

photographs website

St Helena Government

Dr Roger S. Key, The Old Black Bull, Carthorpe, Bedale, North Yorkshire, DL8 2LD, United Kingdom ☎ (044)(0)1845 567292 mb 07751 440813 skype roger.key4

e-mail <u>key r s@yahoo.co.uk</u>

very draft web-page https://dl.dropboxusercontent.com/u/1148372/rogerkey_files/frame.htm Linked In profile http://www.linkedin.com/pub/dr-roger-key/41/827/29

http://flickr.com/photos/roger_key/

front cover picture Springbok Mantis *Miomantis caffra* rear cover picture Red-headed centipede *Scolopendra morsitans* - both South African

Contents

Layout of data sheets

Predatory Species

(including parasitoids)

Invertebrates

Scorpion

False Scorpions

Spiders

Mites

Centipedes

Praying Mantis

Earwigs

Crickets

Cockroaches

Predatory Bugs

Green lacewings

Predatory Ground, Rove, 'Scavenger' (&

Soldier) Beetles

Ladybirds

Predatory Flies

Ants

Social/European Common Wasp

Solitary Wasps

Parasitoid Wasps

Vertebrates

Guppy

Grass Frog

Java Gecko

Birds

Mammals

Competing Species and Ones Likely Adversely to Affect the Habitat of Indigenous Species

Detritivores, Carrion & Dung Feeders

Earthworms

Landhoppers

Woodlice

Mites

Millipedes

Springtails

Detritivorous/mycophagous Beetles

Synanthropic Beetles

Detritivorous/carrion feeding Flies

Herbivore Dung Fauna

Saproxylics

Termites

Saproxylic weevils

Plant Feeders

Slugs and Snails

Aphids & scale insects

Plant Bugs & Hoppers

Thrips

Plant-feeding Beetles

Moths & Butterflies

Phytophagous Flies

Rabbits (and Goats)

Others

Ants

Barkflies/Barklice

Webspinner

Summary

Layout of data sheets

Group Referred to

English name – may be taxon - "Spiders" or combined with ecological role - "Plant feeding bugs and hoppers"

Threat posed Desirability for control

Likelihood of success

Self explanatory – based on my best opinion from personal knowledge of the group and/or what I have been able to research on threats/effects/control measures elsewhere. Colour coded on ugency and possibility.

Taxonomy

higher than that listed below eg Insecta: Hymenoptera:

Alien species

Number of species, list of species, with family if not given above in 'Taxonomy' and sometimes brief note on ecology/pest status etc in larger lists.

Related Endemic/Indigenous species

number of reasonably closely related species which might need to be taken into account when any consideration is being given to biological control, most often with a list of the species.

Ecology

Notes on what I can find on the ecology of the species or group of species, mainly from web-searching.

Possible effects on St Helena's indigenous/endemic invertebrates

Reasons why the species/group may be of concern in the conservation of the indigenous invertebrate fauna of St Helena.

i Predatory Effects (including parasitoids)

Whether or not the species or group may pose a threat to populations of the indigenous invertebrate fauna of St Helena through direct predation. This can be difficult to assess and the assessment has to be to some degree subjective.

ii Competitive effects

Even more difficult to asses. I have tried to indicate those endemic/indigenous species/groups which are most likely naturally to inhabit the microhabitat into which the alien specie invades. *Proving* a competitive effect is most difficult.

iii Parasitic effects

Invertebrate parasites/parasitoid on other invertebrates, where appropriate.

iv Effects on invertebrate habitats

Many species are likely to impact on indigenous invertebrates not directly, but by altering the habitat in some way, making it less or unsuitable for the indigenous species, either by destroying foodplants, altering the quality of them in some way (eg by changing vigour, inducing the production of stress chemicals, producing honeydew and encouraging sooty mould etc), or changing the hygrology or physical characteristics of detritus or dead wood by burrowing etc.

v Pest effects for people

Species that also make a nuisance of themselves to the people of St Helena. These are the ones where there are likely to be control measures already known about.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats

Whether ort not direct destruction of individual alien invertebrates or the modification of their habitat or the use of chemical biocides may safely achieve control (or elimination) of the species or group of species. Based mainly on studies elsewhere or from what is known of the ecology of the species/group.

ii Likelihood of safe biocontrol measures & precedence

Mainly from biological control work undertajken elsewhere, including sometimes research I have found that does not seem so far to have led to use in the field. In some instances, I have indicated predatory or parasitoid species that are known to impinge on the taxa in question but which seem not to have been used as biocontrol agents for the species either on St Helena or at all, and are included as thought provokers...

iii Possible dangers of biocontrol measures

My own feeling as to the dangers inherent in possible biocontrol programmes for alien invertebrates in the context of St Helena, concentrating mainly on the risk to endemic & indigenous species.

Other comments

Additional References

A good source of further information on biocontrol relevant to the UK Overseas Territories is :-

Maczey, Norbert: Tanner, Rob & Shaw, Richard. 2012. Understanding and addressing the impact of invasive non-native species in the UK Overseas Territories in the South Atlantic: A review of the potential for biocontrol. DEFRA ref: CR 0492. CABI ref: TR10086. CABI Bioscience, Egham. http://www.cabi.org/uploads/projectsdb/documents/9748/Project%20reference%20list.docx

Presumably there are other publications resulting from this project, although I am not familiar with them.

PREDATORY SPECIES

(including parasitoids)

Species or groups that may pose a threat to populations of the indigenous invertebrate fauna of St Helena through direct predation. This can be difficult to assess and the assessment has to be to some degree subjective.

INVERTEBRATES

Scorpion

False Scorpions

Spiders

Mites

Centipedes

Praying Mantis

Earwigs

Crickets

Cockroaches

Predatory Bugs

Green lacewings

Predatory Ground, Rove, 'Scavenger' (& Soldier) Beetles

Ladybirds

Predatory Flies

Ants

Social/European Common Wasp

Solitary Wasps

Parasitoid Wasps

VERTEBRATES

Guppy

Grass Frog

Java Gecko

Birds

Mammals

Scorpion

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Scorpiones: Buthidae:

Alien species - 1

Isometrus maculatus

Related Endemic/Indigenous species - 0

Ecology

Mainly dry habitats with loose stones for cover. Predatory on ground-dwelling and lapidicolous invertebrates.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Effects could be significant on dry ground invertebrates

v Pest effects for people

Painful sting, though not dangerous.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Scorpions may be killed by parasitic nematodes and mites and there are chloropid fly parasitoids of the eggs of (fairly) closely related whip scorpions. However there appears little or no literature on biological control of scorpions and this may require primary research, ideally in South Africa where the species originates.

iii Possible dangers of biocontrol measures

Probably low if any biocontrol agent is known that is specific to scorpions.

Additional References

http://www.bioone.org/doi/full/10.1603/0022-0493-

98.5.1486?prevSearch=scorpion%2Bcontrol&searchHistoryKey=&queryHash=2145991d9345db699d6a3a0333fe71e7

Gary A. Polis (ed) 1990 The Biology of Scorpions. Stanford University Press – see chapter on parasites:http://books.google.co.uk/books?id=6OqeAAAAIAAJ&pg=PA318&lpg=PA318&dq=insect+parasitoids+of+scorpion+eggs&source=bl&ots=ZSz-YnfvnV&sig=hp3K4Bg7aQiEz-

 $\underline{zAaErgDcM6Lsk\&hl=en\&sa=X\&ei=36LvUo6OEJCg7AaDroDgAw\&ved=0CGwQ6AEwCw\#v=onepage\&q=insect\%20parasitoids\%20of\%20scorpion\%20ggs\&f=false}$

False Scorpions

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Arachnida: Pseudoscorpionida:

Alien species - 3

Chthonius ischnochelesChthoniidaeRoncus lubricusNeobisiidaeWithius pigerWithiidae

Related Endemic/Indigenous species - 5

Tyrannochthonius helenae Chthoniidae
Hemisolinus helenae Garypinidae
Scotowithius helenae Withiidae
Sphallowithius excelsus Withiidae
Sphallowithius inhonestus Withiidae

Ecology

Alien species on St Helena favour moist microhabitats, particularly soil, litter, dead wood, mosses etc. Predatory on very small invertebrates, especially mites and springtails.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Unknown, but may effect mite and springtail populations.

ii Competitive effects

Possibly with endemic species.

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely
- ii Likelihood of safe biocontrol measures & precedence Unknown no precedent.

iii Possible dangers of biocontrol measures

Risk to endemic species

Spiders

Threat posed **Desirability for control** Likelihood of success

Variable, some <mark>HIGH</mark> Variable, some <mark>HIGH</mark> unknown ?Low

Taxonomy

Arachnida: Araneae:

Alien species - 51 (most species not assesses for priority)

Malthonica pagana	Agelenidae	Hasarius adansoni	Salticidae
Tegenaria domestica	Agelenidae	Menemerus bivittatus	Salticidae
Gasteracantha sanguinolenta	Araneidae	Scytodes fusca	Scytodidae
Neoscona hirta	Araneidae	Scytodes velutina	Scytodidae
Neoscona rufipalpis	Araneidae	Segestria florentina	Segestriidae
Xeropigo tridentiger	Corinnidae	Anyphops stauntoni	Selenopidae
Dysdera crocata	Dysderidae	Dyschiriognatha argyrostilba	Tetragnathidae
Pritha condita	Filistatidae	Achaearanea acoreensis	Theridiidae
Trachyzelotes lyonneti	Gnaphosidae	Argyrodes argyrodes	Theridiidae
Urozelotes rusticus	Gnaphosidae	Enoplognatha mandibularis	Theridiidae
Diplostyla concolor	Linyphiidae	Kochiura aulica	Theridiidae
Erigone prominens	Linyphiidae	Latrodectus geometricus	Theridiidae
Lepthyphantes leprosus	Linyphiidae	Latrodectus tredecimguttatus	Theridiidae
Meioneta prosectes	Linyphiidae	Nukuhiva adamsoni	Theridiidae
Microlinyphia pusilla	Linyphiidae	Parasteatoda tepidariorum	Theridiidae
Ostearius melanopygius	Linyphiidae	Rhomphaea nasica	Theridiidae
Ero aphana	Mimetidae	Steatoda capensis	Theridiidae
Mimetus cfr. fernandi	Mimetidae	Steatoda grossa	Theridiidae
Oecobius cellariorum	Oecobiidae	Steatoda triangulosa	Theridiidae
Oecobius navus	Oecobiidae	Theridion melanurum	Theridiidae
Heteroonops spinimanus	Oonopidae	Theridion purcelli	Theridiidae
Opopaea concolor	Oonopidae	Theridion sisyphium	Theridiidae
Coryphasia fasciiventris	Oxyopidae	Runcinia grammica	Thomisidae
Pholcus phalangoides	Pholcidae	Uloborus walckenaerius	Uloboridae
Dendryphantes purcelli	Salticidae	Zosis geniculata	Uloboridae

Related Endemic/Indigenous species – 51 (plus 10 possibly indigenous species of doubt)

Argiope trifasciata	Araneidae	Trochosa cfr. urbana	Lycosidae
Freyanomorpha ambigua	Avenzoariidae	Trochosa sp. 1	Lycosidae
Clubiona dubia	Clubionidae	Trochosippa? sp.	Lycosidae
Archaeodictyna condocta	Dictynidae	Cheiracanthium wilma	Miturgidae
Benoitodes caheni	Gnaphosidae	Tecution helenicola	Miturgidae
Benoitodes sanctaehelenae	Gnaphosidae	Tecution mellissi	Miturgidae
Drassodes distinctus	Gnaphosidae	Tecution planum	Miturgidae
Pterochroa funerea	Gnaphosidae	Tecution sp.	Miturgidae
Bathyphantes gracilipes	Linyphiidae	Mysmena isolata	Mysmenidae
Bathyphantes helenae	Linyphiidae	Nesticella helenensis	Nesticidae
Helsdingenia extensa	Linyphiidae	Gamasomorpha insularis	Oonopidae
Lepthyphantes albimaculatus	Linyphiidae	Ischnothyreus peltifer	Oonopidae
Napometa sanctaehelenae	Linyphiidae	Oonops erinaceus	Oonopidae
Napometa trifididens	Linyphiidae	Opopaea atlantica	Oonopidae
Dolocosa dolosa	Lycosidae	Alloptes stercorarii	Proctophyllodidae
Hogna cinica	Lycosidae	Zimirina relegata	Prodidomidae
Hogna inexorabilis	Lycosidae	Thecarthra stercorarii	Pterolichidae
Hogna ligata	Lycosidae	Tetrablemma helenense	Tetrablemmidae
Hogna nefasta	Lycosidae	Leucauge digna	Tetragnathidae
Hogna sp. 1	Lycosidae	Tetragnatha nitens	Tetragnathidae
Hogna sp. 2	Lycosidae	Argyrodes mellissi	Theridiidae
Lycorma? sp.	Lycosidae	Nesticodes rufipes	Theridiidae
Lycosa elysae	Lycosidae	Theridion sciaphilum	Theridiidae
Lycosa ringens	Lycosidae	Theridion solium	Theridiidae
Lycosidae sp. 1	Lycosidae	Theridula huberti	Theridiidae
Lycosidae sp. 2	Lycosidae	Zercidium helenense	Theridiidae
Lycosidae sp. 3	Lycosidae		

Ecology

All habitats. Predators of other invertebrates of almost all taxonomic groups. Active hunters and lurking ambushers on ground, under stones & bark and on vertical hard surfaces such as bark, rock and walls, amongst vegetation and in litter. Web-spinners in a wide variety of locations.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

mainly generalist predators on a particular size range of invertebrates within their (micro-)habitat, although with at least one highly specific to a particular higher taxon, in this case (*Dysdera crocata*) specialising on woodlice, of which there are several endemic species in St Helena as well as a large number of very abundant alien species.

ii Competitive effects

Such a large number of alien species in the same families and with the same lifestyles as endemic species means that competition is probably inevitable, in particular for web building space. *Dysdera crocata* may be in competition with 2 endemic species of *Tecution* (Miturgidae) which specialise on predating woodlice, (see http://www.issg.org/database/species/impact_info.asp?si=1465&fr=1&sts=&lang=EN however).

v Pest effects for people

The brown widow *Latrodectus geometricus* and, in particular *Dysdera crocata* and *Segestria florentina* have painful bites. *Latrodectus geometricus* toxin is very potent but is very rarely produced in sufficient quantities for the bite to be dangerous. Many of the larger alien species are of a size and appearance to cause problems to arachnophobes.

Possibility of Control

Given the highly effective dispersive mechanism of many/most spiders (ballooning), re-invasion after any partially successful control is highly likely.

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely.

ii Likelihood of safe biocontrol measures & precedence

There appear to be no web references to biological control of spiders. There are polysphinctine ichneumonid parasitoids of adult spiders and geline ichneumonid parasitoids of spider egg masses. However, they are unlikely to be species-specific.

iii Possible dangers of biocontrol measures

The very large number endemic spiders mean that any form of biological control would be highly hazardous to that fauna.

Other comments

Dysdera crocata is included in the IUCN list of world invasive species http://www.issg.org/database/species/ecology.asp?si=1465&fr=1&sts=&lang=EN

MITES

Threat posed **Desirability for control** Likelihood of success

Taxonomy

Arachnida: Acari:

Alien species - 43

Parachipteria punctata Platynothrus peltifer Ceratozetes gracillis Scapheremaeus palustris Damaeus ornustus Epilohmannia inexpectata Galumna elimata Acrogalumna longipluma Protoribates lophotrichus Liacarus coracinus Trimalaconothrus novus Nanhermannia elegantula Nothrus palustris Oppia varians Zygoribatula exilis Phthiracarus nitens Steganacarus magnus Scheloribates laevigatus Trhypochthoniellus excavatus Orbatida: Archipteriidae Orbatida: Camisiidae Orbatida: Ceratozetidae Orbatida: Cymbaeremaeidae Orbatida: Damaeidae Orbatida: Epilohmannidae Orbatida: Galumnidae Orbatida: Galumnidae Orbatida: Haplozetidae Orbatida: Liacaridae Orbatida: Malaconothridae Orbatida: Nanhermannidae Orbatida: Nothridae Orbatida: Oppiidae Orbatida: Oribatulidae Orbatida: Phthiracaridae Orbatida: Phthiracaridae Orbatida: Scheloribatidae Orbatida: Trhypochthoniellidae

Ornithonyssus bursa Boophilus decoloratus Rhipicephalus evertsi Laelaps echidnus Macrocheles penicilliger Macrocheles peniculatus Macrocheles submotus Geholaspis mandibularis Pergamasus longicornis Phityogamasus primitivus Parholaspus kewensis Holaspulus tenuipes **Bdellodes longirostris** Pediculaster manicatus Anystis baccarum Anystis kochi Anystis berlesei Tetranychus evansi

Parasitiformes: Dermanyssidae Parasitiformes: Ixodidae Parasitiformes: Ixodidae Parasitiformes: Laelapidae Parasitiformes: Macrochelidae Parasitiformes: Macrochelidae Parasitiformes: Macrochelidae Parasitiformes: Macrochelidae Parasitiformes: Parasitidae Parasitiformes: Parasitidae Parasitiformes: Parholaspidae Parasitiformes: Parholaspidae Prostigmata: Bdellidae Prostigmata: Siteroptidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Tetranychidae

Related Endemic/Indigenous species - 42 (plus an additional 6 possibly indigenous species)

Freyanomorpha ambigua Alloptes stercorarii Thecarthra stercorarii Mongaillardia magna Carabodes carinatus Carabodes fenestatus Carabodes horridus Carabodes hyalinus Carabodes incrustatus Carabodes pentatrichus clavatus Crotonia perforata

Galumna ambigua

Galumna rugosa Pergalumna irregularis Liodes lanceosetosus

Trimalaconothrus pallidus Oppia petiolata

Oppia rubida Indotritia clavata Hoplophthiracarus cavernosus

Platyseius leleupi

Phthiracarus flagellatus Scheloribates abbreviatus Scheloribates brachypterus Scheloribates calcaratus Scheloribates curvirhynchus Scheloribates deficiens Scheloribates evanescens Scheloribates helenensis Scheloribates lanceolatus Scheloribates maculatus Scheloribates microsetosus

Astigmata: Avenzoariidae Astigmata: Proctophyllodidae Astigmata: Pterolichidae Orbatida: Amerobelbidae Orbatida: Carabodidae Orbatida: Carabodidae Orbatida: Carabodidae Orbatida: Carabodidae Orbatida: Carabodidae Orbatida: Carabodidae

Orbatida: Crotoniidae Orbatida: Galumnidae Orbatida: Galumnidae Orbatida: Galumnidae Orbatida: Liodidae

Orbatida: Malaconothridae Orbatida: Oppiidae Orbatida: Oppiidae Orbatida: Oribotritiidae Orbatida: Phthiracaridae

Orbatida: Phthiracaridae Orbatida: Scheloribatidae Parasitiformes: Ascidae

Hypoaspis decellei Glyptholaspis thorri Macrocheles helenaensis Pachylaelaps major Gamasiphis krieli Chiropturopoda brevipilus Fuscuropoda leleupi **Bdellodes** parvisetosa Bdellodes quadrisetosa Chaussieria benoiti Chaussieria brevis Chaussieria dissimilis Chaussieria sanctaehelenae Balaustium southcotti Cavannea cooremani Cavannea sanctaehelenae

Parasitiformes: Dermanyssidae Parasitiformes: Macrochelidae Parasitiformes: Macrochelidae Parasitiformes: Pachylaelaptidae Parasitiformes: Rhodacaridae Parasitiformes: Uropodidae Parasitiformes: Uropodidae Prostigmata: Bdellidae Prostigmata: Bdellidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Erythraeidae Trombidiformes: Erythraeidae Trombidiformes: Erythraeidae

Ecology

All terrestrial habitats, dry and moist. Detritivorous, fungivorous, phytophagous, predatory, parasitic on invertebrates and vertebrates & bloodsucking on vertebraes.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Many species are predatory on other mites and other very small invertebrates. Their effects populations are likely to be very difficult to assess.

ii Competitive effects

Possible or likely, but their effects on other invertebrate populations are likely to be very difficult to assess.

iii Parasitic effects

Haemolymph sucking parasitic mites can have very serious affects on other species of invertebrates, from considerably reducing vigour to killing infested individuals. Whether this is of significance for St Helenan species appears unknown. There may be possible effects from severe phoretic load on some invertebrates.

iv Effects on invertebrate habitats

Likely to have an effect on detritus and fungal habitats but probably impossible to quantify at the moment.

v Pest effects for people

Some species are blood-sucking on humans and cause itching. Others are parasitic on domestic livestock or pests on crop and garden plants.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence Unlikely

iii Possible dangers of biocontrol measures

Given the number of possibly endemic species, it is unlikely that this is likely to be an option.

Additional References

 $\frac{http://learningstore.uwex.edu/Biological-Control-of-Insects-and-Mites-An-Introduction-to-Beneficial-Natural-Enemies-and-Their-Use-in-Pest-Management-P1392.aspx$

This may have some relevance but I've not been able to see a copy.

Centipedes

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Chilopoda:

Alien species - 8

Geophilus flavus Geophilidae Henia vesuviana Geophilidae Lithobius forficatus Lithobiidae Lithobius melanops Lithobiidae Lithobius aeruginosus Lithobiidae Cryptops hortensis Cryptopidae Scolopendridae Scolopendra morsitans Scutigera coleoptrata Scutigeridae

Related Endemic/Indigenous species - 3

Tuoba benoitiGeophilidaeLamyctes leleupiHenicopidaeCryptops basilewskyiCryptopidae

Ecology

Opportunistic predators on other invertebrates of most taxonomic groups, mainly nocturnal or subterranean. All habitats. Mainly ground & litter dwelling, lapidicolous, corticolous or subterranean. Some species also forage high amongst vegetation at night. *Geophilus flavus* tends to be a beach species under drift litter.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Probably almost all species of indigenous invertebrate are vulnerable to predation from one or other of the alien centipede species on St Helena. This group may probably pose amongst the greatest threats to indigenous invertebrates on St Helena. *Scolopendria morsitans* may have been significant in the extinction of the endemic giant earwig and ground beetle.

ii Competitive effects

May compete with endemic species.

v Pest effects for people

Scolopendria morsitans has an excruciatingly painful bite and may produce severe allergic reactions.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats

Unlikely. Web advice on control of centipedes is restricted to use of biocides and removal of sheltering habitat.

ii Likelihood of safe biocontrol measures & precedence

There are tachinid fly and parasitoid wasp parasites of centipedes as well as gregarine gut parasitic protozoans. No reference to biocontrol measures for centipedes could be found on the web.

iii Possible dangers of biocontrol measures

It is unlikely that biocontrol agents will differentiate between indigenous and alien species.

Additional References

J. G. E. Lewis. 2007. The Biology of Centipedes, Cambridge University Press. see:-

http://books.google.co.uk/books?id=AEp22u6tJgsC&pg=PA359&lpg=PA359&dq=parasites+of+centipedes&source=bl&ots=2VesY4Li O4&sig=vvMLHQsqlb7aEo-CqsA<u>L7J-</u>

VjQg&hl=en&sa=X&ei=o53vUtSJAumR7AbMo4GYDw&ved=0CE8Q6AEwBA#v=onepage&g=parasites%20of%20centipedes&f=false

Praying Mantis

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Mantodea: Mantidae

Alien species - 1
Miomantis caffra

Related Endemic/Indigenous species - 0

Ecology

Most habitatats with structured vegetation. Predatory, living on highly structured vegetation. Oviposits on rock or bark. relatively recently colonised St Helena and still spreading.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Large, voracious predator producing large numbers of young. Predates any foliage dwelling invertebrates, plus any flying species attracted to lights. Likely to have significant effect on indigenous species.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Low

ii Likelihood of safe biocontrol measures & precedence

Chalcidoid (Torymid) parasitoids of mantis oothecae (egg pods) are known from S Africa, where there are two chalcidoid specialists currently working on biocontrol agents and who may be able to help, Steve Compton and

iii Possible dangers of biocontrol measures

Possibly none - however confirmation on true specificity of biocontrol agent to mantids is needed

Other Comments

Species is seen possibly to be useful in controlling household pests and may be a 'popular character' species. Education and awareness raising would need to be included in any control programme.

Earwigs

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Dermaptera:

Alien species - 3

Anisolabis maritima, Anisolabididae Euborellia annulipes Anisolabididae Labidura riparia Labiduridae

Related Endemic/Indigenous species – 1 (probably extinct)

Labidura herculeana Labiduridae

Ecology

Predatory. Euborellia annulipes and Labidura riparia occur in most habitats with sufficient cover, under stones, plant litter and under bark. Anisolabis maritima only on the seashore, often under strandline litter.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Possible effects on ground dwelling invertebrates.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

The Falklands are considering biological control of European earwig using tachinid fly parasitoids http://www.falklands.gov.fk/assets/209-12P.pdf.

iii Possible dangers of biocontrol measures

Any biocontrol agent targeted at earwigs might possibly pose a threat to giant earwig should it survive.

Crickets

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Orthoptera: Gryllidae

Alien species - 3 or 4

Acheta domesticus, Gryllodes sigillatus Myrmecophilus acervorum ?Gryllus bimaculatus

Related Endemic/Indigenous species - 1

Gryllus abnormis

Ecology

Largely omnivorous. Acheta domesticus indoors (though not reported to have been seen recently), Gryllodes sigillatus in dry scrub and Myrmecophilus acervorum in ants' nests. Gryllus bimaculatus in dry areas with sparse grass.

Habitat types

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

In captivity, *Gryllus bimaculatus* is known to be both facultatively predatory and cannibalistic and may thus impact on other invertebrate species.

ii Competitive & Genetic effects

Gryllus bimaculatus is considered indigenous by the Ashmoles, based solely on it's mobility. My own speculation is that it just *might* be the re-introduced parent species of the endemic *Gryllus abnormis* and hence may represent a threat by hybridization with that species. It is, however, unknown if this actually occurs.

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely
- ii Likelihood of safe biocontrol measures & precedence Unlikely

iii Possible dangers of biocontrol measures

Effects on Given the occurrence of other, endemic, Orthoptera, probably not an option.

Cockroaches

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Blattodea:

Alien species - 8

Calolampra irrorata Blaberidae Pycnoscelus surinamensis Blaberidae Nauphoeta cinerea Blaberidae Blaberidae Rhyparobia maderae Periplaneta australasiae Blattidae Euthyrrhapha pacifica Corydiidae (Blattella germanica Ectobiidae) Balta longicercata Ectobiidae

Related Endemic/Indigenous species - 0

Ecology

Most habitats with sufficient cover - lapidicolous, under wood etc. Some species climb high in structured vegetation. Polyphagous, especially detritivorous.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Some species are facultatively predatory but it is unclear whether they may exert any significant effects on indigenous invertebrates.

v Pest effects for people

Periplaneta australasiae is a pest species indoors.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Parasitic nematodes and chacidoid wasp egg parasites have been used elsewhere. Two species of wasp Ampulex compressa & Evania appendigaster are specific predators/parasitoids on non-native cockroaches and can be thought of as beneficial.

iii Possible dangers of biocontrol measures

Species that are proved specific to cockroaches, especially parasitoids of oothecae are unlikely to deleterious to indigenous invertebrates.

Predatory Bugs

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Hemiptera: Heteroptera:

Alien species - 5

Orius thripoborus
Orius niger
Anthocoridae
Tropiconabis capsiformis
Amphibolus venator
Empicoris rubromaculatus
Anthocoridae
Anthocoridae
Reduviidae
Reduviidae

Related Endemic/Indigenous species - 7

Cardiastethus bicolor
Cardiastethus exiguus
Lasiochilus contortus
Lyctocoris campestris
Kerzhneria hirsuta
Vernonia wollastoniana
Napoleon vinctus
Anthocoridae

Ecology

Predatory, usually occurring on foliage. Almost any vegetated habitat except, perhaps, very sparsely vegetated dry zones.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

the three common species could be of some significance on foliage dwelling invertebrates

ii Competitive effects

possibly with indigenous predators

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Low
- ii Likelihood of safe biocontrol measures & precedence Low. ?no precedents.
- iii Possible dangers of biocontrol measures

Related idigenopus species.

Green Lacewings

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Neuroptera: Chrysopidae

Alien species - 3

Chrysopa squamos Chrysoperla pudica, Chrysoperla zastrowi

Related Endemic/Indigenous species - 2

Chrysoperla exul (Micromus atlanticus brown lacewing- Hemerobiidae)

Ecology

On structured vegetation, mostly in Adults and larvae predatory, probably on aphids and perhaps other small invertebrates on foliage.

Habitat types

Possible effects on St Helena's indigenous/endemic invertebrates

Predatory Effects

May add to the predator load encountered by indigenous/endemic invertebrates.

ii Competitive effects

Possible competition with endemic lacewings - unknown if significant

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats unknown
- ii Likelihood of safe biocontrol measures & precedence unknown
- iii Possible dangers of biocontrol measures

effects on endemic species

Predatory Ground, Rove, 'Scavenger' (& Soldier) Beetles

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Coleoptera:

Alien species - 16

Laemostenus complanatus Carabidae Staphylinidae Lithocharis ochracea Chloecharis debilicornis Staphylinidae Staphylinidae Philonthus peliomerus Staphylinidae Philonthus discoideus Staphylinidae Philonthus turbidus Spatulonthus longicornis Staphylinidae Gabrius nigritulus Staphylinidae Creophilus maxillosus Staphylinidae Neohypnus attenuatus Staphylinidae Notolinus hottentotus Staphylinidae Staphylinidae Aleochara puberula (other alien staphylinds are probably detritivores or mycophagous) Gnathoncus nanus Histeridae Euspilotus gnathoncoides Histeridae Saprinus bicolor Histeridae Histeridae Saprinus cupreus Dactylosternum abdominale Hydrophilidae Silvanidae Cryptamorpha desjardinsi (Caccodes oceaniae* Cantharidae)

Relevant Related Endemic/Indigenous species - 19

Aplothorax burchellii (extinct) Carabidae Campalita chlorostictum helenae Carabidae Eotachys caheni Carabidae Lymnastis sanctaehelenae Carabidae Notaphus mixtus mellissii Carabidae *Harpalus prosperus Carabidae *Harpalus sanctaehelenae Carabidae Philonthus dictator Staphylinidae

Ten other endemic species of carabid have a specialist relationship with wood decay or tree fern litter.

Ecology

+/- all terrestrial habitats on the island. Mainly ground or litter-dwelling predators on other invertebrates. Rove-beetles are adapted to access very narrow crevices. Histerid & terrestrial hydrophilid beetles (the majority are aquatic) tend to be predators, mainly of fly larvae, in decaying organic matter, including dung, carrion and wet decaying plant material.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Likely to impact on indigenous fauna simply by adding to the predator load. The wide variety of sizes of carabids and staphylinids puts all indigenous ground-dwelling species at risk

ii Competitive effects

Could well be competing with endemic related species, as well as other ground dwelling indigenous predators such as spiders and predatory bugs

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

only one individual and therefore probably not established: it is a foliage dwelling predator

^{*}The two species of *Harpalus* are predatory as larvae and phytophagous (probably seed eating) as adults.

Likelihood of safe biocontrol measures & precedence Unlikely

iii Possible dangers of biocontrol measures Presence of related endemic species. iii

Ladybirds

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Coleoptera: Coccinellidae

Alien species - 7

(*?)Cheilomenes propinqua

(*)Exochomus flavipes,

*Rodolia cardinalis,

*Hyperaspis pantherina,

(*)Nephus binaevatus,

*Cryptolaemus montrouzieri

Related Endemic/Indigenous species - ?2

Cheilomenes lunata & Scymnus nubilus are possibly considered to be indigenous speices

Ecology

Most vegetated habitats. Predatory on various Auchenorhycha - aphids, scale insects & whitefly

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Hopefully specific to their biocontrol target species.

v Pest effects for people

None

Possibility of Control

Not desirable

^{*}species used for biocontrol of alien pests (if bracketed – uncertain whether deliberately introduced)) (*Psyllobora variegata* is also a ladybird but is a fungus feeder)

Predatory Flies

Threat posed
Desirability for control
Likelihood of success

Insecta: Diptera:

Α	lien	spe	cies	- 31
_		-1:-		

Sylvicola cinctus	Anisopodidae	decaying leaf litter, compost	Common Window Gnat
Pelastoneurus emasculatus	Dolichopodidae	predatory	
Hydrophorus balticus	Dolichopodidae	predatory	
Hydrophorus praecox	Dolichopodidae	predatory	
Medetera ambigua	Dolichopodidae	predatory	
Medetera bicolor	Dolichopodidae	predatory	
Thrypticus bellus	Dolichopodidae	predatory	I'd be very cautious in
Syntormon flexibilis	Dolichopodidae	predatory	ascribing all the
Syntormon pallipes	Dolichopodidae	predatory	Dolichopodidae to non-
Rhaphium macrocerum	Dolichopodidae	predatory	indigenous status – The
Epithalassius corsicanus	Dolichopodidae	predatory	Ashmoles' consider that
Campsicnemus mirabilis	Dolichopodidae	predatory	some of the
Campsicnemus armatus	Dolichopodidae	predatory	cosmopoliotan species
Campsicnemus magius	Dolichopodidae	predatory	could well have colonised
Acropsilus niger	Dolichopodidae	predatory	<mark>naturally</mark>
Sympycnus rusticus	Dolichopodidae	predatory	
Sciapus unicolor	Dolichopodidae	predatory	
Sciapus lamellatus	Dolichopodidae	predatory	
Sciapus subfascipennis	Dolichopodidae	predatory	
Sciapus setifrons	Dolichopodidae	predatory	
Sciapus inflexus	Dolichopodidae	predatory	
Chrysosoma longifilum	Dolichopodidae	predatory	
Desmometopa m-nigrum	Milichiidae	cleptoparasite of other	
		predatory invertebrates	
Coenosia humilis	Muscidae	adults predatory on	Tiger Fly
		leafhoppers larve subterranean	
		predators	
Megaselia breviterga	Phoridae	?	some <i>Megaselia</i> are
Megaselia curtineura	Phoridae	?	predators
Megaselia pleuralis	Phoridae	?	
Scathophaga stercoraria soror	Scathophagidae	predatory adults on mammal	Yellow Dung Fly
		dung	
Scenopinus glabrifrons	Scenopinidae	larvae predatory, possibly in dry	
Scenopinus fenestralis	Scenopinidae	larvae predatory - tineid, flea	House Windowfly
		larvae etc	

Related Endemic/Indigenous species - 4

Eristalis tenaxSyrphidaeEumerus lugensSyrphidaeLoveridgeana beatteiSyrphidaeAtlantomyia nitidaTachinidae

Plus others that might eventually be considered indigenous.

Ecology

It is inappropriate to attempt summary of the ecology of a whole order.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Scathophaga stercoraria and Coenosia humilis are a predators on other invertebrates, the latter particularly on planthoppers of which there are endemic species on St Helena. The family Dolichopodidae are predators, both as larvae probably on other insect larvae in organic mud, and on other small invertebrates as adults. The larvae of scenopinids are also predatory.

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely
- ii Likelihood of safe biocontrol measures & precedence No precedence
- iii Possible dangers of biocontrol measures Unclear

Ants

Threat posed
Desirability for control
Likelihood of success

Insecta: Hymenoptera: Formicidae:

Alien species - 13
Hypoponera punctatissima
Pheidole megacephala
Cardiocondyla emeryi
Solenopsis globularia
Solenopsis sp.
Tetramorium caldarium
Tapinoma melanocephalum
Plagiolepis alluaudi
Paratrechina bourbonica
Paratrechina longicornis
Linepithema humile
Monomorium latinode
Monomorium sechellense

Related Endemic/Indigenous species - (?1)

There was one species purported to be endemic (*Camponotus fabricator*). This is now thought to be either a museum labelling error or, at most, a brief establishment from an unknown area (see http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=12&ved=0CDIQFjABOAo&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F253771832 Ants (Hymenoptera Formicidae) of the South Atlantic islands of Ascension Island St Helena and Tristan da Cunha%2Ffile%2F60b7d5258d2b41efe9.pdf&ei=T-jvUuv-GuWK7AbbzYCgBg&usg=AFQjCNGORTX4pH3TqAr7-CYTdBbhF2FuDw&cad=rja)

Ecology

Relatively indiscriminate predators on most groups of invertebrates, social nesting in various bioptopes dependent on species. Several species have symbiotic relationship with alien stenorhynchine Hemptera (aphids and scale insects) and actively remove/destroy predators and competitors of their 'livestock' from the vegetation on which they are reared. They have colonised all terrestrial biotopes on St Helena, damp, dry, densely & sparsely vegetated. Some species lapicolous, others in decaying dead wood, grassland soils, plant litter and moss.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Collectively, now possibly the most significant invertebrate predators on most groups of terrestrial invertebrates on the island. Especially likely to be significant in decaying dead wood (eg in gumwood forest, where a very high proportion of larger dead wood harbours ant nests rather than endemic saproxylics) and under stones in dry zones. Additional species are still arriving.

iv Effects on invertebrate habitats

Considerable change to saproxylic habitats through their burrowing activity.

Degrading/deterioration of foliage quality of foodplant of phytophagous species through their symbiotic 'cultivation' of alien stenorhynchines - aphids and scale insects and subsequent stressing of plants, coating with waxes or honeydews and sooty moulds and their potential for spreading plant diseases.

v Pest effects for people

Some species bite or sting, others cultivate aphids and scales on agricultural or forest crops or garden plants.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats

Possible – there is considerable precedence around the world using poisoned baits, including on fairly comparable islands such as Hawaii http://www.ens-newswire.com/ens/oct2010/2010-10-25-092.html and the Seychelles http://www.ncbi.nlm.nih.gov/pubmed/21340553

ii Likelihood of safe biocontrol measures & precedence

Possible - phorid flies of the genus Pseudacteon have been used against fire ants in the US.

iii Possible dangers of biocontrol measures

Probably none if species exclusively predatory/parasitic on ants are used

Additional Comments

Mike Samways at Stellenbosch Univesity has experience and contacts in ant control on islands

Additional References

http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-invertebrates/antsnz/invasive-ants http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-invertebrates/antsnz/invasive-ants/inforamtion-sheets

Social/European Common Wasp

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Hymenoptera: Vespidae

Alien species - 1 Vespula vulgaris

Related Endemic/Indigenous species - 0

Ecology

Relatively indiscriminate **<u>predators</u>** on most groups of invertebrates, social nesting usually underground. Most habitats, though on St Helena ?mainly at higher altitude.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Mainly on foliage dwelling invertebrates, though any exposed species in any habitat may be at risk. The species is thought to be increasing and its effects are likely to increase.

v Pest effects for people

Painful sting with possibility of severe allergic reaction which can lead to anaphylaxis and even death. In a warm country like St Helena, nests are likely to be perennial and may increase considerably in size and numbers posing a serious threat to health and life.

Possibility of Control

Likelihood of safe physical/chemical control in wild populations & habitats

Possible – chemically poisoned bait has been used with some success in New Zealand. The smaller area of St Helena means greater likelihood of success.

ii Likelihood of safe biocontrol measures & precedence

Possible - use of parasitoid (Ichneumonid, *Sphecophaga vesparum*) and non-specific fungal pathogens have been used in New Zealand.

iii Possible dangers of biocontrol measures

For the parasitoid, probably none, but non-specific fungal pathogens are not recommended.

Additional References

http://newzealandecology.org/nzje/free issues/NZJEcol22 1 55.pdf

http://www.issg.org/database/species/reference_files/vesvul/vesvul_man.pdf

 $\underline{\text{http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-invertebrates/wasps/control/biological}$

http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-

invertebrates/wasps/control/biological/classical-biological-control

http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-invertebrates/wasps

Moller, H., Plunkett, G.M., Tilley, J.A.V., Toft, R.J. & Beggs, J.R. (1991) Establishment of the wasp parasitoid, Sphecophaga vesparum (Hymenoptera: Ichneumonidae), in New Zealand. - New Zealand Journal of Zoology, 18: 199–208.

Solitary wasps

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Hymenoptera:

Alien species - 6

Ampulex compressa Ampulicidae specialist predator on cockroaches

Solierella scrobiculata Crabronidae possibly specialist predator on lygaeid bugs

Sceliphron spirifex Sphecidae specialist predator on spiders

Podalonia canescens Sphecidae probably specialist predator on moth caterpillars

Related Endemic/Indigenous species - 1

Pison wollastoni

Ecology

Various habitats. Predatory, usually on a specific narrow taxonomic range of invertebrate targets (eg large moth caterpillars, plant hoppers, aphids, etc. Hole dwelling – in the ground or in plant stems.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Ampulex compressa (plus the evaniid parasitoid wasp evaniid Evania appendigaster) are specific predators/parasitoids on non-native cockroaches and can be thought of as beneficial. Based on what has been found on the ecology of congeneric species:-

Podalonia is likely to be a predator of large moth caterpillars and may take endemic species, It ?mainly occurs in dry places.

Sceliphron is likely to be a predator of various taxa of spiders and may take endemic species.

Solierella is likely to be a predator on heteropterous bugs, most possibly lygaeids and may take endemic species. A related species specialises on *Nysius* spp of which there is an endemic species.

v Pest effects for people

Larger solitary wasps may sting, though this is usually much less likely and less painful than social wasps.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Unknown - ? no precedents

iii Possible dangers of biocontrol measures

Unknown

Parasitoid Wasps

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Hymenoptera: Parasitica

Alien species - at least 13*

Encarsia formosa Aphelinidae biocontrol agent against whiteflies Encarsia diaspidicola Aphelinidae biocontrol agent against scale insects

Aphaereta minuta Braconidae specialist parasitoid on flesh-fly larvae in carrion

Aphidius colemaniBraconidaebiocontrol agent against aphidsAphidius camerunensisBraconidaebiocontrol agent against aphids

Cotesia vestalisBraconidaebiocontrol agent against diamondback mothTrichopria natalensisDiapriidaehost unknown – possibly small fly larvaeEvania appendigasterEvaniidaespecialist parasitoid on cockroachesLeptopilina heterotomaFigitidaespecialist parasitoid on fruit flies

Hexacola nr. hexatoma Figitidae H. hexatoma specialist parasitoid on ephydrid flies

Diplazon laetatoriusIchneumonidaespecialist parasitoid on hoverflies fliesDiadegma molliplaIchneumonidaebiocontrol agent against diamondback mothAnaphes nitensMymaridaebiocontrol agent against Eucalyptus beetle

*I understood that in the ?1970s/80s??90s that quite a large number of parasitic wasps that were relatively unspecific parasitoids of lepidopterous larvae were introduced by the fledgling pest control department, although I can't remember where I saw reference to it or whether someone told me (?Jill Key?). These seem not to be recorded in the current island's developing database species list

Related Endemic/Indigenous species - 11

Kleidotoma microscutellaris Figitidae Mvmarilla wollastoni Mymaridae *Sclerodermus wollastoni Bethylidae *Sclerodermus insularis Bethylidae *Sclerodermus sanctaehelenae Bethylidae Bethylidae *Holepyris atlanticus Cirrospilus nireus Eulophidae Dendrocerus wollastoni Megaspilidae Pteromalus ipsea Pteromalidae Netelia insulicola Ichneumonidae Echthromorpha agrestoria atrata Ichneumonidae

Ecology

i

All habitat types. Internal (and perhaps one or two external) parasitoids feeding on the bodies of other invertebrates at various stages in their life cycles, including eggs, larvae, pupae and adults. Usually specific to either a taxon (at various taxonomic levels from species up to order) or a variety of taxa that share the same body form or ecological niche (eg, exposed insect eggs, soft-bodied larvae living in dead wood etc). Some species have been widely used in biological control, often in contained environments such as greenhouses but also outdoors.

Possible effects on St Helena's indigenous/endemic invertebrates

Predatory/Parasitoid Effects

^{*}in addition there are 59 species (some undescribed) in the families Aphelinidae, Braconidae, Chalcididae, Cynipidae, Diapriidae, Encyrtidae, Eulophidae, Eurytomidae, Mymaridae, Platygastridae, Pteromalidae, Scelionidae, Signiphoridae, Trichogrammatidae about which either their specific identity or indigenous versus alien origin is currently undecided.

^{*}although Bethylids are taxonomically not part of the Hymenoptera Parasitica, their lifestyle is as parasitoids and hence they are included here rather than with the Solitary Wasps

It depends on the number of species that have actually been introduced to the island and the degree of their taxonomic or habitat niche specificity (see above highlighted comment). Some of these could already have had a considerable deleterious effect on non-target species, which would be very difficult to ascribe to the parasitoids without extensive research. *Diplazon laetatorius* is a specialist parasitoid on hoverfly larvae, although the endemic species seems to be successfully holding its own .

ii Competitive effects

There may have been competitive exclusion with endemic parasitoids if any of these have highly specific niches, though this would be very difficult to assess.

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely
- ii Likelihood of safe biocontrol measures & precedence No precedence.

iii Possible dangers of biocontrol measures

Possibly adding to an existing problem.

Other comments

All future biocontrol measure proposals, including those suggested in this document, must be assessed against strict internationally accepted criteria on specificity of action.

GUPPY

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Vertebrate: Fish: Poeciliidae

Alien species - 1

presumably Poecilia reticulata

Related Endemic/Indigenous species - 0

none

Ecology

Introduced to freshwater on St Helena, notably at Sandy Bay and at the plunge pool below Heart Shaped Waterfall. Carnivorous on small aquatic invertebrates

Possible effects on St Helena's indigenous/endemic invertebrates

Predatory Effects

Likely to be highly deleterious to micro- and meiocrustaceans and small flatworms in water bodies to which they have been introduced and also to indigenous aquatic insects.

Endemic/indigenous species possibly at risk:-

Microvelia gracillima	Hemiptera	Veliidae
Simulium atlanticum*	Diptera	Simuliidae
Simulium loveridgei	Diptera	Simuliidae
Anatanais sp.	Tanaidacea	Tanaidae
Tanais stanfordi	Tanaidacea	Tanaidae
Herpetocypris helenae	Ostracoda	Cyprididae
Xestoleberis potamophila	Ostracoda	Cytheridae
Dinizia sanctaehelenae	Turbellaria	Procerodidae
Macrostomum parmum	Turbellaria	Macrostomidae

^{*}Sandy Bay only known breeding site.

Possibility of Control

Likelihood of safe physical/chemical control in wild populations & habitats

Guppies are recognised as problem invasives in other small islands (eg Hawaii, Guam), as well as in continental North & South America, India and Australia. Chemical treatments (usually rotenone) are available to remove fish from water bodies but they are known to have deleterious effects on invertebrate populations. Electrofishing and even the use of detonating cord as a substitute for dynamiting fish have been used on other islands.

ii Likelihood of safe biocontrol measures & precedence

No precedence

iii Possible dangers of biocontrol measures

Other comments

Presumably these fish originate from aquaria somewhere on the island and it is almost certain that the fish were deliberately introduced to the two water bodies mentioned. They are popular with local children 'tiddlering' at Sandy Bay, and may well be introduced again if eliminated. Heart-shaped Waterfall is immediately downstream of 'two schools which 'may have/had guppies and which have been released in to the stream. Control attempts would need to backed up with an educational project painting the species as an 'undesirable alien'.

Additional References

http://geneticengsoc.ncsu.edu/research/invasive-fish-and-impacts-on-endemic-fish-and-insects http://science.nature.nps.gov/im/units/pacn/assets/docs/features/feature.c2013032_guppies_guam.pdf review of control measures:-

http://www.issg.org/pdf/publications/island_invasives/pdfhqprint/1nico.pdf

Grass Frog

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Amphibia: Ranidae

Alien species - 1

Rana grayi

Related Endemic/Indigenous species - 0

none

Ecology

Within freshwater all across the island – adults and mature larvae are predatory on invertebrate in and beside water.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Along with the spread of alien shading vegetation which provides cover for frogs, this species is likely to have had a very considerable effect on species of freshwater and riparian invertebrates right across St Helena. Indigenous/endemic taxa at risk:

Wetland spiders, carabid and staphylinid beetles.

Riparian bugs, notably Helenasaldula aberrans and Microvelia gracillima

Wetland flies, notably Dolichopodidae, Ephydridae & possibly Limoniidae (Tipulidae)

Possibly aquatic crustaceans

Possibility of Control

There seems to be remarkably little information on the web about frogs as invasive species.

Likelihood of safe physical/chemical control in wild populations & habitats

Unlikely. Control of problem frogs on Hawaii have been restricted to impractical chemical poisons (hydrated lime, citric acid) or physical removal.

ii Likelihood of safe biocontrol measures & precedence

The highly infectious Chytridiomycosis disease of frogs has been killing off frog populations around the world, but appears not to have been used as a biocontrol agent. Might it be investigated for use on St Helena where there are no indigenous amphibians?.

iii Possible dangers of biocontrol measures

Probably none.

Other Comments

The species may be a 'popular character' species. Education and awareness raising would need to be included in any control programme.

Java Gecko

Threat posed
Desirability for control
Likelihood of success

Possibly significant Unknown Unlikely

Taxonomy

Reptilia: Gekkonidae

Alien species - 1

Hemidactylus frenatus

Related Endemic/Indigenous species - 0

none

Ecology

Under stones, on cliffs, buildings and bark. Regularly around lights feeding on the attracted insects. Predatory on any small invertebrates

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Facultative predator on almost any invertebrates with which it comes into contact.

Possibility of Control

Recognised as an invasive species around the world, there seems little information on the web concerning attempts at control (see http://www.tsusinvasives.org/database/common-house-gecko.html.

i Likelihood of safe physical/chemical control in wild populations & habitats

Unlikely. Control of geckos elsewhere has been restricted to making local areas in houses uninviting to them.

ii Likelihood of safe biocontrol measures & precedence Unlikely.

Other Comments

Species is seen possibly to be useful in controlling household pests and is likely to be a 'popular character' species. Education and awareness raising would need to be included in any control programme.

Birds Threat posed

Desirability for control Likelihood of success

Taxonomy

Aves:

Alien species - 1

(Chukar) Partridge Alectoris chukar Phasianidae Ring-necked Pheaasnt Phasianus colchicus Phasianidae Indian Myna Acridotheres tristis Sturnidae Madagascr Fody Foudia madagascariensis Ploceidae (Java Sparrow Padda oryzivora Ploceidae)* Common Waxbills Estrilda astrild Ploceidae Canarv Serinus flaviventris Fringillidae

Related Endemic/Indigenous species - 0

none

Ecology

Pheasant and partridge are predators on ground-dwelling insects when rearing young, most of the songbirds either take foliage living insect facultatively or only when the young are being reared.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Given the abundance some of these birds, the insect take must be considerable and it is likely that there may be an impact on the populations of scarcer species.

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely.
- ii Likelihood of safe biocontrol measures & precedence Unlikely.

Other Comments

Attempts to control most bird species would be likely to be controversial, both on island and possibly internationally, and likely to include animal rights issues. Education and awareness raising would need to be included in any control programme.

^{*}it seems unclear, at least from the web, whether or not Java Sparrows take insects, even when feeding young

Rats & Mice

Threat posed
Desirability for control
Likelihood of success

Mammalia: Muridae

Alien species - 3

Black Rat Rattus rattus
Brown Rat Rattus norvegicus
House Mouse Mus musculus

Related Endemic/Indigenous species - 0

Ecology

Facultative predators which are likely to have had a similarly devastating effect on population of at least the larger invertebrates.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Rats and mice have been implicated in the extinction of the giant earwig and giant ground beetle but will no doubt had considerable effects on any of the larger invertebrates into which they come into contact.

iv Effects on invertebrate habitats

Goats in particular have destroyed whole habitats for invertebrates on St Helena, and rabbits are almost certainly still preventing revegetation of many denuded areas and heavily influencing what vegetation is able to re-establish, favouring unpalatable alien species.

v Pest effects for people

Rats and mice as domestic and agricultural pest and rats as disease vectors.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats

New Zealand companies have had considerable success on some isolated islands in eradicating ratsbut this would probably involve £millions.

Other Comments

Attempts to control mammal species are likely to be controversial (even for rats!), possibly internationally, on animal rights issues.

INVERTEBRATE DISEASES

Non-indigenous Taxa on St Helena – Effects and Possible Control Measures

Diseases and carriers

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Fungi: Ascomycotiona: Entomophthorlaes: Cordycipitaceae

Alien species - unknown

A white fungal arthropod pathogen is widespread on St Helena and has been observed occurring at least on a number beetle and woodlouse species including both indigenous and alien species of beetle but ?only *Armadillidium vugare* in the woodlice.

Possibly it is *Beauveria bassiana*, a species that is fairly ubiquitous around the planet and may actually be indigenous to St Helena. Alternatively it may have been accidentally (?or deliberately) introduced with one of the alien species, or may be a different species entirely. It is widely used as a completely non-specific biocontrol agent against a wide variety of insect and other arthropods and particularly virulent strains have been selected as insecticides.

Other diseases, fungal, bacterial or viral, may have been brought in with alien invertebrates.

Related Endemic/Indigenous species?

Entomopathogenic fungi and other diseases appear not to have been studied at all on St Helena.

Ecology

Beauveria bassiana - Spores are picked up, usually from soil and develop through arthropods' tissues, altering the behaviour so that the individual climbs to a height which improves the dispersal success of the fungus. White mycelium emerges from the interarthrodial membranes, killing the host, and eventually producing a fruting body and produces spores to repeat the cycle.

Possible effects on St Helena's indigenous/endemic invertebrates

Ultimately lethal to the individual arthropods. Unknown how much this affects the populations of individual species in the wild and it would be difficult to assess.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats
None

Additional References

http://organicsoiltechnology.com/fungus-beauveria-bassiana-entomopathogenic-fungi.html http://www.catalogueoflife.org/col/details/species/id/14037373

COMPETING SPECIES AND ONES LIKELY ADVERSELY TO AFFECT THE HABITAT OF INDIGENOUS SPECIES

Many species are likely to impact on indigenous invertebrates not directly, but by competing with indigenous species or by altering the habitat in some way, making it less or unsuitable for the indigenous species, either by destroying foodplants, altering the quality of them in some way (eg by changing vigour, inducing the production of stress chemical, producing honeydew and encouraging sooty mould), changing the humidity profile or physical characteristics of detritus or dead wood by burrowing etc.

DETRITIVORES, CARRION & DUNG FEEDERS

Earthworms

Landhoppers

Woodlice

Mites

Millipedes

Springtails

Detritivorous/mycophagous Beetles

Synanthropic Beetles

Detritivorous/carrion feeding Flies

Herbivore Dung Fauna

SAPROXYLICS

Termites

Saproxylic weevils

PLANT FEEDERS

Slugs and Snails

Aphids & scale insects

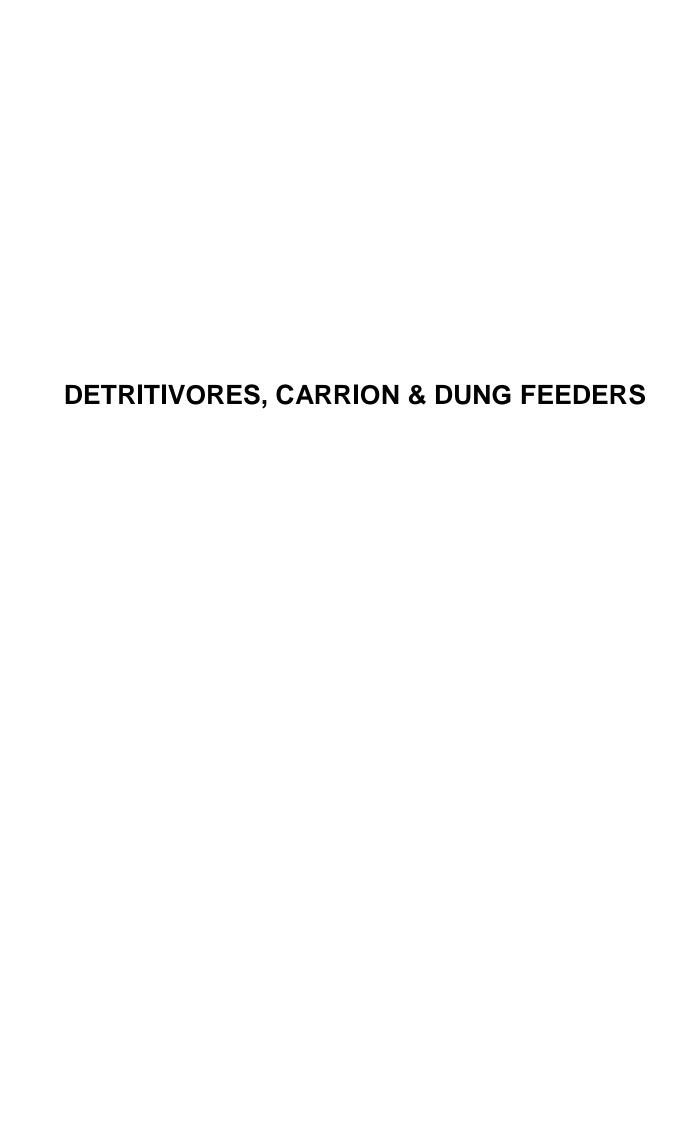
Plant Bugs & Hoppers

Thrips

Plant-feeding Beetles

Moths & Butterflies

Phytophagous Flies


Rabbits (and Goats)

OTHERS

Ants

Barkflies/Barklice

Webspinner

Earthworms

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Annelida: Oligochaeta:

Alien species - 21

Microscolex dubius	Acanthodrilidae	Eiseniella tetraedra	Lumbricidae
Eudrilus eugeniae	Eudrilidae	Lumbricus castaneus	Lumbricidae
Pontoscolex corenthurus	Glossoscolecidae	Pheretima californica	Megascolecidae
Allolobophora chlorotica	Lumbricidae	Pheretima diffringens	Megascolecidae
Aporrectodea rosea	Lumbricidae	Pheretima elongata	Megascolecidae
Aporrectodea trapezoides	Lumbricidae	Pheretima hawayana	Megascolecidae
Aporrectodea turgida	Lumbricidae	Pheretima loveridgei	Megascolecidae
Bimastos beddardi	Lumbricidae	Pheretima morrisi	Megascolecidae
Allolobophoridella eiseni	Lumbricidae	Pheretima rodericensis	Megascolecidae
Dendrodrilus rubidus	Lumbricidae	Phoenicodrilus taste	Ocnerodrilidae
Eisenia foetida	Lumbricidae		

Related Endemic/Indigenous species - 0

Ecology

Areas with microclimates and soils that are at least seasonally moist. Plant/leaf/grass litter, well decayed dead wood, soil, moss, under bark – not always subterranean. Saprobic, detritivorous, geophagous.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

May possibly compete with indigenous detritivore communities in forest litter, moss and dead wood, beside freshwater and in wetland litter.

iv Effects on invertebrate habitats

May change plant litter and decaying dead wood structurally which may have a deleterious effect on the indigenous detritivore and saproxylic communities.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

There are muscid fly parasitoids and flatworm predators of earthworms.

iii Possible dangers of biocontrol measures

Given that there are no indigenous earthworms on St Helena, earthworm specific biocontrol agents are likely to pose little risk.

Other comments

They are usually regarded as beneficial and any possible control measures likely to be seriously opposed by farmers, foresters and gardeners. Not recommended.

Landhoppers

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Crustacea: Amphipoda: Talitridae:

Alien species - 1

Talitroides alluaudi

Related Endemic/Indigenous species - 1

Single halophile aquatic species *Platorchestia ashmoleorum*. There is also a possibly indigenous species *Talitriator insularis* in simiar habitats to *Talitroides alluaudi'* which has been described as endemic to St Helena and Ascension Island, though may be an introduction from somewhere in Africa where it may currently be unrecorded.

Ecology

Detritivorous. Plant litter in damp places, especially cloud forest as well at grass and flax litter at higher altitude.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

Given the densities and biomass that this species can attain and together with alien woodlice and millipedes in the same environments, they may possibly competitively exclude whole elements of the detritivore community, at least locally, especially in habitats such as forest leaf litter.

iv Effects on invertebrate habitats

Such large numbers of individuals and biomass may change plant litter structurally which may have a deleterious effect on the indigenous detritivore communities.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

A web search surprisingly revealed no precedents for biocontrol of landhoppers, despite their being regarded as problematic in Australia, New Zealand and Hawaii. There are nematode parasites of Talitridae, though these do not seem to have been investigated for biocontrol.

iii Possible dangers of biocontrol measures

Any biocontrol agent would need to be specific to terrestrial amphipods and specifically not affect terrestrial isopods.

Woodlice Threat posed Li
Desirability for control
Likelihood of success

Taxonomy

Crustacea: Isopoda:

Alien species -1

Armdillidium vulgare	Armadillidiidae	Niambia capensis	Platyarthridae
Pseudodiploexochus tabularis	Armadillidiidae	Leptotrichus panzeri	Porcellionidae
Cyclistus convexus	Cyclisticidae	Porcellionides pruinosus	Porcellionidae
Oniscus asellus	Oniscidae	Porcellio scaber	Porcellionidae
Atlantoscia floridana	Philosciidae	Porcellio laevis	Porcellionidae
Littorophiloscia tropicalis	Philosciidae	Porcellio lamellatus	Porcellionidae
Trichorhina tomentosa	Platyarthridae	Haplophthalmus danicus	Trichoniscidae

Related Endemic/Indigenous species - 8

Pseudodiploexochus insularis	Armadillidiidae	Styloniscus sp.	Styloniscidae
Pseudodiploexochus leleupi	Armadillidiidae	Leptotrichus panzeri	Porcellionidae
Pseudodiploexochus mellissi	Armadillidiidae	Porcellionides pruinosus	Porcellionidae
Pseudolaureola atlantica	Armadillidiidae	Porcellio scaber	Porcellionidae
Iais aquilei	Janiridae	Porcellio laevis	Porcellionidae
Halophiloscia couchii	Philosciidae	Porcellio lamellatus	Porcellionidae
Littorophiloscia alticola	Philosciidae	Haplophthalmus danicus	Trichoniscidae

Ecology

All habitats, most species are in more humid areas although there are nocturnal xerophilic species in arid zones. Detritivous, fungivorous or sometimes plant-eating.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

Various hygrophilic species can, together with alien species of millipede and landhopper, reach very high density and biomass in indigenous forest plant litter and may result in competitive exclusion of endemic members of the detritivore community and possibly also in the saproxylic communities within the later stages of decaying wood. High levels of xerophilic alien species occur under stones might have a similar effects in drier zones.

iv Effects on invertebrate habitats

Such large numbers of individuals and biomass may change plant litter structurally which may have a deleterious effect on the indigenous detritivore communities.

v Pest effects for people

Regarded as pests simply for coming into houses.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

There are tachinid fly parasites of woodlice but they seem not to have been used in this way.

iii Possible dangers of biocontrol measures

There is a diversity of rare endemic species in the same families as some of the alien invasive species and these would be at risk from any biocontrol agents unless proven to be species specific, which is unlikely

Other comments

High densities of non-native isopods may increase the abundance of the non-native woodlouse spider *Dysdera croccata* in certain habitats and amplify any possible negative effect on indigenous woodlice

Mites

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Arachnida: Acari:

Alien species - 43

Parachipteria punctata Platynothrus peltifer Ceratozetes gracillis Scapheremaeus palustris Damaeus ornustus Epilohmannia inexpectata Galumna elimata Acrogalumna longipluma Protoribates lophotrichus Liacarus coracinus Trimalaconothrus novus Nanhermannia elegantula Nothrus palustris Oppia varians Zygoribatula exilis Phthiracarus nitens Steganacarus magnus Scheloribates laevigatus Trhypochthoniellus excavatus Orbatida: Archipteriidae Orbatida: Camisiidae Orbatida: Ceratozetidae Orbatida: Cymbaeremaeidae Orbatida: Damaeidae Orbatida: Epilohmannidae Orbatida: Galumnidae Orbatida: Galumnidae Orbatida: Haplozetidae Orbatida: Liacaridae Orbatida: Malaconothridae Orbatida: Nanhermannidae Orbatida: Nothridae Orbatida: Oppiidae Orbatida: Oribatulidae Orbatida: Phthiracaridae Orbatida: Phthiracaridae Orbatida: Scheloribatidae Orbatida: Trhypochthoniellidae Ornithonyssus bursa Boophilus decoloratus Rhipicephalus evertsi Laelaps echidnus Macrocheles penicilliger Macrocheles peniculatus Macrocheles submotus Geholaspis mandibularis Pergamasus longicornis Phityogamasus primitivus Parholaspus kewensis Holaspulus tenuipes **Bdellodes longirostris** Pediculaster manicatus Anystis baccarum Anystis kochi Anystis berlesei Tetranychus evansi

Parasitiformes: Dermanyssidae Parasitiformes: Ixodidae Parasitiformes: Ixodidae Parasitiformes: Laelapidae Parasitiformes: Macrochelidae Parasitiformes: Macrochelidae Parasitiformes: Macrochelidae Parasitiformes: Macrochelidae Parasitiformes: Parasitidae Parasitiformes: Parasitidae Parasitiformes: Parholaspidae Parasitiformes: Parholaspidae Prostigmata: Bdellidae Prostigmata: Siteroptidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Tetranychidae

Related Endemic/Indigenous species - 42 (plus an additional 6 possibly indigenous species)

Freyanomorpha ambigua Alloptes stercorarii Thecarthra stercorarii Mongaillardia magna Carabodes carinatus Carabodes fenestatus Carabodes horridus Carabodes hyalinus Carabodes incrustatus Carabodes pentatrichus clavatus Crotonia perforata

Galumna ambigua
Galumna rugosa
Pergalumna irregularis
Liodes lanceosetosus
Trimalaconothrus pallidus
Oppia petiolata

Oppia rubida Indotritia clavata Hoplophthiracarus cavernosus

Phthiracarus flagellatus Scheloribates abbreviatus Scheloribates brachypterus Scheloribates calcaratus Scheloribates curvirhynchus Scheloribates deficiens Scheloribates evanescens

Scheloribates evanescens Scheloribates helenensis Scheloribates lanceolatus Scheloribates maculatus Scheloribates microsetosus Platyseius leleupi Astigmata: Avenzoariidae
Astigmata: Proctophyllodidae
Astigmata: Pterolichidae
Orbatida: Amerobelbidae
Orbatida: Carabodidae

Orbatida: Crotoniidae Orbatida: Galumnidae Orbatida: Galumnidae Orbatida: Galumnidae Orbatida: Liodidae

Orbatida: Malaconothridae Orbatida: Oppiidae Orbatida: Oppiidae Orbatida: Oribotritiidae Orbatida: Phthiracaridae

Orbatida: Phthiracaridae
Orbatida: Scheloribatidae
Parasitiformes: Ascidae

Hypoaspis decellei Glyptholaspis thorri Macrocheles helenaensis Pachylaelaps major Gamasiphis krieli Chiropturopoda brevipilus Fuscuropoda leleupi **Bdellodes** parvisetosa Bdellodes quadrisetosa Chaussieria benoiti Chaussieria brevis Chaussieria dissimilis Chaussieria sanctaehelenae Balaustium southcotti Cavannea cooremani Cavannea sanctaehelenae

Parasitiformes: Dermanyssidae Parasitiformes: Macrochelidae Parasitiformes: Macrochelidae Parasitiformes: Pachylaelaptidae Parasitiformes: Rhodacaridae Parasitiformes: Uropodidae Parasitiformes: Uropodidae Prostigmata: Bdellidae Prostigmata: Bdellidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Anystidae Trombidiformes: Erythraeidae Trombidiformes: Erythraeidae Trombidiformes: Erythraeidae

Ecology

All terrestrial habitats, dry and moist. Detritivorous, fungivorous, phytophagous, predatory, parasitic on invertebrates and vertebrates & bloodsucking on vertebraes.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Many species are predatory on other mites and other very small invertebrates. Their effects populations are likely to be very difficult to assess.

ii Competitive effects

Possible or likely, but their effects on other invertebrate populations are likely to be very difficult to assess.

iii Parasitic effects

Haemolymph sucking parasitic mites can have very serious affects on other species of invertebrates, from considerably reducing vigour to killing infested individuals. Whether this is of significance for St Helenan species appears unknown. There may be possible effects from severe phoretic load on some invertebrates.

iv Effects on invertebrate habitats

Likely to have an effect on detritus and fungal habitats but probably impossible to quantify at the moment.

v Pest effects for people

Some species are blood-sucking on humans and cause itching. Others are parasitic on domestic livestock or pests on crop and garden plants.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence Unlikely

iii Possible dangers of biocontrol measures

Given the number of possibly endemic species, it is unlikely that this is likely to be an option.

Additional References

 $\frac{http://learningstore.uwex.edu/Biological-Control-of-Insects-and-Mites-An-Introduction-to-Beneficial-Natural-Enemies-and-Their-Use-in-Pest-Management-P1392.aspx$

This may have some relevance but I've not been able to see a copy.

Millipedes

Threat posed
Desirability for control
Likelihood of success

Likely possibly<mark>HIGH possible</mark>

Taxonomy Diplopoda:

Alien species - 14

Rhinotus africanus
Proteroiulus fuscus
Blaniulidae
Blaniulidae
Blaniulidae
Ommatoiulus moreleti
Brachyiulus pusillus
Cylindroiulus latestriatus
Cylindroiulus parisiorum
Julidae
Julidae
Julidae
Julidae

Glyphiulus granulatus
Aporodesminus wallacei
Cryptocorypha ornata
Oxidus gracilis
Alloproctoides remyi
Alloproctoides dawydoffi
Silvestrus cf. seminudus

Cambalopsidae
Chytodesmidae
Chytodesmidae
Paradoxosomatidae
Lophoproctidae
Lophoproctidae
Polyxenidae

Related Endemic/Indigenous species - 0

Ecology

All habitats where there is sufficient cover – most species prefer damper habitats but there are xerophilic species in dry zones. Detritivous, fungivorous or sometimes plant eating.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

Given the densities and biomass that certain species may attain and together with alien woodlice and landhoppers in the same environments, they may possibly competitively exclude whole elements of the detritivore community, at least locally, especially in habitats such as leaf litter and possibly tree fern litter. The densities of buttonworms in some dry areas may lead to competition for detritus.

iv Effects on invertebrate habitats

Such large numbers of individuals and high biomass may change decaying wood and plant litter structurally which may have a deleterious effect on the indigenous saproxylic and detritivore communities.

v Pest effects for people

Some species are pests of root crops, burrowing holes in roots and tubers.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

There are nematode parasites specific to millipedes which are used for biocontrol in Australia http://mrc.wa.gov.au/Documents/Millipedes/Millipede---General-information---Dept-of-Agricult.aspx. The 'buttonworm' Ommatoiulus moreleti has been targeted for biocontrol using sciomyzid flies in Australia

http://journals.cambridge.org/action/displayAbstract;jsessionid=592104620EF004B8E5225183FE08FDE7.journals?fromPage=online &aid=2427236

Successful biocontrol of millipedes in detritivore communities might, however, simply result in greater dominance of the fauna by alien isopod and amphipod populations.

iii Possible dangers of biocontrol measures

Providing specificity to Diplopoda is assured, none. Note, however, that some parasitoid nematodes may be able to parasitise both millipedes and woodlice

Springtails

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Collembola:

Alien species - 15

Entomobrya atrocincta	Entomobryidae	Isotoma nobilis	Isotomidae
Entomobrya multifasciata	Entomobryidae	Ceratophysella denticauda	Poduridae
Orchesella cincta	Entomobryidae	Xenyella grisea	Poduridae
Pseudosinella alba	Entomobryidae	Xenyella yucatana	Poduridae
Pseudosinella imparipunctata	Entomobryidae	Brachystomella parvula	Poduridae
Tomocerus minor	Entomobryidae	Neanura muscorum	Poduridae
Folsomia candida	Isotomidae	Deuteraphorura ghidinii	Poduridae
Proisotoma minuta	Isotomidae		

Related Endemic/Indigenous species - 0

there are hints by the Ashmoles of undescribed endemic species awaiting naming

Ecology

All habitats from desert to cloud forest. Under stones & bark, in dead wood, amongst litter & moss etc. Detritivorous.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

May be likely to compete with the indigenous detritivore community, possibly especially mites, especially in leaf-litter & treefern litter, but it would be difficult to assess.

iv Effects on invertebrate habitats

May affect the physical structure or breakdown rate of litter/detritus, but would be difficult to assess.

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely
- ii Likelihood of safe biocontrol measures & precedence No precedent

iii Possible dangers of biocontrol measures

None likely if springtail-specific biocontrol agent were to be used.

Detritivorous/mycophagous Beetles

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Coleoptera:

Alien species - 13

Anommatus duodecemstriatus Bothriderydae Sericoderus lateralis Corylophidae Corylophidae Orthoperus atomaruis Aglenus brunneus Salpingidae Staphylinidae Lispinus hintzi Staphylinidae Carpelimus corticinus Epomotylus pseudosculptus Staphylinidae Oxytelus alutaceifrons Staphylinidae Anotylus nitidifrons Staphylinidae Oligota flavicornis Staphylinidae Staphylinidae Acrotona aterrima Atheta laticollis gp Staphylinidae Hemasodes batesi Tenebrionidae

Related Endemic/Indigenous species - 14

Staphylinidae Atheta helenensis Atheta caheniana Staphylinidae Staphylinidae Atheta basilewskyana Gonocephalum simplex hadroides Tenebrionidae Tenebrionidae Hadrodes helenensis Helenomelas basilewskyi Tenebrionidae Pseudoleichenum benoiti Tenebrionidae Stenosis sanctaehelenae Tenebrionidae Tarphiophasis tuberculatus Tenebrionidae Tarphiophasis decellei Tenebrionidae Tarphiophasis wollastoni Tenebrionidae Tarphiobasis leleupi Tenebrionidae Tarphiophasis insulanus Tenebrionidae Zophobas atratus concolor Tenebrionidae

some of the litter dwelling weevils may also be detritivorous, although may be tied to a specific type

Ecoloav

In many types of grass or leaf litter. *Hemasodes batesi* specialises in dry habitats. *Carpelimus corticinus, Oxytelus alutaceifrons, Anotylus nitidifrons* live on organic mud beside freshwater. Variously detritivorous, mycophagous on fungal hyphae rather than fruiting bodies and 3 species of staphylinid beetle algivorous.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

Possibly in competition with various endemic detritivores, though this would be difficult to substantiate.

iv Effects on invertebrate habitats

Possibly may change quality of the detritus micro-habitat, though would be very difficult to determine.

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely
- ii Likelihood of safe biocontrol measures & precedence Unlikely, no precedence.

iii Possible dangers of biocontrol measures

Related endemic species.

Synanthropic Beetles

Threat posed
Desirability for control
Likelihood of success

Unlikely pest control grounds variable

Taxonomy

Insecta: Coleoptera:

Alien species - 40

Anobium punctatum Anobiidae Common Furniture Beetle Gibbium psylloides Anobiidae Shiny Spider Beetle Mezium americanum Anobiidae American Spider Beetle Anobiidae Nicobium villosum Anobiidae Sphaericus gibboides **Humped Spider Beetle** Stegobium paniceum Anobiidae **Drugstore Beetle** Araecerus fasciculatus Anthribidae Coffee Bean Weevil Dinoderus bifoveolatus Bostrichidae Auger Beetle Rhizopertha dominica Bostrichidae Lesser Grain Borer Anommatus duodecemstriatus Bothriderydae Acanthoscelides obtectus Bruchidae Rean Weevil Bruchidius spadiceus Bruchidae **Acacia Seed Beetle**

Bruchidius spadiceus Bruchidae Acacia Seed Beetle
Callosobruchus chinensis Bruchidae Pulse Beetle
Necrobia rufipes Cleridae Red-legged Ham Beetle

Euxestus phalacroides Colydiidae
Cryptophagus affinis Cryptophagidae
Cryptophagus badius Cryptophagidae

Cryptolestes ferrugineusCucuidaeRusty Grain BeetleCryptolestes pusillusCucuidaeFlat Grain BeetleSitophilus oryzaeCurculionidaeRice Weevil,

Anthrenus fuscus

Attagenus fasciatus

Dermestidae

Dermestidae

Dermestes ater

Dermestidae

Dermestidae

Dermestidae

Dermestidae

Dermestidae

Dermestidae

Dermestidae

Dermestidae

Dermestidae

Common Hide Beetle

Mycetaea hirta

Endomychidae

Hairy Cellar Beetle

Adistemia watsoni Latridiidae
Cartodere nodifer Latridiidae
Coninomus constrictus Latridiidae
Corticaria elongata Latridiidae
Typhaea stercorea Mycetophag

Typhaea stercorea Mycetophagidae Hairy Fungus Beetle

Brachypeplus depressus Nitidulidae

Carpophilus dimidiatus Nitidulidae Corn Sap Beetle Carpophilus hemipterus Nitidulidae Dried-fruit Beetle

Monotoma picipes Rhizophagidae Monotoma spinicollis Rhizophagidae Aglenus brunneus Salpingidae

Oryzaephilus surinamensis Silvanidae Saw-toothed Grain Beetle Alphitobius diaperinus Tenebrionidae Lesser Mealworm Beetle Alphitobius laevigatus Tenebrionidae Black Fungus Beetle **Gnathocerus** cornutus Tenebrionidae Horned Flour Beetle Tenebrio obscurus Tenebrionidae Dark Mealworm Beetle Tribolium castaneum Tenebrionidae Red Flour Beetle Trox rhyparoides Trogidae Scarce Hide Beetle Tenebroides mauritanicus Trogossitidae Cadelle Beetle

Related Endemic/Indigenous species - n/a

Species here are selected on lifestyle rather than taxonomy. There are indigenous/endemic species in the families Anobiidae, Anthribidae, Curculionidae & Tenebrionidae

Ecology

Synanthropic:- largely in stored foodstuffs, usually indoors. At least some of these species occur out of doors in the UK, usually as part of the detritivore community in straw & hay litter or compost heaps and sometimes more 'in the wild' in grass & leaf litter in moss, and the dermestids in dry carrion. Many of these do so similarly on St Helena.

Possible effects on St Helena's indigenous/endemic invertebrates

some species may have entered into the detritivore community and thus may compete with the indigenous species with a similar lifestyle. Otherwise, probably little or none, other to get beetles a bad name...

v Pest effects for people

Considerable – spoiling of foods

Possibility of Control

largely a pest control issue rather than conservation one

ii Likelihood of safe biocontrol measures & precedence

iii Possible dangers of biocontrol measures

There are related endemic and indigenous species which must be taken into account when considering any biological control for these species.

Non-indigenous Animal Taxa on St Helena – Effects and Possible Control Measures

Detritivorous Flies

Threat posed
Desirability for control
Likelihood of success

Unclear On pest control grounds Low

Insecta: Diptera:

A		•••	
ΔΙΙΔΝ	species -	nneeih	IV 5()

Leptocera subtinctipennis

Thoracochaeta brachystoma

Alien species - possibly 50			
Sylvicola cinctus	Anisopodidae	decaying leaf litter, compost	Common Window Gnat
Lucilia sericata	Calliphoridae	carrion	Common Green Bottle Fly
Calliphora croceipalpis	Calliphoridae	carrion	African Blowfly
Sarcophaga argyrostoma	Calliphoridae	carrion	
Sarcophaga exuberans	Calliphoridae	carrion	
Sarcophaga haemorrhoidalis	Calliphoridae	carrion	Red-tailed Flesh Fly
Sarcophaga inaequalis	Calliphoridae	carrion	
Sarcophaga redux	Calliphoridae	carrion	
Drosophila simulans	Drosophilidae	decaying fruit - especially pickly pear	
Drosophila repleta	Drosophilidae	purid material, including dung, especially from pig	Dark-eyed Fruit Fly
Drosophila immigrans	Drosophilidae	decaying fruit	
Drosophila punctatonervosa	Drosophilidae	?	
Zaprionus vittiger	Drosophilidae	decaying organic mattter & possibly dead wood	
Zaprionus tuberculatus	Drosophilidae	decaying organic mattter & possibly dead wood	
Fannia canicularis	Fanniidae	decaying organic waste - eg dustbins	Lesser Housefly
Fannia perpulchra	Fanniidae	?	
Lamprolonchaea smaragdi	Lonchaeidae	?to do with fruit	
Lonchaea avida	Lonchaeidae	?	
Milichiella lacteipennis	Milichiidae	feed on aphid honeydew	
Euryomma peregrinum	Muscidae	decaying vegetable matter and carrion	
Musca domestica	Muscidae	decaying organic waste - eg dung, dustbins	Housefly
Musca autumnalis	Muscidae	nuisance pest of livestock - breed in dung	Face Fly
Dasyphora cyanella	Muscidae	breeds in cattle dung	Green Cluster Fly
Hydrotaea capensis	Muscidae	larvae in carrion	
Muscina stabulans	Muscidae	carrion, stable litter, primitive toilets	False Stable Fly
Muscina prolapsa	Muscidae		
Stomoxys calcitrans	Muscidae	larvae in dung, adults livestock nuisance pests	Stable Fly
Atherigona orientalis	Muscidae	agricultural pest of tomatos	Pepper Fruit Fly, Tomato Fruit Fly
Leia arsona	Mycetophilidae	rotting plant material, roots, compost	
Dohrniphora cornuta	Phoridae	decaying animal and plant material	
Psychoda pencillata	Psychodidae	?	
Psychoda surcoufi	Psychodidae	wide range of moist materials, from cow dung to decaying leaves or potatos	
Coboldia fuscipes	Scatopsidae	?	Minute Black Scavenger Fly
Lycoriella sp.	Sciaridae	larvae in damp compost etc - pests of seedlings	biocontrol by mites has been researched
Leptocera nigra	Sphaeroceridae	decaying carrion	
Phthitia longisetosa	Sphaeroceridae	?	
Leptocera fontinalis	Sphaeroceridae	?	
Leptocera fuscipennis	Sphaeroceridae	?	

Sphaeroceridae

Sphaeroceridae

larval sites include dead bodies

Trachyopella leucoptera Sphaeroceridae ? Elachisoma aterrimum Sphaeroceridae ?

Coproica vagans Sphaeroceridae ? cattle dung ?

Coproica hirtulaSphaeroceridae?Gonioneura spinipennisSphaeroceridae?Pullimosina heteroneuraSphaeroceridae?Pullimosina moestaSphaeroceridae?Opacifrons coxataSphaeroceridae?

Related Endemic/Indigenous species - possibly 8

Anarista vittata Asteiidae Hecamede brasiliensis Ephydridae Scatella sp. 1 Ephydridae Scatella sp. 2 Ephydridae Dicranomyia basilewskyana Limoniidae Dicranomyia loveridgeana Limoniidae Dicranomyia sanctaehelenae Limoniidae Aubertinia sanctaehelenae Sphaeroceridae

Ecology

The larvae of many live in detritus or other rotting organic material, but their actual role, whether saprobic or predatory is often not known.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

A significant proportion of non-indigenous flies are members of the saprobic/detritivore communities, usually in moist to wet decay conditions and. as such, may compete with indigenous species although this would be difficult to quantify.

iv Effects on invertebrate habitats

Large numbers of fly maggots in wet litter decaying wood perhaps may adversely change its characteristics fand hence suitability for indigenous species, though this would be difficult to assess.

v Pest effects for people

Some as adults are veterinary or medical biting or nuisance pests.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Biocontrol measures have had some success against species like stable flies in other countries.

iii Possible dangers of biocontrol measures

The presence of related endemic species

Herbivore Dung Fauna

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Coleoptera: & Diptera

Alien species - 3

Labarrus (Aphodius) pseudolividus Calamosternus (Aphodius) granarius Ataenius heinekeni Scarabaeidae/Aphodiidae Scarabaeidae/Aphodiidae Scarabaeidae/Aphodiidae

Scathophaga stercoraria soror Scathophagidae

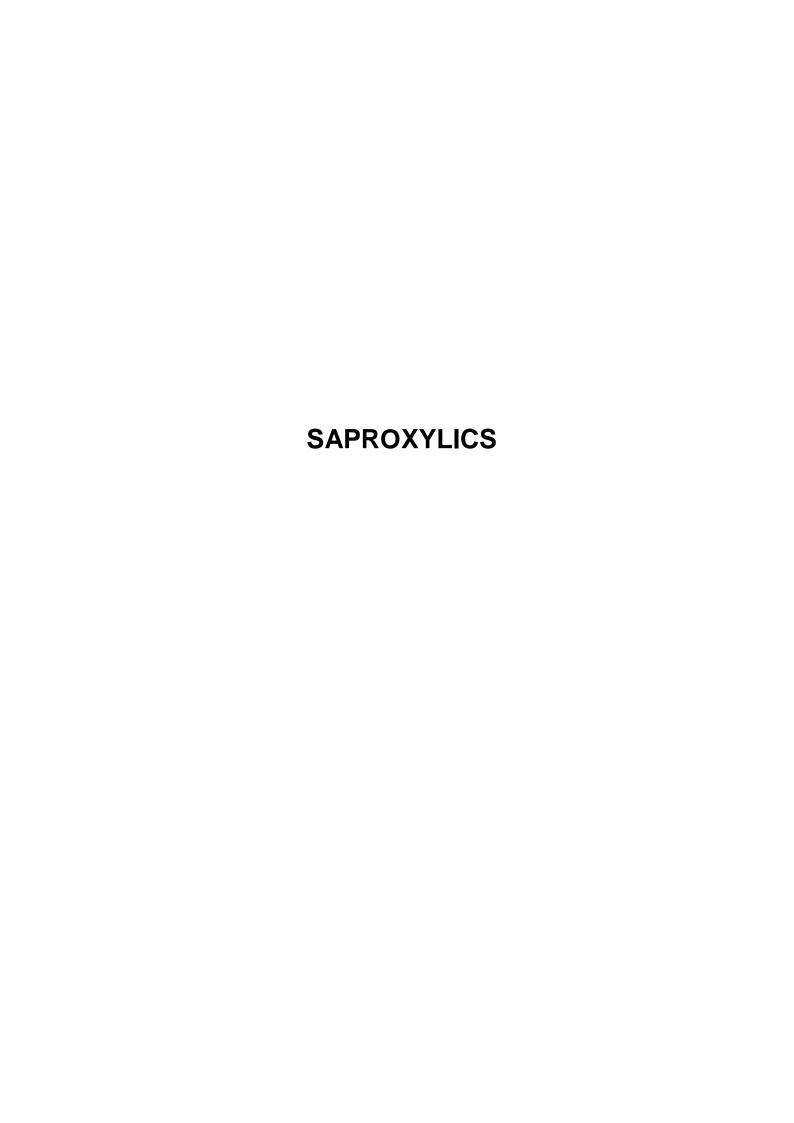
Related Endemic/Indigenous species - 0

Ecology

Mainly pasture. Feeding in herbivore dung, sheep, goat, cow & donkey. *Aphodius granarius* also feeds on wet decaying plant litter, including strandline seaweed on the beach. *Scathophaga stercoraria* is actually predatory as adults on other flies.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects


Aphodius granarius may be a minor competitor within the detritivore community. There are no indigenous dung beetles on St Helena.

v Pest effects for people

None. Beneficial in causing the degradation of dung.

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Not desirable
- ii Likelihood of safe biocontrol measures & precedence Not desirable

Termites

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Blattodea or Isoptera:

Alien species - 2

Cryptotermes brevis Kalotermitidae Heterotermes perfidus Rhinotermitidae

Related Endemic/Indigenous species - 0

none

Ecology

In buildings, and areas with shrubs and trees. In timber, including seasoned building wood & furniture and wood of dead and decaying wood in plantation and natural forest.

Possible effects on St Helena's indigenous/endemic invertebrates

iv Effects on invertebrate habitats

Destruction of the decaying wood habitat of saproxylic invertebrates, reported to be mainly of non-indigenous trees (Ashmole & Ashmole, 2000, St. Helena and Ascension Island: A Natural History. Anthony Nelson.) *Heterotermes perfidus* may have the potential to reduce the opportunity of the endemic saproxylic fauna to colonise decaying wood of non-indigenous trees. The Forestry department is likely to know more about the severity of threat and potential for control.

v Pest effects for people

Destruction of wood, including buildings and furniture. Effects on forest trees.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Research has been carried out looking at the use of entomopathogenic fungi of the control of forest termites. http://www.icup.org.uk/reports%5Cicup008.pdf

iii Possible dangers of biocontrol measures

Dependent on specificity of any proposed biocontrol agent.

Saproxylic weevils

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Coleoptera: Curculionidae

Alien species - 3

Pseudophloeophagus aeneopiceus Calyciforus excavatus Stenoscelis hylastoides

Related Endemic/Indigenous species

These saproxylic weevils are in the same subfamily (Cossoninae) as the majority of the 77 endemic weevils present on St Helena.

Ecology

In many types of habitat with woody plants, including indigenous and commercial forest, scrub and hedgerow trees. Feeding in decaying wood from thin gorse twigs to large decay-cavities in *Erythrina* trees.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

Unclear

iv Effects on invertebrate habitats

Pseudophloeophagus aeneopiceus is a large species and its burrows may change the nature of the decaying timber it inhabits, possibly to the detriment to other species.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Not desirable

ii Likelihood of safe biocontrol measures & precedence

Not desirable

iii Possible dangers of biocontrol measures

Too closely related to a large number of endemic species with similar lifestyles.

Non-indigenous Animal Taxa on St Helena – Effects and Possible Control Measures

Slugs and Snails

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Mollusca:

Alien species - 21

Alleli Species - Zi			
Arion ater-rufus	Arionidae		anywhere with moist vegetation, horticultural pest
Arion hortensis	Arionidae	Garden Slug	horticultural pest - herbage, litter, in soil, crevices etc
Cochlicopa lubrica	Cochlicopidae	Glossy Pillar	moist, well vegetated places
Carychium tridentatum	Ellobiidae		moist, well vegetated places
Cecilioides acicula	Ferussaciidae	Blind Awlsnail	subterranean - amongst rocks, including in dry places
Fruiticicola sp.	Helicidae		
Helicidae indet.	Helicidae		
Helicigona sp.	Helicidae		(or or Chilostoma sp.)
Helix aspersa	Helicidae	Garden	anywhere with vegetation - including surprisingly dry places
nem aspersa	Trendade	Snail	- horticultural pest
Deroceras	Limacidae	Grey	major pest species - moist litter, grass, under stones & bark
	Limacidae	•	major pest species - moist litter, grass, under stones & bark
reticulatum		Garden	
Dh II	Discontists a	Slug	
Physella acuta	Physidae	Tadpole Snail	still or slow flowing water, including that low in oxygen
Planorbarius sp.	Planorbidae		still or slow flowing water, including that low in oxygen - the
•			UK species (<i>P.corneus</i>) is often spread via aquaria
Paralaoma servilis =	Punctidae		New Zealand species - recognised world invasive. Leaf litter
Punctum pusillum			3
Lauria cylindracea	Pupillidae	Common	rocks, screes, woodland & grassland
Lauria cymraracca	Tupilliaac	Chrysalis	rocks, screes, woodiand & grassiand
		Snail	
On any numerily ma	م ماه نمانی است		was and ad as a week in wasseries in Format, bis southed by
Opeas pumilum	Subulinidae	Dwarf	regarded as a pest in nurseries in Egypt, biocontrol by
		Awlsnail	nematodes has been researched - see
			http://www.cabdirect.org/abstracts/20123093886.html;jses
			sionid=074DD34B18EB1779AE1FB10DEFC265EE
Vallonia excentrica	Valloniidae	Eccentric Vallonia	dry, grassy, often rocky places
Columella	Vertiginidae		IUCN Red Listed (least concern) species from the Azores,
microspora			Canaries and Madeira - see
,			http://www.iucnredlist.org/details/156991/0
Vertigo pygmaea	Vertiginidae	Crested Vertigo	dry grassy places
Euconulus fulvus	Zonitidae	3-	moist, well vegetated places
Oxychilus alliarius	Zonitidae	Garlic Snail	amongst litter, under stones etc - also gardens
Oxychilus cellarius	Zonitidae	Carne Snan	moist litter, under stones & wood. Caves
Chycinias cenarias	Lominat		moist inter, under stories & wood. Caves

Related Endemic/Indigenous species – 2 (+18 extinct endemic species)

Helenoconcha relictaCharopidaeNesopupa turtoniVertiginidaeSuccinea sanctaehelenaeSuccineidae

Ecology

All alien species on St Helena are either phytophagous, either on the foliage of higher plants or encrusting algae, or are detritivorous,.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

Some of the smaller species may possible compete with the two smaller endemic species *Helenoconcha relicta* and *Nesopupa turtoni* but that would be difficult to assess.

iv Effects on invertebrate habitats

Some species almost certainly have a very considerable effect on plant species composition, especially in the revegetation of denuded areas. Densities (at least of dead shells) of *Helix aspersa* at places such as The Millennium Forest are extraordinarily high and very large quantities of snail faeces indicate that a large volume of plant material is being eaten, even in very sparsely vegetated areas. Together with rabbits, the influence that they have on St Helena's vegetation may be considerable. (An experimental mollusc & rabbit exclosure treated with slug-pellets in the Millennium Forest might prove an interesting experiment!).

The two aquatic species in still and slow-flowing water bodies and in particular seepages may conceivably change the character of organic build-up to the detriment of indigenous/endemic freshwater crustaceans, craneflies and simuliid flies.

v Pest effects for people

Many are horticultural pests.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Nematode worm parasites are used as biocontrol agents elsewhere against slugs and snails that are important pest species. While this could be possible in more moist areas, the worms require damp soil and would likely be less effective in the drier areas of St Helena where the effects on vegetation may be more severe. Sciomyzid flies, parasitoids of snails, have been used for the control aquatic/semi-aquatic species for disease control purposes.

iii Possible dangers of biocontrol measures

The remaining endemic species of mollusc might well be at risk to biocontrol agents and rigorous research on vulnerability to any possible control agents would be needed.

Aphids & scale insects

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Hemiptera: Stenorhyncha:

Alien species - 59

Aleurocanthus sp.	Aleyrodidae		Saissetia somereni	Coccidae	Black Scale
Aleurothrixus floccosus	Aleyrodidae	Wooly Whitefly	Dactylopius coccus	Dactylopiidae	Cochineal Insect
Aleurotrachelus atratus	Aleyrodidae	Coconut Whitefly	Abgrallaspis cyanophylli	Diaspididae	Cyanophyllum Scale
Trialeurodes vaporariorum	Aleyrodidae	•	Aonidiella aurantii	Diaspididae	California Red Scale
Aphis craccivora	Aphididae	Cowpea Aphid	Aonidiella citrina	Diaspididae	Yellow Scale
, Aphis fabae	Aphididae	Black Bean Aphid	Aonidiella orientalis	Diaspididae	Oriental Scale
, Aphis gossypii	Aphididae	Melon or Cotton	Aulacaspis crawii	Diaspididae	
Aphid	,		Aulacaspis rosarum	Diaspididae	
Aulacorthum solani	Aphididae	Foxglove Aphid	Chrysomphalus pinnulifer	Diaspididae	
Brachycaudus helichrysi	Aphididae	Leaf Curl Plum	Diaspis brumeliae	Diaspididae	Pineapple Scale
,	•	Aphid	Diaspis echinocacti	Diaspididae	Cactus Scale
Brevicoryne brassicae	Aphididae	Cabbage Aphid	Hemiberlesia lataniae	Diaspididae	Latania Scale
Macrosiphum euphorbiae	Aphididae	Potato Aphid	Lepidosaphes beckii	Diaspididae	Citrus Mussel Scale
Macrosiphum rosae	Aphididae	Rose Aphid	Morganella longispina	Diaspididae	Champaca Scale
Myzocallis castanicola	Aphididae	Sweet Chestnut	Pseudaulacaspis pentagona	Diaspididae	White Peach (or Plum)
•	,	Aphid	, , ,	•	Scale
Myzus ornatus	Aphididae	Ornate Aphid	lcerya purchasi	Margarodidae	Cottony Cushion Scale
Myzus persicae	Aphididae	Peach Potato	Insignorthezia insignis	Ortheziidae	Jacaranda Bug, Ensign
•		Aphid			Scale
Neotoxoptera oliveri	Aphididae	Marigold Aphid	Dysmicoccus brevipes	Pseudococcidae	Pineapple Mealybug
Pentalonia nigronervosa	Aphididae	Banana Aphid	Paracoccus burnerae	Pseudococcidae	Oleander Scale
Rhopalosiphoninus latysipho	n Aphididae	Bulb-and-Potato	Paracoccus sporoboli	Pseudococcidae	
		Aphid	Planococcus citri	Pseudococcidae	
Rhopalosiphoninus sp.	Aphididae		Planococcus minor	Pseudococcidae	Passionvine Mealybug
Rhopalosiphum maidis	Aphididae	Corn Leaf Aphid	Pseudococcus comstocki	Pseudococcidae	Comstock Mealybug
Rhopalosiphum padi	Aphididae	Bird Cherry-Oat	Pseudococcus longispinus	Pseudococcidae	Long-tailes Mealybug
		Aphid	Pseudococcus maritimus	Pseudococcidae	Grape Mealybug
Sitobion sp.	Aphididae		Pseudococcus viburni	Pseudococcidae	Obscure Mealybug
Toxoptera aurantii	Aphididae	Black Citrus Aphid	Rhizoecus dianthi	Pseudococcidae	Blind Mealybug
Toxoptera citricidus	Aphididae	Brown Citrus	Rhizoecus falcifer	Pseudococcidae	Ground Mealybug
		Aphid	Rhizoecus graminis	Pseudococcidae	Graminis Ground
Coccus hesperidum	Coccidae	Soft Scale			Mealybug
Coccus longulus	Coccidae	Long Brown Scale	Trioza erytreae	Psyllidae	African Citrus Psyllid
Parasaissetia nigra	Coccidae	Nigra Scale			
Pulvinaria psidii	Coccidae	Guava Mealy			
		Scale			
Saissetia coffeae	Coccidae	Hemispherical			

Related Endemic/Indigenous species - 1

Ripersiella mediatlantica (scale insect)

Ecology

Scale

All vegetated habitats. Phytophagous, most alien species are polyphagous. Many species live in dense aggregations.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

These are likely to compete with many indigenous phytophagous species, probably most intensively with indigenous thrips, and plant-hoppers, but effects of the nutritional value and physical condition of the foliage and stems of infested foodplants are likely adversely to affect many/all species of phytophagous invertebrates. Honeydew and various fungal growths upon it may affect likelihood of oviposition by indigenous phytophagous insects as well likelihood of success of completion of development.

iv Effects on invertebrate habitats

Some species produce very severe effects on plant health, even death, of foodplants which will affect indigenous species – see above.

v Pest effects for people

Many/most are pests of cultivated agricultural, forestry and garden plants

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Low

ii Likelihood of safe biocontrol measures & precedence

Variable - some species already under some degree of control - many parasitoid wasp, spider and ladybird control measures have been used on St Helena and for other species around the world

iii Possible dangers of biocontrol measures

There is a single endemic species of mealy-bug. Various non-specific predators and parasitoids have been introduced to St Helena in the past and this should not be repeated.

Additional References

There is a huge literature on this subject and it would be inappropriate to chose but a few – best left to the pest control departments.

Plant Bugs & Hoppers

Threat posed
Desirability for control
Likelihood of success

Ilhurnia ianahilia

Dolphacidae

Taxonomy

Insecta: Hymenoptera:

Alien species - 11

Cardiactathus hisolar

Cletus capensis Coreidae fruit feeding - also known as plant disease vector Cenaeus carnifex Pyrrhocoridae seeds of herbaceous plants polyphagous – on Hawaii particularly on tree ferns Sophonia orientalis Cicadellidae Balclutha saltuella Cicadellidae on grasses Cicadellidae Cicadellidae sp. 2 Empoasca sp. Cicadellidae ?polyphagous, possibly particularly on Solanaceae rood feeder, possibly on Apiaceae Aethus pallidipennis Cydnidae Polyphagous - twigs of broadleaved trees Issus coloeptratus Issidae Sweetocoris minutus Lygaeidae

Trigonotylus dohertyi Miridae ?possibly grasses

Anthocoridae

Nezara viridula Pentatomidae polyphagous – usually shrubby plants & trees

Teleonemia scrupulosa Tingidae biocontrol agent for Lantana

Related Endemic/Indigenous species – 43

Cardiastethus bicolor	Anthocoridae	Ilburnia ignobilis	Delphacidae
Cardiastethus exiguus	Anthocoridae	Sogatella kolophon	Delphacidae
Lasiochilus contortus	Anthocoridae	Toya propinqua	Delphacidae
Lyctocoris campestris	Anthocoridae	Toya thomasseti	Delphacidae
Metacanthus concolor	Berytidae	Toya tuberculosa	Delphacidae
Plyapomus longus	Berytidae	Nysius ericae	Lygaeidae
Argaterma alticola	Cicadellidae	Nysius sanctaehelenae	Lygaeidae
Argaterma multisignata	Cicadellidae	Agrametra aethiops	Miridae
Atlantisia leleupi	Cicadellidae	Creontiades pallidus	Miridae
Chlorita edithae	Cicadellidae	Helenocoris horridus	Miridae
Cicadellidae sp. 1	Cicadellidae	Hirtopsallus suedae	Miridae
Nehela vulturina	Cicadellidae	Insulopus asteri	Miridae
Nyhimbricus wollastoni	Cicadellidae	Lopsallus flavosparsus	Miridae
Sagmatiini sp.	Cicadellidae	Naresthus hebes	Miridae
Sanctahelenia decellei	Cicadellidae	Neisopsallus lutosus	Miridae
Sanctahelenia insularis	Cicadellidae	Neisopsallus vinaceus	Miridae
Sanctahelenia sanctaehelenae	Cicadellidae	Oligobiella fuliginea	Miridae
Stonasla consors	Cicadellidae	Orthops mutabilis	Miridae
Stonasla undulata	Cicadellidae	Taylorilygus apicalis	Miridae
Helenolius dividens	Cixiidae	Tytthus parviceps	Miridae
Helenolius insulicola	Cixiidae	Macrorhaphis wollastoni	Pentatomidae
Ilburnia dianae	Delphacidae		

Ecology

Almost any ny vegetated habitat. Phytophagous on foliage/stems— most (?all) are polyphagous with the exception of *Teleonemia scrupulosa* – biocontrol agent for *Lantana*. *Issus* is mainly on shrubs & trees.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

May potentially compete with indigenous species.

iv Effects on invertebrate habitats

There may be adverse effects on indigenous host food-plants.

v Pest effects for people

At least one species *Nezara viridula* can be pest on crops and *Sophonia orientalis* is both a serious crop pest and deleterious to indigenous flora elsewhere in the world.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats low

ii Likelihood of safe biocontrol measures & precedence

Parasitoid wasps have been used to control other species of leafhopper elsewhere in the world. Inadvertently introduced Mymarid wasp egg parasites have achieved control of *Sophonia orientalis* on Hawaii http://www.cabi.org/isc/?compid=5&dsid=50605&loadmodule=datasheet&page=481&site=144. However, scelionid parasitoids *Trissolcus basalis* introduced to Hawaii to control *Nezara viridula* on Hawaii turned out out to be non-specific and are now regarded as invasives in their own right https://www.extento.hawaii.edu/kbase/crop/type/nezara.htm

iii Possible dangers of biocontrol measures

Given the number of indigenous related species, specificity of any biocontrol agent should be assured before any biocontrol agent is considered.

Thrips

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Thysanoptera:

Alien species - 8

Aeolothrips fasciatusAeolothripidaeHaplothrips gowdeyiPhlaeothripidaeLiothrips vaneeckeiPhlaeothripidaeNesothrips propinquusPhlaeothripidae

Heliothrips haemorrhoidalisThripidaeHercinothrips bicinctusThripidaeTaeniothrips simplexThripidaeThrips tabaciThripidae

Related Endemic/Indigenous species - 2

Helenothrips tinctus Thripidae
Diceratothrips meridionalis Phlaeothripidae

Ecology

All areas with vegetation. Phytophagous, usually on leaves, soft stems, flowers and fruits. Some species are highly plant species specific, but most (?all) alien species are polyphagous.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

Alien species may possibly compete with indigenous thrips, bark-flies and plant-hoppers.

iv Effects on invertebrate habitats

Effects on health and quality of foodplants from high infestations and plant stress may affect indigenous species of plant feeding invertebrates.

v Pest effects for people

None

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Anthocorid bugs, parsitoid wasps, predatory mites, parasitic nematodes and pathogenic fungi have all been researched for control of thrips

iii Possible dangers of biocontrol measures

Presence of indigenous species.

Additional References

http://biocontrol.ucr.edu/wft.html#Efficacy Trials With Predators and Parasites

Plant-feeding Beetles

Threat posed
Desirability for control
Likelihood of success

Unclear mainly pest control grounds variable

Taxonomy

Insecta: Coleoptera:

Alien species - 22 (21)

Ernobius mollis Anobiidae timber pest on conifers

(Anobium punctatum, Anobiidae pest of building and furniture timber indoors)

Curtomerus flavusCerambycidaetimber pestCoptops aedificatorCerambycidaefruit tree pest

(*Uroplata girardi* Chrysomelidae *Lantata* biocontrol agent)

Phratora vulgatissima Chrysomelidae leaf feeder on Salicaceae (potential for biocontrol?)

Diachus auratus Chrysomelidae leaf feeder on wide variety of trees and herns, including crop species

Naupactus godmanni* Curculionidae leaf feeder, polyphagous, but pest of fruit

Sitona lineatus Curculionidae leaf/root feeder on Fabaceae – pea and bean pest

Otiorrhynchus sulcatus Curculionidae vine weevil – polyphagous - root feeder

Phlyctinus callosusCurculionidaepest of fruitGoniopterus scutellatusCurculionidaepest of EucalyptusHypohypurus aequatorialisCurculionidaeno information

Baris scolopacea* Curculionidae on Chenopodiaceae, including Sueda

Cosmopolites sordidus Curculionidae pest on banana roots

Sciobius tottus* Curculionidae S. African species – leaf feeder

Brachypeplus depressusNitidulidaeon EucalyptusLasiodites maculatusNitidulidaepest of fruitAdoretus versutusScarabaeidaepest of fruit

Heteronychus arator* Scarabaeidae root pest especially of grass and in gardens

Hylurgus ligniperda*Scolytidaebark feederXyleborus aemulus*Scolytidaebark feeder

Related Endemic/Indigenous species

Species here are selected on lifestyle rather than taxonomy. There are indigenous/endemic species in the families Chrysomelidae, Curculionidae, & Scarabaeidae,

Ecology

Variously agricultural land, pasture, forestry and gardens, though several of the more polyphagous species are widespread in indigenous vegetation (asterisked above). Leaf, stem or root feeding beetles, either as adults, larvae or both. Included are xylophagous (as opposed to saprozylic) species that feed on either bark, cambium or living wood, mainly through probably not exclusively on forest or fruit trees. Also included here the woodworm *Anobium punctatum* an indoor pest of furniture, building timber etc

Possible effects on St Helena's indigenous/endemic invertebrates

iv Effects on invertebrate habitats

Some species that also feed on indigenous plants may have a deleterious effect on foodplant availability or quality, but this is unknown.

v Pest effects for people

High – see table

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Because of their pest status, a number of these species may be subject to biocontrol projects elsewhere in the world.

iii Possible dangers of biocontrol measures

^{*} several of the more polyphagous species are widespread in indigenous vegetation.

There are related endemic and indigenous species which is biological control for these species.	must be taken into account when considering any

Non-indigenous Animal Taxa on St Helena – Effects and Possible Control Measures

Moths & Butterflies

Threat posed
Desirability for control
Likelihood of success

Variable
On pest control grounds
Variable

Taxonomy

Insecta: Lepidoptera:

Alien species - 38

Alleli species - 30				
Diaphania indica	Crambidae	Cucumber Moth	polyphagous	crop pest
Uresiphita gilvata	Crambidae		polyphagous	
Spoladea recurvalis	Crambidae	White-striped Moth	polyphagous	crop/indigenous species pest
Cnaphalocrocis poeyalis	Crambidae	Lesser Rice-Leafroller	grasses	crop pest (rice)
Hydriris ornatalis	Crambidae		Convolvulaceae	
Herpetogramma licarsisalis	Crambidae	Grass Webworm	grasses	pest of turf & pasture
Bedellia somnulentella	Lyonetiidae	Sweet Potato Leaf Miner	Convolvulaceae	pest of sweet potatos
Endrosis sarcitrella	Oecophoridae	White-shouldered House Moth	plant detritus and keratin	indoor pest
Hofmannophila	Oecophoridae	Brown House Moth	keratin etc	indoor pest
pseudospretella				
Plutella xylostella	Plutellidae	Diamondback Moth	Brassicaceae	crop pest
Pyralis farinalis	Pyralidae	Meal Moth	flour & bran	stored product pest
Cactoblastis cactorum	Pyralidae	Cactus Moth	Opuntia sp	biocontrol of tungi
Etiella zinckenella	Pyralidae		Fabaceae	pea and bean pest
Aphomia sociella	Pyralidae	Bee Moth	Bee wax	pest of honey-bees
Erechthias minuscula	Tineidae	Erechthias Clothes Moth	dead plant material	
Monopis crocicapitella	Tineidae		animal and plant detritus	
Opogona omoscopa	Tineidae		decaying vegetation	
Opogona sacchari	Tineidae	Banana Moth	polyphagous	crop pest
Tinea pellionella	Tineidae		keratin etc	carpets and woollen clothes pest
Lozotaenia capensana	Tortricidae		polyphagous	p
Crocidosema plebejana	Tortricidae		Malvaceae	pest of cotton
Cryptophlebia leucotreta	Tortricidae	False Coddling Moth	polyphagous	crop pest
Argyresthia curvella	Yponomeutidae	Apple Blossom Tineid	Rosaceae	pest of fruit trees
Agrius convolvuli	Sphingidae	Convolvulus Hawkmoth	Convolvulaceae	·
Achaea catella	Noctuiidae		Polyphagous	May defoliate trees
Agrotis segetum	Noctuiidae	Turnip Moth, Cutworm	Polyphagous on roots	crop pest
Anomis flava	Noctuiidae	•	Malvaceae	
Hypena laceratalis	Noctuiidae	Lantana Defoliator	Lantana	biocontrol agent
Hypocala rostrata	Noctuiidae		Ebenaceae Sapotaceae	
Ophiusa tirhaca	Noctuiidae		Pistachia, <mark>Schinu</mark> s	
Simplicia extinctalis	Noctuiidae		polyphagous	pest of coffee
Pandesma robusta	Noctuiidae		polyphagous	
Ctenoplusia limbirena	Noctuiidae	Scar Bank Gem	polyphagous	
Condica pauperata	Noctuiidae		unknown	possibly polyphagous
Schrankia costaestrigalis	Noctuiidae		polyphagous	
Inachis io	Nymphalidae	European Peacock	nettles	not established
Papilio demodocus	Papilionidae	Citrus Swallowtail, Orange Dog	Citrus	pest of oranges etc – not established
Pieris brassicae	Pieridae	Large White	Brassicaceae	pest of cabbages – not established

Related Endemic/Indigenous species - 80

Ecology

It is perhaps inappropriate to attempt summary of the ecology of a whole order. Caterpillars of alien invasive species on St Helena feeds on a very wide variety of introduced and indigenous/endemic plants of most taxa, many of them being very broadly polyphagous. A few are specific to one or a small number of plants and many are serious pests of crop plants and two have been used as biocontrol agents of invasive plants. A small number are detritivorous.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

Certain species, for example *Spoladea recurvalis* may completely defoliate indigenous species and thus deny endemic Lepidoptera access to foodplants, at least locally. By hugely increasing the abundance and biomass of lepidopterous larvae, this may lead to a much great abundance of unspecific hymenopterous parasitoids which may have a deleterious effect on indigenous species

iv Effects on invertebrate habitats

Stress effects on indigenous plants supporting high infestations of alien species may affect the availability and quality of foliage for indigenous moth species.

v Pest effects for people

Many are crop pests and a few damage clothes, carpets etc indoors.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Parasitoids have been used widely against problem Lepidoptera and there is a wide literature.

iii Possible dangers of biocontrol measures

Few, however, are truly monophagous and indigenous/endemic Lepidoptera are very likely to be at risk. All future biocontrol measure proposals must be assessed against strict internationally accepted criteria on specificity of action.

Non-indigenous Animal Taxa on St Helena – Effects and Possible Control Measures

Phytophagopus Flies

Threat posed
Desirability for control
Likelihood of success

Insecta: Diptera:

Alien	species -	possibly	15
06.40		:-	

Phytomyza atricornis	Agromyzidae		Pea Leaf Miner
Liriomyza brassicae	Agromyzidae	pest of cabbage family crops	Serpentine Leaf Miner
Liriomyza huidobrensis	Agromyzidae	polyphagous leaf miner crop pest	Pea Leafminer
Delia platura	Anthomyiidae	polyphagous pest of crop seedlings	Seedcorn maggot, Bean seed fly
Elachiptera sacculicornis	Chloropidae	phytophagous - leguminous trees	
Drosophila simulans	Drosophilidae	decaying fruit - especially pickly pear	
Drosophila immigrans	Drosophilidae	decaying fruit	
Drosophila punctatonervosa	Drosophilidae	?	
Scaptomyza pallida	Drosophilidae	leaf miner - often in Allium sp	
Lamprolonchaea smaragdi	Lonchaeidae	?to do with fruit	
Lonchaea avida	Lonchaeidae	?	
(Milichiella lacteipennis	Milichiidae	feed on aphid honeydew)	
Ceratitis capitata	Tephritidae	serious fruit crop pest	Mediterranean Fruit Fly
Dioxyna sororcula	Tephritidae	feeds in Asteraceae seed head - pest in other places	
Dacus ciliatus	Tephritidae	pest of Cucurbitaceae fruit & vegetatbles	Lesser Pumpkin Fly

Related Endemic/Indigenous species -unclear - possibly none

Ecology

Mainly either leaf or seed miners which may be highly specific or generalist, or feeding on very ripe or overripe fruit.

Possible effects on St Helena's indigenous/endemic invertebrates

possibly none, although indigenous species may be vulnerable to biocontrol methods used to target pest species if insufficiently host-specific

v Pest effects for people

Most are crop pests.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Biocontrol measures have had some success against dipterous crop pests in other countries.

iii Possible dangers of biocontrol measures

Possible effects on distantly related endemic species.

Non-indigenous Invertebrate Taxa on St Helena – Effects and Possible Control Measures

Rabbits (and Goats)

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Mammalia:

Alien species - 2

Goat Capra hircus Capridae
Rabbit Oryctolagus cuniculus Leporidae

Related Endemic/Indigenous species - 0

Ecology

Two grazers which have had devastating effect on invertebrate habitat.

Possible effects on St Helena's indigenous/endemic invertebrates

iv Effects on invertebrate habitats

Goats in particular have destroyed whole habitats for invertebrates on St Helena, and rabbits are almost certainly still preventing revegetation of many denuded areas and heavily influencing what vegetation is able to re-establish, favouring unpalatable alien species.

v Pest effects for people

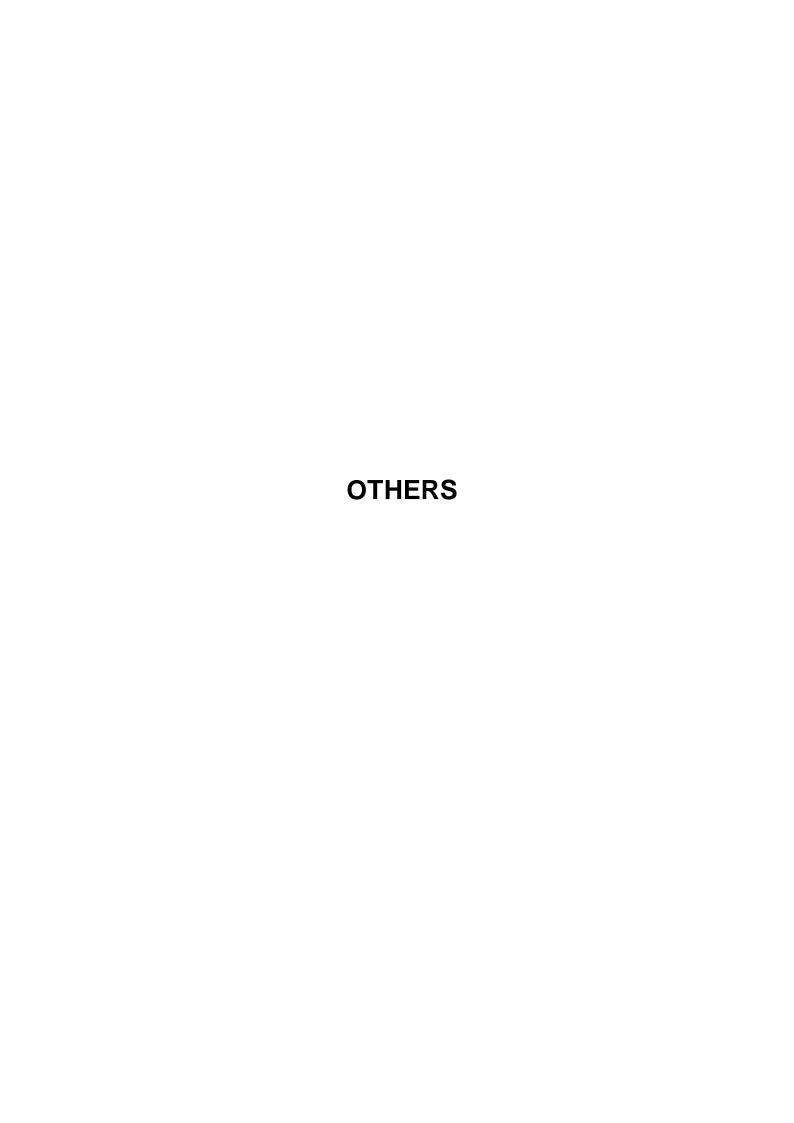
Presumably rabbits are regarded as an agricultural pest?

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats

Has so far been successful with goats. New Zealand companies have had considerable success on some isolated islands in eradicating rabbits.

ii Likelihood of safe biocontrol measures & precedence


Two viral diseases have been used with variable success against rabbits, but their use in the UK is illegal.

iii Possible dangers of biocontrol measures

none

Other Comments

Rabbits are hunted for sport or food on the island. Attempts to control mammal species are likely to be controversial, possibly internationally, on animal rights issues. Education and awareness raising would need to be included in any control programme.

Ants

Threat posed
Desirability for control
Likelihood of success

Insecta: Hymenoptera: Formicidae:

Alien species - 13
Hypoponera punctatissima
Pheidole megacephala
Cardiocondyla emeryi
Solenopsis globularia
Solenopsis sp.
Tetramorium caldarium
Tapinoma melanocephalum

Plagiolepis alluaudi
Paratrechina bourbonica
Paratrechina longicornis
Linepithema humile
Monomorium latinode
Monomorium sechellense

Related Endemic/Indigenous species - (?1)

There is one purported endemic (Camponotus fabricator) but this is now thought to be an establishment from an unknown area (see

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=12&ved=0CDIQFjABOAo&url=http%3A%2F%2Fwww.researchgate.net%2Fpublication%2F253771832_Ants_(Hymenoptera_Formicidae)_of_the_South_Atlantic_islands_of_Ascension_Island_St_Helena_and_Tristan_da_Cunha%2Ffile%2F60b7d5258d2b41efe9.pdf&ei=T-jvUuv-GuWK7AbbzYCgBg&usg=AFQjCNGORTX4pH3TqAr7-CYTdBbhF2FuDw&cad=rja_)

Ecology

Relatively indiscriminate predators on most groups of invertebrates, social nesting in various bioptopes dependent on species. Several species have symbiotic relationship with alien stenorhynchine Hemptera (aphids and scale insects) and actively remove/destroy natural predators and competitors of their 'livestock' from the vegetation on which they are reared. They have colonised all terrestrial biotopes on St Helena, damp, dry, densely & sparsely vegetated. Some species lapicolous, others in decaying dead wood, grassland soils, plant litter and moss.

Possible effects on St Helena's indigenous/endemic invertebrates

i Predatory Effects

Collectively, possibly the most significant invertebrate predators on most groups of terrestrial invertebrates on the island. Especially likely to be significant in decaying dead wood (eg in gumwood forest, where a very high proportion of larger dead wood harbours ant nests rather than endemic saproxylics) and under stones in dry zones

iv Effects on invertebrate habitats

Considerable change to saproxylic habitats through their burrowing activity.

Degrading/deterioration of foliage quality of foodplant of phytophagous species through their symbiotic 'cultivation' of alien stenorhynchines - aphids and scale insects and subsequent stressing of plants, coating with waxes or honeydews and sooty moulds

v Pest effects for people

Some species bite or sting, others cultivate aphids and scales on agricultural or forest crops or garden plants.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats

Possible – there is considerable precedence around the world using poisoned baits, including on fairly comparable islands such as Hawaii http://www.ens-newswire.com/ens/oct2010/2010-10-25-092.html and the Seychelles http://www.ncbi.nlm.nih.gov/pubmed/21340553

ii Likelihood of safe biocontrol measures & precedence

Possible - phorid flies of the genus *Pseudacteon* have been used against fire ants in the US.

iii Possible dangers of biocontrol measures

Probably none if species exclusively predatory/parasitic on ants are used

Additional References

http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-invertebrates/antsnz/invasive-ants http://www.landcareresearch.co.nz/science/plants-animals-fungi/animals/invertebrates/invasive-invertebrates/antsnz/invasive-ants/inforamtion-sheets

Barkflies/Barklice

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Insecta: Psocoptera:

Alien species - 10

Ectopsocus briggsi	Ectopsocidae	Trichopsocus clarus	Trichopsocidae
Ectopsocus strauchi	Ectopsocidae	Helenatropos abrupta	Trogiidae
Liposcelis bostrychophila	Liposcelidae	Cerobasis annulata	Trogiidae
Liposcelis entomophila	Liposcelidae	Cerobasis guestfalica	Trogiidae
Myopsocus eatoni	Myopsocidae	Lepinotus inquilinus	Trogiidae

Related Endemic/Indigenous species - 11

Caeciliusidae	Blaste helenae	Psocidae
Caeciliusidae	Psyllipsocus ramburii*	Psyllipsocidae
Peripsocidae	Sphaeropsocopsis insularum*	Sphaeropsocidae
Peripsocidae	Sphaeropsocopsis myrtleae	Sphaeropsocidae
Peripsocidae	Cerobasis atlantica	Trogiidae
Psocidae		
	Caeciliusidae Peripsocidae Peripsocidae Peripsocidae	Caeciliusidae Psyllipsocus ramburii* Peripsocidae Sphaeropsocopsis insularum* Peripsocidae Sphaeropsocopsis myrtleae Peripsocidae Cerobasis atlantica

^{*} species of more doubtful indigenous status

Ecology

Almost any vegetated areas - foliage, bark, other hard surfaces with algae/lichens. Detritivorous (?algivorous & lichenophagous?)

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

Possible, but would be very difficult to assess.

Possibility of Control

i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely

ii Likelihood of safe biocontrol measures & precedence

Most (all?) control measures have been aimed at synanthropic species associated with stored products, glues etc. – there has been research on the use of pseudoscorpions as biocontrol agents, but these could have a deleterious effect on endemic species of pseudoscorpion.

iii Possible dangers of biocontrol measures

Endemic species at risk

Non-indigenous Animal Taxa on St Helena – Effects and Possible Control Measures

Saunders' Webspinner

Threat posed
Desirability for control
Likelihood of success

Taxonomy

Embioptera:

Alien species - 1

Oligotoma saundersii

Related Endemic/Indigenous species - 0

Ecology

Subsocial species. Larvae and females live in colonies of webs on rocks and (mainly) tree and shrub bark, feeding on lichens and bark flakes.

Possible effects on St Helena's indigenous/endemic invertebrates

ii Competitive effects

The only two groups with endemic species with which they could perhaps compete would be barkflies/lice and lichenophagous larvae of tineid moths.

Possibility of Control

- i Likelihood of safe physical/chemical control in wild populations & habitats Unlikely
- ii Likelihood of safe biocontrol measures & precedence No precedence.
- iii Possible dangers of biocontrol measures Unlikely

http://animals.jrank.org/pages/2399/Webspinners-Embioptera-SAUNDERS-EMBIID-Oligotoma-saundersii-SPECIES-ACCOUNT.html
http://www.insectasylum.net/Life_History_And_Behavior_of_the_Embiopteran_Oligotoma_saundersii.pdf

Non-indigenous Animal Taxa on St Helena – Effects and Possible Control Measures

Summary

Below are tabulated all non-indigenous species/groups where I have assessed the threat posed to the endemic invertebrates of St Helena and desirability of desirability of control to be other than 'Low' or 'unknown/unclear'.

Group	Effect	Threat posed to St Helena's endemic invertebrate fauna	Desirability of control on basis of invertebrate conservation concern	Estimate of likelihood of success	Synergy with other concerns
Scorpion	Predator	High	High	Possible	pests - sting
Alien spiders	Predator	High (some species)	High (some species)	Low	pests – bite (some spp)
Alien centipedes	Predator	High	High	Possible	pest - bite
Praying Mantis	Predator	High	High	Possible	
Alien predatory beetles	Predator	High (some species)	High (some species)	Low	
Ants	Predator	High	High	Possible	pests – stings, rear aphids etc
European social wasp	Predator	High	High	Possible	pests - sting
Alien parasitoid wasps	Predator	Likely	Unclear	Low	
Guppy	Predator	High	High	Possible	
African Grass frog	Predator	High	High	Possible	
some bird species	Predator	High	High	Low	nuisance value – fruit damage
Rats/mice	Predator	High	High	Possible, very expensive	pests – stored products etc
Amphipod landhopper	Competitor/Habitat deterioration	High	High	Unknown	
Alien slugs/snails	Habitat deterioration	High	High	Unknown	crop pests
Alien woodlice	Competitor/Habitat deterioration	High	High	Low/too risky	
Millipedes	Competitor/Habitat deterioration	High	High	Unknown	some crop pests
Termites	Habitat deterioration	High	High	Unknown	damage to forestry & domestic timber
various Auchenorhycha – aphids, scale insects, etc	Habitat deterioration	High	High	Ongoing	crop pests, threat to endemic plants
Rabbits	Habitat deterioration	High	High	Unknown	crop damage, damage to regeneration of indigenous vegetation

Centre for Ecology & Hydrology

NATURAL ENVIRONMENT RESEARCH COUNCIL

St Helena Government

Dr Roger S. Key, The Old Black Bull, Carthorpe, Bedale, North Yorkshire, DL8 2LD, United Kingdom ☎ (044)(0)1845 567292 mb 07751 440813 skype roger.key4

e-mail very draft web-page

very draft web-page Linked In profile photographs website key r_s@yahoo.co.uk https://dl.dropboxusercontent.com/u/1148372/rogerkey_files/frame.htm http://www.linkedin.com/pub/dr-roger-key/41/827/29

http://flickr.com/photos/roger_key/

front cover picture Springbok Mantis *Miomantis caffra* rear cover picture Red-headed centipede *Scolopendra morsitans* - both South African

