = 2.5
$$\frac{N-R}{N+2.4 R+1}$$

Where, N = NIR reflectance, and R = Red reflectance.

4.5.3.4. Data download and process: The website <http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php?MOD_NUMBER=17> has been accessed to download the MODIS NPP data of the study area and the NPP value has been extracted in csv format for further analysis. The values required for the correlation of the data with other parameters.

4.5.4. Relationship between MODIS productivity field biomass: Finally, MODIS NPP extracted using Arc GIS software from MODIS data product to see the relationship between field productivity (Biomass) and MODIS Productivity NPP using Microsoft Excel. Both maps also prepared to see the difference between field based NPP (Biomass) and MODIS based NPP.

4.5.5. Relation between field biomass Satellite EVI: Finally, the maximum EVI2 value from out of the four month Landsat-8 imagery has taken for further analysis. Landsat EVI values were compared with field based biomass productivity.

4.6. Relation between species diversity and Plant productivity (biomass) along the altitude:

In the present study, a relationship was established between species diversity and Plant productivity (biomass) along the altitude of Sikkim Himalaya utilizing the data of species richness and the biomass dataset. Finally, the significance test for 100 m, 200 m and 300 m elevation steps has been carried out using the second order polynomials.

4.7. Multivariate analysis:

Relation between species richness with other parameter (temperature, rainfall, aspect, slope elevation and soil) was done using the multivariate analysis using the R-software.

4.7.1. General Linear Model (GLM)

The relations between species richness environment relationships were tested using General Linear Model (GLM). The GLM usually refers to conventional linear regression models for a continuous response variable with respect to continuous and/or categorical predictors (McCullagh & Nelder, 1989). The GLM is mathematically identical to a multiple regression analysis, but stresses its suitability for both multiple qualitative and quantitative variables. It implements any parametric statistical test with one

Material and Methods 57

dependent variable, including any factorial ANOVA (Analysis of variance) as well as ANCOVA (covariance analysis) designs. Because of its flexibility to incorporate multiple quantitative and qualitative independent variables, GLM are a large class of statistical models for relating responses to linear combinations of predictor variables, including many commonly encountered types of dependent variables and error structures. In addition, GLM models for rates and proportions, binary, ordinal and multinomial variables and counts data were used. GLMs are frequently used by plant ecologists to model species response to environmental data (Yee & Mitchell, 1991; Franklin, 1995). GLMs quantify relationships between the dependent variables and the predictors (Austin et al., 1996), and are commonly used for macro ecological analyses or to forecast its geographic distribution (Austin et al., 1996; Lobo et al., 2001; Lobo & Martin-Piera, 2002). It is having great advantages for dealing with different error structures particularly the presence/absence data the common data type available for spatial modelling of species distributions (Rushton et al., 2004) and is commonly used in environmental research (Zimmermann & Kienast, 1999).GLMs are an extension of the linear (least-square regression) modelling that allows models to be fitted to data with errors following other than (only) Normal distributions, and for dependent variables following other than a Normal distribution, such as the Poisson, Binomial and Multinomial models (McCullagh & Nelder, 1989). GLMs of the binomial model family overcome this difficulty by linking the binary response to the explanatory covariates through the probability of either outcome, which varies continuously from 0 to 1 (Dobson, 2002). Other model families allow fitting response variables of different restricting characteristics (Poisson regression, etc.).

4.7.2. GLM Modelling in R

Maps have been extracted from each quadrat area by using the values of rainfall, temperature, elevation, slope, aspect and soil maps for each; and a csv file was prepared from Arc-GIS attribute table, as an input for modelling. GLM used to examine the relationships between species richness and elevation. The response variable, species richness, is a discrete data type (counts) may follow a Poisson error distribution with log link function (McCullagh & Nelder, 1989). Modelling was performed using R software (R Core Team).

The present study was based on the field data collected from different altitude range of East district of Sikkim. It was expected the hump shaped relation between species richness along the altitude. There are several studies around the globe; on species richness and biomass along the altitudinal gradients, where some projected the positive relationship and others projected the negative relationship. There are various ecological factors which directly and indirectly involve in the relationship between species richness and biomass accumulation along the altitude.

Chapter 5

RESULT: SPECIES RICHNESS ALONG THE ALTITUDE

RESULT: SPECIES RICHNESS ALONG THE ALTITUDE

It was expected that the species richness will change along with the increase or decrease of altitude. The altitude of the entire study area vary from 340 to 4649 m, which covers from tropical to alpine-snowline areas. This is also linked with the topography, aspects, etc. Present study covered all such conditions to understand the species richness at different localities.

5.1. Topography

Topography consists of elevation, slope, aspect soil etc of the study area.

5.1.1. Elevation: Elevation of east district, Sikkim ranges from 340 m at Rangpo to about 4649 m near Nathula pass, the highest point of the district. However, about 70 % area of the district is falling under the elevation range of 500 - 3300 m. Study designed at 100 m, 200 m and 300 m elevation steps helped in investigation and analysis across scale. An elevation zone map at each 200 m step has been shown in Fig.5.1; and their area statistics has been provided in Table 5.1.

Fig. 5.1. 200 m elevation steps map of the study area showing over 70 % of the area of East district of Sikkim for the study

Elevation band, mid		Area in ha.			
elevation value (m)	100 m band	200 m band	300 m band		
550	1284	2 4 9 4			
650	2120	3404	5581		
750	2177	1=0=	_		
850	2530	4707			
950	3437		9279		
1050	3313	6750			
1150	4383				
1250	3881	8264	13248		
1350	4983		_		
1450	3842	8826			
1550	4351		11614		
1650	3420	7771			
1750	3284		-		
1850	3792	7076	9977		
1950	2901		_		
2050	3226	6127	8012		
2150	2300	170.4			
2250	2485	4786			
2350	1780				
2450	1677	3456	5318		
2550	1862	241.6	_		
2650	1554	3416			
2750	1821	200.6	4649		
2850	1275	3096			
2950	1329	2.40.0			
3050	1161	2490	3848		
3150	1359	2442			
3250	1084	2442			
3350	1247	2002	4067		
3450	1736	2983			

Table 5.1. Geographical area of each elevation band of study area

A maximum of 4983 ha area is available at 1300 - 1400 m elevation, whereas the minimum of 1084 ha area is available at 3200 - 3300 m elevation range. This followed the cumulative pattern of maximum area of 8826 ha and 13,248 ha at 1300 - 1500 m and 1100 - 1400 m respectively; and minimum area of 2442 ha and 3848 ha at 3000 - 3200 m and 2900 - 3200 m respectively (Table 5.1). In a mountainous area of East district, the available area at different elevation zones is important in the sense that the amount of area available for forest vegetation could have a direct bearing on species diversity content.

Fig. 5.2. Elevation step-wise area availability at 100 m elevation steps

It is found that Geographical area vary along the elevation with around 8000 ha, the highest, at the elevation of 1500 m. However, the geographic area then gradually decrease with the increase in elevation (Fig 5.2).

5.1.2. Slope and Aspect

Slope: Slope plays a key role in shaping the species diversity content. Slope of east district was classified as gentle $(1^{0}-15^{0})$, moderately steep $(16^{0}-30^{0})$, steep $(31^{0}-45^{0})$ and very steep $(>46^{0})$ categories. About 17 % of the total geographical area falls under gentle slope category, >50 % land falls under moderately steep slope, about 27 % falls under steep slope and around 3 % of the district falls under very steep slope categories (Fig.4.3).

Aspect: Aspect is also an important factor in vegetation characterization and aspect of east district was divided into four classes i.e., NE (northeast = $0-90^\circ$, SE (southeast = $90-180^\circ$), SW (southwest = $180-270^\circ$) and NW (northwest = $270-360^\circ$). The north-facing slope receives much less sunshine than the south-facing slope. The area increased from NE to SE, SW and NW while the southern slope

Fig. 5.3. Slope map of East district that indicates more area is under $15 - 30^{\circ}$ slope

Fig. 5.4. Percentage-wise distribution of slope of East district of Sikkim

occupies 54 % area (Fig. 5.5 and Fig. 5.6). East Himalayan species tends to flourish in north or west aspect because they retain far more moisture and the vegetation on these aspects often merits attention in comparison to adjoining south or east aspects. The degree of moisture of a slope also controls the frequency of fire. Southern aspects with dry combustible under growth are often burnt, whereas northern aspect with damp undergrowth do not burn so easily. As a consequence, a southern aspect will frequently be treeless, while a neighbouring northern aspect will be forested. At higher altitudes, snow on northfacing slope exists for longer duration in spring season was shown to influence floral diversity due to higher snowfall. North facing area are mostly covered with fir trees (*Abies densa*).

Fig. 5.5. Aspect map of East district indicates less area is under NE slope

Fig. 5.6. (a) Percentage wise distribution of aspect; (b) distribution of northern and southern aspects of east district shown in a Pie diagram

5.1.3. Climate: Climate refers to conditions of the atmosphere at a particular location over a long period of time. The temperature and precipitation are the major component to understand the climate change.

5.1.3.1. Temperature: The climate changed from mid-hill temperate to severely cold alpine grassland. The climate was warm and humid during summer and monsoon season (June – October), and moderately cold during winter (December – February) at lower elevations. The winter months became severe as one goes up. Places like Nathula, Gnathang and Tsomgo remain almost snow covered during winter months. The perennial snowline, however, starts from 4500 m only. Most of the areas of the state are very wet during June to September with average annual rainfall ranged between 2000 mm – 4000 mm. The average minimum and maximum temperature varies between 4° C – 17° C in winter and 13° C - 24° C in summer seasons respectively. The temperature at the lower belt of Rangpo, Singtam, Dikchu, Makha, Rorathang, Reshi and the places near Tista River and Rangpo Chhu begins to increase rapidly from the beginning of February and continues till the onset of monsoon in the late May to June. The maximum temperature is usually recorded during May and June and the minimum during the months of December and January. The field observations and from people's perception revealed that mountain range near Nathula, Zelepla and Tamzee remains under snow cover from December till late May. The average maximum and minimum temperature characteristics of Gangtok, the lone meteorology station for this study in east district of Sikkim is shown in (Fig.5.7).

Fig. 5.7. Average Maximum and Minimum temperature between 2000 and 2010 of Gangtok in East district, Sikkim

5.1.3.2. Precipitation

Precipitation is received mainly in two forms: Rainfall and snowfall. Snowfall does not occur in low altitude areas, i.e. below 2200 m, and increases with the increase of altitude.

Rainfall is heavy and well distributed during the months of May to September. Dikchu, Gangtok, Karponang, Rongli, Ganathang etc. are the maximum rainfall receiving areas, while the drought prone

regions near Rangpo and Singtam get comparatively low rainfall. The intensity of rainfall may vary from drizzle to torrential. During the months of March to May, occasional hail-storms occur. Fog is quite common and dense during rainy season, ground frost can be observed during the winter months above 1800 m altitude. The rainfall data of Gangtok during the years 2000 – 2010 showed monthly variation of 40 mm in January to 700 m in June (Fig. 5.8). An isohyets map of East district revealed maximum rainfall in the mid elevation ranges and a decreasing pattern towards upper and lower reaches in the district (Fig.5.9).

Fig. 5.8. Average rainfall at Gangtok during 2000 and 2010

5.1.4. Soil

Geologically, the area can be divided into six zones i.e., (i) the valley area, which is classified as lower glacio-fluvial valley and characterized by coarse-loamy Typic Haplumbrepts and coarse-loamy over fragmental Typic Udicorthents kind of soil family associations; (ii) the very steep side slope, moderately dissected with 40 % forest cover characterized by coarse-loamy Typic Haplumbrepts and loamy-skeletal Typic Udorthents family association; (iii) very steep side slope (33 - 50 %), highly dissected with 20 - 40 % forest cover characterized by coarse-loamy Pachic Haplumbrepts and fine-loamy Umbric Dystrochrepts; (iv) Periglaciated land, characterized by loamy-skeletal Lithic Cryorthents and coarse-loamy Cryumbrepts; (v) rocky cliffs, characterized by coarse-loamy Lithic Udorthents and solid rock; and (vi) very steep side slope (50 %), highly dissected with 20 % forest cover, characterized by coarse-loamy Typic Hapludolls and loamy-skeletal Typic Udorthents (NBSS & LUP, 1996). The soil map of east district, Sikkim is shown in Fig. 5.10.

The description of the soil class is shown in Annexure VI.

Result: Species Richness along the altitude 65

Fig. 5.9. Average Annual Rainfall map of east district, Sikkim showing Isohyets of rainfall

Fig. 5.10. Soil map of East district based on NBSS & LUP (1996) information

The soil developed from the gneissic group of rocks is brown clay, generally shallow and poor. The soil resulting from Daling group of rocks is dark grey, porous, rich and adaptable to most species. In the district forest soil is excellent, with adequate depth. The soil formation of valleys is due to decomposition of the Daling rocks. The resulting soil is sandy loam and dark grey with considerable amount of sand and is less acidic which supports sal and associated species. In higher reaches of steep slopes where the soil is predominantly of the gneissic group developed on the schist and humus podozols holds good for growth of numerous species of commercial importance. The greater portion of the East district, has gneissic rocks giving rise to different types of soil. The brown clayey soil is *Alnus, Engelhardtia, Macaranga*, etc. The dark brown soil is deep and more fertile and is usually found on the slopes and depressions. The soil on the ridges is shallow, poor and sticky and reddish yellow due to exposure of destruction of ground vegetation by natural calamities and anthropogenic interventions mainly through excessive grazing.

5.1.5. Forest type and density

The forest type zonation map of East district, Sikkim as per classification system is shown in figure 5.11. The forests of East District is broadly identified as Lower hill forests (Tropical and sub-Tropical), Middle hill forests (Temperate) and Upper hill forests (Alpine). The area covered by each forest types are presented in Table 5.2.

Fig. 5.11. Forest type zonation map of East district of Sikkim

Forest type Zones	Area (ha)
300 – 900 (Lower Hill-Tropical Semi Evergreen Forest)	9800
900 – 1800 (Middle Hill-Sub-tropical Mixed Broad Leaved Hill Forest)	34600
1800 – 2400 (Upper Hill-Himalayan Wet Temperate Forest)	16300
2400 – 3000 (Sub Alpine Forest)	9400
3000 – Above (Alpine Forest)	25300
Total:	95400

Table 5.2. The area covered by each forest type in the East district of Sikkim

5.2. Plant diversity

Plants were surveyed in the field using nested quadrate method, identified in the field and in the laboratory and was used for further analysis.

5.2.1. Data entry and design

The final data set of all, nested quadrat numbers, species, genus, family, locality, elevation, cbh, height etc. are entered into the excel sheet in a designed format which is used for further analyses.

5.2.2. Data analysis

First we see the distribution of plant species in different elevation, the average number of species, maximum number of species, minimum number of species, and the standard deviation of species in each of the eight plots in each elevation steps has been analysed (Fig. 5. 12)

There are 224 nested quadrats in 28 elevation steps, have been studied from each elevation steps. Eight quadrats of 20 x 20 m size (from nested quadrat layout) were used for the collection of trees and Lianas. A total 66314 tree individual recorded from the field survey between 500 to 3300 m

SI. No.	Tree Species	Total Count during the field study
1	Schima wallichii	1246
2	Ostodes paniculata	420
3	Alnus nepalensis	351
4	Engelhardtia spicata	313
5	Castanopsis hystrix	312
6	Symplocos lucida	209
7	Macaranga indica	138
8	Acer campbellii	131
9	Rhododendron barbatum	125
10	Engelhardtia spicata	123

Table 5.3. List of 10 dominant tree species along with their total counts

elevation steps, accounting to 159 species covering 106 Genera and 61 families. *Schima wallichii* contributed maximum number of stands fallowed by *Ostodes paniculata*. The top ten dominant contributor trees are listed in Table 5.3. The lianas recorded from the 20 x 20 m plots, accounted to 3406 individuals with 13 families, 50 genera and 82 species.

Similarly shrubby species were collected from 448 (5 x 5 m) quadrats from 28 elevation steps, all together 14357 individual shrub with 121 species were recorded from the study area. *Yushania pantlingii* contributed more than 1000 individuals fallowed by *Dichroa febrifuga*, *Yushania maling*, *Boehmeria macrophylla*, *Arundinaria acerba*, *Mussaenda bevanii*. *Osbeckia crinita* and *Chimonocalamus griffithianus* contribute more than 500 individuals in the East district, Sikkim.

On the other hand the herbaceous ground cover species were also collected from 1120 (1 x 1 m) quadrats from 28 elevation steps. Altogether 66314 individual herbaceous plants covering 302 species were recorded from the study area. Amongst all herbs, *Cynodon dactylon* contributed more than 7000 individuals, followed by *Nephrolepis cordifolia*, *Selaginella ciliaris*, *Ageratina adenophora*, *Dryopteris sikkimensis*, *Elatostema obtusum* are other major contributor herbs of East district, Sikkim.

Fig. 5.12. Box plot of average maximum, minimum and standard deviation of every eight quadrat data in 28 elevation steps [5-32=(550-3250)]

A maximum of 136 species recorded in 900 - 1000 m fallowed by 122 species at 800 - 900 m and minimum 6 species were recorded from 3200 - 3300 m. The minimum standard deviation was 4 at 600 - 700 m and maximum slandered deviation 28 at 3000 - 3100 m elevation steps and the details are shown in figure 5.12.

The plant habit groups (trees, shrubs, herbs and lianas) were distributed in different altitudinal gradient. There is wide distribution of all habit groups within these regions. The herbaceous species are higher in the elevation between 1800 to 2900 m. The shrubby species decreased after 1800 - 1900 m. The highest peak of species richness has been seen at the elevation of 950 m between 900 - 1000 m, at 1,550m within 1500 - 1600 m and at 2,250 m within 2200 - 2300 m elevation zones. This is because

Result: Species Richness along the altitude 69

Fig. 5.13. Habit group richness along the 100 m elevation gradient

of ecotone region of tropical as well as sub-tropical, warm broad-leaved forest/alder forest (Temperate) and temperate and sub-alpine forests of the East district.

The percentage of herbs along the elevation gradient is higher as compared to other habit groups. However, with an increase in altitude the number of all habit groups also decreases. Herbs decline from the elevation of 2400 - 2600 m. The major factor behind the decline of herb population could be attributed to the dense shrubby plants like *Arundinaria acerba*, *Chimonocalamus griffithianus*, *Arundinaria racemosa* etc., which does not allow other species to regenerate and grow up. All together, there are 664 plant species, 367 genera and 131 families have been recorded during the present study (*Annexures I, II & III*).

5.2.2.1. Dominance analysis

Only nine species has been found in more than 20 elevation steps in East district of Sikkim, *viz.,. Castanopsis hystrix, Dichroa febrifuga, Ageratina adenophora, Nephrolepis cordifolia, Polygonum runcinatum, Polystichum lentum, Pteridium aquilinum, Setaria palmifolia, Tectaria gemmifera* out of of them *Pteridium aquilinum* is found distribution in all elevation steps of the area studied. More than 190 species has been found in the single elevation gradient. The detailed list of herbs, shrubs and trees and epiphytes with every elevation steps are given in the Annexure-V.

Castanopsis hystrix, Engelhardtia spicata var. integra, Ostodes paniculata and Schima wallichii are the dominant tree species of tropical forests. Similar species has reported by ISRO (1994) where as Boehmeria macrophylla, Ficus hirta, Mussaenda bevanii and Osbeckia crinita are the dominant shrub species of this region. Achyranthes bidentata, Commelina paludosa, Drymaria cordata, Dryopteris sikkimensis, Eupatorium cannabinum, Nephrolepis cordifolia, Polygonum runcinatum, Polystichum lentum, Pouzolzia viminea, Pteridium aquilinum, Setaria palmifolia,

and *Tetrastigma rumicispermum* are found to be dominant species up to 1000 m i.e. in tropical forests. (*Annexure-II*)

In the sub-tropical region (1000 – 1800 m), Alnus nepalensis Castanopsis hystrix, Engelhardtia spicata var. integra, Ostodes paniculata and Schima wallichii are found to be dominant species of trees. The species like Boehmeria macrophylla, Dichroa febrifuga, Ficus hirta, Mussaenda bevanii, Osbeckia crinita are dominant in the sub- tropical forest between (1000 – 1800 m) elevation range. The species of Digitaria ciliaris, Ageratina adenophora, Nephrolepis cordifolia, Polygonum runcinatum, Polystichum lentum, Pteridium aquilinum and Selaginella ciliaris are observed to be dominant herbs in this region.

As it see the dominant species of the temperate forests (1900–2400 m) of East district, dominance of Alnus nepalensis, Machilus edulis, Quercus lamellosa and Symplocos lucida were found. The species of Chimonocalamus griffithianus, Daphne papyracea, Dichroa febrifuga, Edgeworthia gardneri, Eurya japonica, Himalayacalamus hookerianus, Rubus ellipticus, Symplocos glomerata are dominant shrubs found in this eco-region. The species like Arisaema galeatum, Cissus repens, Elatostema obtusum, Elsholtzia flava, Eupatorium cannabinum, Fragaria rubiginosa, Lecanthus peduncularis, Polygonum runcinatum, Polystichum lentum, Pouzolzia viminea, Pteridium aquilinum, Setaria palmifolia, Tectaria gemmifera, Tetrastigma rumicispermum are dominant herbaceous species found in the wet Himalayan temperate forest.

The sub-alpine and moist alpine regions of Sikkim lay between (2500 – 3700 m). In this study, data up to 3300 m has been collected. So, dominant species of trees found in this eco- region are *Acer campbellii*, *Magnolia campbellii*, *Rhododendron barbatum*, and *Viburnum cotinifolium*. The species like *Arundinaria acerba*, *Himalayacalamus falconeri*, *Polygonum molle*, *Viburnum cotinifolium*, *Viburnum erubescens* and *Yushania pantlingii* are dominant species of shrubs in this eco-belt. The herbaceous plants, *Cyperus distans*, *Cyperus tenuiculmis*, *Elatostema obtusum*, *Fragaria daltoniana*, *Nephrolepis cordifolia* and *Rubia wallichiana* are dominant species of herbs of this region.

5.2.2.1.1. *Frequency and Relative Frequency:* In order to know the diversity of species, genera and families, the Frequency (F) and Relative Frequency (RF) of different species, genera and families were calculated, using the formulae as described in methodology. (*Annexures I, II & III*)

Amongst all the 664 species, *Pteridium aquilinum* is recorded with 100 % frequency followed by *Polystichum lentum*, *Polygonum runcinatum*, and *Nephrolepis cordifolia* with 82 % and *Dichroa febrifuga*, *Ageratina adenophora* with 75 % frequency. However, more than 100 species were recorded with less than 4 % frequency.

5.2.2.1.2. *Density and Relative Density:* The Density (D) and Relative Density (RD) were also calculated in the excel sheet for the determination of Importance Value index (IVI) (*Annexure I, II & III*) among all species *Schima wallichii* contribute maximum value followed by *Ostodes paniculata* and *Alnus nepalensis*.

5.2.2.1.3. *Abundance and relative abundance*: Similarly as above we calculate the abundance and relative abundance species, genera and families (*Annexure I, II & III*)

5.2.2.1.4. Importance Value Index

The concept of Important Value Index (IVI) has been developed for expressing the dominance and ecological success of any species with a single value (Mishra, 1968). This index utilizes three characteristics, those are (1) Relative frequency, (2) Relative density and (3) Relative abundance. The three characteristics are computed using RF, RD and RA for all the species falling in all the quadrants by using the following formula.

$$IVI = RF + RA + RD$$

The IVI of all species, genus, and family has been calculated. The detail is in (Annexure I, II, & III).

Among the species *Schima wallichii*, *Ostodes paniculata*, *Alnus nepalensis*, *Castanopsis hystrix*, *Engelhardtia spicata* var. *integra* and *Nephrolepis cordifolia* scored IVI value over 3 among all the recorded species. *Schima wallichii* scored the highest IVI 12.19, followed by *Ostodes paniculata* with 4.64.

At the generic level *Schima*, *Rhododendron*, *Ostodes*, *Engelhardtia*, *Castanopsis*, *Viburnum*, *Alnus*, *Cyperus*, *Eupatorium*, *Selaginella*, *Symplocos*, *Nephrolepis*, *Polygonum*, *Dryopteris* scored IVI more than 3 and among all *Schima* scored 14.33, followed by *Rhododendron* (6.12).

As it is observed, IVI at the family level, there are 32 families having the over 3 IVI score and 6 families viz. Theaceae, Poaceae, Euphorbiaceae, Urticaceae, Fagaceae, Ericaceae having the IVI value of more than seven, with Theaceae scored the highest (18.1).

5.2.2.2. Diversity Indices

The diversity of different groups of organism or different communities is useful not only to the extent that it contributes to the understanding of the process that structure those communities. The number of species in a sample is generally called species richness whereas the species in respect of the sample size of the area is species diversity. The diversity often described using statistical formula that combine both the components. The best known of these composite statistics is the Shannon-Wiener Index of 1949 and 1963. This index was selected for the analysis as it is widely used to express the species diversity and it is moderately sensitive to sample size (Castrezana & Markow, 2001).

5.2.2.1. Margalef Index (MI): In the present study the total species richness i.e. Margalef Index (MI) (Margalef, 1958) were recorded from 6.79 to 19.33 across the 550 - 3250 m elevation gradient. At the highest elevation, 3200 - 3300 m the minimum richness was 60 species and the MI calculated to 6.79, while the maximum values of 155 species and MI 19.33 were recorded at the elevation of 2250 m (Fig. 5.14).

Above 3000 m elevation, both the parameters, species richness and MI decreased from 86 to 60 species and 10.50-6.79 exponentially with increase in elevation and subsequently dropped to a minimum at 3250 m elevation.

5.2.2.2. Simpson's Index (Simpson, 1949): In this of species dominance were in between the range 2.48 to 54.60, higher the value more is the dominance. Recorded maximum value of 54.60 was from the 1850 m steps. The Simpson's Index 2.48 was recorded at 3250 m elevation. Shannon-Wiener Diversity Index (H') were recorded from 1.95 to 4.40 across the elevation gradient of 550 – 3250 m.

The minimum values of 1.95 was recorded at 3250 m and the maximum value of 4.40 at 2250 m elevations (Fig. 5.15).

5.2.2.3. Shannon-Wiener index (H'): In the present analysis the value of Shannon Weiner Diversity Index (1949) falls between 1.9 and 4.4, only. In the tropical and sub-tropical region the value falls in between 3.7 to 4.3 (Fig 5.16). It would indicate that the numbers of individuals are evenly distributed between all the species in tropical and sub-tropical forest.

5.2.2.2.4. Pielou's Index (J) **[Evenness] (Pielou, 1966)**: Evenness expresses how evenly the individuals in a community are distributed among the different species. It expresses the measurement of evenness pattern of species in the study area. It was recorded from 0.48 to 0.89 in 550 - 3250 m range with maximum of 0.89 at the 1850 m. The highest species richness has been observed in the elevation of 950 m. However, less evenness has been seen at the 950 m elevation plots (Fig. 5.17).

The details of the values of different Indices has been provided in Table 5.4.

Table. 5.4. Records of different diversity indices at different altitudinal steps in the East district of Sikkim.

Mid	Total	Total	Natural	Natural	Margalef	Simpson's	Shannon-	Pielou's
elevatio	number	number	log of	log of	index	index	Wiener	index (J)
n Value	of	of	species	Individual	(M)[Sp	(1/D)[dom	index	[Evenn-
	species	individu-	(lnS)	(lnN)	Richness]	-inance]	(H')[Dive	ess]
	(Š)	als (N)					rsity]	
550	127	2822	4.84	7.95	15.86	30.80	4.05	0.84
650	96	2736	4.56	7.91	12.00	32.63	3.90	0.86
750	106	3049	4.66	8.02	13.09	31.95	3.90	0.84
850	121	3094	4.80	8.04	14.93	34.36	3.99	0.83
950	134	3606	4.90	8.19	16.24	19.20	3.79	0.77
1050	134	3259	4.90	8.09	16.44	39.96	4.15	0.85
1150	109	2997	4.69	8.01	13.49	29.47	3.85	0.82
1250	126	3572	4.84	8.18	15.28	32.49	4.00	0.83
1350	106	2510	4.66	7.83	13.41	23.91	3.77	0.81
1450	128	4026	4.85	8.30	15.30	31.93	3.97	0.82
1550	133	4361	4.89	8.38	15.75	38.88	4.13	0.84
1650	122	4350	4.80	8.38	14.44	29.79	3.93	0.82
1750	130	3173	4.87	8.06	16.00	30.48	4.04	0.83
1850	134	1712	4.90	7.45	17.86	54.60	4.35	0.89
1950	140	2971	4.94	8.00	17.38	28.65	4.09	0.83
2050	109	4181	4.69	8.34	12.95	31.59	3.95	0.84
2150	143	3181	4.96	8.07	17.61	43.78	4.25	0.86

Result: Species Richness along the altitude 73

Mid	Total	Total	Natural	Natural	Margalef	Simpson's	Shannon-	Pielou's
elevatio	number	number	log of	log of	index	index	Wiener	index (J)
n Value	of	of	species	Individual	(M)[Sp	(1/D)[dom	index	[Evenn-
	species	individu-	(lnS)	(lnN)	Richness]	-inance]	(H')[Dive	ess]
	(S)	als (N)					rsity]	
2250	155	2883	5.04	7.97	19.33	52.42	4.40	0.87
2350	109	3435	4.69	8.14	13.27	31.37	3.93	0.84
2450	146	3189	4.95	8.07	17.97	41.69	4.24	0.85
2550	119	3082	4.78	8.03	14.69	18.42	3.69	0.77
2650	142	2667	4.96	7.89	17.87	36.57	4.18	0.84
2750	124	3540	4.82	8.17	15.05	12.57	3.36	0.70
2850	102	2143	4.63	7.67	13.17	26.49	3.82	0.83
2950	112	2404	4.72	7.79	14.26	13.86	3.47	0.74
3050	86	3268	4.45	8.09	10.50	12.19	3.81	0.74
3150	80	2549	4.38	7.84	10.07	21.82	3.56	0.81
3250	60	5930	4.09	8.69	6.79	2.48	1.95	0.48

5.2.2.3. Richness of Species, Genus and Family along the altitude

In the present study the richness of the species genus and family has been analysis using data from three elevation steps viz. 100 m, 200 m and 300 m.

5.2.2.3.1. *Along 100 m elevation step*: A total of 224 quadrants have been laid down in 28 elevation steps along the altitudinal gradient of 500 - 3300 m. This has captured a variety of disturbed areas in the lower elevation, reserve forests, wildlife sanctuaries in the middle to higher elevation representing different slope and aspect in the East district of Sikkim (Fig. 5.18).

A total of 664 species, 367 genera and 131 families have been recorded in the present study, out of which 158 were tree species, 197 were shrubs, 91 epiphytic and 304 terrestrial herbs (*Annexure-I, II & III*).

Mid elevation value shown (m)

Fig. 5.15. Species dominance along the 100 m elevation gradients

Fig. 5.16. Shannon-Wiener index of species diversity along the 100 m elevation gradients

Fig. 5.18. Plant species distribution along the 100 m elevation gradient

Species: A total of 60 species only at the elevation of 3250 m and the maximum of 155 species at the elevation of 2250 m have been recorded. There is a gradual increase in the species upwards from the lower elevation and reach up to 134 species in the elevation between 950 - 1050 m representing ecotone zone of tropical and sub-tropical forests of Sikkim. The dominant species of these two zones are *Schima*

wallichii, *Castanopsis hystrix*, *Alnus nepalensis*, *Engelhardtia spicata* var. *integra* etc. The species richness patterns, again, decreases slowly and again increases at the elevation between 1850 – 1950 m with the total number of species of 134 (at 1850 m) and 140 (at 1950 m), respectively. This zone corresponds to the ecotone zone of sub-tropical and template forests. The dominant species of ecotone zone are *Alnus nepalensis*, *Engelhardtia spicata* var. *integra*, *Mallotus* sp. *Ostodes paniculata* etc. The highest number of 155 species has been spotted at an elevation of 2250 m. In the ecotone of temperate and sub-temperate zones the dominant species were *Quercus lamellosa*, *Machilus kurzii*, *Symplocos lucida*, *Viburnum* sp. etc. The richness pattern gradually decreases upwards from the elevation of 2450 m.

Amongst the species richness pattern the contribution of *Schima wallichii* is the highest followed by *Ostodes paniculata*, *Alnus nepalensis*, *Castanopsis hystrix*, *Engelhardtia spicata* var. *integra* along the altitudinal gradient (*Annexure-I*).

For the 100 m elevation step data has been analysed and found statistically not significant ($R^2 = 0.502$) (Fig.5.18), with a t-value of t=5.118.

Fig. 5.19. Distribution of plant genera along the 100 m elevation gradient

Genus: Present study has recorded a total of 367 genera along the elevation gradient of east district, Sikkim. The *Schima* has contributed the highest Importance Value Index (IVI) followed by *Rhodo-dendron, Ostodes* and *Engelhardtia* (*Annexure II*). In the elevation zone of 2250 – 2350 m the highest number of 121 genera has been recorded. In the ecotone of temperate and sub-temperate zones similar pattern has been observed. However, the least number of 46 genera has been located at 3,250 m. A hump-shaped relationship with the elevation showing peak at around 1750 – 1850 m is given in Fig 5.19. In the lower and middle elevation band, genera like *Schima, Alnus, Engelhardtia*,

Castanopsis Ostodes etc. are dominating, while in the middle and higher elevation band *Rhododendron, Viburnum, Quercus* and *Acer* are dominants. However, in the second order polynomial regression ($R^2 = 0.657$) relation between genus along the 100 m elevation steps has been found insignificant with t=4.148.

Fig. 5.20. Distribution of plant families along the 100 m elevation gradient

Family: Out of the recognized 131 families occurring in 28 elevation steps, maximum number of 70 families have been observed in the elevation band of 1400 - 1500 m and a minimum number of 33 families in the 3200 - 3300 m band. The number of individual families in each 100 m elevation steps have been plotted in figure 5.20, representing a hump- shaped relationship with a peak at around 1700 - 1800 m. However, the second order of polynomial regression (R² = 0.765, p<0.02) shows that the relation between the family and elevation in 100 m elevation step is statistically significant. Theaceae, Poaceae, Euphorbiaceae, Urticaceae, Fagaceae, Ericaceae, Juglandaceae etc. are the dominant families along the altitudinal gradient of 100 m in the East district of Sikkim (*Annexure-III*).

5.2.2.3.2. Along 200 m elevation step: The plot of the species richness along the elevation steps of 200 and 300 m elevation signify the relation between species richness along this elevation gradient. It was observed in the polynomial regression in 200 m elevation step with a $R^2 = 0.553$, the relationship between species richness along the 200 m altitudinal band is statistically significant at p<0.01 level (Fig.5.21) and in 300 m elevation the $R^2 = 0.743$, p<0.01 Fig.4.24. In 200 m elevation gradient, the highest peak occurred at around 1,800 m but in 300 m elevation the species richness gradually decrease upward from 1900 m elevation step.

Fig. 5.21. Distribution of plant species along the 200 m elevation gradient

5.2.2.3.3. Along 300 m elevation step:

The similar pattern was observed for the genera as it was noticed along the elevation gradient of 200 m and 300 m, where $R^2 = 0.764$, p< 0.05 and $R^2 = 0.8621$, p< 0.05 has been calculated in polynomial regression equation (Fig. 5.22 and Fig. 5.25) respectively.

Fig. 5.23. Distribution of plant families along the 200 m elevation gradient

Fig. 5.24. Distribution of plant species along the 300m elevation gradient

As the number of families were plotted along the gradient of 200 m and 300 m elevation steps, the number of families increases from lower elevation level i.e 500-600 m up to 1800-1900 m. Afterwards the number of families decreases with the increase in elevation. In the polynomial regression equation the R² value of 200 m elevation band is R² = 0.875 and in 300 m elevation band R² = 0.907 (Fig.5.23 & Fig.5.26).

Fig. 5.26. Distribution of plant families along the 300 m elevation gradient

5.2.2.4. Endemic species

More than 200 species of plants are reported as endemic in the Sikkim Himalaya (Lepcha & Das 2011). The total number of individuals, species, genera and families observed were recorded from the East district during the present survey. A total of 224 plots were sampled randomly in various elevation

S'S	Botanical Name	Family	Endemic for	5 6	7	8	9 1	011	12	13	14 1	51	61	118	616	20	21	22	23	24	32	26	21	28 2	66	03	132	ł	lange
-	Ampelocalamus patellaris	Poaceae	HR				7				-			_														-	000-1600
2	Arisaema griffihii	Araceae	NER					20			-	8			7		7						-		<u> </u>			-	500-2200
m	Aucuba himalaica	Garryaceae	EH								92 <u></u>	4	-	-						~	2		-		-			2	400-2600
4	Begonia palmata	Begoniaceac	C&EHR	-			-			Ľ	-		-		7				~						-			-	400-2400
S	Beilschmiedia sikkimensis	Lauraceae	HS	-			-					-	-	-					~						-	-			2300
9	Berberit angulosa	Berberidaceae	HR	-								-	-	_										-	-	>		-	500-3200
5	Brassaiopsis hispida	Araliaceae	HR										-	-			>	>		~	2	5	5	5				2	100-2900
8	Brassaiopsis mitis	Araliaccac	III			~	7	7			1	7			7			7	~	7	7			C		-			500-3000
6	Cephalostachyum capitatum	Poaceae	EH																				-	>	-				2800
10	Digitaria ciliaris	Poaceae	HR	7	~	~	2	~	>	-	-	7	7	7	7	7	7	>	ĺ			1	~	>					600-2900
=	Drepanostachyum intermedium	Poaceae	NER	-			-					-	-									5				-			2600
12	Heracleum wallichii	Apiaccac	IIR	-			-	-			\vdash	+	-	7	<u> </u>				~		1	5	\vdash	1		-		-	800-3000
13	Himalayacalamus falconeri	Poaceae	HR	-									-	-	<u> </u>							5	5	5	2		>	2	600-3300
14	Himalayacalamus hookeriamus	Poaceae	HS				_				-	7	7		7	7	7	>	~			_						-	600-2400
15	Holhoellia latifolia	Berberidaceae	HR	<u> </u>			<u> </u>							_		>							-		-	-			2000
16	Liparis resupinata	Orchidaceae	HS	-			-				-	7			7	7									-	-		-	500-2100
11	Maesa chisia	Primulaceae	HK		7	2	2	7	>	-	É	2	2	2	<u> </u>	>	2	>	a iv	2	ľ.	5	5	5	-	-			500-2900
18	Mahonia napavlensis	Berberidaceae	HR									-	-	_				>							>			-	500-3000
19	Oberonia falcata	Orchidaceae	HS	-						-	-		-												<u> </u>			-	300-1600
20	Pilca ternifolia	Urticaceae	HR				-				-		-	_								5	1	-	-	7	>	3	600-3300
21	Rhododendron anthopogon	Ericaceae	EH	-			-	-			1	-	-	-	<u> </u>								1	-		-			2900
22	Rhododendron barbatum	Ericaceae	EH								-	-	-	_	_		7			7		~	5	5	2	7	7	5	100-3300
23	Rhododendron dalhousieae	Ericaceae	HR	-									-	_													>		3300
53	Rhododendron falconeri	Ericaceae	EH					·					-	-					, 			-	5	~	2	7	7	2	700-3300
25	Rhododendron griffithianum	Ericaceae	SH	<u> </u>			-						-	-							2		-	1	2	7	>	1	500-3300

Result: Species Richness along the altitude 81

Table 5.5. List of endemic species recorded from the study area

	300	200	006	800	00	200	500	100	100
nge	0-3.	0-3.		0-1	0-3(0-3.	0-2.	0-3	0-3
Ra	290	220		130	260	180	180	180	250
32	7								
3	7	>	-			7			
8	7	7				2		7	>
6	7				2	7			7
128					7	7		>	2
27		7							7
50		2			>			>	>
52		>				2		>	>
4		7					2	7	
33							2	7	
77		7				7	7	7	
71							7	7	
2							7	7	
61							2	7	
2						~	7	~	
11				7					
16									
15									
4									
13				~					
12									
П									
10									
6			>						
×									
						_			
•			-	_	-				
2	-	-	-	-	-		-	-	
Endemi for	HR	HR	HR	HR	HR	EH	NER	HR	HR
umily	ae	ae	ae	aceae	ac	ocaceae	ocaceae	ocaceae	0
F	icace	icace	sace	chid	sace	mple	mple	mple	acea
	E	Ē	R N	Ō	R	Sy	Sy	Sy	Pe
Name	tsonii	unic				a	ta		
Botanical	Phododendron thom	Rhododendron triflo	snsognı suqua	Satyrium nepalense	Sorbus cuspidata	Symplocos dryophile	Symplocos glomerat	Symplocos lucida	Yushania pantlingii
īs v	26 1	27	28 1	29	30	31	32	33 5	34

HR=Himalayan region; NER= North eastern region; EH= Eastern Himalayas; C&EHR= Central and Eastern Himalayan region; SH Sikkim Himalayas;
bands and has recorded 664 species of plants, out of which 34 species were found to be endemic. There are 14 families out of which Poaceae and Ericaceae contributed more number of species followed by Orchidaceae. Table 4.5 shows the list of endemic species found in the study area.

Total 34 endamic species of the Himalaya region are recorded from the study area out of which 6 species recorded from single elevation steps. *Brassaiopsis mitis* found the largely extended species which is recorded from 500 - 3000 m elevation steps fallowed by *Maesa chisia* and *Digitaria ciliaris* recorded from 500 - 2900 m and 600 - 2900 m elevation steps respective

Chapter 6

RESULT: BIOMASS PRODUCTION ALONG THE ALTITUDINAL GRADIENT

RESULT: BIOMASS PRODUCTION ALONG THE ALTITUDINAL GRADIENT

Biomass is defined as the total amount of dry weight of forest cover per unit area of land at any time, and is expressed in terms of tonnes (Lodhiyal & Lodhiyal, 2003). Also, it can be expressed as above ground biomass and below-ground biomass. It measures the change in forest structure (Schreuder *et al.*, 1997; Husch *et al.*, 2003). Several methods are in use to estimate forest biomass (Ovington 1968; Whittaker 1966): (1) Destructive and Non-destructive techniques (Foody *et al.*, 2003; Zheng *et al.*, 2004; Muukkonen & Heiskanen, 2005) and (2) Sampled data based using Satellite imagery (Brown *et al.*, 1999). The former method is commonly used for biomass estimation.

Non-destructive technique for biomass estimation is widely used technique using field based data (Hunter *et al.*, 2013; Garcia *et al.*, 1993). In this method tree specific regression equation were involve *viz.* Tree diameter/circumference, tree height and basal area are used as independent variables. Brown *et al.* (1989) used non-destructive sampling technique to estimate the volume of the tree and then converted into biomass using the specific gravity of individual species. Rana *et al.* (1989) used the field based method for the estimation of biomass for Central Himalaya. Bhattarai *et al.* (2004) performed field study of alpine grassland of the Central Himalayan part of Nepal for the estimation of biomass. Wang *et al.* (2014) saw the variations in the live biomass and carbon pools of *Abies georgei* Hand._Mazz. (*A. forestii* Coltm.-Rog.) along an elevation gradient on the Tibetan Plateau, China. There are several factors which directly control the biomass of the plants; some of those are climate (Wang *et al.*, 2014) anthropogenic activities etc. Sundriyal and Sharma (1996) observed the impact of anthropogenic pressure on tree structure and biomass production in the temperate forest of Mamlay watershed in the South district of Sikkim.

The estimates of forest live biomass are still an important source of uncertainty in the carbon balance from local to regional scale, partly due to the scarcity of reliable estimates of live biomass and its variation across landscapes and forest types (Alves *et al.*, 2010; Wang *et al.*, 2014). Biomass assessment is necessary because forests are affected by various factors like deforestation, fire, uncontrolled harvest of different minor forest produces, pests, silviculture and climatic change (Schroeder *et al.*, 1997; Change, I.P.O.C. 2006.) those bring considerable changes in the forest ecosystem.

Many studies have been analysed to understand the forest biomass patterns along elevation gradients in tropical mountains, The use of elevation gradients within the same biogeographic zone

(tropical, temperate, boreal) is considered to be particularly powerful tool for improving biomass estimates across spatial variations and environment gradients (Wang *et al.*, 2014).

Many environmental factors (e.g. rainfall, temperature, atmospheric pressure, solar radiation, wind velocity, etc.) change systematically with the change in elevation. Therefore, to test the ecological and evolutionary responses of biota to environmental changes the altitudinal gradients are among the most powerful techniques (Korner, 2007)

The above ground biomass and its dry weight decreases with the increasing elevation, and there are significant differences at different elevations (Jia *et al.*, 2006). Goward and Dye (1987) opined that the integrated vegetation index can be related directly to the amount of vegetation (above ground phytomass) and primary productivity.

Chhabra *et al.* (2002) studied the average total growing stock volume density in India for the study years 1992 – 1993. Average total growing stock volume density in India was estimated as 74.42 m3 t/ha; with a range of 7.1–224.5 m3 t/ha. The mean biomass density in Indian forests was estimated at 135.6 t /ha and amongst the states it varied from 27.4 t /ha in Punjab to 251.8 t/ ha in Jammu & Kashmir. The total standing biomass (both, above and below ground) was estimated at 8683.7 Mt. The above ground and below ground biomass was estimated at 6865.1 and 1818.7 Mt; contributing 79 percent and 21 percent to the total biomass. The study has also highlighted state level differences in forest biomass density in India (Chhabra *et al.*, 2002). The total above and below ground forest biomass in all states and union territories were estimated as 6865.1 and 1818.7 Mt, respectively. Sikkim contributes 48.1Mt. Total above ground biomass and below ground biomass has been calculated as 12.3Mt and 60.4Mt (Chhabra *et al.*, 2002). Estimation of forest biomass is the key for understanding the exchange of energy flow, primary production and fluxes of nutrients in a forest ecosystem (Thakur, 2014).

Similarly, Sundriyal and Sharma (1996) recorded 8.32 t ha-1 for wood biomass and 1.80 t ha-1 for floor phytomass during their studies in the temperate forest of Mamlay watershed in South Sikkim.

The effect of adjusting plot placement to include large diameter trees over estimates forest biomass because biomass per tree increases geometrically with increasing diameter (Haripriya, 2002) The minimum diameter of sampled trees in India is more than 10 cm, reflecting the dominant interest in inventories of commercial volumes (Brown *et al.*, 1989). Though the smaller trees may have less volume than larger trees, they often contain relatively more trees than larger size classes and in certain cases they may contain important proportions of the total stand volume per biomass (Haripriya, 2002).

The above-ground biomass is mainly the largest carbon pool and it is directly affected by deforestation and forest degradation. Estimating the forest carbon stocks is mainly important to assess the magnitude of carbon exchange between the forest ecosystem and the atmosphere. Assessment of the amount of carbon sequestered by a forest will give us an estimate of the amount of carbon emitted into the atmosphere when this particular forest area is deforested or degraded. It will also help us to quantify the carbon stocks which in turn will enable us to understand the current status of carbon stock and also derive the near-future change in the carbon stock (Vashum & Jayakumar, 2012).

Sun *et al.* (2013) and Khan *et al.* (2014) studied the alpine meadow area, they found that elevation and soil moisture are strongly negative effects on above ground biomass (AGB) where as abundance, and soil nitrogen content was positively related to the AGB distribution. This study has confirmed that the average shrub biomass declined with increasing altitude.

This chapter records the estimation of biomass along the altitudinal gradient of Sikkim Himalayas. As has already discussed in the previous chapter the altitudinal range of the study area is spreading over from 500 m to 3300 m in the east district of Sikkim. The present study has estimated the total above ground biomass of this district using growing stock assessment field inventory method. Biomass was estimated using the tree volume formula and tree volume equation developed by FSI (1996). The methodology used for the calculation of biomass in East Sikkim has been detailed in the methodology chapter.

6.1. Biomass Productivity

Amongst others, the two type of non-destructive method for estimation of above Ground biomass is used in this study are (1) using the field sampled data like species number, tree height, CBH etc. and (2) Using the satellite based data.

6.1.1. Field data

Field productivity of East district of Sikkim Himalaya estimated, using the field sample plots data. There are 224 quadrats laid while collecting the field data from where a total 664 plant species collected from 28 elevation steps (500 - 3300 m). The biomass of the study area has been estimated using the volume equation of FSI (1996). The estimated biomass is ranging from 6.3 t/ha at 3150 m and 68.6t/ha at 2650 m in different elevation range in the East district. In an average 38t/ha biomass estimated from our field data.

6.1.1.1. Circumference at Breast Height (CBH): The CBH of above 10 cm of plants are taken as trees to estimate the biomass. *Lithocarpus pachyphyllus* is the biggest tree with CBH of 557 cm. The other big trees were *Castanopsis tribuloides*, *Quercus lineata*, *Quercus lamellosa* etc. Those contributed more than 500 cm CBH. The Diameter at Breast Height (DBH) is calculated using the recorded CBH, which, in turn, used for further volume calculation.

6.1.1.2. Tree height: the tree height collected from the field using range finder for 6 – 7 trees, than for other ocular estimation applied to estimate the tree height. The highest tree observe in the study area was *Artocarpus lacucha* and *Schima wallichii* with upto 37 m height followed by *Quercus lamellosa*, *Lithocarpus pachyphyllus* and *Magnolia lanuginosa*.

6.1.1.3. Basal area: It is similar to CBH and the *Lithocarpus pachyphyllus* found to possess the largest basal area in the study area.

6.1.1.4. Volume Estimation

Volume of the tree is a major component for the biomass/productivity estimation; first the individual tree volume was calculated in Microsoft excels using Volume equation formula of FSI, 1996 (*Annexure IV*). The volume is also correlated with CBH and basal area. *Lithocarpus pachyphyllus* found the largest one. The list of top 10 volume contributing trees are shown in Table 6.1.

SI. No	Plant Species	Volume contribution of the study area in M ³		
1	Castanopsis hystrix	780.69		
2	Schima wallichii	702.90		
3	Quercus lamellosa	586.91		
4	Lithocarpus pachyphyllus	507.66		
5	Alnus nepalensis	350.93		
6	Acer campbellii	328.92		
7	Engelhardtia spicata var. integra	283.42		
8	Engelhardia aurifolia	152.63		
9	Castanopsis tribuloides	152.26		
10	Abies densa	107.78		

Table 6.1. List of top ten volume contributor tree species from the East District of Sikkim

6.1.1.5. Biomass estimation

Biomass (Productivity) of the study area calculated using the volume and specific gravity of trees (*Annexure IV*), the *Quercus lamellosa* contributed the highest biomass followed by *Castanopsis hystrix* the detail of top 9 species is given in the Table 6.2.

SI. No.	Plant name	Contribution of Biomass by individual species t/ha.
1	Quercus lamellosa	410.249
2	Castanopsis hystrix	402.053
3	Schima wallichii	349.343
4	Lithocarpus pachyphyllus	261.446
5	Acer campbellii	163.471
6	Engelhardtia spicata var. integra	140.860
7	Alnus nepalensis	111.947
8	Castanopsis tribuloides	78.414
9	Engelhardia aurifolia	75.858

Table 6.2. List of tree species as per their contribution of biomass

6.1.1.5.1. Along 100 m elevation step: It was seen in 100 m elevation gradient the biomass production increases with altitude up to the limit of tropical forests. The negative pattern was observed in subtropical forests between 900 - 1400 m elevation section, the major human habitation areas also fall in this region. Then, the biomass t/ha suddenly increase and reach to about 60 t/ha at around 1700 m elevation. It again decreased to about 30 t/ha at around 2000 m elevation. As we observed the overall

pattern of biomass production along the altitude increases along the elevation in the temperate forest zone. After that, the production decreases with the increased elevation.

As shown in figure 6.1 the relation between biomass and elevation, as the elevation increases the tree biomass decreases. Similarly, the number of trees in the sample area also decreases with increased elevation.

Result was found significant at p<0.10, it shows that there was a poor relation of biomass along the elevation gradient of 100 m in the east district of Sikkim (Fig. 6.1).

Fig. 6.1. Relationship between biomass and altitude along 100 m elevation step

6.1.1.5.2. *Along 200 m elevation step*: The relation of biomass along the 200 m elevation gradient has been evaluated as shown in figure 6.2. In this step the relation of biomass and elevation R^2 =0.410, it shows that there is 41 % chance to be a good relation of these two parameters.

Fig. 6.2. Relationship between biomass and altitude along 200 m elevation step

6.1.1.5.3. *Along 300m elevation step:* The relation of biomass along the 300 m elevation gradient has been shown in figure 6.3. The R² at 0.58 is the expression of a good relation with altitude in 300 m elevation band. Here, a hump-shaped relation of biomass along the elevation gradient peak at around the 2500 m elevation is clearly visible.

Fig. 6.3. Relationship between biomass and altitude along 300 m elevation step

6.2. Satellite based relation of Biomass

Several works has been conducted with remote sensing imageries and their utility in the field of plant biomass. The remote sensing satellites are equipped with sensors looking down to the earth. They are the "eyes in the sky" constantly observing the earth as they go round in predictable orbits. There are different types of remote sensing satellite data, *viz*. Optical, Microwave, Infrared Radar, etc. This elucidate the relation between the satellite based plant productivity NPP with the field derive biomass. Zhang *et al.* (2009) observed the Global pattern of NPP to GPP ratio derived from MODIS data, they observed that geographically, the NPP/GPP ratio increased with altitude but in the Southern Hemisphere, the NPP/GPP ratio decreased along latitude. MOD17 product, are limited by the spatial resolution. Sims *et al.* (2006) shown that a model based solely on EVI provided as good or better estimates of productivity for most of the sites than did the much more complex MOD17 model . MODIS data inputs are best suited to assessments of large forested tracts of land where stand ages are relatively uniform (Potter *et al.* 2007).

6.2.1. Landsat-8 NDVI and EVI: Similarly, the range of NDVI values observed -0.053 to 0.488 this shows that the NDVI values was saturation up to 0.488 only on the other hand, the EVI2 derived value range shows 0.07 to 0.90 in different month data (Fig. 6.4).

Further there is a limitation of optical satellite data (Landsat imagery) is that fewer cloud-free dates are typically available that can be collected over the course of a growing season in most temperate and humid climate zones as compared to MODIS composite images. In contrast, MODIS composite images provided regular bimonthly time series

6.2.2. Relation between biomass and satellite EVI: Satellite remote sensing provides consistent and systematic observations of vegetation and ecosystems, and has played an increasing role in characterization of vegetation structure and estimation of productivity (Prince & Goward, 1995; Rai, 2006).

Fig. 6.4. Landsat satellite imagery of 6th December 2013 (A) and NDVI of same period (B)

Fig. 6.5. Relation between Biomass vs Landsat EVI in 300m steps

The productivity predicted from Landsat satellite data of 30-meter resolution and has been correlated with the field biomass which shows the significant correlation of R^2 at 0.50, in 300 m elevation steps when the result tested in linier equation (Fig. 6.5).

Further the field biomass and EVI tested using the polynomial regressions between EVI and field biomass were computed along the 100 m elevation steps of Sikkim Himalayas from 500 to 3200 m elevation range. The result is shown in figure 6.6. It was observed R² at 0.322.a in second order polynomial.

The second order regression polynomials between EVI and field based biomass along the 100 elevation steps of subtropical to sub alpine forest (1200 - 3000 m) of the study area was also performed. Correlation was seen R² at 0.31 for EVI values and field values along the elevation (Fig. 6.7a). Further segregate of procured data for temperate and sub-alpine area (2300 - 3000 m) and tested in second order of regression polynomials. A better correlation between field biomass and satellite based EVI along the elevation was observed in (Fig. 6.7b). It is due to may be the moisture contain in the temperate and sub-alpine forest area of Sikkim Himalayas.

Though the derived result also shows the relation with biomass is not quite satisfactory it may due to the following factors:

- *i. Data acquisition date*: The data collection date from the field and date of acquisition of satellite imagery may not be the same.
- *ii. Sample and Pixel sizes*: The sample size for trees is 20 x 20 m and the pixel size of satellite imagery is 30 x 30 m which may mismatch with other pixels.

Result: Biomass production along the altitudinal gradient 92

EVI

Fig. 6.7a. Relation between field biomass vs EVI2 values along the elevation steps from (A) 1200 – 3000 m and (B) 2300 – 3000 of Sikkim Himalaya

Fig. 6.8. Landsat satellite imagery of 26^{th} April 2013 (A) and (B) EVI of same period indicate the presence of more than 40 % cloud cover.

Fig. 6.9. Landsat satellite imagery of 13th June 2013 (A) and (B) EVI of same period

Fig. 6.10. Landsat satellite imagery of 17th September 2013 (A) and (B) EVI of same period

Fig. 6.11. Landsat satellite imagery of 6th December 2013 (A) and (B) EVI of same period

Result: Biomass production along the altitudinal gradient 97

Fig. 6.13. MODIS Productivity imagery (A) and (B) MODIS NPP derive after interpolation

iii. Anthropogenic disturbances: There are very less correlation in the tropical and temperate forest, it may be due to more anthropogenic disturbances.

The EVI's utility in satellite-driven primary production modelling has previously been demonstrated for several different biome types (Xiao *et al.* 2004) and the highly linear relationship observed in GPP can be estimated through a linear regression model for similar environments with relatively high accuracy, using only EVI as independent variables.

6.2.3. MODIS Productivity: At first the MODIS NPP were downloaded and compared with the field derived biomass. Then, tried to fit the MODIS NPP product in local scale of Sikkim Himalaya (Fig.6.12 & 6.13). This product is also prone to be complicated by the mismatch in scale between ground-based NPP derived from the field and the coarse resolution (1 km) of the MODIS NPP product.

6.2.4. Relation MODIS Productivity with Biomass: The values of MODIS Productivity was not satisfactory as compared to other satellite products. The MODIS (1 km x 1 km) data is not suitable for the estimation of productivity in local scale of study.

Chapter 7

RESULT: RELATIONSHIP BETWEEN SPECIES RICHNESS AND BIOMASS ALONG THE ALTITUDE

RESULT: RELATIONSHIP BETWEEN SPECIES RICHNESS AND BIOMASS ALONG THE ALTITUDE

7.1. Relation between species diversity and productivity

The mountain has different biotic and abiotic gradients. The changes in these factors in mountain are mainly due to the altitudinal gradients. The major trend in relation between elevation and species richness are: (i) decreasing richness with increasing elevation, (ii) plateaus in richness across low elevation then decreasing with or without a mid-elevation peak, and (iii) uni-modal pattern with mid elevational peak (McCain & Grytes, 2010). The first details on changes in natural world with the changes in elevation was observed by Charles Darwin, Alfred Russel Wallace and Von Humboldt (Lomolino, 2001). Differences in the species richness with change in temperature are depending upon the latitude, size, shape and prevailing weather conditions in the mountain region. Air pressure and solar radiation are other factors those foreseeably vary with change in elevation. Precipitation trend in the form of rain, snow or condensation from clouds corresponds to the prevailing weather patterns, the slope and the proximity to the ocean or large water body (Barry, 2008). Other important determinant of species richness along the altitudinal gradients in the mountain may be area, cloud cover and soil quality. The interaction among these abiotic factors determine overall productivity of the species. Fridley *et al.* (2001) reported no consistent change in biomass is evident with the change of number of species.

Relationship between species richness and biomass along the altitudinal gradient is known from various parts of the world (Bhattarai & Vetaas, 2003). Several studies have found negative correlation of species richness and elevation (e.g. Yoda, 1967; Alexander & Hilliard, 1969; Hamilton, 1975; Wolda, 1987; Stevens, 1992; Patterson *et al.*, 1998), whereas others have found a hump shaped relationship between species richness and elevation (e.g. Janzen, 1973; Whittaker & Niering, 1975; Rahbek, 1995; Lieberman *et al.*, 1996; Gutiérrez, 1997; Fleishman *et al.*, 1998; Odland & Birks, 1999; Grytnes & Vetaas, 2002). Whereas, Fargione *et al.* (2007) reported that the selection to complementarily shifts in species richness affects biodiversity-productivity relationships in a long-term biodiversity experiment.

There are several other effects for negative and positive correlation between biomass and species richness along the altitude. Some authors classified it as sampling effect and others classify it as facilitation. Facilitation occurs when an individual attains greater biomass in the presence of inter-specific neighbours because of their beneficial effects on an intermediary resource (Fridley, 2001). Cardinale *et al.* (2007)

seen the impact of plant diversity on biomass, because of species complementary effects. The external factors such as moisture or other environmental conditions are thought to be of much more importance than the internal interactions (Bhattarai *et al.*, 2004). The relation between biodiversity and biomass production has discuss for the grassland at local and regional scale in '*Grassland a global resource*' and they suggested the requirement for up-scaling research in this aspect. Ruijven and Berendse (2005) discussed the effect on nutrient in diversity and productivity relationship.

Another major component is soil. There must be the link between species richness, biodiversity and ecosystem with soil (Coleman & Whitman, 2005). The elevation gradient in the species richness pattern is commonly explained by similar factors to the latitudinal gradient, such as climatic factors, productivity, and other energy-related factors (Richerson & Lum, 1980; Turner *et al.*, 1987; Currie, 1991; Rohde, 1992; Wright *et al.*, 1993; Grytnes *et al.*, 1999; Lomolino, 2001) vary along the elevation gradients and ultimately create the variation in species richness.

The elevation gradient of species richness is intricately related to species-latitude and speciesarea relationships (Korner, 1999; Lomolino, 2001) and argues that elevation gradients can contribute important insights into developing a general theory of species diversity. The relationship between biomass and plant species richness has been extensively investigated (Thomas & Bowman, 1998; Grytnes & Vetaas 2000; Bhattarai *et al.*, 2004; Han *et al.*, 2007; Namgail *et al.*, 2012).

Factors causing variation in species richness may differ between different organisms and between life-forms of plants. Huston (1994) found that trees and herbaceous species have different responses in Eastern compared to Central and North America. A comparison of various life-forms may allow a finer resolution of precise causal factors than studies on total plant richness.

7.1.1. Conditions in East district of Sikkim: Present study on species richness and biomass production in the East district of Sikkim was envisaged to analyse the plant species richness of along the elevation ranging from 500 - 3300 m amsl. In this study, it is also aimed to study the relationship between elevation change and species richness. The variation in species richness and biomass along the altitudinal gradient is due to the following factors (i) the number of individuals, (ii) the number of species in the species pool, and (iii) habitat heterogeneity (Simova *et al.*, 2013).

To understand the relationship between species richness and biomass the two hypothesis was intended, (i) species richness and biomass vary along the elevation gradient, and (ii) species richness pattern is a function of abiotic factors prevailing along the altitudinal gradient.

The Himalayan elevation gradient is one of the longest bio-climatic elevation gradients in the world. In Sikkim within only 75 km one moves from a tropical to alpine zone (Fig. 2.2). Hills in Sikkim experience humid tropical to sub-tropical climate up to elevation of 1000 m. The range is characterised by agricultural land in tropical moist deciduous forests up to 900 m. The dominant species of this region are *Shorea robusta*, *Syzygium formosum*, *Terminalia myriocarpa* etc and in the sub-tropical forests from 900 – 1800 m the dominant species include *Albizia chinensis*, *Alnus nepalensis*. *Castanopsis hystrix*, *Engelhardtia spicata* var. *integra*, *Macaranga indica* and *Schima wallichii*. The elevation sector of 1800 – 2800 m is with temperate forests, 2800 – 3500 m with temperate conifers, 3500 – 4000 m as subalpine and above 4000 m as alpine forests/vegetation (ISRO 1994).

In several studies, researcher had used plant community biomass to predict species richness with different degree of success. In the present study, 28 elevational band ranging from 500 - 3300 m, at

every 100 m altitudinal gradient, were examined to analyse relationship between species richness and biomass (Fig. 7.1).

Fig. 7.1. Relation between species richness and biomass along 100 m elevation steps.

Fig. 7.2. Relation between species richness and biomass along 200 m elevation steps.

The relation between species richness and biomass study at 100 m elevation range, 28 elevational steps with 8 plots of 20 x 20 m, in 200 m elevation range 14 elevational steps with 16 plots of 20 x 20 m and in 300 m elevation range 10 elevation steps with 24 plots of 20 x 20 m were studied. The second

Fig. 7.3. Relation between species richness and biomass along 300 m elevation steps.

7.2. Relation between species diversity and productivity along the altitude

Fig. 7.4. Relationship between biomass and species richness along the 100 m elevation steps.

order polynomial regression was tested for each scale ($R^2=0.30$) indicates that only 30.0 % of variation in biomass is attributed to change in biomass along the altitude. It may be affirm that there exists no variation in biomass within 100 m elevation steps (Fig. 7.1). Similarly, the study of relationship between species richness in biomass at 200 m and 300 m elevation steps revealed that there exist significantly higher attributes of biomass towards, species richness. Regression coefficient, $R^2=0.41.0$ in 200 elevation steps and $R^2=0.58.0$ in 300 elevation steps indicates 41% and 58% variation in species richness is attributed to the biomass (Fig. 7.2 & Fig. 7.3).

Fig. 7.5. Relationship between biomass and species richness along the 200 m elevation steps.

Fig. 7.6. Relationship between biomass and species richness along the 300 m elevation steps.

No significant relationship of biomass and species richness along the 100 m elevational gradient $R^2=0.2795$, (Fig 7.4) in 200 m elevation gradient $R^2=0.4109$ (Fig. 7.5) was established. As moved to further higher scale in 300 m the relation was improved up to $R^2=58.0$ (Fig.7.6.).

7.3. Relation between species richness and other environmental variables-multivariate analysis

The above studies, helped to understand the importance of sample elevation steps to establish the relationship between species richness in biomass.

7.3.1. Correlation of species richness with other factors: The correlation between richness and variables viz; temperature, rainfall, slope, soil, elevation, aspect and biomass was studied.

	Species Richness	Temperature	Rainfall	Slope	Soil	Elevation	Aspect	Bioma
Species Richness	1							
Temperature	0.527	1						
Rainfall	-0.007	-0.379	1					
Slope	-0.083	-0.094	-0.352	1				
Soil	0.308	0.32	-0.1	0.01	1			
Elevation	-0.542	-0.853	0.466	-0.099	-0.532	1		
Aspect	-0.053	-0.239	-0.012	-0.033	0.295	-0.005	1	
Biomass	0.119	0.025	0.098	-0.02	-0.017	0.042	-0.035	1

Table 7.1. Correlation Matrix of species richness with other factors in the East District of Sikkim

The correlation matrix (Table 7.1) compared the multiple data using the GLM model with response variable (Species richness) with other explanatory variables, were found to have strong relationship of species richness with temperature and elevation and the strong relationship between temperature and elevation followed by rainfall. There is also good relation of elevation with soil.

The relationship of biomass with other variable is poor as compare with the species richness.

Table 7.2. Coefficients GLM of Species Richness with other variable

	Estimate	Std. Error t	t value	Pr(> t)	
(Intercept)	-9.447	14.061	-0.672	0.502	
Temperature	0.595	0.422	1.411	0.160	
Rainfall	0.020	0.004	4.441	0.000	***
Slope	-0.012	0.058	-0.206	0.837	
Soil	0.001	0.033	0.030	0.976	
Elevation	-0.006	0.002	-3.804	0.000	***
Aspect	-0.001	0.006	-0.092	0.926	
Biomass	0.078	0.039	2.000	0.047	*

Significant Codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

7.3.2. Relationships between species richness and other variables: The relationships between species richness and other variables are shown in Table7.2 and figure 7.7. Total species richness has unimodal relationship with other variables, indicated by a statistically significant second order term in the GLM analysis. It was understood that the relationship of species richness with rainfall, soil and biomass tests are significant as compare to other variables.

The unimodal or hump-shaped relationship between species richness and biomass is tested with data from 200 m and 300 m elevation steps in East district of Sikkim. The result agrees with earlier studies (Grime, 1973, 1997; Al-Mufti *et al.*, 1977; Gross *et al.*, 2000; Bhattarai *et al.*, 2004). However, there was no strong relationship between species richness and biomass at 100 m elevation gradient figure 7.4 which may be the expression of local effects.

Fig. 7.7. Relationship between species richness and other variables (Temperature rainfall slope, rainfall, soil, elevation aspect and biomass)

Generalized Linear Model (GLM; Mc Cullagh & Nelder, 1989; Dobson, 2002) was used to relate species richness to the explanatory variables. The response variable, species richness, takes the form of discrete data (counts) and may have a poisson distribution of error (McCullagh & Nelder, 1989).

The relation between species richness and other variables like temperature rainfall, soil, elevation aspect etc. tested in GLM (Fig. 7.7 & Table 7.3). The temperatures play a major role among the other variables. The interpretation of the elevation gradient with climate data showed strong correlation between elevation and mean annual temperature (Bhattarai & Vetaas, 2003). This indicates that the temperature and elevation can play a major role in the relation between species richness and biomass along the altitude.

Model: Gaussian, link: identity								
Response: Species Richness								
	Df	Deviance	Resid. Df	Resid. Dev				
NULL			223	17587				
Temperature	1	4886.8	222	12700				
Rainfall	1	762.0	221	11938				
Slope	1	63.3	220	11874				
Soil	1	338.5	219	11536				
Elevation	1	693.3	218	10842				
Aspect	1	0.0	217	10842				
Biomass	1	197.2	216	10645				

Table 7.3. Analysis of deviance among the response variables

Null deviance: 17587 on 223 degrees of freedom; *Residual deviance*: 10645 on 216 degrees of freedom AIC: 1518.6

7.3.3. Relation between diversity with temperature, precipitation and area: Model predictions showed that individual predictors (area, precipitation and temperature) were critical to species diversity. Area was predicted to be the most important factor followed by precipitation; and both the variables were statistically significant (p<0.00). The temperature was also found to contribute, but less significantly (p<0.01). However, considering two variables simultaneously, both precipitation and temperature were highly influencing the species richness pattern (p<0.00). In other two modelling approaches, the predicted area was highly contributory and significant (p<0.00). In contrast, both climatic variables i.e. temperature

Fig.7.8. Richness pattern along 200m elevation steps for (A) Species, (B) Genera and (C) Families based on best fitted second order polynomial regression model. All models were statistically significant (p<0.01) and peaked at 1800 m altitude.

Fig. 7.9. Residual vs. predicted values plot showing species richness at 200 m elevation steps in relation to: (A) Temperature, (B) Precipitation and (C) Area using generalized linear model fitted with Poisson error distribution. The non-linear pattern is clearly indicated with no heteroscedasticity in modelling. Points having values are outliers.

and precipitation were not statistically significant when area was a constituent variable along with these factors. Similarly, the combined effect of three predictors was not statistically significant to explain the species richness pattern along the elevation gradient.

The residual vs. fitted values plots showed curve pattern and the values were well distributed along both sides of the curve.

Chapter 8

DISCUSSION

DISCUSSION

The floristic diversity, richness and originality of the second smallest state of India, Sikkim, is well known (Lama, 2004; Lepcha, 2011; Lepcha & Das, 2012; Das, 2011, 2013; Das & Ghosh, 2007, 2011; Das et al., 2010). The state is experiencing almost all types of climatic conditions, except hot desert, starting from tropical to permanent snow covered areas with polar environmental conditions. The sharp change in altitude (284 to 8598) m within short distance is also important that is directly affecting the structure, function and composition of vegetation in different and innumerable ecological niches in the state. The multi-pronged progress of civilization at the, so far, fastest speed is seriously affecting the Sikkim's original green wealth. With this back ground, it is now prime time to understand (i) the pattern of distribution of biological elements, (ii) species richness areas, (iii) how different species respond to changes in temperature, precipitation and altitude, etc.

8.1. Topology: In East district of Sikkim the elevation is ranging from 340 m to 4649 m. For the present study an elevation sector of 500 - 3300m was taken, as 70% of the areas are covered under this range. The elevation wise geographical areas of East district of Sikkim has also been calculated using the GIS software in each 500m elevation band (Figure 8.1). Slope, Aspect and climatic parameters were also taken in the present study to understand the effect of other variables with species richness and biomass production along the change of altitude. The forest type map prepared as per Champion & Seth (1968) for forest classification was used as a base map to layout the quadrats in the field) Fig. 5.11. The landuse and Landcover maps prepared by Sharma and Das (2015) were used for final analysis (Fig. 8.2). The collected data was analyzed in Microsoft excel.

8.2. Plant diversity: The field data was collected mostly from non-disturbed forest areas using 224 nested quadrat samples in 28 elevation steps from where 664 vascular plant species covering 367 genera and 131 Families. A maximum number of 155 species recorded from the elevation of 2200 – 2300 m and minimum number of 60 species recorded from 3200 – 3300 m elevation steps. *Schima wallichii* contributed the maximum number stands amongst the recorded tree species. The elevation wise number species, Genus and Family has been given in Table 8.1.

8.3. Dominance analysis: The dominant trees recorded from this region include *Castanopsis hystrix, Engelhardtia spicata, Ostodes paniculata* and *Schima wallichii. Alnus nepalensis* and *Ostodes paniculata* are the dominant tree species of tropical and temperate forests and the similar observation has been reported by ISRO in 1994.

Fig. 8.1. Elevation wise geographical area distribution map of east district of Sikkim

Elevation Steps	Number Species	Number Genus	Number Family
550	129	108	59
650	96	85	47
750	106	89	53
850	121	103	64
950	134	110	68
1050	134	110	63
1150	109	95	59
1250	126	104	56
1350	106	92	57
1450	128	105	70
1550	133	111	64
1650	122	95	64
1750	130	101	60
1850	134	106	69
1950	140	103	66
2050	109	90	56
2150	143	106	65
2250	155	121	69

Table 8.1. Detail of vascular plant species Genus and Family in each elevation steps

Disc	ussion	111
Disci	ussion	111

Elevation Steps	Number Species	Number Genus	Number Family
2350	109	86	57
2450	146	106	63
2550	119	87	53
2650	142	99	56
2750	124	93	51
2850	102	84	48
2950	112	85	48
3050	86	60	36
3150	80	54	36
3250	60	46	33

Fig. 8.2. Landuse and landcover map of East district of Sikkim

The Frequency, Relative Frequency, Density, Relative Density, Abundance, Relative Abundance and Importance value Index were also determined for the East district of Sikkim, where *Pteridium aquilinum* is recorded with 100 % frequency but *Schima wallichii* contributed maximum density with highest IVI score of 12.19 followed by *Ostodes paniculata* with IVI score of 4.64. The highest IVI scores of 10 top vascular plant with the IVI is given in Table 8.2.

Sl No.	Botanical Name	F	D	Α	RF	RD	RDM	IVI
1	Schima wallichii	50.000	44.500	89.000	0.420	7.830	3.941	12.190
2	Ostodes paniculata	42.857	15.357	35.833	0.360	2.702	1.587	4.649
3	Alnus nepalensis	57.143	12.607	22.063	0.480	2.218	0.977	3.675
4	Castanopsis hystrix	71.429	11.607	16.250	0.600	2.042	0.719	3.362
5	Engelhardtia spicata	53.571	11.214	20.933	0.450	1.973	0.927	3.350
6	Nephrolepis cordifolia	82.143	10.786	13.130	0.690	1.898	0.581	3.169
7	Symplocos lucida	39.286	8.071	20.545	0.330	1.420	0.910	2.660
8	Eupatorium adenophorum	75.000	8.607	11.476	0.630	1.514	0.508	2.652
9	Dryopteris sikkimensis	64.286	8.286	12.889	0.540	1.458	0.571	2.568
10	Selaginella ciliaris	64.286	7.893	12.278	0.540	1.389	0.544	2.472

Table 8.2. List of the highest IVI scores of 10 vascular plants

8.4. Diversity Indices: Different vascular plant species recorded in different elevation gradient of East district of Sikkim are not with uniform pattern of distribution. This is influencing the changes in diversity indices in different locations and in different vegetations. To know the plant diversity *viz*. richness, dominance, evenness, etc., the diversity indices like Margalef Index (MI), Simpson's Index (D), Shannon-Wiener Index (H) and Pielou's Index (J) also analysed. The Margalef diversity index showed very high values at all elevation bands with the highest reaching at 2200 - 2300 m; whereas Shannon Weiner Diversity Index values varied between 3.4 and 4.4 [except at the highest elevation band, where the values was the lowest (1.9)] with the highest value of 4.4 at 2200 - 2300 m. Through this the highest species richness was observed at 950 m elevation. The values of different diversity indices in different altitudinal bands has been presented in (Fig. 5.14 to 5.17) which shows the diversity is higher in the elevation at 1050 m, 1850 m and 2250 m, then decrease slowly. This indicate that the diversity is more in the ecotonal regions. The value each indices is given in the Table 5.4.

8.5. Species Richness and Elevation

Maximum area spread is found to be in 1100 - 1500 m elevation range, especially at 1300 - 1400 m band; whereas the north-eastern aspect occupies minimum area with north western aspect occupying maximum area in East district of Sikkim. *Schima wallichii* is found to be occurring abundantly in subtropical belt of the district with 1246 counts. A minimum of 60 and maximum of 155 species were noted in 3200 - 3300 m and 2200 - 2300 m elevation bands. At 1800 - 1900 m elevation band a minimum of 29 and maximum of 63 species were noted pointing to an intermediate minima. At 600 - 700 m elevation band, the standard deviation of species range is found to be below 5 indicating greater abundance

of species. In general, the number of shrub, herb and lianas decreased from lower to higher elevations with lianas almost absent beyond 3200m elevation. The number of tree species was found to follow a mixed trend, coinciding to the level of disturbance and other abiotic factors. *Pteridium quilinum* is found in all elevation bands indicating maximum tolerance and adaptability, whereas 190 species found with single appearance in one elevation band have narrow tolerance and adaptability range.

A study conducted by Behera and Kushwaha (2007) in Arunachal Pradesh of Eastern Himalaya using data on the tree species (cbh e" 15 cm) gathered at every 200 m steps between 200 m and 2200 m gradients. Tree diversity demonstrated a greater variation along the gradients with a total of 336 species belonging to 185 genera and 78 families. While studying in Helan Mountain, China, Jiang *et al.* (2007) found that the number of species initially increased and then declined, and the curve was markedly 'humped'. They observed richness was the highest between 1800 and 2000 m amsl.

8.5.1. Species richness: In any biodiversitically rich vegetation and flora occurrence and distribution of different species can't be uniform. It certainly respond to different prevailing factors in the habitat. From a study in the 500-3300 m elevational range of habitat in the East district of Sikkim led to the record of 664 species of vascular plants. This include almost all habit groups, harbs, shrubs, climbers, lianas, trees, and epiphytes. Major part of the natural vegetation, especially in the tropical to warm temperate belt is dominated by trees. It was noted that at least 158 species of trees, 197 species of Shrubs 91 species of lianas and 304 species of herbs are growing in the study area. To understand the scaling effect the field data is divided into three different scale viz. 100 m elevation steps 200 m elevation steps and 300 m elevation steps. The species richness along the 100 m elevation gradient shown in figure. 8.3.

Fig. 8.3. Species richness along the 100m elevation steps

8.6. Distribution of Trees Shrubs and Herbs along the altitude: A total of 664 species of vascular plants were recorded from the East district of Sikkim, out of which only *Pteridium aquilinum* has been found in all the elevation steps, 8 species are found in more than 20 elevations steps and 25 species are found in more than 15 elevations steps and 195 species are found in only single elevation step (Annexure-V). In general, 24 tree species are found only in single elevation band, whereas *Acer campbellii* and *Schima wallichii* are found in more than 14 elevation steps and *Albizia chinensis, Macaranga indica*

are found in more than 10 elevation steps of the study area. It was also observed that 14 species of shrubs were found in more than 10 elevation steps, whereas 59 species of shrubs occurs only in single elevation step. Similarly, 21 species of herbs are recorded in more than 15 elevation steps and 79 species of herbs are found only in single elevation steps. Table 8.3 showing the list of all vascular plant recorded from each elevation band of East district of Sikkim.

Elevation	Number of	Number of	Number of	Number of
Steps	Tree	Shrubs	Herbs	Epiphyte
550	20	34	57	25
650	18	16	52	14
750	18	21	59	12
850	28	34	56	8
950	36	40	61	8
1050	30	35	65	12
1150	24	28	54	6
1250	27	31	61	13
1350	18	23	58	9
1450	21	33	69	8
1550	22	43	59	13
1650	25	26	63	10
1750	19	38	68	12
1850	31	28	69	11
1950	19	41	69	13
2050	21	38	42	13
2150	42	30	63	11
2250	33	30	82	15
2350	16	27	65	10
2450	30	28	86	10
2550	24	17	69	9
2650	33	23	84	8
2750	28	19	75	9
2850	12	18	68	10
2950	34	17	59	8
3050	28	19	38	8
3150	21	17	47	0
3250	15	15	35	0

Table 8.3. List of tree, shrubs, herbs and epiphyte of the study area

8.7. Species richness along elevation gradient

In general, the species richness showed a gentle mid-elevation peak with a fast declining trend beyond mid-elevation. The pattern became prominent when adjudged from 100 m to 200 m and 300 m elevation bands with R^2 values of 0.502, 0.553 and 0.743 respectively; indicating realisation

of scale effect. Similarly, the genera and family richness pattern followed the mirror image of species with mid-elevation peak. The R^2 values increased when plotted from 100 m to 200 m and 300 m elevation bands for genera (0.657, 0.764 and 0.862) and families (0.765, 0.875 and 0.907). Though, the species richness pattern along elevation gradient non-linear polynomial relationship, it clearly confirmed the pattern of mid-elevation peak across the taxonomic spectrum (i.e., species, genera and families), and grain size (100 m, 200 m and 300 m elevation bands).

This pattern is in contrast to a hump-shaped pattern found by Vetaas and Grytnes (2002), while studying the distribution of vascular plant species richness along the elevation gradient of Nepal Himalaya, between 1000 to 5000 m and found a hump-shaped pattern. Another study by Bhattarai and Vetaas (2006) showed drastic decrease in tree species richness up to 4000 m elevation in central Himalaya. Behera and Kushwaha (2007) in Arunachal Pradesh of Eastern Himalaya found that the alpha diversity demonstrated a decreasing pattern with two maxima (i.e., elevational peaks) along the gradients; one in 601–1000 m and the other in 1601–1800 m, corresponding to transition zones between tropical-subtropical and subtropical-temperate forests. Acharya et al., (2011) observed increase in tree species richness pattern till 1500 m and drastic decrease beyond till 3800 m in Sikkim state. However, the pattern differs once the other life-forms such as shrubs, herbs and lianas are considered. Namgail et al. (2012) while analysing the dry alpine communities between 4500 m and 5500 m in Ladakh of Western Himalaya found unimodal relationship between plant species-richness and Elevation between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. In south west Saudi Arabia, the species richness increased from lower elevation to higher elevation up to 2000 m highest in 2000-2500 m, then the species diversity decreased while increasing elevation there is a remarkable change in vegetation species diversity and floristic relation (Hegazy et al., 1998). In Costa Rica, Kluge et al. (2006) observed that the species richness of the 484 recorded species showed a hump-shaped pattern with elevation (with a richness peak at mid-elevations at 1700 m) related strongly with climatic variables, especially humidity and temperature; while area and species pool were associated less strongly.

In present studies showed that quadrats falling in the transition zones between two forest types possess significantly larger number of species than other steps (Fig. 5.18) with elevations of 900 m, 1800 m and 2200 m. This corresponds to the transition zones between tropical-subtropical and temperate and sub-temperate zone. The 100 m elevation steps there is no direct correlation of elevation with the richness of different ranks of taxa, namely species, genus and family. This may be due to the impact of scale factor. In general, there is no clear idea regarding the species richness along the 100 m elevation gradient (Fig. 5.18). The R^2 value was 0.50 in second order polynomial, but the relation seen increasing in the initial stage but it decreases with the increase of elevation from temperate forest transition zone, which is located at around 2200 m altitude in the East district Sikkim.

Through this study, species richness found increasing along the altitudinal gradient of lower elevation from tropical forest and up to the sub-tropical forest, i.e. up to 1900 - 2000 m elevation. In the temperate zone the number of species decreases with an increase in elevation. List of vascular in each elevation band is presented in Table 8.4.
Elevation step No. of Species (m) (100 m)		No. of Species (200 m)	No. of Species (300 m)	
550	127	1(2)	204	
650	96	105		
750	106	167		
850	121	107	227	
950	134	104		
1050	134	174		
1150	109	166	196	
1250	126	100		
1350	106	245		
1450	128	243		
1550	133	162	224	
1650	122	105		
1750	130	197	242	
1850	134	107		
1950	140	202		
2050	109	203		
2150	143	104	249	
2250	155	194		
2350	109	206		
2450	146	200	227	
2550	119	109		
2650	142	198		
2750	124	166	150	
2850	102	100		
2950	112	150		
3050	86	150	100	
3150	80	109	108	
3250	60	108		

Table 8.4. List of the number vascular plant species in each 100 m 200 m, and 300 m elevation steps.

8.7.1. Along 100 m elevation step: Statistical test has been carried out targeting the elevation bands of 100 m, 200 m and 300 m to find out the species richness in three different classes at species, genus and family levels. In every 100 m elevation steps there are eight sample plots which seems less to see the pattern of species richness curve. The species richness pattern in 100 m elevation band is statically not significant (R^2 Value is 0.502) owing to the effects of local factors in the Eastern Himalayan region as well as topographic factors (steep slope/shortest elevation zone) along this elevation band.

8.7.2. Along 200 m and 300 m elevation steps: Additionally, statistical tests have been carried out targeting the elevation bands of 200 m and 300 m with 16 sample plots and with 24 sample plots of 20 x 20 m, respectively. In the second polynomial regression equation, the relation between species richness in 200 m is $R^2 = 0.553$ and p<0.01 and for 300 m it is $R^2=0.73$ and P<0.01, which are statically

significant and express that the relation between species richness and elevation is improving in the combined data set or in courser resolution or number of sample size may be increased to produce the better result. Behera and Kushwaha (2007) discussed that the fine resolution data may improve the result in the eastern Himalaya. It can been seen that along 100 m elevation step, data set of eight plots of 20 x 20 m are not sufficient to understand the actual relationship between species richness along the elevation step of 100 m in the Eastern Himalaya Sikkim. The list of number vascular plant species in each 100 m, 200 m, 300 m elevation steps are given in Table 8.4.

Though the species richness followed the hump-shaped relationship with elevation showing a peak in between 1500 - 1800 m for species genera and families (Fig. 5.19 & Fig. 5.20).

Obviously, a few studies have assumed that a species with particular altitudinal range will be present within each 100 m band of that range and thus interpolation violates control over sampling area and intensity. Such type of studies have clearly ignored the local ecological factors those might have significant impact on the alpha as well as beta diversity of a place. Furthermore, the magnitudes of change of microclimatic conditions in the 100 m bands are not remarkable compared to that of an individual plot. According to (Ricklefs, 2004; Whittaker*et al.*, 2001) the characteristics of biodiversity generally result from two factors, evolutionary history and contemporary ecological conditions. If it assume that evolutionary history is identical, it can understand that the species groups that have the same or similar ecological requirement and ways of adapting or responding to the environment may also exhibit the same or similar distribution of diversity in space. Conversely, Whittaker *et al.* (2010) and Meentemeyer (1989) opined that ecological phenomena are hierarchically structured, which are related closely to the scale of observation. The challenge to contemporary ecology and biogeography is to document scale dependence or independence in different systems. The species pool is regarded as an important factor in determining community richness (Eriksson, 1993). This was seen in the elevation of 950 m where number of individual is less but numbers of species are more as compared to other bands.

The low elevation sites were relatively densely populated probably because of human interferences in these areas facilitates the introduction and establishment of non-native species (Rawal & Pangtey, 1994). These spaces may intensify the establishment of shade intolerant species and enhance the regeneration of mixed pine-broadleaved forests (Wangda & Ohsawa, 2006). As a result of which the maximum species were encountered at lower elevation compared to higher elevation sites. The human impact at lower altitudes was evident in the form of open spaces left after felling of selective species.

8.8. Effect of the forest ecotone

Lomolino, (2001) has studies an ecotone effect (high diversity in the ecotone due to significant overlap between communities) in the context of elevational gradients and source-sink dynamics. The proportion of species shared and the amount of overlap between communities can play a significant role in determining the unimodal pattern of species richness by shifting of species to ecotone zones, which can also be explored further by looking at the contribution of marginal/sink species to the richness dynamics in the zones of overlap. Along a local gradient, richness in the ecotone was likely to be composed of ecotone specialists and a number of low abundance sink species contributed by spill over from adjoining biomes as shown by rescue effect as reported by Brown & Brown (1977).

Similarly, the floristic and ecological importance of the forest in phytogeographical zonation has remained unquestioned (Odland & Birks, 1999). The plant species richness with the distance is often associated with abrupt change in climatic and other environmental conditions (Kirkpatrick & Brown, 1987).

The Himalayan region is a unique physiogeographical region with an average elevation above 4000 m. Zheng *et al.* (1981) reported that the monsoon and westerly are strongly influenced by climatic zones. The topographic configuration and atmospheric circulation determine the horizontal separation of natural vegetation segments. The vegetation changes successively from southeast to northwest with decreasing moisture from montane forest, are gradually changing through high-altitude scrubs, alpine meadows, and alpine steppes to alpine deserts.

8.9. Species Richness and Environmental Parameters

A main aim of this study was to investigate the evident incompatibility between the need for implements that correctly predict ecological consequences of forest management and the current ecological knowledge and available environmental data. The approach taken in this study is experiential and uses observed environmental and altitudinal distribution patterns as a starting point for generating maps for such studies. This method requires accurate maps of species richness parameters in high resolution. Altitude itself is not an environmental gradient and therefore, is itself virtually nothing to life (Kroner, 2000; Brown, 2001). However, several environmental gradients, either singly or in inter-correlations, act significantly along the changing elevation and therefore, it represents a composite gradient of those environmental variables. It is very difficult to explore the drivers of the complex biological patterns seen along the elevation gradients from the independent effects of single overriding forces (Lomolino, 2001). However, many studies have explored plausible driving factors for the prevailing patterns (Grime, 1997).

This study was undertaken along the high elevation range of East district of Sikkim focusing upon prevailing species richness and production of biomass. Anthropogenic and natural factors (e.g., wild fire, landslide, trekking, tourism, cattle grazing, strong wind, snow avalanche, etc.) responsible for disturbance of forest ecosystem have been identified through field survey. Bedsides, other factors may also have a bearing on sampling effect, facilitation and complementarily.

Total species richness, i.e. of all life-forms or habit-groups, has a significant hump-shaped pattern along the altitudinal gradient (elevation). Maximum species richness occurs at optimal elevation of 2100 – 2200 m, which is the trans-ecotone zone of two type of forests or vegetation. It has been observed that species richness varies in elevation between 1100 - 1200 m and 1300 - 1400m owing to human interference as well as changing climatic conditions. It has been reported that in Sikkim Himalaya, the species decreases along the altitude starting from the elevation range of 2400 - 2600m (Acharaya *et al.*, 2011). As per field observation, the north facing slopes have more species compared to the south facing slopes. Shrubby species decreases after 1800 - 1900 m as the area above 2000 m are mostly covered with different species of bamboos like *Arundinaria acerba*, *Chimonocalamus griffithianus* and *Arundinaria racemosa*. Owing to the dense population of these species in this region there is a less regeneration of other tree and shrub species. In majority of the cases, not a single shrub has been found in 20×20 m plots were these species were dominated. The variation of herbs in the region is attributed to the increasing anthropogenic activities or with the aggressive bamboo cover and it may also be due to changing climatic conditions.

Further, studies were also conducted the on geographical area and the species richness along the elevation was observed that the geographical area can play the major role for species richness along the elevation gradient in the Sikkim Himalaya, but further research needed to conclude the relation between geographical area and species richness in such mountainous regions.

8.10. Biomass along altitudinal (Elevation) gradient

Biomass is described as the plant material produced as a result of photosynthesis and its accumulation in different forms in the plant body. Its measurement is based on commonly accepted principles of forest inventory and ecological survey. Good estimation of stem volume forest biomass on account of its ever changing nature remains an interesting and challenging task for the researchers. The field data like forest type, density, stem diameter at breast height and the tree height are normally collected to calculate the biomass. The field inventory is not only a tedious and time consuming task, it becomes too complicated to carry out field survey manually in heterogeneous forests as the number of species within the stand increases.

Biomass has been calculated using the volume of different tree species in the study area using the FSI-2006 volume equation. After calculating the volume of each species, the specific gravity of the tree has been used to calculation the biomass. The general volume equation was used for the trees whose volume formula was not available. The biomass also shows the unimodal relationship along the altitudinal gradient in the study sites.

The biomass of herbs, shrubs and epiphytes were also calculated using the percentile factor among different forest types (Chaturvedi & Singh, 1987; Rawat & Singh, 1988; Singh & Singh, 1991). Data has tested at different elevation bands with 100 m, 200 m and 300 m elevation steps to see the effect of scale. The relationship between biomass along the altitude in different elevation bands were shown in Figs. 5.27, 5.28 & 5.29.

The biomass ranging from 6.3 t/ha at 3150m and 68.6t/ha at 2650m in different elevation range of Sikkim Himalaya. Sundriyal and Sharma (1996) recorded 8.32 t/ha woody biomass from Mamlay watershed in South Sikkim. In the present investigation, the average biomass of East Sikkim was determined to 38.8t/ ha, whereas Chhabra *et al.* (2002) reported that Sikkim contributes 48.1Mt/ha.

The above ground (AG) biomass distribution pattern showed alternate increasing and decreasing pattern along the elevation gradient. In general, the AG biomass showed a smooth increase up to midelevation and decrease further. The R^2 values increased (i.e., 0.28, 0.41 and 0.58) when plotted from 100 m to 200 m and 300 m elevation bands. The AG biomass pattern along elevation gradient showed non-linear polynomial relationship, where in it confirmed the pattern of mid-elevation peak in the East district. Here, the primary productivity measured by the AG biomass is found to be positively correlated with plant species diversity as the productive forest ecosystems have more species, there by more productivity (Huston, 1994).

Bhattarai *et al.*, (2004) observed a significant unimodal relationship between species richness and biomass in an arid sub-alpine grassland of the Central Himalayas, Nepal. They observed lower turnover in the old field than in the common pasture. Namgail *et al.*, (2012) while analyzing the dry alpine communities between 4500 m and 5500 m in Ladakh of Western Himalaya reported a hump shaped relationship between aboveground phytomass and Elevation between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Benito et al., (2014) used 54,000 plots of the Spanish Forest

Inventory and maximum likelihood techniques to quantify how climate, stand structure and diversity shape carbon storage and tree productivity. They found a consistent positive effect of functional diversity on carbon storage and tree productivity was observed in all seven forest types studied. This relationship was not linear, and the largest changes in carbon storage and tree productivity were observed at low levels of functional diversity. They also found a generally positive effect of diversity on carbon storage and tree productivity, supported by both complementarity and selection mechanisms (Benito *et al.*, 2014).

Relationship between biomass along the 100 m elevation step has been presented in Fig. 5.27.As it was seen, the pattern of biomass along the altitude in the lower elevation of 500 - 600 m starts from 29.1 t/ha. It increases slowly and has reached around 40.0 t/ha in the elevation of step of 800 - 900m which represent the ecotone region of tropical and sub-tropical forest and again it decreases with increasing the elevation zone at 1400m. Between 1000m to 1500m there are major human habitations in East district. And, the decrease of biomass has been attributed to the anthropogenic activities in this ecoregion. Besides, there are limited numbers of big trees in this eco-region as most of the trees were harvested for human consumption. The biomass, t/ha, again increases and reached to around 60.0t/ha at the elevation step of 1600 - 1700 m which is the second ecotone for sub-tropical and temperate forests. Again, the biomass decreases down to 35.0t/ha at the elevation step of 1900 - 2000 m and then starts increasing with the increase of elevation and it reached around 69.0t/ha at the elevation step of 2600-2700 m which is the highest pick of biomass production. After the elevation step of 2700 m the biomass production decreases and it becomes less than 10.0t/ha in the elevation step of 3100 - 3200m. The overall pattern indicated that the biomass decreases with increase in the elevation excluding the ecotone areas. Similar observation was also reported by Wang et al. (2014) who have conducted study above 3100 m ranging up to 4300 m in the elevation gradient on the Tibetan Plateau.

8.11. Satellite based correlation

Geometric and radiometric corrected optical data was procured for the present experiment. The processed data were further used for the assessment of EVI2 (a proxy for biomass). The data was tested in simple linear equation, the pattern of field derived biomass and EVI2 derived from Landsat, shows the positive relationship with $R^2 = 0.5$ as shown in figure 4.31. Similar result was found by Tan *et al.* (2007) during their study on satellite based estimation of biomass for north-east china. They tested their finding using the regression model for NDVI and field based biomass. But, Devagiri et al. (2013) and Zheng et al. (2004) found the NDVI and area weighted above ground biomass (AGB) R²=0.8. The presently collected data was segregated in three different categories or classes: (a) EVI and field derived biomass in 100 m elevation steps, where the R^2 value was 0.32; (b) present data for above subtropical forest to subalpine forest were tested to see relationship and that was found to be $R^2 = 0.31$; (c) such data was again tested for the relation between temperate forest to subalpine forest that showed $R^2=0.80$. This result shows even the fragmented data from different forest zones, the relation of biomass and EVI showed no any recognizable difference. But, if moved further towards the higher elevation the relation shows significant result. This may be due to the high moisture contents in the un- or low disturbed forests of high altitude areas. In such areas disturbances are caused mostly by the large number of visiting tourists and the activities of plant hunters. The field derived biomass production and MODIS productivity (1km x1km) was not found good relationship, it may due to the scale effect (i.e. the total geographical area of the study are is very small 954 sq km)

To understand the better relationship the further extensive research is needed to evaluate the climate change related studies in different sectors of the Sikkim Himalayan regions.

8.12. Relationship between Species Richness and Biomass Production along the altitude

The relationship between species richness and biomass is tested in three different scales, as it was discussed above. It has been observed that there was a better relation in regional scale as compared to the local scale. In first 8 nested quadrats in each of the 28 different elevation steps the R² is less than 40%. But, if another eight quadrat in the same points are added the relation becomes more than 50%. Similarly, if further 8 quadrats are added then the relation between biomass and species richness increases to over 80%. This shows that there is major role of scale between biomass and species richness in determining the relationship, which can be referred as multi-scale dependant mechanism (Simova *et al.* 2013). They found that, at the smaller spatial scale of individual plots, there was significant curve that shows linear negative relationship between species richness and productivity. Whereas, at the larger site scale it is turning into a non-significant relationship.

The relation between species richness and biomass along the elevation gradient has also been tested using the second order polynomial regression equation, and the determined relation is 27 %, 30 % and 58 % respectively for 100 m, 200 m and 300 m elevation steps.

The result has also been tested with different environmental variables. It was observed that there is a positive relationship of species richness and biomass along the altitude, as it was tested along the 100 m, 200 m and 300 m elevation gradients.

The data has been tested in the GLM model with seven variables. It was found that temperature plays the most important role for the relationship between species richness and biomass accumulation along the elevation gradient. Similar observation has been reported by Bhattarai in 2004. There are several ecological factors those might different types of impacts on different relationships. The relationship between diversity and productivity is based on the ecological effects of complementarity and 'sampling'.complementarity suggests that species richness enhances productivity because of niche differentiation (for example, complementarity) or positive interactions (for example, facilitation) between species and therefore more of the available resources can be exploited. 'Sampling' means that more-diverse communities are, by chance, more likely to contain species with higher average productivity than are with low diverse communities (Venail1 *et al.*, 2008).

Both species richness and AG biomass co-vary along elevation gradient showing strongly positive relationships. The relationship became prominent with increasing elevation and grain size of elevation bands i.e., from 100 m to 200 m and 300 m (with R² value increase i.e., 0.31, 0.53 and 0.80). Hence, productivity, one of the important factors is found to be correlated with elevation gradient potentially influencing species diversity.

8.13. Relation of diversity with Temperature, Precipitation and Area

The effect of area was highly conspicuous which supports the geographic area hypothesis that in higher areas availability facilitates more species to co-exist. Simultaneously, the crucial impact of precipitation and temperature, both at individual and combined conditions, explain the local effect of climate on species diversity. The non-linear spatial distribution of precipitation greatly affects moisture gradient

characterise species diversity along the elevation in tropical areas (Brown, 1988). The precipitation that affects the moisture gradient, influencing high species diversity for epiphytes in tropical Andes (Gentry & Dodson, 1987), in moist temperate forests of Pakistan (Shaheen *et al.*, 2012) and in the grasslands (Cornwell & Grubb, 2003) have been reported. Since, the study was within elevational range of 500 to 3300m, the influence of temperature was comparatively less significant. At higher elevation, the effect of temperature is significant as adiabatic lapse rate becomes lethal to plant physiology. It was assumed that the effect of candidate variables along elevation behave in non-linear fashion was substantiated by the curve pattern. Additionally, heteroscedasticity could be accounted by choosing appropriate poisson error distribution.

Despite combined effects of direct or indirect environmental variables no single parameter could explain the species richness pattern along the elevation (Whittaker, 1972). The more detailed study involving a wide range of ecologically significant variables can provide better explanations to the observed conditions of species richness along the gradients of elevation.

8.14. Status of Conservation in the Study area

Protected Areas (PA) are, and have been, the cornerstones of biodiversity conservation in the present era. Following IUCN guideline (Dudley, 2008) the Govt. of India has recently taken up some serious measures for the conservation of biodiversity by declaring many biodiversity rich areas as Protected or Reserve Areas for *in situ* conservation. As such, the proper management of these PAs, after notification, needed to be maintained with effective monitoring and strong enforcement of laws. Considering this fact, Govt. of Sikkim has declared (i) 01 Biosphere Reserve,(ii) 01 National Park, (iii) 06 Wildlife Sanctuaries and (iv) 01 Bird Sanctuary (Table 8.5).

Name of the protected area	Location and district	Area (km²)	Biogeographic Province	Altitude (m)	Year of Notification
	North and				
Kanchendzonga National Park	West	1784	1B	-	1977
Fambong Lho Wildlife	East			1524-	
Sanctuary	Sikkim	51.76	2C	2749	1984
Shingba Rhododendron	North			3048-	
Sanctuary	Sikkim	43	1B	4575	1992
	East			3292-	
Kyongnosla Alpine Sanctuary	Sikkim	31	2C	4116	1993
	South			2300-	
Maenam Wildlife Sanctuary	Sikkim	35.34	2C	3263	1987
Barsey Rhododendron	West			2200-	
Sanctuary	Sikkim	104	2C	4100	1996
	East				
Pangolakha Wildlife Sanctuary	Sikkim	128	2C		2000
	South				
Kitam Bird Sanctuary	Sikkim	6	-	320-875	2005
Kanchendzonga Biosphere	North and			2725-	
Reserve	West	2620	1B &1C	5537	1997

Table 8.5. Protected area networks in Sikkim

Source: Lepcha & Das, 2012

Discussion 123

Apart from these, many small pockets of forests, mostly located around the monasteries, village herbal gardens are forming part of traditional biodiversity conservation system in Sikkim. There are three sanctuaries [*viz*. Pangolakha Wildlife Sanctuary, Fambong Lho Wildlife Sanctuary and Kyongnosla Alpine Sanctuary] and some botanical and herbal gardens present in the East district of Sikkim for the conservation of biodiversity of the area.

Chapter 9 CONCLUSIONS

CONCLUSION

The survey conducted in Sikkim part of the Eastern Himalaya, covering the altitudinal range of 500 - 3300 m in the East district, which covers wide range of climatic zones from tropical to sub-alpine conditions. The work was aimed to understand the relation between species richness and biomass production with the change of altitude, that is, in turn, linked to different environmental set-up.

After completion of the work and analysis of data, it is now clear that the species composition in the study area changes with the increase or decrease of altitude. During the survey, highest number of species has been recorded from the vegetation located around the 2200 m elevation. However, highest number of tree species has been spotted at the junction of tropical and sub-tropical conditions at around 900 m altitude. At the same time, distribution pattern of different species of trees changes with change of elevation that expresses the degree of adoptability of each and every species to the altitude based changes in the habitat. With the increase or decrease of altitude most of the environmental parameters get affected and those, in turn, again lead to the modification of some other elements of the habitat including soil organic matter, rate of decomposition of rock, water holding capacity of soil, pH of soil and water etc. And, all these are basic factors for the selection of species for any particular habitat. So, a habitat with sharp change in altitude over a very small distance show quick change in nature of vegetation including the participating species of plants.

The species richness was also linked to availability of water, aspect, exposure to strong wind and, of course, with the degree of anthropogenic disturbances including location of human settlements and their type of road link with the urban areas. After altitude, in Sikkim Himalaya, water is a very important factor which is available in sufficient amount for the vegetation in most of the areas. So, apparently, water cannot be the very important factor behind the selection of species especially up to the temperate region. But, aspect of the habitat is extremely important as it is related to the availability of sun-light, facing strong wind or even the severity of snow fall.

Strong wind is very important as it is responsible for soil erosion, land slide, establishment of individual plants, distribution of seeds, availability of pollinators, accumulation and melting of snow, etc. So, in wind-facing and opposite side's vegetation formation will be completely different. Almost no soft soil will be available on the surface and that will work against the establishment of shallow rooted plants, especially those are without rhizome/ runner/ lower prostrate stem producing numerous adventitious root system. That means, strong wind interfere with the anchoring and settlement of plants in the habitat.

The Himalaya Biodiversity Hotspot is also recognised as one 'Hottest of Hotspots' due to excessive loss of natural habitat. It is also true for the Sikkim part of the Himalayas. Anthropogenic activities are the most serious influences and factors for the change of numerous habitat conditions, removal and

introduction of species, selection of species, etc. Anthropogenic interference is quite high in many parts of the study area. This directly influence the species richness of an area and is also found true in the East district of Sikkim.

The direct field-based methods for determining the (i) relation between species richness against elevation, and (ii) relation between species richness against biomass accumulation, has resulted almost uniform and acceptable result. Both, species richness and above ground biomass, along the elevation gradient showing strongly positive relationships. So, direct method, in most cases, produce the most reliable and usable result where-ever it is possible to take up.

At the same time, the indirect method of determining such relations using remote sensing techniques using satellite imageries also known to produce similar and reliable results for larges geographical areas. However, for the present investigation, the result was little different mostly due to the utilization of different scales for data collection in field and in remote sensing methods or may be due to the small coverage geographical area of the study.

This proves that through the use of satellite imageries along with suitable ground trothing can also be used effectively to establish such relationships. But, for this proper adjustment between two scales need to develop with some suitable modifications in the methodology. The result produced through this method is more laboratory oriented and can be repeated in quick succession. This method also can indicate the sudden changes in vegetation if any and can raise necessary alarm so that necessary steps can be taken on emergency basis if such a situation arises any time.

However, the essence of the entire work can be summarised as:

- 1. The flora of the study area has been characterised with quite high species richness
- 2. The species richness is high in the middle and low altitude areas
- 3. It decreases with the increase of elevation after 2200 m elevation
- 4. Species richness and biomass accumulation along the elevation gradient are showing strong positive relationship
- 5. Tree diversity also reduces fast with the increase of altitude
- 6. Scaling effect has been seen in the species diversity and biomass along the altitude
- 7. More intensive research is needed in different scale for better understanding the relationship between species richness and productivity along the altitudinal gradient in the mountainous regions like Sikkim
- 8. Remote sensing (using Satellite imagery) derived biomass production not showing good relation with field derived result of biomass production, which may be due to differences in scale and also due to the smaller geographical area under study
- 9. In multivariate analysis of temperature showed strong relationship with species richness along the altitude that, vis-à-vis also shows relation with the biomass production
- 10. It is essential to conduct such studies in other districts of the state and in regular intervals to monitor the changes if any and for developing proper strategies for effective conservation that is too much important for Sikkim that is well known for its extremely high biodiversity.

Photo Plates

Photo plates 126

PLATE 1: A. Girardinia diversifolia; B. Laphangium affine; C. Cheilocostus speciosus; D. Houttuynia cordata; E. Nepeta connata; F. Impatiens glandulifera; G. Aconitum ferox; H.Oxalis acetosella; I. Fragaria nubicola; J. Persicaria chinensis; K. Potentilla fulgens; L. Onopordum acanthium.

Photo plates 127

PLATE 2: A. Clematis montana; B. Arisaema propinquum; C. Pilea umbrosa; D. Piper boehmeriifolium; E. Myricaria rosea; F. Oxalis corniculata; G. Taraxacum campylodes; H. Impatiens urticifolia; I. Ranunculus laetus; J. Anaphalis busua; K. Ageratum houstonianum; L. Didymocarpus albicalyx.

PLATE 3: A. Ageratina adenophora; B. Swertia chirayita; C. Dobinea vulgaris; D. Panax pseudoginseng; E. Rheum aciminatum; F. Streptopus simplex; G. Achyranthes bidentata; H. Selinum wallichianum; I. Aster himalaicus; J. Cassiope fastigiata; K. Erigeron bellidioides; L. Rhaphidophora decursiva; M. Euphorbia sikkimensis.

PLATE 4: A. Primula capitata; B. Primula drummondiana; C. Primula edgeworthii; D. Primula calderiana; E. Primula macrophylla; F. Mikania micrantha; G. Elsholtzia fruticosa; H. Artemisia nilagirica; I. Inula orientalis; J. Polygonum molle; K. Pseudocyclosorus canus; L. Lycopodium japonicum.

PLATE 5: A. Anemone obtusiloba; B. Anemone rivularis; C. Elsholtzia fruticosa; D. Hedychium thyrsiforme; E. Cautleya spicata; F. Hedychium coccineum; G. Hedychium greenii; H. Aeschynanthus hookeri; I. Dendrobium denneanum; J. Equisetum arvense; K. Pleione praecox; L.Clintonia Spp; M. Liparis Spp.

Photo plates 131

PLATE 6: A. Solanum viarum; B. Rubus buergeri; C. Rosa brunonii; D. Mussaenda roxburghii; E. Aster albescens; F. Brugmansia suaveolens; G. Daphne bholua; H. Viburnum erubescens; I. Zanthoxylum nepalense; J. Maesa chisia; K. Hypericum uralum; L. Erythrina arborescens; M. Callicarpa macrophylla.

PLATE 7: A. Osbeckia crinita; B. Mahonia napaulensis; C. Oxyspora paniculata; D. Leucosceptrum canum; E. Symplocos ramosissima; F. Engelhardtia spicata; G. Magnolia doltsopa;
H. Edgeworthia gardneri; I. Litsea cubeba; J. Castanopsis indica; K. Callicarpa arborea; L. Terminalia myriocarpa.

PLATE 7: A. Osbeckia crinita; B. Mahonia napaulensis; C. Oxyspora paniculata; D. Leucosceptrum canum; E. Symplocos ramosissima; F. Engelhardtia spicata; G. Magnolia doltsopa; H. Edgeworthia gardneri; I. Litsea cubeba; J. Castanopsis indica; K. Callicarpa arborea; L. Terminalia myriocarpa.

Photo plates 134

PLATE 9: A. Rhododendron barbatum; B. Rhododendron thomsonii; C. Rhododendron cinnabarinum; D. Rhododendron decipiens; E. Rhododendron wightii; F. Rhododendron wallichii;
G. Rhododendron lanatum; H. Rhododendron campylocarpum; I. Rhododendron tubiforme; J. Rhododendron cyanocarpum; K. Rhododendron arboreum; L. Form of Rhododendron thomsonii.

PLATE 10: A. Dense subtropical forest; **B.**Steep slope rockey area of the study area; **C.** Dense Temprate forest of East District Sikkim; **D.** Vegetations near by village; **E.** Vegetation along the river side; **E.** Dense bamboo forest along the hill; **G.**Collection of specimen from alpine area; H. Alpine area covered by snow.

Bíblíography

BIBLIOGRAPHY

- Abrams, P.A. 1988. Resource productivity-consumer species diversity: simple models of competition in spatially heterogeneous environments. *Ecology* 69(5): 1418–1433.
- Abramsky, Z.; Rosenzweig, M.L. and Brand, S. 1985. Habitat selection of Israel desert rodents: comparison of a traditional and a new method of analysis. *Oikos* 45: 79 88.
- Acharya, B.K.; Chettri, B. and Vijayan, L. 2011. Distribution pattern of trees along an elevation gradient of Eastern Himalaya, India. *Acta Oecologica* 37(4): 329 336.
- Adams, J.M. and Woodward, F.I. 1989. Patterns in tree species richness as a test of the glacial extinction hypothesis. *Nature*, 339(6227): 699 701.
- Agrawal, S.K.; Tiwari, S. and Dubey, P.S. 2002. *Biodiversity and Environment*. A.P.H. Publishing Corporation, New Delhi.
- Alexander, G. and Hilliard, J.R. 1969. Altitudinal and seasonal distribution of Orthoptera in the Rocky Mountains of northern Colorado. *Ecological Monographs*, 39(4): 385–432.
- Al-Mufti, M.M.; Sydes, C.L.; Furness, S.B.; Grime, J.P. and Band, S.R. 1977. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. *The Journal of Ecology*, 65: 759 – 791.
- Alves, L.F.; Vieira, S.A.; Scaranello, M.A.; Camargo, P.B.; Santos, F.A.; Joly, C.A. and Martinelli, L.A. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). *Forest Ecology and Management*, 260(5): 679 – 691.
- Arrawatia, M.L. and Tambe, S. 2011. *Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot*. Government of Sikkim, Gangtok
- Austin, M.P. and Meyers, J.A. 1996. Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity. *Forest Ecology and Management*, 85(1):95 – 106.
- Austin, M.P.; Pausas, J.G. and Nicholls, A.O. 1996. Patterns of tree species richness in relation to environment in southeastern New South Wales, Australia. *Australian Journal of Ecology*, 21(2): 154 – 164.
- Barry, R.G. 2008. Mountain Weather and Climate. Cambridge University Press Cambridge, UK.
- Basistha, B.C.; Sharma, N.P.; Lepcha, L.; Arrawatia, M.L. and Sen, A. 2010. Ecology of Hippophaesalicifolia D. Don of temperate and sub-alpine forests of North Sikkim Himalayas—a case study. *Symbiosis*, *50*(1-2): 87–95.

- Becker, T.; Dietz, H.; Billeter, R.; Buschmann, H. and Edwards, P.J. 2005. Altitudinal distribution of alien plant species in the Swiss Alps. *Perspectives in Plant Ecology, Evolution and Systematics*, 7(3): 173 – 183.
- Behera, M.D. and Kushwaha, S.P.S. 2007. An analysis of altitudinal behaviour of tree species in Subansiri district, Eastern Himalaya. *Biodiversity and Conservation*, 16(6): 1851–1865.
- Berger, W.H. and Parker, F.L. 1970. Diversity of planktonic foraminifera in deep-sea sediments. *Science*, 168(3937): 1345-1347.
- Bhatnagar, Y.V.; Wangchuk, R.; Prins, H.H.; Van Wieren, S.E. and Mishra, C. 2006. Perceived conflicts between pastoralism and conservation of the kiang Equus kiang in the Ladakh Trans-Himalaya, India. *Environmental Management*, 38(6): 934 941.
- Bhattarai, K.R. and Vetaas, O.R. 2003. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. *Global Ecology and Biogeography*, 12(4): 327 340.
- Bhattarai, K.R. and Vetaas, O.R. 2006. Can Rapoport's rule explain tree species richness along the Himalayan elevation gradient, Nepal? *Diversity and Distributions*, 12(4): 373 378.
- Bhattarai, K.R.; Vetaas, O.R. and Grytnes, J.A. 2004. Fern species richness along a central Himalayan elevational gradient, Nepal. *Journal of Biogeography*, 31(3): 389–400.
- Bhattarai, K.R.; Vetaas, O.R. and Grytnes, J.A. 2004. Relationship between plant species richness and biomass in arid sub-alpine grassland of the central Himalayas, Nepal. *Folia Geobotanica*, 39(1): 57 71.
- Bhujel, R.B. 1996. *Studies on the Dicotyledonous Flora of Darjeeling district*.Ph. D. Thesis, University of North Bengal, Darjeeling.
- Bischoff, A.; Auge, H. and Mahn, E.G. 2005. Seasonal changes in the relationship between plant species richness and community biomass in early succession. *Basic and Applied Ecology*, 6(4):385 – 394.
- Bond, E.M. and Chase, J.M. 2002. Biodiversity and ecosystem functioning at local and regional spatial scales. *Ecology letters*, 5(4): 467–470.
- Brown, J.H. 1988. Species diversity. Analytical biogeography: an integrated approach to the study of animal and plant distribution. In: A.A. Myers & P.S. Giller, Pp. 57 89. Chapman & Hall, New York
- Brown, J.H. 2001. Mammals on mountainsides: elevational patterns of diversity. *Global Ecology and Biogeography*, 10(1): 101 109.
- Brown, J.H. and Davidson, D.W. 1977. Competition between seed-eating rodents and ants in desert ecosystems. *Science*, 196(4292): 880–882.
- Brown, J.H. and Kodric-Brown, A. 1977. Turnover rates in insular biogeography: effect of immigration on extinction. *Ecology*, 58(2): 445–449.
- Brown, J.H. and Lomolino, M.V.1998. *Biogeography* 2nd ed. Sinauer, Sunderland, Mass.
- Brown, S.; Gillespie, A.J. and Lugo, A.E. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. *Forest science*, 35(4): 881–902.

- Brown, S.L.; Schroeder, P. and Kern, J.S. 1999. Spatial distribution of biomass in forests of the eastern USA. *Forest Ecology and Management*, 123(1): 81 90.
- Cardinale, B.J.; Wright, J.P.;Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M. and Weis, J.J. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. *Proceedings of the National Academy of Sciences*, 104(46): 18123 18128.
- Castrezana, S. and Markow, T.A. 2001. Arthropod diversity in necrotic tissue of three species of columnar cacti (Cactaceae). *The Canadian Entomologist*, 133(03):301 309.
- Champion, S.H. and Seth, S.K. 1968. A Revised Survey of the Forest Types of India. Manager of Publications, Delhi.
- Change, I.P.O.C. 2006. 2006 IPCC guidelines for national greenhouse gas inventories. 2013–04–28]. http://www.ipcc-nggip.iges.or.jp./public/2006gl/index.html.
- Chaturvedi, O.P. and Singh, J.S. 1987. The structure and function of pine forest in Central Himalaya. I. Dry matter dynamics. *Annals of Botany*, 60(3): 237 252.
- Chaturvedi, O.P. and Singh, J.S. 1987. The Structure and Function of Pine Forest in Central Himalaya. II Nutrient Dynamics. *Annals of Botany*, 60(3): 253–267.
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M. A.; Chambers, J. Q.; Eamus, D.; Folster, H.; Fromard, F.; Higuchi, N.; Kira, T.; Lescure, J.-P.; Nelson, B. W.; Ogawa, H.; Puig, H.; Rie´ra, B.; and Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests, *Ecosystem Ecology*, 145: 87–99
- Chhabra, A.; Palria, S. and Dadhwal, V.K. 2002. Growing stock-based forest biomass estimate for India. *Biomass and bioenergy*, 22(3): 187–194.
- Clarke, K.R. and Warwick, R.M. 2001. An approach to statistical analysis and interpretation. *Change in Marine Communities*, 2^d edition, Primer-e Ltd, UK..
- Coleman, D.C. and Whitman, W.B. 2005. Linking species richness, biodiversity and ecosystem function in soil systems. *Pedobiologia*, 49(6): 479–497.
- Colwell, R.K. and Hurtt, G.C. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. *The American Naturalist*, 144(4): 570 595.
- Cornwell, W.K. and Grubb, P.J. 2003. Regional and local patterns in plant species richness with respect to resource availability. *Oikos*, 100(3): 417–428.
- Currie, D.J. 1991. Energy and large-scale patterns of animal-and plant-species richness. *The American Naturalist*, 137(1): 27 – 49
- Currie, D.J. and Paquin, V. 1987. Large-scale biogeographical patterns of species richness of trees. *Nature*, 329(6137): 326 327.
- Curtis, J.T. 1959. *The vegetation of Wisconsin: an ordination of plant communities*. University of Wisconsin Pres. United State
- Dang, H. 2003. *Himalayan Environment, Issues and Concerns of Conservation and Development*. Indian Publishers Distributors. New Delhi

- Das, A.P. 2011. Conservation efforts for East Himalayan Biodiversity and need for the establishment of corridors. In C. Ghosh and A.P. Das, *Recent Studies in Biodiversity and Traditional Knowledge in India*. Sarat Book House, Kolkata. Pp. 329 – 346.
- Das, A.P. 2013. The present status of the flowering plants of Darjiling and Sikkim. In: Asha Gupta (ed.), *Biodiversity Conservation and Utilisation*. Pointer Publishers, Jaipur. Pp. 83 – 96.
- Das, A.P. and Ghosh, C. 2007. Flora of Darjiling and Sikkim in the background of changing environment. In the Proceedings of State level seminar on "*Urban Biodiversity and Management of Natural Resources*", Department of Botany, R. D. National College, Mumbai. Pp.2 – 15.
- Das, A.P. and Lahiri, A.K. 1997. Phytosociological studies of the ground covering flora in different types of vegetation in Tiger Hill, Darjeeling District, West Bengal (India). *Indian Forester*, 123 (12): 1176–1187.
- Das, A.P.; Samanta, A.K. and Ghosh, C. 2010. A checklist of Angiospermic Climbers of Darjiling and Sikkim parts of Eastern Himalaya including Terai and Duars. *Pleione* 4(2): 185 206.
- Das, N. and Chattopadhyay, K..K.. 2013. Change in Climate–A threat to Eastern Himalayan biodiversity. *Journal of Today's Biological Sciences: Research & Review*, 2(2):.89–107.
- Day, M.; Baldauf, C.; Rutishauser, E. and Sunderland, T.C. 2014. Relationships between tree species diversity and above-ground biomass in Central African rainforests: implications for REDD. *Environmental Conservation*, 41(01): 64 72.
- DESM&E, 2013.Sikkim A Statistical Profile. Department of Statistics Monitoring & Evaluation, Government of Sikkim, Gangtok.
- Devagiri, G.M.; Money, S.; Singh, S.; Dadhawal, V.K.; Patil, P.; Khaple, A.; Devakumar, A.S. and Hubballi, S. 2013. Assessment of above ground biomass and carbon pool in different vegetation types of south western part of Karnataka, India using spectral modeling. *Tropical Ecology*, 54(2): 149 – 165.
- Dobson, A.J. 2002. An Introduction to Generalized Linear Models(2nded.). FL Chapman and Hall/ CRC, Florida. pp.225.
- Dolan, J.M. and Killmar, L.E. 1988. The shou, Cervuselaphuswallichi Cuvier, 1825, a rare and littleknown cervid, with remarks on three additional Asiatic elaphines. *ZoolGart NF*, 58: 84–96.
- Dudley, N., 2008. Guidelines for applying protected area management categories. IUCN.
- Eriksson, L.E., Santoro, M., Wiesmann, A. and Schmullius, C.C., 2003. Multitemporal JERS repeatpass coherence for growing-stock volume estimation of Siberian forest. *IEEE Transactions on Geoscience and Remote Sensing*, 41(7): 1561 – 1570.
- Eriksson, O. 1993. The species-pool hypothesis and plant community diversity. Oikos, 68: 371-374.
- Fargione, J.; Tilman, D.; Dybzinski, R.;Lambers, J.H.R.; Clark, C.;Harpole, W.S.; Knops, J.M.; Reich, P.B. and Loreau, M. 2007. From selection to complementarity: shifts in the causes of biodiversity– productivity relationships in a long-term biodiversity experiment. *Proceedings of the Royal Society* of London B: Biological Sciences, 274(1611): 871–876.
- Ferrazzoli, P. and Guerriero, L., 1995. Radar sensitivity to tree geometry and woody volume: a model analysis. *IEEE Transactions on Geoscience and Remote Sensing*, 33(2): 360–371.

- Fleishman, E.; Austin, G.T. and Weiss, A.D. 1998. An empirical test of Rapoport's rule: elevational gradients in montane butterfly communities. *Ecology*, 79(7): 2482–2493.
- Foody, G.M.; Boyd, D.S. and Cutler, M.E. 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. *Remote Sensing of Environment*, 85(4): 463 – 474.
- Franklin, J. 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. *Progress in Physical Geography*, 19(4): 474–499.
- Fridley, J.D. 2001. The influence of species diversity on ecosystem productivity: how, where, and why? *Oikos*, 93(3): 514–526.
- FSI. 1996. *Volume Equations for Forests of India, Nepal and Bhutan*. Forest Survey of India, Ministry of Environment and Forests, Govt. of India, Dehradun, India.
- Gairola, S.; Rawal, R.S. and Todaria, N.P. 2008. Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. *African Journal of Plant Science*, 2(6): 42 48.
- Gamfeldt, L.; Snäll, T.;Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruiz-Jaen, M.C.;Fröberg, M.; Stendahl, J.; Philipson, C.D. and Mikusiñski, G 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. *Nature Communications*, 4: 1340.
- García, L.V.; Marañón, T.; Moreno, A. and Clemente, L. 1993. Above-ground biomass and species richness in a Mediterranean salt marsh. *Journal of Vegetation Science*, 4(3):417 424.
- Gaston, K.J. 2000. Global patterns in biodiversity. Nature, 405(6783): 220-227.
- Gentry, A.H. and Dodson, C.H. 1987. Diversity and biogeography of neotropical vascular epiphytes. *Annals of the Missouri Botanical Garden*, 74(2): 205 233.
- Glenn-Lewin, D.C. 1977. Species diversity in North American temperate forests. *Vegetatio*, 33(2-3): 153 162.
- Goward, S.N. and Dye, D.G. 1987. Evaluating North American net primary productivity with satellite observations. *Advances in Space Research*, 7(11): 165 174.
- Greenberg, J.H. 1956. The measurement of linguistic diversity. Language, 32(1): 109-115.
- Grierson, A.J.C. and Long, D.G. 1983–2000. *Flora of Bhutan*, Vol. I. Parts 1 3; Vol. II. Parts (1 3). Royal Botanic Garden, Edinburgh
- Grime, J.P. 1973. Control of species density in herbaceous vegetation. *Journal Environ Manage*,1: 151–167.
- Grime, J.P. 1997. The humped-back model: a response to Oksanen. *Journal of Ecology*, 85(1): 97–98.
- Gross, K.L.; Willig, M.R.; Gough, L.; Inouye, R. and Cox, S.B. 2000. Patterns of species density and productivity at different spatial scales in herbaceous plant communities. *Oikos*, 89(3): 417–427.
- Grytnes, J.A. 2000. Fine-scale vascular plant species richness in different alpine vegetation types: relationships with biomass and cover. *Journal of Vegetation Science*, 11(1): 87–92.
- Grytnes, J.A. 2003. Species richness patterns of vascular plants along seven altitudinal transects in Norway. *Ecography*, 26(3): 291–300.

- Grytnes, J.A. and Vetaas, O.R. 2002. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. *The American Naturalist*, 159(3): 294 304.
- Grytnes, J.A.; Birks, H.J.B. and Peglar, S.M. 1999. Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. *Nordic Journal of Botany*, 19(4): 489–503.
- Grytnes, J.A.; Heegaard, E. and Ihlen, P.G. 2006. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. *Acta Oecologica*, 29(3): 241–246.
- Gutierrez, D. 1997. Importance of historical factors on species richness and composition of butterfly assemblages (Lepidoptera: Rhopalocera) in a northern Iberian mountain range. *Journal of Biogeography*, 24(1): 77–88.
- Hajra, P.K. and Verma D.M. (eds.) 1996.*Flora of Sikkim*, vol. 1.(Monocotyledons). *Flora of India series*, 2. Botanical Survey of India, Calcutta.
- Hamilton, A.C. 1975. A quantitative analysis of altitudinal zonation in Uganda forests. *Vegetatio*, 30(2): 99 106.
- Han, W.; Luo, Y. and Du, G. 2007. Effects of clipping on diversity and above ground biomass associated with soil fertility on an alpine meadow in the eastern region of the Qinghai Tibetan Plateau. *New Zealand Journal of Agricultural Research*, 50(3): 361 – 368.
- Hansen, M.H.; Hurwitz, W.N. and Madow, W.G. 1953. *Sample Survey Methods and Theory*. Volumes I and II, John Wiley & Sons. New York
- Haripriya, G.S. 2002. Biomass carbon of truncated diameter classes in Indian forests. *Forest Ecology and Management*, 168(1): 1 13.
- Hawkins, B.A.; Diniz Filho, J.A.F.; Jaramillo, C.A. and Soeller, S.A. 2007. Climate, niche conservatism, and the global bird diversity gradient. *The American Naturalist*, 170(S2): S16–S27.
- He, J.S.; Wolfe-Bellin, K.S.; Schmid, B. and Bazzaz, F.A. 2005. Density may alter diversity–productivity relationships in experimental plant communities. *Basic and Applied Ecology*, 6(6): 505–517.
- Hegazy, A.K.; El-Demerdash, M.A. and Hosni, H.A. 1998. Vegetation, species diversity and floristic relations along an altitudinal gradient in south-west Saudi Arabia. *Journal of Arid Environments*, 38(1): 3 – 13.
- Heinsch, F.A.; Reeves, M.; Votava, P.; Kang, S.; Milesi, C.; Zhao, M.; Glassy, J.; Jolly, W.M.; Loehman, R.; Bowker, C.F. and Kimball, J.S. 2003. GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm.*MOD17 User's Guide*, The University of Montana, Missoula MT, Pp 1-57
- Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. *Ecology*, 54(2): 427 432.
- Holdridge, L.R. 1967. Life zone ecology., (rev. ed.). Tropical Science Center San Jose, Costa Rica
- Hubbell, S.P.; Foster, R.B.; O'Brien, S.T.; Harms, K.E.; Condit, R.; Wechsler, B.; Wright, S.J. and De Lao, S.L. 1999. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. *Science*, 283(5401): 554 557.
- Hunter, M.L. and Yonzon, P. 1993. Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. *Conservation Biology*, 7(2): 420–423.

- Hunter, M.O.; Keller, M.; Victoria, D. and Morton, D.C. 2013. Tree height and tropical forest biomass estimation. *Biogeosciences*, 10(12): 8385 8399.
- Husch, B.; Beers, T.W. and Kershaw, J.A. 2003. *Forest Mensuration:* 4th ed. John Wiley & Sons, New Jersey, United States
- Huston, M.A. 1999. Local processes and regional patterns: Appropriate scales for understanding variation in the diversity of plants and animals. *Oikos* 83 (3): 393 401.
- Huston, M.A. and Huston, M.A. 1994. *Biological diversity: the coexistence of species*. Cambridge University Press. New York
- Hutcheson, K. 1970. A test for comparing diversities based on the Shannon formula. *Journal of Theoretical Biology*, 29(1): 151–154.
- Inskipp, T.P.; Lindsey, N. and Duckworth, W. 1996. *An annotated checklist of the birds of the Oriental region*. Oriental Bird Club. United Kingdom
- ISRO. 1994. Forest Cover Mapping through Digital Image Processing of Indian Remote Sensing Satellite data with Special Reference of Sikkim—Procedural Manual and Inventory: Joint Collaboration Project of Forest Department, Government of Sikkim and Regional Remote Sensing Service Centre, Kharagpur, Indian Space Research Organization, Department of Space, Government of India,
- Jain, S.K. and Rao, R.R., 1977. A handbook of field and herbarium methods. Illus.. General: Today and Tomorrow's Printers and Publishers xvi, Pp.157 New Delhi
- Janzen, D.H. 1973. Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. *Ecology*, 54(3): 687–708.
- Jiang, Y.; Kang, M.; Zhu, Y. and Xu, G. 2007. Plant biodiversity patterns on Helan Mountain, China. *Acta Oecologica*, 32(2): 125 133.
- Jiang, Z.; Huete, A.R.; Didan, K. and Miura, T. 2008. Development of a two-band enhanced vegetation index without a blue band. *Remote Sensing of Environment*, 112(10): 3833 3845.
- Joshi, R. and Dhyani, P.P. 2009. Environmental sustainability and tourism—implications of trend synergies of tourism in Sikkim Himalaya. *Current Science*, 97(1): 33–41.
- Kale, M.P.; Singh, S. and Roy, P.S. 2002. Biomass and productivity estimation using aerospace data and Geographic Information System. *Tropical Ecology*, 43(1): 123–136.
- Khan, M.; Hussain, F. and Musharaf, S. 2014. Ground biomass assessment of shrub species in tehsil takht-e-nasrati, pakistan. *Pakistan Journal of Botany*, 46(3): 921–926.
- Kharkwal, G; Mehrotra, P.; Rawat, Y.S. and Pangtey, Y.P.S. 2005. Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India. *Current Science*, 89(5): 873.
- Kira, T. and Ogawa, H. 1971. Assessment of primary production in tropical forests. Edited by P. Duvigneaiid, *Proceedings on Productivity of Forest Ecosystems*, Brussels-1969, UNESCO Publication. Pp. 319–322.
- Kirkpatrick, J.B. and Brown, M.J. 1987. The nature of the transition from sedgeland to alpine vegetation in south-west Tasmania. I. Altitudinal vegetation change on four mountains. *Journal of Biogeography*, 14(6): 539 – 549.

- Klimes, L. 2003. Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). *Basic and Applied Ecology*, 4(4): 317 328.
- Kluge, J.; Kessler, M. and Dunn, R.R. 2006. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. *Global Ecology and Biogeography*, 15(4): 358–371.
- Körner, C. 1999 Alpine plant life. Springer Verlag, Berlin.
- Körner, C. 2000. Why are there global gradients in species richness? Mountains might hold the answer. *Trends in Ecology & Evolution*, 15(12): 513 514.
- Körner, C. 2007. The use of 'altitude'in ecological research. *Trends in ecology and Evolution*, 22(11): 569 574.
- Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables. *Springer Science & Business Media*. Germany
- Kothari A. 1992. The Diversity Conservation; an Indian Viewpoint. Santuary, 12(3): 34-43.
- Krebs, C.J. 1989. *Ecological Methodology* (No. QH541. 15. S72. K74 1999). Harper & Row, New York.
- Kreft, H. and Jetz, W. 2007. Global patterns and determinants of vascular plant diversity. *Proceedings* of the National Academy of Sciences, 104(14): 5925 5930.
- Lachungpa U.; Rahmani, A.R. and Islam, M.Z. 2011. Eleven priority areas for conservation: Important bird areas of Sikkim . In: Arrawatia M. L and Tambe S, *Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot*. Information and Public Relations Department Government of *Sikkim* Pp: 542
- Lacoul, P. and Freedman, B. 2006. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. *Aquatic Botany*, 84(1): 3–16.
- Lama, D. 2004. *Taxonomical, Distributional and Ecological Studies of Acer L. (Aceraceae) In the Darjeeling- Sikkim Himalayas.* Ph.D. thesis, University of North Bengal, India.
- Lama, M.P. 2001. Human development report: Sikkim. Government of Sikkim, Gangtok.
- Lasky, J.R.; Uriarte, M.;Boukili, V.K.; Erickson, D.L.; John Kress, W. and Chazdon, R.L. 2014. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. *Ecology Letters*, 17(9): 1158–1167.
- Lee, J.S.; Cloude, S.R.; Papathanassiou, K.P.; Grunes, M.R.; and Woodhouse, I.H. 2003. Speckle Filtering and Coherence Estimation of Polarimetric SAR Interferometry Data for Forest Applications: *IEEE Transactions on Geoscience and Remote Sensing*: 41(10): 2254 – 2263
- Lepcha, S.R. 2011. *Studies of the Angiospermic Flora of Alpine East Sikkim with Special Reference* to Pangolakha Wild Life Sanctuary. Ph.D. thesis, University of North Bengal, India.
- Lepcha, S.R. and Das, A.P. 2012. Protected areas of Sikkim Himalaya and their perspective management strategies. In: P. Tamang, Srivastava & S.R. Lepcha, *Sikkim Biodiversity: Significance & Sustainability*. Sikkim State Council of Science & Technology, Government of Sikkim, Gangtok. Pp. 209 –215.
- Lieberman, D.; Lieberman, M.; Peralta, R. and Hartshorn, G.S. 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. *Journal of Ecology*, 84: 137–152.

- Lloyd, M. and Ghelardi, R.J. 1964. A Table for Calculating theEquitability'Component of Species Diversity. *The Journal of Animal Ecology*, 33(2): 217–225.
- Lobo, J.M. and Martín Piera, F. 2002. Searching for a predictive model for species richness of Iberian dung beetle based on spatial and environmental variables. *Conservation Biology*, 16(1): 158–173.
- Lobo, J.M.; Castro, I. and Moreno, J.C. 2001. Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. *Biological Journal of the Linnean Society*, 73(2): 233 253.
- Lodhiyal, N. and Lodhiyal, L.S. 2003. Biomass and net primary productivity of BhabarShisham forests in central Himalaya, India. *Forest Ecology and Management*, 176(1): 217–235.
- Lomolino, M.A.R.K. 2001. Elevation gradients of species density: historical and prospective views. *Global Ecology and Biogeography*, 10(1): 3 13.
- Loreau, M. and Mouquet, N. 1999. Immigration and the maintenance of local species diversity. *The American Naturalist*, 154(4): 427 440.
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.;Raffaelli, D.; Schmid, B. and Tilman, D. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. *Science*, 294(5543): 804 – 808.
- Lu, D. 2005. Integration of vegetation inventory data and Landsat TM image for vegetation classification in the western Brazilian Amazon. *Forest Ecology and Management*, 213(1): 369–383.
- Magurran, A.E. 1988. Ecological Diversity and Its Measurement, Princeton Univ. Press Princeton.
- Margalef, D.R. 1958. *Information theory in ecology*. Society for General Systems Research. file:/// C:/Users/HP/Downloads/139371.pdf
- Margalef, R. 1958. *Temporal succession and spatial heterogeneity in phytoplankton*. University of California press. USA.
- McCain C.M. and Grytnes, J.A. 2010. Elevational gradients in species richness. In: *Encyclopedia of life sciences (ELS)*. John Wiley & Sons, Ltd: Chichester.
- McCain, C.M. 2007. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. *Global Ecology and Biogeography*, 16(1): 1–13.
- McCullagh, P. and Nelder, J.A. 1989. *Generalized linear models* (Vol. 37). CRC press. Boca Raton, FL: Chapman & Hall London UK
- McNaughton, S.J. and Wolf, L.L. 1970. Dominance and the niche in ecological systems. *Science*, 167(3915): 13 139
- Meentemeyer, V. 1989. Geographical perspectives of space, time, and scale. *Landscape Ecology*, 3(3-4): 163 173.
- Mette, T.; Papathanassiou, K.P.; Hajnsek, I. and Zimmermann, R. 2003. April. Forest biomass estimation using polarimetric SAR interferometry. In *Applications of SAR Polarimetry and Polarimetric Interferometry*, 529: 818 – 819
- Mishra, R.1968. Ecology Work Book. Oxford and IBH Publishing Co., New Delhi.
- Mittelbach, G.G.; Steiner, C.F.; Scheiner, S.M.; Gross, K.L.; Reynolds, H.L.; Waide, R.B.; Willig, M.R.; Dodson, S.I. and Gough, L. 2001. What is the observed relationship between species richness and productivity?. *Ecology*, 82(9): 2381–2396.

- Monk, C.D. 1967. Tree species diversity in the eastern deciduous forest with particular reference to north central Florida. *American Naturalist*, 101: 173 187.
- Mouquet, N.; Moore, J.L. and Loreau, M. 2002. Plant species richness and community productivity: why the mechanism that promotes coexistence matters. *Ecology Letters*, 5(1): 56–65.
- Mulder, C.P.H.; Uliassi, D.D. and Doak, D.F. 2001. Physical stress and diversity-productivity relationships: the role of positive interactions.*Proceedings of the National Academy of Sciences*, 98(12): 6704–6708.
- Muukkonen, P. and Heiskanen, J. 2005. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. *Remote Sensing of Environment*, 99(4): 434 447.
- Namgail, T.; Rawat, G.S.; Mishra, C.; van Wieren, S.E. and Prins, H.H. 2012. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas. *Journal of plant research*, 125(1): 93 101.
- NBSS&LUP, 1996. *Soils of Sikkim for Optimising Land Use* National Bureau of Soil Survey and Land Use Planning, Government of India Kolkata ISBN: 81 85460 39 6.
- NRIS, 2006. *National (Natural) Resource Information System*: Sikkim State, Department of Space, Government of India, Kharagpur.
- NWA, 2011. National Wetland Atlas: Sikkim. SAC/EPSA/ABHY/NWIA/ATLAS/36/2011.SAC (ISRO), Ahmadabad, India.
- Odland, A. and Birks, H.J.B. 1999. The altitudinal gradient of vascular plant richness in Aurland, western Norway. *Ecography*, 22(5): 548–566.
- Oommen, M.A. and Shanker, K. 2005. Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. *Ecology*, 86(11): 3039–3047.
- Ormerod, S.J.; Rundle, S.D.; Wilkinson, S.M.; Daly, G.P.; Dale, K.M. and Juttner, I. 1994. Altitudinal trends in the diatoms, bryophytes, macroinvertebrates and fish of a Nepalese river system. *Freshwater Biology*, 32(2): 309 322.
- Overman, J.P.M.; Witte, H.J.L. and Saldarriaga, J.G. 1994. Evaluation of regression models for aboveground biomass determination in Amazon rainforest. *Journal of tropical Ecology*, 10(02): 207 – 218.
- Ovington, J.D. 1968. Some factors affecting nutrient distribution within ecosystems. *Functioning of* terrestrial ecosystems of the primary production level, Paris: UNESCO, 95–105. Parrish JT
- Pandey V.N. 1991. *Medico- ethno botanical exploration in Sikkim Himalaya*, Central Council for research in Ayurveda & Siddha, 1st edn. Pp. 137 189.
- Pandey, U.; Kushwaha, S.P.S.; Kachhwaha, T.S.; Kunwar, P. and Dadhwal, V.K. 2010. Potential of Envisat ASAR data for woody biomass assessment. *Tropical Ecology*, 51(1): 117–124.
- Panigrahy, S.; Patel, J.G. and Parihar, J.S. 2012. *National Wetland Atlas: High Altitude Lakes of India*. Space Applications Centre, ISRO, Ahmedabad, India.
- Patterson, B.D.; Stotz, D.F.; Solari, S.; Fitzpatrick, J.W. and Pacheco, V. 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. *Journal of Biogeography*, 25(3): 593–607.

- Peet, N.B.; Watkinson, A.R.; Bell, D.J. and Kattel, B.J. 1999. Plant diversity in the threatened subtropical grasslands of Nepal. *Biological Conservation*, 88(2): 193 – 206.
- Peet, R.K. and Christensen, N.L. 1988. Changes in species diversity during secondary forest succession on the North Carolina piedmont. *In* During, H.J. and Werger, M.J.(eds.), *Diversity and Pattern in Plant Communities*, SPB Academic Publishing: The Hague, The Netherlands, Pp. 233 – 245.
- Peet, R.K.; Wentworth, T.R. and White, P.S. 1998. A flexible, multipurpose method for recording vegetation composition and structure. *Castanea*, 63(3): 262–274.
- Peterson, D.L.; Schreiner, E.G and Buckingham, N.M. 1997. Gradients, vegetation and climate: spatial and temporal dynamics in the Olympic Mountains, USA. *Global Ecology and Biogeography Letters*, 6(1): 7 17.
- Pianka, E.R. 1966. Latitudinal gradients in species diversity: a review of concepts. *American Naturalist*, 100(910): 33 46.
- Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. *Journal of Theoretical Biology*, 13: 131–44.
- Potter, C.; Gross, P.; Genovese, V. and Smith, M.L. 2007. Net primary productivity of forest stands in New Hampshire estimated from Landsat and MODIS satellite data. *Carbon Balance and Management*, 2(1): 1.
- Preston, F.W. 1948. The commonness and rarity of species. *Ecology*, 29(3): 254 283.
- Preston, F.W. 1962. The canonical distribution of commonness and rarity: Part I. *Ecology*, 43(2): 185 215.
- Prince, S.D. and Goward, S.N. 1995. Global primary production: a remote sensing approach. *Journal* of *Biogeography*, 22: 815 835.
- Rahbek, C. 1995. The elevational gradient of species richness: a uniform pattern? *Ecography*, 18(2): 200 205.
- Rahbek, C. 2005. The role of spatial scale and the perception of large scale species richness patterns. *Ecology Letters*, 8(2): 224 239.
- Rahbek, C. and Graves, G.R. 2001. Multiscale assessment of patterns of avian species richness. *Proceedings of the National Academy of Sciences*, 98(8): 4534 4539.
- Rai, L.K.; Prasad, P. and Sharma, E. 2000. Conservation threats to some important medicinal plants of the Sikkim Himalaya. *Biological Conservation*, 93(1): 27–33.
- Rai. U.2006. Characterisation of Plant Biodiversity in Darjiling Hills Using Remote Sensing Techniques, Ph.D. thesis, University of North Bengal, India.
- Rana, B.S.; Singh, S.P. and Singh, R.P. 1989. Biomass and net primary productivity in Central Himalayan forests along an altitudinal gradient. *Forest Ecology and Management*, 27(3): 199–218.
- Raunkiaer, C. 1934. *The life forms of plants and statistical plant geography;* Clarendon Press, Oxford UK.
- Rauste, Y. 2005. Multi-temporal JERS SAR data in boreal forest biomass mapping. *Remote Sensing* of Environment, 97(2): 263 275.

- Rawal, R.S. and Pangtey, Y.P.S. 1994. High Altitude Forest in a Part of Kumaun in Central Himalaya: Analysis along Altitudinal Gradient. *Proceedings of the Indian National Science Academy*, *Part B*, 60: 557 – 564.
- Rawat, Y.S. and Singh, J.S. 1988. Structure and function of oak forests in central Himalaya. I. Dry matter dynamics. *Annals of Botany*, 62(4): 397–411.
- Rawat, Y.S. and Singh, J.S. 1988. Structure and function of oak forests in central Himalaya. Annals of Botany, 62 (4): 397 – 411.
- Reichle, D.E. 1970. Analysis of temperate forest ecosystems. *Springer-Verlag* Berlin Heidelberg, New York.
- Richerson, P.J. and Lum, K.L. 1980. Patterns of plant species diversity in California: relation to weather and topography. *American Naturalist*, 116: 504 536.
- Ricklefs, R.E. 2004. A comprehensive framework for global patterns in biodiversity. *Ecology Letters*, 7(1): 1 15.
- Riebesell, J.F. 1974. Paradox of enrichment in competitive systems. *Ecology*, 55: 183–187.
- Risley, H.H. 1894. The gazetteer of Sikhim. Printed at the Bengal secretariat Press, Calcutta.
- Rocha, A.V. and Shaver, G.R. 2009. Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. *Agricultural and Forest Meteorology*, 149(9): 1560 1563.
- Rohde, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. *Oikos*, 65: 514 527.
- Rosenzweig, M.L. 1971. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. *Science*, 171(3969): 385 387.
- Ruiz Benito, P.; Gómez Aparicio, L.; Paquette, A.; Messier, C.; Kattge, J. and Zavala, M.A. 2014. Diversity increases carbon storage and tree productivity in Spanish forests. *Global Ecology and Biogeography*, 23(3): 311–322.
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M. and Hashimoto, H. 2004. A continuous satellite-derived measure of global terrestrial primary production. *Bioscience*, 54(6): 547 – 560.
- Rushton, S.P.; Ormerod, S.J. and Kerby, G. 2004. New paradigms for modelling species distributions? *Journal of Applied Ecology*, 41(2): 193–200.
- Schlerf, M.; Atzberger, C. and Hill, J. 2005. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. *Remote Sensing of Environment*, 95(2): 177 194.
- Schreuder, H.; Tardif, C.; Trump-Kallmeyer, S.; Soffientini, A.; Sarubbi, E.; Akeson, A., Bowlin, T.; Yanofsky, S. and Barrett, R.W. 1997. A new cytokine-receptor binding mode revealed by the crystal structure of the IL-1 receptor with an antagonist. Letter to Nature. *Nature*, 386: 194 – 200
- Shaheen, H.; Ullah, Z.; Khan, S.M. and Harper, D.M. 2012. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. *Forest Ecology and Management*, 278: 138 – 145.

- Shannon, C.E. & Weiner, W. 1963. *Mathematical Theory of Communication*. The University of Illinois Press. Urbana, USA.
- Shannon, C.E. and Weaver, W. 1949. *The Mathematical Theory of Communication*, University of Illinois press, Illinios, USA.
- Shapoo, G.A.; Kaloo, Z.A.; Singh, S.;Ganie, A.H. and Padder, B.M. 2014. Evaluation of diversity and habitat types of some orchid species growing in Kashmir Himalaya. *History* 10(22): 8 13.
- Sharma, N.; Das, A.P. and Shrestha, D.G., 2015. Landuse and Landcover mapping of East District of Sikkim using IRS P6 satellite imagery . *Pleione* 9(1): 193–200
- Sharma, N.; Pradhan, S.; Arrawatia, M.L. and Shrestha, D.G., 2010. Study on types and distribution of wetlands in Sikkim Himalayas using satellite imagery with remote sensing and GIS technique. *Proceedings of the Lake 2010: Wetlands, Biodiversity and Climate Change*, IISc Banglore.
- Sharma, P.D. 2005. Ecology and environment. Rastogi Publications, Meerat.
- Shukla, R.S. and Chandel, P.S. 2008. A textbook of plant ecology, including ethnobotany and soil science. *S. Chand and Company*, New Delhi.
- Silvertown, J. 1985. History of a latitudinal diversity gradient: woody plants in Europe 13,000-1000 years BP. *Journal of Biogeography*, 12: 519 525.
- Šímová, I.; Li, Y.M. and Storch, D. 2013. Relationship between species richness and productivity in plants: the role of sampling effect, heterogeneity and species pool. *Journal of Ecology*, 101(1): 161 170.
- Simpson, E.H. 1949. *Measurement of diversity*. ed. Charles H. Smith's from *Nature*, 163 (1949): 688, Macmillan Publishers Ltd. <u>http://people.wku.edu/charles.smith/biogeog/</u> SIMP1949.pdf
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El Masri, B.Z.; Baldocchi, D.D.; Flanagan, L.B., Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; Monson, R.K. and Oechel, W.C. 2006. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. *Journal of Geophysical Research: Biogeosciences* (2005 – 2012): 111(G4).
- Singh, L. and Singh, J.S. 1991. Species structure, dry matter dynamics and carbon flux of a dry tropical forest in India. *Annals of Botany*, 68(3): 263–273.
- Singh, S.P.; Adhikari, B.S. and Zobel, D.B. 1994. Biomass, productivity, leaf longevity, and forest structure in the central Himalaya. *Ecological Monographs*, 64(4): 401–421.
- Singh, V. and Toky, O.P. 1995. Biomass and net primary productivity in Leucaena, Acacia and Eucalyptus, short rotation, high density ('energy') plantations in arid India. *Journal of Arid Environments*, 31(3): 301 309.
- Spellerberg, I.F. 1991. Monitoring ecological change Cambridge University Press. Cambridge, UK.
- Stevens, G.C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. *American naturalist*, 140(6): 893–911.
- Subba, J.R. 2002. Biodiversity of the Sikkim Himalayas. Government of Sikkim, Gangtok
- Sun, J.; Cheng, G.W. and Li, W.P. 2013. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. *Biogeosciences*, 10(3): 1707 – 1715.
- Sundriyal, R.C. and Sharma, E. 1996. Anthropogenic pressure on tree structure and biomass in the temperate forest of Mamlay watershed in Sikkim. *Forest Ecology and Management*, 81(1): 113 – 134.
- Tambe, S.; Arrawatia, M.L. and Sharma, N. 2011. Assessing the priorities for sustainable forest management in the Sikkim Himalaya, India: a remote sensing based approach. *Journal of the Indian Society of Remote Sensing*, 39(4): 555 564.
- Tan, K.; Piao, S.; Peng, C. and Fang, J. 2007. Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999. *Forest ecology and management*, 240(1): 114 – 121.
- Thakur, T.K. 2014. Litter decomposition and nutrient release pattern of dry tropical forest ecosystem. *International Journal of Environment and Natural Science*, 2: 9 12.
- Thomas, B.D. and Bowman, W.D. 1998. Influence of N2-fixing Trifolium on plant species composition and biomass production in alpine tundra. *Oecologia*, 115(1-2): 26–31.
- Thornton, P.E.; Law, B.E.; Gholz, H.L.; Clark, K.L.; Falge, E.; Ellsworth, D.S.; Goldstein, A.H.; Monson, R.K.; Hollinger, D.; Falk, M. and Chen, J. 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. *Agricultural* and Forest Meteorology, 113(1): 185 – 222.
- Tilman, D.; Lehman, C.L. and Thomson, K.T. 1997. Plant diversity and ecosystem productivity: theoretical considerations. *Proceedings of the National Academy of Sciences*, 94(5): 1857 1861.
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T. and Lehman, C. 2001. Diversity and productivity in a long-term grassland experiment. *Science*, 294(5543): 843 845.
- Turner, J. R. G.; Gatehouse, C. M. and Corey, C. A. 1987. Does solar energy control organic diversity? butterflies, moths, and the British climate. *Oikos* 48:195 205.
- van Ruijven, J. and Berendse, F. 2005. Diversity–productivity relationships: initial effects, long-term patterns, and underlying mechanisms. *Proceedings of the National Academy of Sciences of the United States of America*, 102(3): 695 700.
- Vashum, K.T. and Jayakumar, S. 2012. Methods to estimate above-ground biomass and carbon stock in natural forests-a review. *Journal of Ecosystem & Ecography*, 2(116): 1–7.
- Venail, P.A.; MacLean, R.C.; Bouvier, T.; Brockhurst, M.A.; Hochberg, M.E. and Mouquet, N. 2008. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. *Nature*, 452(7184): 210-214.
- Verma, Rajesh 2009. Sikkim: A Guide and Handbook, Narendra Bhatia & Company. New Delhi
- Verma, S.; Bhatnagar, T.; Mahawar, K.L. and Bhatnagar, R., 2009. October. Use of Electronic Resources in the Library of Sikkim Manipal Institute of Technology (SMIT), Sikkim: A Study. *International Conference on Academic Libraries (ICAL)*, Delhi. Pp. 660 – 663. http://crl.du.ac.in/ical09/ papers/index_files/ical-114_102_231_2_RV.pdf
- Vetaas, O.R. and Grytnes, J.A. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. *Global Ecology and Biogeography*, 11(4): 291–301.

- Waide, R.B.; Willig, M.R.; Steiner, C.F.; Mittelbach, G.; Gough, L.; Dodson, S.I.; Juday, G.P. and Parmenter, R. 1999. The relationship between productivity and species richness. *Annual review* of Ecology and Systematics, 30: 257 – 300.
- Wang, G; Ran, F.; Chang, R.; Yang, Y.; Luo, J. and Jianrong, F. 2014. Variations in the live biomass and carbon pools of Abies georgei along an elevation gradient on the Tibetan Plateau, China. *Forest Ecology and Management*, 329: 255 – 263.
- Wangda, P. and Ohsawa, M. 2006. Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. *Forest Ecology and Management*, 230(1): 136 – 150.
- Weiner, J. 1995. On the practice of ecology. *Journal of Ecology*, 83: 153–158.
- Weng, C.; Hooghiemstra, H. and Duivenvoorden, J.F. 2007. Response of pollen diversity to the climatedriven altitudinal shift of vegetation in the Colombian Andes. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 362(1478): 253 – 262.
- Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon, 21(2/3): 213 251.
- Whittaker, R.H. and Niering, W.A. 1965. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. *Ecology*, 46(4): 429 452.
- Whittaker, R.H. and Niering, W.A. 1975. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. *Ecology*, 56(4): 771-790.
- Whittaker, R.H., 1966. Forest dimensions and production in the Great Smoky Mountains. *Ecology*, 47: 103 121.
- Whittaker, R.J.; Willis, K.J. and Field, R. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. *Journal of Biogeography*, 28(4): 453–470.
- Wilson, E.O and Peter, F.M. 1988. *Biodiversity*. Harvard University, National Academy of Sciences/ Smithsonian Institution. National Academy Press Washington, D.C. Pp. 538.
- WPR 2013. Working Plan Report; *Forests*, Environment & Wildlife Management *Department* Government of *Sikkim*.
- Wright, D.H.; Currie, D.J. and Maurer, B.A. 1993. Energy supply and patterns of species richness on local and regional scales. In: R.E. Ricklefs and D. Schluter (eds), *Species diversity in ecological communities: historical and geographical perspectives*, University of Chicago Press, Chicago.
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q. and Moore, B. 2004. Satellitebased modeling of gross primary production in an evergreen needle-leaf forest. *Remote Sensing* of Environment, 89(4): 519 – 534
- Yachi, S. and Loreau, M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. *Proceedings of the National Academy of Sciences*, 96(4): 1463 – 1468.
- Yee, T.W. and Mitchell, N.D. 1991. Generalized additive models in plant ecology. *Journal of Vegetation Science*, 2(5): 587 – 602.
- Yoda, K. 1967. A preliminary survey of the forest vegetation of eastern Nepal. *Journal of Art and Science. Chiba University National Science*, 5(1): 99 140.

- Zhang, W.; Yin, D.; Huang, D.; Du, N.; Liu, J.; Guo, W. and Wang, R. 2015. Altitudinal patterns illustrate the invasion mechanisms of alien plants in temperate mountain forests of northern China. *Forest Ecology and Management*, 351: 1 8.
- Zhang, Y.; Xu, M.; Chen, H. and Adams, J. 2009. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. *Global Ecology and Biogeography*, 18(3): .280 290.
- Zhao, C.M.; Chen, W.L.; Tian, Z.Q. and Xie, Z.Q. 2005. Altitudinal pattern of plant species diversity in Shennongjia Mountains, Central China. *Journal of Integrative Plant Biology*, 47(12): 1431 – 1449.
- Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J. and Ryu, S.R. 2004. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. *Remote Sensing of Environment*, 93(3): 402–411.
- Zimmermann, N.E. and Kienast, F. 1999. Predictive mapping of alpine grasslands in Switzerland: species versus community approach. *Journal of Vegetation Science*, 10: 469–482.

ANNEXURE I

Sl No	Botanical Name	F	D	Α	RF	RD	RA	IVI
1	Schima wallichii Choisy	50	44.5	89	0.42	7.92	3.96	12.31
2	Ostodes paniculata Blume	42.86	15.36	35.83	0.36	2.73	1.6	4.69
3	Alnus nepalensis D.Don	57.14	12.61	22.06	0.48	2.24	0.98	3.71
4	<i>Castanopsis hystrix</i> Hook.f. & Thomson <i>ex</i> A.DC.	71.43	11.61	16.25	0.6	2.07	0.72	3.39
5	<i>Engelhardtia spicata</i> var. <i>integra</i> (Kurz) W.E.Manning <i>ex</i> Steenis	53.57	11.21	20.93	0.45	2	0.93	3.38
6	Nephrolepis cordifolia (L.) C. Presel	82.14	10.79	13.13	0.69	1.92	0.58	3.2
7	<i>Symplocos lucida</i> (Thunb.) Siebold & Zucc.	39.29	8.07	20.55	0.33	1.44	0.91	2.68
8	Ageratina adenophora (Spreng.) R.M.King & H.Rob.	75	8.61	11.48	0.63	1.53	0.51	2.68
9	Dryopteris sikkimensis (Bedd.) Kuntze	64.29	8.29	12.89	0.54	1.47	0.57	2.59
10	Selaginella ciliaris (Retz.) Spring	64.29	7.89	12.28	0.54	1.41	0.55	2.49
11	<i>Polygonum runcinatum</i> BuchHam. <i>ex</i> D. Don	82.14	7.75	9.43	0.69	1.38	0.42	2.49
12	Pteridium aquilinum (L.) Kuhn	100	5.75	5.75	0.84	1.02	0.26	2.12
13	Elatostema obtusum Wedd.	64.29	6.18	9.61	0.54	1.1	0.43	2.07
14	Pouzolzia zeylanica (L.) Benn.	67.86	6.07	8.95	0.57	1.08	0.4	2.05
15	Polystichum lentum (D. Don) T. Moore	82.14	5.79	7.04	0.69	1.03	0.31	2.04
16	Helicia nilagirica Bedd.	21.43	4.32	20.17	0.18	0.77	0.9	1.85
17	<i>Cryptomeria japonica</i> (Thunb. <i>ex</i> L.f.) D.Don	21.43	4.25	19.83	0.18	0.76	0.88	1.82
18	Syzygium venosum DC.	25	4.46	17.86	0.21	0.79	0.79	1.8
19	Macaranga indica Wight	35.71	4.93	13.8	0.3	0.88	0.61	1.79
20	<i>Rhododendron barbatum</i> Wall. <i>ex</i> G. Don	32.14	4.71	14.67	0.27	0.84	0.65	1.76
21	<i>Acer campbellii</i> Hook.f. & Thomson <i>ex</i> Hiern	53.57	4.68	8.73	0.45	0.83	0.39	1.67
22	<i>Viburnum mullaha</i> BuchHam. <i>ex</i> D. Don	7.14	2	28	0.06	0.36	1.25	1.66
23	Mallotus roxburghianus MüllArg.	17.86	3.54	19.8	0.15	0.63	0.88	1.66
24	Dichroa febrifuga Lour.	75	4.29	5.71	0.63	0.76	0.25	1.65
25	<i>Viburnum cylindricum</i> BuchHam. <i>ex</i> D. Don	14.29	3.11	21.75	0.12	0.55	0.97	1.64
26	Boehmeria platyphylla D.Don	67.86	4.39	6.47	0.57	0.78	0.29	1.64
27	Lithocarpus pachyphyllus (Kurz) Rehder	21.43	3.71	17.33	0.18	0.66	0.77	1.61
28	Eupatorium cannabinum L.	64.29	4.11	6.39	0.54	0.73	0.28	1.56
29	Mussaanda trautlari Stanf	67.86	3.96	5 84	0.57	0.71	0.26	1 54

Importance Value Index of Species of the study area

Sl No	Botanical Name	F	D	A	RF	RD	RA	IVI
30	Commelina paludosa Blume	67.86	3.86	5.68	0.57	0.69	0.25	1.51
31	Quercus lamellosa Sm.	46.43	4	8.62	0.39	0.71	0.38	1.49
32	Pandanus furcatus Roxb.	21.43	3.21	15	0.18	0.57	0.67	1.42
33	Setaria palmifolia (J.Koenig) Stapf	71.43	3.32	4.65	0.6	0.59	0.21	1.4
34	Rhododendron arboretum Sm.	21.43	3.14	14.67	0.18	0.56	0.65	1.39
35	Viburnum cotinifolium D.Don	42.86	3.61	8.42	0.36	0.64	0.37	1.38
	Magnolia hodgsonii (Hook.f.&							
36	Thomson) H.Keng	10.71	2.11	19.67	0.09	0.38	0.88	1.34
37	Brachiaria distachya (L.) Stapf	57.14	3.32	5.81	0.48	0.59	0.26	1.33
38	Viburnum erubescens Wall.	42.86	3.36	7.83	0.36	0.6	0.35	1.31
39	Osbeckia crinite Benth. ex C.B. Clarke	64.29	3	4.67	0.54	0.53	0.21	1.28
40	Cynodon dactylon (L.) Pers.	60.71	3	4.94	0.51	0.53	0.22	1.27
41	<i>Lecantinus peauncularis</i> (Wall. <i>ex</i> Royle) Wedd	67 86	2 86	4 21	0.57	0.51	0 19	1 27
42	Digitaria ciliaris (Retz.) Koeler	60.71	2.86	4 88	0.51	0.53	0.22	1.27
43	Cynerus tenuiculmis Boeck	25	2.93	11 71	0.21	0.53	0.52	1.20
44	Tectaria gemmifera (Fée) Alston	71.43	2.57	3.6	0.6	0.46	0.16	1.22
45	Albizia chinensis (Osbeck) Merr.	35.71	3	8.4	0.3	0.53	0.37	1.21
46	<i>Castanopsis tribuloides</i> (Sm.) A.DC.	50	2.96	5.93	0.42	0.53	0.26	1.21
47	<i>Eurya japonica</i> Thunb.	64.29	2.64	4.11	0.54	0.47	0.18	1.2
	Terminalia myriocarpa Van Heurck &	0>			0.01		0110	1.2
48	MüllArg.	35.71	2.82	7.9	0.3	0.5	0.35	1.16
49	Tetrastigma rumicispermum (M.A.Lawson) Planch.	67.86	2.39	3.53	0.57	0.43	0.16	1.16
50	Cupressus torulosa D.Don	3.57	0.79	22	0.03	0.14	0.98	1.15
51	Pteris biaurita L.	46.43	2.71	5.85	0.39	0.48	0.26	1.14
52	Machilus kurzii King ex Hook.f.	21.43	2.46	11.5	0.18	0.44	0.51	1.13
53	Maesa chisia BuchHam. ex D. Don	67.86	2.18	3.21	0.57	0.39	0.14	1.1
54	Ficus hirta Vahl	60.71	2.29	3.76	0.51	0.41	0.17	1.09
55	Rubus ellipticus Sm.	64.29	2.18	3.39	0.54	0.39	0.15	1.08
56	Digitaria longiflora (Retz.) Pers.	35.71	2.43	6.8	0.3	0.43	0.3	1.04
	Persicaria capitata (BuchHam. ex							
57	D.Don) H.Gross	46.43	2.29	4.92	0.39	0.41	0.22	1.02
58	Edgeworthia gardneri (Wall.) Meisn.	50	2.25	4.5	0.42	0.4	0.2	1.02
59	Machilus edulis King ex Hook.f.	32.14	2.32	7.22	0.27	0.41	0.32	1.01
60	Drymaria cordata (L.) Willd. ex Schult.	53.57	2.07	3.87	0.45	0.37	0.17	0.99
61	Populus gamblei Dode	21.43	2.07	9.67	0.18	0.37	0.43	0.98
62	Achyranthes aspera L.	50	2.11	4.21	0.42	0.38	0.19	0.98
63	Piper betleoides C.DC.	53.57	1.96	3.67	0.45	0.35	0.16	0.97
64	Rhus succedanea L.	25	2.11	8.43	0.21	0.38	0.38	0.96
65	Isachne globosa (Thunb.) Kuntze	21.43	2	9.33	0.18	0.36	0.42	0.95

Annexure I	134
1 michaic 1	101

SI No	Botanical Name	F	D	Α	RF	RD	RA	IVI
66	Quercus lineata Blume	39.29	2.11	5.36	0.33	0.38	0.24	0.95
67	Isachne himalaica Hook.f	35.71	2.04	5.7	0.3	0.36	0.25	0.92
68	Rubia manjith Roxb. ex Fleming	46.43	1.89	4.08	0.39	0.34	0.18	0.91
69	Rhododendron thomsonii Hook.f.	14.29	1.54	10.75	0.12	0.27	0.48	0.87
70	Alangium chinense (Lour.) Harms	53.57	1.61	3	0.45	0.29	0.13	0.87
71	Lyonia ovalifolia (Wall.) Drude	46.43	1.68	3.62	0.39	0.3	0.16	0.85
72	Imperata cylindrica (L.) Raeusch	46.43	1.68	3.62	0.39	0.3	0.16	0.85
73	Daphne papyracea Wall. ex G.Don	50	1.61	3.21	0.42	0.29	0.14	0.85
74	Alocasia macrorrhizos (L.) G.Don	50	1.61	3.21	0.42	0.29	0.14	0.85
75	Cyperus cyperoides (Retz.) Kuntze	28.57	1.79	6.25	0.24	0.32	0.28	0.84
76	Cyperus distans L.	50	1.57	3.14	0.42	0.28	0.14	0.84
77	Rhododendron griffithianum Wight	17.86	1.57	8.8	0.15	0.28	0.39	0.82
78	Polygonum molle D.Don	39.29	1.64	4.18	0.33	0.29	0.19	0.81
79	Triumfetta rhomboidea Jacq.	42.86	1.61	3.75	0.36	0.29	0.17	0.81
80	Oplismenus compositus (L.) P.Beauv.	42.86	1.61	3.75	0.36	0.29	0.17	0.81
81	Rhododendron hodgsonii Hook.f.	21.43	1.61	7.5	0.18	0.29	0.33	0.8
82	Rhododendron triflorum Hook.f.	25	1.61	6.43	0.21	0.29	0.29	0.78
83	Abies densa Griff.	25	1.57	6.29	0.21	0.28	0.28	0.77
84	Selliguea griffithiana (Hook.) Fraser-Jenk.	50	1.29	2.57	0.42	0.23	0.11	0.77
85	Betula utilis D.Don	17.86	1.43	8	0.15	0.25	0.36	0.76
86	Dioscorea bulbifera L.	32.14	1.54	4.78	0.27	0.27	0.21	0.76
87	Loxogramme involuta (D.Don)C.Presl	46.43	1.36	2.92	0.39	0.24	0.13	0.76
88	Heracleum wallichii DC.	14.29	1.29	9	0.12	0.23	0.4	0.75
89	Begonia picta Sm.	25	1.5	6	0.21	0.27	0.27	0.75
90	Melastoma malabathricum L.	50	1.21	2.43	0.42	0.22	0.11	0.75
01	Smilax bracteata subsp. veruculosa	50.57	1 1 4	0.10	0.45	0.0	0.00	0.75
	(Merr.) I.Koyama	53.57	1.14	2.13	0.45	0.2	0.09	0.75
92		3.57	0.5	14	0.03	0.09	0.62	0.74
93	Pilea glaberrima (Blume) Blume Meliosma dilleniifolia (Wight & Arn)	50	1.18	2.36	0.42	0.21	0.1	0.74
94	Walp.	10.71	1.07	10	0.09	0.19	0.45	0.73
95	Callicarpa arborea Roxb.	25	1.46	5.86	0.21	0.26	0.26	0.73
96	<i>Christella parasitica</i> H.Lév.	32.14	1.46	4.56	0.27	0.26	0.2	0.73
97	<i>Hydrocotyle javanica</i> Thunb.	46.43	1.25	2.69	0.39	0.22	0.12	0.73
	Eragrostis unioloides (Retz.) Nees ex							
98	Steud.	17.86	1.32	7.4	0.15	0.24	0.33	0.72
99	Antidesma acidum Retz.	35.71	1.36	3.8	0.3	0.24	0.17	0.71
100	Selaginella pallescens (C.Presl) Spring	35.71	1.32	3.7	0.3	0.24	0.16	0.7
101	Fragaria vesca L.	39.29	1.21	3.09	0.33	0.22	0.14	0.69
102	<i>Fianiago asiatica subsp. erosa</i> (wall.) Z.Yu Li	32.14	1.29	4	0.27	0.23	0.18	0.68

SI No	Botanical Name	F	D	Α	RF	RD	RA	IVI
103	Betula alnoides BuchHam.	35.71	1.25	3.5	0.3	0.22	0.16	0.68
104	Ehretia acuminate R.Br.	17.86	1.21	6.8	0.15	0.22	0.3	0.67
105	Eragrostis atrovirens (Desf.) Trin.	28.57	1.29	4.5	0.24	0.23	0.2	0.67
106	Arundinella hookeri Munro & Keng	28.57	1.29	4.5	0.24	0.23	0.2	0.67
107	Rubus insignis Hook.f.	42.86	1.11	2.58	0.36	0.2	0.11	0.67
108	Artemisia japonica Thunb.	46.43	1	2.15	0.39	0.18	0.1	0.67
109	Isachne albens Trin.	21.43	1.25	5.83	0.18	0.22	0.26	0.66
110	Acer oblongum Wall. ex DC.	21.43	1.25	5.83	0.18	0.22	0.26	0.66
111	Symplocos glomerata King ex C.B.Clarke	25	1.25	5	0.21	0.22	0.22	0.66
112	Bombax ceiba L.	25	1.25	5	0.21	0.22	0.22	0.66
113	Anaphalis contorta (D.Don) Hook.f	25	1.25	5	0.21	0.22	0.22	0.66
114	Cyperus alopecuroides Rottb.	28.57	1.25	4.38	0.24	0.22	0.19	0.66
115	Arisaema galeatum N.E.Br.	35.71	1.18	3.3	0.3	0.21	0.15	0.66
116	Urtica dioica L.	39.29	1.14	2.91	0.33	0.2	0.13	0.66
117	Cyperus longus L.	28.57	1.21	4.25	0.24	0.22	0.19	0.65
118	Pteris longipes D.Don	35.71	1.14	3.2	0.3	0.2	0.14	0.65
119	Bidens pilosa L.	35.71	1.14	3.2	0.3	0.2	0.14	0.65
120	<i>Drypetes longifolia</i> (Blume) Pax & K.Hoffm.	21.43	1.18	5.5	0.18	0.21	0.24	0.64
121	Prunus cerasoides BuchHam. ex D.Don	42.86	1	2.33	0.36	0.18	0.1	0.64
122	Brassaiopsis mitis C.B. Clarke	42.86	1	2.33	0.36	0.18	0.1	0.64
123	Cissus repens Lam.	46.43	0.89	1.92	0.39	0.16	0.09	0.64
124	Cyperus difformis L.	7.14	0.71	10	0.06	0.13	0.45	0.63
125	Fragaria daltoniana J. Gay	28.57	1.18	4.13	0.24	0.21	0.18	0.63
126	Rhododendron falconeri Hook.f.	17.86	1.11	6.2	0.15	0.2	0.28	0.62
127	Cyperus rotundus L.	28.57	1.14	4	0.24	0.2	0.18	0.62
128	Juniperus procera Hochst.	14.29	1	7	0.12	0.18	0.31	0.61
129	Lycopodium clavatum L.	25	1.11	4.43	0.21	0.2	0.2	0.61
130	<i>Swertia chirayita</i> (Roxb.) BuchHam. ex C.B.Clarke	28.57	1.11	3.88	0.24	0.2	0.17	0.61
131	Mikania micrantha Kunth	32.14	1.07	3.33	0.27	0.19	0.15	0.61
132	<i>Cymbopogon microthecus</i> (Hook.f.) A.Camus	32.14	1.07	3.33	0.27	0.19	0.15	0.61
133	Cyperus odoratus L.	7.14	0.68	9.5	0.06	0.12	0.42	0.6
134	Leucosceptrum canum Sm.	28.57	1.07	3.75	0.24	0.19	0.17	0.6
135	Bischofia javanica Blume	28.57	1.07	3.75	0.24	0.19	0.17	0.6
136	Selaginella martensii Spring	32.14	1.04	3.22	0.27	0.18	0.14	0.6
137	Liparis viridifolia (Bl.) Lindl.	35.71	1	2.8	0.3	0.18	0.12	0.6
138	Shorea robusta Gaertn.	3.57	0.39	11	0.03	0.07	0.49	0.59
139	<i>Selaginella willdenovii</i> (Desv. <i>ex</i> Poir.) Baker	14.29	0.96	6.75	0.12	0.17	0.3	0.59

Sl No	Botanical Name	F	D	Α	RF	RD	RA	IVI
140	Drynaria coronans (Wall. ex Mett.) T.Moore	28.57	1.04	3.63	0.24	0.18	0.16	0.59
141	<i>Magnolia cathcartii</i> (Hook.f. & Thomson) Noot.	7.14	0.64	9	0.06	0.11	0.4	0.58
142	Mallotus tetracoccus (Roxb.) Kurz	14.29	0.93	6.5	0.12	0.17	0.29	0.58
143	Cyperus cuspidatus Kunth	14.29	0.93	6.5	0.12	0.17	0.29	0.58
144	Eragrostis nigra Nees ex Steud.	17.86	1	5.6	0.15	0.18	0.25	0.58
145	Litsea sericea (Wall.ex Nees) Hook.f.	25	1.04	4.14	0.21	0.18	0.18	0.58
146	Magnolia campbellii Hook.f.& Thomson	32.14	0.96	3	0.27	0.17	0.13	0.58
147	Cymbidium mastersii Griff. ex. Lindl.	32.14	0.96	3	0.27	0.17	0.13	0.58
148	Oxalis corniculata L.	42.86	0.79	1.83	0.36	0.14	0.08	0.58
149	Machilus glaucescens (T.Nees) H.W. Li	21.43	1	4.67	0.18	0.18	0.21	0.57
150	Elsholtzia flava Benth.	39.29	0.82	2.09	0.33	0.15	0.09	0.57
151	Oplismenus burmanni (Retz.) P. Beauv.	10.71	0.79	7.33	0.09	0.14	0.33	0.56
152	Dioscorea pentaphylla L.	17.86	0.93	5.2	0.15	0.17	0.23	0.55
153	Arundinella nepalensis Trin.	28.57	0.93	3.25	0.24	0.17	0.14	0.55
154	Pilea umbrosa Blume	35.71	0.82	2.3	0.3	0.15	0.1	0.55
155	Brachiaria villosa (Lam.) A. Camus	35.71	0.82	2.3	0.3	0.15	0.1	0.55
156	Rhododendron campylocarpum Hook.f.	3.57	0.36	10	0.03	0.06	0.45	0.54
157	Pteris linearis Poir.	21.43	0.93	4.33	0.18	0.17	0.19	0.54
158	Leucas lanata Benth.	39.29	0.71	1.82	0.33	0.13	0.08	0.54
159	Persicaria polystachya Opiz	32.14	0.82	2.56	0.27	0.15	0.11	0.53
160	Tinospora sinensis (Lour.) Merr.	35.71	0.75	2.1	0.3	0.13	0.09	0.53
161	Actinodaphne sikkimensis Meisn.	7.14	0.57	8	0.06	0.1	0.36	0.52
162	Swertia angustifolia BuchHam.ex D.Don	32.14	0.79	2.44	0.27	0.14	0.11	0.52
163	Glochidion acuminatum MüllArg.	32.14	0.79	2.44	0.27	0.14	0.11	0.52
164	Apios carnea (Wall.) Benth.	39.29	0.64	1.64	0.33	0.11	0.07	0.52
165	Anaphalis margaritacea (L.) Benth. & Hook.f.	14.29	0.79	5.5	0.12	0.14	0.24	0.51
166	Premna barbata Wall. ex Schauer	32.14	0.75	2.33	0.27	0.13	0.1	0.51
167	Cirrhopetalum wallichii Lindl.	32.14	0.75	2.33	0.27	0.13	0.1	0.51
168	Albizia lucidior (Steud.) I.C.Nielsen	39.29	0.61	1.55	0.33	0.11	0.07	0.51
169	Magnolia lanuginosa (Wall.) Figlar & Noot.	17.86	0.82	4.6	0.15	0.15	0.2	0.5
170	Syzygium formosum (Wall.) Masam.	25	0.82	3.29	0.21	0.15	0.15	0.5
171	Axonopus compressus (Swartz) P.Beauv.	25	0.82	3.29	0.21	0.15	0.15	0.5
172	<i>Symplocos cochinchinensis</i> (Lour.) S.Moore	28.57	0.79	2.75	0.24	0.14	0.12	0.5
173	Reevesia pubescens Mast.	35.71	0.64	1.8	0.3	0.11	0.08	0.5
174	Garuga floribunda Decne.	17.86	0.79	4.4	0.15	0.14	0.2	0.49
175	Remusatia hookeriana Schott	25	0.79	3.14	0.21	0.14	0.14	0.49
176	Prunus nepalensis Ser.	25	0.79	3.14	0.21	0.14	0.14	0.49

SI No	Botanical Name	F	D	Α	RF	RD	RA	IVI
177	Persicaria lapathifolia (L.) Delarbre	25	0.79	3.14	0.21	0.14	0.14	0.49
178	Persicaria amplexicaulis (D.Don) Ronse Decr.	25	0.79	3.14	0.21	0.14	0.14	0.49
179	Elatostema platyphyllum Wedd.	25	0.79	3.14	0.21	0.14	0.14	0.49
180	Plectranthus barbatus Andrews	28.57	0.75	2.63	0.24	0.13	0.12	0.49
181	Ageratum conyzoides (L.) L.	28.57	0.75	2.63	0.24	0.13	0.12	0.49
182	Isachne mauritiana Kunth	21.43	0.79	3.67	0.18	0.14	0.16	0.48
183	Astilbe rivularis BuchHam.	21.43	0.79	3.67	0.18	0.14	0.16	0.48
184	Arundinaria racemosa Munro	21.43	0.79	3.67	0.18	0.14	0.16	0.48
185	<i>Thysanolaena latifolia</i> (Roxb. <i>ex</i> Hornem.) Honda	28.57	0.71	2.5	0.24	0.13	0.11	0.48
186	Strobilanthes atropurpureus Nees	14.29	0.71	5	0.12	0.13	0.22	0.47
187	Yushania pantlingii (Gamble) R.B.Majumdar	21.43	0.75	3.5	0.18	0.13	0.16	0.47
188	Syzygium cumini (L.) Skeels	25	0.71	2.86	0.21	0.13	0.13	0.47
189	Anisomeles indica (L.) Kuntze	25	0.71	2.86	0.21	0.13	0.13	0.47
190	<i>Peranema paleolulata</i> (Pic.Serm.) Fraser-Jenk.	28.57	0.68	2.38	0.24	0.12	0.11	0.47
191	Colebrookea oppositifolia Sm.	17.86	0.71	4	0.15	0.13	0.18	0.46
192	Walsura tubulata Hiern	21.43	0.71	3.33	0.18	0.13	0.15	0.46
193	Morus alba L.	21.43	0.71	3.33	0.18	0.13	0.15	0.46
194	<i>Yushania maling</i> (Gamble) R.B.Majumdar & Karthik	14.29	0.68	4.75	0.12	0.12	0.21	0.45
195	Sorbusthomsonii (King ex Hook.f.) Rehder	14.29	0.68	4.75	0.12	0.12	0.21	0.45
196	Rubus nepalensis (Hook.f.) Kuntze	25	0.68	2.71	0.21	0.12	0.12	0.45
197	Paspalum scrobiculatum L.	25	0.68	2.71	0.21	0.12	0.12	0.45
198	Osbeckia stellata BuchHam. ex Ker Gawl.	35.71	0.5	1.4	0.3	0.09	0.06	0.45
199	Oxyspora paniculata (D.Don) DC.	17.86	0.68	3.8	0.15	0.12	0.17	0.44
200	Pavetta indica L.	21.43	0.68	3.17	0.18	0.12	0.14	0.44
201	Chimonocalamus griffithianus (Munro) Hsueh &T.P.Yi	21.43	0.68	3.17	0.18	0.12	0.14	0.44
202	Tectaria macrodonta C.Chr.	25	0.64	2.57	0.21	0.11	0.11	0.44
203	Rhododendron vaccinioides Hook.	25	0.64	2.57	0.21	0.11	0.11	0.44
204	Crassocephalum crepidioides (Benth.) S.Moore	28.57	0.61	2.13	0.24	0.11	0.09	0.44
205	Eurya cerasifolia (D.Don) Kobuski	10.71	0.57	5.33	0.09	0.1	0.24	0.43
206	Dendrobium densiflorum Lindl.	17.86	0.64	3.6	0.15	0.11	0.16	0.43
207	Chrysopogon aciculatus (Retz.) Trin.	17.86	0.64	3.6	0.15	0.11	0.16	0.43
208	Bridelia retusa (L.) Juss.	21.43	0.64	3	0.18	0.11	0.13	0.43
209	Adiantum capillus-veneris L.	21.43	0.64	3	0.18	0.11	0.13	0.43
210	Houttuynia cordata Thunb.	25	0.61	2.43	0.21	0.11	0.11	0.43
211	Clerodendrum glandulosum Lindl.	25	0.61	2.43	0.21	0.11	0.11	0.43
212	Rohdea nepalensis (Raf.) N.Tanaka	28.57	0.57	2	0.24	0.1	0.09	0.43
213	Impatiens urticifolia Wall.	14.29	0.61	4.25	0.12	0.11	0.19	0.42

Sl No	Botanical Name	F	D	А	RF	RD	RA	IVI
214	Solanum aculeatissimum Jacq.	21.43	0.61	2.83	0.18	0.11	0.13	0.42
215	Rubus phengodes Focke	28.57	0.54	1.88	0.24	0.1	0.08	0.42
216	Lepisorus loriformis (Wall. ex Mett.)Ching	32.14	0.46	1.44	0.27	0.08	0.06	0.42
217	Oleandra wallichii (Hook.) C.Presl	17.86	0.61	3.4	0.15	0.11	0.15	0.41
218	Pogonatherum crinitum (Thunb.) Kunth	25	0.57	2.29	0.21	0.1	0.1	0.41
219	<i>Himalayacalamus hookerianus</i> (Munro) Stapleton	25	0.57	2.29	0.21	0.1	0.1	0.41
220	Brassaiopsis hispida Seem.	25	0.57	2.29	0.21	0.1	0.1	0.41
221	Arthromeris wallichiana (Spreng.) Ching	25	0.57	2.29	0.21	0.1	0.1	0.41
222	Leucostegia truncata (D.Don) Fraser-Jenk.	7.14	0.43	6	0.06	0.08	0.27	0.4
223	Brucea javanica (L.) Merr.	14.29	0.57	4	0.12	0.1	0.18	0.4
224	Viburnum grandiflorum Wall. ex DC.	21.43	0.57	2.67	0.18	0.1	0.12	0.4
225	Litsea albescens (Hook.f.) D.G.Long	21.43	0.57	2.67	0.18	0.1	0.12	0.4
226	Erythrina stricta Roxb.	21.43	0.57	2.67	0.18	0.1	0.12	0.4
227	Quercus glauca Thunb.	25	0.54	2.14	0.21	0.1	0.1	0.4
228	<i>Huperzia pulcherrima</i> (Wall. <i>ex</i> Hook. & Grev.) T.Sen & U.Sen	25	0.54	2.14	0.21	0.1	0.1	0.4
229	Dendrobium fuscescens Griff.	25	0.54	2.14	0.21	0.1	0.1	0.4
230	Ageratum houstonianum Mill.	25	0.54	2.14	0.21	0.1	0.1	0.4
231	Begonia palmata D.Don	10.71	0.5	4.67	0.09	0.09	0.21	0.39
232	Pogonatherum paniceum (Lam.) Hack.	21.43	0.54	2.5	0.18	0.1	0.11	0.39
233	Ficus neriifolia Sm.	21.43	0.54	2.5	0.18	0.1	0.11	0.39
234	Elatostema acuminatum (Poir.) Brongn.	21.43	0.54	2.5	0.18	0.1	0.11	0.39
235	Choerospondias axillaris (Roxb.) B.L.Burtt & A.W.Hill	21.43	0.54	2.5	0.18	0.1	0.11	0.39
236	Acer caudatum Wall.	21.43	0.54	2.5	0.18	0.1	0.11	0.39
237	Woodsia obtusa Torr.	25	0.5	2	0.21	0.09	0.09	0.39
238	Symplocos dryophila C.B.Clarke	25	0.5	2	0.21	0.09	0.09	0.39
239	Bambusa nutans Wall. ex Munro	25	0.5	2	0.21	0.09	0.09	0.39
240	<i>Aleuritopteris subdimorpha</i> (C.B.Clarke & Baker) Fraser-Jenk.	25	0.5	2	0.21	0.09	0.09	0.39
241	Azadirachta indica Juss.	7.14	0.39	5.5	0.06	0.07	0.24	0.38
242	Rhamnus napalensis (Wall.) M.A.Lawson	14.29	0.54	3.75	0.12	0.1	0.17	0.38
243	<i>Pteracanthus urticifolius</i> (Wall. <i>ex</i> Kuntze) Bremek.	17.86	0.54	3	0.15	0.1	0.13	0.38
244	Persicaria hydropiper (L.) Delarbre	25	0.46	1.86	0.21	0.08	0.08	0.38
245	Girardinia diversifolia (Link) Friis	25	0.46	1.86	0.21	0.08	0.08	0.38
246	Pouzolzia hirta Blume ex Hassk.	28.57	0.43	1.5	0.24	0.08	0.07	0.38
247	Nyssa javanica (Blume) Wangerin	10.71	0.46	4.33	0.09	0.08	0.19	0.37
248	Globba clarkei Baker	10.71	0.46	4.33	0.09	0.08	0.19	0.37
249	Aster albescens (DC.) Wall.ex HandMazz	10.71	0.46	4.33	0.09	0.08	0.19	0.37
250	Persicaria glabra (Willd.) M.Gómez	14.29	0.5	3.5	0.12	0.09	0.16	0.37
251	Rhaphidophora decursiva (Roxb.) Schott	21.43	0.5	2.33	0.18	0.09	0.1	0.37

Sl No	Botanical Name	F	D	Α	RF	RD	RA	IVI
252	Dioscorea hamiltonii Hook.f.	21.43	0.5	2.33	0.18	0.09	0.1	0.37
253	Vaccinium vacciniaceum (Roxb.) Sleumer	28.57	0.39	1.38	0.24	0.07	0.06	0.37
254	Woodwardia unigemmata (Makino) Nakai	17.86	0.5	2.8	0.15	0.09	0.12	0.36
255	Toxicodendron hookeri (K.C.Sahni &	17.86	0.5	2.8	0.15	0.09	0.12	0.36
256	Duchesnea indica (Jacks.) Focke	17.86	0.5	2.8	0.15	0.09	0.12	0.36
257	Cymbidium longifolium D.Don	17.86	0.5	2.8	0.15	0.09	0.12	0.36
258	<i>Pyrrosia porosa</i> (C.Presl) Hovenkamp	21.43	0.46	2.17	0.18	0.08	0.1	0.36
259	Porana paniculata Roxb.	21.43	0.46	2.17	0.18	0.08	0.1	0.36
260	<i>Vaccinium nummularia</i> Hook.f. & Thoms. <i>ex</i> C.B.Clarke	25	0.43	1.71	0.21	0.08	0.08	0.36
261	Cyperus squarrosus L.	25	0.43	1.71	0.21	0.08	0.08	0.36
262	Adiantum incisum Forssk.	25	0.43	1.71	0.21	0.08	0.08	0.36
263	Boehmeria macrophylla Hornem.	28.57	0.36	1.25	0.24	0.06	0.06	0.36
264	<i>Tectaria polymorpha</i> (Wall. <i>ex</i> Hook.) Copeland	7.14	0.36	5	0.06	0.06	0.22	0.35
265	Odontosoria chinensis (L.) Sm.	7.14	0.36	5	0.06	0.06	0.22	0.35
266	Albizia procera (Roxb.) Benth.	7.14	0.36	5	0.06	0.06	0.22	0.35
267	Viola betonicifolia Sm.	14.29	0.46	3.25	0.12	0.08	0.14	0.35
268	Eucalyptus tereticornis Sm.	14.29	0.46	3.25	0.12	0.08	0.14	0.35
269	Arundo donax L.	17.86	0.46	2.6	0.15	0.08	0.12	0.35
270	Anaphalis busua (BuchHam.) DC.	17.86	0.46	2.6	0.15	0.08	0.12	0.35
271	Drynaria guercifolia (L.) Sm.	21.43	0.43	2	0.18	0.08	0.09	0.35
272	Asplenium gueinzianum Mett. ex Kuhn	21.43	0.43	2	0.18	0.08	0.09	0.35
273	Actinidia callosa Lindl.	21.43	0.43	2	0.18	0.08	0.09	0.35
274	Mimosa himalayana Gamble	25	0.39	1.57	0.21	0.07	0.07	0.35
275	Cautleya gracilis (Sm.) Dandy	25	0.39	1.57	0.21	0.07	0.07	0.35
276	Cardiocrinum giganteum (Wall.) Makino	3.57	0.21	6	0.03	0.04	0.27	0.34
277	<i>Dendrocalamus hamiltonii</i> T.Nees & Arn. <i>ex</i> Munro	25	0.36	1.43	0.21	0.06	0.06	0.34
278	Paederia foetida L.	14.29	0.43	3	0.12	0.08	0.13	0.33
279	Elatostema sessile J.R.Forst. & G.Forst.	17.86	0.43	2.4	0.15	0.08	0.11	0.33
280	Davallodes membrunulosa (Wall. ex Hook.) Copel	17.86	0.43	2.4	0.15	0.08	0.11	0.33
281	Arisaema tortuosum (Wall.) Schott	17.86	0.43	2.4	0.15	0.08	0.11	0.33
282	Viola canescens Wall.	21.43	0.39	1.83	0.18	0.07	0.08	0.33
283	Dicranopteris linearis (Burm.f.) Underw.	21.43	0.39	1.83	0.18	0.07	0.08	0.33
284	Achyranthes bidentata Blume	21.43	0.39	1.83	0.18	0.07	0.08	0.33
285	Hedychium coccineum BuchHam. ex Sm.	25	0.32	1.29	0.21	0.06	0.06	0.33
286	Rubus acuminatus Sm.	7.14	0.32	4.5	0.06	0.06	0.2	0.32
287	<i>Elaphoglossum marginatum</i> (Wall. <i>ex</i> Fee)T.Moore	7.14	0.32	4.5	0.06	0.06	0.2	0.32
288	Persicaria nepalensis (Meisn.) Miyabe	10.71	0.39	3.67	0.09	0.07	0.16	0.32

Sl No	Botanical Name	F	D	Α	RF	RD	RA	IVI
289	Allantodia spectabilis (Wall.ex Mett.) Ching	10.71	0.39	3.67	0.09	0.07	0.16	0.32
290	Lemmaphyllum rostratum (Bedd.) Tagawa	10.71	0.39	3.67	0.09	0.07	0.16	0.32
291	Plantago rugelii Decne.	17.86	0.39	2.2	0.15	0.07	0.1	0.32
292	Microsorum punctatum (L.) Copel.	17.86	0.39	2.2	0.15	0.07	0.1	0.32
293	Toona ciliata M.Roem.	21.43	0.36	1.67	0.18	0.06	0.07	0.32
294	Saurauia fasciculate Wall.	21.43	0.36	1.67	0.18	0.06	0.07	0.32
295	Rumex nepalensis Spreng.	21.43	0.36	1.67	0.18	0.06	0.07	0.32
296	Hemiphragma heterophyllum Wall.	21.43	0.36	1.67	0.18	0.06	0.07	0.32
297	Viola pilosa Blume	14.29	0.39	2.75	0.12	0.07	0.12	0.31
298	Lithocarpus fenestratus (Roxb.) Rehder	14.29	0.39	2.75	0.12	0.07	0.12	0.31
299	Himalaiella deltoidea (DC.) Raab-Straube	14.29	0.39	2.75	0.12	0.07	0.12	0.31
300	Elsholtzia fruticosa (D.Don) Rehder	10.71	0.36	3.33	0.09	0.06	0.15	0.3
301	Viburnum nervosum D.Don	14.29	0.36	2.5	0.12	0.06	0.11	0.3
302	Liparis resupinata Ridl.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
303	Impatiens racemosa DC.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
304	Berchemia floribunda (Wall.) Brongn.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
305	Berberisvirescens Hook.f.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
306	Arctium lappa L.	14.29	0.36	2.5	0.12	0.06	0.11	0.3
307	Antidesma acuminatum Wall	14.29	0.36	2.5	0.12	0.06	0.11	0.3
308	Allantodia stoliczkae (Bedd.) Ching	14.29	0.36	2.5	0.12	0.06	0.11	0.3
309	Tsuga dumosa (D.Don) Eichl.	17.86	0.36	2	0.15	0.06	0.09	0.3
310	Phegopteris hexagonoptera (Michx.) Fée	17.86	0.36	2	0.15	0.06	0.09	0.3
311	Lantana camara L.	17.86	0.36	2	0.15	0.06	0.09	0.3
312	Ilex dipyrena Wall.	17.86	0.36	2	0.15	0.06	0.09	0.3
313	Cautleya spicata (Sm.) Baker	17.86	0.36	2	0.15	0.06	0.09	0.3
314	Athyrium filix-femina (L.) Roth	17.86	0.36	2	0.15	0.06	0.09	0.3
315	Cyanotis vaga (Lour.) Schult& Schult.f.	21.43	0.32	1.5	0.18	0.06	0.07	0.3
316	Trichosanthes lepiniana (Naudin) Cogniaux	25	0.25	1	0.21	0.04	0.04	0.3
317	Premula pulchra Watt	7.14	0.29	4	0.06	0.05	0.18	0.29
318	Polystichum acrostichoides (Michx.) Schott	7.14	0.29	4	0.06	0.05	0.18	0.29
319	<i>Lindenbergia grandiflora</i> (BuchHam. <i>ex</i> D. Don) Benth.	7.14	0.29	4	0.06	0.05	0.18	0.29
320	Cyathula capitata Moq.	7.14	0.29	4	0.06	0.05	0.18	0.29
321	Pyrrosia costata (C.Presl) Tagawa & K.Iwats	17.86	0.32	1.8	0.15	0.06	0.08	0.29
322	Potentilla fulgens Trevir.	17.86	0.32	1.8	0.15	0.06	0.08	0.29
323	Magnolia champaca (L.) Baill. ex Pierre	17.86	0.32	1.8	0.15	0.06	0.08	0.29
324	Litsea salicifolia (J.Roxb. ex Nees) Hook.f.	17.86	0.32	1.8	0.15	0.06	0.08	0.29
325	Hemarthria compressa (L.f.) R.Br.	17.86	0.32	1.8	0.15	0.06	0.08	0.29
326	Evodia fraxinifolia (Hook.) Benth.	17.86	0.32	1.8	0.15	0.06	0.08	0.29

Sl No	Botanical Name	F	D	Α	RF	RD	RA	IVI
327	Elaeocarpus rugosus Roxb. ex G.Don	17.86	0.32	1.8	0.15	0.06	0.08	0.29
328	Cinnamomum impressinervium Meisn.	17.86	0.32	1.8	0.15	0.06	0.08	0.29
329	Balantium antarcticum (Labill.) C.Presl	17.86	0.32	1.8	0.15	0.06	0.08	0.29
330	Aster sikkimmensis Hook.f.& Thomson	17.86	0.32	1.8	0.15	0.06	0.08	0.29
331	Rubus calycinoides Kuntze	21.43	0.29	1.33	0.18	0.05	0.06	0.29
332	<i>Himalayacalamus falconeri</i> (Hook.f. <i>ex</i> Munro) Keng.f.	21.43	0.29	1.33	0.18	0.05	0.06	0.29
333	Buddleja asiatica Lour.	3.57	0.18	5	0.03	0.03	0.22	0.28
334	Trichomanes accedens C. Presl	3.57	0.18	5	0.03	0.03	0.22	0.28
335	Pyrrosia lanceolata (L.) Farw.	10.71	0.32	3	0.09	0.06	0.13	0.28
336	Persicaria vivipara (L.) Ronse Decr.	10.71	0.32	3	0.09	0.06	0.13	0.28
337	Mallotus nepalensis MüllArg.	10.71	0.32	3	0.09	0.06	0.13	0.28
338	Bulbophyllum guttulatum (Hook.f) N.P.Balkr.	10.71	0.32	3	0.09	0.06	0.13	0.28
339	Athyrium foliolosum T.Moore ex R. Sim	10.71	0.32	3	0.09	0.06	0.13	0.28
340	Arisaema nepenthoides (Wall.) Mart.	10.71	0.32	3	0.09	0.06	0.13	0.28
341	Holmskioldia sanguine Retz.	14.29	0.32	2.25	0.12	0.06	0.1	0.28
342	Ficus sarmentosa BuchHam. ex Sm.	14.29	0.32	2.25	0.12	0.06	0.1	0.28
343	Cyperus compressus L.	14.29	0.32	2.25	0.12	0.06	0.1	0.28
344	Strobilanthes capitata (Nees) T. Anderson	21.43	0.25	1.17	0.18	0.04	0.05	0.28
345	Meliosma simplicifolia (Roxb.) Walp.	17.86	0.29	1.6	0.15	0.05	0.07	0.27
346	Quercus laurifolia Michx.	7.14	0.25	3.5	0.06	0.04	0.16	0.26
347	Persicaria alpina (All.) H.Gross	7.14	0.25	3.5	0.06	0.04	0.16	0.26
348	Drynaria propinqua (Wall. ex Mett.) J.Sm	7.14	0.25	3.5	0.06	0.04	0.16	0.26
349	Curcuma angustifolia Roxb.	7.14	0.25	3.5	0.06	0.04	0.16	0.26
350	Caelogyne stricta D.Don	7.14	0.25	3.5	0.06	0.04	0.16	0.26
351	Sorbus cuspidata (Spach.) Hedl.	10.71	0.29	2.67	0.09	0.05	0.12	0.26
352	Primula denticulate Sm.	10.71	0.29	2.67	0.09	0.05	0.12	0.26
353	Premula capitata Hook.f	10.71	0.29	2.67	0.09	0.05	0.12	0.26
354	Machilus gamblei King ex Hook.f.	10.71	0.29	2.67	0.09	0.05	0.12	0.26
355	Asplenium tenuifolium D.Don	10.71	0.29	2.67	0.09	0.05	0.12	0.26
356	Artocarpus lacucha BuchHam.	10.71	0.29	2.67	0.09	0.05	0.12	0.26
357	<i>Exbucklandia populnea</i> (R.Br. <i>ex</i> Griff.) R.W.Br.	14.29	0.29	2	0.12	0.05	0.09	0.26
358	Equisetum arvense L.	14.29	0.29	2	0.12	0.05	0.09	0.26
359	Pyrrosia mannii (Giesenh.) Ching	17.86	0.25	1.4	0.15	0.04	0.06	0.26
360	Hydrocotyle sibthorpioides Lam.	17.86	0.25	1.4	0.15	0.04	0.06	0.26
361	Cissampelos pareira L.	17.86	0.25	1.4	0.15	0.04	0.06	0.26
362	Astragalus stipulatus (L.) A. Gray	17.86	0.25	1.4	0.15	0.04	0.06	0.26
363	Artemisia vulgaris L.	17.86	0.25	1.4	0.15	0.04	0.06	0.26

Sl No	Botanical Name	F	D	Α	RF	RD	RA	IVI
364	Pilea scripta (BuchHam. ex D. Don) Wedd.	10.71	0.25	2.33	0.09	0.04	0.1	0.24
365	Oberonia falcata King & Pantl.	10.71	0.25	2.33	0.09	0.04	0.1	0.24
366	Melochia corchorifolia L.	10.71	0.25	2.33	0.09	0.04	0.1	0.24
367	Aster trinervis Roxb.	10.71	0.25	2.33	0.09	0.04	0.1	0.24
368	Arisaema griffithii Schott	10.71	0.25	2.33	0.09	0.04	0.1	0.24
369	Primula petiolaris Wall.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
370	Litsea cubeba (Lour.) Pers.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
371	Impatiens discolour DC.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
372	Dendrobium longicornu Lindl.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
373	Clematis buchananiana DC.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
374	Begonia malabarica Lam.	14.29	0.25	1.75	0.12	0.04	0.08	0.24
375	Sinopodophyllum hexandrum (Royle) T.S.Ying	17.86	0.21	1.2	0.15	0.04	0.05	0.24
376	Ficus subincisa BuchHam. ex Sm.	17.86	0.21	1.2	0.15	0.04	0.05	0.24
377	Coelogyne corymbosa Lindl.	17.86	0.21	1.2	0.15	0.04	0.05	0.24
378	Pyrrosia flocculosa (D.Don) Ching	3.57	0.14	4	0.03	0.03	0.18	0.23
379	<i>Lepisorus sublinearis</i> (Baker ex Takeda) Ching	3.57	0.14	4	0.03	0.03	0.18	0.23
380	Dendrocnide sinuata (Blume) Chew	3.57	0.14	4	0.03	0.03	0.18	0.23
381	Bulbophyllum sterile (Lam.) Suresh	3.57	0.14	4	0.03	0.03	0.18	0.23
382	Terminalia chebula Retz.	7.14	0.21	3	0.06	0.04	0.13	0.23
383	Ulmus lanceifolia Roxb. ex Wall.	7.14	0.21	3	0.06	0.04	0.13	0.23
384	Pholidota imbricate Lindl.	7.14	0.21	3	0.06	0.04	0.13	0.23
385	Pichisermollodes albopes (C. Chr. & Ching) Fraser-Jenk	7.14	0.21	3	0.06	0.04	0.13	0.23
386	Lepisorus clathretus (C.B.Clarke) Ching	7.14	0.21	3	0.06	0.04	0.13	0.23
387	Terminalia crenulata Roth	14.29	0.21	1.5	0.12	0.04	0.07	0.23
388	Selaginella acanthostachys Baker	14.29	0.21	1.5	0.12	0.04	0.07	0.23
389	Piper boehmeriifolium (Miq.) Wall. ex C. DC	14.29	0.21	1.5	0.12	0.04	0.07	0.23
390	Lepisorus mehrae Fraser-Jenk.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
391	Ageratina ligustrina (DC.) R.M.King & H.Rob.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
392	Galium elegans Wall. ex Roxb.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
393	Fraxinus floribunda Wall.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
394	<i>Dryopsis apiciflora</i> (Wall. <i>ex</i> Mett.) Holttum & P.J. Edwards	14.29	0.21	1.5	0.12	0.04	0.07	0.23
395	Dioscorea deltoidea Wall. ex Griseb.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
396	Cyrtomium hookerianum C.Chr.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
397	Castanopsis indica A.DC.	14.29	0.21	1.5	0.12	0.04	0.07	0.23
398	Brugmansia suaveolens (Humboldt & Bonpland ex Willd.) Berchtold & J.Presl	14.29	0.21	1.5	0.12	0.04	0.07	0.23
399	Asplenium yoshinagae Makino	14.29	0.21	1.5	0.12	0.04	0.07	0.23

SI	Botanical Name	F	D	Α	RF	RD	RA	IVI
400	Urtica hyperborea Jacq. ex Wedd.	10.71	0.21	2	0.09	0.04	0.09	0.22
401	Stephania elegans Hook.f.& Thomson	10.71	0.21	2	0.09	0.04	0.09	0.22
402	Pilea ternifolia Wedd.	10.71	0.21	2	0.09	0.04	0.09	0.22
403	Pholidota articulate Lindl.	10.71	0.21	2	0.09	0.04	0.09	0.22
404	Erigeron karvinskianus DC.	10.71	0.21	2	0.09	0.04	0.09	0.22
405	Coniogramme procera Fee	10.71	0.21	2	0.09	0.04	0.09	0.22
406	Aralia leschenaultii (DC.) J.Wen	10.71	0.21	2	0.09	0.04	0.09	0.22
407	Rubus kumaonensis N.P. Balkr.	14.29	0.18	1.25	0.12	0.03	0.06	0.21
408	Magnolia doltsopa (BuchHam. exDC.) Figlar	14.29	0.18	1.25	0.12	0.03	0.06	0.21
409	Glochidion thomsonii (MüllArg.) Hook.f.	14.29	0.18	1.25	0.12	0.03	0.06	0.21
410	Daphne glacialis (W.W.Sm. & Cave) A.P. Das	14.29	0.18	1.25	0.12	0.03	0.06	0.21
411	Dittoceras andersonii Hook.f.	14.29	0.18	1.25	0.12	0.03	0.06	0.21
412	Zanthoxylum acanthopodium DC.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
413	Vittaria sikkimensis Kuhn	7.14	0.18	2.5	0.06	0.03	0.11	0.2
414	Uncifera obtusifolia Lindl.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
415	Pilea approximata CB. Clarke	7.14	0.18	2.5	0.06	0.03	0.11	0.2
416	Myrsine semiserrata Wall.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
417	Lygodium flexuosum (L.) Sw.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
418	Hydrangea robusta Hook.f. & Thomson	7.14	0.18	2.5	0.06	0.03	0.11	0.2
419	Huperzia hamiltonii (Spring) Trev.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
420	Gynocardia odorata R.Br.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
421	Elaeocarpus lanceifolius Roxb.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
422	Cyperus niveus Retz.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
423	Cyperus haspan L.	7.14	0.18	2.5	0.06	0.03	0.11	0.2
424	Veronica serpyllifolia L.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
425	Setaria pumila (Poir.) Roemer & Schult.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
426	Poa annua L.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
427	Microlepia strigosa (Thunb.) C.Presl	10.71	0.18	1.67	0.09	0.03	0.07	0.2
428	Juniperus recurva BuchHam. ex D.Don	10.71	0.18	1.67	0.09	0.03	0.07	0.2
429	Juglans regia L.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
430	Ficus roxburghii Lour.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
431	Erigeron Canadensis L.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
432	Cyathea chinensis Copel.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
433	Bulbophyllum yoksunense J.J. Sm.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
434	Arisaema intermedium Blume	10.71	0.18	1.67	0.09	0.03	0.07	0.2
435	Abies spectabilis (D.Don) Mirb.	10.71	0.18	1.67	0.09	0.03	0.07	0.2
436	Mallotus philippensis (Lam.) MüllArg.	14.29	0.14	1	0.12	0.03	0.04	0.19
437	Emilia sonchifolia (L.) DC.	14.29	0.14	1	0.12	0.03	0.04	0.19

Sl No	Botanical Name	F	D	А	RF	RD	RA	IVI
438	Zanthoxylum rhetsa DC.	3.57	0.11	3	0.03	0.02	0.13	0.18
439	Vittaria doniana Hieron.	3.57	0.11	3	0.03	0.02	0.13	0.18
440	Sterculia lanceifolia G. Don	3.57	0.11	3	0.03	0.02	0.13	0.18
441	Pyrularia edulis (Wall.) A.DC.	3.57	0.11	3	0.03	0.02	0.13	0.18
442	Oenanthe thomsonii C.B.Clarke	3.57	0.11	3	0.03	0.02	0.13	0.18
443	Mahonia napaulensis DC.	3.57	0.11	3	0.03	0.02	0.13	0.18
444	Laphangium affine (D.Don) Tzvelev	3.57	0.11	3	0.03	0.02	0.13	0.18
445	Knema cinerea var. glauca (Blume) Y.H.Li	3.57	0.11	3	0.03	0.02	0.13	0.18
446	Ixeris polycephala Cassini	3.57	0.11	3	0.03	0.02	0.13	0.18
447	Impatiens puberula DC.	3.57	0.11	3	0.03	0.02	0.13	0.18
448	Fragaria nubicola (Lindl. ex Hook.f.) Lacaita	3.57	0.11	3	0.03	0.02	0.13	0.18
449	Duabanga grandiflora (DC.) Walp.	3.57	0.11	3	0.03	0.02	0.13	0.18
450	Acer laevigatum Wall.	3.57	0.11	3	0.03	0.02	0.13	0.18
451	Acampe rigida (BuchHam. ex. Sm.) P.F.Hunt	3.57	0.11	3	0.03	0.02	0.13	0.18
452	Acampe ochracea Lindl.	3.57	0.11	3	0.03	0.02	0.13	0.18
453	Pteris wallichiana J. Agardh	10.71	0.14	1.33	0.09	0.03	0.06	0.18
454	Piper suipigua D.Don	10.71	0.14	1.33	0.09	0.03	0.06	0.18
455	Persicaria tinctoria (Aiton) H.Gross	10.71	0.14	1.33	0.09	0.03	0.06	0.18
456	Mucuna macrocarpa Wall.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
457	Berberis asiatica DC.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
458	Lindsaea odorata Roxb.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
459	Dendrobium hookerianum Lindl.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
460	Daphne bholua BuchHam. ex D.Don	10.71	0.14	1.33	0.09	0.03	0.06	0.18
461	Bauhinia scandens L.	10.71	0.14	1.33	0.09	0.03	0.06	0.18
462	Arisaema flavum (Forssk.) Schott	10.71	0.14	1.33	0.09	0.03	0.06	0.18
463	Stachys melissifolia Benth.	7.14	0.14	2	0.06	0.03	0.09	0.17
464	Polypodium polypodioides (L.) Watt	7.14	0.14	2	0.06	0.03	0.09	0.17
465	Polypodiodes amoena (Wall. ex Mett.) Ching	7.14	0.14	2	0.06	0.03	0.09	0.17
466	Persea odoratissima (Nees) Kosterm.	7.14	0.14	2	0.06	0.03	0.09	0.17
467	Panisea demissa (D.Don) Pfitzer	7.14	0.14	2	0.06	0.03	0.09	0.17
468	Meliosma pinnata (Roxb.) Maxim.	7.14	0.14	2	0.06	0.03	0.09	0.17
469	Lasiococca symphyllifolia (Kurz) Hook.f.	7.14	0.14	2	0.06	0.03	0.09	0.17
470	Impatiens sulcata Wall.	7.14	0.14	2	0.06	0.03	0.09	0.17
471	Eriobotrya petiolata Hook.f.	7.14	0.14	2	0.06	0.03	0.09	0.17
472	Dryopteris filix-mas (L.) Schott	7.14	0.14	2	0.06	0.03	0.09	0.17
473	Casearia glomerata Roxb.	7.14	0.14	2	0.06	0.03	0.09	0.17
474	Berberis angulosa Wall. ex Hook.& Thomson	7.14	0.14	2	0.06	0.03	0.09	0.17
475	Aucuba himalaica Hook.f. & Thomson	7.14	0.14	2	0.06	0.03	0.09	0.17

SI No	Botanical Name	F	D	Α	RF	RD	RA	IVI
476	Arthromeris himalayensis (Hook.) Ching	7.14	0.14	2	0.06	0.03	0.09	0.17
477	Rubus splendidissimus H.Hara	7.14	0.11	1.5	0.06	0.02	0.07	0.15
478	Toxicodendron griffithii (Hook. f.) Kuntze	7.14	0.11	1.5	0.06	0.02	0.07	0.15
479	Rhododendron fulgens Hook.f.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
480	Remusatia pumila (D.Don) H.Li & A.Hay	7.14	0.11	1.5	0.06	0.02	0.07	0.15
481	Quercus robur L.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
482	Pteris spinescens C.Presl	7.14	0.11	1.5	0.06	0.02	0.07	0.15
483	Pseudognaphalium hypoleucum (DC.) Hilliard& B.L.Burtt	7.14	0.11	1.5	0.06	0.02	0.07	0.15
484	Pogostemon fraternus Miq.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
485	Physalis divaricata D.Don	7.14	0.11	1.5	0.06	0.02	0.07	0.15
486	Phlebodium aureum (L.) Sm.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
487	Lyonia villosa (Wall. ex C.B.Clarke) Hand Mazz.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
488	Impatiens scabrida DC	7.14	0.11	1.5	0.06	0.02	0.07	0.15
489	Hippochaete debilis (Roxb. ex Vaucher) Ching	7.14	0.11	1.5	0.06	0.02	0.07	0.15
490	Hedychium spicatum Sm.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
491	Diploknema butyracea (Roxb.) H.J.Lam	7.14	0.11	1.5	0.06	0.02	0.07	0.15
492	Coelogyne prolifera Lindl.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
493	Citrus maxima (Burm.f.) Merr.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
494	Carex caryophyllea Latourr.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
495	Brassaiopsis glomerulata (Blume) Regel	7.14	0.11	1.5	0.06	0.02	0.07	0.15
496	Brachiaria subquadripara (Trin.) Hitchc.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
497	Berberis hookeri Lem.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
498	Begonia josephi DC.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
499	Bauhinia purpurea L.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
500	Asplenium phyllitidis D.Don	7.14	0.11	1.5	0.06	0.02	0.07	0.15
501	Adiantum lunulatum Burm.f.	7.14	0.11	1.5	0.06	0.02	0.07	0.15
502	Rubus lineatus Reinw.ex Blume	10.71	0.11	1	0.09	0.02	0.04	0.15
503	Pleione humilis (Sm.) D.Don	10.71	0.11	1	0.09	0.02	0.04	0.15
504	Maianthemum oleraceum (Baker) LaFrankie	10.71	0.11	1	0.09	0.02	0.04	0.15
505	Leea macrophylla Roxb.exHornem.	10.71	0.11	1	0.09	0.02	0.04	0.15
506	Laportea bulbifera (Siebold &Zucc.) Wedd.	10.71	0.11	1	0.09	0.02	0.04	0.15
507	Erythrina arborescens Roxb.	10.71	0.11	1	0.09	0.02	0.04	0.15
508	Dennstaedtia appendiculata (Wall.exHook.) J.Sm	10.71	0.11	1	0.09	0.02	0.04	0.15
509	Digitaria sanguinalis (L.) Scop.	10.71	0.11	1	0.09	0.02	0.04	0.15
510	Arisaema speciosum (Wall.) Mart.	10.71	0.11	1	0.09	0.02	0.04	0.15
511	Vittaria taeniophylla Copel.	3.57	0.07	2	0.03	0.01	0.09	0.13

SI	Botanical Name	F	D	Α	RF	RD	RA	IVI
No 512	Synotis canna (Buch -Ham ex D Don) C	3 57	0.07	2	0.03	0.01	0.09	0.13
512	Jeffrey & Y.L.Chen	5.57	0.07	2	0.05	0.01	0.07	0.15
513	Symplosos theifolia D.Don	3.57	0.07	2	0.03	0.01	0.09	0.13
514	Swertia paniculata Wall.	3.57	0.07	2	0.03	0.01	0.09	0.13
515	Senna tora (L.) Roxb.	3.57	0.07	2	0.03	0.01	0.09	0.13
516	Rhododendron dalhousieae Hook.f.	3.57	0.07	2	0.03	0.01	0.09	0.13
517	Rhododendron anthopogon D.Don	3.57	0.07	2	0.03	0.01	0.09	0.13
518	Phyllanthus emblica L.	3.57	0.07	2	0.03	0.01	0.09	0.13
519	Persicaria bistorta (L.) Samp.	3.57	0.07	2	0.03	0.01	0.09	0.13
520	Machilus gammieana King	3.57	0.07	2	0.03	0.01	0.09	0.13
521	Litsea monopetala (Roxb.) Pers.	3.57	0.07	2	0.03	0.01	0.09	0.13
522	<i>Lithocarpus elegans</i> (Blume) Hatus. <i>ex</i> Soepadmo	3.57	0.07	2	0.03	0.01	0.09	0.13
523	Ione bicolour Lindl.	3.57	0.07	2	0.03	0.01	0.09	0.13
524	Huperzia serrata (Thunb.) Trevis.	3.57	0.07	2	0.03	0.01	0.09	0.13
525	Grewia serrulata DC.	3.57	0.07	2	0.03	0.01	0.09	0.13
526	Flemingia strobilifera (L.) W.T.Aiton	3.57	0.07	2	0.03	0.01	0.09	0.13
527	Esmeralda cathcartii (Lindl.) Rchb.f.	3.57	0.07	2	0.03	0.01	0.09	0.13
528	Drymaria villosa Schltdl. & Cham.	3.57	0.07	2	0.03	0.01	0.09	0.13
529	Diplazium muricatum Alderw.	3.57	0.07	2	0.03	0.01	0.09	0.13
530	Dendrobium eriiflorum Griff.	3.57	0.07	2	0.03	0.01	0.09	0.13
531	Cheilocostus speciosus (J.Koenig) C.D.Specht	3.57	0.07	2	0.03	0.01	0.09	0.13
532	Bulbophyllum thomsonii Hook.f.	3.57	0.07	2	0.03	0.01	0.09	0.13
533	Berberis wallichiana DC.	3.57	0.07	2	0.03	0.01	0.09	0.13
534	Beilschmiedia sikkimensis King ex Hook.f.	3.57	0.07	2	0.03	0.01	0.09	0.13
535	Aster tricephalus C.B.Clarke	3.57	0.07	2	0.03	0.01	0.09	0.13
536	Arundina graminifolia (D.Don) Hochr.	3.57	0.07	2	0.03	0.01	0.09	0.13
537	Arisaema echinatum (Wall.) Schott	3.57	0.07	2	0.03	0.01	0.09	0.13
538	Arachniodes davalliaeformis (Christ) Nakaike	3.57	0.07	2	0.03	0.01	0.09	0.13
539	Aleuritopteris dubia (C.Hope) Ching	3.57	0.07	2	0.03	0.01	0.09	0.13
540	Zanthoxylum oxyphyllum Edgw.	7.14	0.07	1	0.06	0.01	0.04	0.12
541	Vittaria flexuosa Fée	7.14	0.07	1	0.06	0.01	0.04	0.12
542	Tetrastigma serrulatum (Roxb.) Planch.	7.14	0.07	1	0.06	0.01	0.04	0.12
543	<i>Tetrastigma obtectum</i> (Wall. <i>ex</i> M.A. Lawson) Planch. <i>ex</i> Franch.	7.14	0.07	1	0.06	0.01	0.04	0.12
544	Steriochilus hirtus Lindl.	7.14	0.07	1	0.06	0.01	0.04	0.12
545	Senna occidentalis (L.) Link	7.14	0.07	1	0.06	0.01	0.04	0.12
546	Selliguea oxyloba (Wall.ex Kunze.) Fraser- Jenk	7.14	0.07	1	0.06	0.01	0.04	0.12
547	Satyrium nepalense D.Don	7.14	0.07	1	0.06	0.01	0.04	0.12

SI	Botanical Name	F	D	Α	RF	RD	RA	IVI
No 548	Pteris scabririgens Fraser-Jenk., S.C.Verma &	7.14	0.07	1	0.06	0.01	0.04	0.12
549	T.G. Walker Prunus persica (L.) Batsch	7 14	0.07	1	0.06	0.01	0.04	0.12
550	Plagiogyria pychophylla (Kuntze) Mett	7.14	0.07	1	0.00	0.01	0.04	0.12
551	Nevraudia arundinacea (I_) Henrard	7.14	0.07	1	0.00	0.01	0.04	0.12
552	Negeta Iamionsis Benth ar Hook f	7.14	0.07	1	0.00	0.01	0.04	0.12
553	Lonicara standishii Jacques	7.14	0.07	1	0.00	0.01	0.04	0.12
554	Lontodormis kumaonansis R Parker	7.14	0.07	1	0.00	0.01	0.04	0.12
555	Isaahna sikkimansis Bor	7.14	0.07	1	0.00	0.01	0.04	0.12
555	Humorria squarrosq (Forst.) Troy	7.14	0.07	1	0.00	0.01	0.04	0.12
550	Huperzia squarrosa (Forst.) Hev.	7.14	0.07	1	0.00	0.01	0.04	0.12
557	Heavenium gracue Roxb.	7.14	0.07	1	0.06	0.01	0.04	0.12
558	Habenaria pectinata D.Don	7.14	0.07	1	0.06	0.01	0.04	0.12
559	Eurya acuminate DC.	7.14	0.07	1	0.06	0.01	0.04	0.12
560	Coelogyne flaccid Lindl.	7.14	0.07	I	0.06	0.01	0.04	0.12
561	<i>Clerodendrum infortunatum</i> L.	7.14	0.07	1	0.06	0.01	0.04	0.12
562	Ardisia macrocarpa Wall.	7.14	0.07	1	0.06	0.01	0.04	0.12
563	Angelica archangelica L.	7.14	0.07	1	0.06	0.01	0.04	0.12
564	Ampelocalamus patellaris (Gamble) Stapleton	7.14	0.07	1	0.06	0.01	0.04	0.12
565	Agave Americana L.	7.14	0.07	1	0.06	0.01	0.04	0.12
566	Zanthoxylum bungeanum Maxim.	3.57	0.04	1	0.03	0.01	0.04	0.08
567	Zanthoxylum armatum DC.	3.57	0.04	1	0.03	0.01	0.04	0.08
568	Xanthium strumarium L.	3.57	0.04	1	0.03	0.01	0.04	0.08
569	Vanda pumila Hook.f.	3.57	0.04	1	0.03	0.01	0.04	0.08
570	Urtica parviflora Roxb.	3.57	0.04	1	0.03	0.01	0.04	0.08
571	Trichotosia pulvinata (Lindl.) Kraenzl.	3.57	0.04	1	0.03	0.01	0.04	0.08
572	<i>Cymbopogon pendulus</i> (Nees ex Steud.) J.F. Watson	3.57	0.04	1	0.03	0.01	0.04	0.08
573	Thunia bracteata (Roxb.) Schltr.	3.57	0.04	1	0.03	0.01	0.04	0.08
574	Tetrastigma bracteolatum (Wall.) Planch.	3.57	0.04	1	0.03	0.01	0.04	0.08
575	Magnolia globosa Hook.f. & Thomson	3.57	0.04	1	0.03	0.01	0.04	0.08
576	Syzygium kurzii (Duthie) N.P.Balakr.	3.57	0.04	1	0.03	0.01	0.04	0.08
577	Styrax hookeri C.B.Clarke	3.57	0.04	1	0.03	0.01	0.04	0.08
578	Strobilanthes urticifolia Wall. ex Kuntze	3.57	0.04	1	0.03	0.01	0.04	0.08
579	Spiranthes sinensis (Pers.) Ames	3.57	0.04	1	0.03	0.01	0.04	0.08
580	Sphenomeris chinensis (L.) Maxon	3.57	0.04	1	0.03	0.01	0.04	0.08
581	Solanum torvum Sw.	3.57	0.04	1	0.03	0.01	0.04	0.08
582	Sigesbeckia orientalis L.	3.57	0.04	1	0.03	0.01	0.04	0.08
583	Sida acuta Burm.f.	3.57	0.04	1	0.03	0.01	0.04	0.08
584	Senecio buimalia BuchHam. ex D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08

SI No	Botanical Name	F	D	А	RF	RD	RA	IVI
585	Schisandra grandiflora (Wall.) Hook.f.&	3.57	0.04	1	0.03	0.01	0.04	0.08
586	Sauropus androgynus (L.) Merr.	3.57	0.04	1	0.03	0.01	0.04	0.08
587	Sanindus rarak DC.	3.57	0.04	1	0.03	0.01	0.04	0.08
588	Sambucus iavanica Blume	3.57	0.04	1	0.03	0.01	0.04	0.08
589	Rubus rugosus Sm.	3.57	0.04	1	0.03	0.01	0.04	0.08
590	Rubus niveus Thunb.	3.57	0.04	1	0.03	0.01	0.04	0.08
591	Rubus fragarioides Bertol.	3.57	0.04	1	0.03	0.01	0.04	0.08
592	Ranunculus laetus Wall. ex Hook.f. &	3.57	0.04	1	0.03	0.01	0.04	0.08
502	J.W.Thomson	2 57	0.04	1	0.02	0.01	0.04	0.08
595	Preriatum revolutum (Bluttle) INakai	3.37	0.04	1	0.03	0.01	0.04	0.08
594	Prunus wallichti Steud.	3.57	0.04	1	0.03	0.01	0.04	0.08
595		3.57	0.04	1	0.03	0.01	0.04	0.08
396	Selinum wallichianum (DC.) Raizada & H.O. Saxena	3.57	0.04	1	0.03	0.01	0.04	0.08
597	Potentilla multifida L.	3.57	0.04	1	0.03	0.01	0.04	0.08
598	Porpax elwesii (Rchb.f) Rolfe	3.57	0.04	1	0.03	0.01	0.04	0.08
599	Persicaria campanulata (Hook.f.) Ronse Decr.	3.57	0.04	1	0.03	0.01	0.04	0.08
600	Pogostemon benghalensis (Burm.f.) Kuntze	3.57	0.04	1	0.03	0.01	0.04	0.08
601	Podochilus cultratus Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
602	Podocarpus neriifolius D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08
603	Pleione praecox (Sm.) D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08
604	Platanthera arcuata Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
605	Pilea bracteosa Wedd.	3.57	0.04	1	0.03	0.01	0.04	0.08
606	Phalaenopsis mannii Rchb.f.	3.57	0.04	1	0.03	0.01	0.04	0.08
607	Persicaria chinensis (L.) H.Gross	3.57	0.04	1	0.03	0.01	0.04	0.08
608	Peristrophe fera C.B.Clarke	3.57	0.04	1	0.03	0.01	0.04	0.08
609	Parthenium hysterophorus L.	3.57	0.04	1	0.03	0.01	0.04	0.08
610	Panisea uniflora Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
611	Panax pseudo-ginseng Wall.	3.57	0.04	1	0.03	0.01	0.04	0.08
612	Oroxylum indicum (L.) Kurz	3.57	0.04	1	0.03	0.01	0.04	0.08
613	Oberonia rufilabris Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
614	Oberonia obcordata Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
615	Nerium oleander L.	3.57	0.04	1	0.03	0.01	0.04	0.08
616	Nasturtium officinale R.Br.	3.57	0.04	1	0.03	0.01	0.04	0.08
617	Musa paradisiacal L.	3.57	0.04	1	0.03	0.01	0.04	0.08
618	Morus indica L.	3.57	0.04	1	0.03	0.01	0.04	0.08
619	Micropera mannii (Hook.f.)Tang & F.T.Wang	3.57	0.04	1	0.03	0.01	0.04	0.08
620	Meizotropis buteiformis Voigt	3.57	0.04	1	0.03	0.01	0.04	0.08
621	Meconopsis simplicifolia (D. Don) Walp.	3.57	0.04	1	0.03	0.01	0.04	0.08

SI	Botanical Name	F	D	А	RF	RD	RA	IVI
No 622	Marsilea minuta L	3 57	0.04	1	0.03	0.01	0.04	0.08
623	Malaxis muscifera (Lindl.) Kuntze	3.57	0.04	1	0.03	0.01	0.04	0.08
624	Lepidagathis incurve BuchHam. ex D. Don	3.57	0.04	1	0.03	0.01	0.04	0.08
625	Juncus prismatocarpus R.Br.	3.57	0.04	1	0.03	0.01	0.04	0.08
626	Holboellia latifolia Wall.	3.57	0.04	1	0.03	0.01	0.04	0.08
627	Henckelia urticifolia (BuchHam. ex D.Don)	3.57	0.04	1	0.03	0.01	0.04	0.08
	Dietrich							
628	Hedychium ellipticum BuchHam. ex Sm.	3.57	0.04	1	0.03	0.01	0.04	0.08
629	Hedera nepalensis K.Koch	3.57	0.04	1	0.03	0.01	0.04	0.08
630	Gastrochilus calceolaris (Sm.) D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08
631	Ficus religiosa L.	3.57	0.04	1	0.03	0.01	0.04	0.08
632	Ficus nemoralis Wall.	3.57	0.04	1	0.03	0.01	0.04	0.08
633	Euphorbia hirta L.	3.57	0.04	1	0.03	0.01	0.04	0.08
634	Eria stricta Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
635	Eria lasiopetala (Willd.) Ormerod	3.57	0.04	1	0.03	0.01	0.04	0.08
636	Epipactis royleana Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
637	Elsholtzia eriostachya Benth	3.57	0.04	1	0.03	0.01	0.04	0.08
638	<i>Drepanostachyum intermedium</i> (Munro) Keng f.	3.57	0.04	1	0.03	0.01	0.04	0.08
639	Diplazium esculentum (Retz.) Sw.	3.57	0.04	1	0.03	0.01	0.04	0.08
640	Dioscorea oppositifolia L.	3.57	0.04	1	0.03	0.01	0.04	0.08
641	Desmodium multiflorum DC.	3.57	0.04	1	0.03	0.01	0.04	0.08
642	Dennstaedtia scabra (Wall. ex Hook.) T moore	3.57	0.04	1	0.03	0.01	0.04	0.08
643	Datura metel L.	3.57	0.04	1	0.03	0.01	0.04	0.08
644	<i>Cyrtomium caryotideum</i> (Wall. <i>ex</i> Hook.f. & Grev.) C. Presl	3.57	0.04	1	0.03	0.01	0.04	0.08
645	Cymbidium iridioides D.Don	3.57	0.04	1	0.03	0.01	0.04	0.08
646	Cymbidium eburneum Lindl.	3.57	0.04	1	0.03	0.01	0.04	0.08
647	Cymbidium aloifolium (L.) Sw.	3.57	0.04	1	0.03	0.01	0.04	0.08
648	Cyathea spinulosa Wall. ex Hook	3.57	0.04	1	0.03	0.01	0.04	0.08
649	Clerodendrum japonicum (Thunb.) Sweet	3.57	0.04	1	0.03	0.01	0.04	0.08
650	Cinnamonum caudatum Nees	3.57	0.04	1	0.03	0.01	0.04	0.08
651	<i>Cinnamomum tamala</i> (BuchHam.) T.Nees & Eberm.	3.57	0.04	1	0.03	0.01	0.04	0.08
652	Cheilanthes farinosa (Forssk.) Kaulf.	3.57	0.04	1	0.03	0.01	0.04	0.08
653	Cephalostachyum capitatum Munro	3.57	0.04	1	0.03	0.01	0.04	0.08
654	Celtis tetrandra Roxb.	3.57	0.04	1	0.03	0.01	0.04	0.08
655	Boehmeria rugulosa Wedd.	3.57	0.04	1	0.03	0.01	0.04	0.08
656	Beaumontia grandiflora Wall.	3.57	0.04	1	0.03	0.01	0.04	0.08
657	Aster flaccidus Bunge	3.57	0.04	1	0.03	0.01	0.04	0.08

Annexure I 170

Sl	Botanical Name	F	D	Α	RF	RD	RA	IVI
No								
658	Arisaema concinnum Schott	3.57	0.04	1	0.03	0.01	0.04	0.08
659	Enkianthus deflexus (Griff.) C.K. Schneid.	3.57	0.04	1	0.03	0.01	0.04	0.08
660	Amomum subulatum Roxb.	3.57	0.04	1	0.03	0.01	0.04	0.08
661	<i>Aleuritopteris albomarginata</i> (C.B.Clarke) Ching	3.57	0.04	1	0.03	0.01	0.04	0.08
662	<i>Alangium alpinum</i> (C.B. Clarke) W.W. Sm. & Cave	3.57	0.04	1	0.03	0.01	0.04	0.08
663	Aesculus indica (Wall.ex Cambess.)Hook.	3.57	0.04	1	0.03	0.01	0.04	0.08
664	Acorus calamus L.	3.57	0.04	1	0.03	0.01	0.04	0.08

ANNEXURE II

SI No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
1	Schima	50.00	44.50	89.00	0.54	7.92	6.00	14.46
2	Rhododendron	39.29	16.54	42.09	0.42	2.94	2.84	6.20
3	Ostodes	42.86	15.36	35.83	0.46	2.73	2.42	5.61
4	Engelhardtia	53.57	15.68	29.27	0.57	2.79	1.97	5.34
5	Castanopsis	85.71	14.79	17.25	0.92	2.63	1.16	4.71
6	Viburnum	60.71	13.00	21.41	0.65	2.31	1.44	4.41
7	Alnus	57.14	12.61	22.06	0.61	2.24	1.49	4.34
8	Cyperus	96.43	13.32	13.81	1.03	2.37	0.93	4.34
9	Eupatorium	85.71	12.71	14.83	0.92	2.26	1.00	4.18
10	Selaginella	85.71	11.43	13.33	0.92	2.03	0.90	3.85
11	Symplocos	57.14	10.68	18.69	0.61	1.90	1.26	3.77
12	Nephrolepis	82.14	10.79	13.13	0.88	1.92	0.89	3.69
13	Polygonum	96.43	9.43	9.78	1.03	1.68	0.66	3.37
14	Dryopteris	67.86	8.43	12.42	0.73	1.50	0.84	3.06
15	Elatostema	75.00	7.93	10.57	0.80	1.41	0.71	2.93
16	Isachne	75.00	7.14	9.52	0.80	1.27	0.64	2.72
17	Quercus	71.43	7.00	9.80	0.76	1.25	0.66	2.67
18	Persicaria	82.14	6.86	8.35	0.88	1.22	0.56	2.66
19	Acer	60.71	6.57	10.82	0.65	1.17	0.73	2.55
20	Pouzolzia	75.00	6.50	8.67	0.80	1.16	0.58	2.54
21	Machilus	42.86	6.14	14.33	0.46	1.09	0.97	2.52
22	Pteridium	100.00	5.79	5.79	1.07	1.03	0.39	2.49
23	Polystichum	82.14	6.07	7.39	0.88	1.08	0.50	2.46
24	Rubus	92.86	5.61	6.04	0.99	1.00	0.41	2.40
25	Helicia	21.43	4.32	20.17	0.23	0.77	1.36	2.36
26	Cryptomeria	21.43	4.25	19.83	0.23	0.76	1.34	2.32
27	Pteris	85.71	5.11	5.96	0.92	0.91	0.40	2.23
28	Digitaria	67.86	5.39	7.95	0.73	0.96	0.54	2.22
29	Macaranga	35.71	4.93	13.80	0.38	0.88	0.93	2.19
30	Magnolia	57.14	5.04	8.81	0.61	0.90	0.59	2.10
31	Lithocarpus	21.43	3.79	17.67	0.23	0.67	1.19	2.09
32	Mallotus	46.43	4.93	10.62	0.50	0.88	0.72	2.09
33	Boehmeria	67.86	4.79	7.05	0.73	0.85	0.48	2.05
34	Dichroa	75.00	4.29	5.71	0.80	0.76	0.39	1.95
35	Arisaema	85.71	3.96	4.63	0.92	0.71	0.31	1.94

Importance Value Index at Genus level in the Study area

Annexure II 172

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
36	Brachiaria	71.43	4.25	5.95	0.76	0.76	0.40	1.92
37	Mussaenda	67.86	3.96	5.84	0.73	0.71	0.39	1.83
38	Pandanus	21.43	3.21	15.00	0.23	0.57	1.01	1.81
39	Commelina	67.86	3.86	5.68	0.73	0.69	0.38	1.80
40	Albizia	57.14	3.96	6.94	0.61	0.71	0.47	1.79
41	Tectaria	78.57	3.57	4.55	0.84	0.64	0.31	1.78
42	Ficus	67.86	3.61	5.32	0.73	0.64	0.36	1.73
43	Osbeckia	71.43	3.50	4.90	0.76	0.62	0.33	1.72
44	Setaria	71.43	3.50	4.90	0.76	0.62	0.33	1.72
45	Eurya	67.86	3.29	4.84	0.73	0.58	0.33	1.64
46	Pilea	78.57	2.68	3.41	0.84	0.48	0.23	1.55
47	Terminalia	46.43	3.25	7.00	0.50	0.58	0.47	1.55
48	Dioscorea	50.00	3.21	6.43	0.54	0.57	0.43	1.54
49	Ageratum	67.86	2.93	4.32	0.73	0.52	0.29	1.54
50	Lecanthus	67.86	2.86	4.21	0.73	0.51	0.28	1.52
51	Cynodon	60.71	3.00	4.94	0.65	0.53	0.33	1.52
52	Fragaria	53.57	3.00	5.60	0.57	0.53	0.38	1.49
53	Tetrastigma	71.43	2.57	3.60	0.76	0.46	0.24	1.47
54	Melastoma	64.29	2.71	4.22	0.69	0.48	0.28	1.46
55	Betula	53.57	2.68	5.00	0.57	0.48	0.34	1.39
56	Piper	67.86	2.32	3.42	0.73	0.41	0.23	1.37
57	Achyranthes	53.57	2.50	4.67	0.57	0.45	0.31	1.33
58	Eragrostis	42.86	2.61	6.08	0.46	0.46	0.41	1.33
59	Maesa	67.86	2.18	3.21	0.73	0.39	0.22	1.33
60	Edgeworthia	57.14	2.43	4.25	0.61	0.43	0.29	1.33
61	Litsea	60.71	2.25	3.71	0.65	0.40	0.25	1.30
62	Anaphalis	35.71	2.50	7.00	0.38	0.45	0.47	1.30
63	Prunus	71.43	1.89	2.65	0.76	0.34	0.18	1.28
64	Oplismenus	42.86	2.39	5.58	0.46	0.43	0.38	1.26
65	Rhus	25.00	2.21	8.86	0.27	0.39	0.60	1.26
66	Populus	21.43	2.07	9.67	0.23	0.37	0.65	1.25
67	Begonia	35.71	2.36	6.60	0.38	0.42	0.45	1.25
68	Cupressus	7.14	1.04	14.50	0.08	0.18	0.98	1.24
69	Drymaria	53.57	2.14	4.00	0.57	0.38	0.27	1.22
70	Arundinaria	32.14	2.07	6.44	0.34	0.37	0.43	1.15
71	Swertia	46.43	1.96	4.23	0.50	0.35	0.29	1.13
72	Rubia	46.43	1.89	4.08	0.50	0.34	0.27	1.11
73	Brassaiopsis	57.14	1.68	2.94	0.61	0.30	0.20	1.11
74	Daphne	53.57	1.75	3.27	0.57	0.31	0.22	1.11
75	Lyonia	50.00	1.79	3.57	0.54	0.32	0.24	1.09

Annexure II 173

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
76	Plantago	50.00	1.68	3.36	0.54	0.30	0.23	1.06
77	Hydrocotyle	57.14	1.50	2.63	0.61	0.27	0.18	1.06
78	Imperata	46.43	1.68	3.62	0.50	0.30	0.24	1.04
79	Alocasia	50.00	1.61	3.21	0.54	0.29	0.22	1.04
80	Antidesma	42.86	1.71	4.00	0.46	0.31	0.27	1.03
81	Abies	35.71	1.75	4.90	0.38	0.31	0.33	1.02
82	Drynaria	39.29	1.71	4.36	0.42	0.31	0.29	1.02
83	Cymbidium	46.43	1.57	3.38	0.50	0.28	0.23	1.01
84	Triumfetta	42.86	1.61	3.75	0.46	0.29	0.25	1.00
85	Heracleum	14.29	1.29	9.00	0.15	0.23	0.61	0.99
86	Impatiens	42.86	1.57	3.67	0.46	0.28	0.25	0.99
87	Pyrrosia	46.43	1.50	3.23	0.50	0.27	0.22	0.98
88	Selliguea	50.00	1.36	2.71	0.54	0.24	0.18	0.96
89	Syzygium	35.71	1.57	4.40	0.38	0.28	0.30	0.96
90	Urtica	42.86	1.39	3.25	0.46	0.25	0.22	0.93
91	Callicarpa	25.00	1.46	5.86	0.27	0.26	0.40	0.92
92	Smilax	53.57	1.14	2.13	0.57	0.20	0.14	0.92
93	Christella	32.14	1.46	4.56	0.34	0.26	0.31	0.91
94	Yushania	25.00	1.43	5.71	0.27	0.25	0.39	0.91
95	Elsholtzia	46.43	1.21	2.62	0.50	0.22	0.18	0.89
96	Liparis	35.71	1.36	3.80	0.38	0.24	0.26	0.88
97	Pogonatherum	42.86	1.25	2.92	0.46	0.22	0.20	0.88
98	Ehretia	17.86	1.21	6.80	0.19	0.22	0.46	0.87
99	Adiantum	42.86	1.18	2.75	0.46	0.21	0.19	0.85
100	Shorea	3.57	0.39	11.00	0.04	0.07	0.74	0.85
101	Walsura	39.29	1.21	3.09	0.42	0.22	0.21	0.85
102	Lepisorus	46.43	1.04	2.23	0.50	0.18	0.15	0.83
103	Dendrobium	42.86	1.11	2.58	0.46	0.20	0.17	0.83
104	Bombax	25.00	1.25	5.00	0.27	0.22	0.34	0.83
105	Viola	28.57	1.25	4.38	0.31	0.22	0.30	0.82
106	Drypetes	21.43	1.18	5.50	0.23	0.21	0.37	0.81
107	Juniperus	21.43	1.18	5.50	0.23	0.21	0.37	0.81
108	Glochidion	46.43	0.96	2.08	0.50	0.17	0.14	0.81
109	Asplenium	42.86	1.04	2.42	0.46	0.18	0.16	0.81
110	Aster	35.71	1.14	3.20	0.38	0.20	0.22	0.80
111	Bidens	35.71	1.14	3.20	0.38	0.20	0.22	0.80
112	Cissus	46.43	0.89	1.92	0.50	0.16	0.13	0.79
113	Himalayacalamus	46.43	0.86	1.85	0.50	0.15	0.12	0.77
114	Primula	28.57	1.11	3.88	0.31	0.20	0.26	0.76
115	Lycopodium	25.00	1.11	4.43	0.27	0.20	0.30	0.76

Annexure II 174

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
116	Vaccinium	46.43	0.82	1.77	0.50	0.15	0.12	0.76
117	Cymbopogon	32.14	1.07	3.33	0.34	0.19	0.22	0.76
118	Mikania	32.14	1.07	3.33	0.34	0.19	0.22	0.76
119	Diplazium	7.14	0.61	8.50	0.08	0.11	0.57	0.76
120	Bischofia	28.57	1.07	3.75	0.31	0.19	0.25	0.75
121	Leucosceptrum	28.57	1.07	3.75	0.31	0.19	0.25	0.75
122	Oxalis	42.86	0.79	1.83	0.46	0.14	0.12	0.72
123	Strobilanthes	28.57	1.00	3.50	0.31	0.18	0.24	0.72
124	Actinodaphne	7.14	0.57	8.00	0.08	0.10	0.54	0.72
125	Loxogramme	25.00	0.96	3.86	0.27	0.17	0.26	0.70
126	Huperzia	35.71	0.86	2.40	0.38	0.15	0.16	0.70
127	Arundinella	28.57	0.93	3.25	0.31	0.17	0.22	0.69
128	Axonopus	28.57	0.93	3.25	0.31	0.17	0.22	0.69
129	Cautleya	39.29	0.75	1.91	0.42	0.13	0.13	0.68
130	Remusatia	28.57	0.89	3.13	0.31	0.16	0.21	0.68
131	Leucas	39.29	0.71	1.82	0.42	0.13	0.12	0.67
132	Girardinia	39.29	0.68	1.73	0.42	0.12	0.12	0.66
133	Tinospora	35.71	0.75	2.10	0.38	0.13	0.14	0.66
134	Apios	39.29	0.64	1.64	0.42	0.11	0.11	0.65
135	Clerodendrum	35.71	0.71	2.00	0.38	0.13	0.13	0.64
136	Cirrhopetalum	32.14	0.75	2.33	0.34	0.13	0.16	0.64
137	Premna	32.14	0.75	2.33	0.34	0.13	0.16	0.64
138	Garuga	17.86	0.79	4.40	0.19	0.14	0.30	0.63
139	Arthromeris	32.14	0.71	2.22	0.34	0.13	0.15	0.62
140	Reevesia	35.71	0.64	1.80	0.38	0.11	0.12	0.62
141	Astilbe	21.43	0.79	3.67	0.23	0.14	0.25	0.62
142	Plectranthus	28.57	0.75	2.63	0.31	0.13	0.18	0.62
143	Thysanolaena	28.57	0.75	2.63	0.31	0.13	0.18	0.62
144	Morus	25.00	0.75	3.00	0.27	0.13	0.20	0.60
145	Eeagrostis	14.29	0.68	4.75	0.15	0.12	0.32	0.59
146	Colebrookea	17.86	0.71	4.00	0.19	0.13	0.27	0.59
147	Anisomeles	25.00	0.71	2.86	0.27	0.13	0.19	0.59
148	Berberis	28.57	0.68	2.38	0.31	0.12	0.16	0.59
149	Erythrina	28.57	0.68	2.38	0.31	0.12	0.16	0.59
150	Peranema	28.57	0.68	2.38	0.31	0.12	0.16	0.59
151	Bulbophyllum	21.43	0.71	3.33	0.23	0.13	0.22	0.58
152	Hedychium	35.71	0.54	1.50	0.38	0.10	0.10	0.58
153	Paspalum	25.00	0.68	2.71	0.27	0.12	0.18	0.57
154	Oxyspora	17.86	0.68	3.80	0.19	0.12	0.26	0.57
155	Athvrium	21.43	0.68	3.17	0.23	0.12	0.21	0.56

Annexure II 175

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
156	Chimonocalamus	21.43	0.68	3.17	0.23	0.12	0.21	0.56
157	Pavetta	21.43	0.68	3.17	0.23	0.12	0.21	0.56
158	Leucostegia	7.14	0.43	6.00	0.08	0.08	0.40	0.56
159	Aleuritopteris	28.57	0.61	2.13	0.31	0.11	0.14	0.56
160	Crassocephalum	28.57	0.61	2.13	0.31	0.11	0.14	0.56
161	Solanum	25.00	0.64	2.57	0.27	0.11	0.17	0.56
162	Chrysopogon	17.86	0.64	3.60	0.19	0.11	0.24	0.55
163	Bridelia	21.43	0.64	3.00	0.23	0.11	0.20	0.55
164	Rohdea	28.57	0.57	2.00	0.31	0.10	0.13	0.54
165	Houttuynia	25.00	0.61	2.43	0.27	0.11	0.16	0.54
166	Enkianthus	21.43	0.61	2.83	0.23	0.11	0.19	0.53
167	Oleandra	17.86	0.61	3.40	0.19	0.11	0.23	0.53
168	Brucea	14.29	0.57	4.00	0.15	0.10	0.27	0.52
169	Azadirachta	7.14	0.39	5.50	0.08	0.07	0.37	0.52
170	Epegenium	25.00	0.54	2.14	0.27	0.10	0.14	0.51
171	Rhamnus	14.29	0.54	3.75	0.15	0.10	0.25	0.50
172	Choerospondias	21.43	0.54	2.50	0.23	0.10	0.17	0.49
173	Bambusa	25.00	0.50	2.00	0.27	0.09	0.13	0.49
174	Elaeocarpus	25.00	0.50	2.00	0.27	0.09	0.13	0.49
175	Globba	10.71	0.46	4.33	0.11	0.08	0.29	0.49
176	Nyssa	10.71	0.46	4.33	0.11	0.08	0.29	0.49
177	Allantodia	17.86	0.54	3.00	0.19	0.10	0.20	0.49
178	Pteracanthus	17.86	0.54	3.00	0.19	0.10	0.20	0.49
179	Acampe	3.57	0.21	6.00	0.04	0.04	0.40	0.48
180	Alangium	3.57	0.21	6.00	0.04	0.04	0.40	0.48
181	Odontosoria	7.14	0.36	5.00	0.08	0.06	0.34	0.48
182	Toxicodendron	17.86	0.50	2.80	0.19	0.09	0.19	0.47
183	Woodwardia	17.86	0.50	2.80	0.19	0.09	0.19	0.47
184	Coelogyne	28.57	0.39	1.38	0.31	0.07	0.09	0.47
185	Zanthoxylum	10.71	0.43	4.00	0.11	0.08	0.27	0.46
186	Porana	21.43	0.46	2.17	0.23	0.08	0.15	0.46
187	Artemisia	21.43	0.46	2.17	0.23	0.08	0.15	0.46
188	Eucalyptus	14.29	0.46	3.25	0.15	0.08	0.22	0.45
189	Arundo	17.86	0.46	2.60	0.19	0.08	0.18	0.45
190	Cinnamomum	25.00	0.39	1.57	0.27	0.07	0.11	0.44
191	Mimosa	25.00	0.39	1.57	0.27	0.07	0.11	0.44
192	Actinidia	21.43	0.43	2.00	0.23	0.08	0.13	0.44
193	Elaphoglossum	7.14	0.32	4.50	0.08	0.06	0.30	0.44
194	Lemmaphyllum	10.71	0.39	3.67	0.11	0.07	0.25	0.43
195	Woodsia	10.71	0.39	3.67	0.11	0.07	0.25	0.43

Annexure II 176

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
196	Paederia	14.29	0.43	3.00	0.15	0.08	0.20	0.43
197	Davallodes	17.86	0.43	2.40	0.19	0.08	0.16	0.43
198	Pholidota	17.86	0.43	2.40	0.19	0.08	0.16	0.43
199	Vittaria	17.86	0.43	2.40	0.19	0.08	0.16	0.43
200	Dendrocalamus	25.00	0.36	1.43	0.27	0.06	0.10	0.43
201	Dicranopteris	21.43	0.39	1.83	0.23	0.07	0.12	0.42
202	Erigeron	21.43	0.39	1.83	0.23	0.07	0.12	0.42
203	Microsorum	17.86	0.39	2.20	0.19	0.07	0.15	0.41
204	Himalaiella	14.29	0.39	2.75	0.15	0.07	0.19	0.41
205	Pyrularia	14.29	0.39	2.75	0.15	0.07	0.19	0.41
206	Buddleja	3.57	0.18	5.00	0.04	0.03	0.34	0.41
207	Hemiphragma	21.43	0.36	1.67	0.23	0.06	0.11	0.41
208	Rumex	21.43	0.36	1.67	0.23	0.06	0.11	0.41
209	Saurauia	21.43	0.36	1.67	0.23	0.06	0.11	0.41
210	Toona	21.43	0.36	1.67	0.23	0.06	0.11	0.41
211	Curcuma	7.14	0.29	4.00	0.08	0.05	0.27	0.40
212	Lindenbergia	7.14	0.29	4.00	0.08	0.05	0.27	0.40
213	Ilex	17.86	0.36	2.00	0.19	0.06	0.13	0.39
214	Lantana	17.86	0.36	2.00	0.19	0.06	0.13	0.39
215	Phegopteris	17.86	0.36	2.00	0.19	0.06	0.13	0.39
216	Potentilla	17.86	0.36	2.00	0.19	0.06	0.13	0.39
217	Tsuga	17.86	0.36	2.00	0.19	0.06	0.13	0.39
218	Cyanotis	21.43	0.32	1.50	0.23	0.06	0.10	0.39
219	Arctium	14.29	0.36	2.50	0.15	0.06	0.17	0.39
220	Berchemia	14.29	0.36	2.50	0.15	0.06	0.17	0.39
221	Trichosanthes	25.00	0.25	1.00	0.27	0.04	0.07	0.38
222	Balantium	17.86	0.32	1.80	0.19	0.06	0.12	0.37
223	Evodia	17.86	0.32	1.80	0.19	0.06	0.12	0.37
224	Hemarthria	17.86	0.32	1.80	0.19	0.06	0.12	0.37
225	Oberonia	17.86	0.32	1.80	0.19	0.06	0.12	0.37
226	Holmskioldia	14.29	0.32	2.25	0.15	0.06	0.15	0.36
227	Cardiocrinum	7.14	0.25	3.50	0.08	0.04	0.24	0.36
228	Artocarpus	10.71	0.29	2.67	0.11	0.05	0.18	0.35
229	Sorbus	10.71	0.29	2.67	0.11	0.05	0.18	0.35
230	Equisetum	14.29	0.29	2.00	0.15	0.05	0.13	0.34
231	Exbucklandia	14.29	0.29	2.00	0.15	0.05	0.13	0.34
232	Dendrocnide	3.57	0.14	4.00	0.04	0.03	0.27	0.33
233	Astragalus	17.86	0.25	1.40	0.19	0.04	0.09	0.33
234	Bauhinia	17.86	0.25	1.40	0.19	0.04	0.09	0.33
235	Cissampelos	17.86	0.25	1.40	0.19	0.04	0.09	0.33

Annexure II 177

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
236	Cyrtomium	17.86	0.25	1.40	0.19	0.04	0.09	0.33
237	Pogostemon	7.14	0.21	3.00	0.08	0.04	0.20	0.32
238	Melochia	10.71	0.25	2.33	0.11	0.04	0.16	0.32
239	Clematis	14.29	0.25	1.75	0.15	0.04	0.12	0.32
240	Mahonia	14.29	0.25	1.75	0.15	0.04	0.12	0.32
241	Sinopodophyllum	17.86	0.21	1.20	0.19	0.04	0.08	0.31
242	Brugmansia	14.29	0.21	1.50	0.15	0.04	0.10	0.29
243	Dryopsis	14.29	0.21	1.50	0.15	0.04	0.10	0.29
244	Fraxinus	14.29	0.21	1.50	0.15	0.04	0.10	0.29
245	Gallium	14.29	0.21	1.50	0.15	0.04	0.10	0.29
246	Aralia	10.71	0.21	2.00	0.11	0.04	0.13	0.29
247	Coniogramme	10.71	0.21	2.00	0.11	0.04	0.13	0.29
248	Cyathea	10.71	0.21	2.00	0.11	0.04	0.13	0.29
249	Stephania	10.71	0.21	2.00	0.11	0.04	0.13	0.29
250	Gynocardia	7.14	0.18	2.50	0.08	0.03	0.17	0.28
251	Hydrangea	7.14	0.18	2.50	0.08	0.03	0.17	0.28
252	Lygodium	7.14	0.18	2.50	0.08	0.03	0.17	0.28
253	Myrsine	7.14	0.18	2.50	0.08	0.03	0.17	0.28
254	Uncifera	7.14	0.18	2.50	0.08	0.03	0.17	0.28
255	Dittoceras	14.29	0.18	1.25	0.15	0.03	0.08	0.27
256	Citrus	3.57	0.11	3.00	0.04	0.02	0.20	0.26
257	Duabanga	3.57	0.11	3.00	0.04	0.02	0.20	0.26
258	Ixeris	3.57	0.11	3.00	0.04	0.02	0.20	0.26
259	Knema	3.57	0.11	3.00	0.04	0.02	0.20	0.26
260	Laphangium	3.57	0.11	3.00	0.04	0.02	0.20	0.26
261	Oenanthe	3.57	0.11	3.00	0.04	0.02	0.20	0.26
262	Selinum	3.57	0.11	3.00	0.04	0.02	0.20	0.26
263	Sterculia	3.57	0.11	3.00	0.04	0.02	0.20	0.26
264	Juglans	10.71	0.18	1.67	0.11	0.03	0.11	0.26
265	Microlepia	10.71	0.18	1.67	0.11	0.03	0.11	0.26
266	Panisea	10.71	0.18	1.67	0.11	0.03	0.11	0.26
267	Poa	10.71	0.18	1.67	0.11	0.03	0.11	0.26
268	Veronica	10.71	0.18	1.67	0.11	0.03	0.11	0.26
269	Emilia	14.29	0.14	1.00	0.15	0.03	0.07	0.25
270	Aucuba	7.14	0.14	2.00	0.08	0.03	0.13	0.24
271	Casearia	7.14	0.14	2.00	0.08	0.03	0.13	0.24
272	Eriobotrya	7.14	0.14	2.00	0.08	0.03	0.13	0.24
273	Lasiococca	7.14	0.14	2.00	0.08	0.03	0.13	0.24
274	Persea	7.14	0.14	2.00	0.08	0.03	0.13	0.24
275	Polypodiodes	7.14	0.14	2.00	0.08	0.03	0.13	0.24

Annexure II 178

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
276	Polypodium	7.14	0.14	2.00	0.08	0.03	0.13	0.24
277	Stachys	7.14	0.14	2.00	0.08	0.03	0.13	0.24
278	Dennstaedtia	10.71	0.14	1.33	0.11	0.03	0.09	0.23
279	Lindsaea	10.71	0.14	1.33	0.11	0.03	0.09	0.23
280	Мисипа	10.71	0.14	1.33	0.11	0.03	0.09	0.23
281	Pleione	10.71	0.14	1.33	0.11	0.03	0.09	0.23
282	Senna	10.71	0.14	1.33	0.11	0.03	0.09	0.23
283	Laportea	10.71	0.11	1.00	0.11	0.02	0.07	0.20
284	Leea	10.71	0.11	1.00	0.11	0.02	0.07	0.20
285	Maianthemum	10.71	0.11	1.00	0.11	0.02	0.07	0.20
286	Carex	7.14	0.11	1.50	0.08	0.02	0.10	0.20
287	Diploknema	7.14	0.11	1.50	0.08	0.02	0.10	0.20
288	Hippochaete	7.14	0.11	1.50	0.08	0.02	0.10	0.20
289	Phlebodium	7.14	0.11	1.50	0.08	0.02	0.10	0.20
290	Physalis	7.14	0.11	1.50	0.08	0.02	0.10	0.20
291	Pseudognaphalium	7.14	0.11	1.50	0.08	0.02	0.10	0.20
292	Arachniodes	3.57	0.07	2.00	0.04	0.01	0.13	0.19
293	Arundina	3.57	0.07	2.00	0.04	0.01	0.13	0.19
294	Beilschmiedia	3.57	0.07	2.00	0.04	0.01	0.13	0.19
295	Cheilocostus	3.57	0.07	2.00	0.04	0.01	0.13	0.19
296	Eria	3.57	0.07	2.00	0.04	0.01	0.13	0.19
297	Esmeralda	3.57	0.07	2.00	0.04	0.01	0.13	0.19
298	Flemingia	3.57	0.07	2.00	0.04	0.01	0.13	0.19
299	Grewia	3.57	0.07	2.00	0.04	0.01	0.13	0.19
300	Ione	3.57	0.07	2.00	0.04	0.01	0.13	0.19
301	Phyllanthus	3.57	0.07	2.00	0.04	0.01	0.13	0.19
302	Synotis	3.57	0.07	2.00	0.04	0.01	0.13	0.19
303	Agave	7.14	0.07	1.00	0.08	0.01	0.07	0.16
304	Ampelocalamus	7.14	0.07	1.00	0.08	0.01	0.07	0.16
305	Angelica	7.14	0.07	1.00	0.08	0.01	0.07	0.16
306	Ardisia	7.14	0.07	1.00	0.08	0.01	0.07	0.16
307	Habenaria	7.14	0.07	1.00	0.08	0.01	0.07	0.16
308	Leptodermis	7.14	0.07	1.00	0.08	0.01	0.07	0.16
309	Lonicera	7.14	0.07	1.00	0.08	0.01	0.07	0.16
310	Meconopsis	7.14	0.07	1.00	0.08	0.01	0.07	0.16
311	Nepeta	7.14	0.07	1.00	0.08	0.01	0.07	0.16
312	Neyraudia	7.14	0.07	1.00	0.08	0.01	0.07	0.16
313	Plagiogyria	7.14	0.07	1.00	0.08	0.01	0.07	0.16
314	Satyrium	7.14	0.07	1.00	0.08	0.01	0.07	0.16
315	Sphenomeris	7.14	0.07	1.00	0.08	0.01	0.07	0.16

Annexure II 179

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
316	Steriochilus	7.14	0.07	1.00	0.08	0.01	0.07	0.16
317	Acorus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
318	Aesculus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
319	Amomum	3.57	0.04	1.00	0.04	0.01	0.07	0.11
320	Ageratina	3.57	0.04	1.00	0.04	0.01	0.07	0.11
321	Beaumontia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
322	Celtis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
323	Cephalostachyum	3.57	0.04	1.00	0.04	0.01	0.07	0.11
324	Cheilanthes	3.57	0.04	1.00	0.04	0.01	0.07	0.11
325	Datura	3.57	0.04	1.00	0.04	0.01	0.07	0.11
326	Desmodium	3.57	0.04	1.00	0.04	0.01	0.07	0.11
327	Drepanostachyum	3.57	0.04	1.00	0.04	0.01	0.07	0.11
328	Epipactis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
329	Euphorbia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
330	Gastrochilus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
331	Hedera	3.57	0.04	1.00	0.04	0.01	0.07	0.11
332	Henckelia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
333	Holboellia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
334	Juncus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
335	Lepidagathis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
336	Malaxis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
337	Marsilea	3.57	0.04	1.00	0.04	0.01	0.07	0.11
338	Micropera	3.57	0.04	1.00	0.04	0.01	0.07	0.11
339	Musa	3.57	0.04	1.00	0.04	0.01	0.07	0.11
340	Nasturtium	3.57	0.04	1.00	0.04	0.01	0.07	0.11
341	Nerium	3.57	0.04	1.00	0.04	0.01	0.07	0.11
342	Oroxylum	3.57	0.04	1.00	0.04	0.01	0.07	0.11
343	Panax	3.57	0.04	1.00	0.04	0.01	0.07	0.11
344	Parthenium	3.57	0.04	1.00	0.04	0.01	0.07	0.11
345	Peristrophe	3.57	0.04	1.00	0.04	0.01	0.07	0.11
346	Phalaenopsis	3.57	0.04	1.00	0.04	0.01	0.07	0.11
347	Platanthera	3.57	0.04	1.00	0.04	0.01	0.07	0.11
348	Podocarpus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
349	Podochilus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
350	Porpax	3.57	0.04	1.00	0.04	0.01	0.07	0.11
351	Ulmus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
352	Prinsepia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
353	Ranunculus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
354	Rhaphidophora	3.57	0.04	1.00	0.04	0.01	0.07	0.11
355	Sambucus	3.57	0.04	1.00	0.04	0.01	0.07	0.11

Annexure II 180

Sl No.	Genus	Frequency	Density	Abundance	RF	RD	RDM	IVI
356	Sapindus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
357	Sauropus	3.57	0.04	1.00	0.04	0.01	0.07	0.11
358	Schisandra	3.57	0.04	1.00	0.04	0.01	0.07	0.11
359	Senecio	3.57	0.04	1.00	0.04	0.01	0.07	0.11
360	Sida	3.57	0.04	1.00	0.04	0.01	0.07	0.11
361	Sigesbeckia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
362	Styrax	3.57	0.04	1.00	0.04	0.01	0.07	0.11
363	Meliosma	3.57	0.04	1.00	0.04	0.01	0.07	0.11
364	Thunia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
365	Trichotosia	3.57	0.04	1.00	0.04	0.01	0.07	0.11
366	Vanda	3.57	0.04	1.00	0.04	0.01	0.07	0.11
367	Xanthium	3.57	0.04	1.00	0.04	0.01	0.07	0.11

ANNEXURE III

IVI of recorded plant Families of the study ar	ea
--	----

SI. No.	Families	Frequency	Density	Abundance	RF	RD	RDM	IVI
1	Theaceae	50.00	44.71	89.43	0.93	7.96	9.68	18.57
2	Poaceae	100.00	43.89	43.89	1.86	7.81	4.75	14.42
3	Euphorbiaceae	75.00	25.79	34.38	1.39	4.59	3.72	9.70
4	Urticaceae	100.00	27.07	27.07	1.86	4.82	2.93	9.61
5	Fagaceae	89.29	25.57	28.64	1.66	4.55	3.10	9.31
6	Asteraceae	96.43	23.54	24.41	1.79	4.19	2.64	8.62
7	Ericaceae	75.00	19.18	25.57	1.39	3.41	2.77	7.57
8	Juglandaceae	57.14	15.86	27.75	1.06	2.82	3.00	6.89
9	Polygonaceae	100.00	16.82	16.82	1.86	2.99	1.82	6.67
10	Dryopteridaceae	100.00	16.36	16.36	1.86	2.91	1.77	6.54
11	Betulaceae	78.57	15.29	19.45	1.46	2.72	2.11	6.29
12	Adoxaceae	64.29	13.04	20.28	1.19	2.32	2.20	5.71
13	Cyperaceae	96.43	13.43	13.93	1.79	2.39	1.51	5.69
14	Rosaceae	96.43	12.00	12.44	1.79	2.14	1.35	5.27
15	Selaginellaceae	85.71	11.43	13.33	1.59	2.03	1.44	5.07
16	Symplocaceae	57.14	10.68	18.69	1.06	1.90	2.02	4.98
17	Nephrolepidaceae	82.14	10.79	13.13	1.53	1.92	1.42	4.87
18	Lauraceae	75.00	9.57	12.76	1.39	1.70	1.38	4.48
19	Polypodiaceae	100.00	9.11	9.11	1.86	1.62	0.99	4.46
20	Orchidaceae	89.29	9.07	10.16	1.66	1.61	1.10	4.37
21	Lamiaceae	92.86	8.71	9.38	1.72	1.55	1.02	4.29
22	Pteridaceae	96.43	7.82	8.11	1.79	1.39	0.88	4.06
23	Rubiaceae	92.86	7.25	7.81	1.72	1.29	0.85	3.86
24	Cupressaceae	35.71	6.21	17.40	0.66	1.11	1.88	3.65
25	Leguminosae	100.00	6.07	6.07	1.86	1.08	0.66	3.59
26	Fabaceae	82.14	6.64	8.09	1.53	1.18	0.88	3.58
27	Sapindaceae	64.29	6.64	10.33	1.19	1.18	1.12	3.49
28	Proteaceae	21.43	4.32	20.17	0.40	0.77	2.18	3.35
29	Araceae	71.43	5.71	8.00	1.33	1.02	0.87	3.21
30	Melastomataceae	78.57	5.39	6.86	1.46	0.96	0.74	3.16
31	Magnoliaceae	57.14	5.07	8.88	1.06	0.90	0.96	2.92
32	Hydrangeaceae	78.57	4.46	5.68	1.46	0.79	0.62	2.87
33	Moraceae	67.86	4.64	6.84	1.26	0.83	0.74	2.83
34	Commelinaceae	78.57	4.18	5.32	1.46	0.74	0.58	2.78
Annexure III 182

Sl. No.	Families	Frequency	Density	Abundance	RF	RD	RDM	IVI
35	Primulaceae	92.86	3.54	3.81	1.72	0.63	0.41	2.77
36	Phyllanthaceae	75.00	4.11	5.48	1.39	0.73	0.59	2.72
37	Araliaceae	89.29	3.46	3.88	1.66	0.62	0.42	2.69
38	Thymelaeaceae	64.29	4.18	6.50	1.19	0.74	0.70	2.64
39	Malvaceae	75.00	3.86	5.14	1.39	0.69	0.56	2.64
40	Vitaceae	82.14	3.57	4.35	1.53	0.64	0.47	2.63
41	Pandanaceae	21.43	3.21	15.00	0.40	0.57	1.62	2.59
42	Pentaphylacaceae	67.86	3.07	4.53	1.26	0.55	0.49	2.30
43	Tectariaceae	71.43	2.93	4.10	1.33	0.52	0.44	2.29
44	Anacardiaceae	57.14	3.25	5.69	1.06	0.58	0.62	2.26
45	Combretaceae	46.43	3.25	7.00	0.86	0.58	0.76	2.20
46	Dioscoreaceae	50.00	3.21	6.43	0.93	0.57	0.70	2.20
47	Amaranthaceae	60.71	2.79	4.59	1.13	0.50	0.50	2.12
48	Plantaginaceae	67.86	2.50	3.68	1.26	0.44	0.40	2.10
49	Piperaceae	67.86	2.32	3.42	1.26	0.41	0.37	2.04
50	Cornaceae	60.71	2.07	3.41	1.13	0.37	0.37	1.87
51	Zingiberaceae	60.71	2.04	3.35	1.13	0.36	0.36	1.85
52	Athyriaceae	25.00	2.21	8.86	0.46	0.39	0.96	1.82
53	Caryophyllaceae	53.57	2.14	4.00	0.99	0.38	0.43	1.81
54	Begoniaceae	35.71	2.36	6.60	0.66	0.42	0.71	1.80
55	Salicaceae	28.57	2.21	7.75	0.53	0.39	0.84	1.76
56	Pinaceae	50.00	2.11	4.21	0.93	0.37	0.46	1.76
57	Lycopodiaceae	53.57	1.96	3.67	0.99	0.35	0.40	1.74
58	Myrtaceae	42.86	2.04	4.75	0.80	0.36	0.51	1.67
59	Gentianaceae	46.43	1.96	4.23	0.86	0.35	0.46	1.67
60	Thelypteridaceae	50.00	1.82	3.64	0.93	0.32	0.39	1.65
61	Balsaminaceae	42.86	1.57	3.67	0.80	0.28	0.40	1.47
62	Acanthaceae	39.29	1.61	4.09	0.73	0.29	0.44	1.46
63	Sabiaceae	32.14	1.50	4.67	0.60	0.27	0.51	1.37
64	Meliaceae	35.71	1.46	4.10	0.66	0.26	0.44	1.37
65	Apiaceae	28.57	1.50	5.25	0.53	0.27	0.57	1.37
66	Dipterocarpaceae	3.57	0.39	11.00	0.07	0.07	1.19	1.33
67	Berberidaceae	42.86	1.18	2.75	0.80	0.21	0.30	1.30
68	Aspleniaceae	46.43	1.07	2.31	0.86	0.19	0.25	1.30
69	Boraginaceae	17.86	1.21	6.80	0.33	0.22	0.74	1.28
70	Violaceae	28.57	1.25	4.38	0.53	0.22	0.47	1.23
71	Solanaceae	42.86	1.00	2.33	0.80	0.18	0.25	1.23
72	Smilacaceae	42.86	0.96	2.25	0.80	0.17	0.24	1.21
73	Putranjivaceae	21.43	1.18	5.50	0.40	0.21	0.60	1.20
74	Oxalidaceae	42.86	0.79	1.83	0.80	0.14	0.20	1.13

Annexure III 183

Sl. No.	Families	Frequency	Density	Abundance	RF	RD	RDM	IVI
75	Asparagaceae	39.29	0.75	1.91	0.73	0.13	0.21	1.07
76	Actinidiaceae	35.71	0.79	2.20	0.66	0.14	0.24	1.04
77	Rhamnaceae	28.57	0.89	3.13	0.53	0.16	0.34	1.03
78	Rutaceae	28.57	0.86	3.00	0.53	0.15	0.32	1.01
79	Burseraceae	17.86	0.79	4.40	0.33	0.14	0.48	0.95
80	Saxifragaceae	21.43	0.79	3.67	0.40	0.14	0.40	0.93
81	Saururaceae	25.00	0.61	2.43	0.46	0.11	0.26	0.84
82	Davalliaceae	17.86	0.61	3.40	0.33	0.11	0.37	0.81
83	Simaroubaceae	14.29	0.57	4.00	0.27	0.10	0.43	0.80
84	Elaeocarpaceae	25.00	0.50	2.00	0.46	0.09	0.22	0.77
85	Woodsiaceae	25.00	0.50	2.00	0.46	0.09	0.22	0.77
86	Lindsaeaceae	21.43	0.54	2.50	0.40	0.10	0.27	0.76
87	Oleandraceae	17.86	0.54	3.00	0.33	0.10	0.32	0.75
88	Blechnaceae	17.86	0.50	2.80	0.33	0.09	0.30	0.72
89	Santalaceae	17.86	0.50	2.80	0.33	0.09	0.30	0.72
90	Convolvulaceae	21.43	0.46	2.17	0.40	0.08	0.23	0.72
91	Menispermaceae	21.43	0.46	2.17	0.40	0.08	0.23	0.72
92	Lomariopsidaceae	7.14	0.32	4.50	0.13	0.06	0.49	0.68
93	Equisetaceae	21.43	0.39	1.83	0.40	0.07	0.20	0.67
94	Gleicheniaceae	21.43	0.39	1.83	0.40	0.07	0.20	0.67
95	Liliaceae	17.86	0.39	2.20	0.33	0.07	0.24	0.64
96	Scrophulariaceae	3.57	0.18	5.00	0.07	0.03	0.54	0.64
97	Cucurbitaceae	25.00	0.25	1.00	0.46	0.04	0.11	0.62
98	Aquifoliaceae	17.86	0.36	2.00	0.33	0.06	0.22	0.61
99	Verbenaceae	17.86	0.36	2.00	0.33	0.06	0.22	0.61
100	Dicksoniaceae	17.86	0.32	1.80	0.33	0.06	0.19	0.58
101	Hamamelidaceae	14.29	0.29	2.00	0.27	0.05	0.22	0.53
102	Ranunculaceae	14.29	0.29	2.00	0.27	0.05	0.22	0.53
103	Apocynaceae	17.86	0.25	1.40	0.33	0.04	0.15	0.53
104	Platanaceae	7.14	0.21	3.00	0.13	0.04	0.32	0.50
105	Oleaceae	14.29	0.21	1.50	0.27	0.04	0.16	0.47
106	Cyatheaceae	10.71	0.21	2.00	0.20	0.04	0.22	0.45
107	Achariaceae	7.14	0.18	2.50	0.13	0.03	0.27	0.44
108	Lygodiaceae	7.14	0.18	2.50	0.13	0.03	0.27	0.44
109	Lythraceae	3.57	0.11	3.00	0.07	0.02	0.32	0.41
110	Myristicaceae	3.57	0.11	3.00	0.07	0.02	0.32	0.41
111	Sterculiaceae	3.57	0.11	3.00	0.07	0.02	0.32	0.41
112	Garryaceae	7.14	0.14	2.00	0.13	0.03	0.22	0.37
113	Sapotaceae	7.14	0.11	1.50	0.13	0.02	0.16	0.31
114	Costaceae	3.57	0.07	2.00	0.07	0.01	0.22	0.30

Annexure III 184

Sl. No.	Families	Frequency	Density	Abundance	RF	RD	RDM	IVI
115	Caprifoliaceae	7.14	0.07	1.00	0.13	0.01	0.11	0.25
116	Plagiogyriaceae	7.14	0.07	1.00	0.13	0.01	0.11	0.25
117	Acoraceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
118	Alangiaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
119	Bignoniaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
120	Brassicaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
121	Cannabaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
122	Dennstaedtiaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
123	Gesneriaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
124	Juncaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
125	Marsileaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
126	Musaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
127	Nyctaginaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
128	Papaveraceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
129	Podocarpaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
130	Schisandraceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18
131	Styracaceae	3.57	0.04	1.00	0.07	0.01	0.11	0.18

ANNEXURE \mathcal{N}

SI No	Name of Tree Species	Volume equation used
1	Abies densa Griff.	$V = 0.12167 - 0.0114D + 0.000812D^2$ (cm)
2	Acer caesium Wall. ex Brandis	V = -0.162945+3.109717D
3	Acer campbellii Hook.f. & Thomson ex Hiern Cinnamomum impressinervium Meisn. Evodia fraxinifolia (Hook.) Benth. Exbucklandia populnea (R.Br. ex Griff.) R.W.Br. Juglans regia L. Macaranga indica Wight Syzygium cumini (L.) Skeels	V/D ² = 0.06674/D ² -0.02039/D+0.001559 (cm)
4	Acer caudatum Wall.	V = -0.162945+3.109717D
5	Albizia chinensis (Osbeck) Merr.	$V = 0.29208 + 0.00092412 D^2$
6	Albizia procera (Roxb.) Benth.	V = -0.469497+3.698566D
7	Alnus nepalensis D.Don	$V = 0.7287 - 0.042628 D + 0.00137 D^2 (cm)$
8	Artocarpus lacuchaBuchHam.	V = 0.06692 + 2.61991D
9	Elaeocarpus lanceifolius Roxb. Engelhardtia spicata var. integra (Kurz) W.E.Manning ex Steenis Rhododendron hodgsonii Hook.f.	$V/D^2 = 0.25564/D^2 - 0.030418/D + 0.0012897$ (cm)
10	Betula alnoidesBuchHam.	$V = (-0.1211 + 1.58826)D + 1.96643 D^2$
11	Betula utilis D.Don Litsea cubeba (Lour.) Pers. Litsea sericea (Wall.ex Nees) Hook.f. Machilus edulis King ex Hook.f. Machilus gammieana King Nyssa javanica (Blume) Wangerin Persea odoratissima (T.Nees) Kosterm. Prunus nepalensis Ser.	V= 0.12652-0.018037D+0.000956D ² (cm)
12	Bischofia javanica Blume	V = (-0.00273) +2.56199D
13	<i>Castanopsis hystrix</i> Hook.f. & Thomson <i>ex</i> A. DC.	V = 0.3464+3.99269D-1.64666D
14	Castanopsis tribuloides (Sm.) A.DC. Lithocarpus pachyphyllus (Kurz) Rehder Quercus lamellosa Sm. Quercus lineata Blume	$V/D^2 = 0.001184 + 0.1812/D^2 - 0.02348/D(cm)$
15	<i>Cinnamomum tamala</i> (BuchHam.) T.Nees & Eberm.	$V = 0.1097 - 0.88666 D + 6.097 D^2 - 1.62672 D^3$

Volume Equation used for trees of the study area

16	Cryptomeria japonica (Thunb.) D.Don	$V = -0.01097 + 5.30991D^2$
	Ficus hirta Vahl	
	Ficus neriifoliaSm.	
17	Ficus religiosaL.	$V = 0.3629 + 3.95389 D - 0.84421 D^2$
	Ficus roxburghiiLour.	
	Ficus subincisa BuchHam. ex Sm.	
18	Lyonia ovalifolia (Wall.) Drude	V=0.1456-2.10543D+11.81097D ² -6.56089D ³
	Machilus gambleiKing ex Hook.f.	
19	Machilus glaucescens (T.Nees) H.W. Li	$V/D^2 = 4.84009 - 0.02402D^2$
	Machilus kurzii King ex Hook.f.	
20	Magnolia doltsopa (BuchHam. ex DC.)	$V/D^2 = 0.0002138 + 0.002517/D + 0.00001064D$ -
20	Figlar	$0.0000004D^2$
	Rhododendron arboreumSm.	
	Rhododendron barbatum Wall. ex G.Don	
	Rhododendron campylocarpum Hook.f.	
	Rhododendron dalhousieae Hook.f.	
21	Rhododendron falconeri Hook.f.	$V = 0.306492 + 4.31536D - 1.749908 \log D$
	Rhododendron griffithianum Wight	
	Rhododendron thomsonii Hook.f.	
	Rhododendron triflorum Hook.f.	
	Rhododendron vaccinioides Hook.	
22	Schima wallichii Choisy	V =0.28069+4.6198D-1.65381 logD
23	Shorea robusta Gaert.	$V/D^2 = -0.32546/D^2 + 9.78645$
24	Symplocos lucida (Thunb.) Siebold & Zucc.	$V=0.03754+0.000587D^2$
25	Terminalia crenulata Roth	V = 0.14325 + 3.07937D
26	Toona ciliata M.Roem.	V = -0.27525+3.0319D
27	General volume formula	$V=0.3555-0.037D+0.001259D^2$ (cm)

ANNEXURE ${\cal V}$

List of plants species along the altitude showing the species distribution range (lower elevation 500 and upper elevation range 3300 (5 to 32)

Sl. No	Botanical Name	Family	5 6	7	8 9	10	11	12	13 1	4 1:	5 16	17	18	19	20	21 2	2 2	3 2	4 2	5 21	6 27	7 28	\$ 29	30	31	32	Range
1	Abies densa Griff.	Pinaceae																									1800-3300
2	Abies spectabilis (D.Don) Mirb.	Pinaceae																									1500-2100
3	Acampe ochracea Lindl.	Orchidaceae																		<u> </u>							500
4	Acampe rigida (BuchHam.ex. Sm.) P.F. Hunt	Orchidaceae																									500
5	<i>Acer campbellii</i> Hook.f. & Thomson <i>ex</i> Hiern	Sapindaceae																									1500-3300
9	Acer caudatum Wall.	Sapindaceae																									1900-3300
٢	Acer laevigatum Wall.	Sapindaceae																		<u> </u>							2400
8	Acer oblongum Wall. ex DC.	Sapindaceae																		<u> </u>							1400-2900
6	Achyranthes aspera L.	Amaranthaceae																		<u> </u>							500-2200
10	Achyranthes bidentata Blume	Amaranthaceae																									700-2200
11	Acorus calamus L.	Acoraceae																		<u> </u>							2500
12	Actinidia callosa Lindl.	Actinidiaceae																<u> </u>		<u> </u>							800-1600
13	Actinodaphne sikkimensis Meisn.	Lauraceae																									800-1300
14	Adiantum capillus-veneris L.	Pteridaceae																									800-3000
15	Adiantum incisum Forssk.	Pteridaceae																		<u> </u>							700-2300
16	Adiantum lunulatum Burm.f.	Pteridaceae																		<u> </u>							2200-2600
17	Aesculus indica (Wall. ex Cambess.) Hook.	Sapindaceae																									1500
18	Agave Americana L.	Asparagaceae																				<u> </u>					1700-2000

Annexure V	188
Annexure v	100

	Botanical Name	Family	ŝ	6 7	8	9	101	1 12	2 13	14	15	16 1	1	8 19	9 2() 21	22	23	24	25	26	27	28 2	29 3	0 3	1 32	R	ange	
Ageratin (Spreng.	a adenophora) R.M.King & H.Rob.	Asteraceae																									50	0-3200	
Ageratii R.M.Ki	na ligustrina (DC.) ng & H.Rob.	Urticaceae																									80	0-2500	
Ageratu	tm conyzoides (L.) L.	Asteraceae																									70	0-1600	
Ageratı	um houstonianum Mill.	Asteraceae																									90	0-2200	
<u>Alangiu</u> Clarke)	<i>m alpinum</i> (C.B. W.W. Sm. & Cave	Alangiaceae																										1300	-
Alangiı Harms	um chinense (Lour.)	Alangiaceae																									50	0-2700	
Albizia Merr.	chinensis (Osbeck)	Leguminosae																									50	0-2100	
Albizia [.C.Nie	<i>lucidior</i> (Steud.) Isen	Leguminosae																									50	0-2300	
Albizia	procera (Roxb.) Benth.	Leguminosae																									60	0-1200	
Aleurit C.B.C	<i>opteris albomarginata</i> larke) Ching	Pteridaceae																										2800	
A <i>leurit</i> Ching	opteris dubia (C. Hope)	Pteridaceae																										1200	
A <i>leurit</i> (C.B.C Ienk.	<i>opteris subdimorpha</i> larke & Baker) Fraser-	Pteridaceae																									50	0-1500	
Allantc Mett.)	odia spectabilis (Wall. ex Ching	Athyriaceae																									270	0-3000	
Allantc Ching	odia stoliczkae (Bedd.)	Athyriaceae																									260	0-3000	
Allantc Ching	odia succulenta (Clarke)	Athyriaceae																										2300	
Alnus 1	<i>vepalensis</i> D.Don	Betulaceae																									06	0-3000	
Alocasi Don	ia macrorrhizos (L.) G.	Araceae																									50	0-3100	
Amomu	m subulatum Roxb.	Zingiberaceae																										1500	
Ampela	ocalamus patellaris	Poaceae																									100	0-1600	

Range	00-3000	00-3300	00-3200	00-3300	00-2700	00-1900	00-2000	00-2000	2300	00-2700	00-3300	00-1500	1400	2600	00-2700	00-2700	00-2200	00-2900	00-1700	00-2500	00-2200
	22	16	22	22	9	S	11	5		18	20	13			15	15	15	22	14	18	14
1 32																					
0 3]																					
93(
8 2																					
7 23																					
6 2																					
5 2																					
4 2																					
3 2																					
22																					
21 2																					
20 2																					
19																					
18																					
17																					
16																					
15																					
14																					
13																					
12																					
11																					
1(
8																					
٢																					
9																					
S																					
Family	teraceae	teraceae	teraceae	iaceae	miaceae	yllanthaceae	phorbiaceae	guminosae	yopteridaceae	aliaceae	teraceae	rristicaceae	aceae	aceae	aceae	aceae	aceae	aceae	aceae	aceae	aceae
	Asi	Asi	As	Чb	La	Ph	Euj	Le	Dr.	Ara	As	My	Ara	Ara	Ara	Ara	Ara	Ara	Ara	Ara	Ara
ame	uchHam.)	(D.Don)	acea (L.)	ica L.	L.) Kuntze	Retz.	tum Wall.	.) Benth.	iaeformis	; (DC.)		ı Wall.	m Schott	n (Wall.)	orssk.)	N.E. Br.	Schott	um Blume	ides (Wall.)	n (Wall.)	ı (Wall.)
al N	<i>a</i> (B	orta	garit . f.	ngel	ica ([mn]	nina	Wall	<i>wall</i> e	ultii	Ŀ.	arpo	muu	atur.	<i>m</i> (F	ıtum	thii :	nedi	ntho.	osun	osun
anic	nsna	cont	narg ook	cha.	ind	acid	ист	sa (V	r <i>s dc</i> kaik	ienc] pa	croc	onci	chin	avu	alec	riffi	ıteri	ıədə	peci	ortu
Bot	lis l	lis c	lis 1 & H	a aı	eles	ma	ma	arna	iode Na	esci	ı lap	ma	ıa c	ıa e	ıa fl	ıa g	ıa g	ıa iı	u pı	ıa s	ıa ta
	pha	ipha sk.f	th.	elic	mos	ides	ides	os c	<i>chn</i> rist)	<i>lia l</i> en	tiun	isia	aen	<i>aen</i> ott	aen ott	аеп	aen	аеп	<i>t</i> ius	<i>t</i> ius	aen ott
	Ana DC.	Ana Hoc	Ana Ben	Ang	Ani.	Ant_i	Ant_{i}	Api	Ara (Ch:	Ara J.W	Arc.	Ard	Aris	Aris Sch	Aris Sch	Aris	Aris	Aris	<i>Aris</i> Maı	<i>Aris</i> Maı	Aris Sch
SI. No	38	39	40	41 .	42	43	44	45 .	46	47 .	48 .	49 ,	50 .	51	52	53	54 .	55 .	56	57	58

Range	700-3300	2200-3300	2900-3100	1400-3300	500-1100	500	2100-3200	2300-3200	2100-2300	800-2800	1500-2500	500-700	1300-2300	600-1800	900-2100	2800	2500-3200	2300	2600-3200	1600-3300	600-1500
32																					
31																					
30																					
29																					
28																					
27																					
26																					
25																					
24																					
23																					
22																					
21																					
0 20																					
3 19																					
7 18																					
61																					
51																					
41																					
31																					
1																					
[]]																					
101																					
6																					
8																					
2																					
5 (
Family	Asteraceae	Asteraceae	Polypodiaceae	Polypodiaceae	Moraceae	Orchidaceae	Poaceae	Poaceae	Poaceae	Poaceae	Aspleniaceae	Aspleniaceae	Aspleniaceae	Aspleniaceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Asteraceae	Saxifragaceae	Leguminosae
Botanical Name	Artemisia japonica Thunb.	Artemisia vulgaris L.	Arthromeris himalayensis [] Hook.) Ching	Arthromeris wallichiana Spreng.) Ching	Artocarpus lacucha Buch I	Arundina graminifolia (D.Don) Hochr.	Arundinaria racemosa Munro	Arundinella hookeri Munro & S Ceng	Arundinella nepalensis Trin.	Arundo donax L.	Asplenium gueinzianum Kunze . x Mett.	Asplenium phyllitidis D.Don	Asplenium tenuifolium D. Don	Asplenium yoshinagae Makino	Aster albescens (DC.) Wall.ex	Aster flaccidus Bunge	Aster sikkimmensis Hook.f. & . Chomson	Aster tricephalus C.B.Clarke	Aster trinervis Roxb.	Astilbe rivularis BuchHam.	Astragalus stipulatus (L.) A.Gray
SI. 20	59 /	09	61 <u>,</u> ((62 / ((63 / I	64 / I	65 /	66 / 1	67 /	58 /	69 '	70 /	71 /	72 /	73 / I	74 /	75 /	19 ⁷	, LL	78 /	79 /

Range	500-3000	300-2800	400-2600	500-2600	800	600-2700	500-1800	500-1000	200-2500	700	500-2800	400-2500	400-2400	200-2800	2300	500-3200	500-1100	100-3300	200-2500	2300	900-2000
32	2	5	5						2		7	1	-	1		1		3	1		
31 3																					
30																					
29																					
28																					
27																					
26																					
25																					
24																					
23																					
22																					
21																					
20																					
19																					
18																					
117																					
5 16																					
115																					
3 14																					
2 13																					
1 1																					
01																					
9 1																					
8																					
7																					
9																					
Y)																				$ \vdash $	
Family	thyriaceae	thyriaceae	arryaceae	oaceae	leliaceae	icksoniaceae	oaceae	eguminosae	eguminosae	pocynaceae	egoniaceae	egoniaceae	egoniaceae	egoniaceae	auraceae	erberidaceae	erberidaceae	erberidaceae	erberidaceae	erberidaceae	hamnaceae
	h A	A A	0	Ū.	N	Ω	Ā	Ĺ	Ţ	A	В	В	В	В	lg L	В	В	В	В	В	R
Botanical Name	hyrium filix-femina (L.) Roth	hyrium foliolosum T. Moore R.Sim	cuba himalaica Hook.f. Thomson	onopus compressus (Sw.) P. auv.	adirachta indica Juss.	<i>lantium antarcticum</i> abill.) C. Presl	<i>mbusa nutans</i> Wall. <i>ex</i> inro	uhinia purpurea L.	uhinia scandens L.	aumontia grandiflora Wall.	gonia josephii DC.	gonia malabarica Lam.	gonia palmata D.Don	gonia picta Sm.	ilschmiedia sikkimensis Kin _i Hook.f.	<i>rberis angulosa</i> all <i>.ex</i> Hook.f. & Thomson	rberis asiatica DC.	rberis hookeri Lem.	rberisvirescens Hook.f.	rberis wallichiana DC.	rchemia floribunda (Wall.) ongn.
	At	At ex	2 Au & 5	A_X Be	I Az	5 <i>B</i> 6 (L	B_{G}	B_{c}	B_{6}	Be	Be	Be	Be	Be	t Be ex	Be W	Be	Be	Be	Be	$0 \frac{Be}{Br}$
SI. No	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	66	10(

				\sim										\sim				\sim			
Range	900-2800	2800-3300	700-2300	500-1600	1000-2000	500-2500	2200	500-2200	600-2900	1000-1400	500-3300	500-1600	2100-2900	500-3000	500-1700	700-1200	700-1700	3100	500-800	500	500
2		(1			-					-			C N								
13																					
<u>0</u>																					
<u>6</u>							-							-	-						
<u>8</u>																					
7																					
<u> </u>																					
2																					
<u>4</u>																					
33																					
<u>5</u>																					
1																					
0																					
<u> </u>																					
81							-							-	-						
71							-							-	-						
[6]																					
[2]																					
4																					
[3]																					
[2]							1							1	1						
11																					
10		1					1							1	1						
6																					
8																					
<u> </u>																					
2																					
																		e			
Family	Betulaceae	Betulaceae	Asteraceae	Phyllanthaceae	Urticaceae	Urticaceae	Urticaceae	Malvaceae	Poaceae	Poaceae	Poaceae	Araliaceae	Araliaceae	Araliaceae	Phyllanthaceae	Simaroubaceae	Solanaceae	Scrophulariacea	Orchidaceae	Orchidaceae	Orchidaceae
Botanical Name	etula alnoides BuchHam.	etula utilis D.Don	idens pilosa L.	ischofia javanica Blume	oehmeria macrophylla ornem.	oehmeria platyphylla D.Don	oehmeria rugulosa Wedd.	ombax ceiba L.	rachiaria ramosa (L.) Stapf	rachiaria subquadripara Trin.) Hitchc.	rachiaria villosa (Lam.) A. amus	rassaiopsis glomerulata 31ume) Regel	rassaiopsis hispida Seem.	rassaiopsis mitis C.B.Clarke	ridelia retusa (L.) Juss.	rucea javanica (L.) Merr.	rugmansia suaveolens Humb. & Bonpl. ex Willd.) ercht. & J.Presl	uddleja asiatica Lour.	ulbophyllum guttulatum Iook.f.)N.P.Balakr.	ulbophyllum sterile (Lam.) ıresh	ulbophyllum thomsonii ook.f.
. 0	11 B.	12 B	13 B.	AB	15 B H	16 B	7 B	18 B.	19 B.	$\begin{array}{c} 0 \\ 0 \\ \end{array}$	$\frac{1}{C}$	$\frac{2B}{(E)}$	3 B	4B	5B	6B	$\frac{7B}{(F)}$	8 B	9 B (F	$\frac{0}{S_1}$	1 B H
ΣŽ	10	10	10	10	10	10	10	10	10	11	11	11	11	11	11	11	11	11	11	12	12

Botatical Name Family 5 6 7 8 9 10 11	ange	0-2800	0-2100	2300	0-2300	0-2400	0-3000	0-2000	0-3100	0-2700	0-3300	1000	2800	1200	500	0-3100	0-1400	0-3300	0-2200	0-2800	2400
Botanical Name Family 5 6 7 8 9 101 112 13 14 15 16 17 18 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 30 31 32 <i>incrimum siganteum</i> Lamiaceae 1	Я	240	50		06	180	50	120	70	120	70					200	50	80	50	200	
Botanical Name Family 5 6 7 14 15 16 12 23 24 25 25 27 28 29 30 31 ophyllum yoksanense Orchidaceae 1 1 14 15 14 15 15 25 27 28 29 30 31 iterritum yoksanense Orchidaceae 1 <td>32</td> <td></td>	32																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 56 27 28 29 30 monphilum yoksunanse Drchidaceae 1 <t< td=""><td>31</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	31																				
Botanical Name Family 5 6 7 8 9 101 112 13 14 15 16 23 24 25 26 27 28 29 ophylium yuksunense Orchidaceae 1 <td>30</td> <td></td>	30																				
Botanical Name Family 5 (a 7 8) 9 (a) [1 12 [13] 4 [15] 6 [17] 8 [19 20 21 22 23 24 25 26 27 28 ophyllum yoksunense Orchidaceae 1 1 1 1 icurpa arborea Roxb. Lamiaceae 1 1 1 1 1 interprata arborea Roxb. Lamiaceae 1	29																				
Botanical Name Family 5 6 7 8 1011 112 13 14 15 16 12 23 24 25 26 27 21	28																				
Botanical Name Family 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 56 7 8 1011 12	27																				
Botanical NameFamily567891011121314151617181920212323232323232323232323232323232425 $ophyllum yoksunenseOrchidaceae111$	26																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ophyllum yoksmense Orchidaceae 1	25																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ophyllum yoksunense Orchidaceae 1	24																				
Botanical Name Family 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 ophyllum yoksunense Orchidaceae <td< td=""><td>53</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	53																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 ophyllum yoksunense Orchidaceae <td< td=""><td>52</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	52																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ophyllum yoksunense Orchidaceae 1	21																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ophyllum yoksmense Orchidaceae 1	50																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ophyllum yoksunense Orchidaceae 1	19																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 15 16 ophyllum yoksunense Orchidaccae 1	18																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 15 14 ophyllum yoksunense Orchidaccae	6 17																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 ophyllum yoksunense Orchidaceae	16																				
Botanical Name Family 5 6 7 8 9 10 11 12 13 14 ophyllum yoksunense Orchidaceae	115																				
Botanical Name Family 5 6 7 8 9 10 11 12 12 ophyllum yoksunense Orchidaceae <	3 14																				
Botanical NameFamily567891011rophyllum yoksunenseOrchidaceae </td <td>13</td> <td></td>	13																				
Botanical Name Family 5 6 7 8 9 10 ophyllum yoksunense Orchidaceae 1	112																				
Botanical NameFamily5678911ophyllum yoksunenseOrchidaceae </td <td>11</td> <td></td>	11																				
Botanical Name Family 5 6 7 8 9 ophyllum yoksunense Orchidaceae 1	0 1(
Botanical Name Family 5 6 7 ophyllum yoksunense Orchidaceae E	8																				
Botanical Name Family 5 6 ophyllum yoksunense Orchidaccae 1 icarpa arborea Roxb. Lamiaceae 1 icarpa arborea Roxb. Lamiaceae 1 diocrinum giganteum Liliaceae 1 licarpa arborea Roxb. Eamiaceae 1 ex caryophyllea Latourt. Cyperaceae 1 exaria glomerata Roxb. Fagaceae 1 earia glomerata Roxb. Fagaceae 1 tanopsis tribuloides (Sm.) Baker Zingiberaceae 1 tanopsis tribuloides (Sm.) Dandy Zingiberaceae 1 tanosotata spicata (Sm.) Dandy Zing	~																				
Botanical NameFamily5ophyllum yoksunenseOrchidaceaeitim.itim.DistinoLamiaceaeitimaceaeitim.LamiaceaeLamiaceaeitimaceaeitim.LamiaceaeLamiaceaeitimaceaeitim.LamiaceaeLamiaceaeitimaceaeitim.LaniaceaeLamiaceaeitimaceaeII.) MakinoExaryophyllea Latourr.Cyperaceaeitimaceaeeeria glomerata Roxb.Salicaceaeitimaceaeitimaceaeeeria glomerata Roxb.Salicaceaeitimaceaeitimaceaeeeria glomerata Roxb.Salicaceaeitimaceaeitimaceaeeeria glomerata Roxb.Fagaceaeitimaceaeitimaceaeeeria glomerata Roxb.Fagaceaeitimaceaeitimaceaeeriopsis indica A.DC.Fagaceaeitimaceaeitimaceaetheya spicata (Sm.) BakerZingiberaceaeitimaceaeitimaceaetheya spicata (Sm.) BakerCannabaceaeitimaceaeitimaceaetheya spicata (Sm.) BakerCannabaceaeitimaceaeitimaceaetheya spicata (Sm.) BakerCannabaceaeitimac	9																				
Botanical NameFamilyoophyllum yoksunenseOrchidaceaeonnumCorchidaceaeicarpa arborea Roxb.Lamiaceaediocrinum giganteumLiliaceaeII.) MakinoLamiaceaeex caryophyllea Latourr.Cyperaceaeearia glomerata Roxb.Salicaceaeearia glomerata Roxb.Salicaceaeearia glomerata Roxb.Salicaceaeearia glomerata Roxb.Fagaceaeearia glomerata Roxb.Fagaceaeearia glomerata Roxb.Fagaceaeearia glomerata Roxb.Fagaceaeeariopsis tribuloides (Sm.)Fagaceaetanopsis tribuloides (Sm.)Fagaceaefleya spicata (Sm.)BakerC.Ingiberaceaetanopsis tribuloides (Sm.)Pagaceaetanopsis tribuloides (Sm.)Pagaceaetanooralamus	S																				
Botanical Name Or oophyllum yoksunense Or nin. Dradio nin. Iicarpa arborea Roxb. Ladiocrinum giganteum Lil II.) Makino Exaryophyllea Latourr. ex caryophyllea Latourr. Cy ex caryophyllea Latourr. Cy earia glomerata Roxb. Fa amopsis hystrix Hook.f. & Fa Fa mison ex A.DC. Fa mison ex A.DC. Fa mison ex A.DC. Fa tanopsis indica A.DC. Fa mison ex A.DC. Fa tanopsis tribuloides (Sm.) Fa Co Earing gracilis (Sm.) Dandy tleya spicata (Sm.) Dandy Zi tleya gracilis (Sm.) Dandy Zi fileya gracilis (Sm.) Dandy Zi fileya gracilis (Sm.) Dandy Zi	Family	chidaceae	miaceae	iaceae	peraceae	licaceae	gaceae	gaceae	gaceae	ngiberaceae	ngiberaceae	nnabaceae	aceae	oridaceae	staceae	aceae	lacardiaceae	elypteridaceae	aceae	uraceae	uraceae
Botanical Name pophyllum yoksunense icarpa arborea Roxb. diocrinum giganteum lin.) Makino ex caryophyllea Latourt. ex caryophyllea Latourt. earia glomerata Roxb. mson ex A.DC. tanopsis hystrix Hook.f. & mson ex A.DC. tanopsis tribuloides (Sm.) C. tleya gracilis (Sm.) Dandy		Or	La	Lil	C	Sa	Fa	Fa	Fa	Ziı	Zii	Ca	Po	Ptí	Co	Po	Ar	Th	Po	La	La
Ba pophyi it.m. it.m. it.m. it.m. mson tanopy tanono	otanical Name	lum yoksunense	1 arborea Roxb.	<i>num giganteum</i> akino	<i>yophyllea</i> Latourr.	glomerata Roxb.	sis hystrix Hook.f. & ex A.DC.	vis indica A.DC.	sis tribuloides (Sm.)	spicata (Sm.) Baker	gracilis (Sm.) Dandy	andra Roxb.	'achyumcapitatum	es farinosa (Forssk.)	tus speciosus) C.D.Specht	alamusgriffithianus Isueh & T.P.Yi	ondias axillaris .L.Burtt & A.W.Hill	parasitica H.Lev.	gon aciculatus (Retz.)	num impressinervium	num tamala (Buch Jees & Eberm.
Definition of the second secon	Bo	Bulbophyl J.J.Sm.	Callicarpe	Cardiocrii (Wall.) Mi	Carex car	Casearia §	<i>Castanops</i> Thomson	Castanops	Castanops A.DC.	Cautleya	Cautleya §	Celtis tetri	<i>Cephalost</i> Munro	<i>Cheilanth</i> Kaulf.	Cheilocosi (J.Koenig)	<i>Chimonoc</i> (Munro) E	Choerospi (Roxb.) B.	Christella	<i>Chrysopo</i> _l Trin.	<i>Cinnamon</i> Meissn.	Cinnamon Ham.) T.N
SI. No. No. No. No. No. No. No. No. No. No	SI. No	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141

Annexure V	194
------------	-----

Range	1400	200-3100	500-2200	500-2800	1100	200-3000	000-1700	500-900	600-1200	.400-2900	000-3000	000-1200	000-1300	500-2200	500-3000	200-2700	600-2300	600-2300	1900	900-2500	100-2500	900-2500
32							_			(I						(I		1		_		
31																						
9 30																						
8 8																						├──
27 2																						
26																						
25																						
24																						
2 23																						
1 2:																						
202																						
19 2																						
18																						
17																						
5 16																						
4 15																						
31																						<u> </u>
12																						
11																						
10																						
89																						
5																						
9																						
Ś																						
Family	Lauraceae	Orchidaceae	Menispermaceae	Vitaceae	Rutaceae	Ranunculaceae	Lamiaceae	Lamiaceae	Lamiaceae	Orchidaceae	Orchidaceae	Orchidaceae	Orchidaceae	Lamiaceae	Commelinaceae	Pteridaceae	Asteraceae	Cupressaceae	Cupressaceae	Zingiberaceae	Commelinaceae	Cyatheaceae
Botanical Name	Cinnamonum caudatum Nees	Cirrhopetalum wallichii Lindl.	Cissampelos pareira L.	Cissus repens Lam.	Citrus maxima (Burm.f.) Merr.]	Clematis buchananiana DC	Clerodendrum glandulosum	Clerodendrum infortunatum L. 1	Clerodendrum japonicum [] (Thunb.) Sweet	Coelogyne corymbosa Lindl.	Coelogyne flaccid Lindl.	Coelogyne prolifera Lindl.	Coelogynestricta(D.Don) Schltr.	Colebrookea oppositifolia Sm. 1	Commelina paludosa Blume	Coniogramme procera Fee	Crassocephalum crepidioides	<i>Cryptomeria japonica</i> (Thunb. et L.f.) D.Don	Cupressus torulosa D.Don	Curcuma angustifolia Roxb.	<i>Cyanotis vaga</i> (Lour.) Schult. & Schult.	Cyathea chinensis Copel.
SI. No	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163

ange	2200	0-2700	500	500	1200	0-2200	0-1900	0-1500	1100	0-3300	0-1400	0-3200	0-2900	0-2100	0-2700	0-3200	0-2800	0-3100	0-2700	0-3300	0-2700	0-3200
Ŗ		240				170	100	50		06	50	50	240	70	250	60	180	50	220	310	90	130
32																						
) 31																						
93(
8																						
1 2																						
26 2																						
25																						
24																						
23																						
22																						
21																						
9 20																						
8 19																						
7 18																						
161																						
15]																						
14																						
13																						
12																						
11																						
010																						
8																						
7																						
9 9																						
40																						
nily	ceae	haceae	teae	eae	eae	teae	teae				eae	eae	eae	eae	eae	sae	eae	eae	eae	eae	eae	eae
Fai	atheau	narant	chidac	chidac	chidac	chidac	chidac	aceae	aceae	aceae	perace	perac	perace	perace	perace	perac	perace	perace	perace	perace	perace	perace
	C)	Ar	Ō	Ō	Ō	ō	Ō	P_0	P_0	P_0	C	C	C	C	Cy	Ú.	C	C	Ú.	C	C	ũ
	ех		(;	ndl.	Don).Don	ff. ex.	Nees	Vees	STS.	ottb.		th	(;)								
me	all.	ъq.	n (I	ı Liı	D.I	ım L	Gri	us (I n	<i>ts</i> () n	.) P€	es R	Ŀ.	Kun	Retz								Ľ.
Na	a W	ι M(oliun	unəı	ides	foliı	rsü	<i>uos</i> i atso	<i>dulı</i> atso	1 (L	oid	SHS	us]	es (L.	i	i	:	etz.	Ľ.	ŗL.	SH
iical	nlos	itatι	loift	huri	ridic	ignc	uaste	flex . W	pen N. W	tyloi	вси	pres	idat	roia	rmi.	uns I	an l	us L	us R	atu.	mpu	irro
otar	spin	cap	ım a	ım e.	im ii	im le	u m	gon J.F	gon J.F	dac	lop	luoc	dsnc	cype	diffo	lista	hasp	ong	nive	topc	rotui	onbs
Ř	iea :	ula	idiu	idiu	idiu	idiu	idiu	odo.	odo.	don	us c	NN (ns c	rus (je	rus c	us t	WS	ws l	I SM	ns e	t SNJ	S SN_
	<i>yatk</i> ook	yath	ymb w.	ymb	ymb	ymb	<i>ymb</i> indl.	ymb < Ste	ymb ¢ Ste	ynor	ype	ypeı	ype	<i>ypeı</i> untz	ype!	ypeı	ypeı	ype	ypeı	ype	ypeı	ype
	54 C H	55 C.	S C	57 C.	58 C	<u>.</u> 9 C	$\frac{1}{1}$	71 C ex	72 C ex	13 C	74 C.	15 C.	76 C.	77 C. K	78 C.	79 C.	30 C	31 C.	32 C.	33 C	34 C.	35 C.
ΣŽ	16	16	16	16	16	16	17	17	17	17	17	17	17	17	17	17	18	18	18	18	18	18

Annexure	V	196

Range	500-3300	1800	600-3000	00-3200	800-3200	600-3300	800	600-1400	600-1000	1900	00-2800	00-3000	600-1800	500	100-2400	2300	2300	700-3300	100-2300	00-2900
2	26		25	19	28	15		Ś	ŝ		25	19	9		14			2	14	9
13																				-
30 3																				-
50 3																				
28																				
27																				
26																				
25																				
24																				
23																				
22																				
21																				<u> </u>
9 20																				<u> </u>
8 19																				-
7 18																				
617																				<u> </u>
5 1																				
41																				<u> </u>
31																				-
1																				-
11																				
10																				
6																				
×																				
6 7																				
ŝ																				
uly	ae	daceae	daceae	aceae	aceae	aceae	le	eae	eae	eae	eae	eae		e	dtiaceae	tiaceae	osae	aceae	aceae	
Fan	Cyperace	Dryopteri	Dryopteri	Thymelae	Thymelae	Thymelae	Solanace	Davalliac	Orchidace	Orchidace	Orchidac	Orchidac	Poaceae	Urticacea	Dennstae	Dennsaed	Legumine	Hydrange	Gleicheni	Poaceae
e	oeck.	n (Wall. ^y resl	m	Ham. ex	V.Sm. &	ll. <i>ex</i> G.		losa	um Lindl.	ı Griff.	um	u Lindl.	onii ro	Blume)	ulata	Wall. ex	n DC.	Ŀ.		(.
al Nam	ulmis Bo	votideui v.) C. F	kerianu	Buch	is (W.V	<i>cea</i> Wa		nbrunui) Copel	nsifloru	iflorum	okerian	ıgicorn	s hamilt 2x Mun	nuata (J	<i>ppendic</i>) J. Sm	abra (V e	ltiflorun	ga Loui	inearis rw.	is (Retz
anic	uicı	car) Gre	hoo.	olua	cial. Das	yra	el L.	<i>mer.</i> ook.	n de.	u eri	n ho	n loi	mus m. e	le sii	ia aț ook.	ia sc Ioor	тт	rifu,	ris li ndei	liarı
Boti	ten	ium &	mn	bhc	gla .P.]	pat	met	$\frac{des}{x H_{t}}$	biun	biun	biun	biun	cala & A	cnid	uedtı x Hı	uedtı T. N	'ium	i feb	ipte .) U	a ci
	erus	<i>omi</i> ook	'omi 11.	<i>hne</i> on	hne 5) A	hne	ura .	allo II. e.	droi	droi	droi II.	droi	droi	droi w	nsta II. e.	nsta k.) ^r	pou	ıroa	<i>ano</i> m.f.	tari
	Cypu	Cyn 2x H	Cyn C.CI	Dap D.D	Dap Cave	Dap Don	Datı	<i>Dav</i> Wa	Den	Den.	<i>Den</i>	Den_{i}	Den Γ.Ν	Den	<i>Den</i> Wa	Den Hoo	Desi	Dicl	Dici	Digi
SI. No	186	187	188	189	190	191 1	192	193	194	195	196. 1	197	198	199	200	201	202	203	204	205

ange	0-2200	0-2100	0-2000	0-2600	0-2200	500	0-1900	2300	2300	1800	0-1300	0-2900	2600	0-2300	1500	0-1600	0-2200	0-1300	0-3300	0-3000
R	5(7(5(8(8(5(96	7(5(5(20(5(23(7(
32																				
31																				
30																				
8 29																				
7 23																				
6 2																				
5 2																				
24 2																				
23																				
52																				
21																				
20																				
19																				
18																				
17																				
116																				
115																				
3 14																				
2 13																				
11																				
01																				
9 1																				
8																				
r																				
5 6																				
														0	0					0
~			ae	ae	ae	ae	ae					e		cea	cea	ae	ae	ae	ceat	ceat
mily			eace	eace	eace	eace	eace	seae	ceae	seae	eae	acea		ıylla	ıylla	iace	iace	iace	rida	rida
Fa	eae	eae	core	COL	core	core	core	riac	riac	riac	otace	cyna	eae	hqo'	hqo'	pod	pod	pod	opte	pte
	oac	оас	Dios	Dios	Dios	Dios	Dios	Athy	Athy	Athy	sapc	Apo	oac	Cary	Cary	oly	oly	oly	Dryc	Dryc
	I	H	I	I	I	I	I	1	7	1. 1	(.		I mi	<u> </u>	<u> </u>	I	x I	ЧU	l ds	ott I
	$\widehat{}$			xə .	ok.f.			n.f.	etz.)	lerw	oxb	ok.f	ediu	illd.	&	. ex	ll .e.	J.Sn	. <i>ex</i> ward	Sche
ne	Retz	(L .)	;	Vall	Hoc	ia L	а L.	Buri	ı (R	Alc	a (R	Но	erm	(W	tdl.	Vall	Wa]	Ľ).	Vall Ed	L.)
Nai	ra (]	alis	ra I	ea V	nii	ijol	hyll	I un	utum	tum	ace	onii	int.	(L.	Schl	s (V	na (lia	<i>a</i> (/ P.J.	as (
cal	ifloi	nin	bife	toid	niltc	iosi	tap	ıtatı	uler	rica	utyr	lers	yum f.	lata	sa :	<i>nan</i> re	inq	cifo	flor 1 &	m-x
tani	guo	gup.	pul	deli	han	ddo	hen	dilc	esc	пш	ua bi	anc	<i>ach</i> eng	corc	villc	oro Aoo	m m	ner	<i>pici</i> ttun	fili
Boi	ia l	ia s	rea	rea	rea	rea	rea	ium	ium	ium	nem m	ras	10St ((<i>ria</i> . 	ria	<i>ia c</i> Τ. Ν	ia p J.S.	ia ç	<i>iis a</i> Hol	eris
	țitar s.	gitar p.	sco	<i>seb.</i>	sco	osco	sco	lazi	nlazi	lazi	nlok Laı	tocé	<i>epar</i>	v <i>ma</i> Schi	vma am.	vnai tt.) '	vnai tt.)	vnai	<i>vops</i> ((.1)	vopt
	Di_{ξ} Per	Di£ Scc	Dic	Dic Gri	Dic	Dic	Dic	Diţ	Diţ Sw.	Diţ	Diţ H.J	Dit	Dr_{ℓ}	Dr) ex '	$Dr_{\rm Chi}$	Dr Me	Dr Me	Dr_{j}	Dr Me	Dr_{j}
SI. No	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225

29 20 21 22 Kange	500-2500	900-1700		1100	1100	1100 1800-3300 1300-3200 1300-3200	1100 1800-3300 1300-3200 1300-3200 800-3200	1100 1800-3300 1300-3200 800-3200 500-1700	1100 1800-3300 1300-3200 800-3200 800-3200 500-1700 1100-1900	1100 1800-3300 1300-3200 800-3200 800-3200 500-1700 1100-1900 700-2100	1100 1800-3300 1800-3300 1300-3200 800-3200 500-1700 1100-1900 700-2100	1100 1800-3300 800-3200 1300-3200 1100-1700 1100-1900 1100-1900 11300-1500 1300-1500 1300-1500 900-2800	1100 1800-3300 1800-3200 1300-3200 1100-1900 1100-1900 11300-1500 1300-2100 1300-2800 1300-2800 1300-2800 1300-3200	1100 1800-3300 1300-3200 800-3200 1300-1700 1100-1900 1300-1700 1300-1700 1300-1700 1100-1900 <th>1100 1800-3300 1800-3200 1300-3200 1100-1900 1100-1900 11100-1900<!--</th--><th>1100 1800-3300 1300-3200 800-3200 1300-3200 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-2200 1100-2200 1100-2200 1100-2700 1100-2700 1100-2700 11000-2700 11000-2700 11000-2700 11000-2700</th><th>1300-3300 1800-3300 1300-3200 1300-3200 1300-1700 1100-1900 1100-1900 11100-2700 11100-2700 11100-2700 11100-2700 11300-3000</th><th>1100 1800-3300 1300-3200 1300-3200 1300-3200 1300-1700 1100-1900 1100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-2200 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 111000-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700</th><th>1100 1800-3300 1800-3200 1300-3200 1300-3200 1100-1900 1100-1900 11100-2700 11100-2700 11100-2700 11100-2700 111000-2700</th></th>	1100 1800-3300 1800-3200 1300-3200 1100-1900 1100-1900 11100-1900 </th <th>1100 1800-3300 1300-3200 800-3200 1300-3200 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-2200 1100-2200 1100-2200 1100-2700 1100-2700 1100-2700 11000-2700 11000-2700 11000-2700 11000-2700</th> <th>1300-3300 1800-3300 1300-3200 1300-3200 1300-1700 1100-1900 1100-1900 11100-2700 11100-2700 11100-2700 11100-2700 11300-3000</th> <th>1100 1800-3300 1300-3200 1300-3200 1300-3200 1300-1700 1100-1900 1100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-2200 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 111000-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700</th> <th>1100 1800-3300 1800-3200 1300-3200 1300-3200 1100-1900 1100-1900 11100-2700 11100-2700 11100-2700 11100-2700 111000-2700</th>	1100 1800-3300 1300-3200 800-3200 1300-3200 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-1900 1100-2200 1100-2200 1100-2200 1100-2700 1100-2700 1100-2700 11000-2700 11000-2700 11000-2700 11000-2700	1300-3300 1800-3300 1300-3200 1300-3200 1300-1700 1100-1900 1100-1900 11100-2700 11100-2700 11100-2700 11100-2700 11300-3000	1100 1800-3300 1300-3200 1300-3200 1300-3200 1300-1700 1100-1900 1100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-1900 11100-2200 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 111000-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700 11100-2700	1100 1800-3300 1800-3200 1300-3200 1300-3200 1100-1900 1100-1900 11100-2700 11100-2700 11100-2700 11100-2700 111000-2700
	Dryopteridaceae	Putranjivaceae	Lythraceae		Rosaceae	Rosaceae Thymelaeaceae	Rosaceae Thymelaeaceae Poaceae	Rosaceae Thymelaeaceae Poaceae Boraginaceae	Rosaceae Thymelaeaceae Poaceae Boraginaceae Elaeocarpaceae	Rosaceae Thymelaeaceae Poaceae Boraginaceae Elaeocarpaceae Elaeocarpaceae	Rosaceae Thymelaeaceae Poaceae Boraginaceae Elaeocarpaceae Elaeocarpaceae Lomariopsidaceae	Rosaceae Thymelaeaceae Poaceae Boraginaceae Elaeocarpaceae Lomariopsidaceae Urticaceae	Rosaceae Thymelaeaceae Poaceae Boraginaceae Elaeocarpaceae Elaeocarpaceae Lomariopsidaceae Urticaceae	Rosaceae Thymelaeaceae Poaceae Boraginaceae Elaeocarpaceae Elaeocarpaceae Unticaceae Urticaceae	Rosaceae Thymelaeaceae Poaceae Boraginaceae Elaeocarpaceae Elaeocarpaceae Urticaceae Urticaceae Urticaceae	Rosaceae Thymelaeaceae Boraginaceae Elaeocarpaceae Elaeocarpaceae Lomariopsidaceae Urticaceae Urticaceae Urticaceae Urticaceae	Rosaceae Thymelaeaceae Boraginaceae Elaeocarpaceae Elaeocarpaceae Lomariopsidaceae Urticaceae Urticaceae Urticaceae Urticaceae Nyctaginaceae Ryctaginaceae	Rosaceae Thymelaeaceae Poaceae Boraginaceae Elaeocarpaceae Elaeocarpaceae Urticaceae Urticaceae Urticaceae Urticaceae Urticaceae Lamiaceae Lamiaceae Lamiaceae	Rosaceae Thymelaeaceae Boraginaceae Elaeocarpaceae Elaeocarpaceae Lomariopsidaceae Urticaceae Urticaceae Urticaceae Urticaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae
ouallical ivallic	ris sikkimensis (Bedd.)	s longifolia (Burm.f.) Hoffm.	ga grandiflora (DC.)		ea indica (Jacks.)	ea indica (Jacks.) rthia gardneri (Wall.)	ea indica (Jacks.) rthia gardneri (Wall.) tis multicaulis Steud.	ea indica (Jacks.) rthia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br.	ea indica (Jacks.) rhia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. rpus lanceifolius Roxb.	ea indica (Jacks.) rthia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. rpus lanceifolius Roxb.ex	ea indica (Jacks.) rthia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. rpus lanceifolius Roxb.ex rpus rugosus Roxb.ex	ea indica (Jacks.) rhia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. rpus lanceifolius Roxb. rpus rugosus Roxb.ex lossum marginatum e acuminatum (Poir.)	ea indica (Jacks.) rthia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. rpus lanceifolius Roxb.ex rpus rugosus Roxb.ex lossum marginatum e ma acuminatum (Poir.) ma obtusum Wedd.	ea indica (Jacks.) thia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. trus lanceifolius Roxb. trus rugosus Roxb.ex lossum marginatum e a cuminatum (Poir.) ma obtusum Wedd. ma platyphyllum	ea indica (Jacks.) rhia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. rpus lanceifolius Roxb.ex rpus rugosus Roxb.ex lossum marginatum ma acuminatum (Poir.) ma obtusum Wedd. ma platyphyllum ma sessile J.R.Forst. &	ea indica (Jacks.) thia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. rpus lanceifolius Roxb.ex rpus rugosus Roxb.ex lossum marginatum e na acuminatum (Poir.) ma obtusum Wedd. ma platyphyllum ma sessile J.R.Forst. & ma sessile J.R.Forst. &	ea indica (Jacks.) rhia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. rpus lanceifolius Roxb.ex rpus rugosus Roxb.ex lossum marginatum lossum marginatum ma acuminatum (Poir.) ma acuminatum (Poir.) ma platyphyllum ma platyphyllum ia flava Benth.	ea indica (Jacks.) rhia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. rpus lancetfolius Roxb. rpus rugosus Roxb.ex lossum marginatum in acuminatum (Poir.) ma obtusum Wedd. ma platyphyllum ma sessile J.R.Forst. & ma sessile J.R.Forst. & ia fruticosa (D.Don) ia fruticosa (D.Don)	ea indica (Jacks.) -thia gardneri (Wall.) tis multicaulis Steud. acuminate R.Br. -pus lanceifolius Roxb.ex -pus rugosus Roxb.ex lossum marginatum to lossum marginatum ma acuminatum (Poir.) ma acuminatum (Poir.) ma acuminatum (Poir.) in a eriostachya Benth. ia flava Benth. ia flava Benth. ia fruticosa (D.Don) onchifolia (L.) DC.
26 Dryopteris	DZIIINNI	227 Drypetes l. Pax & K.H	228 Duabanga Walp.		229 Duchesnec Focke	229 Duchesnea Focke 230 Edgeworth Meisn.	229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis	229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis 232 Ehretia ac	229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis 232 Ehretia ac 233 Elaeocarp	229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis 232 Ehretia ac 233 Elaeocarp 234 Elaeocarp G.Don	229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis 232 Ehretia ac 233 Elaeocarp 233 Elaeocarp 235 Elaphoglo 235 Elaphoglo	229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis 232 Ehretia ac. 233 Elaeocarp. 234 Elaeocarp. 235 Elaphoglo. 236 Elatostem. 236 Elatostem.	 229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis 232 Ehretia ac. 233 Elaeocarp 234 Elaeocarp 235 Elaphoglo 235 Elaphoglo 235 Elaphoglo 235 Elaphoglo 237 Elatostemu 	 229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis 232 Ehretia ac. 233 Elaeocarpi 234 Elaeocarpi 235 Elaphoglo 235 Elaphoglo 236 Elatostemu 238 Elatostemu 238 Elatostemu 	 229 Duchesnea Focke S30 Edgeworth Meisn. 231 Eeagrostis 232 Ehretia ac. 233 Elaeocarpi G.Don 235 Elaphoglo. 236 Elatostemu 238 Elatostemu 238 Elatostemu 239 Elatostemu 239 Elatostemu G.Forst 	 229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis 232 Ehretia ac. 233 Elaeocarpi 234 Elaeocarpi 235 Elaphoglo. 235 Elaphoglo. 236 Elatostemu 238 Elatostemu 238 Elatostemu 238 Elatostemu 238 Elatostemu 239 Elatostemu 230 Elatostemu 	 229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis ac. 233 Elaeocarpi 234 Elaeocarpi 235 Elaphoglo. 235 Elaphoglo. 235 Elatostemu 238 Elatostemu 238 Elatostemu 238 Elatostemu 238 Elatostemu 239 Elatostemu 239 Elatostemu 239 Elatostemu 239 Elatostemu 239 Elatostemu 239 Elatostemu 231 Elatostemu 231 Elatostemu 	 229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis 233 Elaeocarpi 233 Elaeocarpi 33 Elaphoglo. 235 Elaphoglo. 235 Elaphoglo. 235 Elaphoglo. 235 Elapholitia 237 Elatostemu 238 Elatostemu 239 Elatostemu 239 Elatostemu 240 Elsholtzia 241 Elsholtzia 242 Elsholtzia 	 229 Duchesnea Focke 230 Edgeworth Meisn. 231 Eeagrostis ac. 232 Ehretia ac. 233 Elaeocarpi 234 Elaeocarpi 35 Elaphoglo. 235 Elaphoglo. 235 Elatostemu 238 Elatostemu 238 Elatostemu 239 Elatostemu 239 Elatostemu 239 Elatostemu 231 Elatostemu 231 Elatostemu 232 Elatostemu 233 Elatostemu 234 Elatostemu 235 Elatostemu 235 Elatostemu 236 Elatostemu 237 Elatostemu 238 El

Annexure	V	199
----------	---	-----

Range	2100	200-2900	2800	100-1900	500-2900	500-2400	500-2200	500	500	100-1400	500-2400	000-2300	500-2000	700-2300	500	500-1900	500-2500	1800	900-2300	000-2800	700-3000
5		53			••	10	-			-		5(••	`		~ /			<u> </u>	5(`
31 3																					
30																					
29																					
28																					
27																					
5 26																					
4 25																					
3 5																					<u> </u>
5																					
21 2																					
20 2																					
19																					
18																					
17																					
16																					
15																					
3 14																					<u> </u>
2 13																					
11																					
101																					
6																					
×																					
6 7																					<u> </u>
S																					
lly		ae	ae	ae				ae	ae		0		sae	sae	ae	eae		ceae	acaceae	icaceae	acaceae
Fami	aceae	hidace	hidace	iisetace	ceae	ceae	ceae	hidace	hidace	eraceae	eraceae	aceae	uminos	umino	hidace	risticac	eraceae	horbia	taphyla	taphyla	taphyla
	Eric	Orc	Orc	Equ	Poa	Poa	Poa	Orc	Orc	Ast	Ast	Ros	Leg	Leg	Orc	My	Ast	Eup	Pen	Pen	Pen
	ff.)	riff.			esf.)		etz.)				DC.	ok.f.		b.	ndl.)	ðm.	L.			(u	
ame	(Gri	ns G	lbui	;	<i>s</i> (D	es ex	3 (R	lld.)		s L.	l sur	Hot	su	Rox	i (Li	nis S	unu		r ;	.D0	nb.
ΪŇ	snx	sce	na I	se I	iren	Ne	oide	(Wi		ensi	kiaı	lata	esce	W.	arti	icor	ıabi	Ľ	Ď	а (D	[hui
nica	lefle 1.	usce	vlea	плеп	trov	igra	niol d.	tala	ind	nad	vin.	etio	bore	icta	athc	eret	canı	irta	nate	folid	ica '
ota	us c neic	tm f	s ro	m a	is a	is n	is u Steu	iədo	sta I	Ca	kan	ya p	a ar	a str	la c	us t	шп	ia h	ium:	rasi	uod
B	<i>anth</i> Sch	enii	acti	setu	rost	<i>rost</i> l.	rost ex 5	<i>lasi</i> srod	stric	sron	sron	botr	nrinu əxb.	ırinα	eralı .f.	lypt	tori	orb	a ac	<i>a ce</i> ıski	a ja
	Enki L.K.	Sed	<i>ipip</i>	iqui.	<i>Trin.</i>	<i>Frag</i>	<i>Trag</i> Vees	Eria)rme	<i>îria</i>	irige	irige	Triol	Eryth V.R.	Tryt	Esme Schb	<i>Tuca</i>	iupa	hqui	<i>iury.</i>	<i>Cobu</i>	<i>ury.</i>
31. 50	45 <u>F</u> C	46 E	47 E	48 <u>F</u>	49 <i>E</i> T	50 <u>F</u> S	51 E N	52 <u>F</u> C	53 E	54 E	55 E	56 E	57 E V	58 E	59 <u>F</u>	60 E	61 E	62 E	63 L	64 E K	65 E
	5	Ŋ.	Ņ,	, S	5	2	2	2	0	5	5	5	2	2	2	2	Q N	0	2	2	5

v 20	0
	v 20

~9T	900-2500	800-3000	500-2500	2100	600-2500	1200	500-1300	600-2400	400-2200	600	2400-3200	2500	700-3300	500-2000	2500-3000	800-2400	2000	700-2900	500-1800	800-3200	800-1600
32								_	-		(I		_	_	(1					_	
31																					
30																					
29																					
28																					
27																					
26																					
1 25																					
3 24																					
23																					
1 2:																					
0 2																					
9 2																					
81																					
1																					
16]																					
15																					
14																					
13																					
12																					
11																					
10																					
6																					
7 8																					
9																					
S																					
Family	Rutaceae	Hamamelidaceae	Moraceae	Moraceae	Moraceae	Moraceae	Moraceae	Moraceae	Moraceae	Leguminosae	Rosaceae	Rosaceae	Rosaceae	Oleaceae	Rubiaceae	Burseraceae	Orchidaceae	Urticaceae	Zingiberaceae	Phyllanthaceae	Phyllanthaceae
Botanical Name	<i>Evodia fraxinifolia</i> (Hook.) F 3enth.	<i>Exbucklandia populnea</i> (R.Br. F x Griff.) R.W.Br.	^r icus hirta Vahl	ricus nemoralis Wall.	^r icus neriifolia Sm. N	^r icus religiosa L. N	^r icus roxburghii Lour. N	⁵ <i>icus sarmentosa</i> BuchHam. A Sm.	^{τ} <i>icus subincisa</i> BuchHam. <i>ex</i> $[\Lambda]$	^c lemingia strobilifera (L.) [I <i>N</i> .T.Aiton	^r ragaria daltoniana J.Gay	⁵ ragaria nubicola (Lindl. ex F Hook.) Lacaita	^r ragaria vesca L. R	⁷ raxinus floribunda Wall. C	Galium elegans Wall. ex Roxb. F	Jaruga floribunda Decne. E	<i>Fastrochilus calceolaris</i> (Sm.) C.Don	<i>Firardinia diversifolia</i> (Link) [3lobba clarkei Baker Z	<i>Glochidion acuminatum</i> MüllF Arg.	<i>Flochidion thomsonii</i> (Müll F Arg.) Hook.f.
SI. No	266 <i>1</i> 1	267 I	2681	2691	2701	2711	2721	273 I	2741	275 1	2761	277 I	2781	2791	280 (281 (282 (I	283 (I	284 (285 (286(

ange	500)-1100)-1400	2000)-2000	500)-1300)-2400)-2200)-1800)-3300	500)-3000)-3300)-3300)-2400)-3100	2000)-2500)-2900)-2400
Rź)06	100(50(80(220(100(1200	240(180(1800	260(160	220(80(150(220(
32																					
31	-																				
9 30																					
8 29																					
7 2																					
6 2																					
25 2																					
24 3																					
23																					
22																					
21																					
20																					
19																					
18																					
17																					
5 16																					
115	-																				
3 14																					
2 1:																					
11																					
101																					
9																					
8																					
5 7																					
5 (
y		0	0		ae	ae	ae	ae			eae	e					e	ae			eae
mil	eae	ceae	ceat	sae	race	race	race	race	eae		nac	acea	e	eae			acea	dace	eae	ceae	diac
Fa	vace	aria	nida	iace	gibe	gibe	gibe	gibe	eace	ceae	itagi	neri	acea	raco	ceae	ceae	iseta	beri	iace	ura.	odo
	Mal	Ach	Orcl	Aral	Zing	Zing	Zing	Zing	Prot	Роа	Plan	Gesi	Api	Aste	Роас	Poa	Equ	Bert	Lam	Sau	Lyc
					1						[1	-				us]	κ]			•1	[
		.:	uo	ch	uch.	Ich				f.)	unll	ch		C.)	eri :	rian	cb.e		etz.	э.	ing)
me		R.B	D.L	Ko	пB	1 Bu	oxb	Sm	dd.	sa (1	бүд	(Bu rich	DC.	(D	con ing 1	okeı	Roy	/all.	ıe R	hun	Spr
Na	DC	ata	ata	s K	тәи	cun	le R	tum	Be	res	tero	olia Diet	hii	idec	s fal Ke	s <i>ho</i>	lis (ia V	gui	taT	nii (
ical	lata	dor	ctin	ensi	occi	liptı	raci	ica	rica	duuo	ı he	<i>icifc</i> n)]	allic	elto	umu.	imu. leto	<i>debi</i> ng	ifol	san	rda	uilto
tan	rrw	ia o	ad v	spal	<i>n c</i> (n el m.	ı8 u	ds u	lagi	ia c	mg	.Do	м и	<i>la d</i> ube	<i>calc</i> Mu	calc stap	<i>ete</i> (Chi	ı laı	ldia	а сс	han
BC	a se	ard	ıari	a ne	hiui ex S	hiu ex S	hiu	hiu	a ni	rthr	hra	telia ex E	leur	aiel Stra	aya . ex	aya 0) S	er)	elliu	kio	nyni	zia
	еші	vnoc	ıber	sder	edyc um.	edyc um.	3dyc	sdyc	elici	ета Вг.	emiț all.	enck um.	srac	imal ab-	imat look	<i>mal</i> funr	<i>ppo</i> uch	oqle	smle	outti	<i>uper</i> ev.
	7 Gi	S G	ηH	γHC	$\frac{1}{H_{\ell}}$	$\frac{2}{H_{\ell}}$	$3H\epsilon$	$4H_{\ell}$	ξHε	6 <i>H</i> (R.	7 H∉ W	$\frac{8}{H_{\ell}}$	γH 6	0 Hi Ra	$\frac{1}{(H)}$	$\frac{2}{(N)}$	$\frac{3}{V_{\mathcal{E}}}$	$4H_{c}$	ξHι	$\theta H \epsilon$	$\frac{7}{\mathrm{Tr}}$
SI. No	28	28	28	29(29	29.	29.	29	29;	29(29′	29	299	30(30	30	30.	30	30;	30(30′

Annexure	V	20)2
----------	---	----	----

Range	1600-2400	500	600-800	2200-3100	700-2800	2200-3300	1800-3200	600-2600	2600	1000-1500	1200-1400	2400-2600	1800-2600	500-3300	2200	1400-2200	600-1500	500-3300	2300-2700	2500
1 32																				┝
03																				
<u> 6</u>																				-
82																				
27 2																				
56																				
25																				
24																				
23																				
22																				
21																				
20																				
19																				
18																				
11																				
5 16																				
4 15																				-
3 14																				
2 1:																				
11																				-
01																				
9 1																				
8																				
7																				
9 9																				-
41																				
Family	Lycopodiaceae	Lycopodiaceae	Lycopodiaceae	Hydrangeaceae	Araliaceae	Araliaceae	Aquifoliaceae	Balsaminaceae	Balsaminaceae	Balsaminaceae	Balsaminaceae	Balsaminaceae	Balsaminaceae	Poaceae	Orchidaceae	Poaceae	Poaceae	Poaceae	Poaceae	A staracege
Botanical Name	zia pulcherrima (Wall. ok. et Grev.) T.Sen &	zia serrata (Thunb.)	zia squarrosa (Forst.)	<i>mgea robusta</i> Hook.f.& son	cotyle javanica Thunb.	ocotyle sibthorpioides	ipyrena Wall.	iens discolour DC.	iens puberula DC.	iens racemosa DC.	iens scabrida DC.	iens sulcata Wall.	iens urticifolia Wall.	ata cylindrica (L.) ch.	vicolour Lindl.	<i>ie albens</i> Trin.	<i>ie globosa</i> (Thunb.) e	<i>ve himalaica</i> Hook.f.	ıe sikkimensis Bor	nahianhala Case
	uper Ho Sen	uper	upei ev.	<i>ydr</i> 10m	ydrc	ydrc am.	b xə	ıpat	ıpat	ıpat	ıpat	ıpat	ıpat	<i>uper</i> aeus	ne l	ach	<i>ach</i> untz	achı	achı	0.000
· ~	8 H ex U.	$\frac{9}{1}$ Tr	$\frac{1}{1}$	$\frac{1}{\text{T}}$	$2H_{\rm H}$	$\frac{3H}{L_{\epsilon}}$	4 <i>II</i> (5 Im	6 Im	7 Im	8 <i>Im</i>	$\frac{6}{1}$	$0 I_m$	1 Im Rí	2 Io	3 Is.	4 <i>Is</i> . Ki	$5 I_{S_i}$	6 Is	7 1
l S Ž	30	30	31	31	31	31	31	31.	31	31	31	31	32	32	32.	32.	32	32.	32,	ŝ

Family 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 Juncaceae
Cupressaceae
. Cupressaceae
Myristicaceae
Verbenaceae
Asteraceae
: Urticaceae
Euphorbiaceae
Urticaceae
Vitaceae
Polypodiaceae
Acanthaceae
Polypodiaceae
Polypodiaceae
. Polypodiaceae
Polypodiaceae
Rubiaceae
Lamiaceae
Lamiaceae

Range	500-700	00-1200	800-2800	600-2100	200-2200	2600	00-1700	100-3000	00-2600	00-2600	800	00-3200	00-3100	600-2700	700-1900	500-2000	00-3300	700-900	800-3300
2		5	18	15	12		5	24	19	5		5	21	25	17	Ŷ	19		\sim
13																			
03																			
603																			
28 2																			
51																			
26																			
25																			
24																			
23																			
22																			
21																			
20																			
19																			
18																			
517																			
5 10																			
413																			
31																			
2 1																			
[1]																			
10]																			
6																			
8																			
6 7																			
5																			
y	ae	ceae	ae	e	e									eae	eae	eae	ceae	ıe	
ami	ace	inac	sace	acea	acea	ae	ae	ae	eae	eae	eae	eae	eae	liac	diac	diac	dia	ace	ae
H	/alli	ntag	dsae	hid	hida	ace	ace	ace	Irace	Irace	Irace	Irace	Irace	orifo	ypo	ypo	opc	godi	cace
	Dav	Plai	Lin	Orc	Orc	Fag	Fag	Fag	Lau	Lau	Lau	Lau	Lau	Cap	Pol	Pol	Lyc	Lyg	Eric
	(u	th.							.G.				s)			(uc		N.	ude
	.Doi	a Ben			(e)	ıme		SI	() D	rs.).)	<i>y. ex</i>	Nee	-i		D.DC		.) Sı	Dr
me	<u> </u>	flord (nc	xb.	idl.	lum	(Blt	tus	yllu	ok.f) Pe	toxt	toxb	ex]	Wal	ıta	a (D	n L.	(T.	all.)
Na	cata	ndij . De	Ro	a Ri	B	om	trai	yph	θH	our.	a (R	(J.R	all.	nte 1	<i>pidc</i> ice	oluta	atur	шn.	(M
ical	nna	gra 2x D	rata	inat	olia	<i>leg</i> (ene.	<i>ach</i> r	SU2	(Ld	etal	olia	M)	nina	cus _l . Pr	inve	lavi	cnos	olia
tan	<i>ia tı</i> lk.	gia m.e	opc	ıdns	ridif	us e Soe	us fe	<i>us p</i> hde:	esce	eba	dou	<i>cifo</i> ok.f.	icea	ncu	me A.G	те	ım c	flex	alifa
Bc	<i>steg</i> -Jen	<i>uben</i> -Ha	ıea	s re	s vi	arp ex	arp .) R	arp Re	alb	cub	mo.	sali Hoc	<i>ser.</i> f.	sra i	ram er) l	ram 1	odiı	ium	1 0 V
	<i>uco</i> aser	<i>nder</i> uch.	ıdsc	pari	pari 1dl.	thoc tus.	thoc oxb	<i>thoc</i> urz)	tsea	sea	tsea rs.	tsea tes)	tsea vok.	nice	<i>xog</i> enk(<i>xog</i> Pres	cop	god	onic
	Le Fr:	Lii (B	Lii	Lij	Lij Lin	<i>Lii</i> Ha	Lii (R	Lii (K	i Lii Lo	Lii	Lii Pe	Lii Ne	l Lii Hc	Lo	Z [Z	L <i>o</i> C.]	Ly	Ly,	Ly
SI. No	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366

lange	00-2800	00-1700	00-3000	00-2700	2700	00-3000	00-3100	00-2900	00-3200	00-2000	00-1800	00-2800	2100	00-1300	00-2500	00-3000	00-2900	2900
H	21(90	18(21(18(22(5(21(18(13(18(7(16(15(26(
32																		
) 31																		
93(
8 2																		
1 2																		
26 2																		
25 2																		
24																		
23																		
22																		
21																		
20																		
19																		
18																		
617																		
5 10																		
4 1:																		
31																		
1																		
[]]																		
10																		
6																		
8																		
9																		
S																		
uily		aceae	0	0	0	0	0	eae	ceae	ceae	ceae	ceae	ceae	ceae	ceae	iceae	ceae	eae
Fan	icaceae	phorbi	uracea	uracea	uracea	uracea	uracea	imulace	agnolia	agnolia	agnolia	agnolia	agnolia	agnolia	agnolia	rberida	paraga	chidace
<u> </u>	Er	Eu	La	La	La	La	La	Pr	M.	2 W	Μ	M	M	z M.	M	B€	As	Ō
le	c ZZ.	ght	x	g ex	King	(Nees)	x	am. ex	look.f. &	look.f. &) Baill.	ich	k.f. &	look.f. &	Wall.)	DC.	ш	ldl.)
Nan	all.e. -Ma	Wig	ing (Kin	ma]	suə	ng e	нı	llii F	ü (F	ca (]	t (Bu ar	Нос	uii (F) sa (sis]	race	(Liı
cal	(Wi and.	dica	s K	blei	niec	cesc	i Ki	3ucl	phe	<i>cari</i> ot.	npa	sopc Figl	osa	son	gina	uler	<i>ole</i> ıkie	fera
tani	osa H (¢	a in	luba	am	am	lau	urzı	sia I	cam	<i>cath</i> Noc	char	dolt: C.)	glob	hod H.K	lanu oot.	apa	<i>tum</i> Frai	usci
Boi	<i>vill</i> arke	ange	us e	3 sn	s sn	us g i	us k	<i>chi:</i> 1	<i>lia</i> on	lia . on)	lia . re	lia d x D	lia a	lia on)	lia . & N	ia n	then (La	s m
	ənia 3.Cl	car	<i>chil</i> : ok.f	<i>ichil</i> ok.f	chil	ichil V. I	<i>ichil</i> ok.f	tesa Don	ougi	smc smc	ıgno Pier	ıgno m. e	smc smc	oug) Smc	igno lar	noh	vian. ıker	<i>ulaxi</i> ntze
	Lyc C.E	Ma	M_{a} Ho	M_{a} Ho	Ma	M_{a} H.V	Ma Ho.	M_a D.	M_{a} The	M_{a} The	Ma ex]	<i>Ma</i> Ha:	M_a The	Ma The	Ma Fig	Ma	M_{a} (B ε	Ma Ku
SI. No	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384

Range	400-3000	500-2100	700-1800	900-1800	2400	2600	1200	700-2600	900-2200	400-3300	900-2000	900-2300	800-2500	600	700-1300	500-2900	900-2400	500-1300	1800	500-2900	1600
2	1	47	•						16	2	5	5	18			47	0,	47		5	-
113																					-
30 3																					
29 3																					
28																					
27																					
26																					1
25																					
24																					
23																					
22																					
21																					
20																					
8 19																					-
7 18																					<u> </u>
61′																					-
51																					┣──
41																					
1																					-
1																					
11																					
10																					
6																					
8																					<u> </u>
9																					
S																					
Family	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Euphorbiaceae	Marsileaceae	Papaveraceae	Leguminosae	Melastomataceae	Sabiaceae	Sabiaceae	Sabiaceae	Malvaceae	Dennstaedtiaceae	Orchidaceae	Polypodiaceae	Asteraceae	Leguminosae	Moraceae	Moraceae	Leguminosae	Musaceae
Botanical Name	Mallotus nepalensis MüllArg. E	<i>Mallotus philippensis</i> (Lam.) E MüllArg.	Mallotus roxburghianus Müll E Arg.	Mallotus tetracoccus (Roxb.) E Kurz	Marsilea minuta L. N	Meconopsis simplicifolia P (D.Don) Walp.	Meizotropis buteiformis Voigt	Melastoma malabathricum L. N	Meliosma dilleniifolia (Wight S & Arn.) Walp.	Meliosma pinnata (Roxb.) S Maxim.	Meliosma simplicifolia (Roxb.) S Walp.	Melochia corchorifolia L. N	<i>Microlepia strigosa</i> (Thunb.) E C. Presl	Micropera manni (Hook.f.)Tang & F.T. Wang	Microsorum punctatum (L.) P Copel	Mikania micrantha Kunth A	Mimosa himalayana Gamble L	Morus alba L. N	Morus indica L. N	Mucuna macrocarpa Wall. L	Musa xparadisiaca L. N
SI. No	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405

nge	-2600	-2400	2600	-3000	-3200	800	-2300	-2500	-1600	600	1200	-2300	2400	-2900	-1300	-3100	900	-2600	-2500	-1800	-2200
Ra	500	2200		2300	500		1700	1800	1300			1600		2400	800	600		700	700	500	500
32																					
31																					
30																					
29																					
28																					
27																					
26																					
25																					
24																					
23																					
52																					
21																					
20																					
8 19																					
7 18																					
61′																					
5 1																					
41																					
31																					
2 1																					
11																					
101																					
6																					
8																					
2 2																					
5 6																					
					ae													e	e		
~			n)		lace	e						e		e			e	acea	acea	ae	
lim	ae	ceae	cea	ae	epid	acea		ae	ceae	ceae	ceae	icea	a)	acea			acea	mata	mata	iace	ceae
Fa	ace	ula	sica	iace	Irol	cyna	eae	lace	ida	ida	ida	sae	cea	ndr	eae	eae	oni	isto	isto	lorb	ida
	Rubi	rim	3ras	.am	Vepl	}po(oac	Corn)rch)rch	Drch	ind	Apia	Jlea	oac	oac	3ign	Melí	Mel	Įdnį)xal
	ł	Ц	щ	I	<u> </u>	ł	щ	<u> </u>	tl. (n. I	ł	<u> </u>) I	I		В. Л	<u>~</u>	щ	
			Ŀ.	x	C C		(j		Pan	-i) St		$\overline{}$	etz.	(i	JIZ	۲C.	lam.	0	
ne	tapf	Vall	R.B	th. e	<i>t</i> (L.		ea (I	e)	ŝ &	ind	ndl.	Ĺ.	.B	ook	<i>i</i> (R	ıs (I) Kı	1. <i>e</i> s	hH	umé	
Nan	ri S	ta V	ale]	3ent	olia	;	iace	um	King	ta L	s Li	nsis	ü C	H) :	inni	situ	(Ľ	entł	3 uc]	a Bl	Ľ
cal]	utle	erra	cin	sis I	rdif	er I	ndir	(B)	ta F	rda	ubri	nine	nos	chii	rma	лрс	mm	e B	ta I	ılatı	lata
ani	tre	nise	iffo	iop	s co	and	aru	nica	alca	pco	nfila	a cl	hon	vallı	s bu	<i>co</i>	ndi	rini	tellc 1.	nicı	іси
Bot	nda	sei	ium	lam	lepi	ole	dia . I	<i>ivai</i> in	ia fi	ia o	ia r	sori	he ti	ra n	<i>vois</i>	enus vois	ım i	ia ci	ia sı Gaw	pa.	nno
	sae	Sine	turt	<i>eta</i> k.f.	<i>hro</i> el	ium	<i>rau</i> rard	<i>ia ji</i> 1ger	ron	ron	ron	nto.	ant. ke	and	isme eau	isme eauv	xylh	<i>eck</i> i 'ke	ecki Cer (sapc	lis c
	Mus	Myr	Nas	<i>Nep</i> Hoo	<i>Nep</i> Pres	Neri	Ney. Hen	Nys. War	Obe	Obe	Obe	Odo	<i>Oen</i> Clar	Oleı C.Pı	<i>Opli</i> P. B	<i>Opli</i> P.B(0ro.	<u>Osb</u> Clar	Osb ex K	Ostc	Оха
SI. No	406 .	407	408 /	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426
s z	4(4(4(4(4]	4]	4]	4]	4]	4]	4]	4]	4]	4]	42	42	42	42	42	47	42

lange	0-2100	0-2500	3000)0-1300	0-2200	1000	1000	0-2500	0-2100	0-3300	2000	0-2600	0-2500	0-3200	2600	2200	0-2700	1700	0-2800	0-2800
R	15(20(5(20(14(5(150		150	22(22(90		22(70
32																				
31																				
30																				
3 29																				
7 28																				
5 27																				
5																				
4						-														
3 2																				
5						-														
21 2						-														
20 2																				
19																				
18																				
17																				
16																				
15																				
14																				
13																				
12																				
111																				
9 1(
8																				
٢																				
9																				
S						-														
	ceae									eae										
nily	natao	a	e	eae	eae	eae	e		Ð	idac	eae	d)	ceae	ceae	ceae	cea	cea	ceae	ceae	cea
Fan	ton	cea	icea	inac	dac	dac	acea	ae	cea	oteri	hac	cea	ona	ona	ona	ona	ona	ona	ona	ona
	elas	ubia	ralia	sput	rchi	rchi	stera	Jace	ubia	ryoļ	cant	aura	olyg	olyg	olyg	olyg	olyg	olyg	olyg	olyg
	M	R	Ā	Ρ	Ö	0.1	Ā	P	R	D	A	Ľ	P	P(P(P(P(P(P(P(
	(uo		II.			ind.	Ľ.	:		-ihi	ke				mp.					
e	D. L		Wa	ζþ.	(uc	l.) L	nus	шL		(Pic	Clar	Vees) H.	lis	Sa	a	ach. SS) E	ld.)	(F.)
am	ta (]		guə	Rox	DO.DO	ind	phc	latu		ata	B. (a (D	AII.)	cau tr.	(F.)	ulat cr.	Gro	<i>s</i> (L	Wil	<i>ver</i>
al N	ula	аL.	ins	tus	a (D	a (L	terc	icu	. i	<i>oluli</i> enk.	гC.	sim.	1e (1	<i>lexi</i> Dec	rta	oan De	tata H.(ensi	ra (tido.
nic	ınic	etid	3-01	ırca	uissa	flor	hys	crot	ca I	alea er-Ja	fera	atis	ılpir	ump	isto	aml anse	apii (uo	hin	lab	ıydr
sota	a ba	a fo	seua	ts fi	den	inni	ium	m sa	indi	<i>ta p</i> rase	əya	odor L	ia a	ia a Ro	ia b	ia c) Ro	ia c D.D	ia c	ia g sz	ia k
L H	por	leriı	ıx p.	lanı	<i>sea</i> er	sea	heni	alu	tta	<i>пеп</i> 1.) F	stro	<i>ea c</i> erm	icar s	icar 'on)	icar	icar øk.f.	icar .ex	icar s	<i>icar</i> óme	<i>icar</i> rbre
	Xrys XC.	aea	² anc	anc	² ani fitze	² ani	arti	asp	Jave	oera Sern	Peri	² ers Kost	<i>Pers</i> Jros	oers D.D	Pers	oers Hoc	² ers Ham	<i>ers</i> Jros	d.G	oers Jela
-i _0	27 (L	28 I	1 67	30 I	31 <i>I</i>	32 1	33 I	34 1	35 1	36 <i>I</i> S	37 I	38 <i>1</i> It	39 <i>1</i> (40 <i>I</i>	41 <i>I</i>	42 <i>I</i> (43 <i>I</i> F	14 <i>I</i>	45 <i>I</i> N	46 <i>I</i> L
νZ	42	42	42	4	4	45	45	4	4	4	4	4.	4.	4	4	4	4	4	4	4

ange	0-3200	0-2800	0-2900	00-1700	0-3000	500	0-3100	006-00	0-1200	0-2200	3100	0-3000	0-3300	2200	0-3100	0-2500	0-3300	0-3100	0-2800	0-2800	0-2900
R	70	210	170	110	250		180	ŝ	80	100		230	260		90	220	260	160	50	210	180
32																					
31																				L	
30																					
8 29																					
7 23																					
6 2																				├──	
5 2																				<u> </u>	
24 2																					
23 2																					
22																					
21																					
20																					
19																					
18																					
17																					
16																					
. 15																					
14																				L	
2 13																					
1 12																					
01																					
91																				<u> </u>	
×																					
7																					
9 9																					
47							a														
	e	e	ē	e	e		icea	ae			ae										
mily	acea	acea	acea	acea	acea	ceae	rida	ace	seae	ceae	nace	ae	ae	ae	ae	ae	ae	ae	ae	ae	ae
Fai	gon;	gon;	gon;	gon;	gon;	idac	ypte	pod	idac	idac	lant	nace	ace	ace	ace	ace	ace	ace	race	race	race
	oly	oly	oly	oly	oly)rch	hel	olyl)rch)rch	hyll	olaı	Jrtic	Jrtic	Jrtic	Jrtic	Jrtic	Jrtic	ipeı	ipeı	ipeı
	F	·) F	4	ц	еF		Г	Ц			4	S				ſ	ر ر		ц		Ц
		eisn.	Diz	(u	suo	5.f.	ra	Sm.				ų	arke			. ex					(iq.)
ne	1 (L	(W	1 OI	Nito) R	Rchl	ptei	[;]	indl	indl	;	D_0	CI:	Ι.	me)	lam					ı (N
Nar	folic	ısis	chyı	a (f	<i>a</i> (L	nii l	ouo	<u>m (</u>]	te L	te L	sa I	1 D.	CB	'edd	Blu	hF	edd.	ıme	DQ.	Don	liun.
cal]	uthij	aler	vsta	tori	par	nan	xag	nən	ula	ica	ıblid	cate	ıata	a W	na (3uc]	W	Blu	es C	D.I	iifo
ani	lapı	dəu	jod	tinc	vivi	sis r	<i>s he</i> śe	n at	urtic	ıquı	s en	varı	nixc	eos	rrir	<i>ta</i> (] edd	olia	osa	oide	gua	ner
Bot	iria e	iria	ria	iria s	iria	nop	iteri .) F(diur	$ta \iota$	ta i	ıthu.	s di	nda	ract	labe) W	rnij	mbr	etle	uipi	oeh. r C
	<i>sica</i> arbr	<i>sica</i> 'abe	sica	<i>sica</i> iros:	sica T.	laeı	gop chx.	eboı	lide	lido	llan	sali	a al	a bi	a gi me	ta sc Donj	a te	a u	erb	er SI	erb
	<i>Per</i> Del	<i>Per</i> Miy	Per.	Per H.G	Per Dec	Pha	<i>Phe</i> (Mi	Phl_{i}	Ph_G	Ph_{O}	Phy	Phy	Pile	Pile	<i>Pile</i> Blu	Pile D. I	Pile	Pile	Pip_{i}	Pip	Pip. Wal
SI. No	447	448	149	150	451	152	453	154	155	156	157	158	159	160	161	462	163	164	165	166	167
	∇	4	4	マ	4	4	4	4	4	4	4	4	4	4	∇	4	4	4	4	4	A

Annexure V	210
------------	-----

ange	0-2200	0-2200	0-3100	2500	0-3200	0-3100	2900	0-3100	500	700	0-3100	0-1500	1100	0-2500	0-3300)0-3200	0-2200	0-2400	0-2600	0-3200
R	170	50	220		180	220		180			80	50		220	170	50	150	180	240	50
32																				
31																				
30																				
3 29																				
7 28																				
6 27																				
2																				
4																				
5 3																				
5																				
1 2																				
0 2																				
19 2																				
18]																				
17																				
16																				
15																				
14																				
13																				
12																				
11																				
10																				
8 9																				
7																				
9																				
Ś																				
Family	iogyriaceae	taginaceae	taginaceae	idaceae	iaceae	idaceae	idaceae	eae	ocarpaceae	idaceae	eae	eae	iaceae	iaceae	gonaceae	gonaceae	podiaceae	podiaceae	pteridaceae	pteridaceae
	olag	olan	Jan	Drch	am	Drch	Drch	oac	odc	Drch	oac	Poac	am	am	oly.	oly	oly	oly	Dryc	Dryc
	1	a I	ц		I			H	n F		H	ł	I	I	ц	- <u>-</u>	1) I	I	I
		eros		II.		Don	.Dor		Doi	JI.			S	iq.	_	Buch		es (L	des)on)
me	vlla	sp.	illd	Linc	S	D.]	D (us D	Line	шı	umə	ensi	S M	Don	um E	7 50	oide	hoi	D. I
Na	ydc	sut	a W	ata]	atu	Sm.	Sm		folii	tus	initı	mic	hal	пил	D.	natı	oend hing	ipoc	ostic) <i>m</i> i
ical	ycn	<i>tica</i> Li	ress.	rcua	bart	is (2) xo		erii	ltra	n cr th	n pa	<i>eng</i> Itze	rate	olle	i <i>nci</i> i n	am .) C	lklo	acre ott	entu
tan	ia p 1ett.	asia Yu	dəp	ra a	sm	ımil	aec.	а L.	u sn	s cu	<i>erur</i> Xun	erun ıck	<i>on l</i> Kur	on f	u u	n rı Do	des Aett	d m	um Scho	l mı
\mathbf{B}_0	gyr e) N	180 l	80 1	the.	ant! ws	ih 9	ıd ə:	тин	arp	hilu	tath	tathi	tem .f.)	tem	inuc	nun T D	odio ex N	odiu	icht x.) S	<i>ichu</i> ore
	agic unz	anto 'all.	anta	atan	ectr.	eion	eion	a ai	doc	doc	<i>nog</i> on	gon am.)	<i>gos</i> urm	sog	lyge	lyge m.e	lypt /all.	lypt att	<i>lyst</i> lich:	lyst. Mo
	R (K	$\frac{Pl_{l}}{N}$	Pl'	Pl_{t}	$\frac{Pl_{\rm h}}{{\rm An}}$	Pl_{i}	Pl_{t}	P_{o}	P_0	P_{o}	<i>Po</i> [T]	P_0	(B)	Po	P_{o}	i <i>Po</i> Ha	P_0	W:	P_{o}^{PO}	, <i>Ро</i> Т.
SI. No	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487

Annexure	V	21	2
----------	---	----	---

Range	00-2200	00-3000	-00-2600	00-3300	00-2900	00-1400	800	500-800	00-1600	00-2100	2500	00-2000	00-3100	00-2100	00-2700	00-2800	2300	00-2600	-00-2200	00-2000	00-2100
	12	14	24	31	10	ŝ			S	8		∞	18	10	21	×		S	14	18	ŝ
1 32																					
0 3																					
9 3																					
8																					
1 2																					
9																					
52 2																					
22																					
23																					
55																					
21																					
20																					
19																					
18																					
17																					
16																					
15																					
3 14																					
2 13																					
1 1																					
01.																					
91																					
×																					
7																					
9																					
47																					
						ae	ae	ae	ae	ae							ae				
mily	eae	eae	eae	eae	eae	ace	ace	ace	ace	lace	eae	0			0		lace	ae			ceae
Fai	dace	dace	dace	dace	dace	pod	ipod	ipod	ipod	ipod	alac	ceae	ceae	ceae	ceae	ceae	incu	'ace	eae	eae	nnae
•	teri	teri	teri	teri	teri	olyJ	olyJ	olyl	olyj	olyl	anta	aga	aga	aga	aga	aga	anu	Ialv	rac	rac	han
f	Ч	Ь	4	Р	Ч	Ч	Р	Ч	Ч	Р	S	ц	Щ	Щ	ц	Ц	R	2	Ā	A	R
					Чþ		(uu	arw			DQ						x		lott	(I:)
ne		-	aser G.G.	resl	\gar	esl)	DO.Do	·.) F	enh	esl)	(') A	ċ			chx.	e	ll. e son	ast.	Scl	Don	Wal
Nan		Doi	к Fra & Т	D D	J. A	C.Pr	a (D	a (I	Jies	C.Pr	Vall	Junt	Sm		Mi	um	Wa oms	s M	ana	(D.]	iis (
[Ial	Poi	D.	gens ma	ns (апа	ta (C vats	ulos	olat	ii ((a ((S (V	a TI	lose	ı Sn	olia	a B	etus . Th	neo	keri	uila	lens
ani	uris	ipes	riri; Ver	esce	ichi	stai K.Iv	1220	nce	ann	o <i>ros</i> p	lnp	auci	mel	natc	urif	ieat	s lae	nbes	ooy	pun Iay	<i>apa</i> on
Bot	inea	Buc	cab .C.	pine	valli	a cc	a fle	a la	a m	<i>a p</i> c (am]	ia e	s gl	s la	s la	s la	s lir	ulu. &	a pi	ıtia	ttia A.F	us n aws
	ris li	ris h	ris s k., S lker	is s	is n	<i>ros</i> i awa	rosi ng	rosi	rosi ng	<i>ros</i> i 'ank	ular	rcu.	ercu.	rcu.	rcu.	rrcu.	unc sk.f.	vesi	nusa	i &	A. L.
ć	Ptei	Ptei	<i>Ptei</i> Jenł Wal	Ptei	Ptei	Pyr. Tag	<i>Pyr.</i> Chii	Pyr,	<i>Pyr.</i> Chii	Pyr. Hov	Pyri	Que	Que	$\mathcal{Q}^{u\epsilon}$	Que	Que	<i>Ran</i> Hoc	Ree	Ren	Ren H.L	Rha M.A
• •	~																				

nge	-1800	2900	-3300	-3300	3000	3300	-3300	-3300	-3300	-3200	-3300	-3200	-3300	-2200	-3100	-3300	-2300	-3200	-3300
Ra	1200		2100	2100			2700	3100	2500	2500	2900	2200	2500	1400	1100	1300	1800	800	800
32																			
31																			
30																			
29																			
1 28																			
5 27																			
5 20																			
4																			
3 2																			
5																			
112																			
20 2																			
19																			
18																			
17																			
16																			
15																			
14																			
13																			
12																			
0 11																			
9 1(
8																			
r																			
9																			
4)																			
-														ae	Je				
mily		e	e	e	e	e	e	e	e	e	e	e	e	iace	ace	ae	e	e	e
Fa	eae	aces	ace	aces	aces	aces	aces	ace	aces	aces	aces	aces	aces	card	arag	ace	icea	icea	acea
	Arac	Eric	Eric	Eric	Enic	Eric	Eric	Eric	Eric	Eric	Eric	Eric	Eric	Ana	Aspá	Rubi	Ros	Ros	Rose
	7	. J	ı. l	II.]	(<i>m</i>)		_	f. 1	_		_			7	7	[_	
	ı	on I	ı Sn	Wa	arpı	ae		ook.	шт				les					ze	
me	sive	ogo	etun	tum	loci	usie	eri	βH	nian	onii	onii	шп	vioic		af.)	ех		unt	
Nai	всил	thol	bor_{0}	rba	(duu	lhoi	lcon	lgen	iffit	qgs	smc	flor	ccir	Ľ.	<i>s</i> (R	xb.	s Sn	es K	ü.
ical	ra d t	ı an	ı ar	ı ba	ı ca	ı da	ıfa	nf u	ı gr	oy ı	1 th	ı tri	ı va	пеа	ensi	Ro	atu.	oide	us S
tan	<i>hoi</i> chot	droi	droi	droi	droi	droi	droi	droi	droi	droi	droi	droi	droi	edan	pal	ıjith	min	ycin	ptic
\mathbf{B}_{0}	idoµ) Sc	den	den	<i>den</i> , Jon	den.	den.	den.	den	den	den.	den.	den.	den	ncci	<i>a ne</i> aka	maı. Ig	аси	cal	ellij
	<i>aph</i> .dxb.	opo u	opo	oqo. G. I	<i>odo</i> ok.f	<i>odo</i> ok.f	<i>odo</i> ok.f	opo	odo. ght	<i>odo</i> ok.f	<i>odo</i> ok.f	<i>odo</i> ok.f	<i>odo</i> . ok.	ns s	hde. Tani	<i>bia</i> min	snq	snq	snq
	Rh (Rt	Rh Do	$Rh_{\rm c}$	Rh ex	Rh Ho	Rh Ho	Rh Ho	Rh	Rh Wi	Rh Ho	RhHo	RhHo	RhHo	Rh	R_{O}	Ru Fle	Ru	Ru.	Ru
SI. No	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549

Annexure V	/ 21	.4
------------	------	----

Range	2300	00-3300	00-2200	00-2700	00-3000	2600	00-3200	906	00-3200	00-2900	1300	1000	00-1800	00-3000	600	00-2200	2600	00-3300	00-3000	00-2800	00-3200
2		6	16	6	9		11		30	19			13	6		5		25	Ĺ	Ĺ	Ĺ
1 33																					
03																					
603																					
28 2																					
27.2																					
26																					
25																					
24																					
23																					
22																					
21																					
20																					
8 19																					
7 18																					
617																					
5 1																					
41																					
131																					
12]																					
11																					
10																					
6																					
7 8																					
9																					
Ś																					
nily										ceae	ae	eae	eae	ceae	aceae		raceae	laceae	laceae	laceae	laceae
Far	Rosaceae	Rosaceae	Rosaceae	Rosaceae	Rosaceae	Rosaceae	Rosaceae	Rosaceae	Rosaceae	Polygona	Adoxace	Sapindac	Orchidac	Actinidia	Euphorbi	Theaceae	Schisand	Selaginel	Selaginel	Selaginel	Selaginel
ə	tol.		P. Balkr.	x	k.f.)		1)		H.Hara	ng.	me		Don	all.	L.)	y	(Wall.)	chys	(.z.)	pring	C.
l Nam	les Ber	look.f.	ısis N.I	einw.e	s (Hool	unb.	s Fockt	m.	simus	is Sprei	ica Blu	DC.	nse D.I	late W	gynus (Choisy	<i>diflora</i> 1son	thostac	ris (Ret	ensii S	scens (
nica	rioit	uis F	iəuc	us F	ensi	sThı	ode	us S	didi.	lens	van	'ak l	vale.	cich	droį	ichii	gran 'hon	ıcan	silia	nari	<i>valle</i> ţ
sota	aga	sigr	ıma	neat	spal	veu.	heng	sogi	nen	epa	ıs ja	s rai	ləu i	ı fas	s an	vall	lra ξ & T	lla i	lla c	lla ı	lla _l vring
В	s fr	ni s	s ku	ıs lii ıe	is n€ ze	iu s	ld si	n S	ds si	a xe	тсы	subi	umi.	auia	ndo	na v	ana f.	gine r	gine Ig	ine	gine) Sp
	nqn	nqn	nqn	udu Ium	<i>ubu</i> (unt:	nqn	nqn	nqn	nqn	μme	amb	apir	atyr	aur	aur. 1err.	chin	<i>ch</i> is look	elag ake	' <i>ela</i> § prin	elag	' <i>ela</i> § 'resl
o	50 R	51 R	52 R	53 <i>R</i> B	54 <i>R</i> K	55 R	56 R	57 R	58 R	59 R	50 S	51 S	52 S	53 S	54 <i>S</i> N	55 S	56 <i>S</i> H	57 S B	58 S S	59 S	70 <i>S</i> P
S Z	5;	5;	5;	5;	5;	5;	5;	5;	5;	5;	5(5(5(5(5(5(5(5(5(5(5,

lange	00-1500	3000	0-3200	0-2400	2600	0-2400	906	00-3000	00-1600	800	1000	006	0-3100	0-3200	0-3000	1100	0-3000	0-3300	1000	1300
R	100		150	220		70		50	100				100	70	170		260	290		
32																				
) 31																				
93(
8 2																				
7 2																				
26 2																				
25 2																				
24																				
23																				
22																				
21																				
20																				
19																				
18																				
6 17																				
5 10																				
4 1:																				
31																				
2 1																				
111																				
101																				
6																				
8																				
9																				
Ś																				
ly	ceae		eae	eae		ae	ae			paceae			eae	le					ae	le
Fami	ginella	Iceae	podiac	podiac	raceae	uminos	uminos	eae	eae	erocar	vaceae	raceae	eridac	acacea	naceae	naceae	iceae	aceae	saeace	nidaces
	Sela	Api£	Poly	Poly	Aste	lga	legi	Poac	Poac	Dipt	Mal	Aste	Bert	Smil	Sola	Sola	Rosé	Rosi	Lind	Drct
		7	_		-	I		-	& 1	I	-				÷		dl. I	I	[Ŭ
	Jesv	C:)	ok)	ех	Ham	ink		nig)	em.				rum		Jaco		He (×	$\widehat{\cdot}$	
me	<i>i</i> ü (1	n (L na	(Ht	'all.	chI	") L		Koe) Ro	n.		ςL.	and	resl	шт		ach	lg e	is (I	ers
Na	<i>NOU</i>	nun axe	ana	nk.	Buc	s (L	þ.	ı (J.	oir.)	aert	f.	tali	hex	C.P	ssin	ŚW.	(Sp	(Kir	suə	is (I
ical	illde r	chia O. S	fithi	<i>loba</i> r-Je	ılia	ıtalı	Rox	folic	a (P	a G	ırm.	rien	lum ing	ata	eati	un.	lata	nii ler	chin	suəi
tan	a w 3ake	alli c H.	grif ık.	oxy rase	nim	ideı	а L.	ılmi	ımil	snq	ı Bu	ia o	lyhd S.Y	acte	ıcul	orvi	spic	msc	ris	s sir
Bc	nell r.) E	т и la &	<i>uea</i> -Jen	<i>иеа</i>) F	<i>io b</i> i Jon	000	ton	a pc	a pı	a ro	cuta	reck	topc	x pr	nm c	1 mr	s cu	<i>stho</i> f.) F	omε 1	ithe.
	<i>lagi</i> Poi	<i>linu</i> izac	lligı aser	llig1 mze	neci D.L	ппа	ппа	tari. apf	<i>tari</i> , hult	ore	ła a	gesb	<i>nop</i> (oyle	uila	lanı	lanı	rbu.	<i>vbu</i> . ok.	<i>hen</i> axoi	<i>irar</i> nes
	l Se ex	2 <i>Se</i> Re	3 Se Fr	4 <i>Se</i> Kı	5 Se ex	5 Se	7 Se	8 <i>Se</i> Sti) <i>Se</i> Sc	NSh	l Si	2 Si	3 <i>Si</i> i (R	4 Sn	$5 S_0$	5 So	$7 S_{o}$	8 So H($\frac{9 Sp}{M}$	$\frac{S_{p}}{A_{1}}$
SI. No	57]	572	573	574	575	57(577	578	575	58(581	582	58:	582	585	58(587	588	585	59(
ange	0-1600	0-1100	2600	00-700	0-2400	0-2900	2600	1700	0-2700	0-2700	2900	0-2300	0-3200	0-2500	0-3100	2300	2300	0-1400	0-1700	
-------	--------	------------------	----------	---------	--------------	---------------------	---------------------	---------	--------------------	---------------------	---------	-----------------------	-------------	---------------------	---------------------	------------------	-----------------------	-------------	-------------	
R	130	50		5	100	180			160	180		140	180	180	180			50	50	
32																				
31																				
9 3(
8																				
1 2																				
26 2																				
25																				
24																				
23																				
22																				
0 21		ļ																		
9 2(
8 19																				
71																				
16 1																				
15																				
14																				
13																				
12																				
11																				
9 1(
8																				
7																				
9 2																				
47		ക																		
amily	eae	ermacea	aceae	iceae	aceae	aceae	aceae	ceae	laceae	laceae	laceae	caceae	caceae	caceae	caceae	caceae	eae	caceae	caceae	
F	Lamiac	Menisp	Sterculi	Orchida	Acantha	Acanth	Acanth	Styraca	Gentiar	Gentiar	Gentiar	Symplo	Symplo	Symplo	Symplo	Symplo	Asterac	Myristi	Myristi	
	tth.	.f. &	Don		reus	Nees)	Wall.	ke	ch	.) rke		ısis	B.	ing ex	b.)	uo	am. <i>ex</i> Chen	cels	all.)	
ame	Ben	Iook	Ū.	lbui	ndır	ıta (İ	olia	Clar	í Buc	toxb Clar	Wall	uner	<i>a</i> C.	ta K	Thun	D.D	<u>1Н</u>	.) Sk	N)	
al N	olia	ns F	folia	us I	ropı	ıpita	ticif	C.B.	folia	<i>a</i> (R C.B	ata	inch e	phil	era	la (J	olia	3ucl y &	<i>i</i> (L	ums	
nic	issif	lega	ncei	hiri	ss at	r ss ca	ın Si	eri (ustij Don	ayit ex (icul	coch loor	tryo	glom	<i>ucia</i> ucc.	heif	<i>7a</i> (] 3ffre	ımin	rmo	
3ota	mel	<i>ia e</i> n	a lai	ilus	nthe	<i>nthe</i> rson	nthe ze	ook	ang D.	<i>chir</i> lam.	pan	2 <i>05 C</i> S. N	o soc	<i>os</i> ε arke	2 2 S	os t	capi C.J€	n cu	nfo	
	hys	han mso.	culia	ioch	bila. s	<i>bila</i> nde	<i>bila</i> untz	ax h	rtia 1. ex	<i>rtia</i> hH	rtia	<i>plo</i> с п.) ;	ploc ke	<i>plo</i> c Clέ	<i>ploc</i> old	plos	on) -	giun	giun am.	
	Stac	Step Thoi	Ster	Ster	Stro Nee:	<i>Stro</i> T. A	Stro ex K	Styr	<i>Swe.</i> Han	Swe. Bucl	Swe.	Sym (Lot	Sym Clar	Sym C.B.	<i>Sym</i> Sieb	Sym	Sync D.D	Syzy	Syzy Mas	
S. SI	591	592	593	594	595	596	597	598	599	660 j	601	602	603	604	605	606 ₋	607	608	609	

Range	800	00-2100	00-3000	00-2700	500-700	00-1700	00-2900	00-1900	1000	00-2700	00-2700	00-2900	1000	00-1700	500-800	00-2600	00-2000	00-2700
5		2	Ś	9		œ	6	9		19	S	Ś		9		6	17	S
1 3.																		
30 3																		
5 63																		
28 2																		
27																		
26																		
25																		
24																		
23																		
22																		
21																		
20																		
8 19																		
7 18																		
61′																		
51																		
41																		
13 1																		
12]																		
11																		
10																		
6																		
7 8																		
9																		
S																		
Family	Myristicaceae	Myrtaceae	l'ectariaceae	Dryopteridaceae	l'ectariaceae	Combretaceae	Combretaceae	Combretaceae	Vitaceae	Vitaceae	Vitaceae	Vitaceae	Drchidaceae	oaceae	Menispermaceae	Meliaceae	Anacardiaceae	Anacardiaceae
l. Botanical Name Io	10 Syzygium kurzii (Duthie) M N.P.Balakr.	11 Syzygium venosum DC. M	12 Tectaria gemnifera (Fée) T Alston	13 Tectaria macrodonta C.Chr. D	14 Tectaria polymorpha (Wall. ex T Hook.) Copel.	15 Terminalia chebula Retz. C	16 Terminalia crenulata Roth C	17 <i>Terminalia myriocarpa</i> Van Heurck & MüllArg.	18 Tetrastigma bracteolatum V (Wall.) Planch. Planch. Planch.	19 Tetrastigma obtectum (Wall. V ex M.A. Lawson) Planch. ex Franch.	20 Tetrastigma rumicispermum V (M.A.Lawson) Planch.	21 Tetrastigma serrulatum V (Roxb.) Planch.	22 <i>Thunia bracteata</i> (Roxb.) O Schltr.	23 <i>Thysanolaena latifolia</i> (Roxb. Potenties Roxb.) Potentiem.) Honda	24 Tinospora sinensis (Lour.) M Merr.	25 Toona ciliate M.Roem.	26 <i>Toxicodendron griffithii</i> (Hook. A f.) Kuntze	27 Toxicodendron hookeri (K.C. A Sahni & Bahadur) C.Y. Wu & T.L. Ming
N Z	61	61	61	61	61	61	61	61	61	61	62	62	62	62	62	62	62	62

Annexure V	218

Range	00-2300	700	00-2900	00-2900	500-900	00-1300	'00-3200	00-3200	1800	00-3100	00-2700	600	00-2800	600-3300	00-2200	00-3200	00-3100	00-1700	600-2800	600-3000	00-2800
	w)		w,	22		11	5	22		22	17		22	16	15	18	15	15	26	26	22
132																					
) 3																					
)3(
8 5																					
7 2																					
6 2																					
2																					
4 2																					
33																					
5																					
112																					
50																					
19																					
18																					
17																					
16																					
15																					
14																					
13																					
12																					
11																					
10																					
8																					
2																					
9																					
S																					
Family	curbitaceae	chidaceae	lvaceae	aceae	naceae	chidaceae	icaceae	icaceae	icaceae	caceae	caceae	chidaceae	ntaginaceae	охасеае	охасеае	охасеае	охасеае	охасеае	охасеае	laceae	laceae
	Cuc	Orc	Ma	Pin	Ulr	Orc	Urt	Urt	Urt	Eri	Eri	Orc	Pla	Αd	Ρd	Ρq	Ado	Ρq	Ρq	Vic	Vic
al Name	piniana	vinata (Lind.)	vboidea Jacq.	D.Don) Eichler	ia Roxb. ex	colia Lindl.		ean Jacq. ex	a Roxb.	<i>nularia</i> Hook.f. 3.Clarke	iniaceum c	look.f.	lifolia L.	folium D. Don	dricum Buch	scens Wall.	liflorum Wall.	tha Buch	sum D. Don	lia Sm.	Wall.
otanica	<i>uthes le</i> Cogn.	ia pulv	a rhom	mosa (1	nceifoli	obtusif	oica L.	perbor	rviflor	n numr ex C.B	<i>n vacci</i> leumer	mila H	serpyll	ı cotini	<i>t cylina</i>). Don	ı erube	ı grand	<i>i mulla</i>). Don	ı nervo	onicifo.	escens
Ř	osaı lin)	<i>otos</i> ızl.	ıfett	np ı	s la.	era	a di	a hy I.	a pa	iniui ms.	iniui S.(.c	a pu	<i>iica</i>	unu.	nun nun	unu.	unu.	ипи.	unu.	bet_{i}	сап
	<i>rich</i> Vauc	<i>rich</i> raer	riun	suge	llmu √all.	Incif	Irtica	Irtic. Vedd	Irtica	<i>acci</i>	accı Soxt	and	eroi	ibur	ibur am.	inqi.	tibur γ DC	ibur am.	ibur	iola	iola
0	28 T (ľ	29 T K	30 T.	31 T.	32 U W	33 U	34 U	35 U W	36 U	37 V &	38 V (F	39 V.	$40 V_{c}$	$^{\pm 1}V$	42 <i>V</i> H	43 V	44 V	45 <u>V</u> H	46 V	47 V	48 V
SZ	6	6	6,	6,	6.	6	6,	6.	6	6.	6.	6.	9	9	9	9	9	9	9	9	9

ange	0-2900	500	0-2300	002-009	3000	0-2400	0-1800	0-3200	800	0-2800	0-3100	0-2800	2000	2800	0-2900	2000
R	250		150	ŝ		80	50	220		240	250	200			270	
32																
31																
30																
29																
28																
27																
26																
1 25																
24																
23																
52																
21																
20																
19																
7 18																
517																
5 10																
4 1;																
3 1/																
2 1:																
11																
01																
9 1																
×																
7																
9																
N N																
Family	olaceae	taceae	taceae	taceae	taceae	eliaceae	oodsiaceae	echnaceae	steraceae	aceae	aceae	ıtaceae	ıtaceae	ıtaceae	ıtaceae	ıtaceae
	Ņ	Ņ	N.	Ņ	Ņ	Μ	8	BJ	Ϋ́	Ρc	Ρc	Rı	Rı	Rı	Rı	Rı
al Name	ume	a Hieron.	a Fée	insis Kuhn	hylla Copel.	ta Hiern	ı Torrey	<i>uigemmata</i> i	ıarium L.	ıg (Gamble) & Karthik.	ingii (Gamble)	canthopodium	matum DC.	ungeanum	cyphyllum	vetsa DC.
Botanic	Viola pilosa Blu	Vittaria donianc	Vittaria flexuoso	Vittaria sikkime.	Vittaria taeniop.	Walsura tubulat	Woodsia obtusa	<i>Woodwardia un</i> (Makino) Nakai	Xanthium strum	Yushania malin; R.B.Majumdar e	<i>Yushania pantli</i> . R.B.Majumdar	Zanthoxylum ac DC.	Zanthoxylum ar	Zanthoxylum bu Maxim.	Zanthoxylum ox Edgw.	Zanthoxylum rh
SI. No	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664

ANNEXURE $\mathcal{V}I$

Detail description of Soil Classes found in Sikkim

Source: NBSS&LUP, 1996

Soil	Description	Soil class
Unit		
1	Moderately shallow, somewhat excessively drained, coarse-loamy over	Coarse-loamy over fragmental,
	fragmental soils on steep slope(30-50%) with loamy surface,	thermic Typic Haplumbrepts
	slight surface stoniness and moderate erosion	
	Associated with shallow, somewhat excessively drained, coarse-	Coarse-loamy, thermic Lithic
	loamy soils with loamy surface, moderate stoniness and moderate	Udorthents
	erosion.	
3	Deep, well drained, fine-loamy soils on steep slope (30-50%) with	Fine-loamy, thermic Pachic
	foamy surface, slight stoniness and moderate erosion;	Haplumbrepts
	associated with deep, somewhat excessively drained, coarse-	
	loamy soils with -loamy surface, moderate stoniness and	Coarse-loamy, thermic Entic
	moderate erosion	Haplumbrepts
4	Moderately deep., well drained, fine-loamy soils on steep slope (30-	Fine-loamy, thermic Typic
	50% with loamy surface, slight stoniness and moderate erosion	Haplumbrepts
	Associated with moderately shallow, somewhat excessively drained,	Loamy-skeletal thermic Umbric
	loamy-skeletal soils with gravelly loamy surface, moderate stoniness	Dystrochrepts
	and severe erosion.	
6	Deep, well moderately steep slope (15-30%; with loamy surface,	Fine-loamy, thermic Typic
	moderate erosion and slight stoniness	Hapludolls
	Associated with moderately deep, excessively drained, coarse-	Coarse-loamy, thermic Typic
	loamy soils with sandy surface, severe erosion and slight stoniness.	Udorthents
7	Moderately deep, somewhat excessively drained, fine-loamy	Fine-loamy, thermic Cumulic
	soils on moderately steep slope (15-30%) with loamy surface,	Haplumbrepts
	moderate erosion and slight stoniness	
	Associated with moderately deep, some-what excessively	
	drained, loamy-skeletal soils with loamy surface, moderate	
	erosion and slight stoniness.	
8	Deep, excessively drained, fine-loamy soils <i>Q</i> on moderately steep	Fine-loamy, thermic Pachic
	slope <15-30% V with loamy surface, moderate erosion and slight	Haplumbrepts
	stoniness	
	Associated with moderately deep, excessively drained, coarse-loamy	Coarse-loamy, thermic Typic
	soils with loamy surface, moderate erosion and slight	Haplumbrepts
	stoniness	

Soil Unit	Description	Soil class
10	Deep, somewhat excessively drained, fine-loamy soils on very steep slope (>50%) with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Haplumbrepts
	Associated with moderately deep, somewhat excessively drained, coarse-loamy over fragmental soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy over fragmental thermic Typic Udorthents
11	Deep, somewhat excessively drained, coarse-loamy soils on very steep slope (>50%) with loamy surface, moderate erosion and slight stoniness	Coarse-loamy thermic Typic Hapludolls
	over f fragmental soils with loamy surface., moderate erosion and slight stoniness	thermic Entic Hapludolls.
13	Deep, somewhat excessively drained, coarse-loamy soils on very steep slope (>50%) with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Mollic Udarents
	Associated with moderate erosion, excessively drained, coarse- loamy soils with gravelly loamy surface, severe erosion and strong stoniness	Coarse-loamy, thermic Entic Hapludolls
14	Moderately deep, "well drained, fins-loamy soils on very steep slope >50% with loamy surface, severe erosion and slight stoniness Associated with deep, somewhat excessively drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Fine-Loamy, thermic Typic Dystrochrepts Coarse-loamy, thermic Typic Haplumbrepts
15	Deep, somewhat excessively drained, coarse-loamy soils on very steep slope (>50%) with loamy surface, severe erosion and moderate stoniness	Coarse-loamy, thermic Typic Hapludolls
	Associated with deep, somewhat excessively drained, coarse loamy soils with gravelly loamy surface, severe erosion and moderate stoniness	Coarse-loamy, thermic Dystric Eurochrepts
16	Moderately deep, somewhat excessively drained, coarse-loamy over fragmental soils very steep slope (>50%) with loamy, moderate erosion and stoniness	Coarse-loamy over Fragmental thermic Typic Udorthents
	Associated with shallow, somewhat excessively drained, coarse-loamy soils with foamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Lithic Haplumbrepts
17	Deep, well drained, fine soils on very steep slope (>50%) with loamy surface, moderate erosion and slight stoniness	Fine, thermic Umbric Dystrochrepts
	Associated with deep, somewhat excessively drained, fine- loamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Umbric Dystrochrepts
18	Moderately deep, somewhat excessively drained, coarse loamy soils on very steep slope (>50%) with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Entic Hapludolls
	Associated with deep, somewhat excessively drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Dystric Eurochrepts

Soil Unit	Description	Soil class
19	Deep, somewhat excessively drained coarse-loamy soils on very	Coarse-loamy, thermic Typic
	steep slope (>50%) with loamy surface, severe erosion and	Hapludolls
	moderate stoniness	
	Associated with deep, somewhat excessively drained, dark	Coarse-loamy, thermic Entic
	brown to brown, moderately acidic coarse-loamy soils with loamy	Hapludolls
21	surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Typic
21	steep slope (>50%), with loamy surface, moderate erosion and slight	Hapludolls
	stoniness	
	Associated with moderately shallow, somewhat excessively	Loamy-skeletal, thermic Entic
	drained, loamy-skeletal soils with gravelly loamy surface, severe	Hapludolls
	erosion and slight stoniness	
23	Moderately shallow, somewhat excessively drained coarse-loamy	Coarse-loamy, thermic Typic
	soils on very steep slope (>50%) with loamy surface, moderate	Haplumbrepts
	Associated with moderately deep, somewhat excessively drained.	Coarse-loamy, thermic Lithic
	coarse- silty soils with loamy surface, moderate erosion and slight	Udorthents
	stoniness	
24	Moderately shallow, somewhat excessively drained coarse-loamy	Loamy, skeletal mesic Typic
	soils on very steep slope (>50%) with loamy surface, moderate	Haplumbrepts
	stoniness	
	Associated with moderately deep, somewhat excessively drained,	L'dorthents
	stoniness	
25	Moderately deep somewhat excessively loamy soils on very steep	Coarse-loamy, thermic Typic
	slope (>50%) with loamy surface, moderate erosion and slight	Haplumbrepts
	stoniness	
	Associated with moderately shallow, somewhat excessively	Coarse-loamy, thermic Typic
	drained, coarse-loamy soils with gravelly loamy surface, severe	Udorthents
28	Moderately shallow somewhat excessively drained coarse-loamy	Coarse-loamy thermic limbric
20	soils on very steep slope (>50%) with gravelly loamy surface.	Dystrochrepts
	severe erosion and moderate stoniness	-)
	associated with moderately shadow, excessively drained, coarse-	Loamy-skeletal, over
	loamy soils with loamy surface, moderate erosion and slight	fragmental, thermic Entic
	stoniness	Hapludolls
29	Moderately deep somewhat excessively drained, coarse-loamy soils	Coarse-loamy, thermic Typic
	on escarpments with loamy surface and moderate erosion	Hapludolls
	soils with loamy surface and severe erosion	Dystrochrepts
30	Moderately deep excessively drained, fine-loamy soils on	Fine- loamy, thermic Umbric
	escarpments with gravelly loamy surface and moderate erosion	Dystrochrepts
	Associated with deep, somewhat excessively drained, fine-	Loamy- skeletal, thermic Entic
	loamy surface and severe erosion	Haplumbrepts

TI:4	Description	Son class
	Deen somewhat excessively drained fine loamy soils on	Fine loamy thermic Umbric
51	escarpments with loamy surface and moderate erosion	Dystrochrepts
	Associated with moderately deep, excessively drained, sandy soils	Thermic Typic Udipsamments
	with loamy surface and severe erosion	
32	Moderately shallow excessively drained, fine loamy soils on	Loamy-skeletal, thermic Typic
	escarpments with loamy surface and severe erosion	Udorthents
	Associated with deep, somewhat excessively drained, fine-loamy soils	Fine-loamy, thermic Typic
	with loamy surface and moderate erosion	Dystrochrepts
33	Moderately deep, excessively drained, loamy-skeletal soils on	Loamy-skeletal, thermic
	escarpments with gravelly loamy surface and severe erosion	Typic Udorthents
	Associated with moderately deep, excessively drained, loamy-skeletal	Loamy-skeletal, thermic
	soils with gravelly loamy surface and severe erosion	Entic Hapludolls
35	Moderately deep, excessively drained, loamy-skeletal soils	Loamy-skeletal, thermic Entic
	on escarpments with gravelly loamy surface, moderate	Hapludolls
	erosion and slight stonliess	Loomy skalatal thermic Typic
	drained loamy-skeletal soils with gravelly loamy surface	Udorthents
	severe erosion and moderate stoniness	odorments
36	Moderately shallow, excessively drained, line-loamy soils on	Fine-loamy, thermic Typic
	escarpments with loamy surface, moderate erosion and	Haplumbrepts
	slight stoniness	* *
	Associated with moderately shallow, excessively	Fine-loamy, thermic Umbric
	drained, fine-loamy soils with loamy surface, moderate	Dystrochrepts
	erosion and slight stoniness	
37	Deep, well drained, fine-loamy soils steep slopes (30-50 %)	Fine-loamy, thermic
	with loamy surface, moderate erosion and slight stoniness	Typic Paleudolls
	Associated with deep, well drained, fine-loamy soils with	Fine-loamy, thermic
	gravelly loamy surface, moderate erosion and slight stoniness	Typic Hapludolls
38	Deep, somewhat excessively drained, fine-loamy soils on	Fine-loamy, thermic
	steep slope (30-50%! with gravelly loamy surface, severe	Entic Haplumbrepts
	erosion and slight stoniness	
	Associated with deep, somewhat excessively drained,	Loamy-skeletal, thermic
	loamy-skeletal soils with gravelly loamy surface, severe	Umbric Dystrochrepts
	erosion and moderate stoniness	
40	Moderately shallow, somewhat excessively drained, coarse-	Coarse-loamy, thermic
	loamy soils on steep slope (30-50%) with loamy surface,	Cumulic Haplumbrepts
	moderate erosion and moderate stoniness	
	Associated with moderately deep, well drained, fine-	Fine-loamy, thermic Typic
	solicity solis with loanly surface, moderate erosion and	napiumorepis
33 35 36 37 38 40	 with loamy surface and moderate erosion Moderately deep, excessively drained, loamy-skeletal soils on escarpments with gravelly loamy surface and severe erosion Associated with moderately deep, excessively drained, loamy-skeletal soils on escarpments with gravelly loamy surface and severe erosion Moderately deep, excessively drained, loamy-skeletal soils on escarpments with gravelly loamy surface, moderate erosion and slight stoniness Associated with moderately shallow, excessively drained, loamy-skeletal soils on escarpments with gravelly loamy surface, moderate erosion and moderate stoniness Moderately shallow, excessively drained, line-loamy soils on escarpments with loamy surface, moderate erosion and slight stoniness Moderately shallow, excessively drained, line-loamy soils on escarpments with loamy surface, moderate erosion and slight stoniness Associated with moderately shallow, excessively drained, fine-loamy soils with loamy surface, moderate erosion and slight stoniness Deep, well drained, fine-loamy soils steep slopes (30-50 %) with loamy surface, moderate erosion and slight stoniness Associated with deep, well drained, fine-loamy soils with gravelly loamy surface, moderate erosion and slight stoniness Deep, somewhat excessively drained, fine-loamy soils on steep slope (30-50%! with gravelly loamy surface, severe erosion and slight stoniness Associated with deep, somewhat excessively drained, loamy-skeletal soils with gravelly loamy surface, severe erosion and moderate stoniness Moderately shallow, somewhat excessively drained, coarse-loamy soils on steep slope (30-50%) with loamy surface, severe erosion and moderate stoniness Moderately shallow, somewhat excessively drained, coarse-loamy soils on steep slope (30-50%) with loamy surface, severe erosion and moderate stoniness Moderately shallow, somewhat excessively drained, coarse-loamy soils on steep slope (30-50%) w	Dystrochrepts Loamy-skeletal, thermic Typic Udorthents Loamy-skeletal, thermic Entic Entic Hapludolls Loamy-skeletal, thermic Entic Hapludolls Loamy-skeletal, thermic Typic Udorthents Fine-loamy, thermic Typic Haplumbrepts Fine-loamy, thermic Umbric Dystrochrepts Fine-loamy, thermic Typic Paleudolls Fine-loamy, thermic Typic Hapludolls Fine-loamy, thermic Typic Hapludolls Fine-loamy, thermic Cumulic Haplumbrepts Fine-loamy, thermic Umbric Dystrochrepts Coarse-loamy, thermic Cumulic Haplumbrepts

Soil	Description	Soil class
Unit 41	Moderately deep, somewhat excessively drained, coarse-loamy soils on steep slope (30-50%> with loamy surface, moderate erosion and slight stoniness	Coarse-foamy, thermic Cumulic Haplumbrepts
	Associated with shallow, somewhat excessively drained, fine-loamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Lithic Haplumbrepts
42	Deep, somewhat excessively drained, loamy-skeletal soils on steep slope (30-50%) with gravelly loamy surface, severe erosion and moderate stoniness	Loamy skeletal, thermic Umbric Dystrochrepts
	Associated with moderately shallow, somewhat excessively drained, loamy-skeletal soil, with gravelly loamy surface, severe erosion and moderate stoniness	Loamy-skeletal, thermic Typic Dystrochrepts
43	Deep, well drained, fine-silty soils on steep slopes (30-50%) with loamy surface, moderate erosion and slight stoniness	Fine-silty, thermic Pachic Haplumbrepts
	associated with moderately deep, well drained, fine-loamy soils with loamy surface, moderate erosion and moderate stoniness	Fine-loamy, thermic Typic C
44	Moderately shallow, well drained, fine-silty soils on steep slope (30- 50%) with loamy surface, moderate erosion and slight stoniness	Fine-silty, thermic Typic Haplumbrepts
	associated with moderately deep, well drained, fine-loamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Umbric Dystrochrepts
45	Deep, somewhat excessively drained, coarse-loamy soils on steep slope (30-50%) with loamy surface, moderate erosion and slight stoniness	Coarse loamy, thermic Typic Haplumbrepts
	Associated with deep, somewhat excessively drained, coarse- loamy soils with loamy surface, severe erosion and moderate stoniness	Coarse loamy, thermic Umbric Dystrochrepts
46	Deep, well drained, fine-loamy soils on steep slope (30-50%) with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Typic Argjudolls
	Associated with deep, well drained, fine-loamy soils with gravelly loamy surface, moderate erosion and slight stoniness	Fine-foamy, thermic Cumulic Hapludolls
47	Deep, somewhat excessively drained, coarse-loamy soils on steep slope (30-50%) with gravelly loamy surface, moderate erosion and moderate stoniness	Coarse-loamy, thermic Pachic Haplumbrepts
	Associated with deep, well drained, fine loamy soils with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Umbric Dystrochrepts
48	Deep, somewhat excessively drained, loamy-skeletal soils on steep slope (30-50%) with gravelly loamy surface, moderate erosion and slight stoniness	Loamy-skeletal, thermic. Typic Hapludolls
	Associated with shallow, somewhat excessively drained, coarse-loamy soils with gravelly loamy surface, severe erosion and moderate stoniness	Coarse-loamy, thermic Lithic Udorthents

Soil	Description	Soil class
49	Deep, well drained, fine-loamy soils on steep slope (30-50%) with loamy surface, moderate erosion and slight stoniness Associated with moderately deep, somewhat excessively drained, sandy-skeletal over fragmental soils with gravelly loamy surface,	Fine-loamy, thermic Typic Haplumbrepts Sandy-skeletal, over fragmental, thermic Typic Udorthents
	severe erosion and moderate stoniness	
52	Deep, somewhat excessively drained, fine-loamy soils on steep slope (30-50%) with loamy surface, moderate erosion and slight stoniness Associated with deep, somewhat excessively drained, fine loamy soils with loamy surface, slight erosion and stoniness	Fine-loamy, thermic Typic Hapludolls Fine-loamy, thermic Typic
		Argiudolls
53	Moderately deep, somewhat drained, coarse-loamy soils on steep slope (30-50%) with loamy surface, slight erosion and slight stoniness	Coarse-loamy, mesic Cumulic Haplumbrepts
	Associated with moderately shallow, somewhat excessively drained, loamy-skeletal soils with gravelly loamy surface, severe erosion and slight stoniness	Loamy-skeletal mesic Typic Udorthents
55	Moderately shallow, somewhat excessively drained, coarse-loamy soils on steep slope (30-50%) with gravelly loamy surface, moderate erosion and moderate stoniness	Coarse-loamy, mesic Typic Haplumbrepts
	Associated with shallow, somewhat excessively drained, loamy- skeletal soils with gravelly loamy surface, severe erosion and moderate stoniness	Loamy-skeletal, mesic Lithic Udorthents
57	Shallow, excessively drained, loamy-skeletal soils on steep slope (30-50%) with gravelly loamy surface, severe erosion and strong stoniness; associated with boulders and morrains	Loamy-skeletal, mesic Lithic Udorthents
58	Deep, well drained, fine-loamy over fragmental soils on moderately steep slope (15-30%) with loamy surface, moderate erosion and slight stoniness	Fine-loamy, over fragmental, thermic Typic Haplumbrepts
	Associated with deep, well drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Moilic Udarents
59	Moderately deep, somewhat excessively drained, coarse- loamy soils on moderately steep slope 0 5-30%) with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Cumulic Hapludolls
	Associated with deep, well drained, tine-loamy soils with gravelly loamy surface, moderate erosion and moderate stoniness	Fine-loamy, thermic Typic Argiudolls
60	Moderately deep, somewhat excessively drained, coarse-loamy soils on moderately steep slope (15-30%) with loamy surface, moderate erosion and slight stoniness	Coarse loamy thermic Cumulic Haplumbrepts
	Associated with deep, well drained, fine-silty soils with loamy surface, moderate erosion and slight stoniness.	Fine-silty, thermic Cumulic Haplumbrepts

Soil	Description	Soil class
Unit		
61	Deep, well drained, fine-loamy moderately steep slope (15-30%) with loamy surface, moderate erosion and slight stoniness	Fine-loamy, thermic Fluventic Eurochrepts
	Associated with shallow, somewhat excessively drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Lithic Hapludolls
64	Moderately shallow, somewhat excessively drained, loamy-skeletal soils on moderately steep slope j 15-30%) with loamy surface, moderate erosion and slight stoniness	Loamy-skeletal, thermic Cumulic Hapludolls
	Associated with moderately deep, somewhat excessively drained, coarse-loamy soils with loamy surface, moderate erosion and slight stoniness	Coarse-loamy, thermic Typic Udorthents
66	Shallow, excessively drained, loamy-skeletal soils with gravelly loamy surface, very severe erosion and moderate stoniness; associated with rocks	Loamy-skeletal, thermic Lithic Udorthents
67	Shallow, excessively drained, loamy-skeletal soils on cliff with gravelly loamy surface, severe erosion and slight stoniness	Loamy Skeletal Thermic Lithic Haplumbrepts
	Associated with very shallow, excessively drained, coarse- loamy soil with loamy surface and severe erosion	Coarse-loamy, thermic Lithic Udorthents
68	Very shallow, excessively drained, loamy-skeletal soils on cliff with gravelly loamy surface, severe erosion and slight stoniness; associated with rocks Glaciers/ice sheet/perpetual snow cover	

ANNEXURE VII publications

LIST OF PUBLICATIONS

Publications based on thesis:

Sharma, N.; Das, A.P. and Shrestha, D.G., 2015. Landuse and Landcover mapping of East District of Sikkim using IRS P6 satellite imagery. *Pleione* 9(1): 193 – 200

Publications outside the thesis work:

- Tambe, S.; Arrawatia, M.L. and Sharma, N. 2011. Assessing the priorities for sustainable forest management in the Sikkim Himalaya, India: a remote sensing based approach. *Journal of the Indian Society of Remote Sensing*, 39(4): 555 – 564.
- Basistha, B.C.; Sharma, N.P.; Lepcha, L.; Arrawatia, M.L. and Sen, A. 2010. Ecology of Hippophaesalicifolia D. Don of temperate and sub-alpine forests of North Sikkim Himalayas—a case study. *Symbiosis*, 50(1-2): 87–95.
- Radha Krishna Sharma, Dharmendra Lamsal, Narpati Sharma, D.G.Shrestha, M.L. Arrawatia, 2010. Frequency studies of different shade trees in large cardamom plantations of three districts of Sikkim together with shrubs, herbs and climbers. *Pleione* 4(2): 221 - 229.
- Lepcha, L.; Mandal, P.; Misra, T.K. and Sharma, N.P. 2010. Comparative study of Plant Biodiversity and Physico-chemical Parameters of Soils of Landslide Prone areas. *International Journal of Ecology & Development*TM, 17(F10), pp.66-76.
- Narpati Sharma, N.; Sharma, R.K.; Luitel, K.K.; Arrawatia, M. L.; Shrestha, D.G.; Pradhan S. 2010. Study of Forest Fires of Sikkim Himalayas using Remote Sensing and GIS Techniques. *Proceeding* of International workshop on Biodiversity and Climate change, IIT Kharagpur.
- Sharma, N.; Pradhan, S.; Arrawatia, M.L. and Shrestha, D.G., 2010. Study on types and distribution of wetlands in Sikkim Himalayas using satellite imagery with remote sensing and GIS technique. *Proceedings of the Lake 2010: Wetlands, Biodiversity and Climate Change*, IISc Banglore.

Landuse and Landcover mapping of East District of Sikkim using IRS P6 satellite imagery

Narpati Sharma^{1,3}, A. P. Das² and D. G. Shrestha¹

¹Department of Science, Technology & Climate Change, Vigyan Bhawan, Gangtok 737102, Sikkim, India ²Department of Botany North Bengal University, Siliguri 734013, Darjeeling, West Bengal, India ³Correspondence author: E-mail: nareshhvs@gmail.com

[Received 01.11.2014; Revised 12.06.2015; Accepted 15.06.2015; Published 30.06.2015]

Abstract

Satellite based remote sensing technology is the best methods to estimate the forest cover/ Landuse and land cover mapping in the hilly areas. East Sikkim, having the total geographical area of 954 sq km, ranging over the altitude 300 m (Rangpo) to 4500 m (Nathula), is having tropical to alpine forests. Based on altitude, these forests can be divided into three types *viz*. Lower Hill forest, Middle Hill forest and Upper Hill forest. Present work used clouds free IRS P6 Jan 26, 2006 satellite imagery was used. The imagery was geo- referenced to Survey of India (SOI) topomaps with less RMS error and knowledge based classified using the slandered vegetation classification legend. A ground based vegetation classes were used during the image classification. The vegetation types when compared with the altitudinal zones of the area shows good relationship. The LISS III image was classified using the ERDAS Imagine (9.1) software by applying two different method of classification in a GIS environment viz. visual interpretation technique and supervised classification. These classification showed 83.72 % overall accuracy.

Key words: Landuse and Landcover, East Sikkim, Satellite Imagery

INTRODUCTION

Land use is influenced by economic, cultural, political, environmental, historical and many other factors at multiple scales. On the other hand, land cover is one of the many biophysical attributes of the land that affect how ecosystems functions (Turner *et al.* 1995).

The accurate, meaningful, current data on land use are essential for planning and management of critical concern area such as flood plains and wetlands, energy resource development and production areas, wildlife habitat, recreational lands, and areas such as major residential and industrial development sites etc. (Anderson 1976)

The forest vegetation is largely disturbed because of the increasing rate of deforestation due to unsustainable extraction of timber, fuel wood and fodder as well as encroachment for settlements (SER 2013; ISE 2001).

Land use deals to man's activities and the various use which are carried on land, and on the other hand, land cover deals to natural vegetation, water bodies, rocks, soils etc. The land use information is an important element in forming policies regarding economic, demographic and environmental issues; but a very good skill is required to classify the different land use and land cover using the satellite imagery. An individual land use and land cover categories are formed from collection of diverse objects, features, and structures that are 194 Forest vegetation characterization of East Sikkim

often not individually resolved and the image. The Remote Sensing technology along with GIS is a perfect device to identify, locate and map various types of lands associated with different landform units (Sharma *et al.* 2009).

The visual interpretation using the satellite imagery provides the idea of the basic distribution of vegetation dynamics (Ravan *et al.* 1995). Identification of changed area in landuse and landcover is possible with less time, at low cost and with better accuracy using Satellite based Remote Sensing Technology (Roy& Giriraj 2008).

Study Area:

East district of Sikkim, India, lies between the coordinates 27° 08' 08.39" N to 27° 25' 26.86" N and 88° 26' 26.02" E to 88° 55' 22.81" E and covers an area of 954 sq km. The elevation of study area is ranging from 300 m in the foot hills (at Rangpo) to 4500 m (at Nathula - the trade route with China). The study area bounded in the west River Teesta, River Dikchu/ Rateychu in the north, in south River Rangpo and in east Bhutan and Tibet/china.

Fig. 1. Location of East Sikkim district of Sikkim, India

METHODOLOGY

The IRS P6 January 26, 2006 imagery was used in the classification of LULCs through ERDAS Imagine software (9.1). The images were geometrically corrected and geo-coded to the Universal Transverse Mercator (UTM) Co-ordinate system, using 1:50000 scale, approximately 20 evenly distributed ground control points were selected from the image. These were used to spatially resample the images using a nearest neighbor algorithm, which takes the value of pixels in the input image that is closest to the computed co-ordinate. This method is fast and does not alter the original pixel values. The transformation had a root mean square (RMS) error of between 0.4 and 0.7 pixel, indicating that the image rectification was accurate to within one pixel. After registration, the TIFF imagery was converted into Image format imagery which describes all the information of the image like scale, resolution, projection etc. checking the image with the help of projected topomap.

Narpati Sharma et al. 195

The boundary of East district of Sikkim was generated with the help of Toposheet and Satellite imagery. The western boundary of the study area was bounded by River Teesta which is clearly seen in the satellite imagery, the northern boundary is bounded by River Dikchu/Rateychu, the half of the southern boundary is bounded with River Rangpo Chu and the other half boundary is shared with Bhutan and the eastern boundary is shared with Tibet Autonomous Region (TAR) boarder.

The imagery was subset by using the AOI (Area of Interest) of the study area boundary. The acquired images were classified based on onscreen/head's up interpretation using image interpretation keys. Semi-automated approach was also considered while analyzing few categories at local level.

In onscreen visual interpretation, the imagery is displayed onto computer screen (normally as FCC) and intended classes are delineated based on image interpretation elements, ancillary and legacy data. (Anderson 1976) Resultant output from this will be vector format, which supports complex GIS analysis and has smaller file size. Advantages of visual/ manual interpretation approaches are as follows (NRSA 2012)

- 1. Context/ texture/ pattern based classes can be delineated
- 2. Various enhancement options are possible to exploit the capability of multiband/ multi-season data
- 3. Minimizes issue of sensor radiometry and date of pass
- 4. Polygons of change only to be updated on T1 output using T2 data
- 5. Temporal assessment is time effective
- 6. Adoptability and operational feasibility is high.

Visual interpretation

Much interpretation and identification of targets in remote sensing is performed manually or visually, i.e. by a human interpreter. In many cases, this is done using imagery displayed in a pictorial or photograph-type format, independent of what type of sensor was used to collect the data and how the data were collected. In this case we refer to the data as being in analog format. Visual interpretation may also be performed by examining digital imagery displayed on a computer screen. Both analogue and digital imagery can be displayed as black and white (i.e. monochromes) images, or as colour images by combining different channels or bands representing the different wavelengths. Visual interpretation requires little, if any specialized equipment, whereas digital analysis requires specialized and often expensive equipment (Anderson 1976).

Manual interpretation is often limited to analyzing only a single channel of data or a single image at a time due to difficulty in performing visual interpretation with multiple images. This Visual interpretation is a subjective process, meaning that the results will vary with different interpreters (NRSA 2012). The supervised classification technique is also use to cross-check the visual interpretation layer, for shadow and snow cover areas.

RESULT AND DISCUSSION

Through onscreen interpretation (visual interpretation), the different class polygons were digitized based on terrain knowledge acquired during fieldwork and distributed throughout the study area. The interpretation elements like tone (light, medium, dark, very light, very dark), texture (course, medium, fine, even, uneven, mottled, uniform), colour (brighter, gray, light blue, grayish white, dull white, light pink, yellowish white), patterns (discrete-contiguous

Fig. 2: Flow-chart of detail methodology

patches), size (small, medium, large, uniform or varied), shape (compact, regular, elongate, square, irregular, rectangular), association etc, were kept in mind during visual interpretation of the image.

On the basis of IRS P6 images, LULCs of the study region was classified into six categories in level I viz.: built-up, agricultural land, forest, barren rocky, water-bodies, snow-glacial area and in level II the six classes of level I were further classified into 13 different categories these are shown in Table 1. During the classification of the satellite imagery, some elements of the image interpretation were keeping in mind like (small, medium, large, uniform or varied), shape (compact, regular, elongate, square, irregular, rectangular), tone (light, medium, dark, very light, very dark) texture (course, medium, fine, even, uneven, mottled, uniform), association, shadow, site, pattern etc.

Fig. 3. A. False Color Composite of IRS P6 January 2006 of East Sikkim;**B.** Landuse and Landcover Map of East Sikkim

The total study area was mapped and classified into 13 land use types using IRS P6 Raw Satellite Image. The total geographical area of East district of Sikkim is 95400 ha, of which 40124 ha is under Dense Forest, which is slightly over 42 % of total area of East district; 17160 ha land is under Agricultural cropland, which is nearly 18% of the district's area. Similarly, 18509 ha of land was classified as Open Scrub land which is over 19 % of the total area. This is followed by 10874 ha (i.e. 11 %) area under Barren Rocky wasteland.

PLATE - I. Snaps on different land features of East District of Sikkim: A. Open Forest with Agricultural land; **B.** Alpine Grass Land and Grazing Land; **C.** Dense Forest; **D.** Agriciltural Land; **E.** Kupup Lake of East Sikkim; **F.** Built up urban Residential area

Also, 6226 ha or 6 % area was classified as Grassland and Rangeland. Other land use types were classified as Built up Urban Residential, Forest Blank, Forest Plantation, Lakes, Mixed Built up area, Permanent Snow/Glacier, River/Stream and Wasteland and each of them contribute less than 1% of total geographical area of East Sikkim (Table 1).

Precision, as it pertains to agreement between observers (interobserver agreement), is often reported as a kappa statistic (Cohen 1960). Kappa is intended to give the reader a quantitative measure of the magnitude of agreement between observers. Accuracy assessment was done following Kappa Statistics method (Table 2).

Sl.	Land use Type	Area in	% of
No.		Ha.	Area
1.	Agricultural Crop Land	17160	17.99
2.	Barren rocky waste	10874	11.40
3.	Built Up Urban Residential	701	0.73
4.	Dense Forest	40124	42.06
5.	Forest Blank	233	0.24
6.	Forest Plantation	98	0.10
7.	Grassland & Grazing Land	6226	6.53
8.	Lakes	165	0.17
9.	Mixed Built Up area	641	0.67
10.	Open Scrub	18509	19.40
11.	Permanent Snow/Glacier	20	0.02
12.	River/Stream	642	0.67
13.	Wasteland	7	0.01
	Total	95400	100.00

Table 1. Land use and Land cover type of East Sikkim with area

 Table 2. Accuracy assessment table using Kappa statistics

	Agricu- lture	Built up	Forest	Alpine	Waste- land	Snow & glacier	Water bodies	TOTAL
Agriculture	22	1	1	0	0	0	0	24
Built up	1	17	0	0	1	0	0	19
Forest	0	0	19	1	0	0	0	20
Alpine	1	1	1	10	1	1	0	15
Wasteland	1	1	2	1	13	1	1	20
Snow glacier	0	0	0	1	0	13	2	16
Water bodies	0	0	0	0	0	1	14	15
TOTAL	25	20	23	13	15	16	17	129

Kappa assessment Sum of the observation on which the class occur/total no. of Observation x 100

$$\frac{108}{129}$$
 x 100 = 83.72

The overall accuracy assessment of vegetation classification of East Sikkim is 83.72%

[Abbreviations SER -State of the environment report ISE -Indian state of Environment TIFF-Tagged image file format IRS- Indian Remote Sensing] 200 Forest vegetation characterization of East Sikkim

CONCLUSION

In this study the Land-use and land-cover pattern of east Sikkim using IRS LISS III imagery was studied and showed the natural vegetation cover is restricted to 42% of the area of the East District of Sikkim as it was on January 26, 2006. On the other hand, settlements has covered 1 % area, and the total land used for cultivation is 18 %. This is little old data, but the modification of natural habitat is taking place very fast and, it is expected that the present scenario will be little different, with much more areas now urbanized and occupied for cultivation, industry, etc.

This picture is not impressive as it translate the too much of anthropogenic pressure of the survival of extremely rich biodiversity of Sikkim Himalaya, which is a part of the Himalaya Hotspot for Biodiversity Conservation. It is now important for planners and policy makers to decide wheather the Sikkim biodiversity will preserved in which way. The pictures showed the changes are not restricted only to the previous city areas, even the land-use is quite fast even in remote areas and numerous new townships are appearing.

So, the present set of generated data will be helpful for better modeling and forecasting the land-use and land-cover change over the time. This will also speak for the direct and indirect impact on environment, which are expected cause due to rampant change in landuse pattern.

LITERATURE CITED

- Anderson, J.R. 1976. A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.
- Cohen, J. 1960. A coefficient of agreement for nominal scales. *Edu. Psychol. Measur.* 20(1): 37 46.
- ISE 2001. Indian State of Environment 2001 at http://www.envfor.nic.in/soer/2001/ ind_land.pdf
- NRSA 2006, Manual of National Land Use Land Cover Mapping Using Multi-Temporal Satellite Data. Department of Space, Hyderabad
- Ravan, S.A.; Roy, P.S. & Sharma, C.M. 1995. Space remote sensing for spatial vegetation characterization. J. Biosci. 20(3): 427 438.
- Roy, P.S. & Giriraj, A. 2008. Land use and land cover analysis in Indian Context. J. Appl. Sci. 8: 1346 – 1353.
- SER 2013. State of the Environment Report at http://parisara.kar.nic.in/PDF/Forest.pdf.
- Sharma, A.; Joshi, V.; Parkash, S. & Krishna, A.P. 2009. Land Use Pattern mapping using Remote Sensing and GIS in Gangtok area, Sikkim Himalaya, India, GIS development.net Application Environment. http://geospatialworld.net/Paper/Application/ ArticleView.aspx?aid=440
- Turner, D.P.; Koerper, G.J.; Harmon, M.E. & Lee, J.J. 1995. A carbon budget for forests of the conterminous United States. *Ecol. Applic.* 5(2): 421 436.

RESEARCH ARTICLE

Assessing the Priorities for Sustainable Forest Management in the Sikkim Himalaya, India: A Remote Sensing Based Approach

Sandeep Tambe • M. L. Arrawatia • Narpati Sharma

Received: 16 October 2010 / Accepted: 11 April 2011 / Published online: 10 June 2011 © Indian Society of Remote Sensing 2011

Abstract Sikkim is a small, mountainous, Indian state (7,096 km²) located in the eastern Himalayan region. Though a global biodiversity hotspot, it has been relatively less studied. A detailed forest type, density and change dynamics study was undertaken, using SATELLITE remote sensing data and intensive field verification. The landscape was found to be dominated by alpine and nival ecosystems, with a large portion above the tree line, considerable snow cover, and a sizeable area under forest cover (72%, 5,094 km²). A total of 18 landscape components including 14 vegetation classes were delineated, with the major ones being oak forest, alpine meadow, alpine scrub, conifer forest and alder-cardamom agroforestry. Of the 3,154 km² of forests below the tree

S. Tambe

Department of Forest, Environment and Wildlife Management, Government of Sikkim, Forest Secretariat, Gangtok 737102, Sikkim, India

M. L. Arrawatia · N. Sharma Department of Science and Technology and Climate Change, Government of Sikkim, Development Area, Gangtok 737102, Sikkim, India

S. Tambe (🖂)

8 Unit, Class I, Government Quarters, Behind Sangram Hall, Development Area, Gangtok, Sikkim 737101, India e-mail: sandeep_tambe@yahoo.com line, 40% were found to be dense (>40% tree canopy cover). A sizeable portion of the non dense forests below the tree line was contributed by the degradation of oak forests, which was confirmed by change detection analysis. However on a positive front over the past decade, ban on grazing and felling of trees in forests has been implemented. In order to expand the extent of dense forests, further efforts are needed for the restoration of oak forests such as fire protection, providing alternatives to firewood use, promotion of alder-cardamom agro-forestry in the private lands and protection of the small-sized, fragmented forest patches in the subtropical belt.

Keywords Eastern Himalaya · Spatial analysis · Change detection · Vegetation mapping · Oak forest

Introduction

Sikkim is a small north-eastern Indian state that lies between 27° 04' 46" to 28° 07' 48" N latitudes and 88° 00' 58" and 88° 55' 25" E longitudes, covering an area of just 7,096 km² (Fig. 1). The elevation ranges from 300 to 8,586 m, with the dominant feature being Mt. Khangchendzonga (8,586 m), the third highest peak in the world and the highest in the country. The state is a part of the eastern Himalayan region which is one of the 34 global biodiversity hotspots of the world (Myers et al. 2000; Mittermeier et al. 2004). The sharp altitudinal gradient and complex topography has manifested in 12 forest types (Table 1). It harbours nearly one third of the national flowering plants diversity, an estimated 5,000 species of flowering plants (Hajra and Verma 1996).

Remote sensing technique and associated spatial analysis tools are highly useful in conservation planning (Roy et al. 1999; Singh et al. 2002; Turner et al. 2003), landscape ecology (Quattrochi and Pelletier 1990; Roy and Tomar 2000) and assessing the impacts of climate change (Kulkarni et al. 2007). Multi-spectral and multi-temporal data obtained from satellite remote sensing allows integration of several layers and change detection more quickly and effectively (Blamont and Méring 1987). These tools are particularly useful for areas located in the Himalaya, where adequate field sampling is often negated by non-negotiable rugged terrain. The present study used satellite data and is backed by extensive field verification compared to the pervious studies (ISRO 1994; IIRS 2002; Kushwaha et al. 2005). Mapping of major forest types has been attempted using a systematic approach covering the entire state.

Our goals in this paper are threefold. First, we delineate the forest types, their density and patterns of change in vegetation cover. Secondly we provide evidence which reveals that considerable portions of the temperate and subalpine forests have been converted into thickets, scrub and blanks, and thereby adversely impacted in recent times. Thirdly we compare our assessment with contemporary studies done by various agencies. We also propose management strategies that need to be prioritized for effective conservation of forested landscapes in this global biodiversity hotspot.

Data Used and Methodology

Field Data Collection

The study area was surveyed over a 6 year period from 2003 to 2008. A total of 497 well distributed ground reference points along with attribute data on location and vegetation characteristics were recorded using a hand-held Garmin Global Positioning System (GPS; 12-channel Garmin Etrex-Summit mode). Field surveys helped in creating a database of about 400 digital photographs of the landscape which helped during visual interpretation especially of areas under shadow. Spatial Data and Image Processing

For landcover mapping, multispectral satellite images from Indian Remote Sensing satellite (IRS-1C) LISS III data with 23 m spatial resolution, of Jan and Feb, 2002 were used. Ground control points (GCPs), covering all the landuse types as well as covering the shadow areas were collected with the help of GPS (Garmin, etrex-summit, 12 channel). The spectral signatures of GCPs sites thus collected during ground checks were used for supervised classification in Erdas Imagine (version 8.5) software using standard techniques (Roy and Tomar 2000). We identified dense forests as vegetated areas with >40% of tree canopy cover, open forests as those with 10-40% tree canopy cover, very open forests as those with 5-10%tree canopy cover, scrub as areas devoid of tree cover with less than 5% cover and blank as barren areas devoid of tree and shrub cover (FSI 2005). Total forest cover refers to the combined areas of dense, open and very open forests including alpine thickets, alpine scrub and alpine meadows in forest and private lands. Image rectification, enhancement, hybrid classification and smoothening with adequate ground truthing were carried out to map the broad landcover classes. Classification and interpretation of shadow classes was done separately. For areas with deep shadows support of ground truthing, aerial photographs and digital photographs were also taken. For delineation of oak and conifer forests, band 4 (1.55- 1.70μ m wavelength range) was found to be very useful. The mixing of classes was reduced by masking the forest and non forest areas separately into 6 elevation zones (0-1,000 m, 1,000-1,500 m, 1,500-2,000 m, 2,000-2,500 m, 2,500-3,000 m and greater than 3,000 m). For the areas above 3,000 m, the Jan image was used since the Feb image showed extensive seasonal snow cover. Thereafter reclassification was carried out using a subset of the landcover categories which were known to occur in a given elevation zone was then done. This was followed by manual recoding to remove the drop lines, clouds and their shadow. Finally a mosaic of these 12 separately classified images was done to obtain a composite image, and finally area statistics were calculated after normalization. This hybrid approach, combining digital supervised classification, reclassification using elevation and visual interpretation resulted in the final 21 broad landcover classes. Quality of the classifica-

Fig. 1 Map showing the spatial distribution of areas with more than 10% decrease in NDVI (shown in red) between 1977 and 2000 along with Reserve Forest (RF) boundary and elevation zones in Sikkim, Eastern Himalaya, India

tion was found using the accuracy assessment option of the classifier module. ArcGIS (version 9) was used for integration of the various layers on a GIS platform.

Temporal Change Detection

The georeferenced Landsat time series data of 23rd January, 1977 (NASA Landsat Program 1977) and 26th December, 2000 (NASA Landsat Program 2000) were used for temporal change detection. Atmospheric correction was performed with Idrisi Kilimanjaro (v14) using the ATMOSC module. All imagery was corrected using the cos(t) model with input parameters reported in the metadata supplied by Landsat (Chavez 1996). The 30 m resolution Landsat ETM+ (2000) image was degraded to 60 m using the utilities option in the image interpreter module of Erdas to match with the Landsat MSS (1977) image. NDVI was calculated for each of the images using the spectral enhancement option,

followed by change detection using the utilities option in the image interpreter module of Erdas (Lillesand and Kiefer 2000). The 2000 image had less snow cover in the alpine zone especially in the greater Himalayan portion. Because of this reduction in winter snow cover, the alpine vegetation that was concealed under snow in the older image was visible in the new image, causing the NDVI to show a positive bias in the snow covered areas. There was variation in the shadow intensity as well, with the 2000 image showing lighter shadows as compared to the 1977 image. Change detection in shadow areas was seriously hampered by variability in shadow intensity along with low spectral reflectance of vegetation. Hence all shadow areas were erroneously classified as a positive change (i.e. gain in vegetation cover) between the 1997 and 2000. To overcome these challenges inferences from change detection analysis using NDVI were drawn only from the negative changes highlighted in the map, since the positive changes could be due to reduction in shadow

Springer

S. no.	Forest type adapted from Grierson and Long (1983)	Characteristic species	Altitude range	Forest type adapted f Champion and Seth (rom (1968)
1	Sal (Shorea robusta)	Shorea robusta, Terminalia myriocarpa, Schima wallichii,	300-900	3C/Cia	East Himalayan sal forests
	Iorest	Phyllanthus emblica, Mallotus philippensis Rombax ceiba			
2	Chir pine (<i>Pinus</i> roxburghi) forest	Pinus roxburghi, Woodfordia fruticosa, Phoenix acaulis	500-900	9/C _{1b}	Himalayan chir pine forests
3	Subtropical forest	Terminalia myriocarpa, Alstonia grandis, Duabanga grandiflora, Tetrameles nudiflora, Dillenia pentagyna, Ailanthes grandis	300–900	3C/C _{3b}	East Himalayan moist deciduous forest
4	Warm broad-leaved forest	Schima wallichii, Engelhardia spicata, Macaranga nepalensis, Castanopsis indica, Spondias axillaris, Ostodes paniculatus	900–1,700	8B/C1	East Himalayan sub-tropical wet hill forest
5	Alder forest	Alnus nepalensis	1,500-2,000	$12/IS_1$	Alder forest
6	Evergreen Oak forest	Castonopsis sp., Quercus sp., Michelia sp., Juglans regia, Symplocas sp. Acer campbellii	1,700–2,800	11B/C ₁	East Himalayan wet temperate forests
7	Dwarf bamboo thicket	Arundinaria maling, Thamnocalamus aristata, Thamnocalamus spathiflorus	2,600-3,100	12/DS ₁	Montane bamboo brakes
8	Mixed conifer forest	Tsuga dumosa, Quercus pachyphylla, Larix griffithiana, Picea smithiana	2,700-3,100	12/C _{3a}	East Himalayan moist temperate forest, East Himalayan dry temperate coniferous forest, Larch forest
9	Conifer forest	Abies densa, Juniperus recurva, Betula utilis, Sorbus macrophylla,	2,800-3,700	13/C ₆ , 14/C ₂	East Himalayan sub-alpine forests
10	Alpine thicket	Rhododendron sp., Betula utilis, Acer sp	3,500-4,500	15/C ₁	Birch/Rhododendron scrub
11	Alpine scrub	Juniperus sp., Rhododendron sp., Caragana sp., Ephedra gerardiana	4,000–5,500	15/C ₂ , 16/C ₁ , 16/E ₁	Dwarf <i>Rhododendron</i> scrub, Dry alpine scrub, Dwarf Juniper scrub
12	Alpine meadow	Kobresia sp., Carex sp., Stipa sp., Poa sp.	4,000–5,500	15/C ₃	Alpine pastures

 Table 1 Details of forest types found in Sikkim, Eastern Himalaya, India (Adapted from Grierson and Long (1983), Champion and Seth (1968))

intensity or decrease in snow cover between the two images.

Results

Landcover Types

About 79% of the geographical area of the state has been classified as reserve forests having a total extent

of 5,589 km². However of this only 2,292 km² (41%) occurs below the tree line. The reserve forests occurred in 58 discrete patches comprising of one large chunk with an extent of 5,385 km² (Fig. 1). The next big patch was the Fambong lho with an area of 55 km². The mean area of the reserve forest patches is 95 ± 707 km² which indicates a large variation. However without these two large polygons the extent of the remaining 56 reserve forest polygons reduced to 88 km² and the mean area to 1.6 ± 2.4 km².

About 47% (3,323 km²) of the geographical area of the state is above the tree line which is at $3,800\pm$ 200 m. The forest cover including alpine thickets, alpine scrub and alpine meadows stood at 72% (5,094 km²) of the geographical area. The forest cover when calculated for the area below the tree line (3,783 km²) increased to 76% (2,893 km²) of which 23% occurs outside reserve forests. The final classified image of the study area had 16 classes or landscape components (Table 2, Fig. 2), with the dominant ones being oak forest (16.15%), alpine scrub (13.53%), alpine meadow (13.44%), conifer forest (11.02%), agriculture (8.33%), cardamom-alder agro-forestry (6.51%), mixed conifer (6.35%) and a high proportion (14.73%) of snow.

Forest Density

Of the forests below the tree line, 40.2% (1,268 km²) were found to be dense (>40% canopy cover), 26% (820 km²) open (10 to 40% canopy cover), 10.3% (326 km²) very open (5 to 10% canopy cover), 15.2% (479 km²) thickets, 4.2% (133 km²) scrub (< than 5% canopy cover) and 4.1% (128 km²) blank (Fig. 3, Table 2). *Shorea robusta* (sal) forests (91%), mixed conifer forests (90%), subtropical forests (68%) and

warm broad-leaved forests (64%) were found to be the most non dense. Oak forests contributed significantly (32%, 608 km²) to the total non dense forests below the tree line. Subtropical forests that have a total extent of 110 km² are the only natural forests that occur mostly (80%) outside reserve forests. Forests which are most extensive in non reserve forest lands are the cardamom-alder agro-forests with an extent of 272 km² and comprise 17% of the total forests in private lands.

Temporal Change Detection

Out of a total 7,096 km² of the state's area, 317 km² (4.57%) was found to be impacted by a decrease of greater than 10% in NDVI (Fig. 1, Table 3). This decrease was found to be 209 km² (3.8%) in reserve forest area and 108 km² (6.9%) in other areas. However, this change was not uniform, for instance, as much as 30 km² (12.7%) of the reserve forest area between 1,500 to 2,000 m, 61 km² (12.1%) between 2,000 to 2,500 m and 54 km² (9.9%) between 2,500 to 3,000 m showed a decline in forest cover, while less than 1.5% of the area in the zone above 3,000 m showed a negative change.

Table 2 Broad landcover types, their density and extent (in km²) in Sikkim, Eastern Himalaya, India

Landcover type	Extent in I	km²						
	Dense	Open	Very open	Thicket	Scrub	Blank	Total	% of Total
Alpine meadow							953.36	13.44%
Alpine scrub							959.56	13.53%
Alpine thicket							260.04	3.66%
Conifer forest	449.94	304.01	0.00	28.21	0.00	0.00	782.16	11.02%
Mixed conifer forest	46.13	90.71	0.00	256.27	0.00	57.62	450.72	6.35%
Oak forest	538.50	213.52	169.89	176.64	0.00	47.58	1146.13	16.15%
Alder forest	141.18	131.31	110.55	78.85	0.00	0.00	461.88	6.51%
Warm broad-leaved forest	51.64	29.11	16.87	39.08	3.88	2.93	143.50	2.02%
Subtropical forest	35.01	50.18	16.17	0.00	8.53	0.00	109.89	1.55%
Sal forest	5.39	1.44	12.83	10.72	10.02	19.76	60.15	0.85%
Agriculture							591.99	8.34%
Rock							101.32	1.43%
Sand							37.16	0.52%
Lake							27.98	0.39%
Snow							1045.59	14.73%
Total	1250.43	740.21	326.00	590.84	24.14	188.94	7096.00	100%

Discussions

Mountain regions like Sikkim pose several challenges for the natural resource managers and ecologists in terms of understanding linkages between the landscape features and spatio-temporal changes in the composition and extent of vegetation caused by both natural and anthropogenic factors. A substantial proportion of the Eastern Himalaya remains largely inaccessible for physical verification as many areas are far from roads, not easily approached on account of un-forded rivers and steep terrain. Despite the

561

Elevation	300-1.00	m 0(1 000-1	500 m	1.500-2.00	00 m	2.000-2.50	m 00	2.500-3.00	0 m	>3 000 m		Total	
	vo'r 000	III or		TH OOO	,	III oo					III 000%		11101	
Area in km ²	RF	Non RF	RF	Non RF	RF	Non RF	RF	Non RF	RF	Non RF	RF	Non RF	RF	Non RF
Total area	66.74	361.09	23.71	606.08	233.26	478.35	507.71	92.88	542.32	18.77	4140.37	24.72	5514.10	1581.90
Negative change	3.77	20.88	2.37	35.12	29.65	41.24	61.34	9.00	53.66	1.36	57.90	0.69	208.70	108.29
% Negative change	5.65%	5.78%	9.99%	5.80%	12.71%	8.62%	12.08%	9.69%	9.89%	7.27%	1.40%	2.77%	3.78%	6.85%

advantages of remote sensing tools, relief-induced factors limit utilization of potential of these tools (Buchrointhner 1995). Reflected signal values carry high variability and distortion caused by terrain complexity, shadow effects and cloud and snow cover. Persistent cloud cover during the summer months and snowfall in winter create only a small window of 2-3 months in early winter when the alpine zone can be adequately remotely sensed by satellites. Though these challenges result in certain uncertainty in the accuracy of vegetation classification, careful choice of the images, hybrid classification procedure and few post processing steps could overcome some of these problems. Extensive field surveys of vegetation structure and knowledge of altitudinal variation in major formations coupled with intensive ground truthing proved necessary to enhance the accuracy of classification. The classification accuracy of the various landuse types using the above approaches was found to be 86.32% (Table 4).

The reserve forest area of $5,589 \text{ km}^2$ was reasonably close to the recorded reserve forest area 5,451 km². The FSI (2005) study is based on 23.5 m resolution IRS P6 satellite data of December 2004, while our study is based on 23 m resolution IRS-1C satellite data of February 2002, hence the source and resolution of the two datasets are quite similar. The area under dense forests as per our study comes to only 1,268 km². FSI (2005) assessed the area under very dense (498 km^2) and moderately dense forests (1,912 km²) in the state to be significantly higher at 2,410 km². Our assessment is nearer to other contemporary, satellite data based forest mapping studies like Pandit et al. (2007), who assessed extent of dense forests to be 1,040 km² based on the satellite image of the year 2000. Other studies by Kushwaha et al. (2005) in the south west portion of Sikkim also highlight the fragmentation of temperate forests. Earlier studies by ISRO (1994) using 72.5 m IRS-1A satellite data assess the extent of dense forests in the state to be 975 km^2 .

Due to the steep elevation gradient the various vegetation classes were found to be telescoped together making the landscape heterogeneous. 56 of the 58 reserve forest polygons are considerably small (mean extent of 1.6 km²), and comprise just 1.6% (88 km²) of the total reserve forest area. These are distributed in the lower elevation, having *Shorea robusta* (sal), subtropical forests and warm broad leaved forests as the dominant landuse and sur-

Class name	Reference totals	Classified totals	Number correct	Producers accuracy	Users accuracy
Alpine meadow	13	13	13	100.00%	100.00%
Alpine scrub	5	5	5	100.00%	100.00%
Alpine thicket	9	8	7	77.78%	87.50%
Conifer forest	33	35	28	84.85%	80.00%
Mixed conifer forest	25	19	18	72.00%	94.74%
Oak forest	250	245	230	92.00%	93.88%
Alder forest	23	22	15	65.22%	68.18%
Middle hill forest	33	34	26	78.79%	76.47%
Subtropical forest	8	12	6	75.00%	50.00%
Sal forest	52	48	45	86.54%	93.75%
Forest thicket	61	56	50	81.97%	89.29%
Forest scrub	8	14	7	87.50%	50.00%
Forest blank	8	14	6	75.00%	42.86%
Agriculture	38	35	33	86.84%	94.29%
Snow	12	10	9	75.00%	90.00%
Rock	2	5	1	50.00%	20.00%
Sand	2	2	1	50.00%	50.00%
	497	497	429	86.32%	86.32%

Table 4 Classification accuracy of the various landuse types as indicated by the confusion matrix

rounded by agricultural fields. There is an urgent need to protect and regenerate these small sized, fragmented forests, as they are susceptible to encroachment and degradation. Out of the 15 forest classes, 3 classes namely *sal* forest, subtropical forest and warm broadleaved forest were found to have a limited extent (area less than 145 km²) and relatively higher degree of degradation. Protection of these forests is critical to prevent the loss of the characteristic biodiversity that they possess.

Cardamom farming is a perennial, low-volume, high-value, non-perishable, cash crop and it demands less nutrients and other inputs in comparison to other crops. Alder forest occurs in private lands and is grown as a shade tree for large cardamom—a valuable native horticulture plant (Sharma et al. 2000). In this zone, these forests have a sizeable extent of 272 km² which can be potentially increased to 462 km² by encouraging this landuse to bring more and more areas under forest cover and also to have an eco-friendly buffer to shield the temperate oak forests.

During the last three decades of the 20th century, 317 km^2 of degradation has taken place, with the impacts mostly concentrated (196 km², 62%) in the temperate oak forests, which have been converted into thickets, scrub and blank areas. This degradation was

caused mainly due to open grazing, forest fires, selective felling of commercially important mature trees from forests and clear felling of temperate forests for meeting the demand for timber, firewood and charcoal. Thickets of secondary, unpalatable shrubs and bamboos have increased substantially in these degraded forests. Since 1995, several conservation initiatives have been taken up like implementation of the ban on open grazing in reserve forests and ban on green felling of trees in forests.

The main cause of degradation and fragmentation of the temperate oak and subalpine conifer forests is the heavy dependence for firewood and timber, high grazing pressure, vulnerability to forest fire, poor natural regeneration and naturally slow growing nature. While impacts of pastoralism on these forests has been substantially reduced with the removal of about 10,000 cows along with the 500 herders between 2001 and 2006 (Tambe and Rawat 2009), reducing firewood extraction by local communities and road construction labour force and preventing forest fire still needs to be prioritized. Chettri et al. (2006) documented that there is an unregulated extraction of firewood from the forests of the state, and estimated the annual dependence per rural household to be 6-8 tonnes (dry weight). Greater emphasis is needed for promoting solar water heaters, LPG and ensuring access to alternate and cheap forms of energy and fuel efficient devices will help in substantially reducing the pressure on these forests. Also there is a pressing need to take up a long term restoration program to artificially regenerate these slow growing temperate and sub-alpine conifer forests.

Unlike in other parts of the country, the long dry winter from December to March is the major fire season in the state. Offlate incidence of forest fires in temperate forests which are unaccustomed to forest fire is increasing. There is a pressing need for a greater dissemination of mountain specific fire management technology using participatory approaches.

Conclusions

To conclude, we propose the following priorities for forest management in the Sikkim Himalaya. Firstly initiate a long term restoration program for the degraded oak and conifer forests. Secondly expand the extent of dense forests by reducing the pressure from firewood extraction, grazing and fire hazard. The extent of dense forests jointly with forest cover should be used as an impact indicator. Thirdly take special steps to protect and regenerate the several small-sized, fragmented forest patches in the lower belt. Fourthly promote alder-cardamom agro-forestry in the private lands as an eco-friendly buffer and lastly protect rare forest types (sal forests, subtropical forests and warm broad leaved forest) which are being increasingly degraded and under danger of losing their characteristic biodiversity.

Acknowledgements We gratefully acknowledge the support received from Indian Institute of Technology- Kharagpur and the Department of Forest, Environment and Wildlife Management, Government of Sikkim.

References

- Blamont, D., & Méring, C. (1987). Use of remote sensing for vegetation and landuse mapping in mountainous areas: the case of central Nepal. *Advances in Space Research*, 7(3), 41–46.
- Buchrointhner, M. F. (1995). Problems of mountain hazard mapping using spaceborne remote sensing techniques. *Advances in Space Research*, 15(11), 57–66.

- Champion, F. W., & Seth, S. K. (1968). A revised survey of the forest types of India. Nasik: Manager, Government of India Press.
- Chavez, P. S. (1996). Image based atmospheric correctionsrevisited and improved. *Photogrammetric Engineering* and Remote Sensing, 62, 1025–1036.
- Chettri, S. K., Singh, K. K., & Krishna, A. P. (2006). Anthropogenic pressures on the natural resources in fringe areas of the Khangchendzonga Biosphere Reserve. *International Journal of Ecology and Environmental Sciences*, 32(3), 229–240.
- FSI (Forest Survey of India). (2005). The State of Forest Report 2005. Dehradun, FSI, Ministry of Environment and Forests, Government of India (pp 126–128).
- Grierson, A. J. C., & Long, D. G. (1983–1991). Flora of Bhutan vols 1–3. Edinburgh, UK: Royal Botanical Garden.
- Hajra, P. K., & Verma, D. M. (1996). Flora of Sikkim: Volume 1: Monocotyledons (336 pp).
- IIRS. (2002). Biodiversity Characterization at Landscape Level in North East India using Satellite Remote Sensing and Geographic Information System, Project Report—Phase I, Indian Institute of Remote Sensing, Department of Space, Government of India, 2002.
- ISRO. (1994). Forest Cover Mapping through Digital Image Processing of Indian Remote Sensing Satellite data with Special Reference of Sikkim—Procedural Manual and Inventory: Joint Collaboration Project of Forest Department, Government of Sikkim and Regional Remote Sensing Service Centre, Kharagpur, Indian Space Research Organization, Department of Space, Government of India, 1994.
- Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., & Dhar, S. (2007). Glacial retreat in Himalaya using Indian Remote Sensing satellite data. *Current Science*, 92(1), 69–74.
- Kushwaha, S. P. S., Padmanaban, P., Kumar, D., & Roy, P. S. (2005). Geospatial modelling of plant richness in Barsey Rhododendron Sanctuary in Sikkim Himalaya. *Geocarto International*, 20(2).
- Lillesand, T. M., & Kiefer, R. W. (2000). *Remote sensing and image interpretation* (4th ed.). Singapore: John Wiley and Sons (ASIA) Pvt. Ltd.
- Mittermeier, R. A., Gils, P. R., Hoffman, M., Pilgrim, J., Brooks, T., & Mittermeier, C. G. (Eds.) (2004). *Hotspots* revisited. Earth's biologically richest and most endangered terrestrial ecoregions. USA: CEMEX.
- Myers, N., Mittermier, R. A., Mittermier, C. G., Da-Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*, 40, 853–858.
- NASA Landsat Program. (1977). Landsat MSS scene p149r41_2m19770123, Orthorectified, GeoCover, USGS, Sioux Falls, 01/23/1977.
- NASA Landsat Program. (2000). Landsat ETM+ scene p139r041_7t20001226, Orthorectified, GeoCover, USGS, Sioux Falls, 12/26/2000.
- Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A., & Brook, B. W. (2007). Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. *Biodiversity and Conservation*, 16, 153– 163.

- Quattrochi, D. A., & Pelletier, R. E. (1990). Remote sensing for analysis of landscapes: an introduction. In M. G. Turner & R. H. Gardner (Eds.), *Quantitative methods in landscape ecology: The analysis and interpretation of landscape heterogeneity. Ecological studies series.* New York: Springer-Verlag.
- Roy, P. S., & Tomar, S. (2000). Biodiversity characterization at landscape level using geospatial modelling technique. *Biological Conservation*, 95(1), 95–109.
- Roy, P. S., Singh, S., Dutt, C. B. S., Jeganathan, C., Jadav, R. N., & Ravan, S. A. (1999). Biodiversity Characterization at Landscape level using Satellite Remote Sensing and Geographic Information System, DOS-DBT Users Manual, Indian Institute of Remote Sensing (NRSA), Dept. of Space, Govt. of India, Dehradun, 1999.
- Sharma, E., Sharma, R., Singh, K. K., & Sharma, G. (2000). A boon for mountain populations. *Mountain Research and Development*, 20(2), 108–111.
- Singh, T. P., Singh, S., Roy, P. S., & Rao, B. S. P. (2002). Vegetation mapping and characterization in West Siang District of Arunachal Pradesh, India—a satellite remote sensing-based approach. *Current Science*, 83(10), 25 November 2002.
- Tambe, S., & Rawat, G. S. (2009). Ecology, economics and equity of the pastoral systems in the Khangchendzonga National Park, Sikkim Himalaya, India. *Ambio*, 38(2), 95– 100.
- Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003). Remote Sensing for biodiversity science and conservation. *Trends in Ecology & Evolution*, 18, 306–314.