Tutorial: Building an Embedded Processor System
on a Xilinx Zynq FPGA (Profiling)

Shawki Areibi, Matt Saunders

July 3, 2020

Contents

Introduction 3
Objectives o e e e e 3
Procedure L e 3
Requirements L e e 3

Part 1: Building a Zynq-7000 Processor Hardware 4
Introduction L e 4
Step 1: Start the Vivado IDE and Create a Project 4
Step 2: Create an IP Integrator Design 6

Customize Instantiated IP oL 10
Use Block Designer Assistance e 11
Editing the Memory Map 13
Step 3: Generate HDL Design Files o oo 15
Step 4: Implement Design and Generate Bitstream 17
Step 5: Export Hardware to SDK 18
Export to SDK e 18

Part 2: Build Zynq-7000 Processor Software 19
Step 1: Start SDK and Create a Software Application 19
Step 2: Run the Software Application 22

Add a Break Point 28
Step 3: Executing the Software L 28

Part 3: Profiling an Application 29
Step 1: Export the designtothe SDK 29
Step 2: Create the application e 30
Step 3: Run the Application and Profile oo 30
Step 4: Invoke gprof and analyze the results 33

Conclusion 35

Appendix A: ZedBoard Connection 36

Introduction

This tutorial will guide you through the process of using Vivado and IP Integrator to create a complete
Zynq ARM Cortex-A9 based processor system targeting the ZedBoard Zynq development board. You will
use the Block Design feature of IP Integrator to configure the Zynq PS and add IP to create the hardware
system, and SDK to create an application to verify the design functionality. It will also guide you through
the process of profiling an application and analyzing the output.

Objectives

After completing this tutorial, you will be able to:

e Create an embedded system design using Vivado and SDK flow

e Configure the Processing System (PS)

e Add Xilinx standard IP in the Programmable Logic (PL) section

e Use and route the GPIO signal of the PS into the PL using EMIO

e Use SDK to build a software project and verify the functionality in hardware.
e Set up the board support package (BSP) for profiling an application

e Set the necessary compiler directive on an application to enable profiling

e Setup the profiling parameters

Procedure

This lab is separated into steps that consist of general overview statements that provide information on the
detailed instructions that follow. Follow these detailed instructions to progress through the tutorial. This
tutorial comprises three stages (each consisting of several steps): You will create a top-level project using
Vivado, create the processor system using the IP Integrator, add two instances of the GPIO IP, validate
the design, generate the bitstream, export to the SDK, create an application in the SDK, and, test the
design in hardware. You will then be able to profile the application and produce statistics that will help
you understand the main bottlenecks of your application.

Requirements

The following is needed in order to follow this tutorial:

e Vivado 2016.3 with Xilinx SDK
e ZedBoard, version D.
e Check Appendix A for instructions to connect the ZedBoard to the Workstation.

Part 1: Building a Zynq-7000 Processor Hardware

Introduction

In this part of the tutorial you create a Zynq-7000 processor based design and instantiate IP in the
processing logic fabric (PL) to complete your design. Then you take the design through implementation,
generate a bitstream, and export the hardware to SDK.

If you are not familiar with the Vivado Integrated Development Environment Vivado (IDE), see the
Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Step 1: Start the Vivado IDE and Create a Project
1. Start the Vivado IDE (Figure 1) by opening the program from the Start Menu.

¢ Vivado 2016.3 - O >

File Flow Tools Window Help Quick Access

VIVADO! £ XILINX

HLx Editions ALL PROGRAMMABLE.
Quick Start Recent Projects
L\ 4 | .
L § — |
Create New Project Open Project Open Example Project

Tasks

& ®

Manage IP Open Hardware Manager ¥ilinx Td Store

Documentation and Tutorials Quick Take Videos Release Notes Guide

Information Center

5 Td Console

Figure 1: Vivado 2016.3 Getting Started screen.

2. From the Getting Started screen, select Create New Project. The New Project Wizard opens
(Figure 2).
3. Click Next.

O oW

10.

Mew Project X

Create a New Vivado Project

v |VAD O‘ This wizard will guide you through the creation of a new project.

HLx Editions
To create a Vivado project you will need to provide a name and a location for your project files. Mext, you will
specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a
default part.

To continue, dick Next.

< Back Einish Cancel

[=a]
I]

Figure 2: Create New Project Wizard.

In the Project Name dialog box, type the project name and location. Ensure that Create Project
Subdirectory is selected, and click Next.

In the Project Type dialog box, select RTL Project, then click Next.

In the Add Sources dialog box, select RTL Project, then click Next.

In the Add Existing IP dialog box, click Next.

In the Add Constraints dialog box, click Next.

In the Default Part dialog box, select Boards and choose the ZedBoard Zynq Evaluation and
Development Kit. Make sure that you have selected the proper Board Version to match your
hardware. Click Next.

Review the project summary in the New Project Summary dialog box before clicking Finish to
create the project.

Step 2: Create an IP Integrator Design
1. In the Flow Navigator, select Create Block Design (Figure 3).

¢ zyng_tutorial - [Ci/temp/zyng_tutorial/zyng_tutorial.xpr] - Vivado 2016.3
File Edit Flow Tools Window Layout Wew Help

I._El o Rk X | D b Qﬂl & @(| ¥, 5 |52 pefault Layout

Flow Navigator S | Project Manager - zyng_tutorial
G o
O\ g A Sources
Gl i T

: claz= wat A

| 4 Project Manager |
.) =) Design Sources
P ct Setti H

ﬁ AR H-i= Constraints

045 Add Sources = Simulation Sources

1? Language Templates I sim_1

{F 1P Catalog Libraries | Compile Order |

Properties

< = Fx

!-li Generate Block Design : Select an object to see pro

Figure 3: Create Block Design option in Flow Navigator.

2. In the Create Block Design dialog box, specify a name for your IP subsystem design (Figure 4).

¢ Create Block Design >

Please specify name of block design.

Design name: zynq_ljesign_l
Directory: & <Local to Project= -
Specify source set: | [Design Sources -

? Cares

Figure 4: Create Block Design dialog box.

3. Right-click in the Vivado IP Integrator workspace, and select Add IP (Figure 5).

al Ctrl+E
x Delete
[Y Ctrl+C
ik Ctrl+V
L, Ctrl+F
i Selectal Ctrl+ &
£ AddIp... Ctrl+1
Add Module...
& IP Settings...
¥ validate Design F&
Create Hierarchy...
Create Comment
Create Port... Ctrl+ K
Create Interface Port... Ctrl+L

& Regenerate Layout
Save as PDF File...

Figure 5: Add IP.

4. In the search field, type zynq to find the ZYNQ7 Processing System IP, and then press Enter on
the keyboard (Figure 6).

Search: zyng (1 match)

Figure 6: The IP Integrator IP Catalog.

Because you selected the ZedBoard when you created the project, the Vivado IP Integrator configures
the design appropriately.
In the Tcl Console, you see the following message:

create_bd_cell -type ip -vlnv
xilinx.com:ip:processing_system7:5.5 processing_system7_0

There is a corresponding Tcl command for all actions performed in the IP Integrator. Those
commands are not shown in this document; see the Tcl Console for each action for information
those commands.

5. In the IP Integrator workspace header, click Run Block Automation (Figure 7).

&= Diagram X | [Address Editor X
#[& zyng_design_1

O | [Designer Assistance available. Run Block Automation

Figure 7: Run Block Automation.

The Run Block Automation dialog box opens (Figure 8), allowing you to select the interfaces to
connect to the ZYNQ7 core. Click OK.
Run Block Automation x
Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left
to display its configuration options on the right.
Q, E|-- All Automation (1 out of 1 selected) T
= ™ E o rocessing_system7 0
(=] This option sets the board preset on the Processing System. All
= current properties will be overwritten by the board preset. This
- action cannot be undone. Zyng7 block automation applies current
board preset and generates external connections for FIXED_IO,
Trigger and DDR. interfaces.
MNOTE: Apply Board Preset will discard existing IP configuration -
please uncheck this box, if you wish to retain previous
configuration.
Instance: jprocessing_system7_0
Options
Make Interface External: FIXED IO, DDR
Apply Board Preset:
Cross Trigger In: Disable -
Cross Trigger Out: Disable -
? Cancel

Figure 8: Block Automation dialog box.

After running block automation on the Zynq processor, the IP Integrator block diagram should look
as follows (Figure 9).

processing_system?7_0

-

DDR 4 |||===={">DDR
FIXED_10 < ||| "» FIXED_IO

UsBIND_0<- |||
- M_AXI_GPOk
=M_AXI_GPO_ACLK TTCO_WAVED_OUT =
- ZYNQ TTCO_WAVEL_OUT
TTCO_WAVEZ_OUT =
FCLK_CLKO fm
FCLK_RESETO_Nige

ZYNQ/ Processing System

Figure 9: Zynq Processing System after running Block Automation.

7. Now you can add peripherals to the processing logic (PL). To do this, right-click the IP Integrator
diagram and select Add IP.

8. In the search field, type gpi to find the AXI GPIO IP, and then press Enter to add the AXI GPIO
IP to the design.
9. Repeat the action, typing axi bram to find the AXI BRAM Controller, and typing block to find

and add the Block Memory Generator. The Block Design window matches Figure 10. The relative
positions of the IP will vary.

axi_bram_ctrl_0 axi_gpio_0 processing_system?_0
blk_mem_gen_0 - oL " bR
||| --BRAM_PORTA FIXED_I0_ ||| > FIXED_1O
Block Memary Generator USEIND_ 0. "

AXT BRAM Controller AXI GPIO

M_AXLGRO_ACLK ZYNd,‘ TTCOWAVED_OUT .

ZYNQ7 Processing System

Figure 10: Block Design after instantiating IP.

Customize Instantiated IP
1. Double-click the Block Memory Generator IP to open the Re-customize IP dialog box.
2. In the Basic tab of the dialog box (Figure 11), set:

e Mode to BRAM Controller
e Memory Type to True Dual Port RAM.

Click OK.

ﬂ Re-customize P

Block Memory Generator (8.3)

iffi! Documentation [IP Location

Component Name | zyng_design_1_blk_mem_gen_0_0

Basic | Pg Other Options | Summary

BRAM Contraller - enerate address interface with 32 bits

Eype | True Dual Port RAM =
¥ Commaon Clock

ECC Options
ECC Type Mo ECC

Error Injection Pins | Single Bit Error Injection

||| BBRAM_PORTA Write Enable

||| Z=BRAM_FORTE

Byte Write Enable

Ruta Siza (hitel | R

Figure 11: Customize Block option.

10

3. Connect the Block Memory Generator to the AXI4 BRAM Controller by clicking the connection
point and dragging a line between the two IP blocks (Figure 12).

axi_bram_ctrl_0

blk_mem_gen_0

BRAM_PORTA = ||| || <= BRAM_PORTA
BRAM_PORTB - ||| |||4=BRAM_PORTE

AXI BRAM Controller Block Memory Generator

Figure 12: Connected AXI BRAM Controller and Block Memory Generator.

The AXI BRAM controller provides an AXI memory map interface to the Block Memory Generator.

Use Block Designer Assistance
Block Designer Assistance helps connect the AXI GPIO and AXI BRAM Controller to the Zyng-7000
PS.

1. In the IP Integrator workspace header, Click Run Connection Automation (Figure 13 to open the
Run Connection Automation dialog box.

i= Diagram ¥ | B Address Editor
#[] 4 zyng_design_1
O I_Q. Designer Assistance available. Run Connection Automation

o
N

Figure 13: Connected AXI BRAM Controller and Block Memory Generator.

2. In the Run Connection Automation dialog box, under axi_bram_ctrl #, select S_AXI. Ensure its
check-box is selected, then for the Clock Connection, select Auto.

3. Click OK. This action instantiates an AXI Interconnect IP as well as a Processor System Reset IP,
and makes the interconnection between the AXI interface of the GPIO and the Zyng-7000 PS.

11

4. Select Run Connection Automation again. Under axi_gpio_#, select the check-box beside GPIO.
Under Select Board Interface, select leds_8bits, as in Figure 14.

¢ Run Connection Automation =

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the

left to display its configuration options on the right. ‘
- =-{m] All Automation {1 out of 2 selected) T

= =+[m] £F axi_gpio_0

(=5] i Connect Board Part Interface to IP interface.

=]]I 5_nT

Interface: faxi_gpio_0/GPIO
Options

Select Board Part Interface: | leds_8bits (LED) -

? Cance

Figure 14: Select Board Interface options.

5. Click OK. This step also configures the IP so that during netlist generation, the IP will create the
necessary Xilinx Design Constraints (XDC).

6. Select Run Connection Automation one last time, to connect the GPIO to the AXI bus. Again,
select the check-box beside S_AXI, and for Clock Connection, select Auto.

12

Editing the Memory Map

This completes the connections between the Zynq7 Processing System and the peripherals. The IP
Integrator block diagram should look something like Figure 15, though the positions of the IP can vary.

[~ leds_8hits
rst_ps7_0_100M axi_mem_intercon
- [@
dowest_syne_dk mib_resatl— e | S0 0_ANT
24_gpio 0 ext_reset_in bus,_struct_reset [0:0] ALK
|-es A Qau_reset_in peripheral_reset[0:0] RESETN
2 een | BRI R e, =R
L g o) \§| o1ty =
AXI GPIO Processor System Reset 0AOK maam .
i e 0_ARESETHN
1_ACLK
1_ARESETN
AXT Interconnect

processing_system?_0

ook ||
axi_bram_ctr_0 FIXED 105}
il g A blk_mem_gen_0 usarp_o-4 |||

M_aa G0 it

i BRAM_PORTA ||| LERAM_PORTA
g L |.ere poRTA M_ax1_GP0_Acix ZYNO‘ TTCO_WAVED_OUT

BRAM_PORTB_ || =——y

= TRCO_WAVEL OUT|

AX1 BRAM Cortroller Biock Memory Generator TICO_WAVEZ_OUT|
FELK_aLK0—

FOLK_RESETO_ND-

ZYNQT Processing System

Figure 15: Zynq Processor System, connected to peripherals.

1. Click the Address Editor tab to show the memory map of all the IP in the design. In this case, there
are two IP: the AXI GPIO and the AXI BRAM Controller. The IP Integrator assigns the memory
maps for these IP automatically, but you can change them if necessary.

2. Change the range of the AXI BRAM Controller to 64K, as shown in Figure 16.

= Diagram X | [Address Editor x|

O\ Cell Slave Interface Base Mame Offset Address Range High Address

Z [=-4F processing_system7_0
% BB Data (32 address bits : 0x40000000 [16)
g ‘-um axi_gpio_0 5 _AXI Reg 0x4120_0000 8 & |0x4120 FFFF
16K
32K
128K
256K
512K w
™ g

Figure 16: Setting AXI BRAM Controller to 64K range.

13

3. Save your design with Ctrl-S or by selecting File — Save Block Design.

4. From the toolbar, run Design Rules Check by clicking the Validate Design button (Figure 17).
Alternatively, you can select Tools — Validate Design from the menu, or you can right-click in the
workspace and select Validate Design.

¢ zyng_tutorial - [Ctemnplzyng_tutorialzyng_tuterial xpr] - Vivado 2016.3
File Edit Flow Tools Window Layout Wiew Help

a‘ﬂ % R Lﬁ?{L@&D’ﬁﬁ%E|a%Dehu

Flow Navigator ? % [alidate Design (Fg) ['9-desian_1
Q= Design T 0O0C¢ = 2= Diagr
a TIEIRa -

Figure 17: Validating the design.

5. The Validate Design Successful dialog box should appear. Click OK.

14

Step 3: Generate HDL Design Files
Now, you will generate the HDL files for the design.

1. In the Sources window, right-click the top-level subsystem design and select Generate Output
Products (Figure 18). This generates the source files for the IP used in the block diagram and the
relevant constraints file.

Block Design - zyng_design_1

— o — 10N s = Diagram
M [R X

QAIE et hE Q[el
E||-' Design Sources (1) E =-iF pro
: 2R R . EN:
| Constraints | [&f Source Mode Properties... Ctrl+E =
El--i.--_.' Simulation 5¢ % Open File Alt+0 B -

[k sim_1 (1]

Create HDL Wrapper...

View Instantiation Template
Generate Qutput Products...
Reset Qutput Products...

Figure 18: Generating output products.

2. The Generate Output Products window opens (Figure 19). Leave the default settings and click
OK.

¢ Generate Qutput Products >

The following output products will be generated.

g

Prewview

Q, [=)-4#1 zynq_design_1.bd (OOC per IF)

= _‘l] Synthesis
ra _‘I] Implementation
% e[Simulation

Synthesis Options

() Global

(@) Out of context per IP

() Out of context per Block Design
Run Settings

Mumber of jobs: | 2 -

Fa Apply Cancel

Figure 19: Generating output products.

15

3. In the Sources window, select the top-level subsystem source, and select Create HDL Wrapper

to create an example top-level HDL file (Figure 20)). Select Let Vivado manage wrapper and
auto-update and click OK.

| Block Design - zyng_design_1

Sources ? O ° =

T2 26t BE

(=i Design Sources (1)
N =N El yng_desion 1 (7vno _desion _1.bdl (1}
: F-@h zyng [5F Source Mode Properties... Ctrl+E
[#-5 Constraints | (3% Open File Alt+0

W | B R [

Create HDL Wrapper. ..

G- sim_1 [

View Instantiation Template

Figure 20: Creating the HDL wrapper.

16

Step 4: Implement Design and Generate Bitstream

1. In Flow Navigator, click Generate Bitstream to implement the design and generate a BIT file.
Note: If the system requests to re-synthesize the design before implementing, click No. The previous
step of saving the constraints caused the flow to mark synthesis out-of-date. Ordinarily, you might
want to re-synthesize the design if you manually changed the constraints, but for this tutorial, it is
safe to ignore this condition.

You may also see a dialog box stating that no implementation results are available. Click Yes to
proceed with synthesis, implementation and bitstream generation.

2. After the design implementation, the Bitstream Generation Completed window appears (Figure
21). Select Open Implemented Design and then click OK. You may get a warning that the
implementation is out of date— click Yes.

Bitstrearn Generation Completed >

[0] Bitstream Generation successfully completed.

Mext

(®) Dpen Implemented Desigri

() View Reports
(:) Open Hardware Manager

() Generate Memory Configuration File

[] Don't show this dialog again

Cancel

Figure 21: Bitstream generation completed.

17

Step 5: Export Hardware to SDK

In this step, you export the hardware to description to the Xilinx Software Development Kit (SDK) for
use in Part 2. Both the IP Integrator block diagram and the implemented design must be open to export
the design to the SDK.

IMPORTANT: for the Digilent driver to install, you must power on and connect the board to the
host PC before launching SDK. Refer to Appendix A for necessary cables and jumper connection.

Export to SDK

1. In the Flow Navigator, click Open Block Design to invoke the IP Integrator design.
2. On the Menu Bar, select File — Export — Export Hardware (Figure 22).

Sources~. 5] Netlist

B Add Sources... Al A
Open Source File. .. Ctrl+M fties
Import > |
Export # Export Hardware. ..
Launch SDK Export Constraints. ..
Open Log File Export Pblocks...

Figure 22: Export Hardware menu option.

3. The Export Hardware dialog box opens. Ensure that Include bitstream is selected, then click OK.

¢ Export Hardware =

Export hardware platform for software development
tools,

Indude bitstream

Export to: | B0 <Local to Project -

Figure 23: Export Hardware dialog box.

4. On the Menu Bar, select File — Launch SDK. Click OK in the dialog box to launch SDK.

18

Part 2: Build Zynq-7000 Processor Software

In this section of the tutorial you will build an embedded software project that prints ‘“Hello, World” to the
serial port. Connect two micro USB cables and the 12V power adapter to the ZedBoard (see Appendix
A for more details).

Step 1: Start SDK and Create a Software Application

1. If you are doing this lab as a continuation of Part 1 then SDK should have launched in a separate
window. You can also start SDK from the Windows Start Menu by clicking on B — Xilinx
Design Tools — Xilinx SDK 2016.3.

2. When launching SDK from the Start Menu, you must select the correct workspace. You can select
the workspace by clicking on File — Switch Workspace — Other in SDK. In the Workspace
Launcher dialog box, in the Workspace field, point to the SDK_Export folder where you had ex-
ported your hardware. Usually, this is located at . . \project name\project_name.sdk\SDK\SDK_Export.
Now you can create a “hello, world” application.

3. Select File — New — Application Project (Figure 24).

m C/C++ - zyng_design_1_wrapper_hw_platform_0/systern.hdf - Kilinx SDK
File Edit Mavigate Search Project Run Xilinx Tools Window Help

Mew Alt+Shift+M > @ Application Project
Open File... 1 5SPM Project
Ml Daacd G SN ; I S

Figure 24: New Application Project.

19

4. In the Project Name field, type Zynq_Design, and click Next (not Finish), as in Figure 25.

B New Project O >

Application Project .
Create a rnanaged make application project. @

Project name: | Zyng_Design |

LIse default location
Location: | Chtempizyng_tutorialzyng_tutorial.sdid\Syng_Design Browse...

Choose file systern: | default

(05 Platform: | standalone w~
Target Hardware

Hardware Platform: | zyng_design_1_wrapper_hw_platform_0 | Mew...

Processorn ps7_cortexad 0 e
Target Software

Language: ®C OC++

Cornpiler: 32-bit

Board Support Package: (® Create New | Zyng_Design_bsp

Use existing

@ [e

Figure 25: Setting up the new Application Project.

20

5. From the available templates, select Hello World (Figure 26), and click Finish.

BB Mew Project O *
Templates .
Create one of the available templates to generate a fully-functioning @
application project.

Available Templates:

Dhrystone Let's say 'Hello World' in C,

EmE AEEIication

wiP Echo Server

Mernory Tests

OpenAMP echo-test

OpenAMP matrix multiplication Demo
OpenAMP RPC Demo

Peripheral Tests

RSA Authentication App

Zyng DRAM tests

Zyng FSBL

@ Mext > e Cancel

Figure 26: Selecting the new project template.

6. The program will begin compiling in the SDK. When it finishes compiling, you will see the console
messages shown in Figure 27.

[:__ Problems |~.E, Tasks[a Console &3 l i Properties| = SDKTerminaI| = B8
448 B B

CDT Build Console [Zyng_Design]

-~
'Invoking: ARM w7 Print Size'

arm-none-eakbi-size Zyng Design.elf |tee "Zyng Design.elf.size"
LEext data bss dec hex filename
2233¢6 1148 22568 46052 b3e4 Zyng Design.elf
'Finished bullding: Zyng Design.elf.size'

17:45:07 Build Finished (took 4=5.288ms)

Figure 27: Compilation messages in the SDK Console.

21

Step 2: Run the Software Application

Now, you must run the “Hello, World” application on the ZedBoard. Make sure that your hardware is
powered on and a USB cable is connected to the PROG port of the ZedBoard. Also ensure you have a
USB cable connected to the UART port of the ZedBoard. Please check Appendix A for more guidelines.

1. Download the bitstream to the FPGA by selecting Xilinx Tools — Program FPGA from the menu

bar (Figure 28).

5 - Kilinx SDE

Run | Xilinx Tools Window Help

Generate linker script
% N p
1)

Board Support Package Settings

@ Repositories

am_{ 23 Program FPGA

[Dump/Restore Data File

E Program Flash

r ':(I':l -

systermn.hdf ik

rnq_Design_l

Modify this BSP's 5¢

Figure 28: Program FPGA menu option.

2. Ensure that the path to the bitstream (created in Part 1) is correct, then click Program.

3. NOTE: The bit file is usually found in:

e A directory with runs extension i.e., project_name.runs in impl_1 subdirectory, or

e A directory with sdk extension i.e., project_-name.sdk in wrapper_hw_platform

4. The DONE LED on the board turns blue if the programming is successful.

22

5. In the Project Explorer pane, select and right-click the Zynq_Design application.
6. Select Debug As — Debug Configurations (Figure 29).

[Project Explorer &2
E_J"? Ty = Mmoo
- g zyr New
Go Into
Open in New Window

Ctrl+C
Ctrl+V

Copy
Paste

Delete

X ([

Delete
Source

Move...

S [.En [@ B = E B

(B

Rename... F2

s

EE

Import...
Export...

Build Project
Clean Project

Refresh F5

f?ﬁ'

Close Project
Close Unrelated Projects

Build Configurations

Run As

Debug As

Compare With

Restore from Local History...

C/C++ Build Settings
Generate Linker Script
Change Referenced BSP

Create Boot Image

= 7

Team

Properties Alt+Enter

E&|Y v = O

>

|3F systemn.hdf [Hh, system.mss %

Zynq_Design_bsp Board Sug
Meadify this BSP's Settings

Re-generate

Target Information

This Board Support Package is compiled tc

Hardware Specification: C:\templzyng_tu
Target Processor: ps7_cortexad 0

Operating System

Board Support Package Q5.
standalone

6.0

Standalone is a simple, |
envirenment, such as sti

Mame:

Version:
Description:
Documnentation: standalone vB 0

Peripheral Drivers

Drivers present in the Board Support Packa

axi_bram_ctrl_0 bram C
axi_gpic_0 gpic C
ps7_afi_0 generic
-?::r 1 Launch on Hardware (Systemn Debugger)
[2 Start Performance Analysis
. aunch on Hardware (System Debugger on
%. 2 Launch on Hardware {Systern Debugger on QEMU) -
£ 4Launch on Hardware (GDB) C
[E] 5 Local C/C++ Application
Debug Configurations... L
T = =" ™ E
ps/_dma_s dmaps C
ps7_ethernet_0 emacps C
ps7_globaltimer_0 generic
ps/_gpio_0 gpicps C

Figure 29: Debug Configurations menu option.

23

7. In the Debug Configurations dialog box, right-click Xilinx C/C++ application (GDB) and select
New (Figure 30).

@ Debug Configurations

Create. manage. and run configurations

| =l :=:° - Configure launch settings from this dialog:

type filter text - Press the 'New' butten to create a configuration of the selected type.
[Performance Analysis
[ﬁ Target Communication Framework
GiD:B Kilinx CfC++ application (GDB)
%__ Hilinx C/C++ application (Systel . -~ Mew
%__ Kilinx C/C++ application (Systel

- Press the 'Duplicate’ button to copy the selected configuration.

- Press the 'Delete’ button to remove the selected configuration.

i{l;i x [

- Press the 'Filter’ button to configure filtering options.

Duplicate - Edit or view an existing configuration by selecting it.

Delete

Configure launch perspective settings from the 'Perspectives’ preference
page.
Filter matched 5 of 15 items

@

Debug Close

Figure 30: Debug Configurations dialog box.

24

8. In the Debug Configurations dialog box, leave the settings as default, and select Debug.

m Debug Cenfigurations

Create. manage. and run configurations

= X | SR MName: |Z}rnq_De5ign Debug |

type filter text @ Target Setup . [T] Application | B Source ? STDIO Connection | 3] Debugger Options |
3 Performance Analysis

A
FE Target Communicatic ||| Debug Type: | Standalone Application Debug ~
£, Xilinx C/C++ applicat
v Ze Kiling G, applica .
snzB Zynq Design Deb Connection: | Local MNew
;@.— Kilinx C/C++ applicat ||| peyjce: Auto Detect Select...
£ Xiling C/C++ applicat
Hardware platform: | zyng_design_1_wrapper_hw_platform_0 ~
Processor: ps7_cortexad 0 e
Bitstreamn file: |z}rnq_designj_wrapper.bit | Search... | Browse...
Initialization file: |p5?_ir|it.tc| | Search... | | Browse...
Summary of operations to be performed
Reset Processor I Following operations will be performed before launching the &
i debugger.
Program FPGA 1. Reset processor.
.. 2. Run ps7_init. (Only first time after Systern reset or board
[~] Run ps7_init power OM]]
< >
i) Revert Apply
Filter matched & of 16 items

Figure 31: Debug Configurations dialog box.

9. NOTE: If the Bitsream file: and/or the Initialization file: are not populated (i.e. grey) press search
and populate them with the required values as seen in the figure above.

10. NOTE: Check if the Project Name and Application (elf file) in “Application” part are populated. If
not search and populate them.

11. You will be asked to confirm a perspective switch— click Yes. The Debug perspective will open.

25

12. To connect to the ZedBoard serial port, select the SDK Terminal tab in the console panel, then
click the = to create a new serial connection, as in Figure 32.

B Console =] Tasks | Bl SDK Terminal 52 |."_ Problems 'i} Executables e . = O

Click on + button to add a port to the terminal.

Send | | Clear

Figure 32: Creating a new serial connection.

13. Use the settings in Figure 33 to set up the serial port. Check the Windows Device Manager on your
workstation for the USB Serial Port to determine which COM port is connected to the ZedBoard.
Once the settings are correct, click OK.

@ Connect to serial port X
Basic Settings
Pot: | COMS v
Baud Rate: | 115200 ~

* Advance Settings

D'ata Bits: a w
Stop Bits: 1 w
Parity: Mone w
Flow Contrel: | Mone v

Timeout (sec): |

Figure 33: Setting up the serial port.

26

14. Verify the Terminal connection by checking the status at the top of the tab (Figure 34).

&) Console | & Tasks | Bl SDK Terminal &2 |®] Problems| €3 Executables

Connected to: Senial [COMBG, 115200, 0,

[wx]

Connected to COME at 115200
Figure 34: Terminal connection verification.

15. In the Debug tab, expand the tree, and select the processor core on which the program is to be run
(Figure 35).

35 Debug &2 i= ¥ = O
v ,;D:B Zyng_Design Debug [Xilink C/C++ application (GDE]]
v (32 XMD Target Debug Agent (2019-10-28, 6:04 PM) (Suspended)
w o Thread [1] (Suspended: Breakpoint hit.)
= 1 maini) helloworld.c:55 CeD01005ec
p| arm-xiling-eabi-gdb (2018-10-28, 6:04 PM)
g Chtempizyng_tutorialzyng_tutorial sdk\Zyng_Design\DebughZyng_Design.elf (2019-10-28, 604 PM] [t

Figure 35: Terminal connection verification.

16. If not already open, select . ./src/helloworld.c, and double-click to open the source file.

27

Add a Break Point

Next, you will add a break point at the line which prints “Hello World.”

1. If the line numbers are not displayed point the mouse on the far left side of the source code and
right click to enable displaying line numbers.

2. Select Navigate — Go to Line. To go to line 57, type 57.
3. Double-click to the left of Line 57, which adds a break point on that line. (Figure 36)

#inclonde <stdio.h>
#inclode "platform.h"
finclode "xil printf.h"

int main /()
{
init platform():

print ("Hello Worldimhzr™):

cleanup platformi):;
retorn 0;

Figure 36: Adding a break point.

Step 3: Executing the Software

This step will take you through executing the code up to and past the break point.

1. Click the Resume button, or press F8.
2. Click the Step Over button, or press F6.

3. If everything worked correctly, you should see “Hello World” printed in the terminal. (Figure 37)

B Console | J£] Tasks | Bl SDK Terminal 2 |[®] Problems| (3 Executables

Connected to: Senal [COME, 115200, 0, 8)

Connected to COMBG at 1153200
Hello World

Figure 37: Terminal output.

28

Part 3: Profiling an Application

Step 1: Export the design to the SDK
In this part, you will use the same hardware configuration and bitstream to profile a matrix multiplication
application.
1. Follow Part 1 of the tutorial to create a bitstream and export it to SDK.
2. If SDK is still open from the previous step, return to the C/C++ view using the selector in the top
right corner of the program.
3. In SDK, select File — New — Board Support Package.
4. Leave the default settings; notice the new board support package is named standalone_bsp_O.
Click Finish.
5.

The Board Support Package Settings window will appear. Select Overview — standalone, click
on the drop-down arrow over the enable_sw_intrusive_profiling Value field, and select true,

as shown in Figure 38.

@ Board Support Package Settings

Board Support Package Settings
Control various settings of your Board Suppoert Package.

~ Owverview

standalone Configuration for 05 standalone
v drivers Mame Value
ps7_cortexa® 0 .

stdin ps7_uart_1

! 7
m‘ L ps7_uart_1

false

w enable_sw_intrusive_profiling false

£

Default

none
none
false
false
none

Cancel

X

Type
peripheral
peripheral
boolean
boolean
peripheral

Figure 38: Board Support Package Settings window.

29

6. Select Overview — drivers — ps7_cortexa9 and in the extra_compiler_flags field, add -g
-pg to the front of the other flags, as in Figure 39. The complete field should read:
-g -pg —mcpu=cortex-a9 -mfpu=vipv3 -mfloat-abi=hard -nostartfiles
7. Press OK.
@ Board Support Package Settings >
Board Support Package Settings
Control various settings of your Board Support Package. ‘@

~ Owverview

standalone Configuration for 05 ps/_cortexad 0
v drivers MNarne Value Default Type
ps/_cortexad 0
archiver arm-none-eabi-ar arm-none-eabi-ar string
compiler arm-none-eabi-goc arm-none-eabi-goc string
compiler_flags -02 -c string
extra_compiler_flags -g -pg -mcpu=cortex-ad ... -mcpu=cortex-ad -mfpu... string
£ >

@

Figure 39: Adding Compiler Flags for Profiler.

Step 2: Create the application

1.

Select File — New — Application Project.

2. Enter tutorial-profile as the project name, select the Use existing standalone _bsp_0 option, and

|98)

click Next (not Finish).

Select Hello World from the Available Templates window, and click Finish.

Replace the Hello World C program with the C code (matrixoperations.c) found on the course
website (make sure you save it as a C program and not a text file!!).

. Save the program and it should compile successfully and generate the tutorial-profile.elf

file.

Step 3: Run the Application and Profile

1.

Place the ZedBoard in JTAG boot-up mode. See Appendix A for ZedBoard connection details.

2. Power on the board.

3.

In SDK, select Xilinx Tools — Program FPGA and click on Program.

4. In the Project Explorer, right-click on the tutorial-profile directory, and select C/C++ Build Settings.

30

5. Under the ARM gcc compiler group, select the Profiling subgroup, then check the Enable Profiling
box, and click OK (Figure 40).

& Tool Settings ‘ Devices .'ﬁ" Build Steps Build Artifact Binary Parsers € Error Parsers

w BB ARM T goc assembler [iEnable Profiling (-pg};
(# General

~ B ARM T gec compiler
(# Symbols
@ Warnings

(# Optimization

i WA

(= Pr

(# Miscellaneous

v (2 Inferred Options
A Cefhsare Dlatfrrea

Figure 40: Compiler setting to enable profiling.

6. From the menu bar, select Run — Run Configurations... and double-click on Xilinx C/C++

application to create a new configuration.
7. Click on the Enable Profiling check-box. Enter 100000 (100 kHz) in the Sampling Frequency field,

enter 0x10000000 in the scratch memory address field, and click Apply, as in Figure 41.

- —+
= X | = ﬂame:|tut0ria|—pr0ﬁ|eDebug |

type filter text {® Target Setup |[7] Application |*f° STDIO Connection | |? Profile Options .] Commen

[Performance Analysis
Fﬁ Target Communication Framework
v E_ Xilinx C/C++ application (GDB)

GOE
% tutorial-profile Debug Sampling Frequency (Hz): | 100000
£ Xilinx C/C++ application (System Debugger
TLCF . H 1 T .
£. Xilinx C/C++ application (System Debugger Histogram Bin Size (words):
Scratch memaory address to collect profile data: Dx1DDDDDD[I1

Enable Profiling

TCF

£ >
Revert Apply

Filter matched & of 13 items
Figure 41: Profiling options.
8. Click the Run button to download the application and execute it.

The program will run, and when execution has completed, a message will be displayed indicating
that the profiling results are being saved in the gmon.out file at the tutorial-profile\Debug

31

directory.

32

Step 4: Invoke gprof and analyze the results

1. Expand the Debug folder under the tutorial-profile project in the Project Explorer view, and double-
click on the gmon.out entry (Figure 42).

[Project Explorer &2

v (M standalone_bsp_0
i BSP Documentation
[= ps7_cortexad 0
Makefile
[, s¥stem.mss
~ =5 tutorial-profile
913“' Binaries
it Includes
w [= Debug
[= =rc
¥ tutorial-profile.elf - [arm/le]
& gmon.out
makefile
ohjects.mk
sources.mk

WilF @ @

tutorial-profile.elf.size

Kilinx.spec
Figure 42: Invoking gprof on gmon.out.

2. The Gmon File Viewer dialog box will appear showing tutorial-profile.elf as the corresponding
binary file. Click OK. The gprof viewer will load in the log panel.

3. Click on the Sort samples per function button (l :} = |).

33

4. Click in the %Time column to sort in the descending order (Figure 43).

| SDK Log | [# gprof i3 = _%lﬁ@|:@@@g{g|ﬁ'ﬁ| = B

gmon file: Chtemphzyng_tuterialzyng_tutorial.sdidtutorial-profile\Debughgmon.out
program file: Ciftemnp/zyng_tuterial/zyng_tutorial.sdk/tuterial-profile/Debug/tutorial- profile.elf
16 bytes per bucket, each sample counts as 10.000us

|t;.-'pefi|ter text

Mame (location) - Samples Calls Time/Call % Time

» Sumrary 1043 100.0%
KScuGic_Devicelnitialize I} 1 Ons 0.0%
#5cuGic_RegisterHandler] 1 Ons 0.0%
KUartPs_SendByte 478 185 52.864us 93.32%
Kil_L2CacheDisable.part.1 18 1.72%
__do_global_dtors_aux 1 0.1%
cleanup_platform] 1 Ons 0.0%
cortexad_init 1 0 0.1%
disable_caches 0 1 Ons 0.0%
enable_caches 0 1 Ons 0.0%
init_candidate_image 1 1 10.000us 0.1%
init_platform 0 1 Ons 0.0%
init_ref_image 0 1 Ons 0.0%
init_uart 0 1 Ons 0.0%
main 0 0 0.0%
matrix_add 1 1 10.000us 01%
matriz_multiply 18 1 180.000us 1.72%
mecount 3 0.29%
outnum 0 0 0.0%
print]] 0.0%
sad 26 24 10.833us 2.48%
xil_printf 1] 0.1%

Figure 43: Sorting results.

5. Go back to the Run Configuration, and change the sampling frequency to 1000000 (1 MHz) and
profile the application again.

6. Invoke gprof, select the Sort samples per function output, and sort the %Time column. Notice
that the output has better resolution and reports more functions and more samples per function calls.

7. Close the SDK and Vivado programs by selecting the File — Exit in each program.

8. Turn OFF the power on the board.

34

Conclusion

This tutorial led you through the process of using SDK and gprof to profile a software application run on
a custom hardware configuration.

35

Appendix A: ZedBoard Connection

The ZedBoard must be connected with two micro USB cables and a power supply, as shown in Figure 44
below. Additionally, the jumpers JP7, JP8, JP9, JP10 and JP11 must be connected to ground as shown in
the figure.

AVYNET®

Figure 44: ZedBoard hardware configuration.

36

	Introduction
	Objectives
	Procedure
	Requirements

	Part 1: Building a Zynq-7000 Processor Hardware
	Introduction
	Step 1: Start the Vivado IDE and Create a Project
	Step 2: Create an IP Integrator Design
	Customize Instantiated IP
	Use Block Designer Assistance
	Editing the Memory Map

	Step 3: Generate HDL Design Files
	Step 4: Implement Design and Generate Bitstream
	Step 5: Export Hardware to SDK
	Export to SDK

	Part 2: Build Zynq-7000 Processor Software
	Step 1: Start SDK and Create a Software Application
	Step 2: Run the Software Application
	Add a Break Point

	Step 3: Executing the Software

	Part 3: Profiling an Application
	Step 1: Export the design to the SDK
	Step 2: Create the application
	Step 3: Run the Application and Profile
	Step 4: Invoke gprof and analyze the results

	Conclusion
	Appendix A: ZedBoard Connection

