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ABSTRACT: 
Augmented Reality (AR) is already transforming many fields, from medical applications to industry, entertainment and heritage. In its 
most common form, AR expands reality with virtual 3D elements, providing users with an enhanced and enriched experience of the 
surroundings. Until now, most of the research work focused on techniques based on markers or on GNSS/INS positioning. These 
approaches require either the preparation of the scene or a strong satellite signal to work properly. In this paper, we investigate the use 
of visual-based methods, i.e., methods that exploit distinctive features of the scene estimated with Visual Simultaneous Localization 
and Mapping (V-SLAM) algorithms, to determine and track the user position and attitude. The detected features, which encode the 
visual appearance of the scene, can be saved and later used to track the user in successive AR sessions. Existing AR frameworks like 
Google ARCore, Apple ARKit and Unity AR Foundation recently introduced visual-based localization in their frameworks, but they 
target mainly small scenarios. We propose a new Mobile Augmented Reality (MAR) methodology that exploits OPEN-V-SLAM to 
extend the application range of Unity AR Foundation and better handle large-scale environments. The proposed methodology is 
successfully tested in both controlled and real-case large heritage scenarios. Results are available also in this video: 
https://youtu.be/Q7VybmiWIuI.  
 

a)  b)  c)  
Figure 1. The three large-scale scenarios used in the paper and the AR results based on markerless smartphone solution: (a) historical 
photographs of the city of Trento, (b) the remains of the underground roman city in Trento and (c) the pile dwelling site of Fiavè. 
 

1. INTRODUCTION 

Augmented Reality (AR) aims to blend the real and the digital 
worlds, enabling immersive and interactive experiences where 
the reality is fused with virtual content perceivable by humans as 
visual, auditory or haptic stimuli  (Bekele and Champion, 2019). 
Visual augmentation is probably the most popular and allows 
users to see the real world populated with virtual 3D content with 
mobile devices (Mobile Augmented Reality - MAR), either 
through smart glasses or Holographic Head Mounted Display - 
HHMD (like the Microsoft HoloLens, Google Glasses, etc.) or 
smartphone / tablet screens (Chatzopoulos et al., 2017). AR has 
enormous potential and is already influencing many fields 
ranging from industry and aerospace to medical and heritage, also 
pushed by well documented, free and relatively easy-to-use AR 
frameworks (Nowacki and Woda, 2019). In the cultural heritage 

context, AR has been broadly exploited in museums or heritage 
sites to enhance the visitor experience with extended and 
interactive information, both in indoor and outdoor.  
To properly overlay digital 3D elements on the real scene, the 
relative user viewpoint and the viewing direction must be known 
(six degrees of freedom of the camera – 6DoF). This process is 
called tracking or localization and can be carried out in different 
ways (Table 1). Marker-based tracking works by identifying, in 
the acquired images, known physical targets or objects 
previously placed in the scene. This approach has been widely 
applied, thanks to its robustness and low computational 
requirements. Nevertheless, it is not always practical or even 
possible to place markers in the environment. On the other hand, 
markerless or location-based tracking solutions localize the user 
with respect to known global (for example, from a Global 
Navigation Satellite System - GNSS) (Pagani et al., 2016; 
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Nakamura et al., 2018) or local coordinate systems. In the latter 
case, the tracking can exploit feature maps of the environment, 
also known as sparse point clouds, typically estimated with 
Visual Simultaneous Localization and Mapping (V-SLAM) 
algorithms (Cadena et al., 2016; Sualeh and Kim, 2019). In these 
approaches, the world itself is converted into a big set of 
distinctive visual features, against which the camera position and 
attitude is tracked. The nice property of these algorithms is that 
they can theoretically work in both outdoor and indoor 
environments without the need of marker installation in the scene 
or having GNSS coverage. The main drawback is that, by relying 
on scene contents, they are sensitive to scene changes. Real 
environments constantly change (daily and seasonal illumination, 
weather, moving objects, vegetation, structural changes) and how 
to enable, in these cases, long-term and robust tracking is still an 
ongoing research topic (Saputra et al., 2018; Wald et al., 2020).  
Google ARCore1, Apple ARKit2 and Unity AR Foundation3 are 
unquestionably among the most used MAR frameworks 
nowadays. Recently, these libraries introduced the support to 
persistent and multiuser marker-less AR experiences. AR 
sessions can now persist after their termination, allowing 
different users to resume them successively, and visualize the 
original augmented content. Without requiring markers, these 
solutions take advantage of the 3D visual features of the scene 
estimated with the build-in V-SLAM algorithms during the 
creation of the AR session. Unfortunately, these functionalities 
are not yet designed to work in environments bigger than a 
common room (Feigl et al., 2020). When the size of the scene 
increases, their use becomes impractical, and the tracking 
accuracy rapidly degenerates over time. One of the most relevant 
shortcomings is the limited size of the feature maps, which 
significantly reduces the area where the user can be accurately 
localized and tracked.  
In this paper, by combining OPEN-V-SLAM (Sumikura et al., 
2019) with Unity AR Foundation, we present how to enable 
accurate and markerless MAR experiences in large-scale outdoor 
scenarios. More specifically, the proposed solution aims to 
overcome two of the biggest limitations of current MAR 
frameworks, i.e. (i) the limited size of the localization areas and 
(ii) significant tracking drift in large environments. The proposed 
method was tested and demonstrated in three different large-scale 
heritage case studies:   
• Historical images in the city centre of Trento, Italy (Figure 

1a). Users are guided to discover, with their smartphone, 
archival photos acquired in the city in the 20th century 
overlaying them to the actual city. This application is part of 
the TOTEM4 project and helps to valorize historical archives 
showing urban changes. 

• Archaeological remains of the underground roman city in 
Trento, Italy (Figure 1b). The MAR application allows users 
to discover this hidden treasure by virtually visiting the 
underlying structures while walking in the above square. This 
solution gives the possibility to overcome some access 
limitations, especially in the actual pandemic period. 

• The UNESCO pile-dwelling site in Fiavé, Trento, Italy 
(Figure 1c). As part of the JUDIT5 project, some attractive 
ICT solutions have been designed to better valorize and 
communicate history to the young generations. Using a 
smartphone, 3D reconstructions of the ancient pile-dwelling 
structures are superimposed to the wooden remains, partially 
emerging from the lake water surface, to show how such 
houses were formed and located on the lake. 

 

 
1 https://developers.google.com/ar 
2 https://developer.apple.com/augmented-reality/arkit/ 
3 https://unity.com/unity/features/arfoundation 

1.1 Main contributions 

The main contributions of the paper are: 
• A new methodology, built upon OPEN-V-SLAM and Unity 

AR Foundation (Section 3); 
• Empowering of MAR applications in dynamic scenarios 

without using markers or GNSS/INS data; 
• Enabling large feature maps to work in large spaces; 
• Reduced tracking drift while localizing the device in large 

environments (Section 4.1); 
• Application and evaluation in three challenging and large-

scale heritage scenarios (Section 4.2).  
 

MARKER-BASED  
Pros Low computational cost, robust, fast, indoor and 

outdoor, not affected by changes in the scenes 
Cons Invasive, small localization area, target could not be 

placeable 
GNSS/INS-BASED  

Pros No target, low computational costs, not affected by 
changes in the scenes 

Cons Only outdoor, problems in narrow streets or forested 
areas, accuracy related to satellite coverage 

MARKERLESS (visual-based) 
Pros No target, indoor and outdoor 
Cons Affected by changes in the scenes, computationally 

intensive 
Table 1. Summary of tracking & localization methods for MAR. 
 

2. RELATED WORKS 

2.1 Visual SLAM 

The goal of a SLAM algorithm is twofold: localization – the 
estimation of the ego-motion of an agent in an initially unknown 
environment, and mapping – the estimation of the representation 
of the environment where the agent is moving. The fundamental 
property of SLAM is that it achieves its goals solely using sensor 
data captured by the agent. Cameras have received enormous 
interest for their weight, cost, power consumption and ubiquity, 
and they have been extensively used as the main sensor to 
perceive the reality. In these cases, SLAM is technically called 
Visual SLAM and it is probably the most common branch of 
SLAM today, finding application in robotics, Augmented Reality 
(AR), 3D mapping and autonomous navigation. The first V-
SLAM approaches were based on filtering techniques and 
MONO-SLAM (Davison et al., 2007) is probably the most 
known algorithm of this category. PTAM (Klein and Murray, 
2007) represented an important paradigm change, proposing to 
split localization and mapping in two different concurrent 
operations, and replacing probabilistic state estimation with a 
least square optimization (bundle adjustment or pose graph 
optimization). They proposed to update the state of the map only 
on selected frames, called keyframes, reducing the overall system 
weight and allowing the V-SLAM algorithm to keep a real-time 
behaviour in bigger scenarios. While direct methods can exploit 
more information of the image, produce dense or semi-dense 
point clouds, and work more easily in non-collaborative 
scenarios, undirect methods achieve in general higher accuracies 
in both localization and mapping and are more robust to 
illumination changes. DTAM (Newcombe et al., 2011) and LSD-
SLAM (Engel et al., 2014) are well known direct algorithms, 

4 https://totem.fbk.eu/ 
5 https://judit.fbk.eu/ 
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with the latter capable of achieving real-time performances 
without using GPU acceleration. Among the most representative 
undirect algorithms, there are, in addition to PTAM: ORB-
SLAM (Mur-Artal et al., 2015), which extends the concepts of 
PTAM with place recognition and the ability to work in larger 
scenarios; ORB-SLAM2 (Mur-Artal et al., 2017), which supports 
stereo and RGB-D cameras; ORB-SLAM3 (Campos et al., 2021) 
which supports IMU and multiple maps; OPEN-V-SLAM which 
is based on ORB-SLAM2 and allows an easy map reuse; 
KIMERA (Rosinol et al., 2021), notable for producing 
semantically annotated meshes in real-time. 
 
2.2 Mobile Augmented Reality in Cultural Heritage 

Mobile Augmented Reality (MAR) has also been exploited to 
valorize cultural heritage assets (De Carolis et al., 2018; Boboc 
et al., 2019; Carrozzino et al., 2019). Yin et al. (2021) presented 
heritage tourists’ needs and involvement in mobile AR solutions, 
providing a theoretical framework for designing mobile AR 
heritage applications. Marto and Gonçalves (2019) presented an 
evaluation of a MAR application in the Conimbriga 
archaeological site. In Puyuelo (2013), marker-based solutions 
were explored to display 3D models of the UNESCO heritage site 
of “La Lonja” in Valencia. In Duguleana et al. (2016), the authors 
used a GNSS-based mobile AR application to visualize the 
appearance of the leaning tower in Pisa in different time ages. 
Buana and Meily (2021) used AR to support the visit of the 
Taman Ayun Temple. An AR heritage guide of Brno (Czech 
Republic) is presented in Střelák et al. (2019), where the authors 
also compared GNSS and visual localization. Kolivand et al. 
(2018) reviewed markerless AR approaches to support tourist 
experiences in cultural heritage locations. In Palma et al. (2019), 
authors presented an ARKit-based MAR solution to create 
augmented views of baroque atria.  
Head Mounted Holographic Displays (HMHD), such as 
Hololens, Google Glasses, etc. start to be used as mobile devices 
for AR experiences in heritage scenarios (Teruggi et al., 2021), 
but their applicability is still limited with respect to marker-, 
GNSS-based and markerless smartphone/tablet solutions. 
 

 
Figure 2. The proposed methodology. The area is first 
surveyed, creating a sparse reconstruction with OPEN-V-
SLAM. The sparse reconstruction is then used to prepare the 
AR scene, to localize the user and correct the camera poses of 
the Unity AR Foundation session.  
 
 

3. PROPOSED SOLUTION 

The proposed methodology, based on OPEN-V-SLAM and 
Unity AR Foundation, is summarized in Figure 2. Compared with 
other algorithms, OPEN-V-SLAM enables an easy management 
of the estimated sparse reconstructions, which can be re-imported 
and used for localizing the camera in successive executions.  
Unity AR Foundation contains various powerful features for the 

AR development and supports multiple mobile and wearable 
devices. The implemented solution is logically divided in two 
macro phases: preparation – i.e. the steps required to prepare the 
AR session and usage - where the user localization and AR 
experience take place.  
 
3.1 Preparation 

3.1.1 Sparse reconstruction 
The area of interest is firstly surveyed, acquiring different videos 
of the scene with a smartphone. Videos are then processed offline 
by OPEN-V-SLAM to extract keyframes and estimate a 3D 
sparse reconstruction of the area. The sparse reconstruction 
contains both the visual features of the scene and a bag-of-words 
(Gálvez-López and Tardos, 2012) representation of the selected 
keyframes. Their combination allows a fast and precise 
localization of a device/user in successive runs (Mur-Artal and 
Tardós, 2014).  
 
3.1.2 AR scene preparation  

The obtained 3D sparse reconstructions are then exploited to 
place the virtual objects in the desired positions. However, some 
preliminary steps are initially required. First, the sparse 
reconstructions need to be scaled, since the scale is arbitrary 
(monocular estimation). To this aim, a dense 3D reconstruction 
is computed using a Multi-View-Stereo algorithm and then the 
scale is computed exploiting ground truth data (e.g. using an ICP 
algorithm with scale factor). With the scale correctly computed, 
the virtual objects can be placed in the desired positions, also 
taking advantage of the dense point clouds to perform an accurate 
positioning of the virtual objects. The final rigid body 
transformation 𝑇, encoding the scale and eventual rotation 
changes, is saved for the usage phase (Section 3.2) to handle the 
change of coordinate systems between OPEN-V-SLAM and 
Unity AR Foundation.  
 
3.2 Usage 

3.2.1 Localization  
To start the AR session, the smartphone position and orientation 
must be firstly determined. The mobile application needs to send 
the live stream of the smartphone camera to the OPEN-V-SLAM 
algorithm, which is running either in a node of the local area 
network or remotely. The bi-directional communications with 
web sockets are managed using Socket.IO. Exploiting the 
previously computed sparse reconstruction of the scene (Section 
3.1.1), the V-SLAM algorithm then estimates the camera pose of 
each received image 𝐼 with the EPnP algorithm, using RANSAC 
to discard outliers and restricting the set of considered 3D points 
only to those being observed by the most similar keyframes of 𝐼 
(according to the bag-of-words representation). If a pose 𝑃 with 
sufficient inliers is found, then 𝑃 is further refined with pose 
graph optimization and returned, with Socket.IO, to the mobile 
application.  
 
3.2.2 Unity AR Foundation session and correction 

The mobile application waits for the first camera pose to initialize 
the AR session and displays the augmented content. When the 
AR application receives a valid pose 𝑃, the origin of the AR scene 
moves to a new position Φ, obtained multiplying 𝑇 (section 
3.1.2) with 𝑃. The AR session is then initialized and the tracking 
is performed internally by the AR Foundation framework. During 
the session, the mobile application sends, at regular time 
intervals, new images to OPEN-V-SLAM, in order to get 
corrected camera poses and, eventually, reduce the tracking drift 
accumulated by the device. At time 𝑡, when a new image is sent 
to OPEN-V-SLAM, the application stores the current pose of the  
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a) 

  
b)

 

c) 

 
d) 

 
Figure 3. The area for the accuracy test (a) and some images of the scene (b). The obtained camera poses and sparse reconstruction 
of the area (c). The generated dense point cloud used to position the virtual elements (c) with colored dots showing locations of 
virtual objects (Fig. 4a, c).  

camera 𝑃!. At time 𝑡 + 𝑛, when the corrected pose 𝑃!"	is received, 
the current pose 𝑃!#$ is updated as follows: 
 

𝑃!#$ = 	Π	𝑃!#$ (1) 
 

where Π is the relative transformation between the original - not 
corrected pose 𝑃! and the corrected pose 𝑃!".  
As shown in Section 4.1, the sparse reconstruction of OPEN-V-
SLAM is in general more accurate, mainly thanks to the loop 
closure correction, than that estimated internally by AR 
Foundation, and therefore it can be used as a correction tool.  
 
 

4. EXPERIMENTS 

4.1 Accuracy test 

The tracking accuracy of Unity AR Foundation in a large indoor 
scenario (around 100 meters trajectory) is firstly evaluated by 
comparing the achieved performances when the correction step 
(Section 3.2.2) is or is not applied. The considered area is the 
open space of the FBK North building (Figure 3a). The place was 
first surveyed with a Huawei P20Pro following a rectangular 
trajectory along the perimeter of the space. An in-house 
application was used to acquire images at 5Hz and 640x480 px 
resolution, obtaining some 1283 images. Before processing the 
images within OPEN-V-SLAM, the P20Pro device was 
geometrically calibrated, as V-SLAM approaches generally do 
not estimate, for real-time constraints, the intrinsic camera 
parameters during the bundle adjustment optimizations. The 
Zhang method (Zhang, 2000) implemented in OpenCV was 
employed, using a 22x15 chessboard calibration pattern printed 
on a rigid plate. Figure 3b shows the sparse reconstruction of the 
area obtained with OPEN-V-SLAM. Acquisitions started and 
ended from the same position (red dot in Figure 3c) and the V-
SLAM algorithm correctly detected the loop. This loop enforced 
a global bundle adjustment optimization that significantly 
corrected the accumulated drift and produced a globally 
consistent map of the area. The selected keyframes and their 
corresponding poses were then imported in Agisoft Metashape to 
generate a dense point cloud of the scene (Figure 3d). The scale 
was applied by measuring some control points in the area. 
Finally, close to the starting point, four virtual arrows were 
placed over the corresponding real objects, namely an 

extinguisher (yellow), a printer (green), a door (blue) and a notice 
board (orange).  
To qualitatively check the correctness of the OPEN-V-SLAM 
poses and 3D reconstruction, four different localizations nearby 
the selected positions were tested. Figure 4a shows the screen 
capture of the mobile application immediately after the OPEN-
V-SLAM localization. The discrepancy between the real objects 
and the pointing arrows are very small, validating the the 
correctness of both OPEN-V-SLAM sparse reconstruction and 
proposed methodology.  
In addition to this visual evaluation, the accuracy of the camera 
poses estimated internally by AR Foundation was also assessed, 
taking the poses of OPEN-V-SLAM as ground truth. We 
executed two consecutive AR sessions, few minutes apart from 
each other and following the same rectangular trajectory along 
the open space perimeter. In the first session, no correction step 
(Section 3.2.2) was applied, with OPEN-V-SLAM being used 
only to estimate the first pose of the camera. In the second 
session, we enabled the correction step at intervals of 10 seconds. 
Both sessions, started and ended from the printer (green circle), 
following a clockwise direction. During the sessions, we logged 
the camera pose estimated by AR Foundation and saved the 
corresponding images. The images were then oriented in OPEN-
V-SLAM with respect to the same reference sparse 
reconstruction. Finally, a L2 norm of the difference of the camera 
centers of OPEN-V-SLAM (after applying T - section 3.1.2) and 
AR Foundation was computed. Figure 4b plots the obtained 
results. As shown, the correction step significantly decreased the 
tracking drift of the application, reducing the average L2 norm 
by around 51%. In particular, the first session accumulated a 
significant drift after the 400-th image, producing a very visible 
mismatch (Figure 4c – left) between the real and virtual objects. 
On the other hand, when the correction is applied, the drift was 
bounded in a more acceptable range and, despite some occasional 
spikes in the plot, the AR experience and results were much more 
accurate (Figure 4c – right).  
 
4.2 Case studies in heritage scenarios 

The proposed methodology was tested in three challenging and 
real-world cases, characterized by significant changes of the 
scene appearance (illumination variations, vegetation growth, 
moving/new/missing objects, etc.).  
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a)  

b)  

c)  
Figure 4. Visual impressions of the OPEN-V-SLAM accuracy 
localization (a). Plot of the L2 NORM of the difference of the 
camera centers with/without correction (b). Effects of the 
proposed correction step (c). 

4.2.1 Historical images of Trento, Italy 
The AR application allows users to visualize some historical 
archival images depicting the "Duomo" square (Figure 5a) in the 
20th century and overlaid them to the actual situation. An initial 
sparse reconstruction of the area (Figure 5b) was used to (i) 
localize the user and (ii) orient the historical images in the AR 
scene, using some manually picked points and the DLT 
algorithm. The performances of the localization were verified 
from several positions Li (Figure 5c). All the localizations were 
performed some days after the creation of the reference sparse 
point cloud, which was obtained from images recorded in the 
early afternoon. L1, L2, L3 happened approximately at the same 
afternoon hour, while L4 was carried out in the morning. 
 
4.2.2 Underground roman city of Trento, Italy 

The MAR experience allows users to explore the remains of the 
hidden Roman city, preserved below the modern square (Figure 
6a). The ancient site was digitally reconstructed in 3D with 
photogrammetric techniques. The reference sparse 
reconstruction (Figure 6b) was achieved using early afternoon 
video acquisition, while the localizations (Figure 6c) were 
performed in the mornings of the forthcoming days.  
 
4.2.1 UNESCO pile dwelling site in Fiavé, Trento, Italy 

The UNESCO pile dwelling site of Fiavè (Figure 7a) features a 
MAR application which allows users to display the 3D 
reconstructive models of the pile dwelling buildings over the 
original remains (Figure 7d,e). The area is very challenging for 
vision algorithms because the prehistoric wooden poles are 
immersed in a broad natural scenario, surrounded by water and 
continuously changing vegetation. Luckily, the wooden walkway 
close to the poles could, despite its repetitiveness, provide quite 
stable feature points for the user localization. In this case, the 
sparse reconstruction (Figure 7b) and the localizations happened 
the same day, during the morning. Three localizations (Figure 7c) 
were tried along the planned visitor path.  
 

 

a)   b)  

c)   d)  e)  
Figure 5. The “Duomo” square area as seen in Google Earth (a). Camera poses and reference sparse reconstruction generated in the 
preparation phase (b). The dense point cloud of the area with the positions Li for the localization tests reported in Section 4.2.2 (c). 
Examples of the MAR application showing the historical images blended with the reality while a mobile device is moved in the 
square (d, e).   
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a)  b)  

c)  d)  e)  
Figure 6. The square above the Roman city in Trento as seen in Google Earth (a) and the sparse reconstruction from smartphone 
video sequences (b). Part of the dense point cloud of the area and the positions Li for the localization tests (c). Some views of the 
MAR application overlaying the 3D digital model of the roman remains to the modern square (d, e).   
 

a)  b)  

c)  d)  e)  
Figure 7. The UNESCO pile dwelling of Fiavé (a). The reference sparse reconstruction of the area (b). The dense point cloud of 
the area and the Li positions tested for the localization (c). The reconstructive models of the pile-dwellings structures overlapped to 
the remaining wooden poles, visible through the AR application (d, e).  

 
4.2.2 Localization results  

The presented localization tests are evaluated in terms of 
completion time and, in the more problematic cases, by analyzing  
some inner metrics of the OPEN-V-SLAM localization 
procedure. Most of the localization tests were completed in less 
than 1.5 seconds from the start of the AR application (Table 2). 
The most problematic tests are L4, L6 (long completion time) and  
L9 (failed). In these cases, the localization was tempered by both 
wrong localization candidates and/or an insufficient number of 
feature matches (Figure 8). The fact that these problems occurred 
in areas well covered by the sparse reconstructions suggests that 
both the ORB matching and the bag-of-word candidates suffer 
when the scene changes significantly (illumination and scene 
objects) and/or it presents many repetitive patterns.  
 
 

 
Dataset Localization id Time (s)  

Historical images L1 1.30  
Historical images L2 0.793 
Historical images L3 FAIL  
Historical images L4 1.329 

Roman city L5 1.094 
Roman city L6 7.330 
Roman city L7 0.774 

Pile dwelling L8 0.696 
Pile dwelling L9 8.287 
Pile dwelling L10 0.518 

Table 2. The different case studies and the time (sec) required to 
localize the user from the start of the AR application. 
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Figure 8. Examples of localization problems due to scene 
changes. The algorithm can retrieve wrong localization 
candidates (middle) and/or candidates with an insufficient 
number of matches (top, bottom).  
 
 

5. DISCUSSION AND CONCLUSIONS 

This work presented a new methodology for enabling MAR 
experiences in large-scale scenarios. The proposed solution 
exploits OPEN-V-SLAM to extend the capabilities of Unity AR 
Foundation, allowing it to be more effectively used in large 
environments. In particular, the sparse reconstruction of OPEN-
V-SLAM is used both to broaden the area where the users can be 
localized and to correct the tracking drift of the AR Foundation 
framework. A controlled indoor test was used to demonstrate the 
improvements brought by our solution (51% tracking drift 
reduction). The presented methodology was also used to enable 
MAR experiences in three real case scenarios for the valorisation 
of heritage contents. Exploiting the more static elements of the 
scene, the device/user was successfully localized in most of the 
experiments.  
The presented experiments highlighted both potentialities and 
limitations of the proposed V-SLAM markerless MAR solution. 
Compared to marker-based approaches, the presented 
methodology does not require an invasive scene preparation. 
Compared to GNSS/INS-based approaches, our method does not 
require a strong satellite signal to accurately localize the user, 
allowing the application to work also in urban canyons, 
mountainous / forested areas, underground or indoor. Compared 
to existing MAR libraries (such as ARCore, ARKit and AR 
Foundation), the presented procedure improves the AR 
experience in large-scale scenarios, with larger localization areas 
and reduced tracking drift.  
The weakness of the method is mainly related to the localization 
procedure as its outcome depends on multiple factors: 
• The initial sparse reconstruction of the area must have 

abundant feature points spread across the scene. Real-time 
image detector and descriptors, such as the ORB (Rublee et 
al., 2011) employed in OPEN-V-SLAM, are generally not as 
robust as other “offline” methods (e.g. SIFT) to viewpoint 
variations.  

• Relevant scene variations between the pre-recorded step and 
the device/user localization (illumination variations, object 
changes, moving people, etc.) can invalidate many of the 
estimated features and affect the validity of the sparse 
reconstruction.  

• Bag-of-word approaches can inherit the weakness of the 
associated image descriptor, and they might be unable to 
discriminate well when the scene changes. 

• Non-collaborative surfaces (e.g. white walls) or repetitive 
texture patterns could limit the number of possible features 
or make difficult and error-prone their matching.  

The key step is thus to improve the scene understanding and the 
feature matching techniques, so that the V-SLAM algorithm can 
successfully recognize the same place even in presence of 
important changes. Another possible solution is to estimate 
different sparse reconstructions of the area covering various 
illumination and scene appearance conditions, but this approach 
is hardly maintainable and very inefficient.   
Beside this, future works will investigate the possibility to update 
the surveyed scene using the images acquired by the mobile 
platform, also using collaborative approaches (Nocerino et al, 
2017). Moreover, we will explore the use of different feature 
detectors/descriptors, with particular attention to learned 
approaches (Remondino et al., 2021). Recently they showed 
promising improvements over hand-crafted features, especially 
regarding the re-localization performance in challenging 
environments. We would also like to test the proposed 
methodology in other scenarios, with particular interest in 
industry, where AR can be a valuable tool to support the chain 
work. Finally, we will replace Socket.IO with native WebSocket 
API, in order to improve the real-time communication between 
Unity AR Foundation and OPEN-V-SLAM. We believe that with 
future improvements of photogrammetric and computer vision 
algorithms, vision-based localization techniques could improve 
their performance in difficult dynamic environments and become 
an even more valuable tool in the upcoming MAR applications.  
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