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Heightened interest in tricuspid regurgitation (TR) stems from the consistent association of mortality with greater severity of TR, and a
low use of surgical solutions in the setting of high in-hospital mortality attributed to the late presentation of the disease. The delay in
intervention is likely related to a limited understanding of the valvular/ventricular anatomy and disease pathophysiology, along with an
underestimation of TR severity by standard imaging modalities. With the rapid development of transcatheter solutions which have shown
early safety and efficacy, there is a growing need to understand and accurately diagnose the valvular disease process in order to determine
appropriate management solutions. The current review will describe both normal and pathologic tricuspid valvular anatomy, the classifica-
tion of these anatomic substrates of TR, the strengths and limitations of the current guidelines-recommended multi-parametric echocar-
diographic approach and the role of multi-modality imaging, as well as the role of transcatheter device therapy in the management of the
disease.
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Introduction

Heightened interest in tricuspid regurgitation (TR), the previously
‘forgotton valve’, may be related to consistent findings in three main
areas. First, multiple studies show an independent association of mor-
tality with higher grades of TR severity.1,2 Second, isolated surgical
intervention for TR is infrequently performed3 and associated with
�8–10% in-hospital mortality.4,5 Third, the early success of transcath-
eter repair6 and replacement7 techniques has increase access to
relatively low-risk treatments.

The current review will describe both normal and pathologic tri-
cuspid valvular (TV) anatomy, the classification of the anatomic sub-
strates of TR, and the strengths and limitations of the current
guidelines-recommended multi-parametric echocardiographic

approach as well as new methods and algorithms to determining TR
severity.8–12 The role of transcatheter device therapy will also be
discussed.

Tricuspid valve anatomy

Tricuspid valve leaflets
The TV is typically composed of three leaflets of unequal size which
by convention are named the anterior, posterior, and septal leaflets.
However, this convention is based on a vertical position of the long
axis of the heart. Whereas by positioning the TV in the anatomic or
‘attitudinal’ position, with the long axis rotated counterclockwise
from vertical, the anterior leaflet is anterior–superior, the posterior

Graphical Abstract

Heightened interest in tricuspid regurgitation (TR) has led to a novel classification of the aetiology of TR, novel leaflet nomenclature, novel ways of quantify-
ing TR, and novel methods for imaging the tricuspid valve complex.
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leaflet is inferior, and the septal leaflet is posterior (Figure 1).13 The at-
titudinal position will determine the direction of intra-cardiac cathe-
ters during transcatheter procedures.14 However, there are multiple
reasons to maintain the original nomenclature of anterior, posterior
and septal leaflets. This nomenclature is derived from the traditional
“surgical view” approach used for many years to enhance communi-
cation between imagers and surgeons. Similarly, transcatheter inter-
ventions will be performed using echocardiographic guidance and
clear communication between imager and interventionalist is essen-
tial. By naming the TV leaflets based on consistent intra-cardiac anat-
omy (interventricular septum for the septal leaflet, anterior to the
aorta for the anterior leaflet, and posterior to the anterolateral papil-
lary muscle for the posterior leaflet) one maintains a common lan-
guage that can be used with all imaging modalities, and improves
consistent communication within procedures, irrespective of individ-
ual attitudinal variability. In the classic three leaflet valve, the anterior
and septal leaflets are usually the largest circumferentially, thus the
anteroseptal commissure is the longest.15 There are typically two dis-
tinct papillary muscles (anterior, posterior), and a third variable septal
papillary muscle. The anterior papillary muscle is the largest and pro-
vides chordae to the anterior and posterior leaflets. It arises from the
anterior/lateral wall of the right ventricle (RV), near the trabecula-
tions which incorporate the moderator band.16

Pathology studies have long recognized that there are a vari-
able number of leaflets in healthy subjects17,18 but use varying
terminology to describe these supernumerary leaflets.19,20

Recently a simplified nomenclature has been proposed21 which
may be relevant to pre-procedural planning and execution of
transcatheter devices22 as well as determine device success.22,23

Given the proximity of the TV to the anterior chest wall and dia-
phragm, identification of the leaflet morphologies can be

performed on either 2D transthoracic echocardiography (TTE)
from modified views or 2D transoesophageal echocardiographic
(TOE) transgastric short-axis view, or the 3D volume-rendered
equivalent using either modality. In this nomenclature proposal,
deep indentations and true commissures were considered ana-
tomically equivalent and were used to identify supernumerary
leaflets. This convention can be justified by the observation that
both folds in the leaflets or true commissures are accompanied
by greater numbers of chordae along the leaflet edges and create
potential sites for malcoaptation of the leaflet edges. A separate
leaflet was then defined by: (i) independent motion from the adja-
cent leaflet, and (ii) colour Doppler flow in systole extending into
the region around the leaflet. Four major classes of leaflet mor-
phologies are shown in Figure 2: Type I is the classic 3-leaflet
morphology; Type II is the 2-leaflet morphology with fusion of
the anterior and posterior leaflets; Type III is the 4-leaflet config-
uration with subcategories based on the location of the fourth
leaflet; and Type IV has >4 leaflets.

Leaflet structure and function can be used to categorize TR: (i)
pathologic changes to the leaflets resulting in leaflet defects or mal-
coaptation, referred to as primary TR; (ii) insufficient leaflet coverage
of a dilated tricuspid annulus (TA), referred to as atrial secondary TR,
and (iii) insufficient leaflet coaptation in the setting of apical displace-
ment with leaflet tethering, referred to as ventricular secondary TR
(Table 1, Figure 3). Atrial secondary TR has been associated with
marked right atrial (RA) and TA dilatation, typically less tethering or
tenting of the tricuspid leaflets, and with normal or mildly dilated RV
showing more triangular shape and preserved function.24–26

Although cardiac implantable electronic device (CIED) leads have
been traditionally categorized as primary because of the direct effect
on the leaflets or subvalvular apparatus, there is nonetheless a

Figure 1 Vertical versus anatomic imaging of the heart. (A) A gross anatomic specimen in the vertical or “valentine” position which is typically
obtained with the transoesophageal (TOE) probe behind the dome of the left atrium (panel B) and with the apex of the heart in the far field of imaging.
The human model (B, red circle) is oriented to the on-screen TOE image, confirming the valentine position. (C) The fluoroscopic view of the patient
with fusion of the segmented 3D TOE volume. The imaging plane of the TOE (white dashed arrow) is along the long-axis of heart generating the val-
entine view, however the fluoroscopic view is an anterior-posterior projection as shown human model (C, red circle) which generates an attitudinal
view (Panel D). The conventional naming system of anterior, posterior and septal leaflets, would become in the attitudinal view, the anterior-superior,
inferior and posterior leaflet. Ao = aorta, LAA = left atrial appendage, LA = left atrium, LV = left ventricle, RA = right atrium, RV = right ventricle,
RVOT = right ventricular outflow tract.
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‘device’ in place making the resulting TR a complication secondary to
the CIED leads.

Tricuspid annulus
The TV is a complex of interconnected components that includes
leaflets hinged at the atrioventricular junction and suspended by ten-
dinous chords (chordae tendinea) attached to the ventricular septum
or to papillary muscles that in turn arise from the ventricular wall. At
the hinge of the leaflets, RA myocardium may overlap the leaflet sur-
face by 0.5–2 mm. Thus, normal valvular function requires not only
normality of all the valvular components but also adjoining RA and
RV walls for sphincteric contraction and excursion of the orifice to-
wards the ventricular apex, as well as interaction with the left ven-
tricle through muscular continuity. Anatomically, the fibrous TA is
indistinct and incomplete, especially at the segment corresponding to
the RV-free wall accounting for the potential dilatation in these
regions, as opposed to the septal region. The TA is almost oval and is
non-planar but becomes more circular as the RV dilates.
Furthermore, its geometry can also be distorted by dilatation of the
RA and/or RV27 and aortic root.28,29

The TA is highly dynamic during the cardiac cycle, and the inter-
action between the TA dimensions, leaflet coaptation and TR severity,
contribute to patient prognosis.30,31 TA size is variable in the different
cardiac phases and should increase from end-systole to end-diastole,
whereas TA shape is more consistent throughout the cardiac cycle.
Addetia et al.32 demonstrated that the TA size measured with 3D TTE
may change�30% between systole and diastole. In comparison, Ton-
Nu et al.33 demonstrated that patients with significant secondary TR

had larger, more planar, and circular geometry of TA compared with
controls using 3DE. Using cardiac computed tomography, Hirasawa et
al.34 demonstrated that circular remodelling of the TA shape at end-
diastole (anteroposterior/septolateral ratio < 1.20) is associated with
more RA and RV dilation, and a higher long-term mortality.

Identification of the main pathogenic mechanism for TR might
have prognostic implications.35 Min et al.36 demonstrated that the an-
teroposterior annulus diameter and tenting volume before tricuspid
annuloplasty were independent predictors of residual TR after surgi-
cal correction. When using 2D TTE, the TA diameter should be
measured at end-diastole on an apical four-chamber view and TA
dilation is defined as a TA diameter >_40 mm or >21 mm/m2.
However, due to the non-circular shape of the TA, small rotations of
the probe can result in significant changes of the linear dimensions.37

Moreover, TA dimensions and shape change significantly along with
the cardiac cycle and the evidence supporting the assessment of the
TA at end-diastole is very limited.25,38 Finally, atrial fibrillation (AFib)
is associated with large beat-to-beat variation of TA dimension.39

Classification of tricuspid
regurgitation

The most commonly used classification of TR uses leaflet involve-
ment to stratify patients into two broad categories of primary disease
(leaflet pathology) or the secondary disease (non-leaflet pathology,
Table 1. For many years, secondary TR has been considered a unique
entity that—as opposed to primary TR—is predominantly

Figure 2 Tricuspid valve nomenclature classification scheme. A proposed Tricuspid Valve Nomenclature Classification scheme is shown in the left
panel (1). The anterior papillary muscle is indicated as a blue circle and defines the separation of the anterior from the posterior leaflets. (A) The Type
I, 3-leaflet configuration. (B) The Type II, 2-leaflet configuration. (C and D) The Type III, 4-leaflet configurations. (F) The Type IV, 5-leaflet configuration.
The panel on the right (2), shows echocardiographic examples of the tricuspid valve morphologies and the letter labels correspond to the proposed
nomenclature in the left panel. (A1 and A2) Type I morphology by 2D and 3D imaging. (B1 and B2) Type II morphology by 2D and 3D imaging. (C1
and C2) Type IIIA morphology by 2D imaging without and with color Doppler. (D1 and D2) Type IIIB morphology by 2D and 3D imaging. (E1 and E2)
Type IIIC morphology by 2D imaging without and with color Doppler. (F1 and F2) Type IV morphology by 2D imaging without and with color
Doppler. Abbreviations: 2D = two dimensional, 3D = three-dimensional, A = anterior leaflet, P = posterior leaflet, S = septal leaflet, LV = left ven-
tricle, AV = aortic valve, NCC = non-coronary cusp, RCC = right coronary cusp. Reproduced with permission from Hahn et al.21
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..characterized by the structural integrity of the TV leaflets and is
caused by RV remodelling following pressure and/or volume over-
load.38 Based on its predominant imaging features, secondary TR may
also be described in a practical way using Carpentier’s functional clas-
sification based on leaflet mobility. Accordingly, Carpentier type I
corresponds to normal leaflet motion and predominant TA dilation,
as seen in atrial secondary TR. Carpentier type IIIb corresponds to
leaflet tethering with restricted motion in systole, as typically seen in
ventricular secondary TR. All types of Carpentier classification can be

encountered in primary TR and in CIED-induced TR, in which leaflet
mobility may be highly variable depending on the aetiology.
However, Carpentier classification was originally intended to guide
mitral valve surgical repair or replacement and its usefulness for TR is
less well-established.40

The variable outcomes based on aetiology of secondary TR41,42 as
well as multiple morphologic characteristics of the valve that predict
recurrence of TR following surgical TV repair,43 have driven the need
to redefine the classification of secondary TR based on their primary

....................................................................................................................................................................................................................

Table 1 Classification of tricuspid regurgitation (TR).

Classification Etiologies

Structural abnormality of the tricuspid valve apparatus

Primary TR: ~10-15% of patients

Degenerative

Disease

• Prolapse
• Flail

Congenital • Ebstein’s Anomaly
• Leaflet clefts

Acquired • Rheumatic disease (usually with left-side disease)
• Infective endocarditis
• Endomyocardial fibrosis
• Carcinoid disease, serotonin active drugs
• Traumatic (blunt chest injury, laceration)
• Iatrogenic

� Right ventricular biopsy

� Drugs (e.g. exposure to fenfluramine-phentermine, or

methysergide)

Radiation therapy of the mediastinum

Morphological normal leaflets with annular dilatation and/or leaflet tethering

Functional TR: ~ 80% of patients

Ventricular second-

ary TR

• Left heart diseases (left ventricular dysfunction or left heart valve

diseases) resulting in pulmonary hypertension
• Primary pulmonary hypertension
• Secondary pulmonary hypertension (e.g. chronic lung disease,

pulmonary thromboembolism, left-to-right shunt)
• Right ventricular dysfunction from any cause (e.g. myocardial dis-

eases, ischemic heart disease, chronic right ventricular pacing)

Atrial secondary

TR

• Atrial fibrillation
• Heart Failure with preserved ejection fraction

Cardiac tumors

(particularly

right atrial

myxomas)

• Right atrial myxomas

Cardiac implantable electronic device (CIED) induced TR (~ 5% of patients)

Primary CIED-

induced TR

• CIED caused by direct interaction of the lead on the valve

leaflets)

Secondary CIED-

induced TR

• Incidental CIED, with TR due to functional etiologies or pacing

related remodeling
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..cause, distinct pathophysiology and characteristic imaging features.
The new classification should include differences in TV leaflet mobility
and mode of coaptation, but also include characteristic differences in
TA, RV, and RA remodelling and function related to the distinct
pathophysiology of secondary TR, advancing the paradigm that ‘not
all secondary TRs are the same’ (Figure 3).44

Recent prospective pathophysiologic studies using 3DE in patients
with AFib have demonstrated that secondary TR develops not only
as a consequence of RV remodelling, but can be caused also by TA
dilation secondary to RA dilation and dysfunction in the absence of
any RV abnormality, pulmonary hypertension, or left-heart dis-
ease.25,44–46 This form of secondary TR (formerly known as isolated
or idiopathic TR), is now commonly referred to as atrial (or atrio-
genic) secondary TR and has been acknowledged in recent guidelines
as a distinct entity with a fundamentally different pathophysiology
with respect to the traditional form of secondary TR due to RV
remodelling (referred to as ventricular secondary TR).47

Atrial secondary TR is a diagnosis of exclusion, defined by the ab-
sence of any leaflet abnormality, left ventricular (LV) dysfunction
(ejection fraction <60%), left-sided valve disease, pulmonary hyper-
tension (pulmonary artery systolic pressure >50 mmHg)47 or CIED,
and supported by the clinical history of the patient with evidence of
longstanding or permanent AFib. From an imaging standpoint, atrial
secondary TR shows greater TA enlargement and a triangular-
shaped RV inflow with predominant basal dilation, as compared with

the elippsoidal-shaped RV elongation with leaflet tethering and less
TA dilation seen in patients with secondary TR caused by pulmonary
hypertension or RV myocardial disease.24,26,44 In one recent study,
the minimal volume of RA and the TA area, but not the RV volume,
determined the severity of atrial secondary TR.25

The new classification of TR discriminating the atrial from the ven-
tricular form of secondary TR has prognostic and treatment implica-
tions.41,48,49 Atrial secondary TR has a rapid progression of severity
and poor outcome, and secondary RV dilation and/or dysfunction
commonly develops in advanced stages. Despite limited evidence to
date, rhythm control may help to decrease atrial secondary TR in
some patients through reverse remodelling of RA and TA.38,46 Also,
this form may be particular amenable with annuloplasty devices, be-
cause the leaflet tethering is typically minimal.44,50 As longstanding
ventricular secondary TR may also evolve with AFib, the diagnosis of
the primary cause in advanced stages of TR can be very challenging.

CIEDs and TR

The proportion of CIED-induced or device-mediated TR is
expected to increase due to ageing of the population, increasing
number of implantations, and of related complications requiring
lead extraction.38,51,52 Due to its multifactorial pathophysiology
sharing features of both primary and secondary TR,53–55 as well
as different epidemiology, management and therapeutic options,

Figure 3 Classification of tricuspid regurgitation.
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it has been recently proposed to classify the CIED-related TR as
a third distinct category (Figure 3).14 Finally, as the presence of
pacemaker lead is associated with worse outcomes with TR,56

studies aimed to evaluate the results after interventional or sur-
gical treatment should classify and address these patients as a
separate category from the atrial and ventricular forms of TR.

Approximately 25–29% of patients with permanent pacemakers
have TR, roughly double the prevalence in comparison groups.57

However, the pathophysiological link between the presence of the
device leads and either the onset of significant TR or the worsening
of a pre-existing disease is a relatively recent clinical challenge.
Interference of a RV transtricuspid pacing lead with the TV appar-
atus components might contribute to or cause TR in 7–45% of
patients who received a CIED.54 The large range of the incidence of
significant TR after CIED implantation is likely due to the difficulty
to identify the association between the presence of the wires/cathe-
ters and the dysfunction of the TV using conventional 2DE58,59 The
clinical implementation of 3DE allows the documentation of this
pathophysiological relationships (Figure 4, Supplementary data on-
line, Medias S1 and S2).60

Supporting the classification of CIED-induced TR as its own cat-
egory, patients with TR and a CIED can be divided in primary and sec-
ondary disease (Table 1). Primary CIED-induced TR can be defined as
an increase of TR severity of �2 grades during follow-up after CIED
implantation in patients with documented interference of the device
lead with the TV apparatus. Both echocardiography and post-
mortem examinations of hearts with CIED, have shown that the de-
vice leads can interfere with the TV apparatus in different ways:
impinging upon a leaflet, adhering to a leaflet, interfering with the sub-
valvular apparatus, perforating/lacerating a leaflet, avulsion of a leaflet
(which may happen during lead extraction), and transection of papil-
lary muscles, or chordae tendineae.54

Conversely, secondary CIED-induced TR is the consequence of
the remodelling of the TV following the RV dilatation due to pacing/
heart failure. Seo et al.61 reported that up to 60% of worsened TR
after CIED implantation were of secondary origin. However, the two
conditions can overlap since untreated primary CIED-induced TR
may trigger RV dilatation due to volume overload, and leads to sec-
ondary TR. When the latter occurs, lead extraction will be ineffective
to reverse TR.61,62 Permanent AFib and previous open-heart

Figure 4 Examples of cardiac implantable electronic device imaging. (A) A 4-chamber view colour Doppler image showing torrential TR in a pa-
tient with pacemaker (PM). (B) A 4-chamber view showing no apparent interference of PM catheter with anterior (Ant) and septal (Sep) leaflet,
which are severely tethered and not coapting. (C) A RV inflow view showing the anterior (Ant) and posterior (Post) leaflets. The PM catheter can
only be visualized at its most distal part. (D) A RV inflow 3D rendering showing a possible interference of PM catheter (asterisk) with anterior leaflet
(Ant). (E) A TV 3D en face views during systole from the ventricular perspective clearly show the PM catheter (asterix) impinging the anterior leaflet
(Ant) in its mid part. (F) The same view as (E), with transillumination slightly tilted to display the close spatial relationship between PM lead (asterix)
and anterior leaflet (Ant).

Understanding tricuspid regurgitation 919
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/article/23/7/913/6528403 by guest on 03 July 2023

https://academic.oup.com/ehjcimaging/article-lookup/doi/10.1093/ehjci/jeac009#supplementary-data
https://academic.oup.com/ehjcimaging/article-lookup/doi/10.1093/ehjci/jeac009#supplementary-data
https://academic.oup.com/ehjcimaging/article-lookup/doi/10.1093/ehjci/jeac009#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..surgery,61 as well as a pre-existing RV dilation63 have been reported
among the predictors of secondary CIED-induced TR.

The clinical importance of the diagnosis of CIED-induced TR is fur-
ther enhanced by the fact that it affects long-term RV function64 and is
associated with poor outcome.57,61,64–67 Accordingly, in patients in
whom clinical, haemodynamic, and echocardiographic assessment
provides compelling evidence of CIED-related severe TR, corrective
intervention should be indicated in a timely fashion, to avoid the devel-
opment of severe TA and RV dilation, and severe RV dysfunction.68

In patients with CIED-related severe TR who are considered for
lead extraction, the identification of the type of lead interference by
3DE is important since the procedure can aggravate TR in patients
with perforated leaflet, chordae avulsion, or in those with severe ad-
herence or entangled leads. In a series of 200 lead extractions, in-
crease in TR occurred in 5.6% of cases mainly in patients > 75 years,
when > 2 leads were extracted and when powered sheaths were

used.69 However, when the TA is dilated, the lead interference is no
longer the primary problem. In a small series of patients undergoing
lead extraction to manage significant TR, all patients who had TA dila-
tation did not benefit from lead extraction.62 Patients with severe TA
and/or RV dilation should be referred to surgery or transcatheter
procedures. Taramasso et al.43 analysed 470 patients with severe TR
undergoing transcatheter TV repair, and compared patients with and
without CIED, and reported similar rates of procedural success, re-
sidual TR, symptomatic improvement, and survival.

Contemporary assessment of TR
severity

Regardless of the imaging modality, the foundation of TR severity as-
sessment is a thorough study of its anatomic and functional sub-
strates. Accordingly, a detailed morphological and functional

Figure 5 Multimodality assessment of tricuspid regurgitation severity. Different imaging methods give complementary information about tricuspid
regurgitation aetiology, anatomic and functional substrates as well as TR severity. AROA = anatomic regurgitant orifice, EROA = effective regurgitant
orifice area, CT = computed tomography, IVC = inferior vena cava, MRI = magnetic resonance imaging, PM = pacemaker, RCA = right coronary ar-
tery, Reg. Fraction = regurgitant fraction, Reg.Vol. = regurgitant volume, RV = right ventricle, TR = tricuspid regurgitation, TV = tricuspid valve.
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..characterization of the TV is advocated as a first step and described
in detail above. Disease trajectories likely differ within the pathologic-
al spectrum of TR and collection and analysis of these data are indis-
pensable components of precision medicine. Already in this initial
step, imaging methods give complementary information10 and careful
integration and weighting according to strengths and limitations of
the respective methods is advised at the beginning and throughout all
steps of severity assessment. The complementary multimodality
imaging approach is outlined in Figure 5. The recent developments of
TR assessment and severity grading will be illustrate subsequently.

Echocardiographic methods
TTE is the diagnostic imaging modality of first choice38,70 and guide-
lines suggest grading severity should be based on qualitative, semi-
quantitative, and quantitative methods.9,12,71,72 In patients with signifi-
cant TR, TOE can add additional aspects regarding aetiology and
mechanism as well as probability of treatment strategy success.
Because TR is sensitive to both pre-load and afterload, respirophasic
variability as well as changes in loading conditions will introduce sig-
nificant variability in TR severity. Inspiration increases pre-load and
might affect the quantification. For the assessment of TR severity
prior to consideration for intervention, it is recommended that the
patient be in a euvolaemic state, with measurements performed dur-
ing quiet respirations, and 5–10 beats averaged when the rhythm is ir-
regular. Blood pressure and heart rate should be recorded. In
addition, repeat studies may allow for a more accurate longitudinal
assessment of TR severity as well as monitor the effect of TR on right
heart remodelling.

Qualitative and semi-quantitative methods

Qualitative assessment includes the assessment of structure, as well
as qualitative characteristics of jet flow. Severe structural abnormal-
ities such as a flail leaflet or marked tethering with a large coaptation
gap, can be specific for severe TR (Table 2). Qualitative Doppler
parameters include the colour flow jet characteristics (area and ec-
centricity), flow convergence zone, and continuous wave Doppler jet
density. However, significant limitations of colour Doppler jet should
be recognized. Jet flow and thus colour Doppler jet area, is governed
mainly by conservation of momentum (generally defined as flow [Q]
� velocity [V]). If Q = EROA � V, and jet momentum (M) = Q � V,
then M = EROA� V2. Thus the velocity of the regurgitant jet will sig-
nificantly impact the colour jet area; for the same EROA, a TR jet

with velocity of 2.5 m/s, could be a quarter of the colour jet area of a
mitral regurgitant jet with a velocity of 5.0 m/s. Accordingly, colour
flow imaging should only be used to diagnosing the presence of TR
and a more quantitative approach is required when more than a small
central TR jet is observed.12,17,37

Other qualitative and semi-quantitative measurements of TR se-
verity also have significant pitfalls. The variable number of leaflets
and commissures results in a complex jet shape and thus any evalu-
ation relying on a single linear measurement [i.e. vena contracta
(VC) diameter] may not accurately describe the complex jet.
Typically, the VC is measured from the apical 4-chamber view.
However, this septo-lateral dimension is frequently the minor di-
mension of an elliptical orifice. Some authors have recommended
the use of the average VC from the parasternal inflow view and the
apical 4-chamber view using a cut-off of 9 mm to differentiate mod-
erate from severe.73,74 The shape of the regurgitant orifice, and the
imaging window used for measurement, thus affects the sensitivity
and specificity of the VC width.

Quantitative methods

Quantitative measurements of TR severity include the effective
regurgitant orifice area (EROA), regurgitant volume (RegVol), and
regurgitant fraction (RegFr). These measurements can aid treating
physicians for finer risk stratification75,76 and provide complementary
information for interventions.77

PISA
The primary quantitative method recommended is the proximal iso-
velocity surface area (PISA) method based on the conservation of
mass principle (Figure 6). To calculate the PISA shell area, colour
Doppler baseline is shift in the direction of the regurgitant flow, the
aliasing velocity (VAlias) and PISA radius (r) can be used to calculate
flow (2pr2�VAlias). EROA is calculated by dividing the PISA flow by
the peak TR velocity (VTR). EROA multiplied by TR velocity time inte-
gral (TRVTI) quantifies RegVol. Using these measurements alone, will
not allow the calculation of RegFr since the total stroke volume is not
measured. However, with the use of 3DE RV stroke volume, RegFr
can be measured and has prognostic importance.76

Multiple limitations of the PISA methodology, should be acknowl-
edged (Figure 7).78 First is a problem with Doppler angle effect (Figure
7A and B).79,80 As flow approaches a small orifice, the isovelocity shells
are not actually hemispheres but have an urchinoid shape with surface

....................................................................................................................................................................................................................

Table 2 Currently established and suggested (grey background) grades of tricuspid regurgitation and the respective

orientation ranges for selected (semi) quantitative parameters.

Parameters Mild Moderate Significant/

moderate-severe

Severe Massive Torrential

Vena contracta width <3 mm 3–6.9 mm 6–6.9 mm 7–13 mm 14–20 mm >_21 mm

EROA 20 mm2 40–59 mm2 60–79 mm2 >_80 mm2

Regurgitant volume 30–44 mL 45–59 60–74 >_75

Regurgitant fraction 3D Echo (MRI)a <25% (30%)a 25–44% (30–49%)a >_45% (50%)a

3D vena contracta 75–94 mm2 95–114 mm2 >_115 mm2

a3D Echo cutoffs from Muraru et al.76 and MRI cutoffs from Zhan et al.97

Understanding tricuspid regurgitation 921
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.area larger than a hemisphere of the same radius resulting in a 30–35%
underestimation of EROA.79,80 Second, similar to functional mitral re-
gurgitation,81 functional TR is temporally variable (Figure 7C and D,
Supplementary data online, Media S3) and depending on the timing of
PISA radius measurement, EROA may be under- or overestimated.
Integrating PISA radii over the systolic time interval, improves the

estimation of functional mitral ERO,79 and should be useful for TR as-
sessment. Third, the regurgitant orifice is frequently not positioned
within a planar surface (Figure 7E), thus whether the surface is fun-
nel shaped (i.e. primary TR due to flail or marked prolapse) or
the opposite wedge-shape (i.e. from marked leaflet tethering), a
correction for the leaflet angle may be required. Fourth, in the

Figure 6 Quantitative echocardiographic methods for tricuspid regurgitation assessment. Summary of the quantitative assessment of tricuspid re-
gurgitation (TR) by Proximal isovelocity surface area (PISA) method, volumetric Doppler quantification using both 2D and 3D methodology, and
planimetry of 3D colour Doppler vena contracta area. CW, continuous wave; LV, left ventricle; LVOT, left ventricular outflow tract; PW, pulsed
wave; r, radius; RegVol, regurgitant volume; RV, right ventricle; TRVTI, continuous wave Doppler TR velocity time integral; TVAnnulus, tricuspid valve
annulus; TVVTI, pulsed wave Doppler annular velocity time integral; VAlias, aliasing velocity; VCA, vena contracta area; VTR, peak TR velocity.
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setting of marked variability in leaflet morphology, the regurgi-
tant orifice is often stellate or crescent-shape21 and thus the
PISA shell is often hemi-ellipsoid with a larger area than a

hemisphere (Figure 7F, Supplementary data online, Media S4).
Finally, the low flow rates of the right heart result in a smaller dif-
ference between the PISA aliasing velocity and peak TR velocity,
thus risking significant underestimation of flow by the PISA
method.10 Multiplying flow by Vmax/(Vmax – Va) corrects for low
flow and thus the calculation of EROA with the flow correction
becomes 2pr2 (Va)/(Vmax – Va).

Volumetric Doppler quantification
Although guidelines refer to the use of quantitative Doppler to assess
TR severity, few studies have validated the methodology.6,73 A refine-
ment of the method (Figure 6) measures the TA area by: (i) measure-
ment of orthogonal plane TA diameters in early diastole (typically
inflow and 4-chamber views) using an ellipse formula, or (ii) 3D plan-
imetry of the TA area.6 Diastolic stroke volume is quantified by multi-
plying TA area by the TV inflow VTI (TVVTI) obtained by placing the
pulse-wave sample volume at the level of diastolic annular plane. The
forward systolic stroke volume (either from the RV or LV outflow
tract) is subtracted from the diastolic stroke volume resulting in a
measurement of RegVol. Dividing RegVol by TRVTI calculates the
EROA, and dividing RegVol by RV stroke volume calculates RegFr.
The main limitations of the method rely on the geometric assump-
tions about the shape of the TA and the need of no significant con-
comitant regurgitation of the pulmonary and/or aortic and mitral
valves.

3D colour Doppler quantification
Several studies have shown the feasibility of 3D colour Doppler plan-
imetry of the VC area (VCA) by both TTE73 and TOE (Figure 6).82

Studies suggest the quantitative cut-offs for severe TR are: 3D-VCA
>_0.60–0.61 cm2,73,82 Doppler-EROA >_0.65 cm2, and PISA-EROA
>_0.34 cm2.73 The 3D-VCA method correlates well with quantitative
Doppler method (r = 0.92; P < 0.0001). However, the PISA EROA
significantly underestimates these other methods, likely due to the
pitfalls previously described. The moderate correlation between 3D-
VCA and PISA-EROA methods (r = 0.60; P = 0.01) is improved in
more circular orifices (r = 0.87; P = 0.001).73

Other relevant echocardiographic parameters
Multiple guidelines have suggested that systolic reversal of hepatic
vein flow is a sign of severe TR.8,9 The guidelines also clearly state
that this sign is non-specific and is influenced by many other factors
(RV diastolic function, atrial fibrillation, RA pressure, or compli-
ance).83 Moreover, in the original reports systolic flow reversal in the
hepatic vein was a sign of moderate or severe TR.83,84 Hepatic vein
systolic flow reversal may be seen in patients with moderate TR, par-
ticularly in the setting of high RA or RV pressures for other reasons,
and it should not be used as a sole specific criteria for severe TR, but
rather as supportive evidence for clinically important disease. In
patients with significant TR, RV remodelling due to both dilatation
and dysfunction should be assessed. Basal and mid ventricular RV
septo-lateral dimensions as well as apex to TA length, are measured
from an RV focused view, which typically yields larger dimensions
than the apical 4-chamber or RV modified views.85,86 RV function can
be assessed by TA plane systolic excursion, tissue-Doppler systolic
velocity, fractional area change, and RV-free wall or global

Figure 7 Pitfalls of proximal isovelocity surface area measure-
ment. Pitfalls in the proximal isovelocity of surface area (PISA)
method for calculation of tricuspid regurgitation (TR) effective
regurgitant orifice area (EROA). (A) An example of the shape of the
Doppler PISA shell which does not resemble a true hemispheric
PISA but is ‘urchinoid’ in shape due to the direction of flow (black
arrows, B). (C) A graph of the measurements of the PISA radius per-
formed at every systolic time frame in (D, Supplementary data on-
line, Media S3). The biphasic change in radial lengths are shown and
depending on when in systole a single measurement is made, this
EROA may vary between 0.52 and 1.45 cm2 (average = 0.95 cm2).
(E) The effect of surface angle on the calculation of PISA.
Correction for leaflet angle can be performed to reduce the under-
estimation of the calculated EROA. (F) A simultaneous biplane
image from an apical view, showing the differences in jet widths in
orthogonal planes, that would result in a hemi-ellipsoid PISA
(Supplementary data online, Media S4).
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..longitudinal strain. Measurements of RV function have important
prognostic value in patients with TR.26,87,88 Multiple linear dimension
measurements can be used to describe RV size however 3D TTE
compares favourably with CMR for quantitation of volumes89 and
can be used to quantify RV and RA volumes, as well as TV tenting vol-
ume and TA area.44 Indexing RV contractility to after-load, or RV–
pulmonary artery (PA) coupling, describes a normal physiologic state
where mechanical stroke work is transferred efficiently to the pul-
monary circuit and RV contractility can increase when after-load
increases. A recent study in patients with severe secondary TR
showed RV–PA coupling using echocardiographic measures, was in-
dependently associated with all-cause mortality.90 Doppler estimates
of PA pressure may underestimate invasive measurements, particu-
larly in the setting of greater TR severity, worse LV and RV function
and the V-wave cut-off sign on spectral Doppler.91

Grading of TR severity

Two areas of the TR severity spectrum have been specific areas of
interest in recent years, owing to the development of low-risk trans-
catheter repair strategies: First is the transition zone where the TR
volume overload exceeds the individual compensatory reserve and
results in heart failure, cardiovascular morbidity, and mortal-
ity.75,76,92,93 This is of specific interest as there might be stages
exceeding the adaptive potential with consequent irreversible failure.
In this group, progression of TR is often accelerated due to biatrial
and annular dilatation52,94 and appears to be clinically important for
planning of close follow-ups. Selected studies that focused on these
aspects are listed in Table 2. Second, is the extreme end of the TR
spectrum grouped under the umbrella term ‘severe’ seems to be far
more heterogeneous than for mitral regurgitation with EROAs
>80 mm2.11,42,74,95,96 Post-interventional reduction of such exuber-
ant TR grades might be clinically relevant but still severe, therefore
one term for this heterogeneous group might not reflect profound
reductions achieved by transcatheter treatments. Selected studies on
the expanded grading are listed in Table 2.

Cardiac magnetic resonance assessment
Cardiac magnetic resonance imaging (CMR) has the advantage of
high spatial resolution and excellent endocardial border delinea-
tion. These aspects are specifically valuable for the assessment of
complex RV structure and function. TR can be qualitatively
assessed by the signal drop (spin, dephasing) that occurs within
areas of non-laminar flow/areas of flow acceleration.10 Due to
only modest correlation with quantitative assessment, grading
TR severity by qualitative assessment is limited. From a technical
perspective, CMR is an optimal method for quantitating TR. One
advantage is that the reference stroke volume can be calculated
reliably from three different methods (phase contrast imaging
from the pulmonic valve or aortic valve, and volumetric LV stroke
volume). A recent study has demonstrated the prognostic value
of the RegVol and fraction by CMR regarding subsequent mortal-
ity in an all-comer cohort.97 More validation and differences in
specific patient cohorts will be mandatory to strengthen the role

of CMR TR quantification in clinical practice. Another important
feature of CMR is tissue characterization.98 Late gadolinium en-
hancement and more recently T1 mapping as well as extracellular
volume quantitation can provide information about myocardial
impairment and fibrotic remodelling. Limitations of CMR include
the presence of arrhythmias and transvalvular pacemaker leads
often present in patients with TR. Intra- and inter-rater reprodu-
cibility was demonstrated to be adequate for CMR assessed
RegVol and RegFr.97 There is satisfactory accuracy between
echocardiographic and CMR for TR quantification but often a de-
viation by 1� of severity.99

Computed tomography
Cardiac CT provides complementary information and will likely be-
come crucial for planning structural interventions. Assessment of the
TA shape, perimeter and diameters, and localization of the right cor-
onary artery and its course within the atrioventricular groove as well
as its distance from the TA are specific strengths of CT imaging.10,92

Treatment options for functional
TR: should anatomy guide us?

The choice among the different surgical and interventional options
available to treat TR43,100,101 should be driven by the underlying
mechanism of regurgitation, by the patient conditions, and the aeti-
ology of the disease. The anatomo-functional assessment of the TV
becomes of primary importance to choose between replacement
and repair. In patients with anatomy suitable for repair, the fine details
of anatomy and function of the valve components can influence the
repair strategy and the techniques used.

Multimodality imaging is used to select the best treatment strat-
egy.102,103 In the era of catheter-based technologies, device selection
supported by the analysis of the anatomical features is critical to ob-
tain the best results. The assessment of the mechanism of regurgita-
tion should include annular, leaflet, and subannular components.92

Valve dysfunction can be classified similarly to the Carpentier func-
tional classification used for the mitral regurgitation to use a standar-
dized communication approach.104

In the case of functional TR, the main components of valve regurgi-
tation are annular dilatation and leaflet tethering.92 According to the
prevalent mechanism, one or more corrective actions are used to re-
establish valve competence. Valve replacement is preferred for
patients in whom the dysfunction and or the geometrical distortion
of the apparatus is more advanced and valve repair is predicted to be
inefficient or not durable.

In low-risk patients, surgery remains the gold standard treatment
of functional TR.38,47 In a recent study in which a dedicated risk score
model was developed to predict the outcome of patients after ITVS
for severe TR using eight parameters: age >_70 years (1 point), New
York Heart Association Class III–IV (1 point), right-sided heart failure
signs (2 points), daily dose of furosemide >_125 mg (2 points), glom-
erular filtration rate <30 mL/min (2 points), elevated bilirubin (2
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..points), LV ejection fraction <60% (1 point), and moderate/severe
right ventricular dysfunction (1 point). Isolated tricuspid surgery,
when performed in patients without comorbidities, preserved RV

function, and no organ failure (i.e. a risk score of <_3), surgery is asso-
ciated with an in-hospital mortality of <_5%.105 Annuloplasty is the
most common treatment, however, it has been associated with

....................................................................................................................................................................................................................

Table 3 Possible eligibility criteria for tricuspid transcatheter edge-to-edge repair (TEER) in patients with severe,

symptomatic tricuspid regurgitation and high/prohibitive surgical risk.

Feature Ideal pathoanatomy for opti-

mal tricuspid TEER outcomes

Challenging pathoanatomy for

optimal tricuspid TEER

outcomes

Relative pathoanatomic

contraindications for tricuspid

TEER

Leaflet length and mobility Good leaflet lengths (>_7 mm) and

primary TR with prolapse only (no

flail), or secondary TR with normal

appearing leaflet mobility

Primary TR with leaflet prolapse or

flail gap <10 mm, or secondary TR

with reduced leaflet mobility but

tethering height <9 mm,

Severe leaflet thickening (i.e. rheum-

atic) or shortening (length

<7 mm) or destruction (i.e. per-

foration) or large flail gap

(>_10 mm), severe leaflet tether-

ing (tethering height >_9 mm)

Coaptation gapa Significant TR with small coaptation

gap (<3–7 mm)

Moderate coaptation gap (>7 to

<8.5 mm)

Large coaptation gap (>_8.5 mm)

TR location and severity Central TR jet within the anterosep-

tal commissure with clear grasping

zones

Central TR jet extending into mul-

tiple commissures (i.e. in patients

with >3 leaflets) with possible

grasping zone

Non-central or very eccentric jets

or jets originating from multiple

commissures (i.e. in patients with

>3 leaflets) with dense chordae

(i.e. no clear grasping zone), with

massive or torrential disease (i.e.

VC width >_14 mm, EROA by

PISA >60–70 mm2)

Intra-procedural imaging Good TEE windowsb for leaflet

visualization

Sufficient echocardiographic win-

dowsb for leaflet visualization or

availability of alternative imaging

(i.e. intra-cardiac

echocardiography)

Insufficient echocardiographic win-

dows† for leaflet visualizations

Presence of CIED No CIED Presence of CIED lead, no significant

leaflet interaction and no inter-

action with clip

CIED-induced TR

Right ventricular remodellingc Normal to mildly reduced RV func-

tion, normal to mild RV dilatation

Moderately or severely reduced RV

function and/or moderate or se-

vere RV dilatation, attributable to

volume overloadd

Severely reduced RV function or se-

vere RV dilatation not primarily

attributable to TRd

Pulmonary vascular haemodynamics Normal peak and mean PAP, trans-

pulmonary gradient and normal

TAPSE/PASP (>0.41)

PASP <_60–65 mmHg, pulmonary

capillary resistance <_4 WU, mean

PAP <_30 mmHg, transpulmonary

gradient <_17 mmHg

PASP >60–65 mmHg and/or

pulmonary capillary resistance

>4 WU, and/or mean PAP

>30 mmHg and transpulmonary

gradient >17 mmHg,

TAPSE/PASP <_0.41

Concomitant left heart disease No significant left heart disease Moderate left heart ventricular or

valvular dysfunction which fail to

meet criteria for GDMT or

intervention

Severe left ventricular or valvular

dysfunction amenable to GDMT

or intervention

aSize of the coaptation defect has to be assessed at the location of the planned clip placement orthogonally to the commissural plane.
bEchocardiographic image quality has to be assessed in a ‘grasping view’ at the location of the planned clip placement.
cStratification of RV size and function (i.e. mild/moderate/severe) is not well-defined at this time.
dCMR or 3D TTE RVEF <45% has been associated with adverse outcomes.
3D, three-dimensional; CIED, cardiac implantable electronic device; CMR, cardiac magnetic resonance; EROA, effective regurgitant orifice area; GDMT, guideline-directed med-
ical therapy; ICD, intra-cardiac echocardiography; PAP, pulmonary artery pressure; PASP, pulmonary artery systolic pressure; PISA, proximal isovelocity surface area; RV, right
ventricular; RVEF, right ventricular ejection fraction; TAPSE, tricuspid annular plane systolic excursion; TEE, transoesophageal echocardiography; TR, tricuspid regurgitation,
TTE, transthoracic echocardiography; T-TEER, Tricuspid Transcatheter Edge-to-Edge Repair; VC, vena contracta; WU, Woods Units.
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failure in case of leaflet tethering and RV dysfunction/remodelling.106

In this case, additional leaflet procedures (such as leaflet augmenta-
tion or the clover technique) are used to improve short- and long-
term durability.107,108 Repair of complex congenital anomalies (e.g.
Ebstein anomaly), or endocarditic TR is only possible with a surgical
approach.109,110 In patients with functional TR and advanced disease
undergoing surgery, there is a recent trend for a low threshold to
valve replacement as opposed to repair. Given the high-risk profile of
reinterventions, a definitive solution is often preferred although the
new interventional algorithms may influence the choice in the fu-
ture.111 There are no anatomical limits to surgical TV replacement,
therefore imaging plays a minimal role in guiding the prosthesis selec-
tion and the surgical technique of implantation.

Imaging remains the cornerstone of all decisions related to inter-
ventional procedures, particularly in case of repair.112 In most cases,
the intervention targets the culprit lesion with a single device acting
on a single dysfunctional element, as compared with surgery in which
combined procedures are common. In the last decade, a large num-
ber of devices have been introduced to mimic any surgical procedure
via a catheter. Most procedures are still investigational, while some
interventional approaches are becoming very common. The largest
experience is related to the transcatheter edge-to-edge repair
(TEER).113 Most patients can be treated using the TEER approach,
however, early data show that there are patient populations whose
anatomy or pathophysiology may not result in either optimal reduc-
tion to <_2þ TR, or improved outcomes (Table 3).22,23,77,114–118

Procedural success of tricuspid TEER, typically defined as successful
clip placement and reduction of TR >_1 grade on TTE at 30 days, was
the only predictor for freedom from clinical outcomes and independ-
ently predicted freedom from the combined endpoint. On multivari-
ate analysis, a smaller TV coaptation gap (<7.2 mm) and a central/
anteroseptal TR jet location independently predicted transcatheter
TR repair success.114 Using the newer generation of devices with lon-
ger device arms, coaptation gaps of up to 8.4 mm may be achiev-
able.77 Multiple studies have suggested that patients with massive or
torrential disease, also have worse procedural success and outcomes
with a VC width >_14 mm42,119 or an effective regurgitation orifice
area by PISA method115,120 of >60–70 mm2 were associated with
lower procedural success. Tricuspid TEER success has also recently
been associated with valve morphology; the more complex the
morphology, the lower the procedural success22 which may then af-
fect overall outcomes.23 Outcomes following tricuspid TEER have
been strongly correlated with RV ejection fraction.117,118

Remodelling of the RV has been seen in patients following tricuspid
TEER120; however, the extent of remodelling and relationship to
baseline measures is currently unknown.

Some annuloplasty devices are available and could be used as
stand-alone procedure in patients in whom leaflet tethering is less
pronounced. The main factors related to procedural success are the
size of the TA, the absence of leaflet restricted motion, and the dis-
tance of the TA from the right coronary artery (assessed by CT
scan). In theory, annuloplasty and TEER could be used in combination
similar to the surgical approach of annuloplasty and clover technique.
In patients with more advanced geometrical changes of the TV com-
ponents and of the RV, valve replacement is an option still in its early
phase, with no devices available for commercial use. Patient selection
is mainly based on CT scan to assess annular dimensions, anatomy

and size of the RV, and the position of the vena cava.
Echocardiography and right heart catheterization are fundamental for
patient selection to rule out patients with too advanced right heart
disease and significantly increased pulmonary resistance, both of
which may be integral to risk stratification.10,38

Conclusion

The independent association of mortality with severity of untreated
TR, along with a high mortality associated with isolated TR surgery,
has led to intense interest surrounding the improvement in charac-
terization, diagnosis, and treatment of TR. The new classification sys-
tems for TR aetiology and severity presented in this review, have
anatomic and clinical relevance. The issues surrounding the accurate
non-invasive quantitative assessment of TR may be addressed by the
use of advanced imaging methods and techniques. Finally, patient-
specific transcatheter therapies will undoubtedly require the use of
morphologic and TR severity parameters for appropriate device
choice.

Supplementary data

Supplementary data are available at European Heart Journal - Cardiovascular
Imaging online.
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