Environmental Horticulture Program

Pollinators and Production of Ornamental Plants

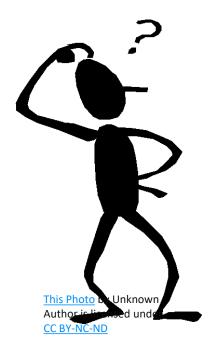
Cristi L Palmer

IR-4 Environmental Horticulture Program Manager

What is IR-4? The IR-4 Project (or Inter-Regional project number 4) was created in 1963 to facilitate registration of sustainable pest management technology for specialty crops and minor uses

Photo by Cristi Palmer

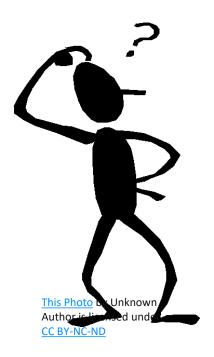
Fruits (1963) Vegetables (1963) **Trees (1977) Shrubs (1977) Flowers (1977)**



IR-4 Environmental Horticulture Program Elements

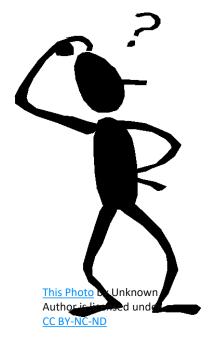
Program Element	Funding Sources	Funds since 2004 (20 years)	
Registration Support	NIFA IR-4 Grant 2021-34383-34848 USDA-ARS State Agricultural Experiment Stations Crop Protection Industry	~\$24,500,000	
Invasive Species	USDA-APHIS	\$6,135,497	
Pollinator Protection	NIFA SCRI Grant 2016-51181-25399 "Protecting Pollinators with Economically Feasible and Environmentally Sound Ornamental Horticulture"	\$6,509,975	

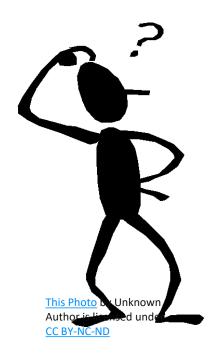
Pest Management Solutions for Specialty Crops and Specialty Uses



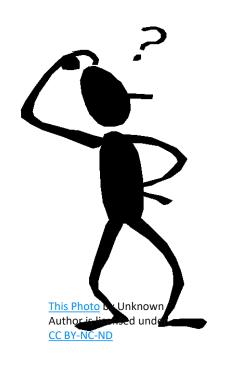
This Photo

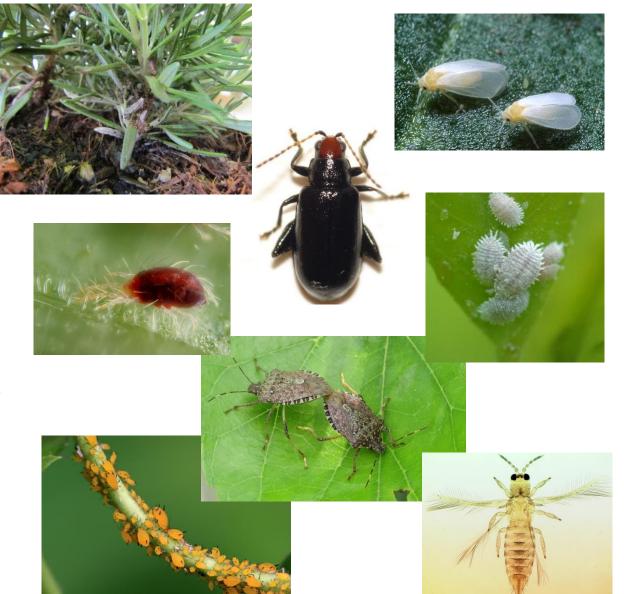
CC BY-NC-ND





This Photo by Unknown Author in lighted under CC BY-NC-ND





- Aphids
- Thrips
- Whiteflies
- Scale
- Mealybugs
- Mites
- Psyllids
- Leafminers
- Lepidopterans
- Beetles
- Borers
- Leafhoppers
- Planthoppers

Aceria sp. (Eriophyid Mite (Aceria)) Aculus ligustri (Hedge Privet Rust Mite) Aedes aegypti (Mosquito, Dengue) Aedes albopictus (Mosquito, Dengue) Agrilus anxius (Bronze Birch Borer) Aphis gossypii (Aphid, Melon) Asterolecanium puteanum (Scale, Holly Pit) Aulacaspis yasumatsui (Scale, Cycad) Balanococcus diminutus (Phormium Mealybug)

Bemisia tabaci B-biotype (Sweet Potato Whitefly - B- Melanaspis tenebricosa (Gloomy Scale) biotype)

Bemisia tabaci Q-biotype (Sweet Potato Whitefly - Q-Myllocerus undatus (Sri Lankan Weevil) biotype)

Ceroplastes floridensis (Florida Wax Scale)

Chrysomphalus aonidum (Florida Red Scale) Coccus hesperidum (Brown Soft Scale) Dendrothrips ornatus (Privet Thrips) Diaspidiotus ostreiformis (Scale, Oystershell)

Duponchelia fovealis (European Pepper Moth)

Endelomyia aethiops (Rose Slug Sawfly) Epitrix sp. (Flea Beetle, Garden, Epitrix sp.) Eriococcus lagerstroemia (Crape Myrtle Bark Scale) Eulecanium cerasorum (Scale, Calico) **Exomala (Anomala) orientalis (Oriental Beetle)**

Ferrisia virgata (Mealybug, Striped) Fiorinia externa (Scale, Elongate Hemlock) Fiorinia theae (Scale, Tea)

Frankliniella occidentalis (Thrips, Western Flower) Gynaikothrips uzeli (Gynaikothrips uzeli) Halyomorpha halys (Brown Marmorated Stink Bug) Hemiberlesia rapax (Greedy Scale) Icerya purchasi (Cottony Cushion Scale) Lepidosaphes camelliae (Camelia Scale) Lepidosaphes pallida (Maskell Scale) Lepidosaphes yanagicola (Winged Euonymus Scale) Liriomyza sp. (Liriomyza Leafminers) Lopholeucaspis japonica (Japanese Maple Scale) Lygus sp. (Plant Bugs) Melanaspis deklei (Wax Myrtle Scale)

Miscanthiococcus miscanthi (Miscanthus Mealybug) Myzus persicae (Green Peach Aphid)

Neolecanium cornuparvum (Magnolia Scale) Chrysobothris femorata (Flatheaded Apple Tree Borer) Neopulvinaria innumerabilis (Cottony Maple Scale) Oligonychus ilicis (Mite, Southern red) Chrysomphalus bifasciculatus (False Florida Red Scale) Oligonychus ununguis (Spider Mite, Honeylocust,

Spruce)

Ophiomyia kwansonis (Leafminer, Daylily) Orchestes alni (European Elm Flea Weevil) Orius insidiosus (Orius insidiosus)

Otiorhynchus sulcatus - adults (Black Vine Weevil adults)

Otiorhynchus sulcatus - grubs (Black Vine Weevil grubs)

Paratachardina pseudolobata (Lobate Lac Scale) Paria fragariae ssp. Fragariae (Strawberry Rootworm) Parthenolecanium fletcheri (Fletcher Scale) Phenacaspis pinifoliae (Pine Needle Scale) Phenacoccus gossypii (Mexican Mealybug)

Phenacoccus madeiresis (Madeira Mealybug) Planococcus citri (Citrus Mealybug)

Podosesia aureocincta (Banded Ash Clearwing Borer) Podosesia syringa (Lilac Borer) Polyphagotarsonemus latus (Broad Mite) Popillia japonica - adults (Japanese Beetle - adults) Popillia japonica - grubs (Japanese Beetle - grubs) Pseudaulacaspis cockerelli (False Oleander Scale) Pseudaulacaspis pentagona (White Peach Scale) Pyrrhalta viburni (Viburnum Leaf Beetle) Raoiella indica (Red Palm Mite) Ripersiella hibisci (Root Mealybug, Hibiscus) Saissetia coffeae (Scale, Hemispherical; brown shield) Scirtothrips dorsalis (Chilli Thrips, Yellow Tea Thrips) Stratiolaelaps (Hypoaspis) miles (Hypoaspis miles)

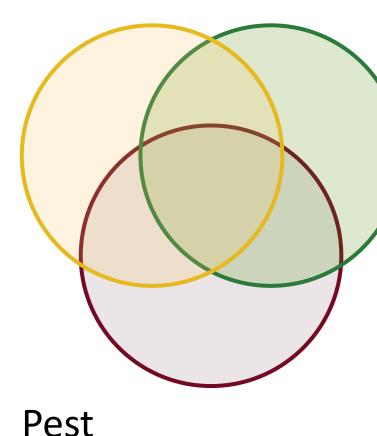
Synanthedon exitiosa (Peachtree Borer) Systena frontalis (Red Headed Flea Beetle) Tetranychus urticae (Spider Mite, Two-Spotted) Thrips simplex (Gladiolus Thrips)

Thysanococcus pandani (Hala Scale)

Trialeurodes vaporariorum (Greenhouse Whitefly) Unaspis euonymi (Euonymus Scale)

Xyleborus glabratus (Ambrosia Beetle, Redbay) Xylosandrus crassiusculus (Ambrosia Beetle, **Granulate**/Asian)

Xylosandrus germanus (Ambrosia Beetle)


Systemic Insecticides and Pollinator Risk

Pollinator

What and how much do insect (bee) pollinators eat?

What are pollinator foraging patterns?

Are they social or solitary?

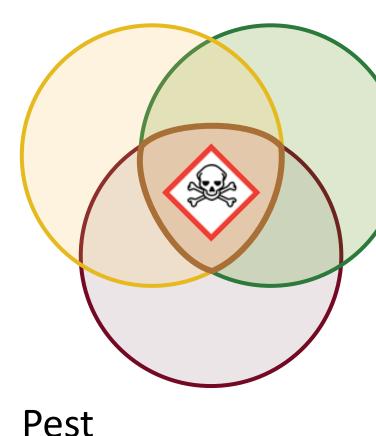
Plant

Are plants good forage materials for insect (bee) pollinators?

How many are available in the landscape?

Are plants treated to manage pest insects?

How impactful is the active to pollinator health? When are applications needed to manage pests, protect pollinators? How much is needed?


Systemic Insecticides and Pollinator Risk

Pollinator

What and how much do insect (bee) pollinators eat?

What are pollinator foraging patterns?

Are they social or solitary?

Plant

Are plants good forage materials for insect (bee) pollinators?

How many are available in the landscape?

Are plants treated to manage pest insects?

How impactful is the active to pollinator health? When are applications needed to manage pests, protect pollinators? How much is needed?

SCRI Protecting Pollinators Team

NIFA SCRI Grant 2016-51181-25399

Researcher Team

James Bethke (University of California-ANR)

Lea Corkidi, Leah Taylor, Annika Nabors Christine Casey (University of California-Davis) JC Chong (Clemson University) Rich Cowles (Connecticut Agricultural Experiment Station) Brian Eitzer (Connecticut Agricultural Experiment Station) Dan Gilrein (Cornell Cooperative Extension of Suffolk County)

Christina Grozinger (Penn State University)

Emily Erickson, Doug Sponsler Zachary Huang (Michigan State University) Hayk Khachatryan (University of Florida) Andrea Nurse (University of Maine) Elena Nino (University of California-Davis) Cristi Palmer (IR-4, Rutgers University)

Amy Abate, Jackie Cavaliere, Dave Bodine, Tom Freiberger, Matt Havers, Yu-Han Lan, Carolina Roe-Raymond

Harland Patch (Penn State University) Dan Potter (University of Kentucky)

Adam Baker, Bernadette Mach, Carl Redmond Dave Smitley (Michigan State University)

Erika Hotchkiss, Colin O'Neal Kimberly Stoner (Connecticut Agricultural Experiment Station) Nishanth Tharayil (Clemson University) Elizabeth Leonard

Stakeholder Advisory Team

Jennifer Browning, BASF Joe Chamberlin, Valent Corporation Harvey Cotten, Horticulture Research Institute Stephanie Darnell, Bayer Environ. Science Dave Fischer, Bayer Environmental Science Rufus Isaacs, Michigan State University Gary Mangum, Owner, Bell Nurseries Dustin Meador, CfAHR Terril Nell, American Floral Endowment Randy Oliver, Scientific Beekeeping Ed Overdevest, Owner, Overdevest Nurseries Jay Overmyer, Syngenta Crop Protection Casey Sclar, American Public Gardens Association

Becky Sisco, IR-4 Western Region

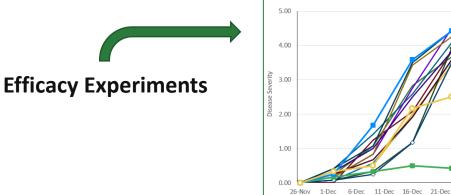
Tim Tucker, Amer. Beekeeping Federation

Mark Yelanich, Metrolina Greenhouses, Inc.

Vickie Wojcik, Pollinator Partnership

Ex officio: Thomas Harty, Tom Moriarty, Tom Steeger, EPA

Protecting Pollinators Requires a Multi-prong Approach



- Pollinator Attractiveness of Environmental Horticulture Crops
- Risk Assessment Data Gaps
- Economic, Efficacy, and Toxicological
 Comparisons of Alternatives
- Public Perception of Management Practices
 & Point-of-Purchase Display Materials
- Development of New BMPs
- Outreach

Efficacy & Toxicological Comparisons

Botector; 8 oz; 0d, 7d, 14d Botector; 8 oz; -7d, 0d, 7d, 14d BW165N; 3 lb; 0d, 7d, 14d BW165N; 4 lb; 0d, 7d, 14d EcoSwing; 2 pt; -7d, 0d, 7d, 14d Coswing; 2 pt; -7d, 0d, 7d, 14d Postiva; 21 fl oz; 0d, 7d, 14d Postiva; 28 fl oz; 0d, 7d, 14d S2200; 15 fl oz; 0d, 14d S2200; 15 fl oz; 0d, 14d S2200; 15 fl oz; 0d, 7d, 14d Untreated uninoculated Untreated uninoculated Decree 50WD6; 1.5 lb; 0d, 14d

Across-20-ft.-Buffer#

Chronic-RG

< 0.01

<0.01=

<0.01

<0.01¤

<0.01¤

Chronic-R0

Across-20-ft.·Buffer¤

cute-RQ¤

< 0.01

< 0.01

< 0.01

< 0.01

<0.01

cute-RQ#

Risk-Quotients-for-Wildlife-Species-with-Aquatic-Diets¤

Mammali

Aviant

Risk-Quotients-for-Wildlife-Species-with-Terrestrial-Diets¤

Small-(20-g)-Bird:

Medium (100-a) Bird#

Chronic-RQ

< 0.01

<0.01=

< 0.01

< 0.01

<0.01

< 0.01

<0.01¤

Chronic-RQ#

At-Application-Site#

At-Application-Site#

Acute·RQ

<0.01=

< 0.01

<0.01=

<0.01¤

<0.01¤

<0.01=

0.099

Representative-Spec

Representative-Species

Diet-Category

Diet-Category¤

fog/water-shrew¤ rice-rat/star-nosed-mole*

small-river-otter= large-river-otter=

small-mink¤

large mink¤

sandpipers

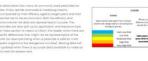
cranes¤

herons¤

small-osprey=

white pelican

Short-Grass¤ Tall-Grass¤ Broadleaf-plants¤ Fruits/pods¤ Arthropods¤


Seeds¤

Short-Grass¤ Tall-Grass¤

rails¤

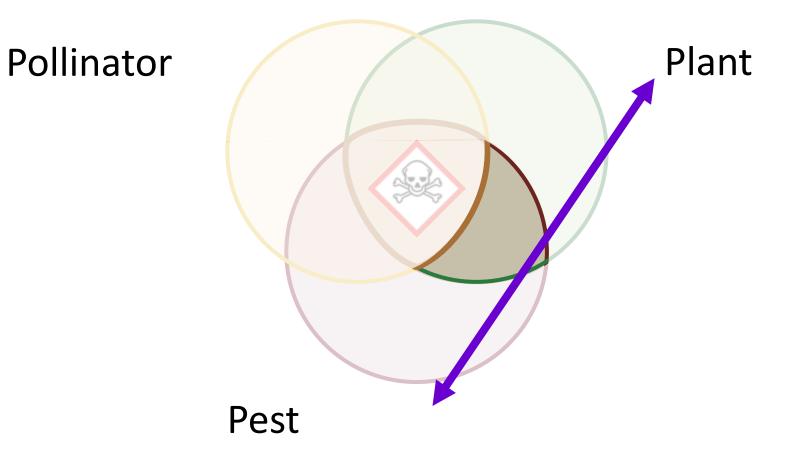
Headback are a causal aspect of load rates and e-intermental batescharks. They not in you take may have preserve the spectra and downays papers, the origin process of the spectra and the spe

2	ALC:UNK	Ownital Own	Athengedard	Internet Trade Names	in the	unite			atus		Una Medulog			
2			00				-	Auto	-	Manmals	-	Manazarata 1991		
			Nettoort	Minut 25-W	6.8	26.6								
	34	Galiatian	venues		5.1	245.					1.000			
			Lettersf	here it.	6.9.1	3.0-					2415.48			
Ľ.				Set.e	Dates Mill	1	48.5		_	-	_			
45 67 8 各間目 保護 建築 海口						Unother	Search and all	11	524					
							Detection .	14	244					
	- 18	Openglosphete	(Disperitor)	-	15.14	24.5			_					
				Despecture	6.8	24.5					100			
				Terbery TID 57,	0.11	28.7					5.1/2/4			
			Acquise	75MSP (Salion), Accelute 1214P	1	423								
			Splate.	Deathir 2011	5.55	123								

Checitors bi: 30 Checg panghagitamanuala, Mi Dan Glean doglipcansitadu, Di Dava Smitley smitleyghmacadu, and Ardeo Cossuling satisfaultedendenconcomp (internet/gint al Rages Weivenity, Matt Neven mitilaligeneen agencada).

Pest Management Solutions for Specialty Crops and Specialty Uses

Product/Active List


Label Rate &

Maximum Application

Limits

Systemic Insecticides and Pollinator Risk

When can applications of systemic insecticides be applied for pest management and still protect pollinators??

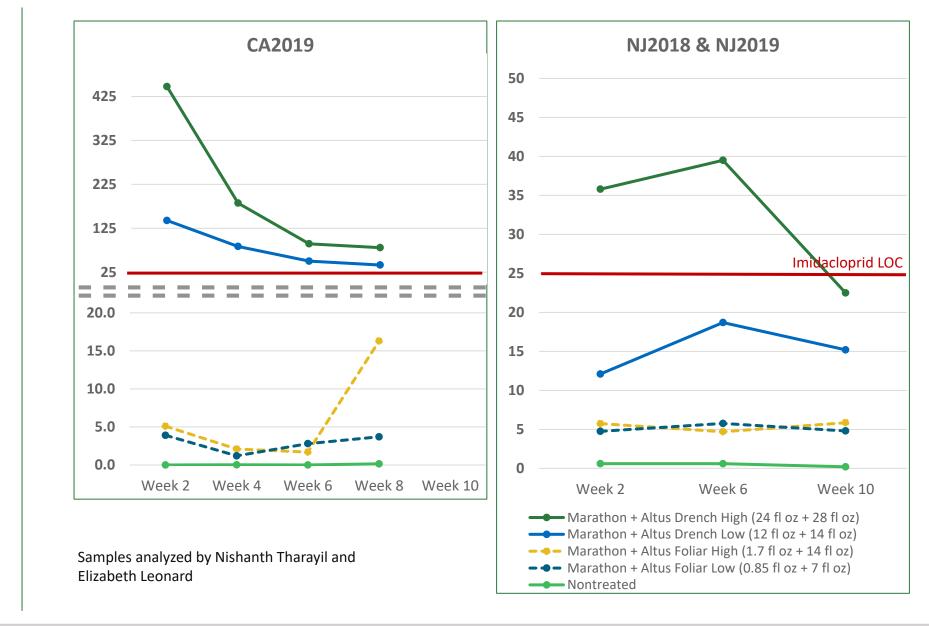
NJ2018 Snapdragon. C. Palmer

Snapdragon Systemic Insecticide Residue Experiments

Snapdragon Residue Methodology Differences

	CA2019	NJ2018	NJ2019		
Cultivar/Pot Size	Sonnet White in 4" Deepots	Sonnet Yellow in 1.5 gal pots	Sonnet Yellow in 1.5 gal pots		
Application Timing	ation Timing Applied sprays or drenches when flower buds hat majority of plants				
Volume per Nominal Gal of Soil	4 fl oz	4 fl oz	4 fl oz		
Collection Timing	2, 4, 6, 8 weeks after treatment	2, 6, 10 weeks after treatment			
Collection Methodology	Harvest flowers and collected nectar in the lab	d nectar in Pipette nectar from flowers with mu			
Range of Volume Collected	0.1 to 0.5 ml	0.6 to 1 ml	0.4 to 0.5 ml		

NJ2018 Snapdragon. C. Palmer

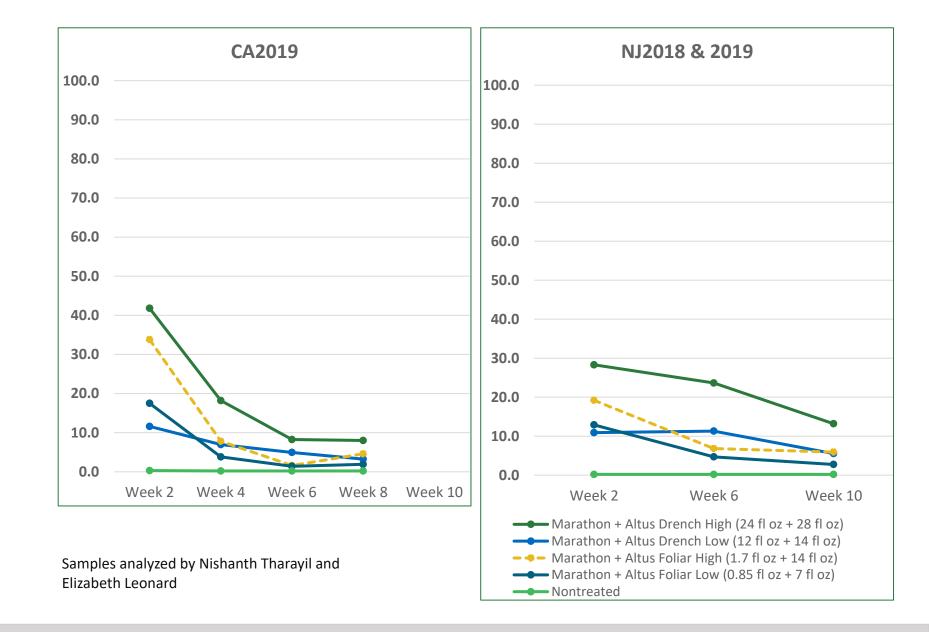


CA2019 Collected Nectar. L. Corkidi

Imidacloprid + Olefin (ppb) Residues in Snapdragon Nectar


 adjusted to average brix in experiment and using half LOQ where residues had been detected in at least one rep

Cyantraniliprole (ppb) Residues in Snapdragon Nectar


 adjusted to average brix in experiment and using half LOQ where residues had been detected in at least one rep

Flupyradifurone (ppb) Residues in Snapdragon Nectar

 adjusted to average brix in experiment and using half LOQ where residues had been detected in at least one rep

Residue Analysis Take Aways


- Foliar applications of neonicotinoids to snapdragon were less than EPA levels of concern even as early as 2 weeks after application
- Drench applications of neonicotinoids may exceed EPA levels of concern
- Cyantraniliprole residues when detected are lower than the EPA level of concern for imidacloprid (25 ppb)
- Flupyradifurone residues are well below the EPA level of concern of 10,000 ppb in nectar
- Potential for applications early in crop cycle of systemic insecticides with contact insecticides applied later in crop cycle plus use of biologicals

Systemic Insecticides and Pollinator Risk

Pest

How many environmental horticulture plants are forage for pollinators?

Pollinator Visitation

2017 MSU Pollinator Attractiveness Plots for Annuals.

Scientists in six locations throughout the United States are studying the top 20 to 25 annuals and perennials grown in the US. They are counting the number of each pollinator group visiting of 3 to 5 cultivars of each plant species.

Researchers: Drs. Jim Bethke, Christine Casey, JC Chong, Christina Grozinger*, Harland Patch*, Dan Potter, Dave Smitley, Kim Stoner*

States: CA, CT, KY, MI, PA, SC

2016 PSU Pollinator Attractiveness Plots for Annuals. Photo by Nick Sloff.

USDA NASS Census of Horticulture 2014: Top Crops by Units Sold

Top 25 Annual & Seasonal Potted Crops

1.	Pelargonium	14.	Kalanchoe		
2.	Viola (Pansy)	15.	Calibrachoa		
3.	Petunia	16.	Hibiscus		
4.	Euphorbia (poinsettia)	17.	Solenostemon (Coleus)		
5.	Begonia	18.	Caladium		
6.	Impatiens	19.	Tulipa		
7.	Tagetes	20.	Rhododendron		
8.	Phalaenopsis		(greenhouse		
9.	Chrysanthemum / Dendranthemo	71	pots of azalea) Hydrangea		
10.	Catharanthus	22.	Saintpaulia		
11.	Lilium	23.	Cyclamen		
12.	Rosa (miniature	24.	Zinnia		
	roses in pots)	25.	Salvia		
13.	Gerbera				
26. Pentas, 27. Verbena, 28. Dahlia, 29. Antirrhinum, 34. Celosia, 35. Portulaca, 37. Lobularia					

Top 25 Herbaceous Perennial Crops

1.	Chrysanthemum/	18.	Veronica
	Dendranthema	19 .	Iris
2.	Hosta	20.	Paeonia
3.	Hemerocallis	21.	Penstemon
4.	Sedum	22.	Digitalis
5.	Dianthus	23.	Perovskia
6.	Salvia	24.	Hibiscus
7.	Phlox	25.	Achillea
8.	Coreopsis		
9.	Lavandula		
10.	Echinacea		
11.	Heuchera		
12.	Rudbeckia		
13.	Leucanthemum		
14.	Astilbe		
15.	Delphinium		

16. Gaillardia

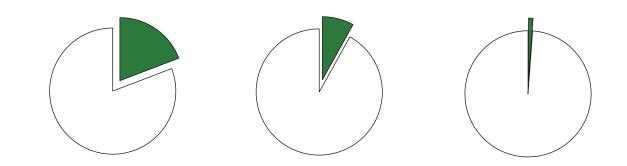
17. Aquilegia

1963-2020 YEARS

Pollinator Visitation – Data Review

- 43 published manuscripts
- 4 years of non-published field plot data from research team
- Average pollinator visitation rating is based on applying a scale of high (3), moderate (2), low (1), or virtually no (0) visitors

Rating	Numerical	Number Visitors per 10 Minutes
High	3	10 or more pollinators
Moderate	2	3 to 10 pollinators
Low	1	1 to 3 pollinators
Virtually None	0	Less than 1 pollinators


• A relative scale was employed for identification of pollen collected by bumble bees, honeybees, and mason bees.

Percent Crop Genera Attractive to Bees & Syrphid Flies for All Plants Screened/ Reviewed

Crop Type (#)	Moderately Attractive (2.0)
Annuals (54)	10%
Herbaceous Perennials (82)	30%
Woody Perennials (65)	8%
Combined (202)	19%
Rating scale	3 or more bees in 10 min

Comparing Plants Sold with Visitation Ratings

Pollinator Attractiveness Ratings for Crops

Numerical Rating	Description	# Bees per 10 Minutes	
0	Not or virtually not attractive	< 1	
1	Minimally attractive	1 < 3	
2	Moderately attractive	3 < 10	
3	Highly attractive	10 +	

Census of Horticultural Specialties (2014) Volume 3 • Special Studies • Part 3 AC-12-SS-3

Issued December 2015

United States Department of Agriculture **Tom Vilsack**, Secretary National Agricultural Statistics Service Joseph T. Reilly, Administrator

Overview of commercial plant attractiveness to pollinators for all crops listed in the 2014 USDA-NASS Census of Horticulture

Сгор Туре	Number Crops included in NASS 2014 Census of Horticulture ^z	Units Sold of Listed Crops	Units Sold Excluding those without Visitation Data ^z	Units Sold (Percent) with Moderate (2.0) or Higher Attractiveness Rating Average to any "Bee"
Annuals	70	523,660,691	444,579,051	897,899 (0.2%)
Herbaceous Perennials	37	134,241,000	130,141,000	9,242,000 (7.1%)
Woody Perennials	45	195,065,571	143,066,423	23,755,693 (16.6%)
Combined	152	858,350,262	806,370,937	33,895,592 (4.8%)

^z Number of crop per category do not equal total crops because some genera are included in multiple categories.

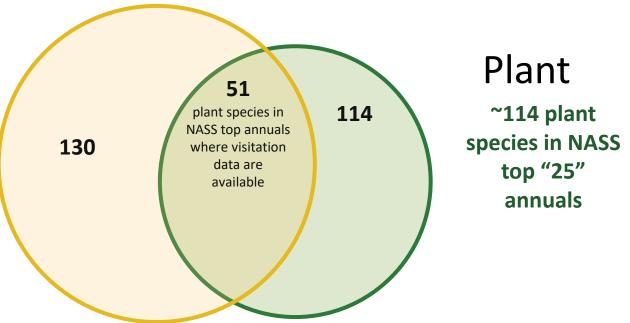
Units sold were excluded to better estimate percentage of units attractive to bees based on whether attractiveness data were available with the exception of species grown primarily as houseplants, conifers, and other trees primarily pollinated via wind.

^y Roses attractive to bees are those that have single open flowers. A large but unknown percentage of roses in the US market have double flowers with nectaries and pollen largely unavailable for foraging. If 25% of the rose units sold are included the percent attractive increases to 20.2% for woodies and 5.6% for all crops.

* Sedum nomenclature has recently split this genus into multiple genera. Some are attractive to bees, in particular Hylotelephium spectabile 'Autumn Joy'. Without knowing the actual units sold, we assumed 50% of the perennial Sedum units were attractive.

Pollinator Visitation Take Aways

- A majority of plants sold in the trade are not good pollinator forage
 - Woodies > herbaceous perennials > annuals
 - Some annuals are pollinator forage such as some cultivars of lobularia, snapdragon, zinnia and more
- Flower form is important with open accessible single flowers versus doubles
- Non-native plants can support pollinator abundance and diversity
- Opportunity for growers to shift to producing more pollinator forage



Systemic Insecticides and Pollinator Risk: Annuals

Pollinator

~130 annual plant species where visitation data are available

Systemic Insecticides and Pollinator Risk: Annuals

Pollinator Plant 51 plant species in 114 ~114 plant ~130 annual plant NASS top annuals species in NASS 130 where visitation species where data are top "25" available visitation data are annuals 61 available neonic treated plant species 84 **5** plant species in NASS top annuals have at least moderate level of visitation by bee pollinators and have pests typically managed by neonics – Pest 3 are woodies used as cutflowers 84 plant species where pest species information is available; **105 pest species for top NASS Annuals;**

36 pest species typically treated with neonics

Resources

- IR-4 Project: <u>www.ir4project.org</u> Go to Environmental Horticulture page!
- ProtectingBees: <u>www.protectingbees.njaes.rutgers.edu</u>
- Oregon Bee Project: <u>www.oregonbeeproject.org</u>
- Penn State Center for Pollinator Research: <u>www.ento.psu.edu/research/centers/pollinators</u>
- Pollinator Partnership: <u>www.pollinator.org</u>
- AmericanHort Horticultural Research Institute: <u>www.hriresearch.org/Pollinate-Research-and-Resources</u>
- IR-4 Site for Project Information Sheets: <u>www.ir4project.org/ehc/ehc-registrationsupport-</u> <u>research/env-hort-extension-resources</u>

Thank you!

Contact information for Cristi Palmer: clpalmer@njaes.rutgers.edu

Photo by Cristi Palmer

