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Abstract 
 

Chronic lymphocytic leukemia (CLL) is an incurable lymphoproliferative malignancy of 

CD5+ B cells characterized by a highly variable clinical course and genetic complexity. 

Despite the fact that CLL genetic landscape has been well-characterized, translation of this 

knowledge into clinical practice remains elusive. The main culprit preventing patient 

stratification based on mutational profiles is the heterogeneity and sparsity of mutation 

data. 

In this thesis, I set two main goals focusing on establishing the two distinct 

computational workflows primarily applied in the context of CLL. The first focused on 

stratifying patients based on their somatic mutation profile. We built the workflow using 

506 CLL patients' whole exome sequencing data gathered by the International Cancer 

Genome Consortium. Firstly, we decreased data heterogeneity and sparsity by mapping 

mutated genes to biological processes and calculated pathway mutation scores. Then we 

applied ensemble clustering and extracted abnormal molecular pathways with a machine 

learning approach. We identified four patient groups with specific pathway mutational 

profiles differing in time to first treatment. 

The second goal was to establish a computational workflow for the analysis of 

single-cell RNA sequencing (scRNA-seq) data. The main objective was to explore the 

cellular origin of CLL, on which multiple theories exist, but no consensus has been reached. 

Moreover, it is unclear whether the disease is derived from single or multiple precursors 

and at what stage the transformation occurs. We previously identified a rare B cell 

population in the peripheral blood of healthy adults expressing a CLL-specific gene ROR1. 

We decided to characterize this population that we hypothesized to be the cellular origin 

of CLL. In this project, we combined our datasets with publicly available data. We created 

a reference of healthy B cells and sorted ROR1+ B cells. To identify the most similar 

population to CLL cells, we leveraged the extreme gradient boosting algorithm to build a 

classification model for predicting the transcriptomic similarity of healthy B cell subsets to 

malignant cells. We found that cellular clusters enriched for ROR1+ B cells are more 

similar to CLL cells than any other in our reference. In addition, we observed that ROR1+ 

B cells resemble anergic-like cells, which is in line with the hypothesis suggesting the origin 

of CLL from autoreactive B cells. 

 In conclusion, this thesis presents two computational workflows and examples of 

their successful implementation in the study of CLL, and demonstrates their application 

beyond CLL to multiple different biological questions.  

 
  



  

 
Abstrakt 
 

Chronická lymfocytární leukémie (CLL) je nevyléčitelná lymfoproliferativní malignita 

CD5+ B buněk charakterizovaná vysoce variabilním klinickým průběhem a genetickou 

komplexitou. Navzdory skutečnosti, že genetické pozadí CLL je dobře charakterizováno, 

přenos těchto poznatků do klinické praxe naráží na mnohá úskalí. Hlavní příčinou, která 

brání stratifikaci pacientů na základě mutačních profilů, je heterogenita a řídkost mutačních 

dat. 

V této práci byly stanoveny dva hlavní cíle zaměřené na vytvoření odlišných 

výpočetních postupů použitých primárně v kontextu CLL. V rámci prvního cíle jsme 

stratifikovali pacienty na základě profilu somatických mutací. K vytvoření výpočetního 

postupu jsme využili sekvenační celoexomová data od 506 CLL pacientů shromážděná 

organizací International Cancer Genome Consortium. V prvním kroku jsme namapovali 

mutované geny na biologické procesy a vypočítali dráhové mutační skóre, čímž jsme snížili 

heterogenitu a řídkost dat. Poté jsme využili tzv. „ensemble“ klastrovací algoritmus a 

pomocí strojového učení extrahovali abnormální molekulární dráhy. Identifikovali jsme 

čtyři skupiny pacientů se specifickými profily dráhového mutačního skóre lišící se v čase 

do první léčby. 

Druhý cíl byl zaměřen na vytvoření výpočetního postupu pro analýzu dat z RNA 

sekvenování jednotlivých buněk (scRNA-seq). Hlavním záměrem bylo identifikovat 

buněčný původ CLL, ke kterému se vztahuje mnoho teorií, stále však neexistuje žádný 

konsensus. Navíc není jasné, zda onemocnění vzniká z jednoho či více buněčných 

prekurzorů, a v jaké fázi buněčného vývoje k maligní transformaci dochází. V minulosti se 

nám podařilo identifikovat vzácnou populaci B buněk v periferní krvi zdravých dospělých, 

která exprimovala CLL-specifický gen ROR1. Tuto populaci, o níž jsme předpokládali, že 

by mohla být buněčným původem CLL, jsme se rozhodli detailně charakterizovat. V rámci 

tohoto projektu jsme využili vlastní data i veřejně dostupné datasety. Vytvořili jsme 

referenci zdravých B lymfocytů a sortovaných ROR1+ B lymfocytů.  Pro detekci populace, 

která se nejvíce podobá CLL buňkám, jsme využili tzv. „extreme gradient boosting” 

algoritmus, pomocí kterého jsme vytvořili klasifikační model pro predikci transkriptomické 

podobnosti různých podskupin zdravých B buněk s maligními buňkami. Zjistili jsme, že 

buněčné klastry obohacené o ROR1+ B buňky jsou podobnější buňkám CLL než kterékoli 

jiné buňky v naší referenci. Dále jsme pozorovali, že ROR1+ B buňky se podobají 

anergickým B buňkám, což je v souladu s hypotézou naznačující původ CLL z 

autoreaktivních B buněk. 

Tato práce představuje dva výpočetní postupy a příklady jejich úspěšné 

implementace při studiu CLL, a současně demonstruje jejich aplikaci při hledání odpovědí 

na odlišné biologické otázky nad rámec CLL. 
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1 Aims of the thesis 
 

The work presented in this thesis aimed to create two computational workflows to 

investigate the genetic and cellular complexity of CLL and its normal cellular counterpart. 

 

While the genetic landscape of CLL has been well characterized, successful patients risk 

stratification based on mutation profile is missing. Using publicly available genetic data and 

clinical information, this thesis explored CLL patient stratification based on genetic data 

transformed into biological pathway mutation score. 

 

Multiple hypotheses on the cell of origin of CLL have been proposed, but no consensus 

has been established. Using publicly available and in-house scRNA-seq data, this thesis 

interrogated a rare B cell population expressing a CLL-specific gene ROR1 identified in 

healthy adults. 

 

The scRNA-seq workflow presented in this thesis was primarily developed for the 

investigation of CLL and its normal cellular counterpart. Its secondary aim was to 

investigate diverse biological questions of the researchers from a consortium of 

collaborating laboratories in Brno. 

 

The scope of this thesis can be summarized as follow: 

1. Set up a computational workflow for CLL patient risk stratification based on 

publicly available mutation and clinical data.  

2. Set up a computational workflow for scRNA-seq data analysis. 

3. Investigate the cellular origin of CLL using publicly available and in-house  

scRNA-seq data. 

4. Apply the workflow to distinct projects from a consortium of collaborating 

laboratories in Brno. 
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2 Normal B cell development 
 

B cells are vital players of adaptive immunity providing protection against pathogens via 

the production of antibodies. Upon antigen recognition, they differentiate into  

antibody-producing plasma cells either through transient germinal center (GC) reaction or 

rapid extrafollicular pathway resulting in short-lived plasma cells1.  

In addition to the production of antibodies, B cells can regulate the immune 

response by secreting proinflammatory molecules such as TNF-alpha and IL-6 or 

immunosuppressive such as IL-102. Moreover, B cells can act as antigen-presenting cells, 

engage in T cell activation, participate in the innate part of the immune system1, or even 

emulate the dendritic cells' role by transferring part of dendritic cells' membrane with 

molecular complexes to their surface3.  

B cell development and commitment to the B cell lineages starts in the fetal liver 

and continuously transition to the bone marrow (BM), where most postnatal B cell 

development occurs. However, recent findings suggest that B lymphopoiesis might be 

more widespread than previously thought4,5,6. In BM, immature B cells develop from 

hematopoietic stem cells (HSC). It involves several differentiation steps during which V, 

(D,) and J gene segments of immunoglobulin heavy and light chain are being rearranged 

(Figure 1). Immunoglobulins, together with CD79A/B molecules, form a B cell receptor 

that functions as an antigen receptor. This stochastic process is tightly regulated by 

mechanisms of central tolerance to eliminate naturally emerging autoreactive B cells. Most 

frequently, autoreactive B cells go through a process called receptor editing, which can 

rescue B cells from deletion7. Nevertheless, likely due to the limited presence of  

self-antigens in the BM microenvironment, not all autoreactive B cells are eliminated during 

the central tolerance checkpoint. In fact, it is estimated that around 40% of immature B 

cells that leave BM and migrate to secondary lymphoid organs are autoreactive8.  

 The immature B cells emerging from BM, called transitional B cells, continue their 

maturation process through the T1, T2, and T3 stages to naive B cells in the spleen, where 

they have to pass a second tolerance checkpoint9. During this phase, a percentage of 

autoreactive B cells within a mature B cell population is further reduced to ~20% either by 

clonal deletion or by induction of an anergic, functionally silenced state8. It is hypothesized 

that natural functions of weakly self-reactive B cells are, for instance, defense against 

pathogens that leverage molecular mimicry to evade the host immune system10, 

suppression of inflammatory processes by masking self-antigens, or removal of cellular 

debris from dying cells11. Therefore, it is possible that the relatively high number of 

autoreactive B cells in the periphery is not a bug but a feature of the system. 
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Figure 1: Gene signatures in B cell development (adopted from Morgan et al.12). HSC, 
hematopoietic stem cell; CLP, common lymphoid progenitor; BCR, B cell receptor. 

 

One distinct B cell subset implicated in the autoreactive B cell response are the 

marginal zone B cells (MZB). MZBs are innate-like CD1c+ cells named based on the 

microanatomical niche in the spleen that they occupy. Additionally, MZ-like B cells were 

identified circulating in peripheral blood13. Due to the expression of memory marker 

CD27, they were thought to be IgM+ memory B cells (MBC). Nevertheless, Zho et al.14 

presented data suggesting that MZBs migrate to gut-associated lymphoid tissue (GALT) 

to complete their maturation. Thus, it is possible that circulating MZ-like B cells represent 

MZBs transitioning between the spleen and GALT. Moreover, during the developmental 

process in the spleen, a subset of T2 cells characterized by a high level of IgM was suggested 

to be a precursor of MZBs15. Therefore, these recent findings indicate that MZBs do not 

share a differentiation route with MBCs. Still, the existence of a separate MZB lineage 

remains a subject of debate16. 

Naive B cells become activated upon first antigen recognition, which results in the 

initiation of three distinct molecular programs generating either plasmablasts, early MBCs, 

or GC B cells1. GC is a transient micro-anatomical structure consisting of two functionally 

different regions – the dark zone (DZ) and the light zone (LZ). In the DZ, B cells 

proliferate and undergo the somatic hypermutation process (SHM). Then the LZ B cells 

can undergo immunoglobulin class-switch recombination (CSR) and differentiate either 

into MBCs, plasma cells, or return to the DZ. The GC reaction is an iterative process 
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during which B cell survival depends on costimulatory signals from CD4+ follicular T 

helper cells. This is yet another tolerance checkpoint during which the autoreactive B cell 

pool is reduced. Interestingly, SHM can decrease B cell receptor (BCR) affinity for 

autoantigens of autoreactive B cells in the process termed clonal redemption17. 

Notably, a growing body of literature challenges the dogma that SHM and CSR are 

limited to the GC1,18. This, as will be shown later in the presented thesis, is especially 

relevant and important to note in the context of studying the cellular origin of CLL.   

Recent advances in single-cell transcriptomics and proteomics led to the discovery 

of previously unappreciated heterogeneity within the B cell subsets defined by the 

immunophenotypic fluorescence-activated cell sorting (FACS) separation19,12. Glass et al.20 

described twelve unique B cell subsets in peripheral blood (PB), tonsils, lymph nodes and 

BM using a time of flight cytometry. Of note, they identified a CD45RB+CD27- early 

memory population that can be precisely detected only with a proteomic approach and not 

with RNA-seq. Furthermore, they did not find a population of cells phenotypically 

resembling a controversial subset of innate-like B1 B cells, which is prevalent and  

well-defined in mice21. However, a recent pan-organ scRNA-seq study focused on the 

prenatal development of the human immune system revealed and characterized the CD5+ 

B1 B cell population4. The two aforementioned observations are, in fact, aligned with the 

current knowledge derived from mice that B1 B cells are produced in the fetal and neonatal 

period and subsequently are predominantly located in body cavities21. Apart from the 

expression of previously reported markers, such as CLL diagnostic marker gene CD5, the 

human B1 B cells possessed a capacity for self-renewal, showed features of tonic BCR 

signaling, and spontaneously secreted antibodies4. 

The following two scRNA-seq studies demonstrated the presence of atypical B cells 

in healthy adults22,23. These cells are characterized by high expression of inhibitory 

receptors such as Fc-receptor-like molecules (FCRL4/5), the transcription factor T-bet 

(TBX21) and the integrin CD11c, and reduced expression of CD21, a co-receptor for BCR, 

and CD27. The atypical B cells are primarily generated via the extrafollicular pathway, 

however, data in the literature suggest that the GC pathway is also possible24. The 

differentiation route is likely determined by the conditions of the immune response. The 

atypical B cells have been predominantly identified and studied in the context of aging, 

cancer, viral infections, or autoimmunity, and their nomenclature greatly differs between 

studies. For example, they have been called double negative (DN, i.e., lacking CD27 and 

IgD), age-associated, inflammatory, or exhausted. Recent studies showed that they should 

not be considered as an exhausted and dysfunctional B cell subset as they can respond to 

membrane-arrayed antigens and can function as potent antigen-presenting cells. However, 

their role in systemic immune responses remains largely unclear and needs to be further 

explored24.  

Sutton et al.22 presented data suggesting that atypical B cells, together with 

alternative MBCs, are part of a broader alternative developmental pathway. A high 

expression of IgM characterizes the alternative  B cell lineage in PB of healthy donors, 
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which has also been described by Stewart et al.23. They performed a scRNA-seq analysis of 

five immunophenotypically sorted B cell subsets (transitional, naive, IgM memory, classical 

memory, and DN). Interestingly, they found subpopulations of transcriptomically distinct 

DN cells associated with both classical and alternative lineages. However, only the 

population of DN cells within the alternative lineage matched the description of the 

atypical B cells. Moreover, the alternative lineage contained a subpopulation of cells 

strongly expressing a MZB marker CD1c. Overall, the studies above agreed on the 

existence of at least two distinct B cell lineages in PB. Although using distinct terminology, 

both Sutton et al.22 and Stewart et al.23 described phenotypically similar B cell populations. 

 

3 Chronic lymphocytic leukemia 
 
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by 

>5 × 109/L peripheral CD5+ mature B cells with very heterogeneous biological and 

clinical behavior. CLL is the most prevalent form of adult leukemia in the Western world, 

with a higher incidence in men (6.8 cases per 100,000 in men vs. 3.5 cases per 100,000 in 

women) and the median age at diagnosis around 70 years25. Despite the development of 

novel targeted inhibitors blocking pro-survival B cell receptor signaling (e.g., ibrutinib) or 

anti-apoptotic BCL2 signaling (venetoclax), CLL remains an incurable disease. The goals 

of therapy are to prolong survival and improve patients' well-being. The clinical 

manifestations range from a stable condition with no need for treatment to aggressive with 

frequent relapses and overall survival of less than three years. In rare cases, CLL even 

transforms into an aggressive lymphoma, such as diffuse large B cell lymphoma (so-called 

Richter transformation)25.  

The initial clinical prognostication in CLL relies on the Rai26 or Binet27 clinical 

staging systems. The following clinical examinations include molecular genetics tests for 

TP53 mutation detection and analysis of the somatic hypermutation status of the 

immunoglobulin heavy chain variable region genes (IGHV)28. Typically, patients with 

mutated IGHV genes have a better prognosis than patients with unmutated IGHV 

genes29,30. Moreover, around 30-40% of all CLL cases can be grouped, based on IGHV 

usage and complementarity-determining regions, into so-called stereotyped subsets 

associated with a specific clinical course31.  

 

3.1 CLL molecular heterogeneity 
 

Over the past decade, molecular heterogeneity of CLL has been increasingly associated 

with the clinical outcome of patients25. The most studied genetic alterations in CLL are 

single-nucleotide polymorphisms and chromosomal alterations. The complexity of the 

karyotype abnormalities, including recurrent deletions on chromosomes 11, 13, 17, and 
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trisomy 12, possesses not only prognostic value32,33 but also appears to be predictive in the 

context of treatment34.  

Advances in next-generation sequencing in the last decade brought insight into the 

mutational landscape35,36 and subclonal heterogeneity of CLL37,38. However, the translation 

of these findings into clinical practice proved to be challenging. This is mainly due to a 

long tail of genes mutated at low frequencies where only a few are mutated in more than 

5% of patients at diagnosis (SF3B1, NOTCH1, TP53, and ATM)35,36. Only mutations in 

TP53 and ATM genes were confidently associated with worse clinical outcomes. The 

reports of the prognostic relevance of other driver mutations (e.g., in NOTCH1 and 

SF3B1) vary39,40.  

Despite an enormous genetic heterogeneity, when zooming out from the gene level 

to the molecular pathway level, we discover that mutations cluster in a handful of cellular 

processes (e.g., NOTCH1 signaling, BCR receptor signaling, chromatin modifiers, and cell 

cycle)35,36 that have been associated with prognosis41,42 (Figure 2). In our work, we exploited 

this phenomenon to reduce data heterogeneity by calculating pathway mutation scores and 

identifying clinically relevant subtypes defined by their pathway mutation profiles43. 

 

 

 
 

Figure 2: Recurrently affected molecular pathways in CLL (adopted from Delgado et 
al.25). Genes highlighted in bold are mutated at higher frequencies in newly diagnosed 
patients (>5%). 
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In addition to genetic complexity, CLL was shown to be heterogeneous on an 

epigenomic level, too44,45,46. Based on the similarity of CLL DNA methylation profiles to 

different B cell counterparts, CLL patients can be stratified into three epigenetic groups 

with prognostic relevance: naive B cell-like, memory B cell-like, and intermediate 

CLL44,47,48. Nevertheless, genomic, epigenomic, and other biological layers, such as 

transcriptomics, are strongly interconnected. Therefore, analyzing omics data separately 

will likely never reveal a complete picture of the disease biology, as was beautifully 

demonstrated recently by Lu et al.24. They discovered a new biological axis of heterogeneity 

in CLL using integrated analysis of genomic, transcriptomic, DNA methylation, and ex vivo 

drug response data. 

 

3.2 Monoclonal B cell lymphocytosis 
 
CLL is preceded by an asymptomatic condition called monoclonal B cell lymphocytosis 

(MBL)50. MBL is, in most cases, indistinguishable at the genomic, transcriptomic, and 

epigenomic levels from CLL assigned to the same IGHV subgroup, yet MBL cells contain 

a lower burden of disease-driver alterations than CLL cells36.  Its diagnosis is based on the 

presence of a circulating monoclonal or oligoclonal B cell population in the PB, and it is 

further subdivided into low- or high-count based on whether the B cell count is above or 

below 0.5 × 109/L.  

The progression rate of high-count MBL to CLL is around 1-2% per year, while the 

progression of low-count MBL to CLL is rare. MBL was detected in the healthy  

age-matched population with a frequency of 12%, which increases two- to threefold in 

relatives in families with familial CLL (i.e., a pedigree with at least two first-degree relatives 

with CLL)51. This suggests that MBL is not merely a physiological event occurring in most 

individuals with increasing age, but environmental or genetic predisposing factors exist for 

MBL. Indeed, several susceptibility loci for CLL were identified and found to be mostly 

mapping to active promoters or enhancers of transcription factors regulating immune 

response, apoptosis, or Wnt signaling52,53. 

 

3.3 CLL cell of origin 
 
Despite several hypotheses being proposed, no consensus on the cell of origin (COO) of 

CLL has been reached. It has been long believed that CLL arises from a mature B cell. 

However, in 2011, Kikushige et al.54 presented that HSC from CLL patients expanded to 

mono- or oligo-clonal CLL-like cells after xenogeneic transplantation into mice. 

Intriguingly, these B cell clones did not harbor genomic aberrations found in the original 

disease. Given the existence of the premalignant condition, i.e., MBL, and its molecular 

similarity to CLL, CLL leukemogenesis is likely a complex stepwise process starting from 

HSC (Figure 3). This theory is supported by findings generated in our group that confirmed 

the existence of independent oligoclonal B cell clones even in immunophenotypically 
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monoclonal CLL55,56. The existence of mutated and unmutated IGHV CLL subgroups 

suggests that the final transformation event can occur at a different stage of the maturation 

process. Moreover, these subgroups are transcriptomically similar compared to a relatively 

large difference between normal B cells and CLL cells providing further evidence for a 

single population of origin. However, the question of CLL's normal B cell counterpart(s) 

remains unanswered.  

 

 
 

Figure 3: Development of CLL (adopted from Bosch et al.57). Lightning symbols indicate 
genetic or epigenetic lesions leading to CLL. TD, T cell-dependent antigen; TI,  
T cell-independent antigen. 

 

In the last decade, several publications described immunophenotypically distinct 

but partly overlapping B cell populations in some parts resembling CLL cells. The first 

studies demonstrated that CLL is most similar to memory-resembling B cells58,59. Further 

studies detected features of CLL in B1 B cells found circulating in PB, transitional B cells, 

MZB, or in CD5+CD27+ B cells60. However, none of the studies brought conclusive 

evidence. Oakes et al.61 suggested a hypothesis that CLL cells, based on their epigenetic 

profile, originate from a continuum of maturation stages between early memory and mature 

memory B cells. Intriguingly, CLL cells harbor autoreactive, polyreactive, and stereotyped 

BCRs. These data support the hypothesis suggesting the origin of CLL from autoreactive 

B cells that evaded tolerance checkpoints, which is in line with BCR anergy in CLL cells62. 

It has been challenging to tackle these gaps in knowledge with classical cell 

immunobiology techniques profiling only a few molecular markers in individual cells. By 
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contrast, recent advances in high-throughput single-cell methods, enabling simultaneous 

measurement of the entire transcriptome across thousands of cells, have already revealed 

unappreciated heterogeneity within healthy B cell populations (see above). In this thesis, I 

will present the results of our ongoing efforts to leverage single-cell data to interrogate our 

hypothesis on the cellular origin of CLL. 

 

3.4 Expression of ROR1 as a stable marker of CLL 
 

Apart from gene expression of pan T cell antigen CD5 in CLL cells, upregulation of ROR1 

(transmembrane receptor tyrosine kinase-like orphan receptor 1) was established as one of 

the most stable CLL markers63,64,65. ROR1 is a membrane receptor, originally described as 

a pseudokinase involved in the non-canonical branch of the Wnt signaling pathway66. Its 

activity in CLL cells may be regulated by post-translational modifications67 and the 

presence of its ligands68. A key role of ROR1, which is likely involved both in the 

development of normal B cells and malignant transformation to CLL, is the regulation of 

pre-BCR and BCR signaling69,70. It was shown that ROR1 expression spikes sharply at the 

proliferative pre-BII large B cell stage69,71 and then decreases following maturation to naive 

B cells, which are generally considered as ROR1 negative69 (Figure 4). The ROR1-specific 

expression on CLL cells makes it a promising candidate for targeted treatment with 

monoclonal antibodies72 and for monitoring CLL remision65. 

In our laboratory, we identified ROR1+ B cells in the peripheral blood of healthy 

adults. This finding sparked further efforts to characterize this rare population using 

scRNA-seq and advanced computational approaches. The results are discussed in section 

5.6 of this thesis. 
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Figure 4: ROR1 expression during B cell development in the bone marrow.  B cells 
were extracted from the bone marrow dataset from the Human Cell Atlas73. A) Inferred 
developmental trajectory starting from early pro-B cells and continuing through pre-B and 
immature B cells to mature B cells. The rainbow color coding represents pseudotime 
values. B) Visualization of gene signatures in B cell development. C) The gene expression 
density distribution of ROR1 corresponds to the previous observations that ROR1 
expression spikes sharply at the proliferative pre-BII large B cell stage69,71 and then 
decreases following maturation to mature B cells. D) Predicted activities of the most 
dynamic transcription factors. E) Cell cycle phase classification. The cell cycle phase was 
assigned using the CellCycleScoring function from the Seurat R package74. 
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4 Genomic mutation data analysis 
 

With the advent of next-generation sequencing, the mutation landscape of cancer was well 

characterized75,76,77. However, our understanding of the genomic data, and therefore 

molecular biology of cancer, is far from complete. Most current clinical guidelines are based 

on profiling single-gene mutations (e.g., TP53 gene mutation status in CLL28). 

Nevertheless, mutations might have a distinct prognostic or predictive impact due to 

differential mutation background. Therefore, stratifying patients based on the entire 

mutation profile could enhance the accuracy of prognostication.  

In contrast to subtyping based on mRNA78,79 and microRNA expression79, or DNA 

methylation79,80, not many studies have grouped patients based on somatic mutation 

data81,82. The likely explanation lies in the fact that mutation data are extremely sparse and 

heterogeneous. The methods developed to alleviate these challenges will be discussed in 

the next section. 

Among hematological malignancies, studies exploring mutational patterns have 

been carried out and led to the molecular classification of acute myeloid leukemia (AML)83 

and diffuse large B cell lymphoma84. Papaemmanuil et al.83 profiled mutations in 111 genes 

in 1540 patients and applied Bayesian Dirichlet processes to set classification rules 

segregating patients into subtypes displaying different clinical outcomes. However, in many 

other hematological malignancies, such as CLL, similar studies were until recently missing43 

(commented publication in section 4.2 of this thesis), although their genetic and clinical 

heterogeneity constitutes a prerequisite for further investigation.  

 

4.1 Genomic mutation subtype identification 
 

With the plummeting cost of sequencing, mutation data generated with mostly unbiased 

profiling of protein coding regions (i.e., whole exome sequencing, WES) or even a whole 

genome (i.e., whole genome sequencing, WGS) become available for large patient cohorts. 

In this thesis, we focused on extracting biological insights from WES data. A typical 

workflow of WES analysis includes raw data quality control, preprocessing, mapping, post-

alignment processing, variant calling, annotation, and filtration85. To predict the impact of 

the variants, computational tools such as the Ensembl Variant Effect Predictor86 or 

Combined Annotation Dependent Depletion score might be used87. 

When searching for mutation subtypes, it was demonstrated that desparsification 

of the data using prior biological knowledge greatly enhanced the analysis. One way to 

reduce the dimensionality and sparsity of data is to map mutations to their respective 

biological processes. Kuijjer et al.82 developed a method for calculating pathway mutation 

score, which considers all genes in a pathway and quantifies the level of disruption of the 

corresponding pathway. The authors applied this method to analyze 23 cancer types from 

the TCGA and identified nine pan-cancer mutation subtypes. Additionally, they searched 
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for subtypes in each analyzed cancer type and discovered distinct prognostic subtypes in 

three entities, including AML, the only hematological malignancy analyzed within the study. 

Other approaches for identifying mutational subtypes include the application of 

diffusion process or random walk and prior biological knowledge in the form of protein-

protein interaction networks88,89,90. For example, Hofre et al.88 applied random walk with a 

restart to propagate mutations over its network neighborhood. Subsequently, smoothed 

networks are clustered using non-negative matrix factorization. A drawback of these 

approaches lies in the assumption that genes interact physically within biological processes, 

which is not always true. 

 

4.2 Results and discussion 
 

Identification of Clinically Relevant Subgroups of Chronic Lymphocytic 
Leukemia Through Discovery of Abnormal Molecular Pathways 
 

Petr Taus1, Sarka Pospisilova1,2,3, Karla Plevova1,2,3 
 
1Central European Institute of Technology, Masaryk University, Brno, Czechia 
2Department of Internal Medicine – Hematology and Oncology, University Hospital Brno, 
Brno, Czechia 
3Faculty of Medicine, Masaryk University, Brno, Czechia 
 

Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.627964 
 

COMMENTARY 
 

The commented article43 aimed at identifying the prognostic subtypes of CLL based on a 

somatic mutation profile. The main objective of this project was to learn the analysis and 

build and test a computational workflow on a large patient cohort. The developed 

workflow is currently being applied in ongoing projects with in-house datasets (see section 

List of conference contributions - relevant abstracts denoted with an asterisk). 

In the commented study, we leveraged the publicly available WES dataset of 506 

CLL patients with shared clinical data36. Similarly to Kuijjer et al.82, we mapped the somatic 

mutations to the molecular pathways and calculated the pathway mutation score. Pathways 

data from databases such as the Molecular Signature Database91, including data from 

various sources like Gene Ontology92, KEGG93, and Reactome94, are inherently redundant 

(e.g., genes often participate in multiple pathways and some pathway databases organize 

pathways hierarchically). In our work,  we first applied a set theory algorithm95 to decrease 

the redundancy of the curated pathway signatures from the MSigDB91. Then we calculated 

the pathway mutation score and performed ensemble clustering of the patient's samples 

based on the score. Ensemble clustering represents a combination of multiple clustering 

solutions through a consensus approach which helps to improve the robustness of the 

clustering result96.  
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We identified four clusters that we found to differ in prognosis. Subsequently, we 

built a classification model using the extreme gradient boosting (XGBoost) algorithm97. 

We extracted biological insights from the model to inform the interpretation of the 

identified clusters and described recurrently mutated pathways associated with subtypes 

such as DNA-damage response, RNA processing, inflammatory pathways, and calcium 

signaling. We found mutations in ATM and TP53 associated with the respective subtypes 

but not mutations in other commonly mutated genes such as SF3B1 and NOTCH1. 

The drawback of this study is that the clustering was performed on a single patient 

cohort, as we could not get access to an independent dataset with available clinical data. 

Being aware of the sole dataset with clinical data, we randomly split the available dataset 

into the training set (80% of patients) and test set (20% of patients) to prevent overfitting 

of our classification model. We used only the training set for parameter tuning and feature 

selection using 5-fold cross-validation. After the model was trained, we evaluated its 

performance on the unseen test set (the remaining 20% of the dataset) and reported the 

performance metrics. Moreover, we applied the classification model to the available data 

gathered by the Dana-Farber Cancer Institute, and we observed similar distributions of our 

clusters within their dataset. However, this could hardly be considered a proper evaluation 

without available clinical data, so we decided not to include this result in the commented 

article. 

I contributed to this work by designing the study, performing the analysis, and 

writing the manuscript. 

 

5 Single-cell RNA sequencing data analysis 
 

The second central part of my dissertation thesis was focused on establishing a 

computational workflow for the analysis of scRNA-seq data. This effort was a part of a 

newly created consortium of collaborating laboratories aiming to establish a scRNA-seq 

technology in Brno. As every single-cell dataset is different and therefore possesses unique 

challenges, it is necessary to be familiar with multiple methods for the analysis. In the 

following sections, I will summarize the most frequently used approaches in our projects. 

 

5.1 Single-cell RNA-sequencing data analysis introduction 
 

In 2009, Tang et al.98 published a new protocol allowing the application of  

RNA-sequencing at the single-cell level (scRNA-seq). Since around 2014, when new 

methods making the technology more accessible emerged99, the popularity of scRNA-seq 

has skyrocketed100,101. Nowadays, there is a plethora of available protocols that can be 

categorized based on aspects of cell capture (e.g., microtiter-plate-based and microfluidic-

droplet-based) and transcript quantification (full-length and tag-based). 
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Typically, the processing of raw scRNA-seq data generated by sequencing machines 

includes four main steps: read mapping to a reference, assigning reads to genes, assigning 

reads to the cellular barcodes, and unique RNA molecules quantification (i.e., unique 

molecular identifiers deduplication). As scRNA-seq deals with a lower amount of RNA 

than bulk RNA-seq, more PCR cycles are required to compensate for that. For this reason, 

the application of unique molecular identifiers that identify the specific RNA molecule102 

has become standard practice.  

Several tools are available for processing scRNA-seq data differing in speed, 

mapping, and quantification accuracy103,104,105. Among others, CellRanger103, a proprietary 

tool from 10x Genomics company, takes care of preprocessing of the most widely used 

10x Genomics Chromium scRNA-seq data. CellRanger uses RNA-seq aligner STAR106 for 

mapping reads to the reference genome, but the rest of the gene quantification pipeline is 

conducted with its own algorithms. An academic alternative to the CellRanger that is not 

locked into 10x Genomics products is the STARsolo tool, which seems to be more 

computationally efficient while generating similar results as a CellRanger pipeline105. Other 

available tools, e.g., Alevin107 and Kallisto108, leverage a pseudoalignment-to-transcriptome 

approach that makes them computationally ultra-efficient, however, their mapping and 

quantification accuracy is usually lower compared to the tools mentioned above105 

As outlined in the scheme of a classical scRNA-seq analysis workflow (Figure 5), 

proper quality control and data normalization must be performed before downstream 

analyses. Cell quality control is usually based on the total number of molecules and number 

of unique genes detected within a cell and the percentage of transcripts mapping to 

mitochondrial genes. Cells with outlier peaks in these metrics' distribution are filtered out. 

In general, cells with a high fraction of mitochondrial genes correspond to dying cells as 

RNA enclosed in the mitochondria will retain in the cells while cytoplasmic RNA leaks 

through a broken membrane. Importantly, the threshold for this metric is cell type and 

state specific109. Cells with a high number of unique genes might represent doublets. 

However, a more elegant and accurate approach for doublet detection is to apply one of 

the specifically developed doublet detection tools110,111,112. For example, the 

DoubletDecon111 uses a deconvolution method originally developed to infer cellular 

heterogeneity in bulk RNA-seq data. The DoubletFinder110 compares cell expression 

profiles to artificially created doublets to predict real doublets. 

Once the count matrix is cleaned, data must be normalized to account for variable 

count depths. Among other strategies, most commonly, data are scaled by the sum of the 

read counts, multiplied by a scale factor (e.g., 10,000), and transformed with a natural 

logarithm. Alternatively, a regularized negative binomial regression can be leveraged for 

normalization where Pearson residuals are used in the subsequent downstream analyses113. 

After normalization, feature selection usually follows. For instance, an often-used approach 

is to select the most variable genes based on the variation in their expression across the cell 

populations. The aim is to keep informative genes while removing those only affected by 

technical noise or biological variation stemming from transcriptional bursting. Next, linear 
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transformation, such as PCA, is conducted to reduce the dimensionality of the data. 

Subsequently, principal components are fed into clustering algorithms114 to identify groups 

of transcriptomically similar cells and to nonlinear dimensionality reduction methods such 

as t-SNE115 or UMAP116 for visualization purposes. 

The aforementioned steps can be performed using Bioconductor R packages117, 

Seurat R package74, or Scanpy Python package118.  
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Figure 5: Scheme of a classical scRNA-seq analysis workflow (adopted from Luecken 
et al.119).  
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5.2 Data integration 
 

Typically, one 10x Chromium single-cell gene expression library contains between 2000 

and 10,000 cells. Datasets can be combined to increase detection power and the chance of 

detecting rare cell types. However, data generated with diverse technology, across multiple 

conditions or in different laboratories, will often contain technical or biological 

heterogeneity, the so-called batch effect, preventing straightforward integration and 

downstream analysis.  

Compared to bulk RNA-seq, data integration scenarios in scRNA-seq data are more 

diverse and complex. Since the advent of scRNA-seq, a plethora of data integration tools 

have been developed, however, none of them perform well under all circumstances120,121. 

The methods usually balance between incomplete batch effect removal and overcorrection, 

i.e., removing both technical and interesting biological variance. The tools can be 

categorized based on the representation of integrated cellular profiles as an integrated 

graph, joint embedding, or corrected feature matrix. 

 The best performers across multiple metrics are methods called Harmony122 

(implemented in R) and Scanorama123 (implemented in Python). Harmony constitutes the 

integrated profile in the form of joint embedding. It iteratively performs fuzzy clustering 

(meaning a cell can be assigned to multiple clusters) while optimizing for a diversity of 

batches within each cluster until convergence. Scanorama, inspired by algorithms for 

stitching panoramic photographs, searches for nearest neighbors between the datasets that 

are subsequently leveraged to integrate data. The Scanorama approach is a generalization 

of the mutual nearest neighbors integration method124 to more complex scenarios 

containing multiple datasets. 

The approach implemented in Seurat v3125 projects datasets into a shared 

correlation structure across datasets using canonical correlation analysis and identifies pairs 

of mutual nearest neighbors across datasets. Subsequently, the weighted average of 

differences between the pairs is leveraged for batch correction. It represents integrated 

cellular profiles as a corrected feature matrix. The performance of this tool is variable as it 

tends to favor the removal of batch effects over the conservation of biological variance. 

However, such property can be desirable in some cases. For example, when integrating 

biological replicates or when our goal is to purposely remove inter donors' variability.  

The last method presented here, the cluster similarity spectrum (CSS)126, achieves 

integration by representing each cell by its transcriptome's similarity to every cell cluster in 

each sample. The CSS was included in neither of the recent benchmarking efforts120,121, 

however, it was developed and tested in the context of scRNA-seq data from cerebral 

organoids. Therefore, we decided to implement it in our study of cerebral organoids 

derived from Alzheimer's disease patients (manuscript under review summarized in section 

6.2 of this thesis).  

In summary, there is no one method to rule them all, and it is beneficial to be 

familiar with diverse approaches that can be tried in the project. We can evaluate their 
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performance and choose the one with the best batch effect correction efficiency in the 

particular context. A straightforward way to compare integration results is to compute the 

Local inverse Simpson's index (LISI)122 that can be used to quantify the mixing of cells 

from different batches in the cell neighborhood. 

 

5.3 Cell type annotation 
 
Classically, cell type annotation is the next step following the identification of clusters of 

transcriptomically similar cells either in single or integrated datasets (Figure 5). Cell type 

annotation can be either approached manually using expert knowledge or automatically 

using reference datasets or gene signatures127. Manual annotation is usually done by 

projecting the expression of canonical marker genes in 2D/3D representations such as 

UMAP116 or t-SNE115. This process can be time-consuming as detecting distinct 

subpopulations often requires subclustering of the originally identified clusters using a 

different set of variable genes, better separating specific subpopulations. Moreover, marker 

genes are often not sufficiently detected by scRNA-seq, preventing their direct 

visualization. This can be overcome by leveraging an approach based on gene-weighted 

kernel density estimation implemented in the Nebulosa R package128. Automatic cell type 

annotation is well suited for major cell types but generally performs poorly in annotating 

rare cell types. A plethora of methods have been developed that can be grouped into three 

main categories – marker gene database-based (e.g., SCINA129), correlation-based (e.g., 

SingleR130), or supervised classification-based (e.g., SingleCellNet131).  

 

5.4 Biological activity estimation 
 

Functional interpretation of scRNA-seq data is inherently difficult, and multiple methods 

have been developed trying to recover functional insights from data using gene signatures. 

The signatures, sometimes called footprints, might be defined by the effect of molecules 

(i.e., transcription factors) or biological processes of interest (i.e., signaling pathways)132. 

 Footprint-based approaches rely on a combination of prior knowledge with a 

statistical method. In our work, we explored the influence of statistical methods on 

performance and discovered that simple linear approaches and consensus score 

outperform other methods133. Nevertheless, a choice of prior knowledge seems even more 

important for activity estimation accuracy134. It is encoded in the databases usually as gene 

signatures belonging to the same biological process, e.g., regulon of transcription factor 

(TF) in MSigDB91, ChEA3135, or DoRothEA136. The latter is a curated, comprehensive 

resource built upon different types of evidence (literature-curated resources, ChiP-seq 

peaks, TF binding site motifs, and interactions inferred directly from gene expression). 

These resources are tissue and sex agnostic, however,  in reality, gene regulatory networks 

(GRN) are likely both tissue-137 and sex-specific138. The GRN can be accessed from the 

GRAND database139. To the best of our knowledge, there is no benchmarking study 
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comparing the performance of tissue-specific and tissue-agnostic GRN for estimating TF 

activities. In theory, tissue-agnostic GRN could outperform tissue-specific GRN in the 

context of scRNA-seq due to the high dropout rate and other data quirks. 

 Additionally, GRN can even be cell-type-specific. Such GRN can be directly 

inferred from the data at hand140. However, recent reviews revealed the overall poor 

performance of currently available methods for GRN inference141,142. 

 Apart from estimating TF activities, it is possible to predict the activities of signaling 

pathways using their footprints. Pathway responsive genes for activity reference 

(PROGENy) is a resource for estimating the activity of 14 signaling pathways coupled with 

a linear model143,144, and we leveraged it in one of our projects (publication summarized in 

section 6.1 of this thesis). 

 

5.5 Trajectory inference 
 
ScRNA-seq data represent a static snapshot of cellular states at a point in time. Therefore, 

studying cellular dynamic processes such as differentiation and cell activation poses a 

challenge. These processes can be modeled computationally using either pseudotime 

analysis145,146,147 or RNA velocity148,149, or even a combination of the two150. Pseudotime 

analysis, also called trajectory inference, pseudotemporally orders cells based on similarities 

of their expression profiles.  

Developmental trajectories might be linear or more complex, with one or more 

bifurcation points or tree-like structures. There are now over 100 tools for ordering cells 

into lineage (as listed in the repository scRNA-tools.org151). Their optimal performance 

depends on the properties of the data152, and some prior knowledge about expected 

topology or the origin of trajectory is usually required. 

 The concept of RNA velocity148, unraveling the speed and direction of the cell 

movement in transcriptomic space, enabled to study cellular dynamics without prior 

knowledge about the system. RNA velocity vectors are computed based on the ratio of 

spliced to unspliced counts. However, the accuracy of RNA velocity is prone to the 

inherent technical and biological noise of scRNA-seq data. For example, it was shown that 

the choice of preprocessing pipeline for quantifying spliced/unspliced counts significantly 

influences the results interpretation153. The recently developed tool called CellRank150 

combines RNA velocity and pseudotime analysis to overcome each approach's drawbacks.  

 

5.6 Results and discussion – the cellular origin of CLL 
 
In the following sections, 5.6.1 – 5.6.4, I will describe my main scRNA-seq project focused 

on exploring the cellular origin of CLL. The initiation of this project was sparked by the 

identification of a rare ROR1+ B cell population in PB of healthy adults before I joined 

our research group. Mature ROR1+ B cells in PB may theoretically represent a pool of B 

cells that are either defective (and escaped regulation mechanisms), autoreactive, or 
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represent a specific functional B cell subset from which MBL, and subsequently CLL, 

originate. Using diverse analytical approaches and a combination of our datasets with 

published ones, we characterized the ROR1+ B cells and generated evidence supporting 

the hypothesis that this population is the cellular origin of CLL. 

 

5.6.1 Establishing scRNA-seq method and computational pipeline 
 
To interrogate our hypothesis, we screened a relatively large cohort of healthy individuals 

(N=68) and found a correlation between the prevalence of ROR1+ B cells and a donor's 

age. These findings prompted us to characterize the ROR1+ B cells in the context of B 

cell development and CLL transformation using 10x Genomics Chromium scRNA-seq. 

As a pilot experiment, we prepared two sequencing runs containing samples of  

FACS-sorted ROR1+ B cells, CLL cells, B cells from PB, and B cells from BM. We used 

antibody-based hashtag oligos for sample multiplexing154, which allowed us to keep 

information about the sample origin for each cell.  

As this was the first scRNA-seq experiment conducted at our institute, we had to 

optimize wet and dry lab protocols. To preprocess raw expression and hashtag oligo data, 

we used the CellRanger pipeline. For the basic data analysis, we mostly followed the Seurat 

workflow74. We tested log normalization and SCTransform113 and observed minimal 

impact on the separation of B cell populations. To identify possible ambient RNA 

contamination we implemented SoupX155 and for doublet detection we used 

DoubletFinder110. 

We identified clusters of expected B cell populations including precursor pro- and 

pre-B cells expressing ROR1 as described in the literature69,71. To integrate the datasets, we 

tested Seurat v3125, Harmony122, and Scanorama123. We evaluated integration results with 

the LISI score122 which was the best for results obtained with Harmony. 

Subsequently, we inferred B cell developmental lineage structure and pseudotime 

by fitting a principal curve using the Slingshot package147. Interestingly, we identified a 

trajectory leading from immature B cells through a subpopulation of FACS-sorted ROR1+ 

B cells to CLL cells.  To detect genes differentially expressed along the lineage, we used 

random forest regression to predict pseudotime values from gene expression and leveraged 

the model's feature (=gene expression) importance to rank gene expression dynamics. 

When inspecting the most dynamic genes, we noticed that some of them correspond to 

stress response genes (such as FOS, JUN, and JUNB), suggesting the presence of possible 

artifacts in our data156. Moreover, we could not separate memory from naive B cells from 

peripheral blood, and during the subclustering procedure, we identified clusters mainly 

differing in the expression of stress response genes. To further investigate this issue, we 

integrated our data with a published dataset of B cells from lymph node157 and with two 

peripheral blood mononuclear cell (PBMC) datasets from the 10x Genomics website. We 

identified differentially expressed genes between the corresponding B cell populations and 

performed gene set enrichment analysis that revealed top enriched GO terms linked with 
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response to temperature stress (e.g., "response to temperature stimulus", "regulation of 

cellular response to heat", and "response to cold"). Unfortunately, these results strongly 

supported our hypothesis about the presence of sampling artifacts in our data. We 

suspected the culprit was the high complexity of our sequencing runs with multiple samples 

and antibody-based hashtag oligos. The prolonged sample preparation procedure exposed 

cells to stressful conditions for a long time, resulting in inevitable changes in their 

expression profiles. We concluded that there is no safe way to remove this artifact from 

data in silico as a stress-caused distortion of cellular expression profile can unpredictably 

influence the expression of other genes, primarily not associated with a stress response156. 

 

5.6.2 Characterization of ROR1+ B cells 
 
Based on the abovementioned experience with an overly complex sample, we decided to 

prepare a simple sequencing run containing FACS-sorted ROR1+ B cells. The simplicity 

of the sample allowed us to work quickly with the cells and therefore eliminate the 

activation of a cellular stress response. We analyzed the heterogeneity of ROR1+ B cells 

and found that they represent a heterogeneous population containing clusters of cells with 

transitional-like, naive-like, and memory-like gene expression features. However, their 

proportion was skewed towards transitional B cells (TS) and IgM+ memory B cells. 

 Next, we were interested if we could find ROR1+ B cells in published B cell datasets 

and, if so, what their distribution among B cell populations is. We gathered data from 

Stewart et al.158, Sutton et al.159, and the 10x Genomics website, which were of the highest 

quality from the available datasets. We reanalyzed and unified their annotation and 

searched for ROR1+ B cells. In line with our previous observation, we found ROR1+ B 

cells primarily within the neighborhood of TS and IgM+ memory B cells denoted here as 

alternative memory B cells (AMB) (Figure 6). These findings suggest that the expression 

of ROR1 is not randomly distributed between B cell populations and is not solely limited 

to one specific B cell subtype. We think that the expression of ROR1 in B cells could 

denote a distinct cellular lineage or cell state, such as an anergic cell state. 
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Figure 6: ROR1+ B cells in PB. A,D,H) Dataset of five immunophenotypically sorted 
B cell subsets (Transitional, Naive, IgM Memory, Classical Memory, and Double Negative) 
from Stewart et al.158 B, F, I) Dataset of total B cells from 10x Genomics website.  
C, G, J) Dataset of atypical memory' B cells (CD20+ CD19+ IgD-) from Sutton et al.159.  

 

5.6.3 Similarity prediction using a machine learning approach 
 
Further, we aimed to compare the transcriptomic resemblance of healthy B cell populations 

to CLL cells using the XGBoost-based similarity prediction model. The XGBoost 

algorithm is a machine learning approach that combines a large number of weak learners 

(i.e., slightly better than random guessing) based on decision trees into a single strong 

learner (i.e., a classifier)97. The classifier can then be applied to a single sample to calculate 

a class probability that reflects its similarity to a given class. XGBoost algorithm is well 

suited for datasets containing correlated features, multiple classes, many samples, and many 

features which are characteristic properties of scRNA-seq data. In this study, samples 

represent expression profiles of single cells, features represent genes, and classes represent 

different B cell populations. For the analysis, we used the xgboost R package version 

1.3.2.1. 

To train the classifier, we split data randomly into a training set (80% of cells) and 

a hold-out test set (20% of cells). To limit noise from random fluctuations in the expression 

of uninformative genes, we used only 3000 of the most variable genes as input features for 

our classifier. Then we trained the XGBoost model with default hyperparameters to rank 
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the feature importance. Feature importance was ranked by its information gain, which 

corresponds to the relative contribution of the feature to a prediction. The training was 

stopped after 100 rounds without improvement of the multiclass logarithmic loss function 

(mlogloss), which was evaluated using 5-fold cross-validation. XGBoost, like any machine 

learning method, possesses several hyperparameters that need to be optimized for the best 

performance. A plethora of approaches exist to tune the hyperparameters. In our case, we 

performed a random grid search with 5-fold cross-validation to assess the quality of a 

specific parameter setting using the mlr R package version 2.19.0. Subsequently, the 

classifier's performance was evaluated on the hold-out test set using mlogloss, multiclass 

auROC, and multiclass aucPR.  

We trained a model on the abovementioned dataset of B cells downloaded from 

the 10x Genomics website that was of the highest quality from the gathered datasets. 

Altogether, we built three distinct classifiers to predict the similarity of single CLL cells to 

different B cell populations based on their expression profiles. The first classifier was built 

to predict the similarity of CLL cells to the five B cell populations (Figure 7). To assess the 

model's generalizability to cells from independent datasets, we applied the classifier to B 

cells extracted from the PBMC dataset obtained from the 10x Genomics website (Figure 

7D). Then we applied it to CLL cells and observed that majority of cells were predicted to 

be the most similar to AMB (55%), naive B cells (29%), and CMB (16%). However, the 

model was less confident about classifying CMB than AMB or naive B cells (Figure 7F).  

The CLL sample contained cells with and without specific chromosomal aberration 

significantly differing in their expression profile, creating two distinct clusters (Figure 7G). 

Interestingly, we did not observe changes in prediction distribution between these two 

subpopulations suggesting that prediction is robust to random changes in expression 

profiles. 
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Figure 7: Similarity prediction of single CLL cells to healthy B cell populations.  
A) Dataset of all B cells from the PB used to train the classification model. The cells were 
annotated based on the comparison of top differentially expressed genes (B) with canonical 
gene markers. C) Model performance on the hold-out test set (20% of cells).  
D) Classification of the B cells extracted from the PBMC dataset obtained from the 10x 
Genomics website. Cells are colored by the results of the prediction. E) Marker genes 
expression between the predicted cells. F) Heatmap of classification probability estimates 
from the XGboost model for (G) similarity prediction of the CLL cells containing 
subpopulation with the specific chromosomal aberration.   

 

Next, we decided to subcluster naive and memory B cells. We built two classifiers 

to predict the similarity of CLL cells predicted by the first classifier as naive or AMB/CMB 

to the identified subclusters of naive and memory B cells, respectively (Figure 8). We 

observed that in the case of the naive classifier, the majority of CLL cells were predicted 

to be the most similar to cells from the subcluster containing ROR1+ B cells (Figure 8A). 

Regarding the memory classifier, most cells were predicted to be the most like cells from 

the AMB cluster containing ROR1+ B cells (Figure 8B). 
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Figure 8: Similarity prediction of single CLL cells to healthy B cell subpopulations. 
A) The classification model for subclusters of naive B cells predicted virtually all naive-like 
CLL cells to be the most similar to subcluster of naive cells that share some gene expression 
markers with AMB (e.g., SWAP70, COBLL1, and RALGPS2) and contains ROR1+ B 
cells. B) The classification model for subclusters of AMB/CMB B cells predicted virtually 
all memory-like CLL cells to be the most like AMB that contains ROR1+ B cells. 

 
In the subsequent phase of the project, we generated a scRNA-seq dataset of B cells 

from the PB of two donors of 48 and 63 years old. We integrated this dataset with the 

abovementioned FACS-sorted ROR1+ B cells and B cells from the 10x Genomics using 

the Seurat v3 approach and performed clustering analysis and annotation. We found 

clusters of TS, naive, AMB, CMB, and CD1C high cells. Additionally, we identified two 

clusters that contained cells almost exclusively from the dataset of FACS-sorted ROR1+ 

B cells (Figure 9). 
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Figure 9: Integrated analysis. A) Integrated dataset of an in-house generated dataset of 
B cells from the PB of two donors, FACS-sorted ROR1+ B cells, and dataset of B cells 
from the 10x Genomics website. B) Visualization of selected marker genes. C) Integrated 
dataset split by dataset identity. Left, B cells from the 10x Genomics website; middle, an 
in-house generated dataset of B cells; right, a dataset of FACS-sorted ROR1+ B cells. 

 

 Then, again, we asked which of these clusters is the most similar to CLL cells. To 

answer this, we built an XGBoost classifier using gene expression profiles. Additionally, 

we trained a classifier with activities of TFs, estimated with the Dorothea R package, as 

input features. We assumed that we could extract further insights from the model about 

the transcriptional regulation of ROR1+ B cells. The expression-based model predicted 

the majority of CLL cells to be the most similar to cluster A of ROR1+ B cells. This 

subpopulation of ROR1+ B cells is the most related to IGHM+ memory B cells expressing 

CD27 and IGHM, while the subpopulation denoted as B is more naive-like but intriguingly 

expresses a low level of CD27, a canonical marker of the memory B cells.  In the case of 

the TF activities-based model, most cells were also predicted to be the most like A-ROR1+ 

B cells, but the difference between the second and third most abundant predictions was 

small (Figure 10). One possible explanation of this result is that ROR1+ B cells share a 

core transcriptional regulatory network similar to that of TS that are naturally enriched for 

ROR1+ B cells. 
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Figure 10: Similarity prediction of single CLL cells to normal and FACS-sorted 

ROR1+ B cell subpopulations. 

 

We proceeded with the extraction of biological insights from the TF activities-based 

model. We explored the most informative features for the prediction and discovered 

several differentially activated TFs associated with ROR1+ clusters (Figure 11). For 

example, the most important feature for the model was FOXP1, whose activity was 

increased in ROR1+ clusters. FOXP1 was presented in the literature as a repressor of 

proapoptotic genes160, suggesting that the ROR1+ B cells could be more resistant to 

apoptosis. Another was NFKB2, whose activity was decreased in ROR1+ clusters. 

Interestingly, NFKB2 was recently described to be downregulated in self-reactive anergic 

B cells in mice161. Furthermore, we observed decreased activities of PAX5 and RFX5 in 

ROR1+ clusters that we saw declined during the phase of B cell development in BM when 

ROR1 is transiently expressed (Figure 4D). PAX5 is a master regulator of B cell 

differentiation162,163 and RFX5 is a crucial regulator of MHCII gene expression164. Overall, 

these findings suggest that ROR1+ B cells could be B cells in the anergic state which 

corresponds to one of the main characteristics of CLL cells62. 
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Figure 11: The most important features for the TF activities-based model. On the 
left is visualized TFs importance for the classification model and on the right is a heatmap 
of the TFs activities across the B cell subpopulations. 

 

5.6.4 Summary 
 
Here I presented the most exciting results of our ongoing effort to characterize the cellular 

origin of CLL. We established a computational workflow for the analysis of scRNA-seq 

data and demonstrated its multiple functionalities and ability to detect sampling artifacts. 

Using the workflow, we discovered that ROR1+ B cells are a heterogenous population 

prevalently consisting of transitional-like and IGHM+ memory-like B cells. We further 

explored the published B cell datasets. We detected a small number of ROR1+ B cells, 

primarily among transitional B cells that naturally contain a high percentage of self-reactive 

B cells8 and among IGHM+ memory B cells. Next, we built a pipeline to identify the most 

similar population to malignant cells and found ROR1+ B cells to be the most similar to 

CLL cells. Moreover, we identified differentially activated TFs in ROR1+ B cells involved 

in the regulation of anergy and apoptosis. In summary, our findings suggest that gene 

expression of ROR1 marks self-reactive anergic B cells that transcriptomically resemble 

CLL cells. 

Of note, I must emphasize that all the analyses presented in this section are 

exploratory, performed on small sample size, and do not provide conclusive evidence. 

However, these analyses were essential for the project's progress and helped us to 

formulate better questions and design subsequent experiments. Currently, we are collecting 

samples of MBL where we are most interested in the characterization of healthy B cells 
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and comparison of MBL to ROR1+ B cells. Then we would like to perform bulk RNA-

seq of sorted ROR1+ B cells from healthy adults of different ages. Moreover, in parallel to 

the presented effort, we generated cytometry by time of flight (CyTOF) data that supported 

our hypothesis. 

I contributed to this project by establishing scRNA-seq workflow, designing and 

performing all the presented analyses, and putting the results into a biological context.  

 
 

6 Other articles related to the thesis  
 

In the following sections, 6.1 – 6.3, I will provide a short commentary on three published 

articles and one manuscript under review that I co-authored. Next, I will briefly summarize 

unpublished work related to the thesis. 

 

6.1 Commentary on published articles 
 

decoupleR: Ensemble of computational methods to infer biological 
activities from omics data  
 

Pau Badia-i-Mompel1, Jesús Vélez1, Jana Braunger1, Celina Geiss1, Daniel Dimitrov1, 
Sophia Müller-Dott1, Petr Taus2, Aurelien Dugourd1, Christian H. Holland1, Ricardo O. 
Ramirez Flores1, Julio Saez-Rodriguez1 
 
1Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute 
for Computational Biomedicine, Bioquant, Heidelberg, Germany  
2Central European Institute of Technology, Masaryk University, Brno, Czechia  
 
Bioinformatics Advances, https://doi.org/10.1093/bioadv/vbac016 
 
 

COMMENTARY 
 

The commented article describes the decoupleR, an R and Python package that collects 

distinct computational methods to estimate biological activities. In this publication, we 

applied the decoupleR to benchmark the performance of the methods by recovering 

perturbed regulators. We showed that simpler, linear approaches and the consensus score 

across top methods overcome other methods at predicting perturbed regulators. 

Currently, the DecoupleR contains 11 methods, including AUCell140, VIPER165, 

SCIRA166, and others. The code of the decoupleR is designed to enable the straightforward 

addition of other methods in the future. DecoupleR can be used with omics datasets such 

as phospho-proteomics or transcriptomics. It requires two inputs: One input is a matrix of 

any molecular readouts, either for single samples or from population comparisons, like 

normalized gene expression or log fold change. The second is a prior knowledge resource 

that encodes relations between target features and source biological entities (e.g., network). 
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The latter can be easily accessed from the meta-database OmniPath167 using wrappers 

provided within the decoupleR. 

For benchmarking, we developed the decoupleRBench R package that is built on 

the decoupleR. It allows to evaluate the performance of the statistical methods for the 

extraction of biological signatures using perturbation experiments. 

I contributed to this project during my research stay in Julio Saez-Rodriguez's lab, 

mainly by implementing and testing one established (AUCell) and two novel methods 

within the framework. The novel methods were Univariate Decision Tree (UDT) and 

Multivariate Decision Tree (MDT). UDT is based on a decision tree algorithm that is fitted 

for each regulator, where associated weights of a given regulator are used to estimate the 

molecular readouts of the features in a sample. Consequently, the feature importance 

obtained from the model represents the prediction of the regulator activity. MDT is an 

ensemble of decision trees, also known as random forest, that, contrary to UDT, is fitted 

to all regulators of a given network to predict the molecular readouts of the features in a 

sample. Same as for UDT, the extracted features importance are the regulator activities. 

 

 

Distinct p53 phosphorylation patterns in chronic lymphocytic leukemia 
patients are reflected in circumjacent pathways’ activation upon DNA 
damage 
 

Veronika Mancikova1,2, Michaela Pesova1,2, Sarka Pavlova1,2, Robert Helma1,2, Kristyna 
Zavacka1,2, Vaclav Hejret1, Petr Taus1, Jakub Hynst1, Karla Plevova1,2,3, Jitka Malcikova1,2, 
Sarka Pospisilova1,2,3 
 
1Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech 
Republic  
2Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine, 
Masaryk University and University Hospital Brno, Czech Republic  
3Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University and 
University Hospital Brno, Czech Republic 
 
Molecular Oncology, https://doi.org/10.1002/1878-0261.13337 
 
 

COMMENTARY 
 

The commented article focused on the effect of p53 protein phosphorylation on its 

function as a possible inactivation mechanism. We demonstrated that doxorubicin 

treatment of CLL tumor-derived cells leads to two distinct phosphorylation patterns. 

Samples from the group with less phosphorylated p53 had a lower capability to activate 

p53 target genes and were transcriptomically similar to TP53-mutated samples.  

We performed bulk RNA-seq for samples before and after treatment. PROGENy 

analysis revealed that the activity of hypoxia signaling is associated with the type of 
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disruption of p53. The highest level was observed in TP53-mutated samples, followed by 

samples with less phosphorylated p53, and the lowest activity was in the samples with 

heavily phosphorylated p53. These findings were further supported by the same pattern in 

the activity of TF HIF1A, which is the main regulator of hypoxia. I contributed to the 

project by suggesting and implementing PROGENy and TF activity analyses.  

 

 

Single-cell RNA sequencing analysis of T helper cell differentiation and 
heterogeneity 
 

Radim Jaroušek1,2, Antónia Mikulová1,2, Petra Daďová1,2, Petr Tauš3, Terézia Kurucová2,3, 
Karla Plevová3,4, Boris Tichý3, Lukáš Kubala1,2 

 
1Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic 
2Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 
Czech Republic 
3Central European Institute of Technology, Masaryk University, Brno, Czech Republic 
4Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of 
Medicine, Masaryk University, Brno, Czech Republic 
 

BBA Molecular Cell Research, https://doi.org/10.1016/j.bbamcr.2022.119321 
 
 

COMMENTARY 
 

In the commented article, we explored the heterogeneity of Th1, Th2, Th17, and Treg cells 

utilizing standard in vitro cytokine-mediated differentiation of human T cells isolated from 

human PB by scRNA-seq and identified specific gene signatures for their identification. I 

contributed to this study by processing raw data, providing scripts for the downstream 

analysis, and training of scRNA-seq analysis to the first author. 

 

 

6.2 Summary of a manuscript under review 
 

Cerebral organoids derived from Alzheimer's disease patients with 
PSEN1/2 mutations have defective tissue patterning and altered 
development 
 
Tereza Vanova1,2, Jiri Sedmik1, Jan Raska1, Katerina Amruz Cerna1, Petr Taus3, Veronika 
Pospisilova1, Marketa Nezvedova5, Veronika Fedorova1, Hana Klimova1, Michaela 
Capandova1, Petra Orviska1, Petr Fojtik1, Simona Vochyanova1, Karla Plevova3,4, Zdenek 
Spacil5, Hana Hribkova1, Dasa Bohaciakova1,2 
 
1Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 
Brno, Czech Republic. 
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2International Clinical Research Center (ICRC), St. Anne’s University Hospital, Brno, 
Czech Republic. 
3Central European Institute of Technology, Masaryk University, Brno, Czech Republic. 
4Department of Internal Medicine - Hematology and Oncology, University Hospital Brno 
and Faculty of Medicine, Masaryk University, Brno, Czech Republic. 
5RECETOX, Faculty of Science, Kotlarska 2, Brno, Czech Republic. 
 
Under review in the Cell Reports 
 

COMMENTARY 
 

The commented manuscript describes the development and characterization of the 

Alzheimer's disease-cerebral organoid (AD-CO) model using induced pluripotent stem 

cells derived from patients with the familial form of Alzheimer's disease. Apart from other 

experimental approaches presented in the manuscript, we used scRNA-seq to characterize 

AD-CO and my responsibility was to extract biological insights from scRNA-seq data. 

 We generated two scRNA-seq datasets of 60-days old AD-CO and matched healthy 

control (ND-CO) and processed data as described above in section 5. Each of the samples 

contained 18 COs to compensate for their heterogeneity. To identify cluster-specific genes, 

we leveraged the natural language processing concept of term frequency-inverse document 

frequency using the quickMarkers function from the SoupX R package155. We compared 

our data with published COs data from Kanton et al.168 using the SingleR R package130. To 

characterize the cell fate decision process, firstly, we estimated count matrices of unspliced 

and spliced abundances with the loompy/kallisto counting pipeline169,170. Then we 

calculated RNA velocity and combined it with pseudotime analysis using the CellRank 

Python package150. 

 We proceeded with data integration by applying the CSS method126. Projecting the 

LISI score to the UMAP embedding, we noticed that some clusters are enriched for cells 

belonging to AD- or ND-CO, and we tested the significance of the difference by 

permutation testing using the scProportionTest R package171. Then we inferred the 

developmental trajectory for the cells of the neuronal lineage using the Slingshot R package 

and searched for dynamical genes along the trajectory differing between AD- and ND-CO 

using the tradeSeq R package172. 

 Finally, to make all the analyses open and reproducible, we used Rmarkdown and 

WorkflowR R package173 for R scripts and Jupyter Notebook for Python scripts that will 

be available upon publication at https://petrsh.github.io/AD_CO_scRNAseq. I 

contributed to this study by processing raw scRNA-seq data and suggesting and performing 

all the analyses of scRNA-seq data. Moreover, to continuously share the results of the 

analyses and to make them accessible to collaborators with no coding skills I leveraged the 

PAGODA2 interface174. 

  

https://petrsh.github.io/AD_CO_scRNAseq
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6.3 Summary of unpublished work 
 
Here I will briefly summarize my contribution to two collaborative projects with 

manuscripts in preparation.  

The first project is being conducted in Jan Křivánek’s laboratory of Dental 

Development and Regeneration at the Department of Histology and Embryology at 

Masaryk University. It is a continuation of the dental cell type atlas project in which 

Krivanek et al.175 revealed and characterized stem cell type in a mouse continuously 

growing teeth. I contributed to this ongoing effort by analyzing two scRNA-seq datasets 

of FACS-sorted, lineage-traced stem cells from normal and injured continuously growing 

teeth. The analyses included clustering, cell type annotation, differential cell type 

abundance, pseudotime, RNA velocity, and CellRank analyses. For example, using the 

CellRank toolkit, we identified previously unknown cellular subpopulation 

dedifferentiating during the injury. The findings obtained from scRNA-seq data are 

currently being experimentally validated. 

 The next project is a collaboration with Marcela Buchtova’s laboratory of Molecular 

Morphogenesis at the Department of Experimental Biology at Masaryk University. The 

project is focused on the characterization of Lgr5+ cells during molar development. I 

contributed to this project by analyzing four distinct scRNA-seq datasets. The analyses 

included data integration, clustering, cell type annotation, pseudotime, RNA velocity, and 

CellRank analyses. 
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Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the 

Western world with a highly variable clinical course. Its striking genetic heterogeneity is 

not yet fully understood. Although the CLL genetic landscape has been well-described, 

patient stratification based on mutation profiles remains elusive mainly due to the 

heterogeneity of data. Here we attempted to decrease the heterogeneity of somatic 

mutation data by mapping mutated genes in the respective biological processes. From 

the sequencing data gathered by the International Cancer Genome Consortium for 506 

CLL patients, we generated pathway mutation scores, applied ensemble clustering on 

them, and extracted abnormal molecular pathways with a machine learning approach. 

We identified four clusters differing in pathway mutational profiles and time to first 

treatment. Interestingly, common CLL drivers such as ATM or TP53 were associated 

with particular subtypes, while others like NOTCH1 or SF3B1 were not. This study 

provides an important step in understanding mutational patterns in CLL. 

Keywords: chronic lymphocytic leukemia, pathway mutation score, ensemble clustering, extreme gradient 

boosting, mutation subtypes 

 

 

INTRODUCTION 

Chronic lymphocytic leukemia (CLL) is a genetically and clinically heterogeneous disease. The 

disease manifestations range from asymptomatic with no need for therapy to an aggressive disease 

associated with therapeutic resistance and overall survival of less than 3 years (Kipps et al., 2017). 

CLL is divided into two main diagnostic subgroups based on the somatic hypermutation status 

of the immunoglobulin heavy chain variable region genes (IGHV; Damle et al., 1999; Hamblin 

et al., 1999). Clinical heterogeneity within both groups is substantial, nevertheless, patients with 

unmutated IGHV typically experience a more aggressive disease (Sutton et al., 2017). Over the past 

decade, genomic studies in CLL have discovered several putative drivers (Landau et al., 2013, 2015; 

Puente et al., 2015). Mutations in some of the drivers (e.g., mutations in TP53 and ATM genes) 
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are associated with worse clinical outcomes whereas, in other 

instances, reports of prognostic relevance vary (e.g., NOTCH1 

and SF3B1) (Lazarian et al., 2017; Hallek, 2019). Many of 

the driver genes cluster in specific signaling pathways (Landau 

et al., 2013, 2015; Puente et al., 2015), however, in a significant 

proportion of patients, no recurrent mutation has been found 

(Puente et al., 2015). Still, only a limited set of molecular pathways 

may be abnormal due to the contribution of non-recurrent 

mutations that are commonly present, but their impact remains 

elusive and deserves further elaboration. 

Stratification of CLL patients based on the entire mutation 

profile could improve the accuracy of prognostication as it has 

been shown in the context of other diagnoses (Papaemmanuil 

et al., 2016; Schmitz et al., 2018). In acute myeloid leukemia, 

patients assigned into subgroups based on patterns of co- 

mutations in 111 driver genes displayed different clinical 

outcomes (Papaemmanuil et al., 2016). However, this approach 

is challenging for a disease as genetically heterogenous as 

CLL. An  alternative  approach  is  to  use  prior  knowledge 

of a protein-protein interaction network to reduce the 

heterogeneity  and  classify  patients  into  subtypes  (Hofree 

et al., 2013; Leiserson et al., 2015; Le Morvan et al., 2017). 

For example, mutations can be aggregated in network 

neighborhoods using network propagation that spreads the 

signal from mutated drivers to other functionally related genes 

in network space (Hofree et al., 2013). A limitation of such 

approaches, using the protein-protein interaction network, is 

that the genes involved in a biological process do not always 

interact physically. 

Kuijjer et al. (2018) developed a method for reducing 

heterogeneity of mutation data using biological pathways. This 

approach takes into account all genes in a pathway and quantifies 

the level of disruption of the pathway function. Based on 

this approach, the authors identified nine pan-cancer mutation 

subtypes across the 23 cancer types from The Cancer Genome 

Atlas (Kuijjer et al., 2018). To the best of our knowledge, either 

network- or pathway-based stratification of CLL patients using 

mutation data has not been performed until now. 

Unsupervised learning, also known as clustering,   has 

been extensively used to gain insight into the underlying 

structure of complex biological data and has led to discoveries 

of various cancer molecular subtypes (Noushmehr et al., 

2010; Cancer Genome Atlas Research Network, 2011; 

Hedegaard et al., 2016). However, there are several pitfalls, 

stemming from the nature of biological data, which must be 

considered during the clustering analysis to obtain robust 

and meaningful results (Ronan et al., 2016). These pitfalls 

may be overcome by the application of a combination of 

multiple clustering solutions through a consensus approach 

(i.e., ensemble clustering). In this study, we used sequencing 

data gathered by the International Cancer Genome Consortium 

(ICGC) for 506 CLL patients to generate pathway mutation 

scores and applied ensemble clustering. We extracted 

abnormal molecular pathways with a machine learning 

approach and identified groups of CLL patients that differ 

in pathway mutational profiles, as reflected by the clinical 

behavior of the disease. 

RESULTS 

Reducing Pathway Signature 
Redundancy to Enhance Prognostic 
Subtype Identification 
In the present work, we used 1,329 canonical pathway 

signatures (covering 8,904 genes) from the collection of 

curated gene sets (i.e., pathways) from the Molecular 

signatures database (MSigDB) (Liberzon et al., 2011) 

gathered from various sources including e.g., BioCarta, 

KEGG, and Reactome. Combining multiple sources of 

pathway information often leads to redundancy in the 

combined dataset that can hinder the downstream analysis. 

We explored the canonical signature dataset and found out 

that each gene belonged to 7.6 pathways on average and that 

the pathway sizes ranged from 6 to 1,028 genes with the 

median pathway size of 29 genes. This means that most of 

the pathways contain tens of genes encompassing specific 

biological processes (see Figure 1 for a flow diagram of the 

presented analysis). 

A set theory algorithms (Stoney et al., 2018) aimed to 

identify a minimum subset of gene sets required to cover 

genes in the combined pathway database. We expected that 

the application of the algorithms would reduce redundancy, 

decrease dimensionality and lead to the exclusion of large 

uninformative gene sets. We   tested   two   algorithms,   i.e., 

the hitting set cover and the proportional set cover, that 

approach pathway reduction in a slightly different way with 

their unique biases (Stoney et al., 2018). We applied these 

algorithms with 100 and 99% gene coverage on the canonical 

signature dataset. Using 99% gene coverage means that we 

allowed the algorithms not to cover the remaining one 

percent of genes as the covering of the remaining genes, 

which tend to have the most overlap with other gene sets, 

is often at the expense of redundancy reduction. However, 

this resulted only in marginal improvement of the reduction 

of redundancy (Table 1), and the excluded genes were 

mutated in the tested CLL patient samples. In order not 

to lose this information, for further analyses, we decided 

to use a reduced pathway dataset with all genes from 

canonical pathway signatures generated by the hitting set 

cover algorithm. The hitting set cover algorithm resulted in 

a 67% reduction of redundancy (from 7.6 to 3.2) and a 

58% reduction of dimensionality (from 1,329 to 564) and 

thus outperformed the proportional set cover algorithm in 

both the reduction of overall redundancy and decreasing 

dimensionality (Table 1). 

Identification of Prognostic Mutation 
Subtypes Using SAMBAR 
In the next step, we tested a method called Subtyping 

Agglomerated Mutations By Annotation Relations (SAMBAR; 

Kuijjer et al., 2018), utilizing hierarchical clustering with 

binomial distance. We applied SAMBAR in default settings, 

i.e., with subsetting to cancer-associated genes, which resulted 

in the loss of 22% (n = 113) samples without mutation 

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Taus et al. Mutation Subgroups of CLL 

Frontiers in Genetics | www.frontiersin.org 3 June 2021 | Volume 12 | Article 627964 

 

 

 
 

 
 

 
in any of these genes from our patient dataset (n = 506). 

Therefore, we decided not to subset genes in the next 

analyses. We cut the dendrogram at k = 2–7 which means 

that we grouped the patients into 2–7 groups containing 

cases with the most similar pathway mutation profiles. We 

removed clusters of size <20 and tested time to first 

treatment (TTFT) differences between the subtypes. We 

identified those solutions with significant differences bearing 

potential clinical relevance. These concerned k = 3 and 5 that, 

after filtering out clusters of size <20, contained only two clusters 

(Supplementary Figure 1). 

 

Identification of Prognostically Relevant 
Patient Subtypes Using Ensemble 
Clustering 
We further explored whether we could identify subtypes with a 

greater prognostic value in our cohort that would be defined by 

distinct pathway mutation profiles. We used a combination of 

multiple clustering solutions through a consensus approach to 

cluster pathway mutation scores. We chose distinct clustering 

algorithms in order to maximize the diversity of the ensemble 

and therefore to reduce biases due to the selected algorithms 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 
FIGURE 1 | A flow diagram of the analysis. TTFT – time to first treatment. 
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FIGURE 2 | (A) Kaplan–Meier curves depicting TTFT for the identified clusters. (B) Forest plot of hazard ratios for TTFT according to the identified clusters and IGHV 

status. (C) Kaplan–Meier curves depicting overall survival (OS) for patients within different prognostic subtypes. (D) Forest plot of hazard ratios for OS according to 

the identified clusters and IGHV status. (B,D) The column “N” represents the number of samples grouped by the “Variable” column. The column “Hazard ratio” 

represents confidence intervals for hazard ratios and column “p” p-values of test statistics. The present data concern 486 patients with unique information about 

IGHV status available (i.e., 10 patients without known IGHV SHM status and 1 patient with biclonal rearrangements were excluded). The difference in the total 

number of patients between panels (B) and (D) is due to the fact that information about TTFT and OS was available for 485 and 482 patients, respectively. 

 

TABLE 1 | Reducing redundancy using two different set theory algorithms (hitting set cover and proportional set cover) with 100 and 99% gene coverage. The original 

canonical pathway signatures dataset is described in the first row. 
 

Algorithm Gene coverage 

[%] 

No. of pathways Mean pathways 

per gene 

Min pathway size 

[genes] 

Max pathway size 

[genes] 

Median pathway 

size [genes] 

 100 1,329 7.6 6 1,028 29 

* Hitting set cover 100 564 3.2 8 389 34 

Proportional set cover 100 669 3.5 6 389 30 

Hitting set cover 99 513 2.8 8 389 32 

Proportional set cover 99 603 2.9 6 389 27 

Star denotes the final solution.       

 

 

(see section “Materials and Methods”). We split data into 2– 

7 groups and evaluated differences in TTFT for the three 

best solutions selected based on the proportion of ambiguous 

clustering (PAC; Şenbabaoğlu et al., 2014). We identified subtypes 

with significantly different TTFT (log-rank test p < 0.05) 

for clustering solutions splitting data into 5 and 7 groups 

(Supplementary Figure 2). Clustering samples in 5 and 7 groups 

produced subtypes of 228, 33, 142, 5, 94 and 141, 57, 93, 47, 

41, 66, 57 patients, respectively. As in the previous step, we 

removed clusters of size <20, therefore, after this filtering step, 

the clustering solution originally splitting data into 5 groups, 

contained only 4 groups (Figure 2A). 

Since the multiclass classification that we subsequently 

performed was challenging, we further elaborated the 

solution with the fewer (i.e., 4) groups in all downstream 

analyses. First, we evaluated the effect of each subtype 

characterized    by    distinct     pathway     mutation     profiles 

on the TTFT. The subtype with the most favorable 

prognosis differed from the one with the worst outcome 

by 20 years in the median TTFT (3 vs 23.4 years) 

independently   of   the   IGHV   status    (Figure   2B).    We 

also checked differences in OS, however, they were not 

independent of the IGHV status in the multivariate analysis 

(Figures 2C,D). 
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Abnormal Molecular Pathways Extraction 

We next wanted to build a classification model for the identified 

subtypes, which would be able to assign new cases into 

existing subtypes. We selected the best model based on a well 

suited evaluation metric for imbalanced multiclass classification 

mlogLoss from the five-fold cross-validation, which was 0.54. 

Next, we evaluated the performance of the final model on a 

hold-out dataset (n = 100), i.e., samples that were not used 

in any step of the model development, thus representing new, 

unseen data. The final model used 84 pathway signatures 

and achieved high prediction performance (0.51 mlogLoss, 

0.96 multiclass auROC, and 0.87 multiclass aucPR). The 84 

pathway signatures contained 1,504 mutated genes in the dataset. 

We analyzed protein–protein interactions of mutated genes 

from each cluster and described gene communities using the 

fast greedy community detection algorithm. To interpret gene 

communities, we performed text mining of the column with 

the description of gene function for each gene and visualized 

networks (Supplementary Figures 3–6). Then, we extracted the 

top ten most important features for the model and each subtype 

separately (Figures 3, 4). 

When investigating the most important pathway signatures 

for each cluster we noticed that the top ten most important 

pathways in Cluster 2, the cluster with the worst prognosis, 

all contained the ATM gene. ATM is one of the most 

commonly mutated genes in CLL (Puente et al., 2015) and the 

tested cohort, 31 out of 33 patients in Cluster 2 had ATM 

mutations. This finding prompted us to check the distributions 

of other common CLL driver genes (Landau et al., 2015; 

Puente et al., 2015) (i.e., TP53, NOTCH1, SF3B1, MYD88, 

BIRC3, RPS15, FBXW7 BRAF, EGR2, NFKBIE, XPO1, POT1, 

ZMYM3, and MGA) in all subtypes (Table 2). We found 

mutations in TP53 to be solely associated with Cluster 4, 

containing 94 patients, but no other mutations were specific for a 

particular subtype. 

Identification of Prognostically Relevant Patient 

Subtypes Within IGHV Subgroups 

Considering the substantial impact of IGHV somatic 

hypermutation   status,   we   then   explored   whether    we 

could   identify   subtypes   separately   within   IGHV-mutated 

vs -unmutated subgroups using the ensemble clustering 

(Table 3). We found two subtypes among patients with 

unmutated IGHV differing   significantly   in   median   TTFT 

(3 vs 5.3 years; p = 0.0052; Figure 5A), but no separate 

subtypes among patients with mutated IGHV. The subtype 

with a more favorable prognosis among IGHV-unmutated 

cases (median TTFT 5.3 years) consisted of 61 patients, 

whereas the other one with a worse prognosis (median 

TTFT 3 years) consisted of 117 patients. Again, we checked 

the distribution of common CLL driver genes and found 

mutations in ATM and TP53 only in the cluster with a worse 

prognosis (Table 4). 

Finally, we built a classification model for the identified 

subtypes and extracted the most important pathway signatures 

for the model (Figure 5B). The final model used 35 pathway 

signatures (containing 1,004 mutated genes in the dataset) 

and achieved good prediction performance   (0.92   auROC 

and 0.85 aucPR). 

 

DISCUSSION 

In the present study, we built a combination of multiple clustering 

solutions through a consensus approach and applied it to the 

pathway mutation scores of CLL patients. We identified four 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
FIGURE 3 | (A) The 20 most important pathways for the classification model predicting the identified clusters. There were 84 pathways in the model altogether. 

Shades of blue represent clustered pathway signatures that have similar importance values. (B) The 10 most important pathways characterizing individual clusters of 

the classification model. Pathway importance was ranked by its information gain, which corresponds to the relative contribution of the pathway to a prediction. The 

first word in a pathway name denotes a database from which it originates. Pathways shared between clusters are colored. 
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clusters differing in pathway mutational profiles and TTFT. 

Although the identification of prognostic mutation subtypes in 

the pan-cancer analysis by clustering pathway mutation scores 

has already been carried out (Kuijjer et al., 2018), to our best 

knowledge, this is the first attempt to apply a similar approach 

to a CLL dataset. 

We developed machine learning models which classified 

CLL cases into the identified mutation subtypes with high 

performance. We leveraged feature importance assigned to 

pathway signatures by the models to extract subtype-specific 

pathway mutation profiles. Among the most important 

pathway signatures, biological processes previously described 

as recurrently mutated in CLL appeared frequently: namely 

DNA-damage response, RNA processing, and inflammatory 

pathways (Hallek, 2019). More importantly, we also identified 

processes, which have not been described as recurrently mutated 

in CLL but are known to play a vital role in CLL biology, such 

as calcium signaling (Lawrence et al., 2013; Martincorena and 

Campbell, 2015) and pathways involved in cellular motility 

and interaction (Lazarian et al., 2017). Interestingly, common 

CLL drivers such as ATM or TP53 were associated with 

 
particular subtypes, while others like NOTCH1 or SF3B1 

were not (Lazarian et al., 2017). These results suggest that the 

clinical effect of well-known CLL driver genes depends on 

mutation background. 

We anticipate that the findings of our study will have 

implications for the   improved   identification   of   patients 

with high-risk CLL, even without well-known CLL drivers. 

In addition, using pathway mutation scores rather than single-

gene approaches could help to identify groups of CLL patients 

who might respond to specific targeted therapies. This is of 

importance especially in the light of current treatment options 

(Hallek, 2019). For example, we hypothesize that patients with 

affected pathways involved in calcium signaling could respond 

differently to the treatment with Bruton’s tyrosine kinase 

inhibitors since calcium signaling can be triggered by BCR 

pathway stimulation (Chiu and Talhouk, 2018). We believe 

that   our   findings   will   pave the way for the design of new 

personalized treatment strategies focusing not only on   well-

known   driver   genes but also taking into account mutational 

patterns in particular biological pathways. 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 
 

FIGURE 4 | A heatmap showing the 30 most important pathways for the classification model predicting the identified clusters. Copy number alterations are 

displayed individually and hierarchically clustered according (Döhner et al., 2000). 
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TABLE 2 | Distribution of common CLL driver genes among the identified clusters. 
 

Cluster No. of patients TP53 ATM NOTCH 1 SF3B1 MYD88 BIRC3 RPS15 FBXW7 BRAF EGR2 NFKBIE XPOI POT1 ZMYM3 MGA 

1 228 0 (0%) 0 (0%) 22 (10%) 19 (8%) 14 (6%) 3 (1%) 3 (1%) 1 (0%) 0 (0%) 5 (2%) 3 (1%) 7 (3%) 6 (3%) 2 (1%) 5 (2%) 

2 33 0 (0%) 31 (94%) 6 (18%) 8 (24%) 0 (0%) 1 (3%) 0 (0%) 1 (3%) 1 (3%) 3 (9%) 1 (3%) 0 (0%) 2 (6%) 1 (3%) 2 (6%) 

3 142 0 (0%) 0 (0%) 4 (3%) 6 (4%) 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 5 (4%) 2 (1%) 1 (1%) 

4 94 15 (16%) 0 (0%) 16 (17%) 8 (9%) 4 (4%) 5 (5%) 0 (0%) 3 (3%) 9 (10%) 1 (1%) 1 (1%) 2 (2%) 4 (4%) 2 (2%) 4 (4%) 

 

TABLE 3 | Distribution of IGHV somatic hypermutation status among the 

identified clusters. 
 

Cluster No. of patients MUT UNMUT 

1 228 155 (68%) 69 (30.3%) 

2 33 4 (12.1%) 28 (84.8%) 

3 142 107 (75.4%) 30 (21.1%) 

4 94 43 (45.7%) 50 (53.2%) 

 
 
 

MATERIALS AND METHODS 

Processing of Somatic Mutation Data 
Somatic mutation data were downloaded from a published 

study (Puente et al., 2015) containing 506 pre-treatment patient 

samples. Among these, 452 patients were diagnosed with 

CLL and 54 with MBL. By IGHV somatic hypermutation 

status, there were 316 IGHV-mutated cases and 179 IGHV- 

unmutated cases, 1 biclonal, and 10 undetermined cases. Silent 

mutations were filtered out and only mutations in protein- 

coding regions and splice sites were kept. Then mutational 

matrix was binarized. The average number of affected genes 

per patient was 14.1. If not stated otherwise all analyses were 

performed using R software v3.4.4 (R Core Team, 2020). The 

supplementary Figures 3–6 were prepared using R software 

v3.4.4 (R Core Team, 2020) and Cytoscape software v3.7.1 

(Shannon et al., 2003). 

 

 

Reducing Pathway Signature 
Redundancy 
Proportional and hitting set cover algorithms (Stoney et al., 

2018) were applied on the canonical pathway gene signature file 

“c2.cp.v6.2.symbols.gmt” downloaded from MSigDb (Liberzon 

et al., 2011). The gene coverage threshold was set to 100 

and 99%, meaning that one percent of the genes from the 

original dataset would be missing in the resulting reduced 

datasets. Then, the excluded genes were checked, whether 

they were mutated   in   the   patient   cohort,   and   properties 

of the pathway sets (such as median pathway size, mean 

paths per gene, min/max pathway size, and the number of 

pathways) were calculated and compared before and after 

reduction. Based on this evaluation, a pathway signature 

dataset was created by the application of a hitting set cover 

algorithm with a 100% gene coverage threshold was chosen for 

further analysis. 

Mutation Subtype Identification Using 
SAMBAR R Package 
The sambar function from the SAMBAR package v0.2 was 

used to identify CLL mutation subtypes. The function subsets 

somatic mutation data to 2,352 cancer-associated genes, divides 

the number of mutations by the gene length, and calculates gene 

mutation score. Then, it corrects for sample-specific mutation 

rate and for the number of pathways each gene belongs to, 

and de-sparsifies gene mutation score into pathway mutation 

score when it corrects for pathway length. In the final step, it 

performs hierarchical clustering with binomial distance on the 

pathway mutation score. 

However, gene length normalization is only a partial 

correction for the background mutation rate, which depends on 

other features including 3D structure, gene expression level, and 

GC content (Martincorena and Campbell, 2015). Additionally, 

we hypothesized that gene length normalization is relevant in 

tumor types with a high mutation rate but in tumors with 

low mutation rates, including CLL (Lawrence et al., 2013), this 

correction could introduce noise in the data. Therefore, we 

decided to omit this correction and binarized the mutation 

score. The function was further modified to exclude subsetting to 

cancer-associated genes. Then, it was applied on the whole patient 

cohort following the instruction on https://github.com/mararie/ 

SAMBAR and in Kuijjer et al. (2018) with the reduced pathway 

signature file as a signature input for the sambar function. Two 

to seven subtypes were assessed. 

 
Identification of CLL Subtypes Using 
Ensemble Clustering 
The pathway mutation score was calculated using the sambar 

function but without gene length correction and subsetting to 

cancer-associated genes. De-sparsification of somatic mutation 

data resulted in a data matrix containing 503 patients and 

553 pathway signatures. The pathway signatures that were 

affected in less than 10 patients were removed, leaving us 

with 502 patients and 344 pathways. Ensemble clustering was 

applied on pathway mutation score for the whole cohort and 

the cohorts with mutated and unmutated IGHV using the R 

package diceR v0.5.2 (Chiu and Talhouk, 2018). Four distance- 

based and two non-distance-based methods were included. 

The distance-based methods were the following: Ward linkage 

hierarchical clustering, divisive analysis clustering, partition 

around medoids, and k-means. As the distance metrics for these 

algorithms, binomial and Mahalanobis distance and random 

forests proximity converted to distance were used. The non- 

distance-based methods were the following: spectral clustering 
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TABLE 4 | Distribution of common CLL driver genes between the clusters identified within the unmutated IGHV subgroup. 
 

Cluster N of patients TP53 ATM NOTCH 1 SF3B1 MYD88 BIRC3 RPS15 FBXW7 BRAF EGR2 NFKBIE XPOI POT1 2MYM3 MGA 

1 117 8 (7%) 26 (22%) 34 (29%) 14 (12%) 0 (0%) 6 (5%) 3 (3%) 4 (3%) 8 (7%) 7 (6%) 3 (3%) 6 (5%) 11 (9%) 4 (3%) 7 (6%) 

2 61 0 (0%) 0 (0%) 6 (10%) 9 (15%) 0 (0%) 0 (0%) 1 (2%) 0 (0%) 0 (0%) 0 (0%) 1 (2%) 3 (5%) 5 (8%) 2 (3%) 4 (7%) 

 

 
using radial-basis kernel function and self-organizing map with 

hierarchical clustering. Ninety percent (90%) resampling on five 

replicates was performed and the 2–7 subtypes were evaluated. 

The average PAC across the clustering results was assessed and 

half of the solutions with the lowest PAC were selected for further 

evaluation. Subsequently, the K-modes algorithm was applied to 

combine the results of the clustering. 

Associations With Clinical Parameters 

Publicly available clinical data were downloaded from the 

ICGC Data Portal and information about TTFT as an 

important clinical parameter was extracted. A log-rank test 

was used to identify whether the found subtypes differed 

in TTFT (p-value < 0.05). All the P values were adjusted 

for multiple comparisons using the Benjamini–Hochberg 

correction. If more solutions differed in TTFT statistically 

significantly, the one with the least subtypes was chosen for 

further analysis. A Multivariate Cox regression model was 

fitted to assess the independent prognostic impact of IGHV 

somatic hypermutation status of each subtype in the outcome 

of the patients. 

A Classification Model for the Identified 
Subtypes 
The Extreme gradient boosting algorithm (Chen and Guestrin, 

2016) is a machine learning approach that combines a large 

number of weak learners (i.e., slightly better than random 

 
guessing) based on decision trees into a single strong learner (i.e., 

a prediction model). The prediction model can then be applied 

to a single sample to calculate a group probability. Here we 

aimed to build a classification model for the identified subtypes 

and to extract the most important features for each cluster in 

the prediction model. The extreme gradient boosting algorithm 

from R package xgboost v0.82.1 was implemented using pathway 

mutation scores as the input features. Before a model tuning, 

highly correlated features (r > 0.7/r < 0.7) and clusters smaller 

than 10 patients were removed leaving us with 497 patients and 

317 pathway signatures. Then, data were split randomly into a 

training set (80% of patients) and a test set (20% of patients). To 

find the best number of rounds for the algorithm, it was run with 

subsample parameter set to 0.25 and the following parameter 

settings of learning rate and depth of trees were tested: 0.01, 

0.05, 0.1, 0.3, and 4, 6, 9, respectively. The algorithm was stopped 

after 100 rounds without improvement of multiclass Logarithmic 

Loss function (mlogloss), which was evaluated using a five-fold 

CV. The algorithm was run again with an optimized number 

of rounds and selected parameter setting, which minimized 

mlogloss. Feature importance was ranked by its information gain, 

which corresponded to the relative contribution of the feature to 

a prediction. The process of the parameter tuning was repeated 

with half of the most important features and then in the following 

repetitions with 3/4 of the most important features until mlogloss 

started increasing. The performance of the model with optimized 

parameters and extracted features was tested using mlogloss, 

 
  

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

FIGURE 5 | Patients with unmutated IGHV only. (A) Kaplan–Meier curves depicting TTFT for patients within different prognostic subtypes. (B) The 10 most important 

pathways characterizing individual clusters of the classification model. Pathway importance was ranked by its information gain, which corresponds to the relative 

contribution of the feature to a prediction. The first word in a pathway name denotes a database from which a feature originates. Shades of blue represent clustered 

pathway signatures that have similar importance values. 
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multiclass auROC, and multiclass aucPR. An information gain of 

the features was extracted for each subtype separately. 
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Şenbabaoğlu,  Y.,  Michailidis,  G.,  and  Li,  J.  Z.  (2014).  Critical  limitations  of 

consensus clustering in class discovery. Sci. Rep. 4:6207. 

 
Conflict of Interest: The authors declare that the research was conducted in the 

absence of any commercial or financial relationships that could be construed as a 

potential conflict of interest. 

 
Copyright © 2021 Taus, Pospisilova and Plevova. This is an open-access article 

distributed under the terms of the Creative Commons Attribution License (CC BY). 

The use, distribution or reproduction in other forums is permitted, provided the 

original author(s) and the copyright owner(s) are credited and that the original 

publication in this journal is cited, in accordance with accepted academic practice. 

No use, distribution or reproduction is permitted which does not comply with 

these terms. 

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1126/scisignal.aad1932
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/s12859-018-2355-3
https://doi.org/10.3324/haematol.2017.165605
https://doi.org/10.3324/haematol.2017.165605
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 

 

Bioinformatics Advances, 2022, 1–3 

https://doi.org/10.1093/bioadv/vbac016 

Advance Access Publication Date: 8 March 2022 

Application Note 

 
 

Gene regulation 

decoupleR: ensemble of computational methods to infer 

biological activities from omics data 

Pau Badia-i-Mompel  1,2
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Abstract 

Summary: Many methods allow us to extract biological activities from omics data using information from prior  

knowledge resources, reducing the dimensionality for increased statistical power and better interpretability. Here, 

we present decoupleR, a Bioconductor and Python package containing computational methods to extract these 

activities within a unified framework. decoupleR allows us to flexibly run any method with a given resource, includ - 

ing methods that leverage mode of regulation and weights of interactions, which are not present in other frame- 

works. Moreover, it leverages OmniPath, a meta-resource comprising over 100 databases of prior knowledge. Using 

decoupleR, we evaluated the performance of methods on transcriptomic and phospho-proteomic perturbation 

experiments. Our findings suggest that simple linear models and the consensus score across top methods perform  

better than other methods at predicting perturbed regulators. 

Availability and implementation: decoupleR’s open-source code is available in Bioconductor (https://www.bio 

conductor.org/packages/release/bioc/html/decoupleR.html) for R and in GitHub (https://github.com/saezlab/ 

decoupler-py) for Python. The code to reproduce the results is in GitHub (https://github.com/saezlab/decoupleR_ 

manuscript) and the data in Zenodo (https://zenodo.org/record/5645208). 

Contact: pub.saez@uni-heidelberg.de 

Supplementary information: Supplementary data are available at Bioinformatics Advances online. 

 

 

1 Introduction 
 

Omics datasets, such as transcriptomics or phospho-proteomics, 

provide unbiased high-dimensional molecular profiles. However, 

their big dimensionality, combined with the highly connected nature 

of the molecules that are measured, makes it difficult to interpret 

them in a mechanistically relevant manner. Leveraging prior know- 

ledge, we can use computational methods to infer which biological 

activities are relevant. For example, the activity of transcription fac- 

tors (TFs) and kinases can be inferred robustly from downstream 

transcripts and phosphosite targets, respectively (Dugourd and Saez- 

Rodriguez, 2019). Over the past decade, a plethora of methods that 

infer biological activity has emerged, each with its own assumptions 

and biases. 

Although comparisons and collections of these methods exist 

(Alhamdoosh et al., 2017; Geistlinger et al., 2016; Va¨ remo et al., 

2013; Supplementary Table S1), they do not incorporate recent 

methodological developments, such as modeling activities based on 

weighted mode of regulation (Supplementary Table S2). Here, we 

present decoupleR, an R and Python package containing a collection 

of methods adapted for biological activity estimation in bulk, single- 

cell and spatial omics data. 

 
 

2 Implementation 

Currently, decoupleR contains 11 different methods (Fig. 1A), these 

include popular methods such as AUCell (Aibar et al., 2017), fast 

GSEA (Korotkevich et al., 2021), GSVA (Ha¨ nzelmann et al., 2013), 

over-representation analysis, univariate  linear  model  (ULM) 

adapted from Teschendorff  and  Wang  (2020),  VIPER  (Alvarez 

et al., 2016) and others (Supplementary Table S1). The inputs of 

decoupleR are: (i) a matrix containing molecular feature values, 
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Fig. 1. Inference of biological activities with decoupleR’s workflow. (A) decoupleR’s workflow, it contains a collection of computational methods that coupled with prior 

knowledge resources estimates biological activities from omics data molecular readouts such as normalized counts or log fold changes. (B) Spearman correlation across meth- 

ods and (C) predictive performance across methods in the RNA-seq data-set 

 

either for single samples or from population comparisons, like nor- 

malized gene expression counts per sample or log fold changes and 

(ii) a prior knowledge resource such as a collection of gene sets. The 

user can then choose any method alone or many simultaneously. 

decoupleR also provides a consensus score obtained by computing a 

mean z-score across methods (Supplementary Note). Additionally, 

decoupleR offers easy to use wrappers to query the meta-database 

OmniPath  (Tü rei  et  al.,  2021),  making  it  easy  to  flexibly  access 

processed resources such as cell-type marker databases, gene regula- 

tory networks or pathway footprints, and estimate biological activ- 

ities from them. 

 

 

3 Benchmark design 

We used decoupleR to evaluate the performance of individual meth- 

ods by recovering perturbed regulators—TFs  and  kinases—from 

two independent collections of transcriptomics  (Holland  et  al., 
2020) and phospho-proteomics (Hernandez-Armenta et al., 2017) 

datasets (Supplementary Note), respectively, upon single-gene per- 

turbation experiments. As resources, we used the gene regulatory 

network DoRothEA (Garcia-Alonso et al., 2019) and a kinase sub- 

strate network (Hernandez-Armenta et al., 2017), respectively. 

We built a benchmarking pipeline with decoupleR (Supplementary 

Note), which evaluates the performance of regulator activity scores 

from different methods, mainly focused on the sensitivity of methods. 

Furthermore, to evaluate the robustness of the methods to noise, we 

added or deleted a percentage of edges from the prior knowledge 

resources. 

 

 

4 Results 

Methods return different distributions of activities (Supplementary 

Fig. S1) but display general similarities (Supplementary Fig. S2), 

with a median Spearman correlation of activities between methods 

of 0.52, and 0.65 for transcriptomics and phospho-proteomics, re- 

spectively (Fig. 1B). There was also a moderate agreement between 

methods in the top 5% ranked regulators (median Jaccard indexes 

of 0.23 and 0.21, respectively; Supplementary Fig. S2). 

Despite these similarities, methods showed different perform- 

ances at predicting perturbed regulators (Supplementary Fig. S3). 

Some of them performed consistently better than the others 

(Supplementary Table S3; Fig. 1C), the top  three  being:  consen- 
sus, multivariate linear model and ULM. Moreover, methods that 
leverage weights perform better when those  are  taken  into  ac- 

count (P-value <2.2e-16; one-sided Wilcoxon signed-rank test; 

Supplementary Fig. S4). 

Deleting edges in the resource had a greater effect than adding 

them across methods (Supplementary Fig. S5); with a median 

Spearman correlation of activities to the original ones of 0.84 and 

0.77 for the addition and deletion, respectively (P-value <2.2e-16; 

one-sided Wilcoxon signed-rank test). Additionally, adding or delet- 

ing edges decreased predictability, and deleting edges had a worse 

effect than adding (adjusted P-values <2.2e-16 for normal-addition, 

<2.2e-16 for normal-deletion and <2.2e-16 for deletion-addition; 
F    131; Tukey’s HSD post hoc test) (Supplementary Fig. S6). 

Finally, we evaluated decoupleR’s speed and found that methods  

run relatively fast in the R version, and orders of magnitude faster in 

the Python one [median across methods of 1.44 and 0.44 ms per 

sample and regulator in R and Python, respectively, with an Intel(R) 

Core(TM) i7-8550U CPU @ 1.80 GHz; Supplementary Fig. S7], ena- 

bling their use with larger datasets such as single-cell or spatial 

omics. 

 

 

5 Conclusion 

In summary, decoupleR combines a variety of methods to infer bio- 

logical activities into one efficient, robust, and user-friendly tool in 

the two most used programming languages for omics data analysis. 

With a common syntax for different methods, types of omics data- 

sets, and knowledge sources available via OmniPath, it facilitates 

the exploration of different approaches and can be integrated in 

many workflows. 

We observed that the majority of methods return adequate esti- 

mates of regulator activities, but that their aggregation into a con- 

sensus score and linear models perform better than other methods. 

We welcome the addition of further methods by the community. 
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ABSTRACT 

 

TP53 gene abnormalities represent the most important biomarker in chronic lymphocytic 

leukemia (CLL). Altered protein modifications could also influence p53 function, even in the wild-type 

protein. We assessed the impact of p53 protein phosphorylations on p53 functions as an alternative 

inactivation mechanism. We studied p53 phospho-profiles induced by DNA-damaging agents 

(fludarabine, doxorubicin) in 71 TP53-intact primary CLL samples. Doxorubicin induced two distinc t 

phospho-profiles: profile I (heavily phosphorylated) and profile II (hypophosphorylated). Profile II 

samples were less capable of activating p53 target genes upon doxorubicin exposure, resembling TP53- 

mutant samples at the transcriptomic level, whereas standard p53 signaling was triggered in profile I. 

ATM locus defects were more common in profile II. The samples also differed in the basal activity of 

the hypoxia pathway: the highest level was detected in TP53-mutant samples, followed by profile II and 

profile I. Our study suggests that wild-type TP53 CLL cells with less phosphorylated p53 show TP53- 

mutant-like behavior after DNA damage. p53 hypophosphorylation and the related lower ability to 

respond to DNA damage are linked to ATM locus defects and the higher basal activity of the hypoxia 

pathway. 

1. INTRODUCTION 

 
The p53 transcription factor exerts its central genome-protecting role by coordinating a regulatory 

circuit that senses and reacts to a wide range of stimuli, including DNA damage, abnormal oncogenic 

signals, or hypoxia[1]. p53 protein's stability and activity are tightly regulated through a multitude of 

posttranslational modifications. To date, over 50 individua l p53 posttranslational modifications 

produced by a wide range of stress-sensing enzymes have been described. Significant differences exist 

in the modifications' spectra triggered by distinct stress-inducing agents, creating a highly complex and 

flexible signaling network[2]. Diverse combinations of these modifications allow for fine-tuning the cell 

response and eventually determine the final cell fate[3]. 

Phosphorylation belongs to the most essential p53 posttranslational modifications as it is crucial for 

protein stabilization and its consequent activity. Human p53 harbors an array of serine and threonine 

residues that can be phosphorylated by an extensive collection of kinases. Phosphorylation on the p53 

N terminus shows a remarkable redundancy (multiple kinases can modify a single site, and a single 

kinase can phosphorylate multiple residues), highlighting the "fail-proof" layered regulation of the p53 
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pathway due to its central role in tumor suppression[3,4]. Once activated, p53 triggers specific 

transcriptional programs that control cell cycle arrest, DNA damage response, cell metabolism and 

apoptosis to prevent a potentially compromised cell from proliferation and, thus, propagation of 

mutations. Nevertheless, half of all human tumors escape this guardian mechanism by either direct 

mutations in the TP53 gene or aberrations of other p53 pathway's components (e.g. MDM4 

amplification[5]). However, the complete landscape of p53 pathway alterations operating in 

tumorigenesis is likely  far from being fully portrayed. 

Defects in the TP53 gene represent the most important biomarker of chronic lymphocytic leukemia 

(CLL) – clinically and genetically highly heterogeneous and incurable disease. The TP53 gene status 

(deletion of TP53 locus 17p and/or TP53 gene mutations) affects the prognosis of CLL patients and their 

response to therapy. Therefore, the TP53 gene status testing has been introduced into routine clinic al 

practice[6], and positive results provide grounds for applying targeted inhibitors of B-cell receptor or 

Bcl2 pathways that have shown the ability to induce a response in these difficult-to-treat patients[7]. 

Apart from a direct genetic impairment, the p53 pathway can be dysregulated by other mechanisms. 

In this regard, it has been described that decreased p53 phosphorylation can lead to changes in protein 

conformation affecting interaction partners of p53 protein in breast tumors, resembling a cancer- 

associated p53 mutated state[8]. However, whether alternative p53 phosphorylation plays a role in CLL 

pathogenesis remains to be explored. 

Herein, we screened for the first time the p53 phosphorylation patterns of 71 TP53-intact primary 

CLL samples treated by two DNA damaging agents (fludarabine, doxorubicin) and studied the impact 

of DNA damage on the CLL transcriptome. We describe that while fludarabine induces a relatively 

uniform phospho-pattern, samples treated with doxorubicin show two different profiles. The 

transcriptomic analysis revealed that samples having one of these profiles fail to activate p53 signaling 

after DNA damage, resembling those with genetically impaired TP53. 
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2. MATERIAL AND METHODS 
 

 

2.1 Human primary sample s, cell lines, and culture conditions 

 
 

The study has been approved by the Ethics committee of Masaryk University (number of ethics 

committee case EKV-2018-017). Eighty clinically-characterized primary CLL samples were provided 

from the biobank of the Department of Internal Medicine – Hematology and Oncology, University 

Hospital Brno (CZ). In this biobank, all samples were collected after written informed patient's consent, 

approved by the hospital ethics committee, in accordance with the Declaration of Helsinki. All patients 

fulfilled the iwCLL/NCI diagnostic criteria for CLL[9]. Peripheral blood samples were processed by 

gradient centrifugation using Ficoll-Paque PLUS (GE Healthcare) combined with RosetteSep Kit 

(StemCell). Obtained high-purity B lymphocytes (>98%) were vitally frozen (viability after thawing 

>80%). Seventy-one samples with intact TP53 were used to study phosphorylation patterns (Table 1). 

Nine samples with fully expanded biallelic defect of the TP53 locus were used as controls in mRNA 

expression analyses (mutation variant allele frequency (VAF) range 88-100%; TP53 mutation 

accompanied with either del(17p) or cn-LOH 17p; Supplementary Table S1). 

 

Once thawed, primary cells were kept in RPMI-1640 medium (Biosera). Additionally, the HG3 

cell line was used herein (a generous gift from Prof. R. Rosenquist, Sweden). HG3 is a cell line derived 

from a human CLL through EBV-transformation with the wt-TP53 gene[10] and unmutated IGHV. HG3 

was also maintained in the RPMI-1640 medium. All media were supplemented with 10% (v/v) heat- 

inactivated fetal bovine serum (FBS; Biosera) and 1% (v/v) penicillin/streptomycin (MP Biomedicals). 

To induce DNA damage, cells were incubated with 1.5 μM doxorubicin or 15 μM fludarabine. HG3 cell 

line was treated for 1h, 3h, 6h, 12h and 24h; primary CLL cells were treated for 24h. 

 
2.2 Phos-tag analysis and western blots 

 

After treatment, cells were lysed in RIPA buffer (50 mM Tris pH 7.4, 150 mM NaCl, 0.1% SDS, 

0.5% sodium deoxycholate, 1% NP-40, 1 mM sodium vanadate and 50 mM NaF). Half of the sample 

was directly heated with 2×LDS loading buffer (ThermoFisher), while the other half was treated with a 
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1:1 mixture of Alkaline phosphatase (ThermoFisher): λ protein phosphatase (New England Biolabs) for 

30 min at 30°C, and then heated with loading buffer. Lysates were then resolved by both SDS-PAGE 

and Phos-tag PAGE. Phos-tag (Wako Pure Chemical Industries) analysis was performed according to 

the manufacturer's protocol using a neutral-pH gel system and a Zinc(II) complex. The antibodies used 

in this study are listed in Supplementary Table S2. Imaging and quantification of western blots were 

performed with a UVITEC imaging system and the ImageJ program. 

 
2.3 Genetic characte rization of the samples 

 

Somatic hypermutations in the IGHV locus were routinely screened as described 

previously[11,12]. Variants in the TP53 gene were studied using in-house amplicon-based next- 

generation sequencing (NGS)[13,14]. Recurrent chromosomal aberrations (i.e., deletion of 17p13, 

11q22.3 and 13q14.2, trisomy 12) were analyzed by FISH. To detect variants in 70 genes associated 

with lymphoid malignancies (Supplementary Table S3) and additional chromosomal defects, targeted 

NGS was performed using a custom LYNX panel with the limit of detection of 5% VAF[15]. The 

somatic origin of all found variants in the ATM gene was verified by Sanger sequencing of germline 

DNA isolated from buccal swabs. 

 

SNVs and indels in exons and adjacent splice sites were identified. Additionally, the 3'UTR 

region of NOTCH1 and introns of MYC were covered and analyzed. Variants with a minimum coverage 

of 100×, ≥5 variant reads, and ≥5% VAF were called. Next, the functional impact of variants classified 

as missense, frameshift, in-frame, splice donor/acceptor, start loss, and stop gain were analyzed further. 

Only variants with population frequency <1% or unknown in the population databases gnomAD and 

1000 genomes were considered. The information about detected variants in dbSNP, COSMIC, ClinVar, 

VarSome, and available literature was used during variant interpretation. Finally, frameshift variants 

were visually inspected in the IGV program to exclude potential artifacts. 

 

CNVs were evaluated with the limit of detection of 20% and the resolution of 300kB-1Mb for 

recurrent deletions on 17p, 11q, and 13q loci and 6 Mb in the rest of the genome. For this study, we 

focused on relevant CLL-related aberrations in chromosomes 11, 12, 13, and 17. 
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2.4 RNA isolation, library preparation, and NGS sequencing 

 

RNA was isolated from CLL cells left intact in the culture medium for 24h or maintained in 1.5 

μM doxorubicin for 24h. Total RNA was isolated using TRIzol (ThermoFisher) according to the 

manufacturer's instructions. The RNA integrity was assessed by the Fragment Analyzer system 

(Agilent). Only RNAs with RIN>7.0 were processed further. RNA-Seq libraries were prepared using 

Lexogen QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina with polyA selection and 

sequenced on Illumina NextSeq 500 sequencer (read length 1×75 nt). The adapters and quality trimming 

of raw fastq reads were performed using Trimmomatic v0.36[16]. Trimmed RNA-Seq reads were 

mapped against the human genome reference (hg38) annotations using STAR v2.7.3a[17]. UMIs were 

used for the deduplication of aligned reads[18]. Quality control after alignment concerning the number 

and percentage of uniquely- and multi-mapped reads, rRNA contamination, mapped regions, read 

coverage distribution, strand specificity, gene biotypes, and PCR duplication was performed using 

several tools, namely RSeQC v2.6.2[19], Picard toolkit v2.18.27 and Qualimap v.2.2.2[20], and 

BioBloom tools v 2.3.4-6-g433f[21]. 

 

2.4.1 Differential expression analysis 

 
 

The differential gene expression was calculated based on the gene counts produced using 

featureCounts tool v1.6.3[22] and using Bioconductor package DESeq2 v1.20.0[23]. Volcano plots 

were produced using the ggplot v3.3.3 package, and MA plots were generated using the ggpubr v0.4.0 

package. Heatmap was generated from selected top differentially regulated genes using R package 

pheatmap v1.0.10. DESeq2 normalized gene counts for all individua l samples were visualized. Genes 

with baseMean coverage >= 25 and log2(fold-change) ≥1 or ≤-1 from comparisons of treated profile I 

vs. control profile I, and treated profile II vs. control profile II were considered. Ordering in such 

heatmap was determined by the biggest log2(fold-change) differences between profile I and profile II 

in descending direction. Row scaling was applied to emphasize differences between conditions. 

 

2.4.2 PROGENy & DoRothEA 
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We used a footprint-based method called PROGENy (Pathway RespOnsive GENes)[24,25] to 

estimate signaling pathway activities based on consensus gene signatures obtained from perturbation 

experiments. PROGENy contains signatures for 14 signaling pathways (Androgen, EGFR, Estrogen, 

Hypoxia, JAK-STAT, MAPK, NFkB, p53, PI3K, TGFb, TNFa, Trail, VEGF, and WNT). The gene 

counts produced using featureCounts tool v1.6.3 were log2 transformed. Then, we inspected the 

log2(counts) distribution and removed transcripts with log2(counts)<3, usually containing genes 

expressed under the RNAseq detection threshold. The cleaned data were normalized using vsn R 

package3 v3.60.0. Pathway activity score was calculated with the function progeny from the Progeny R 

package v1.14.0 using the 100 most responsive genes per pathway. The unpaired two-sided Student's t- 

test was used to compare differences in the pathway activity between the conditions. Heatmaps were 

generated using the R package pheatmap v1.0.10. 

Additionally, we used the DoRothEA R package v1.4.1[26] to infer the HIF1A activity from the 

expression of its target genes. The DoRothEA is a curated, comprehensive resource built upon different 

types of evidence (literature-curated resources,ChiP-seq peaks, transcription factors’ binding site motifs 

and interactions inferred directly from gene expression). 

 

2.5 Real-time PCR analysis 

 
 

The expression levels of p53 target genes BAX, BBC3, CDKN1A, and GADD45A were studied. 

First, 500 ng of total RNA isolated from treated and untreated cultivated cells was reverse-transcribed 

using Superscript II (ThermoFisher) and oligo(dT)14 primer following the manufacturer's instructions. 

The level of target mRNA was quantified by real-time PCR using TaqMan assays (ThermoFisher), 

TaqMan Gene Expression Master Mix (ThermoFisher), and the QuantStudio 12 Flex Real-Time PCR 

system (ThermoFisher). Assays were carried out in triplicates, and negative controls were included in 

all PCR series. The ΔΔCt method was used for the determination of mRNA content. The geometrical 

mean of house-keeping genes HPRT1A and TBP cycle threshold (Ct) was used as an internal standard. 

 

For miRNA-34a expression analysis, 4 ng of total RNA isolated from non-cultivated untreated 

cells was reverse-transcribed using TaqMan MicroRNA Assays (ThermoFisher) and specific primers 
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for miRNA-34a and RNU38B following the manufacturer's instructions. Quantification of miRNA was 

performed by real-time PCR using TaqMan assays (ThermoFisher), ABsolute QPCR Mix, ROX 

(ThermoFisher), and 7500 Fast Real-Time PCR System (ThermoFisher). All reactions were carried out 

in triplicates with respective negative controls. The obtained miRNA-34a expression levels were 

normalized to RNU38B and interpreted as 2-∆Ct*100%. 

2.6 Whole exome sequencing 

 
Sequencing libraries were prepared from 100 ng of DNA using TruSeq Exome Kit (Illumina ) 

according to the manufacturer’s instructions and sequenced on NextSeq 500 machine (Illumina). 

Raw sequencing data in fastq format were processed using the bcbio pipeline manager version 

1.2.3.[27]. The pipeline consists of read trimming, performed by the Atropos tool[28], read alignme nt 

to the human reference genome GRCh38, performed with bwa mem[29], samtools[30] and 

sambamba[31], and somatic variant calling performed by mutect2[32], strelka2[33], and vardict[34] 

variant callers. The resulting variants were annotated using the VEP annotation software version 

100.2[35]. The resulting annotated VCF files were converted to a table format using an in-house 

conversion script. 

All detected somatic variants were manually filtered and inspected in the respective bam files 

using IGV software[36]. 

2.7 Flow-cytometric analysis 

 

γ-H2AX phosphorylation at Ser139 was assessedusing flow cytometry. Representative samples 

from profile I (N = 4) and profile II (N = 8) were cultured for 30 min or 24 h in vitro with or without 1.5 

μM doxorubicin. Afterwards, cells were collected, fixed with 4% paraformaldehyde (PFA), 

permeabilized with 1× PBS, 5% FBS and 0.5% Tween20, stained using anti-phospho-Histone H2AX 

(Ser139) primary antibody, clone JBW301 (Sigma) and visualized with an AlexaFluor647-conjuga ted 

secondary antibody (Invitrogen). Samples were measured using FACS Verse flow cytometer (BD 

Biosciences). Data were analyzed in FlowJo v.10 software. 

1
8
7
8
0
2
6
1
, ja, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://feb
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/1

8
7
8

-0
2
6
1
.1

3
3
3
7 b

y
 C

o
ch

ran
e C

zech
 R

ep
u
b
lic, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

7
/1

1
/2

0
2
2
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y th
e ap

p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se 



 

 

2.8 Statistical analysis 

 

All statistical analyses were performed using GraphPad Prism v5 and SPSS version 25. Specific 

statistical tests used for different study variables are described in the figure legends. All tests were two- 

sided. The Gaussian distribution of data was assessed. The Kaplan-Meier survival analysis was used to 

assess the probability of time to second treatment (TTST) from the start of first-line treatment to the 

initiation of second-line therapy or death of any cause. Overall survival (OS) was estimated from the 

initiation of treatment to death of any cause. P-values <0.05 were considered statistically significant. 

3. RESULTS 
 
 

3.1 Induction of p53 phosphorylation by DNA damaging age nts in HG3 cells 

 

Under normal conditions, the level of p53 protein is kept low; however, it is readily stabilize d 

and activated by phosphorylation upon stress[3]. Herein, we have applied two DNA damaging agents, 

doxorubicin and fludarabine, to induce stabilization of p53 in vitro. HG3 cells' exposure to these drugs 

led to a gradual increase in the p53 level accompanied by phosphorylation of different serine residues 

over 24 hours (Figure 1A). While we observed phosphorylation of all studied sites after doxorubic in, 

we only detectedincreasedphosphorylation of serine 15, 315, and 392 after fludarabine treatment, which 

we attributed to the lower level of total p53 protein after the induction. Additionally, we have applie d 

Zinc(II)-Phos-tagTM PAGE analysis to readily screen the complete phospho-profile (Figure 1B). This 

method provides characteristic separation patterns for phosphoforms according to the number and/or 

site of modifications[37]. A typical control in this electrophoretic method is treating the protein lysates 

with a mixture of phosphatases, which helps identify the dephosphorylated form of the studied protein. 

In our case, Zinc(II)-Phos-tagTM method revealed that both drugs caused abundant phosphorylation of 

the entire fraction of p53 protein, which was only partially eliminated by the phosphatases' treatment. 

For further in vitro experiments with primary CLL cells, we selected the most extended time point (24h) 

when a significant p53 activation was observed for both drugs. 

 
3.2 Primary CLL cells display two distinct p53 phospho-profiles after doxorubicin treatment 

 

In order to assess if alternative p53 phosphorylation plays a role in CLL pathogenesis, we used 

the Zinc(II)-Phos-tagTM PAGE to screen the p53 phospho-profile of 71 clinically and biologic ally 

characterized CLL cases with the intact TP53 gene (Table 1). All samples were treated separately with 
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doxorubicin and fludarabine in vitro. Phos-tag analysis revealed three major DNA damage-induced 

phosphoforms of p53 in primary CLL cells (marked as phosphoform p+, p++, and p+++; Figure 2A). 

Each of these is supposed to represent a p53 protein with different phosphorylation levels. We noticed 

marked differences in the phospho-profiles caused by doxorubicin and fludarabine in primary CLL cells. 

In detail, the fludarabine-induced patternwas relatively homogeneous among the screenedsamples, with 

phosphoform p++ being the most pronounced one in the majority of samples. Conversely, we identifie d 

two phospho-profiles, termed I and II, after doxorubicin treatment. While phosphoforms p++ and p+++ 

were more abundant in profile I, the hypophosphorylated p+ was the most prominent in profile II (Figure 

2A, more examples of phospho-profiles are shown in Supplementary Figure S1). We also noticed that 

profile II samples had significantly higher basal p53 protein levels than profile I samples, where p53 

was generally only detectable upon DNA damage (Figure 2B, Supplementary Figure S2). 

In representative samples, the profiles showed a trend to differ in the level of p53 

phosphorylation at least at two sites: profile II was less phosphorylated at serine 15 and serine 392 

(Figure 2C). Out of the 71 screened CLL cases, we unequivocally assigned the doxorubicin-induc ed 

profile in 55 samples (77%). No or minimal p53 stabilization was achieved for the remaining cases, 

which impeded profile assignment. Association analyses between the identified profiles and important 

clinico-biological features are listed in Table 1. Profile II samples were enriched in those harboring 

deletions in 11q (P = 0.002). Additionally, profile II samples showed a trend towards lower basal miR- 

34a expression when compared to profile I (Supplementary Figure S3). 

 

3.3 CLL sample s showing phospho-profile II fail to activate the p53 signaling pathway unde r 

doxorubicin treatment 

Next, we studied if the two distinct doxorubicin-induced phospho-profiles translate into 

transcriptomic differences in CLL cells exposed to doxorubicin. For the analysis by RNAseq, we have 

selected 11 representative samples with profile I, 10 samples with profile II, and 9 samples with bialle lic 

defect of the TP53 locus, the latter representing dysfunctional p53 (Supplementary Table S1). 

Firstly, we compared untreated and doxorubicin-treated conditions in paired samples within 

each experimental group (profile I, profile II, and TP53-mutated samples). This analysis revealed 113 

significantly upregulated and 35 significantly downregulated genes in samples from profile I after 

doxorubicin treatment (FDR < 0.05; log2fc ≥ |1|). The differentially expressedgenes identified in profile 

1
8
7
8
0
2
6
1
, ja, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://feb
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/1

8
7
8

-0
2
6
1
.1

3
3
3
7 b

y
 C

o
ch

ran
e C

zech
 R

ep
u
b
lic, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

7
/1

1
/2

0
2
2
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y th
e ap

p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se 



 

 

I were enriched in the p53 signaling pathway (PAdjusted = 1.6 × 10-8), as shown by the DAVID functional 

annotation analysis[38]. Surprisingly, no such genes and only three significantly downregulated genes 

were identified in profile II and TP53-mutated samples, respectively (Figure 3A, Supplementary Table 

S4). 

Next, we searched for the most differentially expressed genes after doxorubicin treatment 

between profiles I and II (Figure 3B, top 55 genes). The heatmap showed an apparent change in mRNA 

levels of these genes upon treatment in profile I samples, while no such change was observed in TP53- 

mutated samples. Profile II samples could be characterizedby an intermediate pattern (Figure 3B). Upon 

closer inspection, many of the top 55 genes belonged to the p53 pathway (BBC3, CDKN1A, FDXR, 

GADD45A, etc.). 

These findings were validated by TaqMan qRT-PCR assays in an extended cohort of 38 CLL 

RNA samples, composed of 27 samples initially included in the RNAseq and 11 additional samples (4 

profile I and 7 profile II samples). We assessedthe expression of BAX, BBC3, CDKN1A, and GADD45A, 

the four known downstream effectors of the p53 signaling pathway[39]. We observed a significantly 

lower induction of expression of all selected genes in TP53-mutated and profile II samples upon 

doxorubicin treatment, as opposed to a higher induction in profile I samples (Figure 3C; P = 0.04, 

<0.0001; <0.0001 and 0.0001 for BAX, BBC3, CDKN1A, and GADD45A, respectively; Kruskal-Wallis 

test). After fludarabine treatment, the differences were not so prominent; however, profile II samples 

again tend to show intermediate induction of expression (Supplementary Figure S4). 

Besides the standard differential gene expression analysis, we additionally applied the 

PROGENy[40] package to assess the overall activity of selected cancer-related pathways. Compared to 

conventional pathway analysis methods, this footprint-based approach is well generalizable across 

experimental conditions and reflects the effects of posttranslational modifications such as 

phosphorylation. This approach confirmed the previous findings concerning different activation of the 

p53 pathway among the patient subgroups (Figure 3D). Additionally, this method revealed that basal 

activity of the hypoxia pathway in untreated cells significantly differed among our experimental groups; 

the highest activity of the hypoxia pathway was found in TP53-mutated cells, followed by intermediate 

levels in profile II samples, and the lowest activity of the hypoxia pathway was in profile I. This pattern 

was also maintained upon treatment; DNA damage did not have any additional effect on the activity of 
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the hypoxia pathway (Figure 3D, Supplementary Table S5). Differentially affected genes of the hypoxia 

pathway, as calculated by PROGENy, are depicted in Supplementary Figure S5A, and listed in 

Supplementary Table S6. Additionally, we have used another resource, DoRothEA[26], to confirm our 

conclusions regarding the hypoxia pathway. The latter approach allowed us to calculate the activity of 

individua l transcription factors (e.g. HIF1A) by looking at the expression patterns of their targets. This 

analysis confirmed the dysregulation of HIF1A among our experimental groups - HIF1A was the most 

active in TP53 mutated cells, followed by profile II samples and HIF1A activity was the lowest in profile 

I (Supplementary Figure S5B). 

Finally, we explored whether the biological differences between the two phospho-profile s 

affected the clinical outcome of the patients. To analyze the potential differences in treatment response, 

we assessed the remission duration as a function of time to second treatment. As different treatment 

regimens have different effectiveness andresponse rates, we analyzed a sub-cohort of patients uniformly 

treated by the chemoimmunotherapy regimen fludarabine+chlorambucil+rituximab (FCR; N=20) that 

represented a standard-of-care in this retrospective cohort. We were not able to show differences 

between patients assigned in the two phosho-profiles (Supplementary Figure S6A). For overall surviva l 

(OS), patients were stratified as to whether they had received targeted inhibitor treatment at any time 

during the course of the disease. We confirmed that this treatment strategy improved the outcome of the 

patients regardless of the profile, but no difference between profile I and profile II was observed 

(Supplementary Figure S6B). 

3.4 Profile II samples are enriched with ATM locus and MED12 aberrations 

 

In order to gain more insight into the possible genetic drivers of the observed phospho-patterns, 

targeted NGS of tumor DNA was applied. In total, 70 genes (Supplementary Table S3) associated with 

lymphoid malignancies were studied in all but one sample with a clearly determined profile. Generated 

data allowed not only to identify SNVs and indels but also recurrent CLL-related CNVs (Figure 4A). 

The two studied profiles differed only in aberrations affecting ATM locus [ATM gene mutation and/or 

del(11q22.3)] – these were significantly more frequent in profile II (Figure 4B, Supplementary Table 

S7). Since ATM is a central kinase in sensing double-strand breaks, we assessed the level of 
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phosphorylation of γ-H2AX (Ser139) as a read-out of ATM activity and DNA damage. Profile II 

samples showed a mild, albeit non-significant, dampening of overall DNA damage signaling 

(Supplementary Figure S7). 

Furthermore, in 5 patients from profile II without identified ATM defects, we performed exome 

sequencing to analyze other aberrations that could potentially contribute to the profile II phenotype. 

Interestingly, in 2/5 patients, we detected somatic mutations in the MED12 gene. These pathogenic 

variants in MED12 were previously reported to be recurrent in CLL patients[41]. In addition, a somatic 

mutation in MED12L, a MED12 paralog, was found in another patient (Supplementary Table S8). 

4. DISCUSSION 

 

The tumor suppressor protein p53, encoded by the TP53 gene localized on chromosome 17, 

plays a key role in the pathology of chronic lymphocytic leukemia (CLL). As its genetic inactivation by 

either a locus deletion and/or gene mutations is directly associated with chemo-refractoriness[42,43], it 

is one of the few CLL biomarkers routinely analyzed in the clinical practice. Defective protein 

phosphorylation has also been shown to induce a mutant-like p53 behavior[8]. Herein, we studied if 

alternative posttranslational phosphorylation can impair the function of wild-type p53 protein in CLL. 

To confirm the hypothesis, we induced p53 phosphorylation by two DNA-damaging drugs in a large set 

of TP53 wild-type primary CLL samples and screened the p53 phospho-patterns. We were able to 

associate hypophosphorylated profile II with disrupted activation of p53 signaling as assessed by RNA 

sequencing and real-time PCR analysis. Moreover, we linked this p53-mutant-like state with a highe r 

activity of the hypoxia pathway and defects in the ATM gene locus. 

Under stress-free conditions, p53 protein's stability and activity are tightly regulated and kept 

low[44] through MDM2-mediated timely degradation[45]. For this master regulatory loop, the N- 

terminal end of p53 is essential. If it is unmodified, MDM2 readily binds it[46], triggering p53 

ubiquitination and proteasomal degradation. N-terminus is targeted by a plethora of stress-sensing 

kinases, which phosphorylate it at multiple sites upon various forms of DNA damage, thus increasing 

the protein half-life[47]. In this regard, chemotherapeutic drugs, including purine analogs (such as 

fludarabine) or topoisomerase inhibitors (such as doxorubicin), have been shown to increase p53 leve l 

in CLL cells effectively[48,49]. We observed differences in the p53 phospho-profiles induced by 

fludarabine or doxorubicin in CLL cells. Moreover, doxorubicin treatment led to two distinct phospho- 
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profiles. This confirms the different mechanisms of action of both used drugs, which is in line with 

previously published findings[50]. The altered signaling resulting in p53 hypophosphorylation in profile 

II after doxorubicin is likely not crucial for fludarabine response, as we observed a rather homogeneous 

pattern of p53 phosphorylation after fludarabine. Besides, reduced phosphorylation of p53, as we 

observe in profile II (after doxorubicin treatment), has been related to a state that resembles mutated 

p53[8]. Having this in mind, CLL phospho-profile II could encompass those samples that bear 

genetically wild-type p53, but whose activity is impaired at the protein level by inadequate 

posttranslational modifications. 

Indeed, we observed that, like the samples carrying an inactivated TP53 gene, profile II samples 

failed to trigger p53 signaling upon DNA damage on the transcriptomic level. In this regard, it has 

already been described that wild-type p53 can undergo conformational changes into a mutant form with 

an unavailable DNA-binding domain and is thus incapable of induction of its target genes[51,52]. In 

detail, phospho-profile II could represent an intermediate state between wild-type and mutant p53 since 

the induction of the studied downstream effector genes after doxorubicin treatment was much lower in 

profile II than in profile I samples, but still higher than in TP53-mutated samples. In line with this, the 

expression of miR-34a, whose downregulation is a well-known indicator of deleted and/or mutated 

TP53 gene[53], also showed this intermediate expression pattern in profile II samples. 

In order to uncover the underlying mechanisms plausibly giving rise to the different p53 

phospho-profiles, we next used PROGENy to assess the basal activity of selected cancer-related 

pathways in untreated cells. This analysis pointed to the importance of the hypoxia pathway, an 

established inducer of p53 accumulation[54]. We detected its highest activity in TP53 mutated samples, 

which is in line with the recent findings[55]. Correspondingly with the above-mentioned, the hypoxia 

pathway’s activity in profile II samples was between the high levels found in TP53 mutants and low 

activity in profile I. Under hypoxic conditions, p53 is not appropriately degraded through the MDM2- 

mediated process[56], leading to its elevated protein levels that accumulate in the cell. In this scenario, 

p53 is known to be hypophosphorylated and transcriptionally inactive[52]. Our data suggest that 

elevated basal activity of the hypoxia pathway in profile II samples could contribute to the presence of 

clearly detectable levels of hypophosphorylated p53 protein in these cells and also to the p53 inability 

to respond to DNA damage caused by doxorubicin. Thus, increased hypoxia could contribute to the 
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emergence of phospho-profile II and its p53-mutant-like character. Given the increasing evidence of the 

importance of the hypoxia pathway in CLL pathogenesis and its potential druggability[57,58], our 

results point to the possibility of hypoxia pathway targeting even in wt-TP53 patients. 

Besides, we noticed that profile II samples were enriched in those harboring ATM defects. ATM 

is a kinase that senses and reacts to DNA double-strand brakes and stabilizes p53 through 

phosphorylation, especially at Ser15[59]. Although the ATM-p53 axis is disrupted in most profile II 

samples, double-strand breaks’ sensing was only mildly affected, and we were still able to detect p53 

protein in primary CLL cells after doxorubicin treatment. It suggests that p53 must be stabilized via an 

alternative pathway. Apart from ATM, DNA-PK is involved in response to DNA double-strand 

brakes[59–61]. DNA-PK was reported to be overexpressed in CLL cells with del11q (encompassing 

ATM gene)[60], and DNA-PK activity was described to be crucial for the survival of primary CLL cells 

with ATM defects[61]. In detail, after exposing cells to DNA damage, DNA-PK might act via DNA- 

PK/AKT/GSK3/MDM2 axis resulting in MDM2 hypophosphorylation and, consequently, p53 

accumulation[59]. p53 stabilized this way (in the absence of a fully functional ATM) was reported to be 

hypophosphorylated on Ser15[59], which is in line with our results. Thus, the activity of an alternative 

DNA damage response pathway after using doxorubicin could contribute to p53 accumulation in ATM 

defective samples. Moreover, ATM loss results in chronic oxidative stress, which might be responsible 

for the increased biogenesis of the HIF1 protein, a key component of the hypoxia pathway[62]. This 

finding can thus partially explain the observed increased activity of the hypoxia pathway in profile II 

ATM-defective samples. 

 

Mutations in MED12/MED12L genes could also be of importance since they were found in 3 of 

5 profile II patients not having ATM defects. This high proportion is noteworthy, considering that 

mutations in the MED12 gene were previously described in 5-8% of CLL cases[41,63,64]. MED12 is a 

part of the mediator kinase module complex involved in p53 signal transduction, more specifically, it is 

a stimulus-specific positive coregulator of p53 target genes[65]. Moreover, it has been shown that 

mutation in MED12 lead to downregulation of p53 signaling[66]. 

 

Although we clearly demonstrated biological differences between the two identified phospho- 

profiles, the impaired function of the p53 pathway in profile II was likely overcome by other 

mechanisms in vivo. The differences between profiles did not translate into the clinical outcome; neither 
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the time to second treatment nor overall survival differed between the respective patient subgroups. The 

lack of difference in remission duration can be explained by the small sample size as only sub-cohort of 

patients treated with the same regimen (FCR) could be compared. Moreover, the FCR regimen has a 

different mechanism of action compared to doxorubicin alone and other mechanisms might compensate 

for the insufficient p53 pathway activity. This is even more valid for overall survival because patients 

receive multiple treatment lines and different treatment regimens during the course of the disease. 

5. CONCLUSIONS 

 

Our study highlights the importance of correct p53 phosphorylation to perform its tumor 

suppressor roles in primary CLL cells properly. We describe a complex regulatory circuit in which 

higher hypoxic activity and impaired DNA double-strand breaks’ sensing lead to hypophosphoryla tion 

of p53 and accumulation of this dysfunctional form in CLL cells, rendering them less responsive to 

acute DNA damage. 
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FIGURE LEGENDS 

 

Figure 1. Effect of DNA damage-inducing age nts (doxorubicin, fludarabine ) on p53 

phosphorylation in the HG3 cell line. A. HG3 cells were incubated with either 1.5 µM doxorubicin or 

15 µM fludarabine for 1h, 3h, 6h, 12h, and 24h, and subsequently lysed to extract proteins. 

 

Phosphorylation of serine 6, 9, 15, 20, 46, 315, and 392 was studied by the western blot analysis, which 

was also used to assess the protein level of total p53. Blots shown are representative of 2 technical 

replicates. The exposure times were as follows: Ser6–10min, Ser9–5min, Ser15–9s, Ser20–5min, 

Ser46–10min, Ser315–25s, Ser392–25s, p53(total)–6s. β-actin was used as a loading control (exposure 

time 8s). B. Phos-Tag analysis of protein lysates from A. Each protein lysate was loaded untreated and 

treated with a mixture of phosphatases (marked with +). The phosphatase treatment serves as a control 

and reveals the dephosphorylated form of the studied protein. It is possible to appreciate that p53 in 

HG3 cells treated with the selected drugs is phosphorylated to such a high degree that only partia l 

dephosphorylation was achieved. Residually phosphorylated isoforms are present above the 

unphosphorylated form, marked with a grey arrow. Images shown are representative of 3 technical 

replicates. 

Figure 2. p53 phospho-profiling of primary CLL ce lls. A. Doxorubicin and fludarabine induced 

distinct phospho-profiles in the studied samples (N=71), as assessed by Phos-Tag analysis and 

quantified using ImageJ. While there was a consistent pattern after fludarabine, doxorubicin induced 

two different phospho-profiles, termed I and II. The most phosphorylated p53 phosphoform is marked 

as p+++, the least phosphorylated as p+. Phosphatase treatment (marked with +) was used to identify 

the unphosphorylated form of p53. Each sample was considered a biological replicate. B. Western blot 

analysis was used to compare basal levels of p53 expression in protein lysates from unstimulated CLL 

cells cultured for 24h (N=52). Actin was used as a loading control to normalize the signal intensity. 

Profile II samples had significantly higher basal p53 expression (P = 0.039 [*], Mann-Whitney test). 

Each sample was considered a biological replicate. C. Western blot analysis of 6 representative CLL 

samples was used to identify serine residues whose phosphorylation differs among the two phospho- 

profiles. Only Ser15 and 392 out of the panel of serine residues (Supplementary Table S2) were 
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evaluable. Total p53 was used as a loading control to normalize the signal intensity of phospho- 

antibodies. All measurements were normalized to the signal detected in sample 1393. Images of serine 

15 and 392 are quantified in the right panel of the figure. Mann-Whitney test was used to evaluate the 

statistical significance of the results (P = 0.100 for both sites, representative of 3 technical replicates). 

Figure 3. Transcriptomic analysis of doxorubicin-induce d phospho-profile s. A. Volcano plots 

representing results of differential expression analysis comparing untreated and treated paired samples 

within each experimental group by RNA sequencing (individua l samples were considered biologic al 

replicates: profile I N=11 samples, profile II N=10 samples, TP53 mutated N=9 samples). Fold-change 

is depicted on the x-axis, while significance is on the y-axis. Significantly downregulated genes after 

doxorubicin treatment (FDR≤0.05 and fold change≤0.5) are depicted in red, while upregulated 

(FDR≤0.05 and fold-change≥2) are in green. Each dot in volcano plots represents the mean value for all 

samples in the designated group. Even though DESeq2 analyzed over 32 000 data points in each of the 

three experimental groups, most of the data points had very similar or identical non-significant FDR 

values and/or log change values in TP53 mutant samples and profile II samples. Thus, the plots seem to 

depict fewer points. B. Heat map of 55 genes (rows) showing the highest difference between 

differentially expressed genes in profile I and profile II samples by RNA sequencing analysis. Columns 

represent level of gene expression in individual patient samples in control or doxorubicin conditions. 

TP53-mutated samples depict the state when p53 protein is not functional. C. TaqMan qRT-PCR 

validation of RNAseq findings. The validation included twenty-seven samples included in the RNAseq 

(filled symbols) and 11 additional samples (4 profile I and 7 profile II samples, open symbols), run in 

triplicates for each gene assayed. The expression of BAX, BBC3, CDKN1A, and GADD45A was 

calculated relative to the mean of two housekeeping genes using the ΔΔCt method. Mann-Whitney test 

was used for comparing two out of three groups, while all three groups were compared by the Kruskal- 

Wallis test. P-values < 0.05 are coded as *, those < 0.01 as ** and < 0.001 as ***. n. s. = non-significant. 

Horizontal red dashed lines at y=1 depict no response to treatment. D. PROGENy analysis of 

transcriptomic data. Activity of selected pathways (rows) in each patient sample (columns) is shown in 

basal and doxorubicin-treated conditions. In the basal state, all three groups significantly differ in the 
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activity of the hypoxia pathway (P = 0.009 for profile I vs. profile II comparison, P = 0.0009 for profile 

I vs. TP53 mut, and P = 0.003 for profile II vs. TP53 mut). After doxorubicin treatment, the activity of 

the hypoxia pathway does not change further in either of the studied groups. Moreover, the p53 pathway 

is most significantly activated by doxorubicin in profile I samples (P = 1.7 × 10-8), followed by profile 

II (P = 0.028) and TP53 mut (P = 0.51), where no significant activation of the pathway was observed. 

Figure 4: A. Overview of results from NGS targeted gene panel focused on lymphoid malignancies. 

This panel covered 70 genes and was applied in all but one sample with a clearly determined profile (54 

samples in total were sequenced). B. Comparison of the presence of various ATM locus defects in profile 

I and profile II samples (P = 0.0001 [***], Fisher's exact test). 
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Supporting information section 

 

Supple mentary Table S1: Overview of samples carrying TP53 aberrations. 

 
Supplementary Table S2: Antibodies used in the study. 

 

Supplementary Table S3: List of NGS panel target genes focused on lymphoid malignancies. 

 

Supplementary Table S4: List of differentially expressed genes identified when untreated and 

doxorubicin-treated conditions in paired samples within each experimental group were compared. 

Supple mentary Table S5: List of Progeny P values. 

 

Supple mentary table S6: List of hypoxia-related genes used in PROGENy analysis. 

 
Supplementary Table S7: List of variants detected by targeted NGS panel (LYNX). 

 
Supplementary table S8: List of validated somatic variants detected by whole exome sequencing. 

 

Supple mentary Figure S1: Phosphorylation patterns detected by Zn(II) Phos-Tag technique. 

 
Supplementary Figure S2: Western blot analysis of basal p53 protein levels. 

 

Supplementary Figure S3: Relative miR34-a expression levels in uncultured primary CLL cells. 

 
Supple mentary Figure S4: qRT-PCR of p53 targets after fludarabine treatment. 

 
Supplementary Figure S5: Activity of hypoxia pathway and HIF1A transcription factor. 

 

Supplementary Figure S6: Patients’ clinical outcome in relation to phospho-profiles. 

 
Supplementary Figure S7: H2AX phosphorylation. 
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Table 1. Clinico-biological characteristics of the studied patients (N=71) and association analyses 

between these characteristics and identified phospho-profiles. Significant P values are in bold. * Only 
 

 Study cohort 
(N=71) Profile I (N=33) Profile II (N=22) P-value 

Gender 

Male (%) 48 (68) 26 (79) 9 (41) 
0.009 

Female (%) 23 (32) 7 (21) 13 (59) 
 

Age at diagnosis 

Median (range) 62.8 (43.2 – 85.4) 64.7 (43.5 – 82.8) 60.5 (43.2 – 85.4) 0.399 
 

Status at sampling 

Never treated (%) 5 (7) 3 (9) 2 (9)  

Before treatment (%) 55 (77) 26 (79) 17 (77)  

After a therapy (%) 11 (16) 4 (12) 3 (14)  

 

RAI staging at diagnosis 

Low: 0 (%) 23 (32) 10 (35) 10 (53)  

0.267* Intermediate: I + II (%) 27 (38) 12 (41) 4 (21) 

High: III + IV (%) 12 (17) 5 (17) 2 (10) 

Unknown (%) 9 (13) 2 (7) 3 (16)  

 

Time to first treatment from diagnosis (days) 

Median (range) 1148 (34–8296) 728 (34 – 8170) 1589 (63 – 8296) 0.132* 
 

IGHV status 

Unmutated (%) 48 (68) 22 (67) 15 (68) 
1.0** 

Mutated (%) 20 (28) 10 (30) 6 (27) 

Unknown (%) 3 (4) 1 (3) 1 (5)  

 

11q-# 
Yes (%) 24 (34) 5 (15) 12 (55) 

0.002** 
No (%) 45 (63) 28 (85) 8 (36) 

Unknown (%) 2 (3) 0 (0) 2 (9)  

 

12+# 

Yes (%) 9 (13) 5 (15) 2 (9) 
0.694** 

No (%) 58 (82) 27 (82) 18 (82) 

Unknown (%) 4 (5) 1 (3) 2 (9)  

 

13q-# 

Yes (%) 39 (55) 17 (52) 14 (64) 
0.253** 

No (%) 30 (42) 16 (48) 6 (27) 

Unknown (%) 2 (3) 0 (0) 2 (9)  

calculated for the samples taken prior to starting any CLL-related therapy. **Calculated only for those 

samples where data were available. # Assessed by FISH. 

1
8
7
8
0
2
6
1
, ja, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://feb
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/1

8
7
8

-0
2
6
1
.1

3
3
3
7 b

y
 C

o
ch

ran
e C

zech
 R

ep
u
b
lic, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

7
/1

1
/2

0
2
2
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y th
e ap

p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se 



18780261, ja, Downloaded from https://febs.onlinelibrary.wiley.com/doi/10.1002/1878-0261.13337 by Cochrane Czech Republic, Wiley Online Library on [27/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

M
O

L
2

_1
3

3
3

7
_F

ig
u

re
 1

.jp
g 



18780261, ja, Downloaded from https://febs.onlinelibrary.wiley.com/doi/10.1002/1878-0261.13337 by Cochrane Czech Republic, Wiley Online Library on [27/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 

 

 

 

 

 

 

 

 

 

 

 

 

 

M
O

L
2

_1
3

3
3

7
_F

ig
u

re
 2

.jp
g 



18780261, ja, Downloaded from https://febs.onlinelibrary.wiley.com/doi/10.1002/1878-0261.13337 by Cochrane Czech Republic, Wiley Online Library on [27/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 

 

 

 
 

 

M
O

L
2

_1
3

3
3

7
_F

ig
u

re
 3

.jp
g 



 

 

18780261, ja, Downloaded from https://febs.onlinelibrary.wiley.com/doi/10.1002/1878-0261.13337 by Cochrane Czech Republic, Wiley Online Library on [27/11/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 

M
O

L
2

_1
3

3
3

7
_F

ig
u

re
 4

.jp
g 



 

 

 

 
 
 
 
 
 
 
 

Research paper 

Single-cell RNA sequencing analysis of T helper cell differentiation 

and heterogeneity 
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A B S T R A C T   
 

Single-cell transcriptomics has emerged as a powerful tool to investigate cells' biological landscape and focus on  

the expression profile of individual cells. Major advantage of this approach is an analysis of highly complex and  

heterogeneous cell populations, such as a specific subpopulation of T helper cells that a re known to differentiate  

into distinct subpopulations. The need for distinguishing the specific expression profile is even more important  

considering the T cell plasticity. However, importantly, the universal pipelines for single -cell analysis are usually 

not sufficient for every cell type. Here, the aims are to analyze the diversity of T cell phenotypes employing  

classical in vitro cytokine-mediated differentiation of human T cells isolated from human peripheral blood by  

single-cell transcriptomic approach with support of labelled antibodies and a comprehensive bioinformatics 

analysis using combination of Seurat, Nebulosa, GGplot and others. The results showed high expression similar- 

ities between Th1 and Th17 phenotype and very distinct Th2 expression profile. In a case of Th2 highly specific 

marker genes SPINT2, TRIB3 and CST7 were expressed. Overall, our results demonstrate how donor difference,  

Th plasticity and cell cycle influence the expression profiles of distinct T cell populations. The results could help 

to better understand the importance of each step of the analysis when working with T cell single -cell data and 

observe the results in a more practical way by using our analyzed datasets. 
 

 

 

1. Introduction 

The concept of immune cell differentiation is based on the progres- 

sive formation of a distinct effector immunophenotype responsible for a 

particular function within the complex system of immune response 

mechanisms. Another important feature of most immune cells is the 

ability to transdifferentiate into a different cell subset, which is often 

connected to the regulation of stimulated immune response. The most 

widely studied are T helper cells (Th) that have distinct immunophe- 

notypes related to their effector functions and their roles in the immune 

response. Therefore, distinguishing T cell subsets is crucial to under- 

standing the status of specific immunity. 

Single-cell RNA sequencing (scRNASeq) analysis is considered to be a 

revolutionary method in multiple biological fields as it provides a sig- 

nificant insight into how individual cells work at the transcriptomic 

level. With the knowledge obtained from scRNASeq analysis, changes in 

the transcription profiles of T cells and identification of subsets based on 

their gene expression patterns can be determined. Regarding Th cells 

specifically, a more detailed gene expression profiling can contribute to 

the classification system that was established upon the description of the 

first two Th cell subsets – Th1 and Th2 [1]. Recent studies widened the T 

cell classification system, which now includes the following subsets: 

Th1, Th2, Th9, Th17, Th22, follicular T cells (Tfh), and regulatory T cells 

(Treg) [2]. 

The Th1, Th2, Th17, and Treg subsets belong to the most abundant 

and most studied subsets of T cells. It is known that each of these subsets 

orchestrates highly specific effector functions that enable the immune 

system to adapt its response to various pathogens. The Th1 cells belong 

to populations of pro-inflammatory immune cells that primarily coor- 

dinate an antiviral immune response (type 1). Their main effector 
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cytokine interferon γ (IFN-γ) is produced upon successful differentiation 

that is maintained by the signal transducer and activator of transcription 

(STAT) 1 [3] and STAT4 signaling [4]. Furthermore, the signaling 

pathway of the mammalian target of rapamycin (mTOR)/Akt leads to 

the phosphorylation of the master regulator of Th1 differentiation, T- 

boX transcription factor (T-bet) [5]. 

The Th2 cells play an important role in regulation of the immune 

response against extracellular parasites and inducing the humoral im- 

mune response that produces interleukin (IL-) 4, IL-5, and IL-13. The 

differentiation process is associated with their main differentiation 

cytokine, IL-4, and its master regulator, GATA-binding protein 3 

(GATA3). Regarding signaling pathways that facilitate Th2 cell differ- 

entiation, STAT6 [6] and STAT5 ([7], p.) were found to be crucial 

protagonists in this process. During their differentiation, the Th2 cells 

benefit from a positive feedback loop that is orchestrated through IL-4. 

Since the IL-4 functions not only as the main Th2-specific effector 

cytokine but also as the Th2-specific differentiation cytokine, it was 

found that the Th2 cells enhance their differentiation by strong ma- 

chinery of IL-4 production [8]. 
The Th17 subset is another proinflammatory cell type that orches- 

trates immune response against extracellular parasites and fungi. It is 

characteristic of its proinflammatory potential induced via the produc- 

tion of effector cytokines IL-17, IL-21, and IL-22. Th17 differentiation 

depends on cytokine stimuli, such as IL-6, IL-1β, IL-23, and transforming 

growth factor β (TGF-β) [9]. Another key player in the Th17 differen- 

tiation is STAT3 [10] that facilitates the expression of their master 

regulator, RAR-related orphan receptor γ (RORγt) [11]. RORγt plays an 

essential role in the production of Th17 effector cytokines and reaches 

functionality upon phosphorylation by S6 kinase 2, as a part of the 

mTOR/Akt signaling pathway [12]. 

The Treg subset has an essential role in the suppression of immune 

responses and maintenance of immune tolerance in the organism. It 

comprises natural Treg cells (nTreg) and induced Treg cells (iTreg). 

Their lineage commitment is determined by a response to transforming 

growth factor β (TGF-β) and retinoic acid-abundant microenvironment. 

Therefore, the essential cytokines produced by Treg are the anti- 

inflammatory IL-10, IL-35, and TGF-β [13]. Regarding the Th17 and 

Treg cell subsets, differentiation plasticity is a frequently discussed 

phenomenon. Very recent studies confirmed the hypothesis considering 

TGF-β cooperation with other cytokines as a crucial factor in the cell 

differentiation axis. Whereas in the Treg differentiation program 

increased levels of TGF-β in combination with IL-2 expression are 

required, low levels of TGF-β in association with IL-6, IL-1β, and IL-23 

are crucial for triggering Th17 lineage commitment [9]. 
Importantly, the balance between the differentiation of the Th cells 

into distinct subsets is crucial for the maintenance of the physiological 

state of a host organism. Recent studies highlighted roles of different Th 

cell subsets in the progression of various pathologies, such as Th1 cells in 

lupus erythematosus [14], Th2 cells in asthma and allergies [15], Th17 

cells in autoimmune diseases [16] and the role of Treg subset within the 

progression of malignant tumors [17]. Thus, the Th cell differentiation 

has become a frequented therapeutic target in the treatment of such 

pathologies, which brings the Th cells into the spotlight in highly so- 

phisticated analyses, e. g. scRNASeq. Therefore, conventional immu- 

nological identification of the main Th cell subsets is being pushed more 

into the background as many publications point out the importance of 

signature genes as more meaningful information [18]. 
In our study, we analyzed Th cells from the peripheral blood of two 

healthy donors. Based on our scRNASeq analysis, we first distinguished 

Th cell subsets in relation to their gene expression profiles. We also 

elucidated their differentiation mechanisms and plasticity between the 

chosen Th cell subsets – Th1, Th2, and Th17. Finally, we focused more 

closely on the methodological part of Th cell differentiation analysis 

with an emphasis on discussing the most crucial steps along the 

scRNASeq data analysis pipeline. 

2. Material and methods 

2.1. Cell isolation 

Cells were isolated from a buffy coat by additional purification of 

leukocytes using the solution of 1 % dextran from Leuconostoc sp. 

(Sigma-Aldrich) for 45 min. Next, gradient centrifugation on Histopaque-

1077 (Sigma-Aldrich) was performed to isolate peripheral mononuclear 

cells (PBMCs). Fraction of PBMCs underwent hemolysis step by sterile 

H2O to prevent residual erythrocyte contamination of the sample. PBMCs 

were then collected in Roswell Park Memorial Institute 1640 Medium 

with GlutaMAX™ Supplement (RPMI, Gibco). The sepa- 

ration of monocytes from the fraction of lymphocytes was performed by 

PBMC incubation for 30 min at 37 ◦C in Petri dishes, to achieve adhesion 

of monocytes onto plastic and their depletion from the PBMC 
suspension. 

Lymphocytes were resuspended in RPMI with 10 % fetal bovine 

serum (FBS, BioTech), optimized amount of fluorescently labelled an- 

tibodies was added (0.5 μl of antibody per 20 million cells), incubated on 

ice for 30 min, washed in PBS, and filtered through 70 μm filter (Süd- 

Laborbedarf GmbH). Markers used for sorting Th cells were Pacific 

Blue™ anti-human CD4, phycoerythrin/cyanine7 (PE-Cy7) anti-human 

CD25, and phycoerythrin (PE) anti-human CD45RA (all from SONY 

Biotechnology). Th cells were sorted using BD FACSAria II (BD Biosci- 

ence) based on their surface marker constitution CD4+CD25-CD45RA+. 

2.2. In vitro stimulation 

Sorted cells were used for a set of treatment procedures that were 

carried out with the aim to activate the Th cells as well as to polarize 

them into distinct lineages (Th1, Th2 and Th17). To achieve that, 6-well 

plates coated with 1 ml of PBS with the addition of 1 μg/ml anti-CD3 

antibody (EXBio) were used. The density of cells on cell culture dishes 

was aimed at 4–5 105 cells/ml. RPMI medium used for cultivation of 
cytokine-stimulated Th cells contained 10 % FBS and 1 % penicillin- 

streptomycin (Gibco). The activation of the Th cells was performed 
upon contact of the cells with coated anti-CD3 and 10 ng/ml of soluble 

anti-CD28 (EXBio) that lasted 30 min. Subsequently, the activated cells 

were incubated for 5 days in presence of following differentiation cy- 

tokines: 1) IL-12 (25 ng/ml, PeproTech) and neutralizing antibody anti–

IL-4 (1 μg/ml, eBioscience) for Th1; 2) IL-4 (10 ng/mL PeproTech) and 

neutralizing antibody anti–IFN-γ (1 μg/ml, eBioscience) for Th2; 3) IL-6 

(25 ng/ml), IL-23 (25 ng/ml), IL-1β (25 ng/ml), TGF-β (0.25 ng/ml, all 

PeproTech) and neutralizing antibodies anti–IFN-γ (1 μg/ml, eBio- 

science) and anti–IL-4 (5 μg/ml, eBioscience) for Th17 differentiation. 

2.3. Sample preparation for 10× chromium controller encapsulation 

This scRNASeq data analysis is based on Th cells isolated from 2 

healthy donors. Both populations of the sorted Th cells underwent the 

same workflow in terms of isolation, subset-specific cytokine polariza- 

tion, cultivation, sample preparation (including labelling with barcoded 

TotalSeq-B antibodies, BioLegend) that allowed multiplexing of 

different samples into one scRNASeq run, sequencing, and data analysis. 

From both donors, a population of 10,000 cells was aimed to be 

encapsulated via 10 Chromium Controller. This number of cells 

interspersed between samples of activated Th cells (ACT_1), Th2 cells 

(TH2_1), and Th17 cells (TH17_1) in the case of donor_ 1, whereas in the 

case of donor_2, the number of total encapsulated cells split between 

samples of non-treated Th cells (NT-control), activated Th cells (ACT_2), 

Th1 cells (TH1_2), Th2 cells (TH2_2), and Th17 cells (TH17_2). The 

portfolio of samples during our study varied due to limited financial 

resources and the accessibility of the method. 
Upon 5-day cultivation, all samples were collected into separate test 

tubes and resuspended in cold PBS with 3 % FBS and 18.2 % of Blocking 

Buffer (BioLegend). The cells underwent 10 min incubation on ice and 
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Table 1 

Barcode sequences of TotalSeq-B antibodies used for labelling of distinct samples 

during scRNASeq sample preparation workflow (includes data from two 

scRNASeq runs that were held separately).  

Sample #       Product ID Barcode sequence 

group was assigned. The same approach was used for both of our 

datasets. The Seurat object was created using two filtration parameters. 

First, all genes expressed in less than three cells were excluded from the 

analysis. Second, cells bearing a low number of expressed genes were 

excluded to avoid the dead cells in our analysis. The threshold was based 

NT- 
control 

1 TotalSeq-B0251 anti-human Hashtag 

1 

GTCAACTCTTTAGCG on the distribution of the number of unique genes for each dataset. Both 

runs were joined using the function embedded in the Seurat package. 
ACT_1 6 TotalSeq-B0256 anti-human Hashtag GGTTGCCAGATGTCA Data revealed no obvious batch effect because of the similarity of pre- 

ACT_2 2 

TH1_2 4 

6 

TotalSeq-B0252 anti-human Hashtag 

2 

TotalSeq-B0254 anti-human Hashtag 

4 

 
TGATGGCCTATTGGG 

AGTAAGTTCAGCGTA 

processing and sample preparation. Final figures were created using 

GGplot2 package that is compatible with Seurat. 

The HTO assay was normalized using a default CLR normalization 

method. After that, data were demultiplexed by HTODemux function 
TH2_1 2 TotalSeq-B0252 anti-human Hashtag TGATGGCCTATTGGG with default parameters of 0.99 positive quantiles. Identified negative 

TH2_2 6 

TH17_1 4 

2 

TotalSeq-B0256 anti-human Hashtag 

6 

TotalSeq-B0254 anti-human Hashtag 

4 

 
GGTTGCCAGATGTCA 

AGTAAGTTCAGCGTA 

cells and doublets were excluded from the analysis. The fraction of cells 

classified as singlets was approXimately 80 % of the overall cell count. 

The PercentageFeatureSet function was used to calculate the percentage 

of mitochondrial gene transcripts for each cell in the dataset. After QC, 
TH17_2 8 TotalSeq-B0258 anti-human Hashtag 

8 

CTCCTCTGCAATTAC we filtered out all cells with >20 % of mitochondrial gene transcripts in 

the sequenced transcriptome, which was due to positive correlation of 
high   percentage   of   mitochondrial   gene   transcripts   and   potential 

were labelled with TotalSeq-B anti-human antibodies conjugated with 

unique barcode (Hashtag oligos - HTO) that had been previously diluted 

in PBS with 3 % FBS in ratio 1:24 (Table 1). Next, the cells were incu- 

bated in presence of TotalSeq-B anti-human antibodies on ice for 45 min, 

washed 3 times in the solution of PBS with 3 % FBS, and the concen- 

tration of separate samples was measured. Finally, the cells from distinct 

samples were pooled together in equal ratios, creating a final miX ready 

for loading onto 10 Chromium Controller. 

The collected samples were processed in two separate scRNASeq 

runs. Prior to loading on 10× Chromium Controller, the concentration of 

each final miX was estimated once again (700 cells/μl) and the sample of 
cell suspension was miXed with nuclease-free water (Thermofisher Sci- 

entific) and master miX (10 Genomics). Gel Bead-In Emulsions (GEM) 

suspension was collected and reverse transcription was performed. The 

output of the reverse transcription was processed, homogenized and 

washed. Such suspension underwent the cDNA amplification step (in 

C1000 Touch Thermal Cycler by BioRad) and was divided into the 3′ 

gene expression library and cell surface protein library that were 

handled separately during library preparation. 

 
2.4. Library preparation and sequencing 

 
The entire process of library preparation was performed according to 

the Chromium Next GEM Single Cell 3′ Reagent Kit v3.1 User Guide with 

Feature Barcoding technology for Cell Surface Protein (10 Genomics). 

Library construction quality control revealed optimal parameters for 

both constructed libraries. Sequencing was carried out via the NextSeq 

500/550 platform (Illumina) with the usage of NextSeq 500/550 High 

Output Kit v2.5 for 75 cycles (Illumina). During sequencing, 28 cycles 

belonged to read 1, 55 cycles to read 2 and 8 cycles to library index i7. 

 
2.5. Data processing and analysis 

Both runs of scRNASeq data were pre-processed using a standardized 

protocol from the Cell Ranger Single-Cell Software Suite (v3.1.0; 10 

Genomics) [18] (G. X. Y. Zheng et al., 2017a). Upon the first quality 

control (QC), each read was assigned to cells and aligned to the refer- 

ence, i.e., hg38 assembly of the human genome (GRCh38-3.0.0). For 

each run, the gene expression was quantified using the UMI counts in 

specific cell barcode sequences. The final overall fraction of cells was 

approXimately 90 % of the targeted cell count. 

The pre-processed data from the Cell Ranger [18] were imported into 

RStudio (v1.4.17) and analyzed using the Seurat [46] package (v4.0.3). 

The first step included control of the presence of Hashtag oligos. To each 

cell feature barcode, a sample label corresponding to our experimental 

apoptotic processes ongoing within the cell. The minimum threshold for 

mitochondrial gene transcripts was not used because of possible bio- 

logical bias. For both datasets, after filtering out the cells with high 

levels of mitochondrial transcripts, viable singlet cells formed around 

65 % of the raw cell count. Then, we identified outliers on a mean 

variability plot. The number of gene threshold was set to 2000 per cell, 

as close as possible to the observed median values for each dataset. In 

the following analytic step, we reduced our datasets to only protein- 

coding genes, using the Biostrings-based genome data package [19] 

(v1.58.0) and genome annotated sequences for Homo sapiens (BSge- 

nome.Hsapiens.NCBI.GRCh38) provided by NCBI [20] (GenBank 

accession number: GCA_000001405.28; 2019-02-28). 

SCTransform [21] algorithm was used to normalize and scale the 

data. The default parameters were changed according to observed 

values in QC (Fig. 1) and the number of cells parameter was set to the 

highest quantile observed in the dataset. Principal component analysis 

(PCA) [22] with default parameters was run to reduce dimensionality on 

transformed data. Based on PCA, uniform manifold approXimation and 

projection for dimension reduction (UMAP) [23] was performed. The 

proXimity of cells was analyzed using expression profiles as established 

by the FindNeighbors function, where 50 dimensions were used to 

compute neighborhood overlaps via sharing nearest neighbor (SNN) 

algorithm [91] . Clusters were identified using the resolution threshold 

of 0.7 to identify distinct cell phenotypes. Visualized UMAP graphs were 

adjusted by the GGplot2 package [24]. 
Using   the   Seurat   FindMarkers function,   the   most   differentially 

expressed genes were identified in each cluster (in comparison to the 

background, i. e., the mean expression of the dataset), and thus, we were 

able to distinguish artificially formed clusters from biologically relevant 

clusters in the dataset. Chosen subsets and clusters underwent a differ- 

ential expression (DE) analysis using Model-based Analysis of Single Cell 

Transcriptomics package (MAST) ([25], v1.16.0). Setting up the posi- 

tive/negative change in expression for a chosen subset was performed 

using the “only.pos” parameter. The X-fold difference between compared 

subsets was set to logFC = 0.2 to see false positives. 

2.6. Differential expression analysis 

The 30 most differentially expressed genes for each subset were 

visualized by the adjusted Heatmap function embedded in Seurat with 

the GGplot2 package and final figures were organized by the pubr 

package [26]. Figures of density plots visualized the most specifically 

expressed genes (markers) for each identified cluster and each subset 

labelled by a cell feature barcode. Final figures were created using the 

Nebulosa package by the wkde method [27] and the GGplot2 package 

[24]. The last step was the enrichment of genes using the enrichR 
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Fig. 1.  Primary processing and filtration of single-cell RNA sequencing (scRNASeq) data from T cells. 

A–I) Dim plots displaying the number of transcripts originating from mitochondrial genes, in bulk visualization (as shown in A)  and separately for each cluster in the 

dataset (as shown in B–I). Colors and labels correspond to clusters separated according to the cell feature barcodes. 

J) UMAP of scRNASeq data from differentiating T cells. The dataset was filtered according to the separately estimated gene count  thresholds (>250 gene counts per 

cell for NT-control and ACT_2, >1200 gene counts per cell for ACT_1, TH2_1 and TH17_1, and >2500 gene counts per cell for TH1_2, TH2_2 and TH17_2). Colors and  
labels correspond to separate clusters distinguished according to the cell feature barcodes. 

K) UMAP of scRNASeq data from differentiating T cells. The dataset was filtered according to the chosen gene count threshold ( >250 gene counts per cell). Colors and 

labels correspond to separate clusters distinguished according to the cell feature barcodes. 

L) Distribution of numbers of transcripts per cell in distinct clusters upon filtration of the dataset by the thresholds fitted to the groups of samples due to their activity 

in gene expression (>250 gene counts per cell for NT-control and ACT_2, >1200 gene counts per cell for ACT_1, TH2_1 and TH17_1, and > 2500 gene counts per cell 

for TH1_2, TH2_2 and TH17_2). Colors and labels correspond to cell feature barcodes. 

M) Distribution of numbers of gene counts per cell in distinct clusters upon filtration of the dataset by the thresholds fitted to the groups of samples due to their  

activity in gene expression (>250 gene counts per cell for NT-control and ACT_2, >1200 gene counts per cell for ACT_1, TH2_1 and TH17_1, and >2500 gene counts 

per cell for TH1_2, TH2_2 and TH17_2). Colors and labels correspond to cell feature barcodes. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
 

package [28] (data not shown) and heatmap of shared transcription 

factors formed by the Dorothea package [29]. 

2.7. Trajectory analysis 

Upon successfully verifying the identities of distinct clusters in the 

dataset, we used results from the DE analysis to find and propose novel 

signature genes characteristics for each of the present Th cell subsets – 

Th1, Th2, and Th17. To perform a trajectory analysis, we used the 

monocle3 package [30] and garnett [31]. Based on the set of genes 

identified during the analysis, we decided to choose most promising 

genes not in terms of upregulation but specificity. The expression of 

these genes in particular Th cell phenotypes was verified by the RT-qPCR 

analysis. 

2.8. ELISA 

Supernatants from each sample was collected. Effector cytokines IFN-

γ, IL-13, and IL-17A were detected by the IFN gamma Human Un- coated 

ELISA Kit, IL-13 Human Uncoated ELISA, and IL-17A Human Uncoated 

ELISA Kit (all ThermoFisher Scientific, Waltham, MA, USA), respectively, 

according to the manufacturer's instructions, employing the Sunrise 

microplate reader (Tecan, Zürich, Switzerland). 
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Fig. 2.  Analysis of the impact of cell cycle phase on clustering of the dataset. 

A) UMAP of scRNASeq data from Th cells. Colors and labels represent cells in clusters corresponding to the particular cell feature barcodes that were used for 

multiplexing during the sample preparation. 

B) UMAP of scRNASeq data of differentiating Th cells. Colors represent cells assigned to the G1 phase (red), S phase (blue), and G2/M phase (green) of the cell cycle. 

C) UMAP of scRNASeq data from Th cells. Colors represent cells in the ten clusters defined using top variable genes and unsupervised clustering. Labelling represents 

the numbering assigned to the clusters distinguished by the FindNeighbours function (Seurat) under resolution = 0.7. 

D) UMAP of scRNASeq data from differentiating Th cells. Comparison between the dataset without performing the cell cycle regression step (A) and the dataset that 

underwent cell cycle regression (D). Colors and labels correspond to the separate clusters distinguished according to the cell feature barcodes. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2.9. Gene expression analysis 

Total RNA was isolated from cells using the Cell/Tissue RNA Kit 

(CatchGene, New Taipei City, Taiwan). Isolated RNA was reversely tran- 

scribed into cDNA using the Reverse Transcription Kit according to the 

manufacturer's protocol (GeneriBiotech, Hradec Kralove, Czech Republic). 

Real-Time quantitative PCR reaction was performed in a LightCycler480 

instrument (Roche, Basel, Switzerland) using Universal Probe Library and 

a LightCycler480 Probe Master (both Roche, Basel, Switzerland) with the 
following program: initial step at 95 ◦C for 15 min (denaturation), fol- 

lowed by 45 cycles at 95 ◦C for 15 s and 60 ◦C for 1 min (amplification) 

and a final step at 40 ◦C for 1 min. Specific primers for signature genes 

were used and data were normalized to RPL13A mRNA presented as 2- 

Δct. The primers were designed to detect all splicing variants. 

3. Results and discussion 

3.1. Study design 

This study is based on Th cells isolated from peripheral blood of 

healthy donors activated with anti-CD3 and anti-CD28 for 30 min and 

differentiated using subset-specific cytokines (IL-12 for Th1, IL-4 for 

Th2, and combination of IL-6, IL-1β, IL-23, and TGF-β for Th17). Treated 

cells were cultivated for 5 days and then collected and processed for 

scRNASeq (Supplementary Fig. 1). 

The data analysis aimed to cover both Th subset heterogeneity and 

biological repeatability. Therefore, the final dataset was created to link 

two separate scRNASeq runs based on the same treatment of Th cells 

originating from two different donors. In the first run, the samples of 

activated Th cells (ACT_1), Th2 cells (TH2_1), and Th17 cells (TH17_1) 

were included, and in the second run, the samples of non-treated Th cells 

(NT-control), activated Th cells (ACT_2), Th1 cells (TH1_2), Th2 cells 

(TH2_2) and Th17 cells (TH17_2) were included. The portfolio of sam- 

ples during our study varied due to limited financial resources and the 

accessibility of the method. All samples underwent all stages of sample 

preparation, Illumina sequencing, and data analysis in the same way. 

The observed heterogeneity in terms of genes per cell and counts per cell 

may appear due to different transcriptional activity of non-treated and 

activated cells in comparison to the cells undergoing the process of 

differentiation and induction of their effector functions. 

3.2. Selection of viable cells for further analysis 

The first step in scRNASeq analysis consisted of dataset QC. Gener- 

ally, a pointer for distinguishing viable and dead cells during the QC is 

the percentage of mitochondrial genes expressed in the distinct cells. 

Several publications highlighted the importance of the specification of 

the thresholds for distinct cell types [32,33]. To estimate the right bal- 

ance between excluding non-viable cells from the dataset and preserving 

significant gene expression profiles, generating a plot visualization of 

mitochondrial gene transcripts distribution in the dataset is recom- 

mended. The threshold for Th cells depends on treatment design and 

protocol [34,35]. Based on current literature [36,37], the expected 

percentage of mitochondrial gene transcripts in viable cells lies within 

the range of 5–15 %. The upper limit is considered the main parameter 

since higher levels of mRNA transcripts originating from mitochondria 

are often considered a marker of ongoing apoptosis [38,39]. However, 

an out-of-range percentage of mitochondrial mRNA transcripts could 

reflect a technological bias. We observed substantial heterogeneity of 

mitochondrial gene expression in different Th cell subsets (Fig. 1A–I). 

This observation led to an assumption that the threshold mentioned 

above for filtration of mitochondrial mRNA transcripts (5–15 %) might 

not be suitable for filtration of viable cells in different Th cell subsets. As 
shown, the suggested range would be applicable to ACT_1 and ACT_2, 

TH17_1, and TH2_1, and NT-control (Fig. 1B, D, E, F, and H) samples. 

However,    due    to    apparent    alterations    in    the    percentages    of 

mitochondrial genes in TH1_2, TH17_2, and TH2_2 (Fig. 1C, G, and I) 

during the QC, we applied the top threshold 20 % to avoid losing more 

cells than necessary. 

Regarding the bottom threshold, cells not expressing mitochondrial 

genes could be considered a pointer to a specific cell cycle phase [40]. 

Moreover, there is always a chance that cells could be metabolically 

resting [40,41]. On the contrary, the more apoptotic cells remain in the 

dataset, the more redundant and ambiguous output may be received 

[32,42]. Interestingly, the number of mitochondrial gene transcripts 

present in the PCA in downstream data analysis steps can also be used to 

double-check for the adequacy of the chosen threshold. 

The threshold for gene count filtration can be estimated as a default 

parameter or for each sample separately. Our dataset comprised a very 

heterogeneous population of cells (especially when pooling fully 

differentiated Th cells into one dataset) (Fig. 1L and M). When 

comparing the final outputs of clustering based on a dataset with default 

gene count threshold (i.e., minimum of 250 genes for all samples) 

(Fig. 1K) and the dataset with the gene count threshold fitted specifically 

to distinct samples (250 for NT-control and ACT_2, 1200 for ACT_1, and 

2500 for TH1_2, TH2_2, and TH17_2) (Fig. 1J), we observed substantial 

differences. Applying the first filtration variant created interconnections 

between clusters of interest. In some cases, such clustering even pro- 

duced clusters unrelated to Th cell differentiation only based on the 

expression of translation-associated genes. On the contrary, the second 

filtration variant gave rise to a more straightforward clustering and 

minimized the number of clusters created independently from 

differentiation-associated gene expression profile similarities. Consid- 

ering the main aim of this study, the dataset chosen for further analysis 

was the one that underwent filtration at multiple gene count thresholds 

(Fig. 1J). 
The lower gene count similarity of cells within clusters might illus- 

trate the biological process of differentiation more realistically. On the 

other hand, the dataset based on filtration with separately fitted gene 

count thresholds may obliterate essential signals of biological phe- 

nomena. However, this variant may lead to a more straightforward 

identification of various cell populations and a more simplistic charac- 

terization of their traits (transcriptional profiling) (Fig. 1J and K), and it 

is necessary in the case of different quality of distinct runs of sequencing. 

In conclusion, both ways of dataset processing can be highly beneficial 

for the correct fitting of data analysis to a specific biological question 

[43,44]. 

3.3. Cell cycle scoring and filtration of translation-associated genes 

Cell cycle regression of scRNASeq data is an important step to 

consider during every data analysis [41,43]. It provides detailed infor- 

mation on what phase the cells were captured at the point of encapsu- 

lation. Hence, it can also distort the clustering of the dataset. During 

scRNASeq analysis, identification of the cell cycle phase can be achieved 

via a scoring step assigning a specific cell cycle phase to each cell ac- 

cording to the expression of cell cycle-associated genes [44,45]. This 

scoring step can be followed by normalization via SCTransform as it is 

performed as the crucial part of the scRNASeq analysis in the Seurat 

package [46,47]. However, the impact of cell cycle genes on final 

clustering should always be considered with respect to the dataset and 

type of treatment [48]. 
In our study, we performed cell cycle regression and compared the 

filtered dataset to the initial dataset that was not influenced by this 

processing step (Fig. 2A and D). The filtered dataset was found to pro- 

duce a highly similar output to the unfiltered dataset in terms of clus- 

tering and composition of principal components (Fig. 2C and D). Thus, 

we decided to continue with the analysis and characterization of clus- 

tered data based on the unfiltered dataset, i.e. including the expression 

of genes related to the cell cycle. 

Knowing the phenotype of analyzed cells is essential for a decision 

whether to perform the cell cycle filtration step or not. In this case, Th 
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Fig. 3.  Cluster analysis and Th subset characterization using differential expression. 

A) Heatmap based on the top differentially expressed transcription factors in activated Th cells (ACT_1, ACT_2). The X axis represents ordered cells, ass igned to 

distinct clusters created according to cell feature barcode classification (HTO classification). The colors represent the scaled (Z-scored) gene expression for each 

selected gene in each cell. The scale is displayed in the right color bar. 

B) Dotplot of artificial signature genes from differentiating Th cells. Colors correspond to the median expression level in expressing cells and a circle size corresponds 

to the proportion of expressing cells (as shown in the legend on the right). Columns represent clusters separated based on th eir cell feature barcodes, rows represent  

selected signature genes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
 

cells are known for their rapid proliferation and gene expression in 

response to activation [34,35]. Thus, the cell cycle may be an essential 

marker for distinguishing the G0-phase (resting) Th cells from their 

proliferating counterparts in various cell cycle phases. Cell cycle status 

reproduce a biological effect in the case of activation and differentiation 

of Th cells in vitro (Fig. 2B and D). Here, the identification of expression 

specific for cell cycle progression provided the initial proof of Th cell 

proliferation in our dataset. Therefore, its regression might delete 

important information and even mislead subsequent analyses of distinct 

Th subsets. In contrast to our Th cell differentiation in vitro, in the case 

of the experiment with cultivated cell lines (e.g. stabilized cell lines) that 

are meant to be synchronized in the cell cycle, a substantial deviation in 

the expression of cell cycle-related genes should be addressed as a batch 

effect [42]. 

Another filtration parameter considered before cell clustering was 

the analysis of translation-associated genes, i.e. genes participating in 

translation mechanisms and ribosomal genes [49,50], starting with a 

pattern RPL-/RPS-/EEF- [51]. During the analysis, we noticed that the 

genes explaining the variability of the first three principal components 

included just a few ribosomal genes starting with RPL- or RPS-pattern, 
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Fig. 4.  Trajectory analysis. 

A) Trajectory analysis of samples from donor_2. Colors and labels represent cells in clusters corresponding to the particular ce ll feature barcode. Black corresponds to 

trajectory pathway computed by monocle3. Grey clusters correspond to samples from donor_1 and were not used in trajectory analysis. Arrows highlights most  

important nodes along the pathway. 

B) Pseudotime values measured along the trajectory pat hway. Position in UMAP corresponds to the separate clusters distinguished according to the cell feature  

barcodes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 
which indicated a less significant influence of cell translational activity 

on clustering (Supplementary Fig. 2). We assumed such clusters could be 

defined by non-specific gene expression patterns unrelated to Th cell 

differentiation. The scRNASeq community has recently emphasized the 

necessity to perform a DE analysis among clusters to validate previously 

performed QC steps [50,52]. The DE analysis serves as a control that 

translation-associated gene expression may prevail over other expressed 

genes in specific clusters, thus creating the only reason for joining spe- 

cific cells into a cluster in the dataset. Also, the expression pattern of 

genes encoding ribosomal subunits can cause a bias in the dataset 

[49,50]. In both cases, the expression of translation-associated genes 

and cell cycle gene expression are suitable parameters for decision- 

making during each data analysis step [43,44]. 

3.4. Cluster analysis 

The SNN clustering performed with resolution 0.7 produced 10 

clusters, most of them corresponded to sample-specific barcodes (Fig. 2A 

and C). Cluster 3 corresponded to non-treated Th cells (NT-control), 

clusters 3 and 6 overlapped with activated Th cells (ACT_1, ACT_2). 

Clusters 2 and 4 overlapped with Th2 cells from both donors (TH2_1, 

TH2_2). Cluster 0 corresponded to Th17 cells of the first donor (TH17_1). 

In contrast, some clusters were created solely due to gene expression 

profile unity, e.g. cluster 7 represents a miXture of samples from acti- 

vated Th cells, Th1 cells, and Th17 cells. Finally, cluster 1 was based on 

the conjunction of Th1 and Th17 cells from the second donor (TH1_2, 

TH17_2) with a small part of the sample belonging to activated Th cells 

(ACT_2). Moreover, a specific population of cells (cluster 7, Fig. 2C) 

displayed a selective pattern in terms of Treg cell subset-specific gene 

expression, which will be discussed in following section. 
The activation of Th cells from both donors (ACT_1, ACT_2) was 

documented by the increased gene expression of classical activation 

markers CD25, IL-2 receptor α chain (IL-2RA), (Supplementary Fig. 3A), 

and the downregulation of CD62L, also known as L-selectin (SELL) 

characteristic for naïve Th cells (Supplementary Fig. 3B). The DE anal- 

ysis between activated Th cells from both runs (ACT_1, ACT_2) and 

 
comparison to non-treated Th cells (NT-control) revealed an upregula- 

tion of transcription factors such as STAT1, IRF1, IRF7, IRF9, and IFI16 in 

the case of the activated Th cells from both donors (ACT_1, ACT_2) 

(Fig. 3A). Multiple studies linked the expression of genes mentioned 

above to T cell activation and expansion, particularly with STAT1 

encoding signal transducer and transcription activator [53], IRF- 

encoding the interferon-regulatory factors [54], and IFI16 encoding IFN- 

γ inducible factor 16 [55]. According to Twohig et al., STAT1 regulates 

the production of inflammatory cytokines, transcription factors, and 

immune checkpoint regulators [53]. Moreover, IFI16 was found to 

contribute to the formation of the effector T cell phenotype [55]. 

3.5. Heterogeneity among donors 

One of the phenomena we observed was the difference of gene count 

of labelled cells between donors (Fig. 1L and M). As can be observed 

from Fig. 1K and L, the alteration between the number of counts in 

ACT_2 and the number of counts in NT-control from donor_2 was minor. 

Interestingly, the number of gene counts in ACT_1 was higher than in 

both controls (NT-control, ACT_2) from donor_2 (Fig. 1M). We specu- 

lated that this is due to different transcriptional activity of individual 

donors and thus, it could be based on the biological effect of priming. 

Priming is described as the first contact of an antigen-specific Th cell 

with an antigen that induces enhanced gene expression [56]. At the 

same time, gene expression profile similarity between ACT_1 and TH1_2 

(Fig. 2A) was observed. One could suggest that the actual difference 

between the runs can be caused by the batch effect [42,44,57]. How- 

ever, as we followed the same protocols in sample preparation and data 

analysis, we inclined to the priming theory. 

3.6. T helper cell subset verification 

To verify the polarization of Th cells into subsets on the level of 

transcriptome, a set of conventional signature genes was used [58]. The 

identification of Th1 cells was based on the expression of genes such as 

IFNG encoding IFN-γ (Th1 subset-specific effector cytokine), ANXA3 
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(caption on next column) 

Fig. 5. Cluster analysis and Th subset characterization using differential 

expression. 

A) Heatmap based on the top differentially expressed genes of ACT_1 subset,  

according to the Model-based Analysis of the Single-cell  Transcriptomics 

(MAST) algorithm. The X axis represents the ordered cells, grouped according 

to their cell feature barcodes (columns). Different colors correspond to the 

scaled (Z-scored) expression of each selected gene in each cell, as shown in the  

color bar on the right. 

B) Heatmap based on the top differentially expressed genes of Th2 subset, ac- 

cording to the MAST algorithm. The X axis represents the ordered cells, grouped  

according to their cell feature barcodes (columns). Different colors correspo nd 

to the scaled (Z-scored) expression of each selected gene in each cell, as shown  

in the color bar on the right. 

C) Heatmap based on the top differentially expressed genes of Th1 and Th17  

subsets, according to the MAST algorithm. The X axis represents the ordered 

cells, grouped according to their cell feature barcodes (columns). Different 

colors correspond to the scaled (Z-scored) expression of each selected gene in 

each cell, as shown in the color bar on the right. (For interpretation of the 

references to color in this figure legend, the reader is referred to the  web 

version of this article.) 

 
encoding annexin 3, and RUNX3 encoding RUNX family transcription 

factor 3 (Fig. 3B). As for Th2 cells, a set of conventional signature genes 

comprised GATA3 (the main transcription factor and master regulator of 

Th2 cell differentiation), IL4R encoding the IL-4 receptor (receptor for 

the main Th2 subset-specific differentiation and effector cytokine), and 

LIMA1 encoding LIM domain and actin-binding protein 1 (Fig. 3B). 

Finally, Th17 cells were identified using RORC encoding RORγt (the 

main transcription factor and master regulator of Th17 differentiation), 

TGFBR1 encoding TGF-β receptor (involved in Th17 differentiation in- 

duction), and PALLD encoding palladin (Fig. 3B). 

To validate the functionality of the differentiated cells, cytokine 

production was measured by ELISA. It was observed that cells polarized 

into the Th1 subset produced a significantly higher amount of IFNγ in 

comparison to non-treated control and activated Th cells. Similarly, the 

cells stimulated with IL-4 and thus polarized into the Th2 subset pro- 

duced a significantly higher amount of IL-13 (one of the main effector 

cytokines of Th2 cells). Finally, cells polarized into the Th17 subset 

revealed the production of significantly higher levels of IL-17A, the main 

effector cytokine of Th17 cells (Supplementary Fig. 4). 

 
3.7. Gene expression profiling, trajectory analysis, and analysis of novel 

signature genes 

Due to the differences between donors, we decided to perform the 

trajectory analysis only on the donor_2 to preserve consistency in our 

dataset. Moreover, the number of analyzed subsets was higher so the use 

of the donor_2 provided us more variability in the terms of cell pheno- 

type. For the expression of particular genes, we used visualization of 

log10 gene expression on a trajectory path. 

It is visible that part of the cells from ACT_2 and NT-control undergo 

a shift of expression closer to the cluster where the TH17_2 and TH1_2 

subset is present (Fig. 4A, cluster 8 in Fig. 2C). The trajectory analysis 

revealed the possible routes between the Th subsets. The TH1_2 and 

TH17_2 subsets have already shown similar expression profiles using the 

differential expression analysis (Fig. 5A). Compared to visualization 

based on hashtags (Fig. 4A) part of the TH1_2 cells from node 7 became 

more similar to TH17_2, especially at the leaf 7 (Fig. 4A). This route 

suggests trans-differentiation potential between these two phenotypes 

as suggested previously in the literature [59]. The route from node 6 to 

node 8 lies within the border of TH17_2 and TH1_2 and also supports our 

result from the differential expression heatmap (Fig. 5A and C). 
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Fig. 6.  Density plots highlighting the most differentially expressed genes from both donor's datasets for each Th subset. 

A–F) Th1-specific genes (TH1_2), G–K) Th2-specific genes (TH2_1; TH2_2), L–O) Th17-specific genes (TH17_1; TH17_2). Right color bar: a relative density scaling. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Analysis of chosen signature genes for Th1 

subset. 

A) Visualization of chosen signature genes for Th1 

cells (TH1_2). Colored dots represent cell localization 

on UMAP and scale based on log10 expression along 

the pathway. Red line corresponds to trajectory 

pathway computed by monocle3.  Artificial  clusters 

are colored grey. 

B) Verification of the selection of Th1 signature genes 

(CCL3 and CCL4) based on the relative gene expres- 

sion  analysis  covering  various  donors  (n  = 5–6). 
Statistical significance was examined by one-way 

ANOVA.  Mean  ± SEM,  **p  < 0.01,***p  < 0.001. 

(For interpretation of the references to color in this 

figure legend, the reader is referred to the web 

version of this article.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.7.1. Th1 cell subset 

Besides conventional Th1-specific signature genes, the cells from 

ACT_1 displayed upregulated expression of several genes connected to 

Th1 phenotype, including MX1 encoding MX dynamin-like GTPase 1, 

LY6E encoding the lymphocyte antigen 6 family member E, IFI44L 

encoding interferon-induced protein 44 like, and ISG15 encoding the 

ISG15 ubiquitin-like modifier. The MX1 was found necessary in differ- 

entiating the Th1 cell subset as it was assigned to one of the interferon 

production proteins [54]. Moreover, involvement of IFI44L and LY6E 

was assigned to an interferon-inducible gene interaction network ([60]; 

H. [61]). Finally, the role of ISG15 in the production of IFNγ by T cells 

has been recently elucidated [85]. The cells from the TH1_2 expressed 

very specifically PPIF, NARF, LIF, IFNG, TMEM173 and the CCND2 gene 

which expression overlap with ACT_1 (Fig. 6A–F). The PPIF gene (Pep- 

tidyl-prolyl cis-trans isomerase) was found to be expressed in activated T 

cells and constitutes the central channel to balance the needs for and 

potential harm from reactive oXygen species ROS [62]. NARF (Nuclear 

Prelamin A Recognition Factor) was previously connected to down- 

regulation of WNT signaling and regulates the ubiquitylation and 

degradation of T cell factor/lymphoid enhancer factor family [63]. The 

 
TMEM173 (STING) expression likely influences the T cell recruitment in 

response to a TNF-α [64]. Finally, the LIF gene (leukemia inhibitory 

factor) is a member of the interleukin-6 (IL-6) cytokine family. LIF is 

known for counter-regulation of Treg and Th17 development and could 

work as a core regulatory circuitry of T cells [65,66]. 

Using the trajectory analysis and garnett, we were able to identify 

additional two highly specific genes in the TH1_2 subset, CCL3 and CCL4 

(C-C Motif Chemokine Ligand 3 and 4, Fig. 7A.). The expression of both 

genes is limited to node 6 of the trajectory (Fig. 4A). According to the 

literature, both genes interact with the CCR5 receptor, which is 

expressed on the surface of Th1 cells [67]. Hence both CCL genes were 

not previously connected to the Th1 subset, the overall specificity value 

from the DE and PCR suggests a good potential to be denoted as novel 

signature genes for the Th1 phenotype (Fig. 7B). 

3.7.2. Th2 cell subset 

In the case of Th2 cells, the uniqueness of the gene expression profile 

separated this subset from all other analyzed samples since the DE 

analysis highlighted multiple genes related to the Th2 cell differentia- 

tion. These genes comprised SPINT2 encoding serine peptidase inhibitor 
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Fig. 8.  Analysis of chosen signature genes for Th2 subset. 

A) Visualization of chosen signature genes for Th2 cells (TH2_1; TH2_2). Colored dots represent cell localization on UMAP and scale based on log10 expression along 

the pathway. Red line corresponds to trajectory pathway computed by monocle3. Artificial clusters are colored grey. 

B) Verification of the selection of Th2 signature genes (SPINT2, TRIB3 and CST7) based on the relative gene expression analysis covering various donors (n = 6–7). 

Statistical significance was examined by one-way ANOVA. Mean ± SEM, *p < 0.05,**p < 0.01,***p < 0.001. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
 

Kunitz type 2, PHGDH encoding phosphoglycerate dehydrogenase, 

PSAT1 encoding phosphoserine aminotransferase 1, JAML encoding 

junction adhesion molecule-like protein, and SESN2 encoding sestrin 2 

(Figs. 5B, 6G–K). 

The observation is in line with recent studies, pointing out the po- 

tential specificity of analyzed markers for Th2 cells. Th2 differentiation 

was previously linked to serine metabolism, indicating the importance 

of SPINT2 upregulation in the formation of the Th2 phenotype [68]. 

Also, SESN2 was found to support mTORC2-Akt activation [69], while 

the mTORC2 signaling pathway is frequently discussed in terms of 

explicit function in Th2 differentiation [86]. Along with these obser- 

vations, another study highlighted the importance of PHGDH and PSAT1 

upregulation in serine biosynthesis [70]. Finally, PSAT1 was identified 

as a potential suppressor of Th1 cell differentiation, which is achieved 

via reduction of IFNγ production [71]. 
Beside the high specificity of SPINT2 gene, we were able to identify 2 

more genes that were not present in other clusters of the analyzed 

dataset (Fig. 8A). The TRIB3 gene (Tribbles pseudokinase 3) seems to be 

highly specific for the Th2 phenotype. In the literature the abundance of 

TRIB1 and TRIB3 in T cells was experimentally proven. It was previously 

published that TRIB3 reduces CD8+ T cell infiltration [72]. Hence the 

information, the TRIB3 have not been connected to Th2 phenotype yet. 

The CST7 gene (cystatin-like metastasis-associated protein) was highly 

upregulated in TH2_2 with notably increased specificity. The high 

expression of CST proteins was previously observed in T cells [73]. 

Based on this set of genes, we decided to choose SPINT2, TRIB3 and 

CST7 for the PCR analysis (Fig. 8B). Overall, the separation of Th2 cells 

is in line with previous studies highlighting the rigid phenotype 

observed in single cell sequencing analysis [74]. 

3.7.3. Th17 cell subset 

In the context of the complete dataset, gene expression profile sim- 

ilarities localized Th17 cells in proXimity of the Th1 cells (Fig. 5C). 

Despite the fact that Th17 cells shared high expression levels of multiple 

genes with Th1 cells, the DE analysis between Th1 and Th17 cells 

revealed several potential markers of Th17 cells. Th17 cell subset- 

specific genes included RBPJ encoding recombination signal binding 

protein for immunoglobulin kappa J region important in Notch 

signaling, BATF gene encoding basic leucine zipper ATF-like transcrip- 

tion factor that is activated downstream of TGF-β signaling. Another 
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Fig. 9.  Analysis of chosen signature genes for Th17 subset. 

A) Visualization of chosen signature genes for Th17 cells 

(TH17_1; TH17_2). Colored dots represent cell localization on 

UMAP and scale based on log10 expression along the pathway. 

Red line corresponds to trajectory pathway computed by 

monocle3. Artificial clusters are colored grey. 

B) Verification of the selection of Th17 signature genes (F5, 

MAST4) based on the relative gene expression analysis 

covering various donors (n = 6–7). Statistical significance was 

examined by one-way ANOVA. Mean ± SEM,**p < 0.01,***p 

< 0.001. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this  

article.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

example is S100A4 and S100A6 encoding S100 calcium-binding proteins 

A4 and A6 (Figs. 5C, 6L–O). Recent studies revealed the role of RBPJ in 

the enhancement of Th17 differentiation [75]. Also, BATF as a tran- 

scription factor of TGF-β pathway and a direct downstream effector of 

Smad4 was linked to the formation of Th17 phenotype [9]. 

A more detailed analysis of Th1 and Th17 transcriptional similarities 

revealed that both Th cell subsets shared high expression levels of 

multiple genes, such as PKM, ENO1, LDHA, PGAM1, PTMA, HSPA8 and 

FABP5 (Fig. 5) that indicated similar molecular mechanisms regulating 

the differentiation of the Th1 and Th17 cell subsets. A recent study 

pointed out the formation of Th1/Th17 immunophenotype in response 

to S. aureus. This also indicated the potential plasticity between Th1 and 

Th17 cells, based on their similarities in the production of their effector 

cytokines – IFNγ and IL-17 [76]. Further, Th17 cells were shown to 

easily shift into the Th1 phenotype in the presence of IL-12 and/or TNF- 

α [77]. The TH1_2 subset forms a larger cluster together with a part of 

TH17_2 cells (Fig. 2C). 

The difference in UMAP visualization is crucial for addressing the 

similarities of gene expression profiles between distinct clusters. In this 

case, similar gene expression patterns in earlier stages of differentiation 

can be associated with a trans-differentiation potential between cells in 

the observed clusters. The DE analysis supported this assumption, 

revealing substantial expression similarities between the TH1_2 and 

TH17_2 cells from the same donor (Fig. 5C). As shown in Fig. 2A, a part 

of cluster 6 (ACT_2) went through activation and proliferation. The two 

different routes through TH17_2 and TH1_2 also correspond to a theory 

of easy trans-differentiation between these two phenotypes. Surpris- 

ingly, cluster 7 is also formed by a few cells from the TH2_2 subset. 

The finding of Th17-specific genes was challenging due to their 

overlap with TH1 cells in our analysis. Still, we were able to identify two 

genes with a high specificity for the subset (Fig. 9A). The F5 gene 

(Coagulation Factor V) was associated with activation of T cells but the 

mRNA was abundant only in activated T cells not resting [78]. The 

second gene was MAST4 of the Serine/threonine kinases family. The 

MAST4 possesses a very high specificity toward the TH17_2 subset. The 

gene expression values were also measured on PCR to verify the speci- 

ficity of these two genes (Fig. 9B). 

3.7.4. Identification of cells with characteristics of regulatory T cells 

The Treg peculiar expression was previously connected to genes such 

as FOXP3 encoding forkhead boX P3 (the main transcription factor and 

master regulator of Treg subset), CTLA4 encoding cytotoXic T-lympho- 

cyte associated protein 4, which led to a hypothesis about these cells 

being spontaneously differentiated Treg cells. According to the litera- 

ture, all signature genes mentioned in this paragraph were considered 

conventional in terms of Th subset identification [58]. 
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Fig. 10.  Visualization of specific genes for Treg subpopulation. 

A–E) Density plots highlighting gene expression intensity for chosen genes in the dataset. Right color bar: a relative density scaling. 
 

As for the spontaneously differentiated Treg cells, a highly specific 

expression of genes such as IKZF2 encoding the IKAROS family zinc 

finger 2 (also known as Helios), LGMN encoding legumain and IL1R2 

encoding interleukin 1 receptor 2 (Figs. 2C and 10A–E). Several of these 

genes were already discussed in terms of Treg differentiation. IKZF2 

encoding Helios was shown to contribute to the formation of Treg cells 

in cooperation with their main transcription factor, FOXP3 [87]. Next, 

IL1R2 and LGMN were found specific for Treg cells ([79,80,88]). Ac- 

cording to the literature, Th2 differentiation is the default trans- 

differentiation program in both human and mouse Treg cells after the 

downregulation of FoXp3 [81]. Likely, sorted TH2_2 cells may be Th2- 

like Treg cells [82,83]. 

 
4. Summary 

This study focused on the analysis of heterogeneity among Th1, Th2, 

Th17 and Treg cell subsets and summarization of the best practices 

regarding the analysis of scRNASeq data fitted to Th cell datasets (e.g. 

gene count threshold estimation, cell cycle scoring, and regression or 

filtering of expression of mitochondria-associated genes). This study was 

based on the analysis of Th cells isolated from peripheral blood of 

healthy donors. The scRNASeq analysis elucidated the existence of a 

rigid immunophenotype of Th2 cells that was broadly separated from 

the rest of the dataset. Moreover, gene expression profile similarity of 

Th1, Th17, and spontaneously differentiated Treg cells indicated a po- 

tential plasticity between these subsets, which is consistent with recent 

studies regarding Th1/Th17/Treg trans-differentiation [76,84]. More- 

over, this study was conducted with an emphasis on the identification of 

possible novel signature genes for the analyzed Th cell subsets, high- 

lighting upregulation in ACT_1 in genes such as MX1, IFI44L, ISG15, and 

LY6E that are likely to be Th1 cells [2,54,60,85], SPINT2, SESN2, 

PHGDH, and PSAT1 in the case of Th2 cells 86,69–71]), BATF, RBPJ, 

S100A4, and S100A6 in the case of Th17 ([75,9]) and IKZF2, LGMN, and 

IL1R2 in the case of Treg cells [79,80,87–90], which is in line with 

recent studies aimed at Th cell subset phenotyping. Moreover, we per- 

formed trajectory analysis, which revealed possible routes in terms of 

trans-differentiation according to expression profile changes. In 

combination of different tools, we identified highly specific Th1 genes, 

CCL3, and CCL4 and supported this result by qPCR. For Th2 we were 

able to identify three genes SPINT2, TRIB3 and CST7. All of them seem to 

be expressed in Th2 with very high specificity. For Th17, two genes were 

suggested as a signature for this subset – F5 and MAST4. 

Overall, this study may contribute to the simplification of scRNASeq 

data analysis optimization by discussing current best practices adjusted 

to Th cell scRNASeq data and providing insight into the characterization 

of Th cell subsets based on a combination of conventional and potential 

novel signature genes. 
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S. Weiss, GARP: a key receptor controlling FOXP3 in human regulatory T cells, 

J. Cell. Mol. Med. 13 (9b) (2009) 3343–3357, https://doi.org/10.1111/j.1582- 

4934.2009.00782.X. 

 
[89] H. Takatori, H. Kawashima, A. Matsuki, K. Meguro, S. Tanaka, T. Iwamoto, 

Y. Sanayama, N. Nishikawa, T. Tamachi, K. Ikeda, A. Suto, K. Suzuki, S. Kagami, 

K. Hirose, M. Kubo, S. Hori, H. Nakajima, Helios enhances Treg cell function in 

cooperation with FoXP3, Arthritis Rheumatol. 67 (6) (2015) 1491–1502, https:// 

doi.org/10.1002/art.39091. 

[90] H.-F. Tsai, C.-S. Wu, Y.-L. Chen, H.-J. Liao, I.-T. Chyuan, P.-N. Hsu, Galectin-3 

suppresses mucosal inflammation and reduces disease severity in experimental 

colitis, J. Mol. Med. 94 (5) (2016) 545–556, https://doi.org/10.1007/s00109-015- 

1368-X. 

[91] RA Jarvis, EA Patrick, Clustering Using a Similarity Measure Based on Shared Near  

Neighbors, IEEE Transactions on Computers C-22 (11) (1973) 1025–1034, https:// 

doi.org/10.1109/T-C.1973.223640. 

https://doi.org/10.1038/labinvest.3700432
https://doi.org/10.1111/j.1582-4934.2009.00782.x
https://doi.org/10.1111/j.1582-4934.2009.00782.x
https://doi.org/10.1002/art.39091
https://doi.org/10.1002/art.39091
https://doi.org/10.1007/s00109-015-1368-x
https://doi.org/10.1007/s00109-015-1368-x
https://doi.org/10.1109/T-C.1973.223640
https://doi.org/10.1109/T-C.1973.223640

	Abstract
	Abstrakt
	1 Aims of the thesis
	2 Normal B cell development
	3 Chronic lymphocytic leukemia
	3.1 CLL molecular heterogeneity
	3.2 Monoclonal B cell lymphocytosis
	3.3 CLL cell of origin
	3.4 Expression of ROR1 as a stable marker of CLL

	4 Genomic mutation data analysis
	4.1 Genomic mutation subtype identification
	4.2 Results and discussion

	5 Single-cell RNA sequencing data analysis
	5.1 Single-cell RNA-sequencing data analysis introduction
	5.2 Data integration
	5.3 Cell type annotation
	5.4 Biological activity estimation
	5.5 Trajectory inference
	5.6 Results and discussion – the cellular origin of CLL
	5.6.1 Establishing scRNA-seq method and computational pipeline
	5.6.2 Characterization of ROR1+ B cells
	5.6.3 Similarity prediction using a machine learning approach
	5.6.4 Summary


	6 Other articles related to the thesis
	6.1 Commentary on published articles
	6.2 Summary of a manuscript under review
	6.3 Summary of unpublished work

	References
	INTRODUCTION
	RESULTS
	Identification of Prognostic Mutation Subtypes Using SAMBAR
	Identification of Prognostically Relevant Patient Subtypes Using Ensemble Clustering
	DISCUSSION
	MATERIALS AND METHODS
	Reducing Pathway Signature Redundancy
	Mutation Subtype Identification Using SAMBAR R Package
	Identification of CLL Subtypes Using Ensemble Clustering
	A Classification Model for the Identified Subtypes
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES
	Gene regulation
	Pau Badia-i-Mompel  1,2, Jesu´s  Ve´lez Santiago1,2, Jana Braunger1,2, Celina Geiss1,2, Daniel Dimitrov1,2, Sophia Mu¨ ller-Dott1,2, Petr Taus3, Aurelien Dugourd1,2,
	Distinct p53 phosphorylation patterns in chronic lymphocytic le ukemia patients are reflected in the activation ofcircumjacent pathways upon DNA damage

	This article is protected by copyright. All rights reserved
	ABSTRACT
	1. INTRODUCTION
	2. MATERIAL AND METHODS
	2.2 Phos-tag analysis and western blots
	2.3 Genetic characte rization of the samples
	2.4 RNA isolation, library preparation, and NGS sequencing
	2.5 Real-time PCR analysis
	2.6 Whole exome sequencing
	2.7 Flow-cytometric analysis
	2.8 Statistical analysis
	3. RESULTS
	3.2 Primary CLL cells display two distinct p53 phospho-profiles after doxorubicin treatment
	3.3 CLL sample s showing phospho-profile II fail to activate the p53 signaling pathway unde r doxorubicin treatment
	3.4 Profile II samples are enriched with ATM locus and MED12 aberrations
	4. DISCUSSION
	5. CONCLUSIONS
	6. DECLARATIONS
	Authorship contributions
	Conflict of interest
	Data availability statement
	7. REFERENCES
	FIGURE LEGENDS
	Supporting information section



