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ABSTRACT Surface wave technology for high-speed communications is a current research topic aimed to
respond to increasing data rate demands on existing copper infrastructures. Also, the topic of surface waves
has recently gained importance in the modeling of transmission line towers hit by lightning strikes with
spectral content in the megahertz band. The single-wire transmission line structure (return conductor absent)
cannot support TEMwaves; it supports a TMSommerfeld wave fully described by two propagation constants
and two characteristic impedances. Nonetheless, the literature on single-wire transmission-line structures has
been employing quasi-static per unit length constitutive parameters, inductance and capacitance, borrowed
from ordinary two-conductor transmission line TEM analysis. This work develops, discusses, and compares
various possible definitions of these constitutive parameters using different physical approaches: TEM-
approach, circuit-approach, and energy-approach. Numerical results for nonmagnetic and magnetic wires,
copper and steel wires, respectively, are obtained in the range 1 Hz to 1 GHz. Our analysis shows that in
some circumstances the TEM and circuit approaches may lead to nonphysical results, but, remarkably, all
the approaches seem to converge to a common dominant term either in the per unit length capacitance or in
the per unit length inductance, whose product is frequency-invariant. Considering the different approaches
under discussion, the differences among the observed results for the per unit length constitutive parameters
are negligibly small, of second-order importance.

INDEX TERMS Magnetic wires, per unit length parameters, single wire transmission line, skin effect,
Sommerfeld wave, surface waves, transmission lines, transmission line towers.

I. INTRODUCTION
The subject of surface waves —electromagnetic waves
guided by and along the boundary surface between two
different media— gave its first steps at the turn of the
20th century pioneered by Sommerfeld [1], [2], followed by
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Zenneck [3], and Goubau [4], [5], [6]. While Zenneck waves
propagate along a planar boundary surface, Sommerfeld and
Goubau waves develop along cylindrical surfaces, namely
metal wires, bare or dielectric coated, respectively.

With broadband properties, the Sommerfeld wave, guided
by an indefinitely long current-carrying lossy bare wire, does
not radiate; it propagates axially at subluminal velocity with
very low attenuation. Outside the wire, the wave’s unbounded
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electromagnetic field is described by Hankel functions. Far
away from the wire, the fields decrease exponentially with
the radial distance, but near the wire they practically follow a
simple inverse distance law, meaning that Sommerfeld waves
are loosely confined around the wire, [7].

Wave confinement concerns, together with wave launch-
ing problems, delayed the fast development of surface
wave applications in those early days. Nonetheless, it was
well-known that the lateral spread of the field around the
wire would diminish with the frequency. Therefore, without
surprise, subsequent technological applications of surface
waves have considered increasingly higher frequencies: from
microwaves to terahertz and beyond, to optics and photonics,
where the subject of surface plasmon-polaritons has become
a vibrant research field [8].

With regard to ‘‘low’’ frequency phenomena, up to the
UHF band, surface wave applications are also making
their way, receiving more and more attention. For exam-
ple, exploring new channels for high-speed communica-
tions on existing wiring infrastructures [9], [10], [11],
[12], [13], [14]; improving the mid-range wireless trans-
fer problem [15], [16]; modeling overhead power lines in
high-frequency regions [17], and modeling power line towers
struck by lightning [18], [19]. In this context, several papers
addressing surface wave problems have referred to or dealt
with the concept of per-unit-length capacitance and induc-
tance parameters [12], [20], [21], [22], targeting an alter-
native circuit-type description of surface wave propagation
phenomena.

In the framework of TEM or quasi-TEM propagation, the
meaning of the per-unit-length (pul) parameters for trans-
mission lines with two or more wires is sound and well-
known [23], [24]. However, for the single-wire transmission
line (SWTL), where the return current is not supported by a
return wire, the use of pul parameters is somehow perplex-
ing [20], [25], [26].

Devoted to the SWTL structure, the focus of this article
is also set on the low frequency range, 1 Hz – 1 GHz, where
Hankel functions have small argument and Sommerfeld wave
parameters (propagation constants and characteristic wave
impedance) can be accurately evaluated using solely the
information conveyed by the skin effect impedance of the
wire calculated from ordinary skin effect theory.

Themain purpose of this work is the computation, analysis,
and discussion of the usage of pul parameters to model the
SWTL structure. The novelty stands on the fact that this is
achieved by considering various approaches with different
physical perspectives—TEMapproach, circuit approach, and
energy approach.

The analysis and discussion of the pul parameters begins
with the ordinary case of a copper wire. Afterwards, we add
a novel contribution, considering the case of a wire made
of carbon steel (the building material of power line towers).
Carbon steel is a good conductor with magnetic properties
that dissipates energy through two mechanisms, Joule losses
and magnetization losses; the first is taken into account via

the wire’s electric conductivity, the second via the imaginary
part of the wire’s magnetic permeability. The peculiar fre-
quency behavior of the skin effect impedance exhibited by
the magnetic wire leads to radial and axial components of the
Sommerfeld wave quite different from those observed in the
copper wire case.

Readers interested in an historic perspective and future
developments of surface waves may refer to [14] and [27].

This work is organized into seven sections, the first of
which is introductory. Section II presents a summary of the
frequency-domain field equations of the Sommerfeld wave
(principal TM mode), including the definition of radial and
axial propagation constants. Energy flow perpendicular and
parallel to the wire is discussed in Section III. A simple pro-
cedure useful for relating wave parameters and skin effect at
frequencies where the Hankel functions have small argument
is proposed in Section IV. Considering diverse physical per-
spectives, the concepts of pul capacitance and pul inductance
in single wire transmission lines are worked out in Section V.
The presentation and discussion of computation results, for
nonmagnetic and magnetic wires, occupies the Section VI.
Devoted to conclusions Section VII ends the article.

II. FREQUENCY DOMAIN FIELD EQUATIONS
Consider a single-wire transmission line consisting of a
current-carrying cylindrical metal wire of radius a immersed
in free space (ε0, µ0, c = 1/

√
ε0µ0, β0 = ω/c) —see Fig. 1.

FIGURE 1. Longitudinal view of the circular cylindrical single-wire
transmission line (SWTL): Geometry, electromagnetic field components
and Poynting vector components.

With assumed linear behavior, the wire is generically char-
acterized by two complex frequency-dependent constitutive
parameters, the permittivity εw and the permeability µw.

The intensity i of the total current flowing in the wire,
propagating along z, is time-harmonic of frequency ω, given
by:{

i(z, t) = Ie−αz cos (ωt − βz) = Re
(
Ie−γ zejωt

)
γ = α(ω) + jβ(ω)

(1)

where Ie−γ z is the phasor of i(t) at generic z, and γ is
the axial complex propagation constant. The positive real
frequency-dependent quantities α and β are the attenuation
and phase constants, respectively.
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The presence of a z-directed current implies the existence
of an axial electric field Ez and of an azimuthal magnetic
field Hθ = H . Moreover, the existence of a z-traveling wave
guided by the wire surface requires a radial electric field Er
hence, we have:{

E(ω, r, z) = (Er (ω, r) e⃗r + Ez(ω, r) e⃗z) e−γ z

H(ω, r, z) = (H (ω, r) e⃗θ ) e−γ z
(2)

While the H-field is linearly polarized in the transverse
plane, the E-field is elliptically polarized in the longitudinal
plane. Regarding the calculation of the electromagnetic field
components inside and outside the wire, the application of
Maxwell equations yields:

∇ × H = jωεE → Er =
γH
jωε

; Ez =
1

jωεr
d
dr

(rH ) (3)

∇ × E = −jωµH → γEr +
d
dr
Ez = jωµH (4)

where ε = εw = ε0 − jσw/ω and µ = µw for r < a, but
ε = ε0 and µ = µ0 for r > a. Note that for good conductors,
and up to optical frequencies, the wire’s conductivity σw is
several orders of magnitude larger than the term ωε0.
Substituting (3) into (4) leads to a Bessel differential equa-

tion on the magnetic field H :

x2
d2H
dx2

+ x
dH
dx

+

(
x2 − 1

)
H = 0,

{
x = gr

g =

√
γ 2 + ω2εµ

(5)

where x is a complex dimensionless variable related to the
radial coordinate through proportionality factors g (for both
media) with the meaning of radial propagation constants,
gw = aw + jbw =

√
γ 2 + ω2εwµw =

√
@@γ

2
− jωσwµw

g0 = a0 + jb0 =

√
γ 2 + ω2ε0µ0

=

√
α2 − β2 + β20 + 2jαβ

(6)

The unknown γ 2 is several orders of magnitude smaller
than ωσwµw and can be neglected in the computation of gw.
To the contrary, g0 depends critically on γ 2 and its real and
imaginary parts are such that b0 > 0 and a0b0 = αβ > 0,
since Im(γ 2) = Im(g20).
The solution of the differential equation in (5) can be

written as a sum of two independent first-order functions of
the Bessel family:

H (r) =

{
A1J1(x) +ZZA3 N1(x) for r < a

A2H
(1)
1 (x) +ZZA4 H

(2)
1 (x) for r > a

(7)

where the Ak constants are found from the boundary con-
ditions H (0) = 0,H (∞) = 0. Considering the asymptotic
behavior of the Neumann function N1 for small r , and of the
second-kind Hankel function H (2)

1 for large r , we must have
A3 = 0 and A4 = 0. On the other hand, the constants A1 and

A2 are found by considering the relationship between H (a)
and I from Ampère’s law,

2πaH (a) = I =

a∫
0

σwEz2πrdr = −

∞∫
a

jωε0Ez2πrdr (8)

and by enforcing, at the interface r = a, the continuity of the
tangential H -field, i.e., A1J1(gwa) = A2H

(1)
1 (g0a).

Note, parenthetically, that the rightmost identity in (8)
states that the conduction current in the wire returns, through
free space, in the form of displacement currents.

In conclusion, the H-field can be evaluated from

H (r) =
I

2πa
·


J1(gwr)
J1(gwa)

for r ≤ a

H (1)
1 (g0r)

H (1)
1 (g0a)

for r ≥ a
(9)

The axial and radial components of theE-field are obtained
from H (r), using (3) and (9):

Ez(r) =
I

2πa
·


gwJ0(gwr)
σwJ1(gwa)

for r ≤ a

g0H
(1)
0 (g0r)

jωε0H
(1)
1 (g0a)

for r ≥ a
(10)

Er (r) =
I

2πa
·


γ J1(gwr)
σwJ1(gwa)

for r <

γH (1)
1 (g0r)

jωε0H
(1)
1 (g0a)

for r > a
(11)

From (10), enforcing the continuity of Ez at the interface
r = a, we get the transcendental characteristic equation that
allows the numerical determination of the axial propagation
constant γ (ω) of the guided surface wave,

g0H
(1)
0 (g0a)

jωε0H
(1)
1 (g0a)

=
gwJ0(gwa)
σwJ1(gwa)

(12)

where the left hand-side depends on the unknown γ , via g0
in (6).

Confirming the continuity of the normal component of the
total current density at the interface r = a, one can also
see from (11) that jωε0Er (a+) = σwEr (a−), showing that
Er (a−) is negligibly small. Note, however, that the normal
component of the electric displacement vector is not contin-
uous at r = a, the discontinuity exists and determines the
density of charge distributed over the surface of the wire,
ρ = ε0Er (a+) = γ I/(2πajω). Integrating ρ around the
wire’s cylindrical surface, of infinitesimal unit length, gives
the pul charge Q on the wire,

Q = 2πaρ =
γ I
jω

(13)
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III. ENERGY FLOW, SKIN EFFECT, WAVE IMPEDANCE
The flow of energy in the SWTL is fully described by the
complex Poynting vector, with axial and radial components:

S =
1
2
E × H∗

= (Sze⃗z − Sr e⃗r )e−2αz,


Sz =

1
2
ErH∗

Sr =
1
2
EzH∗

(14)

While component Sz is related to wave transmission in free
space parallel to the wire, the radial component Sr is related
to wire losses.

The complex power associated to the inward flux of Sr
across the wire surface, of infinitesimal unit length, is com-
puted from (14), (9) and (10), yielding:

Pw =

2π∫
0

1
2
Ez(a)H∗(a)adθ =

(
gw

2πaσw

J0(gwa)
J1(gwa)

)
︸ ︷︷ ︸

Zw=Rw+jXw

I2rms (15)

where gw =
√

−jωσwµw.
Ordinary skin-effect theory [23] shows that the term Zw in

parenthesis is nothing less than the well-known pul skin effect
impedance of the wire. Hence, from (15) and (12) we write:

Zw =
gw

2πaσw

J0(gwa)
J1(gwa)

=
g0

2πajωε0

H (1)
0 (g0a)

H (1)
1 (g0a)

(16)

Taking into account the result in (10) for Ez(r) at r = a,
it also turns clear that Zw in (16) relates the pul longitudinal
voltage drop along the surface of the wire with its own
current, Ez(a) = ZwI , for any z.
At this stage, a pause may be convenient to plainly clarify

the meaning of the pul skin-effect impedance Zw, obtained
in (15)-(16), which is a key tool (input data) for determining
the main parameters of the Sommerfeld wave (propagation
constants and characteristic impedance). Is the pul skin-effect
impedance defined by ordinary skin-effect theory the same
that we found in the context of surface waves? The answer is
yes and no. Please, see Appendix A.
The complex power related to the axial flux of Sz through a

transverse cross section of the SWTL is computed from (14)
and (3),

Pz =

∞∫
a

1
2
Er (r)H∗(r) 2πrdr =

2πγ
jωε0

∞∫
a

H2
rms(r) rdr (17)

or, with the help of (9),

Pz =

 γ

2πa2jωε0

∞∫
a

∣∣∣∣∣H
(1)
1 (g0r)

H (1)
1 (g0a)

∣∣∣∣∣
2

rdr


︸ ︷︷ ︸

Zc= Rc+jXc

I2rms (18)

where the term set in parenthesis denotes the characteristic
impedance Zc of the axial surface wave guided by the wire.

Math details on the integration procedure leading to Zc are
offered in Appendix B, the conclusion being:

Zc =
γ

4πajωε0
Im

(
g0
a0b0

H (1)
0 (g0a)

H (1)
1 (g0a)

)
(19)

or, more compactly, using the rightmost identity in (16),

Zc = Rc + jXc =
γRw
2jαβ

=
Rw
2α

− j
Rw
2β

(20)

The result in (20), where the identity a0b0 = αβ was used,
shows that the characteristic wave impedance Zc is a complex
of the 4th quadrant, orthogonal to γ , that is:

αRc + βXc = 0 (21)

IV. PROPAGATION PARAMETERS ESTIMATION FOR LOW
FREQUENCIES
The transcendental equation in (12) for the computation of
the axial propagation constant γ can be rewritten explicitly
and conveniently in terms of the pul skin effect impedance of
the wire Zw. From (12) and (16), we find:

x
H (1)
0 (x)

H (1)
1 (x)

= 2πa2jωε0 |Zw| ejθw

x = g0a = |g0a| ejθ0 , γ =

√
(x/a)2 − β20

(22)

where θw and θ0 are, respectively, the angles of Zw and g0,
both of the first quadrant.

Now we consider that the frequency is low enough to
ensure that |x| ≪ 1, in which case the ratio of the Hankel
functions is given by the following approximation [7],

H (1)
0 (x)

H (1)
1 (x)

≈ x ln
jς
x

= x ln
∣∣∣x−1

∣∣∣ (1 +
��������ln ς + j

(
π
2 − θ0

)
ln
∣∣x−1

∣∣
)

≈ x ln
∣∣∣x−1

∣∣∣ (23)

where ς = 2/em ≈ 1.123, and m is the Euler-Mascheroni
constant (m = 0.57721 · · · ). Note that the last simplification
in (23) will be acceptable provided that

∣∣x−1
∣∣ is very large,

which is true for very small x.
Hence, from (22)-(23), we find:∣∣∣g20∣∣∣ ln ∣∣∣∣ 1

g0a

∣∣∣∣ ej2θ0 ≈ 2π jωε0Zw = 2πωε0 |Zw| ej(θw+
π
2 )

(24)

Owing to the presence of the logarithm function in (24)
the latter equation cannot yield a closed form accurate solu-
tion for g0; however, the angle θ0 of the radial propagation
constant can be easily estimated.

In fact, from (24), we see that the complex quantities Zw
and g20 are approximately orthogonal, making an angle near
to π /2, hence we may write:

Re(g20)Rw ≈ Im(g20)Xw
(α2 − β2 + β20 )Rw ≈ 2αβXw

θ0 ≈
1
2

(
θw +

π

2

) (25)
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from where we obtain
If Xw ≪ Rw then θ0 ≈

π

4
and β2 − β20 ≈ α2

If Xw ≈ Rw then θ0 ≈
3π
8

and β2 − β20 ≈ 2αβ
(26)

V. PUL TRANSMISSION LINE PARAMETERS
The wave parameters γ and Zc determined in the preced-
ing sections fully describe surface wave propagation along
the SWTL. Despite that, mimicking the established practice
in ordinary quasi-TEM transmission-line analysis, various
authors [12], [14], [20], [21], [22], [25], [26] have referred
the utilization of pul inductance and capacitance parameters
to characterize the wave behavior of SWTL.

We have been sceptic about the utilization of these pul
parameters in SWTL analysis, where E-field lines start and
end at the single wire itself (Fig. 1) since no other con-
ductor exists —see discussion in [25] and [26]. Nonethe-
less, we decided to reexamine the subject, proceeding to
the determination of those pul parameters employing various
approaches with different physical supports —which, not
surprisingly, produce different results, but surprisingly, not
very different, in fact identical to first-order approximation.

A. TEM APPROACH
Based on the knowledge of the propagation constant γ and
characteristic impedance Zc of the axial wave, the TEM
approach mimics the procedure used in ordinary TL anal-
ysis: The pul transverse admittance and pul longitudinal
impedance are firstly obtained and then, from them, the pul
parameters C0 and L0 are calculated.
In the framework of ordinary two-wire line quasi-TEM

theory, the wave parameters γ and Zc are related to the pul
longitudinal impedance Zl and pul transverse admittance Yt
through [23]:

{
Zc =

√
ZlY

−1
t

γ =

√
ZlYt

,

{
Yt = γZ−1

c = G+ jωC0

Zl = γZc = R+ jωL = Zw + jωL0

(27)

where L0 and C0 are the pul external inductance and capac-
itance of the line, G is the pul transverse conductance asso-
ciated with dielectric losses, and Zw is the wires’ pul internal
impedance associated to skin effect phenomena (whose real
part Rw accounts for energy dissipation). Moreover, if the
dielectric medium around the wires is free space without
dielectric losses, as assumed in this work, then one will have
Yt = jωC0 and C0L0 = ε0µ0 = 1/c2.
Adopting the two-wire transmission line formalism in (27)

to the SWTL problem, using (20), yields:

Yt =
γ

Zc
=

2jαβ
Rw

→ C0(ω) =
Yt
jω

=
2αβ
ωRw

(28)

and
Zl = γZc =

γ 2Rw
2jαβ

= Rw + jRw

(
β2 − α2

2αβ

)
L0(ω) =

Zl − Zw
jω

=
β20Rw
2αβω

(
β2 − 2αβXw/Rw − α2

β20

)
(29)

The pul capacitance C0 and pul inductance L0 are real
valued functions of the frequency.

The problem with this approach is revealed by two aspects.
The inductance L0 may turn into a negative quantity (a non-
physical situation) when α > β, which may happen at very
low frequencies. In addition, the product

C0L0 =
1
c2

(
β2 − 2αβXw/Rw − α2

β20

)
(30)

not only does not coincide with 1/c2 but, also, may become
negative.

B. CIRCUIT APPROACH
The circuit approach employs the quasi-static definitions
of capacitance and inductance based on the familiar ratios
charge /voltage and flux /current. The pul charge on the wire’s
surface is divided by the radial voltage to yield C0. The pul
magnetic flux around the wire is divided by the wire current
to yield L0.
With regard to the pul capacitance we have [12],

C0 =
Q(z)
V (z)

=
γ I/(jω)

∞∫
a
Er (z, r)dr

(31)

where Q is the pul charge on the wire’s surface defined
in (13), and the voltage V in the denominator, defined as
the radial integration of the E-field in a transverse plane
from a point at the wire’s surface (r = a) to a point at
infinity, [12], [19], [20], can be evaluated using (11) and (16),
yielding:

V =
γ I

2π jωε0
·

H (1)
0 (g0a)

g0a H
(1)
1 (g0a)

=
γZw
g20

I (32)

Plugging (32) into (31) gives:

C0(ω) =
g20
jωZw

=
2αβ
ωRw

(
1 + j(β2 − β20 − α2)/(2αβ)

1 + jXw/Rw

)
(33)

With regard to the pul inductance L0 we have, [12],

L0 =
ψ(z)
I (z)

=

∞∫
a

µ0H (z, r)dr/I (z) (34)

where ψ denotes the magnetic flux across a rectangular sur-
face on the rz-plane, of infinite radial extent r ∈ [a,∞[, and
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infinitesimal unit length. Using (9) for H (r) leads to:

L0(ω) =
µ0

2π

H (1)
0 (g0a)

g0a H
(1)
1 (g0a)

= µ0ε0
jωZw
g20

=
β20Rw
2αβω

(
1 + jXw/Rw

1 + j(β2 − β20 − α2)/(2αβ)

)
(35)

In this approach none of the pul parameters is a real valued
function, both the inductance and capacitance are complex.
Curiously, their product coincides with 1/c2.

Another difficulty with the circuit approach is that the
radial voltage V involved in the definition of capaci-
tance, (31), is an unmeasurable voltage, therefore unphysical.

C. ENERGY APPROACH
As the name suggests, the energy approach is based on the
calculation of the energy stored in the electromagnetic field
around the wire. The square of the pul wire’s charge is divided
by the pul electric energy to yield C0. The pul magnetic
energy is divided by the square of the wire’s current to
yield L0.
The energy-based approach for the calculation of the pul

parameters of the SWTL has a clear advantage over the other
two already examined. This approach leads to parameters L0
and C0 that, by definition, are intrinsically real and positive,
for energies are quadratic forms.

For the calculation of C0 we employ the well-known rela-
tion between stored electric energy and electric charge

(We)av =

∫
V

(
ŵe
)
av dV =

1
2
Q2
rms

C0
→ C0 =

1
4
QQ∗

(We)av
(36)

where
(
ŵe
)
av =

1
2ε0E

2
rms is the time-averaged density of the

electric energy, and the volume of integration is a circular
disk of infinite radial extent, r ∈ [a, ∞[, with unit length
infinitesimal thickness.

Since the E-field is elliptically polarized in the rz-plane,
its root-mean-square value obeys E2

rms = (E2
r )rms + (E2

z )rms,
and, therefore,

(We)av = Wr +Wz,


Wr = πε0

∞∫
a

(E2
r )rmsrdr

Wz = πε0

∞∫
a

(E2
z )rmsrdr

(37)

From (3), we see that fields Er and H are proportional,
consequently, the integral Wr turns into an integral on |H |

2,
which was solved earlier in Appendix B when calculating the
characteristic impedance Zc of the SWTL. Then, using (17)-
(20), we readily obtain

Wr = πε0

∣∣∣∣ γωε0
∣∣∣∣2

∞∫
a

H2
rmsrdr = Re

(
γ γ ∗

2αβ
Z∗
w

)
I2rms
2ω

=

(
β2 + α2

2αβ

)
RwI2rms
2ω

(38)

Field componentsEz andH are not proportional. Details on
the calculation of Wz are offered in Appendix C, the output
result being:

Wz = πε0

∞∫
a

(E2
z )rmsrdr = Re

(
g20
2αβ

Z∗
w

)
I2rms
2ω

=

(
Xw
Rw

+
β20 − β2 + α2

2αβ

)
RwI2rms
2ω

(39)

From (36)-(39), making QQ∗
=2|γ Irms/ω|

2 in (36), yields
the pul capacitance:

C0(ω) =
2αβ
ωRw

(
β2 + α2

β20 + 2αβXw/Rw + 2α2

)
(40)

The calculation of the pul inductance L0 via the stored
magnetic energy is straightforward because the H-field is
linearly polarized in the transverse plane. Now, we have:

L0 =
2 (Wm)av

I2rms
=

2
I2rms

∫
V

1
2
µ0H2

rmsdV =
2πµ0

I2rms

∞∫
a

H2
rmsrdr

(41)

and, from (17)-(20):

L0(ω) = µ0ε0
ωRw
2αβ

=
β20Rw
2αβω

(42)

The pul capacitance and pul inductance are positive real
valued functions of the frequency but, again, their product:

C0L0 =
1
c2

(
β2 + α2

β20 + 2αβXw/Rw + 2α2

)
(43)

does not coincide with 1/c2.

VI. COMPUTATION RESULTS AND DISCUSSION
To provide the reader with numerical data on the typical
values of the radial and axial wave parameters of the SWTL,
we start this Section focusing on the complex quantities
Zw(ω), g0(ω), γ (ω) and Zc(ω), whose angles, real and imag-
inary parts were computed numerically using the exact equa-
tions in Sections II and III.

Results are listed in Tables 1–4, for a few frequencies
between 1 Hz and 1 GHz, for a copper wire (µ = µ0,
σw = 56 MS/m) of 1 mm radius.

Table 1 shows that the transition from weak to strong skin
effect takes place above 1 kHz (precisely at 4.5 kHz) when
the skin depth and the wire radius turn equal.

Table 2 concerns the real and imaginary parts of the radial
propagation constant g0(ω), whose magnitude and angle are
plotted against frequency in Fig. 2. The log-log plot of |g0|
reveals that this function has two asymptotes with approxi-
mate slopes of 1/2 and 3/4; this suggests that the modulus
|g0| increases with

√
ω for weak skin effect, but with

√
ω3/2

for strong skin effect —this conclusion supports the approx-
imation in (24). In Fig. 2 we added a dashed line showing
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TABLE 1. Pul skin effect impedance, Zw = Rw + jXw (�/m).

TABLE 2. Radial propagation constant, g0 = a0 + jb0 (m−1).

TABLE 3. Axial propagation constant, γ = α + jβ (m−1)

TABLE 4. Characteristic impedance, Zc = Rc + jXc (�)

the approximate representation of θ0(ω) based on the quasi
orthogonality of Zw and g20, (25).

Table 3 shows that at 1 Hz (extremely low frequency) the
axial attenuation constant α exceeds the phase constant β,
contrarily, above 1 MHz, the phase constant is already three
orders of magnitude larger than α. Table 4 depicts a similar
trend in the characteristic wave impedance; the reactance
Xc exceeds the resistance Rc for extremely low frequencies,
but above 1 MHz the resistance is already three orders of
magnitude larger than Xc, confirming (21).
Next, we computed and examined the per unit length C0

and L0 parameters of the SWTL investigated in Section V.
Two materials were considered: copper, again, as an example
of a nonmagnetic very good conductor, and carbon steel as an
example of a magnetic good conductor.

A. NONMAGNETIC WIRE
The pul parameters C0 and L0 were numerically evaluated
against frequency for the case of a copper wire, considering
two values of the wire radius, a = 1 mm and a = 1 cm.
The subplots in Fig. 3 depict the normalized functions

C0(ω)/ε0 and L0(ω)/µ0 for a = 1 mm, calculated using

FIGURE 2. Magnitude and angle plots of the radial propagation constant
g0(ω) against frequency. The dashed line shows the angle approximation
given by (25).

the various approaches presented in Section V. The same in
Fig. 4, but for a = 1 cm.
Note, in both figures, that the imaginary parts of C0 and L0

(circuit approach) are also displayed, represented by dashed
lines, using a 10-times expanded scale (scale on the right-
hand side).

Observation of the numerical results in Fig. 3 and Fig. 4
shows:

- The curves T (black), C (red) and E (blue) do not coincide
in the whole frequency range but largely overlap in some
regions; curves T and C tend to overlap at frequencies where
the skin effect is weak; conversely, when the skin effect is
strong, the overlap occurs with curves T and E.

- For all the approaches, the pul capacitance increases with
increasing ω, from about ε0/4 to ε0; the inverse happens to
the pul inductance that decreases from about 4µ0 to µ0.
- An exception to the above remark is the curve T for the

pul inductance that exhibits non-physical negative values at
extremely low frequencies; but in the remaining frequency
range the curve T turns positive and merges with the curves
C and E.

- It is also confirmed that the circuit approach leads to
non-physical imaginary parts in the pul parameters L0 and
C0 (dashed lines), but their amplitude is small, some 2 orders
of magnitude smaller than the corresponding real parts.

- The curves of C0 and L0 for a = 1 mm and a = 1 cm are
similar; the curves in Fig. 3 and Fig. 4 show the same trend,
diverging slowly as f increases to 1 GHz. Nonetheless, for
the circuit approach, noticeable differences can be observed
in the plots of the imaginary parts of L0 and C0, not in their
amplitudes (which are kept small) but on the specific frequen-
cies where sudden variations occur —the frequency location
diminishes 2 orders of magnitude, from 104 Hz to 102 Hz
when the wire radius increases one order of magnitude. Those
frequencies are the transition frequencies fromweak to strong
skin effect defined by the condition a ≈ δ (with δ the skin
depth, proportional to ω−1/2).
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FIGURE 3. Pul parameters of the SWTL against frequency for a copper
wire of radius a = 1 mm, calculated using the TEM-approach (T), the
circuit approach (C), and the energy approach (E). Subplot (a) shows the
normalized capacitance C0(ω)/ε0, subplot (b) shows the normalized
inductance L0(ω)/µ0. The dashed lines in (a) and (b) show, respectively,
the non-zero imaginary parts of the pul normalized capacitance and
inductance found using the circuit approach (scale on the right).

The analytical results established in Section V for the TEM
approach (28), (29), for the circuit approach (33), (35), and
for the energy approach (40), (42), fail to coincide; this means
that the object of calculation lacks a deep physical meaning.
Nevertheless, all the approaches produce similar results, with
a common dominant term.

For the approach K (with K = T, C, E) the various pul
capacitances and pul inductances can be rewritten in the
compact form:

CK
0 = C0(1 + χKC ), LK0 = L0(1 + χKL ), for K = T ,C,E

(44)

where the common dominant terms are:

C0 =
2αβ
ωRw

, L0 =
β20Rw
2αβω

=
µ0ε0

C0
(45)

FIGURE 4. Pul parameters of the SWTL against frequency for a copper
wire of radius a = 1 cm, calculated using the TEM-approach (T), the circuit
approach (C), and the energy approach (E). Subplot (a) shows the
normalized capacitance C0(ω)/ε0, subplot (b) shows the normalized
inductance L0(ω)/µ0. The dashed lines in (a) and (b) show, respectively,
the non-zero imaginary parts of the pul normalized capacitance and
inductance found using the circuit approach (scale on the right).

Note, from (45), that the normalized quantities C0/ε0 and
L0/µ0 are the inverse of each other, as the simulations already
suggested.

The quantities χKC and χKL in (44) can be interpreted as first
order corrections to the common dominant term. Those cor-
rections are not only frequency-dependent but also approach-
dependent. They can be extracted from (28), (29), (33), (35),
(40), (42), and are summarized below:

TEM-approach


χTC = 0

χTL =
N

β20

(46)

Circuit-approach


χCC =

N
2αβ(Xw/Rw − j)

χCL =
N

j2αβ − (β2 − β20 − α2)

(47)
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Energy-approach

χ
E
C =

N

β20 + 2α2 + 2αβXw/Rw
χEL = 0

(48)

where:

N = (β2 − β20 − α2) − 2αβXw/Rw (49)

Observe that the numerators N in (46)-(48) are all the
same and given by the expression in (49). Going back to
Section V we may recall that the complex quantities Zw and
g20 are approximately orthogonal, and, from (24)-(25), we find
that N ≈ 0. With no exception, all the χ terms remarkably
collapse to zero,

χKC ≈ χKL ≈ 0, for K = T ,C,E (50)

As to the various approaches compared in Figs. 3 and 4,
the differences among the graph plots of the pul parameters
(capacitances and inductances) are so small because they are
of second order importance, indeed. Hence, albeit our initial
skepticism about the usage of pul parameters, it seems that
the results in (45), common to the three approaches, can be
adopted as a sound first order approximation at least for low
frequencies (below 1 GHz).

The equation in (24), key for recognizing that N in (46)-
(49) is zero at first order approximation, can also be used
to help explain why C0 ≈ ε0/k and L0 ≈ µ0k , where
k is a frequency-dependent real positive quantity varying
approximately in the range 1 to 4. In fact, extracting the
imaginary part of both sides of (24) leads to:

Im(g20) = 2a0b0 ≈
2πε0

ln |1/(g0a)|
ωIm(jZw)

2αβ ≈
2πε0

ln |1/(g0a)|
ωRw

(51)

and, from (45),

C0 ≈
2πε0

ln
∣∣∣g−1

0 /a
∣∣∣ , L0 ≈

µ0

2π
ln
∣∣∣g−1

0 /a
∣∣∣ (52)

Therefore, we find that k =
1
2π ln |1/(g0a)| . For a = 1 mm,

and since |g0(ω)| increases from 10−7 to 10−1 (see Fig. 2),
the value of k will decrease from 4 to 1, as illustrated in the
graphs of C0 and L0 in Fig. 3.

The results in (52) seem to suggest that from the viewpoint
of the pul constitutive parameters, C0 and L0, the SWTL is
equivalent to a coaxial cable with inner radius a (= 1 mm)
and outer radius equal to |g−1

0 (ω)|, some 2 m at 1 GHz, but
more than 3000 km at 1 Hz.

B. MAGNETIC WIRE
To the best of our knowledge, research on surface wave
propagation has not so far considered the case of conducting
wires with magnetic properties (magnetic wires). However,
as mentioned in Section I, electromagnetic models based on
the Sommerfeld wave are being implemented to characterize
the behavior of power line steel towers struck by lightning

currents [18], [19] —return conductor absent in the path of
the return current.

Steel is a conducting magnetic medium whose magnetic
properties will be here approximated by a basic Debye’s
model [28], [29], through:

µw(ω) = |µw| e−jθµ = µr − jµi = µ∞ +
µdc − µ∞

1 + jω/ω0
(53)

where µdc and µ∞ are permeability values for ω = 0 and
ω → ∞, and ω0 is the ferromagnetic resonance frequency
—see Fig. 5. Also, according to Snoek’s limit [30], we take
µ∞ ≈ µ0 in (53).

FIGURE 5. Real and imaginary parts of the magnetic wire’s frequency-
dependent complex permeability (Debye model).

Since the case of magnetic SWTL has not been addressed
in the literature, we pay here special attention to it by thor-
oughly illustrating the effects of the frequency-dependent
complex permeability on the computation of the skin
effect impedance, wave parameters (axial and radial prop-
agation), and pul parameters (considering the T, C and
E approaches).

As data, we take a carbon steel wire with a = 1 cm, σw = 5
MS/m, µdc = 250µ0 and f0 = 5 kHz, [29].
Fig. 6 shows the real and imaginary parts of the wire pul

skin effect impedance against frequency, for f < 0.1 MHz
(Fig. 6a) and f > 0.1 MHz (Fig. 6b). Also, from Fig. 7
(radial propagation constant), useful information about the
skin effect angle θw can be extracted from the dashed line
—recall, from (25), that θw ≈ 2θ0 − π/2. The curves in
Fig. 6 have no similarity whatsoever with the familiar curves
of Rw and Xw for nonmagnetic wires (check with Fig. 10 in
Appendix A). This requires an explanation.
For extremely low frequencies (weak skin effect, [23]) we

write:

Zw ≈

(
1

πa2σw

)
︸ ︷︷ ︸

Rdc

+j
ωµw

8π
→


Rw ≈ Rdc +

��
��ωµdc

8π
ω

ω0

Xw ≈
ωµdc

8π

(54)

VOLUME 11, 2023 59629



J. A. Brandão Faria et al.: Surface Wave, Skin Effect, and Per Unit Length Parameters

FIGURE 6. Real and imaginary parts of the pul skin effect impedance of
the magnetic SWTL against frequency. (a) f < 0.1 MHz; (b) f > 0.1 MHz.

FIGURE 7. Magnitude and angle of the radial propagation constant g0(ω)
of the magnetic SWTL against frequency. The log-log plot of |g0| shows
three regions, from 1 Hz to 5 kHz with slope 3/4, from 5 kHz to 1 MHz
with slope 1/2, and above 1 MHz again with slope 3/4. The dashed line
shows the angle approximation given by (25), θ0 = 45◦ + θw/2.

For direct current, we have θw = 0, but just a small increase
in the frequency —less than 10 Hz— makes the angle θw
rapidly grow to near 45◦.

FIGURE 8. Axial wave parameters of the magnetic SWTL against
frequency. (a) Attenuation and phase constants. (b) Characteristic wave
resistance and reactance.

At intermediate frequencies, from 10 Hz to 1 kHz, where
(54) does not apply, the angle θw remains near to 45◦, with
Rw ≈ Xw. Afterwards, θw drops to near zero again (as if in
dc). To understand this behavior, we must consider the strong
skin effect approximation [23], and write:

Zw ≈
1 + j

2πaδσw
= Rδ

√
2ej(π/2−θµ)/2

Rδ =
1

2πa |δ| σw
, δ =

√
2

ω |µw| σw
ejθµ/2

(55)

where Rδ is the pul skin resistance and δ is the wire’s skin
depth (an ever-decreasing function of the frequency) which,
is characterized not only by its absolute value but also by its
angle (half of the permeability angle). Then, from (55), after
some trigonometry, we find:

Zw ≈ Rδ
√
1 + sin θµ︸ ︷︷ ︸
Rw

+j Rδ
√
1 − sin θµ︸ ︷︷ ︸
Xw

θw ≈ arctan

√
1 − sin θµ
1 + sin θµ

(56)
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FIGURE 9. Pul parameters of the magnetic SWTL against frequency,
calculated using the TEM approach (T), the circuit approach (C), and the
energy approach (E). Subplot (a) shows the normalized capacitance
C0(ω)/ε0, subplot (b) shows the normalized inductance L0(ω)/µ0. The
dashed lines in (a) and (b) show, respectively, the non-zero imaginary
parts of the pul normalized capacitance and inductance for the circuit
approach (scale on the right).

Since θw falls to near zero (at around 80 kHz) then the
permeability angle must get near to 90◦. Observing Fig. 5 we
see that this is possible for ω > ω0, when µi exceeds µr .

The modulus and angle of the permeability can be easily
calculated from (53), yielding:

|µw| =

√√√√µ2
dc + (µ0

ω
ω0
)2

1 + ( ω
ω0
)2

, tan θµ =
(µdc − µ0) ωω0
µdc + µ0( ωω0 )

2 (57)

The frequency-dependent permeability angle has a local
maximum (dθµ/dω = 0) at the frequency ω′

= ω0
√
µdc/µ0

≈ 80kHz, for which we find:

µw(ω′) =
√
µdcµ0 e

−j arctan
(
1
2
√
µdc/µ0

)
≈ 16µ0e−j82

◦

(58)

The minimum values of θ0, θw, and Xw, at f = 80 kHz,
observed in Figs 6 and 7, are clearly a consequence of the
stationarity point in the complex permeability.

The axial wave parameters, propagation constant and char-
acteristic impedance, are represented against frequency in

Fig. 8. Note that the parameters α and β in Fig. 8a are
interrelated with Rc and Xc in Fig. 8b via (21). For very
low frequencies, α and β are similar in magnitude, so are
Rc and Xc. For high frequencies β dominates α, and Rc
dominates Xc.
Finally, we pay attention to the pul parameters C0 and

L0 calculated using the TEM approach (T), the circuit
approach (C), and the energy approach (E). Computation
results are shown in Fig. 9, the normalized capacitance
in Fig. 9a, the normalized inductance in Fig. 9b. Results
obtained are much like those for the nonmagnetic wire in
Subsection VI-A.

The curves obtained using the T, C and E approaches
overlap significantly, differing little among them, the only
exception being the inductance for the T-approach, which
displays a non-physical trend, increasing from negative real
values (at extremely low frequencies) up to ‘normal’ positive
values (at 1 kHz) when it merges with the C and E curves.

Along nine frequency decades the capacitance is seen to
increase only by a factor of 3, the inductance decreases by
the same factor, and their product L0C0 remains practically
invariant —this behavior is justified in (52).

The ups and downs observed in the pul skin effect
impedance (Fig. 6) seem to have no visible impact on C0
and L0, exception to the curves of their imaginary parts
(circuit approach), however, the latter not only lack physical
meaning but also have very small magnitude compared to the
corresponding real parts.

VII. CONCLUSION
This work, devoted to the single-wire transmission line at
low frequencies, was mainly focused on the critical anal-
ysis, interpretation, computation, and discussion of its per
unit length constitutive parameters, namely, the internal pul
skin effect impedance, and the external pul capacitance and
inductance, C0 and L0.

The evaluation of the internal pul skin effect impedance
raises no difficulties, practical or conceptual; it can be dealt
with the help of the familiar skin effect theory. Nonetheless,
we paid particular attention to that topic when addressing the
case of magnetic wires (like steel) where the magnetic perme-
ability can be modeled using a complex frequency-domain
Debye approach, which, we showed can produce intense
fluctuations in the skin effect impedance angle, from 0 to 45◦,
back to 0, and again up to 45◦ —an abnormal behavior not
possible in nonmagnetic wires. Knowledge of the internal
skin effect impedance is crucial for the determination of the
properties of the radial wave and of the axial wave guided
by the single wire, be it nonmagnetic or magnetic. The link
between the skin effect impedance and the wave propagation
parameters was established, analyzed, and an approximation
was proposed, later confirmed numerically.

Contrarily, the calculation of the external pul inductance
and capacitance of the SWTL raises difficulties, practical and
conceptual. Those concepts belong with quasi-TEM trans-
mission line theory with two or more wires; their usage
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outside such scope is questionable. For example, the E-field
lines in the SWTL begin and end at the wire itself —the
meaning of capacitance defined between a wire and itself
is perplexing, at least. Nevertheless, the literature on SWTL
has been accumulating an increasing number of references to
pul constitutive parameters; this made us conduct a thorough
research on the subject. For that purpose, we considered, ana-
lyzed, and compared three approaches with different phys-
ical supports: the TEM-approach, the circuit-approach, and
the energy-approach. The first mimics ordinary TL analysis,
extracting the constitutive parameters from wave parameters.
The secondmakes use of the quasi-static definitions of capac-
itance and inductance using the familiar ratios charge/voltage
and flux/current. The third determines the constitutive param-
eters from the energy stored in the electromagnetic field
around the wire.

The analytical solutions we derived for C0 and L0 using
the various approaches do not coincide, as their graphical
representations also show. Two problems were identified:
the TEM-approach leads to negative inductance values at
extremely low frequencies; the circuit-approach leads to
small but non-zero imaginary parts in the pul inductance
and capacitance. The energy-based approach has no physical
drawbacks.

Excluding the above identified problems, considering the
nine-decade frequency window from 1 Hz to 1 GHz, we con-
cluded that the results of the TEM-approach and circuit-
approach converge to the results of the energy-approach,
with minor differences of second-order importance. The three
approaches provide a common frequency-dependent domi-
nant term for C0 and, also, for L0, whose product is 1/c2.
These pul parameters are, approximately, the same as those
of an equivalent coaxial cable with an outer radius equal to
the inverse of the absolute value of the radial propagation
constant.

APPENDIX A
CONSIDERATIONS ON THE SKIN EFFECT
A legacy of J. C. Maxwell [31], the subject of skin effect
is a well-known classical topic in electrical engineering and
electromagnetics that has been studied for over a century,
from circular cylindrical wires to conductors with more com-
plicated cross-sections.

The body of literature on skin effect analysis is vast; it
would require and deserve a whole review article to cover just
the major contributions to the field. That is not the purpose of
the present article, where the skin effect is a tool, not a target.
Nonetheless, with respect to recent advances (2010’s) regard-
ing solid and tubular circular geometries, we may cite: [32],
[33] for contributions to full time-domain skin-effect theory
in homogeneous solid wires; [34], [35] for contributions to
accurate numerical computations of skin-effect impedance in
homogeneous cylindrical conductors; [36], [37], [38] for con-
tributions to frequency-domain skin-effect impedance and
field calculations in inhomogeneous cylindrical structures;

and, also, [39], [40] for contributions to the problematics of
the solitary conductor.

Although skin-effect analysis is not a target in this work,
we take the opportunity to clarify the role of the pul
skin-effect impedance Zw in surface wave context.

In ordinary frequency-domain skin-effect analysis, the
sinusoidal current in the solitary circular wire and associated
fields are considered z-independent; div and rot Maxwell
equations include only radial derivatives, ∂/∂z derivatives
are absent, so are Er field components. In this context
Zw is calculated using the well-known ordinary skin-effect
formula

Zw =
gw

2πaσw

J0(gwa)
J1(gwa)

, gw =
√

−jωµwσw (A1)

However, in surface wave theory, the solitary wire sinu-
soidal current is not z-independent—see (1). Fields propagate
with e−γ z and radial E-field components are present —see
(2)-(4). In this context Zw is calculated using (A1) but with
gw defined differently, from (6),

(Zw)exact =
gw

2πaσw

J0(gwa)
J1(gwa)

, gw =

√
γ 2 − jωµwσw

(A2)

Therefore, the pul skin-effect impedances Zw calculated
from surface-wave theory or from ordinary skin-effect theory
are, strictly speaking, unequal. However, from an engineering
viewpoint, the differences are so small that they can be safely
ignored. In fact, the quantity γ 2 appearing in (A2) is of the
same order of magnitude of β20 and the latter is many orders
of magnitude smaller than ωσwµw.

Making γ ≈ jβ0 (for estimation purposes) yields:

(gw)exact
gw

=

√
1 +

jγ 2

ωµwσw
≈ 1 − j

1
2

(
µ0

µw

)(
ωε0

σw

)
︸ ︷︷ ︸

≪1

≈ 1

(A3)

where the inequality ωε0 ≪ σ is valid up to the optical range
for the case of good conductors. For example, for a copper
wire, at 1 GHz, we find (gw)exact/gw ≈ 1− j 1210

−9—an error
smaller than 1 part in a billion. Figure A1 depicts the real and
imaginary parts of the pul skin-effect impedance Zw against
frequency, computed using (A1) and (A2), for a copper wire
with a = 1 mm. No kind of disagreement is observable.
In conclusion:
The general field equations that govern surface wave phe-

nomena collapse in ordinary skin-effect field equations in the
limit γ → 0, for r ≤ a.
Albeit different, the results in (A1) and (A2) produce

undistinguishable numerical results.
The procedure proposed in this paper, where Zw from (A1)

is plugged in the transcendental equation (22) and the latter is
solved for the radial and axial propagation constants, g0 and
γ , permits a complete accurate description of the properties
of the Sommerfeld wave.
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FIGURE 10. Real and imaginary parts of the pul skin effect impedance of
a copper wire with radius 1 mm against frequency. Solid lines are exact
results from (A2); superimposed circles are approximate results from
(A1). (a) f < 0.1 MHz; (b) f > 0.1 MHz.

APPENDIX B
RADIAL INTEGRATION OF |H|2

According to (18), the determination of the characteris-
tic impedance Zc requires the calculation of the following
integral:

Int(r) =

∫ (
H (1)
1 (g0r)

) (
H (1)
1 (g0r)

)∗

rdr (B1)

where g0 = a0 + jb0 is a complex of the 1st quadrant.
Since (H (1)

n (x))∗ = H (2)
n (x∗), for n = 1 we rewrite (B1) as

Int(r) =

∫ (
H (1)
1 (g0r)

) (
H (2)
1 (g∗

0r)
)
rdr (B2)

An identity from the theory of Bessel functions [41], [42],
of arbitrary order n, is now useful:∫

Pn(pr)Qn(qr)rdr

=
(qr)Pn(pr) Qn−1(qr) − (pr)Pn−1(pr) Qn(qr)

p2 − q2
(B3)

where Pn and Qn are Bessel functions (Jn,Nn,H
(1)
n or H (2)

n ).
By making p = g0, q = p∗,Pn = H (1)

1 and Qn = H (2)
1

in (B3), transforms (B2) into

Int(r)

=
(g∗

0r)H
(1)
1 (g0r)H

(2)
0 (g∗

0r) − (g0r)H
(1)
0 (g0r)H

(2)
1 (g∗

0r)

g20 − (g20)
∗

=

(
(g0r)H

(1)
0 (g0r)H

(2)
1 (g∗

0r)
)∗

−

(
(g0r)H

(1)
0 (g0r)H

(2)
1 (g∗

0r)
)

4ja0b0

= −
1

2a0b0
Im
(
(g0r) H

(1)
0 (g0r) H

(2)
1 (g∗

0r)
)

= −
1

2a0b0
Im
(
(g0r) H

(1)
0 (g0r) (H

(1)
1 (g0r))∗

)
(B4)

To obtain Zc we need to evaluate Int(∞) − Int(a). The
value of Int(∞) is found from the asymptotic behavior of
the product of the Hankel functions in (B4). Abbreviating
g0r = x, and recalling that Im(g0) = b0 > 0 we find

For r → ∞ : x
(
H (1)
0 (x)

) (
H (1)
1 (x)

)∗

∝
g0
|g0|

e−2b0r → 0

In conclusion,

Zc =
γ

2πa2jωε0
·

−Int(a)∣∣∣H (1)
1 (g0a)

∣∣∣2
=

γ

4πajωε0
Im

(
g0
a0b0

·
H (1)
0 (g0a)

H (1)
1 (g0a)

)
(B5)

which finally proves (19).

APPENDIX C
RADIAL INTEGRATION OF |Ez|2

According to (37) and (10), the determination ofWz requires
the calculation of the following integral:

Int ′(r) =

∫ (
H (1)
0 (g0r)

) (
H (1)
0 (g0r)

)∗

rdr (C1)

Since (H (1)
n (x))∗ = H (2)

n (x∗), for n = 0 we rewrite (C1) as

Int ′(r) =

∫ (
H (1)
0 (g0r)

) (
H (2)
0 (g∗

0r)
)
rdr (C2)

Using the identity in (B3), with p = g0, q = p∗,Pn = H (1)
0

and Qn = H (2)
0 , transforms (C2) into

Int ′(r)=
(g∗

0r)H
(1)
0 (g0r)H

(2)
−1(g

∗

0r)−(g0r)H
(1)
−1(g0r)H

(2)
0 (g∗

0r)

g20 − (g20)
∗

which, taking into account that H (n)
−1 = −H (n)

1 , yields

Int ′(r)

=
(g0r)H

(1)
1 (g0r)H

(2)
0 (g∗

0r) − (g∗

0r)H
(1)
0 (g0r)H

(2)
1 (g∗

0r)

g20 − (g20)
∗

=

(
(g∗

0r)H
(1)
0 (g0r)H

(2)
1 (g∗

0r)
)∗

−

(
(g∗

0r)H
(1)
0 (g0r)H

(2)
1 (g∗

0r)
)

4ja0b0
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= −
1

2a0b0
Im
(
(g∗

0r)H
(1)
0 (g0r)H

(2)
1 (g∗

0r)
)

= −
1

2a0b0
Im
(
(g∗

0r)H
(1)
0 (g0r) (H

(1)
1 (g0r))∗

)
(C3)

Noting again that Int ′(∞) = 0, the contributionWz for the
electric energy in (37) takes the form:

Wz =

∣∣g20∣∣ I2rms
4πa2ω2ε0

·
−Int ′(a)∣∣∣H (1)
1 (g0a)

∣∣∣2
=

∣∣g20∣∣ I2rms
8πaω2ε0

Im

(
g∗

0

a0b0
·
H (1)
0 (g0a)

H (1)
1 (g0a)

)
(C4)

Further, eliminating the Hankel functions from (17), and
making a0b0 = αβ, we find

Wz = Re

(
g20
2αβ

Z∗
w

)
I2rms
2ω

(C5)

which finally proves (39).
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