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ABSTRACT: 

 

Terrestrial laser scanning (TLS) has emerged as a valuable technology for forest monitoring, providing detailed 3D measurements of 

vegetation structure. However, the semantic understanding of tropical tree point clouds, particularly the separation of woody and 

non-woody components, remains a challenge. Therefore, this paper addresses the gaps in both (1) data availability and (2) 

knowledge regarding the potential of 3D deep learning algorithms for leaf-wood segmentation of tropical tree point clouds. First, we 

contribute a new dataset consisting of 148 tropical tree point clouds with manual leaf-wood annotations. Second, we present initial 

results using the RandLA-Net 3D deep learning architecture to establish a benchmark on our dataset, achieving a mean intersection 

over union (mIoU) of 86.8% and overall accuracy of 94.8%. Visual inspection of predictions reveals areas of confusion and indicates 

applicability across different forest types. Our study demonstrates the potential of 3D deep learning for leaf-wood segmentation in 

tropical tree point clouds and highlights avenues for future research, including exploring different architectures and investigating the 

influence of prediction errors on volumetric tree reconstruction. 
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1. INTRODUCTION 

Terrestrial laser scanning (TLS) is being recognised as a key 

technology in forest monitoring by providing highly detailed in-

situ measurements of 3D vegetation structure, and is a 

particularly valuable tool for (1) nondestructive estimation of 

aboveground biomass and  (2) virtual forest reconstruction to 

support cal/val activities of remote sensing missions through 

realistic radiative transfer modelling (Calders et al., 2020). A 

crucial element in both these applications is to have a semantic 

understanding of especially the woody component within the 

TLS point cloud. While deciduous trees are therefore typically 

scanned in winter to derive leaf-off point clouds, this not an 

option for evergreen trees such as in tropical forests. 

Consequentially, tropical tree point clouds require a semantic 

labelling step to segment the woody points from the point 

cloud. As manual labelling is extremely laborious and tedious, 

numerous works have proposed automated methods to tackle 

this leaf-wood separation (Bai et al., 2023; Krishna Moorthy et 

al., 2020; Tian and Li, 2022; Vicari et al., 2019; Wang et al., 

2020). However, at least two aspects remain insufficiently 

covered: (1) only a handful of adequate reference datasets for 

developing and testing leaf-wood segmentation of tropical tree 

point clouds exist, and (2) only a limited number of studies have 

explored the potential of applying recent state-of-the-art (SotA) 

3D deep learning algorithms for this task (Kaijaluoto et al., 

2022; Krisanski et al., 2021; Morel et al., 2020; Windrim and 

Bryson, 2020). For the latter, prerequisites are that the 

algorithms should (1) be able to deal with very large point 

clouds characteristic to TLS forest scans, (2) discriminate 

between the semantic classes based only on geometric 

neighbourhood information (i.e. a list of 3D coordinates), and 

(3) be efficient in terms of execution time and required 

computing infrastructure. Therefore within this work we aim at 

contributing to closing both these data and knowledge gaps. Our 

contribution is twofold:  

 

1. We introduce a new TLS derived tropical tree point 

cloud dataset, including accompanying manual point-

wise leaf-wood annotations. 

2. Given our dataset, we present first results using 

RandLA-Net, a 3D point-wise deep learning network 

fulfilling all three abovementioned criteria, to set a 

benchmark on our dataset. 

 

2. MATERIALS & METHODS 

2.1 Dataset 

We here present our novel dataset, comprising of a total of 148 

individual tropical tree point clouds with corresponding manual 

point-wise semantic labels (i.e., either wood or non-wood). 

 

2.1.1 Study area: The dataset is a combination of three 

tropical plots in north-eastern Australia (Figure 1): Daintree 

Rainforest Observatory (DRO), Oliver Creek (OC) and Robson 

Creek (RC). DRO and RC are supersites from TERN (TERN, 

2023a, 2023b), OC and RC are part of the CSIRO rainforest 

permanent plots (Graham, 2006). The forest type is complex 

mesophyll and simple notophyll vine forest, with 41 different 

species occurring within the dataset. A more detailed overview 

of the plots is given in Table 1. 

 

2.1.2 Data collection All plots were scanned in 2018 with a 

RIEGL VZ400 at 300kHz. Scans were taken following 10×10 

m grids, with both upright and tilt scans at each location. The 

TLS scans were co-registered by making use of reflectors 

placed in the plots and using the RiSCAN Pro software. The 

complete point clouds were subsequently downsampled to 

0.02m. The resulting dataset has a totals to 43.6 106 points, with 

the individual trees having on average 3∙105 points/tree, varying 

between a maximum of 1.9 106, and a minimum of 16.5 103 

points/tree. 
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Table 1. Dataset description. 

 

 

Daintree Rainforest 

Observatory 

 

Oliver Creek  

 

Robson Creek 

Abbreviation DRO OC RC 

Plotsize 1 ha 0.5 ha 1 ha 

Trees 59 32 57 

Forest type complex mesophyll vine forest complex mesophyll vine forest Simple notophyll vine forest 

Lat – long -16.10; 145.45 -16.14; 145.44 -17.12; 145.63 

Elevation 65 m 15 m 700 m 

Rainfall 5143 mm 3470 mm 2236 mm 

 

 

 
Figure 1. Indication of plot locations in north-east Australia 

(DRO: Daintree Rainforest Observatory, OC: Oliver Creek, RC: 

Robson Creek). 

 

2.1.3 Data labelling: Individual trees were manually 

segmented from the point clouds (Figure 2) and point-wise 

wood labels were attributed using a semi-automated approach, 

by combining the output of the algorithms proposed by Krishna 

Moorthy et al. (2020) and Vicari et al. (2019) and a subsequent 

rigorous manual correction. Example annotated trees are 

visualized in Figure 3. Out of all points, 21% was labelled as 

being woody points. 

 

 
Figure 2. Top view of the three field plots. Each tree is 

visualised with a unique colour. 

 
Figure 3. Example trees from the DRO plot (top left: 

Cardwellia sublimis; top right: Dysoxylum papuanum; bottom 

left: Elaeocarpus angustifolius; bottom right: Syzygium 

graveolens) 

 

2.1.4 Preprocessing: The 148 trees were saved as individual 

plain text files with (relative) xyz coordinates and 

corresponding binary labels (0=foliage, 1=woody). To prepare 

the dataset for training and testing deep learning predictive 

models, the dataset was further partitioned into a training, 

validation and test set, using a random 60-20-20 split. Files 

were saved in separate folders as python numpy files. An 

overview of the machine-learning-ready dataset is given in 

Table 2. 
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Table 2. Pre-processed dataset description. 

Partition Trees Points Wood-fraction 

Train 89 25,9 106 0.22 

Validation 29 10,6 106 0.17 

Test 30 7,2 106 0.23 

 

2.2 Leaf-wood segmentation  

We here elaborate on using the RandLA-Net 3D deep learning 

model on our newly presented dataset as an initial exploration 

of the potential of 3D deep learning algorithms for leaf-wood 

segmentation of tropical tree point clouds. For the 

implementation of RandLaNet and the 3D deep learning 

training and inference pipelines, we use the Open3D-ML library 

(v.0.17) (Zhou et al., 2018) with pytorch backend (v.1.13) and 

CUDA support (v.11.6). The hardware used is a 20-core 12th-

Gen Intel i7-12800H (2.40 GHz) laptop with a 4Gb NVIDIA 

RTX A1000 GPU. Code is run within a WSL2 Ubuntu 22.04 

kernel with 16 Gb RAM (4 Gb swap).  

 

2.2.1 Deep learning architecture: RandLA-Net, as 

introduced by Hu et al. (2020), is a lightweight point-based 

neural architecture proposed for the task of efficient semantic 

segmentation of large-scale 3D point clouds. The key ideas of 

their approach are using random sampling for efficient point 

cloud downsampling across neural layers, combined with a 

local feature aggregation module to progressively increase the 

receptive field for each point to preserve geometric details. We 

used RandLA-Net with 5 layers, 16 nearest neighbours, and 

taking a fixed 216 points as input. The model takes as input a N 

× 3 array of 3D coordinates, and outputs a N × 2 array of logits, 

which can be converted to class probabilities by applying the 

softmax function. The predicted semantic label is obtained by 

simply applying the argmax for each point.  

 

2.2.2 Training: The model weights were optimized by 

minimizing the categorical cross entropy loss between the 

ground truth labels and predicted labels, as given in Eq. 1. 

 

  (1) 

 

where  yk,n = ground truth value of n-th point y ∈ {0, 1} 

 yk,n = predicted value of n-th point y ∈ [0, 1] 

 wk = loss weight for class k 

 N = total number of points (batch size × sample size) 

 K = number of classes (2 in this case) 

 

To deal with the class imbalance, the class weights were 

calculated as the inverse of the class probabilities, estimated 

from the class frequencies fk in the training set: 

 

  (2) 

 

The model was trained on the 89 trees in the training set for 100 

epochs using the Adam optimizer, an exponential learning rate 

schedule (initial learning rate of 10-3 and gamma of 0.9886) and 

a batch size of 1. For each epoch, to ensure an equal number of 

model input points, a subset of each point cloud is sampled by 

randomly selecting a center-point and its 216 - 1 nearest 

neighbours. In case of a point cloud smaller than 216 points, 

random points are duplicated. Augmentations were applied 

including recentering along the three spatial axes, and random 

vertical rotations, scaling and noise addition. Training for 100 

epochs took 57 minutes.  

 

To prevent overfitting on the training set, the performance on 

the validation set was computed after each epoch. Validation 

trees were only recentred and random subsets were taken 

similarly as described above. The final model was selected as 

the one showing the highest validation mean intersection over 

union (mIoU) over the two classes, where the IoU is defined as:  

 

  (3) 

 

where  TP = true positives 

 TN = true negatives 

 FP = false positives 

 FN = false negatives 

 

2.2.3 Inference: Given the trained model, predictions for 

new (unsubsampled) tree point clouds were obtained using a 

spatially regular sampling scheme. First, a vector is generated 

storing random low probabilities between 0 and 0.001 for each 

point in the point cloud. Second, the point with the lowest 

probability is selected as centre point. Third, model predictions 

are computed for the centre point and its 216-1 nearest 

neighbours. Fourth, the probabilities are increased with the 

normalized inverse distance to the centre point. Step 2 - 4 are 

repeated until the minimum probability is 0.5 for all points. 

Predictions for already seen points are simply overwritten in 

subsequent iterations. Inference took 21 minutes for all 30 test 

trees (7,2 106 points). 

 

2.2.4 Evaluation: the performance of the model was 

evaluated both visually, and quantitatively by computing 

performance metrics on the test set. First, inference was run for 

all 30 trees in the test set. Subsequently, (class-wise) metrics 

could be computed from the confusion matrix by comparing the 

predictions to the ground truth. The metrics used were the 

common precision, recall and accuracy: 

 

  (4) 

 

  (5) 

 

  (6) 

 

 

3. RESULTS 

3.1 Model training 

The evolution of the training and validation loss and mIoU 

during model training are plotted in Figure 4. It can be seen that 

the training converges rapidly to a low loss and high mIoU, 

reaching a training mIoU of ca. 80% after only a single epoch 

and validation mIoU values of over 80% already after 5 epochs. 

The differences in training and validation metrics are small, 

indicating that the model is able to learn the underlying 

distribution and has generalization potential. Training is fairly 

stable and there seems no sign of overfitting. However, 

interesting may be to examine whether this behaviour continues 

when training for a higher number of epochs.  
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Figure 4. Evolution of the training and validation loss (left) 

mean intersection over union (IoU) (right) during training for 

100 epochs. 

 

3.2 Quantitative evaluation 

Table 3 presents the confusion matrix between the ground truth 

and predictions for all 30 trees in the test set (shown as 

percentages by dividing by the total number of points in the test 

set). Of course, as the dataset is unbalanced towards leaf-points, 

the number of correctly predicted leaf-points is higher (~74%) 

than the number of correctly predicted woody-points (~21%). 

Further, it can be inferred that the relative error on the woody 

points (1.74 / 22.75 = 0.08) is higher than the relative error on 

the leaf points (3.46 / 77.24 = 0.04. This is also reflected in the 

class-wise performance metrics, given in Table 4, showing a 

higher precision, recall and IoU for the leaf-class. Nonetheless, 

the overall performance is high, reaching a mIoU of 86.8% and 

accuracy of 94.8%, thus confirming the potential of this 

paradigm for leaf-wood segmentation of tropical tree point 

clouds, especially since no hyperparameter search or ablation 

experiments were conducted. 

 

Table 3. Confusion matrix [%] 

  Predicted 

  Wood Leaf 

T
ru

e Wood 21.01 1.74 

Leaf 3.46 73.78 

 

 

Table 4. Performance metrics [%] 

 Wood Leaf 

Precision 85.85 97.69 

Recall 92.35 95.51 

IoU 80.14 93.41 

mIoU 86.78 

Accuracy 94.79 

 

3.3 Qualitative evaluation 

Besides quantitative evaluation, we show and examine visual 

example predictions on the test set. This is especially important 

as it should be kept in mind that the manual leaf-wood 

separation of the tree point clouds is not perfect. As such, 

quantitative performance metrics of 100% are in fact not 

desired. Figure 4 shows an example of a ground truth 

segmentation vs. the predicted segmentation, coloured 

according to the leaf and wood classes. Overall, the prediction 

looks reasonable and approximates the ground truth to a high 

degree. The model works especially well for the stem and main 

branches. Higher up in the canopy and for the smaller branches 

some more erroneous predictions appear (see e.g. zoom in 

Figure 4). As for these points it is also hard for the human 

interpreter to distinguish wood from leaf, the dataset will likely 

contain some wrongly classified points, and it is thus reasonable 

that these regions are harder to learn for the model. Further, to 

gain insight into the different types of predictions errors, Figure 

5 shows example test set predictions coloured according to the 

TP, TN, FP and FN. Similar observations as mentioned above 

can be made. 

 

 
Figure 4. Example of ground truth (left) vs. prediction (right) 

for a complete tree (top) and zoom (bottom) from the test set 

(Syzygium graveolens, DRO plot) 

 

3.4 Generalization potential 

When working with machine learning models, one of the major 

issues is often its limited predictive capability outside of the 

training domain. To explore the potential of RandLA-Net 

trained on our tropical tree dataset for leaf-wood segmentation 

of trees from another ecosystem, we apply the model on a TLS 

point cloud of a deciduous leaf-on tree from the well-studied 

Wytham Woods (Southern UK). The result is visualised in 

Figure 6. Although we here only performed the exercise for a 

single tree, it surely shows the potential. 

 

 
Figure 5. Example prediction on a deciduous leaf-on tree in 

Wytham Woods using the model trained on tropical trees. 
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Figure 6. Colour coded test-set predictions (green: leaf 

correctly predicted as leaf, red: wood correctly predicted as 

wood, blue: wood wrongly predicted as leaf, black: leaf 

wrongly predicted as wood) 

 

 

4. DISCUSSION 

Although limited, the preliminary results are promising and give 

way for some considerations and future research. A first 

concern with data-driven methods is that they require large 

amounts of training data, which, especially for point cloud data, 

is an extremely tedious and time-consuming task. Moreover, 

unavoidably the annotated data will contain some degree of 

error, making it imperative that there are sufficient examples 

available to find the underlying distribution. However, our 

observation that there is fast training convergence and a 

potential for generalisability across tree types given a rather 

limited training set is encouraging. Second, these learning-based 

methods solely look for patterns in data and are not bound by 

any physical constraints. As such, problems with connectivity 

may occur when using the model outputs for subsequent 

volumetric tree reconstruction. Therefore, we aim at 

investigating the influence of prediction errors on the 

volumetric estimate derived by quantitative structure model 

(QSM) reconstruction, and its sensitivity to differences in model 

weights and class loss-weights (influencing the relative 

importance given to class errors). Here, plotting point clouds 

coloured according to the prediction probabilities may help in 

gaining insight into the uncertainties of the model. Furthermore, 

we intent to experiment with multiple hyperparameters such as 

using higher batch sizes or higher number of input points (e.g. 

218 i.s.o. 216), and to examine the effect of different 

augmentations (e.g. horizontal rotations to learn leaning/fallen 

trees) on the prediction performance. Moreover, other 3D deep 

learning architectures will be tested and compared to more 

traditional methods. Last, we plan on testing the 3D deep 

learning model(s) for leaf-wood segmentation directly on forest 

point cloud tiles instead of on individually segmented trees.  

 

 

5. CONCLUSION 

In this paper, we present a first exploration of using 3D deep 

learning for leaf-wood segmentation of tropical tree point 

clouds. To this end, we introduce a new dataset consisting of 

148 individual tropical tree point clouds derived from TLS, with 

corresponding manual leaf-wood annotations. Preliminary 

results using the point-based RandLA-Net neural architecture 

are promising, showing fast and stable training. Quantitative 

evaluation on a hold-out test set confirms the high performance, 

with a mIoU of 86.8% and overall accuracy of 94.8%. We 

further highlight the importance of visual inspection and present 

prediction examples showing different types of confusion, and 

the model’s ability for generalizability across forest types. 

Building on these conclusions, we discuss some avenues for 

planned future work, including comparing traditional and other 

3D deep learning models, and investigating the influence of 

model performance and stability on QSM volume estimates. 
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