Scientia

Page 1

Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66 www.elsevier.com/locate/cbpb

Two forms of a-amylase in mantle tissue of Mytilus galloprovincialis: Purification and molecular properties of form II M. Lombran˜a, P. Sua´rez, F. San Juan * Departamento de Bioquı´mica, Gene´tica e Inmunolgı´a, Facultad de Ciencias del Mar, Universidad de Vigo, Lagoas-Marcosende s/n, 36200 Vigo, Spain Received 18 February 2005; received in revised form 27 May 2005; accepted 30 May 2005 Available online 11 July 2005

Abstract a-amylase activity has been shown for the first time in a non-digestive tissue from Mytilus galloprovincialis. a-amylase from mussel mantle tissue has been purified by affinity chromatography on insoluble starch, followed by gel-filtration chromatography on Superdex-200. The chromatographic and electrophoretic behaviour of M. galloprovincialis a-amylase and stability characteristics suggest two forms of this enzyme: one form forming stable aggregates (form I) and a monomeric form (form II) that is more abundant, active and unstable. Both forms show an inverse quantitative variation. Purified form II was highly unstable and the molecular mass was estimated to be 66 kDa by sodium dodecyl sulphate (SDS)-gel electrophoresis. Maximum activity was noted at pH 6.5 and 35 -C. D 2005 Elsevier Inc. All rights reserved. Keywords: Affinity chromatography; a-amylase; Bivalves; Glycogen metabolism; Mantle tissue; Molecular characterization; Mytilus; Purification

1. Introduction Culture of molluscs, more specifically of Mytilus galloprovincialis, is one of the most important sources of richness in the Galician community due to the special environmental characteristics of its estuaries (Figueras, 1990; CaceresMartinez and Figueras, 1997; Sanchez-Mata and Mora, 2000; Keldany, 2002). The main aspects of mollusc culture are growth and reproduction and both are closely linked. Indepth studies of biochemical and metabolic levels would lead to a greater knowledge of bivalves reproduction and a better control and optimization of their production. The mantle tissue of Mytilus has two interrelated physiological functions: accumulation of reserve substances and development of the gonad that invades the mantle, proliferating at the expense of the reserve tissue (Lubet, 1957). This basically comprises two main cellular types: vesicular cells (VC) that mainly store glycogen and adipogranular cells (AGC) that store lipids, proteins and a

* Corresponding author. Tel.: +34 9 86 812574; fax: +34 9 86 812556. E-mail address: fsanjuan@uvigo.es (F. San Juan). 1096-4959/$ - see front matter D 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.cbpc.2005.05.017

small amount of glycogen (Lubet et al., 1978; Pipe, 1987; Crespo and Espinosa, 1990; Freites et al., 2002, 2003). In Mytilus, the glycogen of the mantle tissue is the main energy source for sustaining gonadal development and a clear relationship exists between its degradation and gametogenic development (Bayne et al., 1982; Gabbott, 1983; Gabbott and Peek, 1991; Sua´rez et al., 2005). Despite this, few studies deal with the alternative metabolic pathways of glycogen metabolism in these organisms, as well as the enzymes involved (Alemany and Rosell-Pe´rez, 1973; Va´zquez-Baanante and Rossel-Pe´rez, 1979; Zaba, 1981; San Juan Serrano et al., 1991; Ibarguren and Ramos-Martı´nez, 1991; Fernandez et al., 1994). There are two known pathways to degrade this polysaccharide: hydrolytic and phosphorolytic pathways. The main enzyme activities in both pathways (glycosidases and glycogen phosphorylase) are found in this tissue (Gabbott and Peek, 1991; Zaba, 1981; Peek and Gabbott, 1990; San Juan Serrano et al., 1991), but a-amylase activity and relative contribution of amylase to hydrolytic pathway in glycogen utilization for gametogenic development is still unknown. a-amylase (1,4-a-d-glucan glucanohydrolase EC. 3.2. 1.1) catalyzes the endohydrolysis of 1,4-a-d-glucosidic


M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66

linkages in polysaccharides containing three or more 1,4-alinked d-glucose units, such as starch, glycogen and related polysaccharides and oligosaccharides in a random manner, generating maltose and low molecular weight dextrins limited by a-1,6 bonds that this enzyme is unable to degrade and that constitute the substrate of other glycosidases (Boyer, 1971; Merritt and Karn, 1977; Schomburg and Salzmann, 1991). The a-amylase enzyme family is widely distributed in animals (Liemans and Dandrifosse, 1971; Alemany and Rosell-Pe´rez, 1973; Doane et al., 1975; Buonocore et al., 1977; Trainer and Tillinghast, 1982; Baker, 1983; Claereboudt and Jangoux, 1985; Urich, 1994; Van Wormhoudt et al., 1995), plants (Thoma et al., 1971; Brena et al., 1996; Witt and Sauter, 1996) and microorganisms (Takagi et al., 1971; Ingle and Erikson, 1978; Kindle, 1983; Prieto et al., 1994; Brena et al., 1996). Most of the known a-amylases are digestive extracellular enzymes, but there are also some intracellular amylases (Moulin and Galzy, 1978; Ma¨ntsa¨la¨ and Zalkin, 1979; Schibler, 1982) whose function is still largely unknown. The majority of these enzymes are metalloproteins that contain at least one calcium atom per molecule and that need this metal for their activity and stability (Fischer and Stein, 1960); they belong to the group called (a/h)8 parallel cylinder (MacGregor, 1988; Farber and Petsko, 1990; Jespersen et al., 1991; Janecek and Bala´z, 1993; MacGregor, 1993; Janecek and Bateman, 1996); many of them are glycosylated proteins, but the proportion of glycosylation in their structure varies considerably (Planchot and Colonna, 1994) and they can have multiple forms with specific patterns in different tissues (Doane et al., 1975; Buonocore et al., 1977; Warchalewski and Tkachuk, 1978; Brown and Jacobsen, 1982; Strumeyer et al., 1988). As a part of our research on hydrolytic pathway in the mantle tissue of the mussel M. galloprovincialis, this paper describes the existence of a-amylase activity, their optimum conditions of activity and their purification and molecular properties.

2. Materials and methods 2.1. Animals Sea mussels (M. galloprovincialis Lmk.) were collected directly from the cultures in the Ria of Vigo (Galicia, NW Spain) between March 1998 and January 2001. Mussels with shell lengths between 7 and 10 cm were selected for the experiments. They were transported to the laboratory within 1 h of collection and excision of their mantle tissues took place immediately. Tissues were stored at 80 -C. 2.2. Reagents Substrates and enzymes were obtained from SigmaAldrich Chemical Company. Superdex-200 column and

57

protein calibration set for molecular weight determination were purchased from Amersham Pharmacia Biotech. Electrophoresis reagents were purchased from Biorad. Glycogen, maltose, phenylmethylsulfonyl fluoride (PMSF) and other chemicals and salts were from Merck or of the best purity and commercially available. 2.3. Determination of proteins Proteins were measured by the Bradford method (Bradford, 1976) using a solution of 0.25 mg/mL of bovine serum albumin as a protein standard. 2.4. Determination of a-amylase activity a-amylase activity was assayed by measuring the reducing sugar released during the reaction, using glycogen as substrate, according to Bernfeld (1955) but slightly modified in salt and substrate concentrations. The reaction mixture contained MnCl2 2 mM, CaCl2 40 mM, glycogen 16 g/L in 107 mM of CH3COONa and NaCl pH 7.0, and 100 AL of enzyme solution in a final volume of 400 AL. The reaction was stopped by adding 400 AL of dinitrosalicylic acid solution after incubation at 37 -C for 10 – 30 min. The reaction mixture was then heated in boiling water for 5 min, cooled in an ice bath and diluted with 4 mL of distilled water. The released reducing sugar was determined colorimetrically at 550 nm and expressed as maltose. One unit of a-amylase activity was defined as the amount of enzyme that liberated 1 Amol of maltose per minute under assay conditions. Maltose was used as a standard and all experiments were carried out in triplicate. Optimum incubation time was established in terms of reaction linearity in relation to time: 10 min for crude extract and 30 min for purified a-amylase. 2.5. Effect of diverse ions on a-amylase activity The effect of Ca2+ on enzyme stability was assayed as their activity after different incubation times at different calcium acetate concentrations (0 – 20 mM). Different concentrations of NaCl, CaCl2 and MnCl2 were assayed in a range from 0 to 2 M, 0 to 80 mM and 0 to 2 mM, respectively, to determine the influence of these ions on activity measurement. To determine the enzymatic reaction linearity, the a-amylase activity was measured at different reaction times up to 48 h. 2.6. Purification procedure All purification steps were carried out at 4 -C. This purification procedure draws together different steps previously used by several authors and discards other steps normally applied in the purification of several a-amylases. Mussel mantles (72 g) were homogenized in 5 vol (w / v) extraction buffer, NaCl (20 mM), (CH3COOH)2Ca (10 mM)


58

M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66

and 2-mercaptoethanol (1 mM), pH 7.3, using a Potter homogenizer. PMSF (0.2 mM) was added to the mixture as a protease inhibitor. The homogenate was centrifuged at 30,000 g av for 45 min and the pellet was discarded. The particle-free supernatant was filtered through glass-wool to remove any lipids. This suspension was dialyzed against 20 vol. extraction buffer. After dialysis 366 mL of crude homogenate was obtained. In this crude extract, effect of Ca2+ concentration, antioxidants, proteases inhibitor and hot preincubation were assayed. The crude extract was then applied to a batch affinity chromatography on starch insolubilized with ammonium sulfate (Minamiura et al., 1975; Matsuura et al., 1978; Ishikawa et al., 1993; Le Moine et al., 1997). The proportion used in this chromatography was 0.4 g of insolubilized starch solution for 5 vol. crude extract. The mixture was kept overnight at 4 -C with slow shaking. Then the mixture was centrifuged as previously described and the supernatant was discarded. After washing the pellet with extraction buffer, the enzyme was eluted by an increase of temperature to 40 -C for 1 h. The enzyme was recovered in the supernatant after centrifugation as above. This process was repeated several times. All eluates were collected, dialyzed against extraction buffer, frozen to 80 -C and lyophilized. Afterwards, the concentrated enzyme was resuspended and applied to a Superdex-200 column (10 300 mm) in a protein purification system (FPLC) from Pharmacia Biotech. The column was previously equilibrated with extraction buffer at a flow rate of 0.5 mL/min. The eluate was collected in 0.5 mL fractions and assayed for enzymatic activity. The protein concentration of each fraction during column chromatography was monitored by measuring absorbance at 280 nm. Fractions containing amylase activity were pooled, concentrated by centrifugation in centripep-10 (Amicon), and used to study the properties of the enzyme. 2.7. Molecular weight estimations The molecular weight of the a-amylase was determined by gel filtration on Superdex-200 (Andrews, 1964, 1965). The column used for this study was the same as that used in the final step of the purification procedure. For this purpose, the column was calibrated with vitamin B-12 (1350), horse myoglobulin (17,000), chicken ovalbumin (44,000), bovine g-globulin (158,000) and bovine tyroglobulin (670,000).

with iodine after incubation in sodium acetate 0.2 M, NaCl 0.2 M, CaCl2 0.02 M and 1% starch solution for 2– 10 h at 37 -C. Sodium dodecyl sulphate (SDS)-PAGE was performed as described in Laemmli (1970) on 12% gel containing 0.1% SDS at pH 8.3 with Tris –borate buffer containing 1 mM EDTA and 0.1% SDS (Poduslo, 1981), at 100 V and 4 mA for 60 min. The protein solution (2 –5 Ag) was treated with buffer 20 mM Tris – HCl pH 6.8, containing 0.08 M sodium tetraborate, 10% SDS, 10% 2-mercaptoethanol, 20% glycerol, and 0.2% bromophenol blue in a proportion 4 : 1 (v : v) for 5 min at 100 -C. Carbonic anhydrase (29,000), ovalbumin (45,000), glutamate dehydrogenase (53,000), bovine serum albumin (66,000), transferrin (76,000), phosphorylase b (97,000), h-galactosidase (116,000), a2macroglobulin (170,000) and myosin (209,000) were used as standards. Proteins were stained with the silver method, described by Merril et al. (1979) as modified by Le Moine et al. (1997). 2.9. Optimum temperature and pH Conditions of temperature and pH in activity determination and during purification process were previously established in crude extract. After purification, optimal temperature and pH and thermal stability of form II were determined. Optimum pH was determined by a-amylase activity at various pH values ranging from 5.2 to 10.5 at 37 -C, using a mixture of Tris –maleate and acetic buffers in variable conditions in order to achieve each assayed pH value. Optimum temperature of enzyme was determined by aamylase activity at temperatures ranging from 5 to 50 -C at pH 6.5. To determine enzyme thermal stability, the enzyme activity was assayed at 37 -C (pH 6.5) after incubation of enzymatic extract for 1 h to different temperatures ranging from 5 to 50 -C. 2.10. Statistical analysis Results were analysed using the software package SPSS for windows (SPSS Inc, 1999). Data were compared using Student’s t-test. A probability level of P 0.05 was used in all test hypotheses.

2.8. Electrophoresis 3. Results and discussion Polyacrylamide gel electrophoresis (PAGE) was performed according to Davis (1964) on 10% acrylamide gel at pH 8.3. Electrophoresis was carried out at 200 V and 4 mA for 60 min at 4 -C. The sample (2 –5 Ag protein) was prepared in a solution of 50% electrophoresis buffer (25 mM Tris, 190 mM glycine pH8.3), 25% glycerol and 25% bromophenol blue as marker, in a proportion of 1 : 1 (v : v). The a-amylase activity was detected by staining the gel

3.1. Effect of diverse ions on a-amylase activity A large number of mineral elements have been described as reagents or inhibitors of diverse a-amylases (Trainer and Tillinghast, 1982; Baker, 1983; Schomburg and Salzmann, 1991). The most commonly cited are the ions Ca2+, Mn2+, Cl and Na+. The effect of these ions on


M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66

3.2. Purification and purity of the enzyme The first step in purification was an affinity chromatography on insolubilized starch. The eluted enzyme solution

40 100 15

Relative Activity (%)

the stability and activity of the enzyme present in the crude extract was first studied. NaCl is described as an amylase activator in other molluscs and marine invertebrates (Harris et al., 1986; Milanovic et al., 1989; Guarna and Borowsky, 1995; Shaw et al., 1995; Le Moine et al., 1997; Levitzki and Steer, 1974; Schomburg and Salzmann, 1991). In this study, all NaCl concentrations (0 –2 M) increased the activity of Mytilus mantle a-amylase in the same proportion, so we decided to standardise it at 0.2 M, the same concentration used by other authors (Bernfeld, 1955; Harris et al., 1986; Le Moullac and Van Wormhoudt, 1994; Le Moullac et al., 1997). Ca2+ and Mn2+ ions stabilize and activate the a-amylase but may be inhibiting at high concentrations (Schomburg and Salzmann, 1991; Witt and Sauter, 1996). The effect of Ca2+ (as calcium acetate) on enzyme stability of Mytilus is shown in Fig. 1. The maximum stability and maintenance of activity is achieved with a concentration of 10 mM and we included in the extraction buffer. The effect of this ion on aamylase activity was observed by adding different concentrations of CaCl2 to the reaction mixture. The results obtained (Fig. 2) show two activity maximums at 15 and 40 mM of CaCl2. This led us to consider the initial hypothesis of two enzymatic forms in Mytilus mantle tissue, with different characteristics in terms of regulating its activity. In the follow-up of amylase activity in the purification process, we used a 40 mM concentration. The effect of the Mn2+ ion (MnCl2) on enzymatic activity was determined in a similar manner and in the same concentrations as CaCl2. Any effect was observed, but 2 mM MnCl2 was included in reaction mixture since this appears to safeguard the glycogen against spontaneous degradation.

59

80

60

40

20

0 0

10

20

30

40

50

60

70

80

90

[CaCl2] (mM) Fig. 2. Effect of different calcium chloride concentrations on a-amylase activity from M. galloprovinciali mantle.

showed the same activity and only 1% of total proteins with regard to the crude extract, which represents a specific activity of 36.8 mUI/mg protein and a purification factor of 124. Fig. 3 shows the elution profile from gel filtration on Superdex-200. It can be observed that the enzymatic activity was eluted in two peaks, which coincided with two single peaks of protein, measured as absorbance at 280 nm. These two peaks were collected separately and concentrated. We initially called each fraction form I and form II, respectively. A typical purification scheme for a-amylase is presented in Table 1. The final specific activity of two enzymatic forms was approximately 42 mUI/mg protein for form I and 8 mUI/mg protein for form II, representing a 142-fold and 27-fold purification, respectively. In any case, it must be pointed out that these activities and purification factors of both enzymatic forms are undervalued, particularly those of form II. In order to remove high salt concentrations that interfere with the activity measure and chromatographic and electrophoretic development, dialysis of enzyme solution

100

0.12

80

0.10

60

40

Form II 0.15

0.08 0.06

Form I

0.10

0.04

Activ. (mU.I./mL)

Abs. 280 nm

Relative Activity (%)

0.20

0.05

20

0.02

0

0.00

0

10

20

30

40

50

Time (h) Fig. 1. Effect of calcium acetate concentrations on stability of a-amylase from M. galloprovincialis mantle tissue. (CH3COOH)2Ca: (filled triangle) 0 mM; (empty circle) 5 mM; (filled circle) 10 mM; (filled square) 20 mM.

0

5

10

15

20

25

0.00 30

Vol. (mL)

Fig. 3. Elution profile of a-amylase from mantle of M. galloprovincialis on Superdex 200. (\) Absorbance at 280 nm; (- - -) a-amylase activity (see text).


60

M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66

Table 1 Summary of the purification procedure of the a-amylase from mantle tissue of M. galloprovincialis Steps

Volume (mL)

Activity (mUI)

Proteins (mg)

Specific activity (mUI/mg)

Purification factor

Yield (%)

Crude extract Starch – (NH4)2SO4

366.0 198.0

1770.99 1427.16

4821.7 48.1

0.3 36.82

1.00 124.39

100.00 80.68

Superdex 200 Form I

3.50

5.33

0.13

42.16

142.44

0.37

Superdex 200 Form II

20.00

16.28

2.07

7.85

26.51

1.14

after concentration was required. However, we observed a remarkable decrease in activity, which indicates a high instability of purified enzyme. This is because a low purification factor and yield were obtained at the end of the process. The purification process and purity of the enzyme preparations was examined by native PAGE (Fig. 4): a decrease of proteins in the samples through purification process is observed, until the purified extract showed one single band of protein for each enzymatic form. A single step of affinity chromatography on insolubilized starch is sufficient to isolate two proteins with amylase activity (Fig. 4B and C). A second chromatography—gel filtration on Superdex 200—makes it possible to separate the two enzymatic forms as one single band for each (Fig. 4D and E). These results show that a-amylase from M. galloprovincialis mantle tissue had been purified to apparent homogeneity. Aliquots of these purified protein solutions were utilized for study of their molecular properties. To increase stability of the purified enzyme and store it, different conditions were tested, described as stabilisers of other enzymes. Fast freezing was tested at 80 -C (Fischer and Krebs, 1958), as were the addition of high concentrations of simple bovine serum albumin and acetylade (Ogasahara et al., 1970; Smogrovicova´ and Augustı´n, 1986; Guarna and Borowsky, 1995; Witt and Sauter, 1996), the increase in density of the

solution with glycerol (Janecek and Bala´z, 1992), the increase in ions Ca2+, Cl , Na+, and K+ (Greenwood and Milne, 1968; Schomburg and Salzmann, 1991; Shih and Labbe´, 1995) and the addition of 2– 8 M urea (Schomburg and Salzmann, 1991). None of these tested conditions proved adequate for the mantle enzyme of Mytilus, which quickly lost its activity when stored. This necessarily led us to the successive and speedy repetition of the purification process in order to obtain sufficient quantity of activity at the end to allow us to characterize it. In spite of this, the low proportion of form I in the samples and the great loss of activity during the purification process made it impossible to obtain enough quantity of this form to be able to characterize it completely. The subsequent purification process involved eliminating other intermediary steps frequent in the purification of other a-amylases in diverse organisms as that for Mytilus enzyme was completely inadequate. The fractioned precipitation with ammonium sulphate or organic solvents, as acetone and ethanol, is described as an important step in the process of a-amylase purification in other organisms (Freer, 1993; Giraud et al., 1993; El-Abyad et al., 1994; Le Moine et al., 1997). Nevertheless, the Mytilus mantle tissue enzyme proved to be soluble at all concentrations and proportions of these solutions. This same behaviour, in terms of solubility at high saline concentrations and organic solvents, is described for highly glucosilade proteins (Bjo¨rling, 1976;

Fig. 4. Polyacrylamide gel electrophoresis under native conditions of a-amylase from mantle tissue of M. galloprovincialis at different moments of purification procedure: (A) protein stain of crude extract; (B) activity stain from crude extract; (C) protein stain of enzyme solution from affinity chromatography on starch – (NH4)2SO4; (D) protein stain of form I of a-amylase from gel filtration on Superdex 200; and (E) protein stain of form II of aamylase from gel filtration on Superdex 200.


M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66

Beeley, 1985). Due to the high solubility of our enzyme in ethanol, affinity chromatography on ethanol – glycogen (Loyter and Shramm, 1962; Shramm and Loyter, 1966; Guarna and Borowsky, 1995) neither proved to be specific for its separation, since many other proteins joined in the chromatographic support, as shown by the electrophoresis of the extract at this step, and a large amount of amylase activity was lost. The purified enzyme was more unstable and sometimes became visible as two or three bands in PAGE, all associated with amylase activity. To verify if these additional bands corresponded to different isoforms, after chromatography in gel filtration, each of the isolated forms (form I, form II) was subjected to an ionic interchange chromatography (Brena et al., 1996) on mono-Q in an FPLC system. Elution of both forms produced a single peak in the empty volume of the column, before applying the saline gradient for the elution. This shows that the two forms of a-amylase found in Mytilus are highly charged and are not retained by resin in the monoQ column. These negative results seem to suggest that aamylase from M. galloprovincialis mantle tissue could be a protein with a high degree of glycosylation as shown by their chromatographic behaviour, their high solubility in saturated salt concentrations and organic solvents and their high instability during all purification processes as noted by some authors for other glycosylated proteins (Bjo¨rling, 1976; Beeley, 1985). 3.3. Molecular mass From gel filtration results, the molecular mass of forms I and II of a-amylase from M. galloprovinsialis mantle was estimated to be 1560 kDa and 2.36 kDa, respectively (Fig. 5). Form I eluted in a very low volume (8.24 mL approximately) and form II much later (20.57 mL). The high molecular mass calculated for form I may

Fig. 6. SDS-PAGE of purified a-amylase from mantle tissue of M. galloprovincialis: (A) form I; (B) form II; and (C and D) markers: myosin (209 kDa), a2-macroglobulin (170 kDa), h-galactosidase (116 kDa), phosphorylase b (97.4 kDa), transferrin (76 kDa), bovine serum albumin (66 kDa), glutamate dehydrogenase (53 kDa), ovalbumin (45 kDa), and carbonic anhydrase (29 kDa).

be due to the formation of aggregates as described in bacteria (Robyt and Ackerman, 1973; Giraud et al., 1993). In contrast, form II was abnormally retained by the column and polydispersion phenomena were observed, which could be due to their high ionic charge as noted earlier. Electrophoresis of both isolated forms (I and II) in SDS-PAGE showed a main band of protein of form I which associated with secondary bands, possibly a result of the formation of aggregates (Fig. 6A). Form II showed a single protein band on SDS-PAGE (Fig. 6B) with a molecular mass of 66 kDa (Fig. 6C-D and Fig. 7). These results indicate that form II a-amylase constitutes a single monomer of a higher molecular mass than those described in other amylases (Stiefel and Keller, 1973; Mayo and Carlson, 1974; Takeuchi, 1979; Lorentz, 1982; Zakowski et al., 1984; Abe et al., 1988; Le Moine et al., 1997).

3.5

6 Form I

a

a

5

2.5

log (Molecular Weight)

log (Molecular Weight)

3.0

b

2.0 c

1.5

d

1.0 0.5 0.0

61

y = -0.2287x + 5.0775 R2 = 0.9866

0

5

Form II

15

20

25

Fig. 5. Molecular weight determination of a-amylase from mantle tissue of M. galloprovincialis by gel filtration chromatography on Superdex 200. Molecular markers: (a): thyroglobulin (670 kDa); (b): g-globulin (158 kDa); (c): ovalbumin (44 kDa); (d): myoglobulin (17 kDa); and (e): B-12 vitamin (1.35 kDa). Filled square: a-amylase form I/II.

d

e

f

h

g i

3 2 1

Vol. (mL)

Form II

c

4

e

10

b

0 0.0

y = -1.2905x + 5.3107 R2 = 0.9673 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Relative Mobility (Rf) Fig. 7. Subunit molecular weight determination of a-amylase form II from M. galloprovincialis mantle by SDS-gel electrophoresis. Same molecular markers as in Fig. 6. Filled square: purified form I of a-amylase. Mobility relative to dye front.


62

M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66

formation – dispersion of aggregates and activation by post-translational changes, such as partial proteolysis and glycosylation, similar to that described in amphipods (Borowsky, 1984).

Higher molecular weights could be caused by glycosylation (Urich, 1994) or the formation of aggregates, as observed in some bacteria (Robyt and Ackerman, 1973; Giraud et al., 1993). The necessary repetition of the purification process allowed us to observe, from gel filtration chromatography, an inverse quantitative variation of the two enzyme forms (Fig. 8) which could indicate special regulation of the a-amylase activity in M. galloprovincialis mantle by

0,18

3.4. Effect of pH on activity Because of low proportion and high loss of purified form I activity, the effect of pH and temperature on a-amylase

a

0,16

Form II

b

0,14 0,12 0,10

Form II

0,08 0,06 0,04 Form I

0,02

Form I

0,00 0,18

c

0,16

Form I

d

0,14 0,12 0,10

Form I Form II

0,08

Form II

0,06

Abs 280 nm

0,04 0,02 0,00 0,18

e

0,16

f

0,14 0,12 0,10 Form II

0,08

Form I

0,06 Form II

0,04 Form I

0,02 0,00 0,18

g

0,16

h

0,14 0,12 0,10

Form II

Form I

0,08 0,06 0,04

Form II

Form I

0,02 0,00

0

5

10

15

20

25

30

0

5

10

15

20

25

30

Vol. (mL)

Fig. 8. Seasonal variation of elution profile of a-amylase (forms I and II) from mantle of M. galloprovincialis on Superdex 200 (absorbance at 280 nm): (a) 16 December 1998; (b) 8 April 1999; (c) 24 April 1999; (d) 5 August 1999; (e) 4 December 1999; (f) 2 February 2000; (g) 25 February 2000; and (h) 30 April 2000.


M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66

100

75

Relative Activity (%)

Relative Activity (%)

100

63

50

25

75

50

25

0 4

5

6

7

8

9

10

11

pH

0 0

Fig. 9. Effect of pH on a-amylase activity from M. galloprovincialis mantle. Filled circle: crude extract; empty circle: purified form II. Temperature assay was carried out at 37 -C.

activity was comparatively assayed on crude extract and purified form II. The effect of pH on this enzyme activity was examined at constant temperature using Tris – maleate and acetic buffers. As shown in Fig. 9, the crude extract has two peaks of maximal activity at pH values of 6.5 and 9.0, although this sample showed high enzyme activity (above 80%) throughout the whole range of pH values assayed. Purified form II showed an optimum pH value of 6.5, which coincided with the acid peak observed in the crude extract. At values higher than 7.5, however, enzymatic activity dropped sharply to 35% of maximal activity. This optimum pH value lies within a wide range of data reported for other amylases (Alemany and Rosell-Pe´rez, 1973; Buonocore et al., 1977; Ingle and Erikson, 1978; Lorentz, 1982; Uchino, 1982; Baker, 1983; Krishnan and Chandra, 1983; Bhella and Altosaar, 1985; Guarna and Borowsky, 1995; Le Moine et al., 1997). Generally, it is described that invertebrate a-amylases, the same as mammals, have

Relative Activity (%)

100

75

50

25

10

20

30

40

50

Temperature (ºC) Fig. 11. Effect of temperature on stability of a-amylase from Mytilus galloprovincialis mantle after incubation for 1 h at indicated temperatures. Filled circle: crude extract; empty circle: purified form II. Enzyme activity was assayed at 37 -C and pH 6.5.

optimum pH values which are near to neutrality (Urich, 1994). 3.5. Effect of temperature Enzyme activity was assayed at various temperatures as described in Materials and methods at pH 6.5. Maximum activity of crude extract and form II was reached between 25 – 40 and 35 –40 -C, respectively (Fig. 10). However, it kept between 73% and 80% of its maximum activity throughout the range of temperatures assayed. The effect of temperature on the stability of a-amylase from Mytilus mantle was assayed by incubation of extracted crude and purified form II for 1 h between 5 and 50 -C (Fig. 11). Crude extract showed a high activity at all temperatures, but residual activity of form II decreased by 40% with increasing temperature above 20 -C. This could be logical if we consider that the average temperature in the Galician stuaries, where the mussels used are acclimatised, is 18 – 20 -C. These results seem to indicate that Mytilus mantle aamylase has two different forms: forming stable aggregates, similar to that described in other organisms (form I), and in monomeric unstable form (form II). The difficult purification and the activity loss of form I could be because of aggregate formation. Moreover, the inverse quantitative variation observed of both enzyme forms could indicate a special regulation in this tissue, the physiological significance of which calls for study in future works.

0 0

10

20

30

40

50

Temperature (ºC)

Fig. 10. Effect of temperature on a-amylase activity from M. galloprovincialis mantle. Filled circle: crude extract; empty circle: purified form II. Enzyme activity was assayed at pH 6.5.

Acknowledgements This work was carried out under project XUGA30103A98 of the Regional Government of Galicia (Xunta de Galicia)


64

M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66

and was partially financed by the University of Vigo. The authors thank Ian Emmett for correcting the English of the manuscript.

References Abe, J.I., Nakajima, K., Nagano, H., Hizukuri, S., Obata, K., 1988. Properties of the raw-starch digesting amylase of Aspergillus sp. K-27: a synergistic action of glucoamylase and alpha-amylase. Carbohydr. Res. 175, 85 – 92. Alemany, M., Rosell-Pe´rez, M., 1973. Two different amylase activities in the sea mussel Mytilus edulis L. Rev. Esp. Fisiol. 29, 217 – 222. Andrews, P., 1964. Estimation of the molecular weight of proteins by Sephadex gel filtration. Biochem. J. 91, 222 – 223. Andrews, P., 1965. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J. 96, 595 – 606. Baker, J.E., 1983. Properties of amylases from midguts of larvae of Sitophilus zeamais and Sitophilus granarius. Insect Biochem. 13, 421 – 428. Bayne, B.L., Bubel, A., Gabbott, P.A., Livingstone, D.R., Lowe, D.M., Moore, M.N., 1982. Glycogen utilization and gametogenesis in Mytilus edulis L. Mar. Biol. Lett. 3, 89 – 105. Beeley, J.G., 1985. In: Burdon, R.H., Van Knippenberg, P.H. (Eds.), Glycoprotein and Proteinglycan Techniques. Elsevier, Amsterdam, pp. 325 – 430. Bernfeld, P., 1955. Amylases, a and h. In: De Murray, P. (Ed.), Methods in Enzymology, vol. I. Deutscher Acad. Press INC, San Diego, California, pp. 149 – 158. Bhella, R.S., Altosaar, I., 1985. Purification and some properties of the extracellular alpha-amylase from Aspergillus awamori. Can. J. Microbiol. 31, 149 – 153. Bjo¨rling, H., 1976. In: Blomba¨ck, B., Hanson, L.A. (Eds.), Plasma Proteins. Wiley, Chichester, pp. 29 – 37. Borowsky, R., 1984. Environmental control of amylase phenotype in amphipods of the genus Gammarus. Biol. Bull. 167, 647 – 657. Boyer, P.D., 1971. In: Boyer, P.D. (Ed.), The Enzymes, vol. 5. Academic Press, New York, pp. 115 – 182. Bradford, M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248 – 254. Brena, B.M., Pazos, C., Franco-Fraguas, L., Batista-Viera, F., 1996. Chromatographic methods for amylases. J. Chromatogr., Biomed. Appl. B 684, 217 – 237. Brown, A.H.D., Jacobsen, J.V., 1982. Genetic basis of alpha-amylase isozymes in barley. Genet. Res. 40, 315 – 324. Buonocore, V., Deponte, R., Gramenzi, F., Petrucci, T., Poerio, E., Silano, V., 1977. Purification and properties of alpha-amylase from chicken (Gallus gallus L.) pancreas. Cell Biochem. 17, 11 – 15. Caceres-Martinez, J., Figueras, A., 1997. The mussel, oyster, clam and pectinid fisheries of Spain. NOAA Tech. Rep. NMFS 0 (129), 165 – 190. Claereboudt, M., Jangoux, M., 1985. Conditions de digestion et activite´ de quelques polysaccaridases dans le tube digestif de l’oursin Paracentrotus lividus (Echinodermata). Biochem. Syst. Ecol. 13, 51 – 54. Crespo, C.A., Espinosa, J., 1990. Nutrient storage cell isolation from mantle tissue of Mytilus galloprovincialis: glucose release and glycogen content. Rev. Esp. Fisiol. 46, 241 – 246. Davis, B.J., 1964. Disc electrophoresis—II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121, 404 – 427. Doane, W.W., Abraham, I., Kolar, M., Martensen, R.E., Deibler, G.E., 1975. Purified Drosophila alpha-amylase isozymes: genetical, biochemical, and molecular characterization. In: Markert, C.L. (Ed.), Isozymes: Genetics and Evolution. Academic Press, New York, pp. 585 – 607. El-Abyad, M.S., El-Shanshoury, A., Hafez, M., 1994. Purification and characterization of the glucoamylase produced by a strain of Aspergillus flavus. Microbiology 80, 7 – 15.

Farber, G.K., Petsko, G.A., 1990. The evolution of a/h-barrel enzymes. Trends Biochem. Sci. 15, 228 – 234. Fernandez, M., Cao, J., Vazquez-Illanes, M.D., Ramos-Martinez, J.I., Villamarin, J.A., 1994. Phosphofructokinase from mantle tissue of Mytilus galloprovincialis: purification and effects of phosphorylation on enzymatic activity. Biochem. Mol. Biol. Int. 33, 355 – 363. Figueras, A., 1990. Mussel culture in Spain. Mar. Behav. Physiol. 16, 177 – 207. Fischer, E.H., Krebs, E.G., 1958. The isolation and crystallization of frog skeletal muscle phosphorylase. J. Biol. Chem. 231, 65 – 71. Fischer, E.H., Stein, E.A., 1960. a-amylases. In: Boyer, P.D., Lardy, H., Myrba¨ck, K. (Eds.), The Enzymes, vol. 4. Academic Press, New York, pp. 126 – 145. Freer, S.N., 1993. Purification and characterization of the extracellular a-amylase from Streptococcus bovis JB1. Appl. Environ. Microbiol. 59, 1398 – 1402. Freites, L., Fernandez-Reiriz, M.J., Labarta, U., 2002. Lipid classes of mussel seeds Mytilus galloprovincialis of subtidal and rocky shore origin. Aquaculture 207, 97 – 111. Freites, L., Fernandez-Reiriz, M.J., Labarta, U., 2003. Composicio´n bioquı´mica y contenido energe´tico del mejillo´n Mytilus galloprovincialis de origen submareal e intermareal: influencia de las variables ambientales y de su origen. Cienc. Mar. 29, 603 – 619. Gabbott, P.A., 1983. Developmental and seasonal metabolic activities in marine molluscs. In: Hochachka, P.W. (Ed.), The Mollusca. Environmental Biochemistry and Physiology, vol. 2. Academic Press, New York, pp. 165 – 217. Gabbott, P.A., Peek, K., 1991. Cellular biochemistry of the mantle tissue of the mussel Mytilus edulis L. Aquaculture 94, 165 – 176. Giraud, E., Gosselin, B., Marin, J., Parada, J.L., Raimbault, M., 1993. Purification and characterization of an extracellular amylase from Lactobacillus plantarum strain A6. J. Appl. Bacteriol. 75, 276 – 282. Greenwood, C.T., Milne, E.A., 1968. Starch degrading and synthesizing enzymes: a discussion of their properties and action pattern. Adv. Carbohydr. Chem. Biochem. 23, 281 – 366. Guarna, M.M., Borowsky, R.L., 1995. Biochemical properties of amylases from Gammarus palustris. Comp. Biochem. Physiol. B 112, 619 – 628. Harris, R.P., Samain, J.-F., Moal, J., Martin-Jezequel, V., Poulet, S.A., 1986. Effects of algal diet on digestive enzyme activity in Calanus helgolandicus. Mar. Biol. 90, 353 – 361. Ibarguren, I., Ramos-Martı´nez, J.I., 1991. Modulation of glycolysis in mantle tissue of Mytilus galloprovincialis Lmk. Comp. Biochem. Physiol. B 99, 501 – 541. Ingle, M.B., Erikson, R.J., 1978. Bacterial alpha-amylases. Adv. Appl. Microbiol. 24, 257 – 278. Ishikawa, K., Matsui, I., Kobayashi, S., Nakatani, H., Honda, K., 1993. Substrate recognition at the binding site in mammalian pancreatic a-amylases. Biochem. 32, 6259 – 6265. Janecek, S., Bala´z, S., 1992. Alpha-amylases and approaches leading to their enhanced stability. FEBS Lett. 304, 1 – 3. Janecek, S., Bala´z, S., 1993. Evolution of parallel h/a-barrel enzyme family lightened by structural data on starch-processing enzymes. J. Protein Chem. 12, 509 – 514. Janecek, S., Bateman, A., 1996. The parallel (a/h)8-barrel: perhaps the most universal and the most puzzling protein folding motif. Biologia. Bratislava. 51, 613 – 628. Jespersen, H.M., MacGregor, E.A., Sierks, M.R., Svensson, B., 1991. Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem. J. 280, 51 – 55. Keldany, B., 2002. Overview of the Galician mussel industry. Bull. Aquacult. Assoc. Can. 102, 58 – 65. Kindle, K.L., 1983. Characteristics and production of thermostable alphaamylase. Appl. Biochem. Biotechnol. 8, 153 – 170. Krishnan, T., Chandra, A.K., 1983. Purification and characterization of alpha-amylase from Bacillus licheniformis CUMC305. Appl. Environ. Microbiol. 46, 430 – 437.


M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66 Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680 – 685. Le Moine, S., Sellos, D., Moal, J., Daniel, J.Y., San Juan Serrano, F., Samain, J.F., Van-Wormhoudt, A., 1997. Amylase in Pecten maximus (Mollusca, bivalves): protein and cDNA characterization; quantification of the expression in the digestive gland. Mol. Mar. Biol. Biotechnol. 6, 228 – 237. Le Moullac, G., Van Wormhoudt, A., 1994. Adaptation of digestive enzymes to dietary protein, carbohydrate and fibre levels and influence of protein and carbohydrate quality in Penaeus vannamei larvae (Crustacea, Decapoda). Aquatic living resources/Ressources vivantes aquatiques, Nantes, vol. 7, No. 3, pp. 203 – 210. Le Moullac, G., Klein, B., Sellos, D., Van Wormhoudt, A., 1997. Adaptation of trypsin, chymotrypsin and alpha-amylase to casein level and protein source in Penaeus vannamei (Crustacea Decapoda). J. Exp. Mar. Biol. Ecol. 208, 107 – 125. Levitzki, A., Steer, M.L., 1974. The allosteric activation of mammalian alpha-amylase by chloride. Eur. J. Biochem. 41, 171 – 180. Liemans, M., Dandrifosse, G., 1971. Secretion Damylase par la muqueuse intestinnale isole´e de quelques echinodermes. Arch. Int. Physiol. Biochim. 80, 853 – 860. Lorentz, K., 1982. Properties of human alpha-amylases from urine, pancreas, and saliva. Enzyme 28, 233 – 241. Loyter, A., Shramm, M., 1962. The glycogen – amylase complex as a means of obtaining highly purified a-amylases. Biochim. Biophys. Acta 65, 200 – 206. Lubet, P., 1957. Cycle sexuel de Mytilus edulis L. et de Mytilus galloprovincialis Lmk. dans le Bassin d’Arcachon (Gironde). Anne´ biologique. 33, 19 – 29. Lubet, P., Herlin, P., Mathieu, M., Collin, F., 1978. Tissue de re´serve et cycle sexuel chez les Lamellibranches. Haliotis 7, 59 – 62. MacGregor, E.A., 1988. a-amylase structure and activity. J. Protein Chem. 7, 399 – 415. MacGregor, E.A., 1993. Relationships between structure and activity in the a-amylase family of starch-metabolising enzymes. Starch 45, 232 – 237. Ma¨ntsa¨la¨, P., Zalkin, H., 1979. Membrane-bound and soluble extracellular alpha amylase from Bacillus subtili. J. Biol. Chem. 254, 8540 – 8547. Matsuura, K., Ogawa, M., Kosaki, G., Minamiura, N., Yamamoto, T., 1978. a-amylase from human pancreatic juice as an electrophoretically pure isozyme. J. Biochem. 83, 329 – 332. Mayo, J.W., Carlson, D.M., 1974. Isolation and properties of four alphaamylase isozymes from human submandibular saliva. Arch. Biochem. Biophys. 163, 498 – 506. Merril, C.R., Switzer, R.C., Van Keuren, M.L., 1979. Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc. Natl. Acad. Sci. U. S. A. 76, 4335 – 4339. Merritt, A.D., Karn, R.C., 1977. The human alpha-amylases. Adv. Hum. Genet. 8, 135 – 234. Milanovic, M., Andjelkovic, M., Stamenkovic-Bojic, G., 1989. Adaptative significance of amylase polymorphism in Drosophila: IV. A comparative study of biochemical properties of alpha-amylase in Drosophila melanogaster, D. hydei, D. suboscura, and D. busckii. Comp. Biochem. Physiol. B 93, 629 – 634. Minamiura, N., Kimura, Y., Tsujino, K., Yamamoto, T., 1975. Isozymes of a-amylase in human urine. J. Biochem. 77, 163 – 169. Moulin, G., Galzy, P., 1978. Study of alpha-amylase of the cell wall of Pichia burtonii boidin. Z. Allg. Mikrobiol. 18, 269 – 274. Ogasahara, K., Yutani, K., Imanishi, A., Isemura, T., 1970. Studies of thermophilic alpha-amylase from Bacillus stearothermophilus: 3. Effect of temperature on the renaturation of denatured thermophilic alphaamylase. J. Biochem. 67, 83 – 89. Peek, K., Gabbott, P.A., 1990. Seasonal cycle of lysosomal enzyme activities in the mantle tissue and isolated cells from the mussel Mytilus edulis. Mar. Biol. 104, 403 – 412.

65

Planchot, V., Colonna, P., 1994. Purification and characterization of extracellular a-amylase from Aspergillus fumigatus. Carbohydr. Res. 272, 97 – 109. Pipe, R.K., 1987. Ultrastructural and cytochemical study on interactions between nutrient storage cells and gametogenesis in the mussel Mytilus edulis L. Mar. Biol. 96, 519 – 528. Poduslo, J.F., 1981. Glycoprotein molecular-weight estimation using sodium dodecyl sulfate-pore gradient electrophoresis: comparison of tris-glycine and tris borate-EDTA buffer systems. Anal. Biochem. 114, 131 – 139. Prieto, J.A., Bort, B.R., Martı´nez, J., Ra´ndez-Gil, F., Buesa, C., Sanz, P., 1994. Purification and characterization of a new a-amylase of intermediate thermal stability from the yeast Lipomyces kononenkoae. Biochem. Cell. Biol. 73, 41 – 49. Robyt, J.F., Ackerman, R.J., 1973. Structure and function of amylase: II. Multiple forms of Bacillus subtilis a-amylase. Arch. Biochem. Biophys. 155, 445 – 451. Sanchez-Mata, A., Mora, J., 2000. A review of marine aquaculture in Spain: production, regulations and environmental monitoring. J. Appl. Ichthyol. 16, 209 – 213. San Juan Serrano, F., Ferna´ndez Gonza´lez, M., Sa´nchez Lo´pez, J.L., Garcı´a Martı´n, L.O., 1991. Purification and molecular properties of glycogen phosphorylase b from mantle tissue of mussel, Mytilus galloprovincialis. Comp. Biochem. Physiol. B 98, 33 – 39. Schibler, U., 1982. The mouse a-amylase multigene family. Sequence organization of members expressed in the pancreas, salivary gland and liver. J. Mol. Biol. 155, 247 – 266. Schomburg, D., Salzmann, M., 1991. Hydrolases. Enzyme Handbook. Springer-Verlag, Berlin Heidelberg, pp. 1 – 11. Shaw, J., Lin, F., Chen, S., Chen, H., 1995. Purification and properties of an extracellular a-amylase from Thermus sp. Bot. Bull. Acad. Sin. 36, 195 – 200. Shih, N., Labbe´, R.G., 1995. Purification and characterization of an extracellular a-amylase from Clostridium perfringens type A. Appl. Environ. Microbiol. 61, 1776 – 1779. Shramm, M., Loyter, A., 1966. Purification of a-amylases by precipitation of amylase – glycogen complexes. Methods Enzymol. 8, 533 – 537. Smogrovicova´, D., Augustı´n, J., 1986. Stability of technically pure alphaamylase of Bacillus subtilis and the possibility of its increasing. Kvas. Prum. 32, 212 – 214. Stiefel, D.J., Keller, P.J., 1973. Preparation and some properties of human pancreatic amylase including a comparison with parotid amylase. Biochim. Biophys. Acta 302, 345 – 361. Strumeyer, D.H., Kao, W., Roberts, T., Forsyth-Davis, D., 1988. Isozymes of a-amylase in the porcine pancreas: population distribution. Comp. Biochem. Physiol. B 91, 351 – 357. Sua´rez, M.P., Alvarez, C., Molist, P., San Juan, F., 2005. Particular aspects of gonadal cycle and seasonal distribution of gametogenic stages of Mytilus galloprovincialis, cultured in the Estuary of Vigo. J. Shellfish Res. 24 (2). Takagi, T., Toda, H., Isemura, T., 1971. In: Boyer, P.D. (Ed.), The Enzymes, vol. 5. Academic Press, New York, pp. 235 – 271. Takeuchi, T., 1979. Human amylase isoenzymes separated on concanavalin A-Sepharose. Clin. Chem. 25, 1406 – 1410. Thoma, J.A., Spradlin, J.E., Dygert, S., 1971. In: Boyer, P.D. (Ed.), The Enzymes, vol. 5. Academic Press, New York, pp. 115 – 189. Trainer, D.G., Tillinghast, E.K., 1982. Amylolytic activity of the crystalline style of Mya arenaria (Bivalvia, Mollusca). Comp. Biochem. Physiol. A 72, 99 – 103. Uchino, F., 1982. A thermophilic and unusually acidophilic amylase produced by a thermophilic acidophilic Bacillus sp. Agric. Biol. Chem. 46, 7 – 13. Urich, K., 1994. Comparative Animal Biochemistry. Springer-Verlag, Berlin-Heidelberg, pp. 497 – 499. Van Wormhoudt, A., Bourreau, G., Le Moullac, G., 1995. Amylase polymorphism in Crustacea Decapoda: electrophoretic and immunological studies. Biochem. Syst. Ecol. 23, 139 – 149.


66

M. Lombran˜a et al. / Comparative Biochemistry and Physiology, Part B 142 (2005) 56 – 66

Va´zquez-Baanante, I., Rossel-Pe´rez, M., 1979. In vitro studies of Pecten maximus glycogen phosphorylase and the interconversion of their forms. Comp. Biochem. Physiol. B 62, 381 – 387. Warchalewski, J.R., Tkachuk, R., 1978. Drum wheat alpha-amylase. Isolation and purification. Ceram. Chem. 55, 145 – 156. Witt, W., Sauter, J.J., 1996. Purification and properties of a starch granuledegrading a-amylase from potato tubers. J. Exp. Bot. 47, 1789 – 1795.

Zaba, B.N., 1981. Glycogenolytic pathways in the mantle tissue of Mytilus edulis L. Mar. Biol. Lett. 2, 67 – 74. Zakowski, J.J., Gregory, M.R., Bruns, D.E., 1984. Amylase from human serous ovarian tumors: purification and characterization. Clin. Chem. 30, 62 – 68.













SEXUAL PATTERNS AND SEX CHANGE IN SEA BREAM Pagellus erythrinus (L.)

PATRONES SEXUALES Y CAMBIO DE SEXO EN LA BRECA PAGELLUS ERYTHRINUS (L.)

Summary

Resumen

A diagram showing the reproductive cycle of sea bream (Pagellus erythrinus) is provided, based on a histological study of 302 individuals, focusing on the frequency and type of hermaphrodite fish. The role of sex change in the sexual patterns of this species is also studied. Sex change in this species is a gradual, flexible process, which only involves a third of the population. Masculinization of fish occurs gradually from 16 cm length, rising to a 1:1 sex ratio in the 36/38 cm size class, although a previous mature phase does not necessarily occur.

Se proporciona un esquema del ciclo reproductor de la breca (Pagellus erythrinus) basado en un estudio histológico de 302 ejemplares, enfatizando la frecuencia y tipo de los peces hermafroditas. Asimismo se ha estudiado el papel del cambio de sexo en los patrones sexuales de esta especie. El cambio de sexo en esta especie es un proceso gradual y flexible, que sólo implica a una tercera parte de la poblacion. La masculinizción de los peces ocurre gradualmente desde los 16 cm de talla, alcanzando una sex ratio de 1:1 en la clase de talla de 36/38cm, pero una fase previa de hembra madura no es obligatoria.

clave: Hermaphroditismo, Key words: Hermaphroditism, Pagellus Palabras erythrinus, Sea bream, Reproductive Pagellus erythrinus; Breca, Biología reproductora, Cambio de sexo. biology, Sex change. Abbreviations: sexual inversion: SI; total Abreviaturas: Inversion Longitud total, TL. length: TL.

sexual,

SI;

Introduction

Introducción

Sea bream, Pagellus erythrinus (L.), is a sparid distributed throughout the Mediterranean and the Atlantic coast between the British Isles and Cape Verde (Whitehead et al. 1986). There is an increasing interest in reproduction in captivity of this species and in its introduction into Mediterranean aquaculture. Sea bream is a protogynous species (Yamamoto, 1969).

La breca, Pagellus erythrinus (L.), es un espárido cuya área de distribución comprende todo el Mar Mediterraneaneo y las costas del Atlántico entre las Islas Británicas y Cabo Verde (Whitehead et al 1986). Hay un creciente interés en la reprodución en cautividad de esta especie y en su incorporación a la acuicultura mediterránea. La breca es una especie protogínica (Yamamoto 1969).

Teleosts are very special vertebrates in certain aspects. One of these aspects is their enormous variety of reproducing strategies, which includes gonochorism, parthenogenesis and various types of

Los teleosteos son vertebrados muy especiales en algunos aspectos. Uno de ellos es su enorme variedad de estrategias reproductoras, incluyendo gonocorismo, partenogenesis y varios tipos de


hermaphroditism. Hermaphrodite sexual patterns are classified into three main categories: simultaneous, sequential and a very peculiar pattern combining the two. The simultaneous and combined patterns being relatively atypical (some sea perch and gudgeon dealing with sequential hermaphrodites is a common task in aquaculture (sea perch, white breams, common dentex, sea breams ...).

hermafroditismo. Los patrones sexuales hermafroditas se clasifican en tres categorías principales: Simultáneo, sequencial y un patron mezclado entre ambos muy raro. Siendo [los patrones] simultáneo y mezclado relativamente atipicos (algunos meros y gobios), lidiar con hermafroditas secuenciales es una tarea común en acuicultura (meros, sargos, dentones, pargos...).

Sequential hermaphrodites are able to change from one sex to the other. Immature juveniles develop as fertile individuals from one sex and, later, experience sexual inversion, acquiring all the characteristics of the other sex. Thus, this group may be divided into sequential protandrous individuals, which first develop as males then change into females, and sequential proterogynous individuals (first females then changing into males). In the case of protogynous hermaphrodites, either all males derive from adult females (monandry) or some males directly develop as males from juveniles (diandry). Monoginy and digyny may also be defined, in a similar manner, for proterandrous species. Before experiencing sex change, the sexes may appear to be in a “pure” state or to coexist with tissues acquiescent with the other sex. In many species, under no circumstances can histologically “pure” males or females can be noted (BrusléSicard, Stahlschmidt-Allner and Reinboth, 1991).

Los hermafroditas secuenciales son capaces de realizar una transformación de un sexo a otro. Los juveniles inmaduros se desarrollan como ejemplares fértiles de un sexo y más tarde experimentan la inversion sexual y adquieren todas las características del otro sexo. Por lo tanto, este grupo puede ser dividido en protandricos secuenciales, que se desarrollan primero como machos y luego cambian a hembras, y proteroginicos secuenciales, (hembras primero, cambiando a machos). En el caso de los hermafroditas proteroginicos, o bien todos los machos derivan de hembras adultas (monandria) o bien algunos machos se desarrollan directamente como machos a partir de los juveniles (diandria). Monoginia y diginia pueden asimismo ser definidos de manera similar para las especies proterandricas. Antes de experimentar el cambio de sexo, los sexos pueden aparecer en un estado "puro" o coexistir con tejidos aquiescences del otro sexo. En muchas especies, nunca pueden verse machos o hembras histológicamente "puros" (Bruslé-Sicard, StahlschmidtAllner y Reinboth 1991)

The mixed group adds further complexity to an already complex matter. A small group of species have gonadal tissue distribution patterns at once sequential and simultaneous. These fishes (mainly gudgeons present markedly sequential elements in a sexual pattern which is, on the other hand, simultaneous (St. Mary 2000). One of their most striking characteristics is a bi-directional sexual

El grupo mezclado añade mucha complejidad a este, ya de por sí complicado, esquema. Un reducido grupo de especies posee patrones de distribucion de los tejidos gonadales que son a la vez secuenciales y simultaneos. Estos peces (principalmente gobios) exhiben elementos fuertemente secuenciales en un patron sexual que es, por otro lado, simultaneo (St. Mary 2000). Una de sus


inversion. They may experience sex change several times in the course of their life cycle, adapting to particular requirements (St. Mary, 1993).

caracterísiticas más llamativas es una inversión sexual bidireccional. Pueden experimentar el cambio de sexo varias veces a lo largo de su vida ajustándose a sus necesidades (St. Mary 1993).

Furthermore, sequential hermaphroditism may be either developed or become manifest in a rudimentary form (juvenile hermaphrodites, fixed sex in adults) near gonochorism. It is important to note that these models are normal, fertile reproductive strategies in perciform teleosts, whereas hermaphroditism is normally pathological, infertile and extremely rare in other vertebrates.

Además, el hermafroditismo secuencial puede estar bien desarrollado o manifestarse de forma rudimentaria (juveniles hermafroditas, sexo fijo en adultos) cercano al gonocorismo. Es importante denotar que todos estos modelos son estrategias reproductoras normales y fertiles en teleosteos perciformes, mientras que el hermafroditismo es normalmente patológico, infertil y extremadamente raro en el resto de los vertebrados.

Also, sex change may occur at a genetically determined size, may be controlled on a socio-demographic basis due to the absence or presence of interactions between the sexes, or may be sparked off by physical changes in the photoperiod or temperature.

Por otro lado, el cambio de sexo puede ocurrir a una talla genéticamente determinada, puede estar controlado sociodemográficamente por la ausencia o presencia de interacciones entre sexos, o puede ser desencadenado por cambios físicos en el fotoperiodo o la temperatura.

In short, determination of gender is En resumen, la determinación del sexo es, extremadamente flexible en peces extremely flexible in perciform fish. perciformes. Objectives of this study

Objetivos de este estudio:

The aim of this study is to study the reproductive pattern and sex change process (henceforth SI) in sea bream. A more in-depth understanding is required of the aspects related to maturation, spawning control, etc., for adequate handling of reproducing stocks (Abellán and Basurco, 1999). This will make it possible to design a reproducing stock in accordance with an optimum male/female ratio for this species (increasing egg product and reducing maintenance costs of excess individuals).

El propósito de este trabajo es estudiar el patrón reproductivo y el proceso del cambio de sexo (a partir de ahora SI) en la breca. Se requiere un conocimiento más profundo de los aspectos relacionados con la maduración, control de la puesta, etc. para el manejo apropiado de los stocks de reproductores (Abellán y Basurco 1999). Esto permitirá diseñar a medida un stock de reproductores con un ratio macho/hembra óptimo para esta especie (incrementando la produción de huevo y disminuyendo el coste de mantenimiento de los ejemplares sobrantes).


Materials and Methods

Materiales y metodos

From February 2001 to October 2002, a histological study was conducted on the gonad of 302 wild sea bream individuals, with sizes ranging from 91 to 382 mm, obtained by commercial catches in the Mazarrón Bay (SW Mediterranean). Total length (TL) of the individuals was recorded. Gonads were extracted, measured and weighed, fixed in Bouin fixer for 24 hr. and later transferred to 70% ethanol for storage. Following dehydration and immersion in Paraplast®, a sample of the mid anterior area of the gonads was sectioned at 7 mm with a HM 310 rotatory microtome. The type of gonad present and its stage of development were established by optical microscopy of samples dyed with hematoxyline-eosine, in accordance with Takashima and Hibiya (1995).

Desde Febrero 2001 a Oct 2002, se llevo a cabo un etudio histológico de la gonada en 302 ejemplares salvajes de breca, con tallas que iban desde 91 a 382mm obtenidas mediante capturas comerciales en la bahía de Mazarrón (Mediterráneo SO). La longitud total (TL) de los ejemplares fue registrada. Las gonadas fueron extraidas, medidas y pesadas, fijadas en fijador de Bouin durante 24 h y transferidas más tarde a etanol al 70% para su almacenamiento. Tras deshidratacion y embebido en Paraplast®, una muestra del área media anterior de las gonadas fue seccionada a 7µm con un microtomo rotativo HM 310. El tipo de gónada presente y su estadío de desarrollo fueron establecidas, mediante observación al microscopio óptico de muestras teñidas con hematoxilina-eosina, siguiendo a Takashima e Hibiya (1995).

Results

Resultados

Description of the gonads

Descripción de las gonadas

Gonadal structure was similar to that described for other sparidae. Briefly, the two lobuli of the ovotestis (posteriorly fused forming a common duct) were almost the same in size and weight. Females had cylindrical lobules, whereas almost all males had testicles with a heartshaped or elongated leaf-shaped section. Ovaries were orange in colour and testicles were whitish-grey. The ovary comprised ovaric lamellae orientated towards the central lumen, and oocytes of all sizes were randomly distributed throughout the lamella (asynchronous ovary).

La estuctura gonadal fue similar a la descrita para otros espáridos. Brevemente, los dos lóbulos de la ovotestis (fusionados posteriormente formando un ducto común) fueron casi iguales en talla y peso. Las hembras tenían lobulos cilíndricos mientras que casi todos los machos tenían testiculos con seccion en forma de corazón o de hoja alargada. Los ovarios eran naranjas y los testiculos de color gris blanquecino. El ovario estaba compuesto por lamelas ováricas orientadas hacia el lumen central y oocitos de todas las tallas estaban distribuidos aleatoriamente a lo largo de la lamela (ovario asíncrono).


Transitional stages

Estadíos transicionales

Testicles and ovary were always well separated by connective tissue. The masculine area of the gonad began to differentiate itself with various minute dormant nests of spermatogonia, likewise isolated by connective tissue. These were always grouped together in a single area occupying a peripheral position in the gonad (Figs. 1-2). This phase, prior to sexual inversion, appeared during the early spring (just before the fish embarked upon a new maturation cycle as a female), but during the following months no meiotic activity or subsequent growth of masculine tissue were noted.

Los testiculos y el ovario estaban siempre bien separados por tejido conectivo. El área masculina de la gónada empezó a diferenciarse [a si mismo] con varios nidos diminutos de espermatogonias durmientes aisladas asimismo por tejido conectivo. [Ellas] estuvieron siempre agrupadas en una única área ocupando una posición periférica en la gónada (figs 1-2). Esta fase, previa a la inversion sexual, apareció durante la primavera temprana (exactamente antes de que el pez entre en un nuevo ciclo de maduración como hembra), pero durante los meses siguientes no fueron detectados actividad meiotica o crecimiento posterior del tejido masculino.

Tras haber pasado la estación reproductora, estos nidos [de células] durmientes reasumen el crecimiento. En invierno tardío, [exactamente] antes de la estación reproductora, ocurre el cambio de sexo. Con el inicio de la actividad espermatogénica aparece un tejido masculino potencialmente funcional (Figs 3-4). En esta fase de transición predominó la zona ovárica - en reposo o en vitelogénesis – con el área testicular reducida a una pequeña lámina proliferante, no funcional (no hay aún espermiductos) adjunta al ovario. Los restos del ovario fueron rápidamente fagocitados o eliminados por otros métodos. En cualquier caso, el sistema celular immune estuvo implicado en ello, ya que grandes números de granulocitos basofílicos fueron vistos en el área anteriormente ocupada con el ovario. Algunos grandes cuerpos marrones compuestos por residuos celulares pueden aparecer asimismo en estas zonas (Figs 56). The last oogonias degenerate and Las últimas oogonias degeneran y disappear between April and September desaparecen entre Abril y Septiembre (Figs 7-8). (Figs. 7-8). Having gone through the reproductive season, these nests (of sleeping cells) reassume growth. In late winter, (exactly) before the reproductive season, sex change occurs. With the start of spermatogenic activity, a potentially functional masculine tissue appears (Figs. 3-4). During this transitional phase, the ovaric zone predominated - in repose or in vitellogenesis - with the testicular area reduced to a small, non-functional proliferant lamina (still lacking spermiducts) adjoining the ovary. Remains of the ovary were rapidly fagocited or eliminated by other methods. In any case, the immune cellular system, was involved here, as large numbers of basophyllic granulocytes were observed in the area previously occupied by the ovary. Some large brown bodies, comprising cellular waste matter may also appear in these areas (Figs. 5-6).


Frequency of sexual inversion

Frecuencia de la inversion sexual

The majority of fish never experience sexual reversion. Only 30.46% of the total fish (n=302) were male. The gonads at the transitional phase (with spermiogenesis and oogenesis at the same time) were found in 2.32% of cases. 7.0% of females were found in a pre-SI hermaphrodite phase, which was difficult to detect, prior to the first meiotic spermatogenesis splitting (functional female only with oogenesis, masculine cells detained). Finally, 6.52% of the male fish retained some primary oogonias isolated in a degenerated ovary lodged between the testicle lobules (only spermiation, with oocytes degenerating).

La mayoría de los peces nunca experimentan la reversion sexual. Solamente el 30.46% del total de peces (n=302) fueron machos. Las gónadas en fase de transicion (con espermiogénesis y oogénesis a la vez) fueron encontradas en el 2.32% de los casos. Un 7.0% de las hembras fueron encontradas en una, dificilmente detectable, fase hermafrodita pre-SI, antes de la primera división meiotica de la espermatogénesis (Hembra funcional con oogénesis sólo, células masculinas detenidas). Finalmente, un 6.52% de los peces macho retenían algunas oogonias primarias aisladas en un ovario degenerado alojado entre los lobulos del testiculo (espermiacion unicamente, oocitos degenerando).

The percentage increase of males between size classes, expressed as a + average Standard Deviation is low (2.45+2.26% out of the total number of specimens were new males), rising to a maximum rate (6.02%) in fish within the size class of 36/38 cm TL. Within each class size, the male/female rate was > = 1 from 34 cm in TL.

El porcentaje de incremento de machos entre clases de talla, expresado como media± DesvEstandar, es bajo (2.45±2.26% del total de especímentes eran nuevos machos), alcanzando una tasa máxima (6.02%) en peces de la clase de tallas de 36/38cm de TL. Dentro de cada clase de talla, la tasa macho/hembra fue >= 1 desde los 34cm in TL.

Size during sexual reversion

Talla durante la reversión sexual

Sex change in sea bream is not governed by a given size or age. The TL of hermaphrodites varied from 15.0 to 38.5 cm (average 272.9+50.5). Also, 13.5% of females (still with no trace of masculine tissue) measured more than 32 cm (maximum female size = 37.6 cm). Figure 5 shows the sexual distribution of sizes in our sample (non-defined individuals not shown).

El cambio de sexo en breca no está fijado a una talla o edad determinada. La TL de los hermafroditas varió desde 15.0 a 38.5cm. (Media 272.9±50.5) Además, el 13.5% de las hembras (aún sin ningún rasto de tejido masculino) medía más de 32cm (talla máxima de la hembra = 37.6cm). La fig 5 muestra la distribución sexual de tallas en nuestra muestra (Ejemplares indefinidos no representados).


Diandry

Diandria

Immature males were detected with total lengths of only 18 cm. In these cases, a cylindrical section was also observed with a central arrangement in the different channels. No sign of oogonias or degenerated walls in the ovaric zone were noted. This suggests that these are primary males, i.e., have not gone through the fertile female phase.

Fueron detectados machos inmaduros con longitudes totales de sólo 18cm. Es estos casos, una sección cilíndrica fue observada asimismo con una disposición central de los diferentes canales. No se vieron ningún signo de oogonias o paredes degeneradas de la zona ovárica. Esto sugiere que estos son machos primarios, esto es, no han pasado por la fase de hembra fértil.

Discusión Discussion Gonadal structure and the sex change Estructura gonadal cambio de sexo process

y

proceso

de

The type of ovotestis defined, with separate male and female zones (Figs. 16) is in accordance with the typical pattern in Sparidae. There is a different arrangement in other families such as the Terapontidae (Moiseeva et al. 2000) or in the Serranidae (García-Díaz et al. 2002) which, in both cases, have disperse spermatocytes in small groups between the oocytes . Sea bream has always presented a defined arrangement, even in parasite-attacked or anomalous gonads.

El tipo observado de ovotestis delimitada, con zonas macho y hembra separadas (Figs 1-6) concuerda con el patrón tipico en Sparidae. Existe un esquema diferente en otras familias como Terapontidae (Moiseeva et al. 2001) o Serránidae (García-Díaz et al. 2002), que poseen en ambos casos espermatocitos dispersos en pequeños grupos entre los oocitos. La breca siempre presentó un esquema delimitado, incluso en gonadas parasitadas o anómalas.

Very similar SI processes to those described here for sea bream have been described in other related sparidae. Kokokiris et al. (1999) recorded an almost identical process for farmed sea bream (Pagrus pagrus), a proterogynous species with primary males, 6 year old females and non-fixed SI over time, covering the third and fifth years of life. Besseau and Brusle-Sicard (1991) studying Lithognathus mormyrus, a protandrous species, also reported on the SI as a small part of a much slower process. Remains of both tissues at the same time lasted for 4-6 years in each specimen. This appears to be a common process during sexual inversion, since said activity in immune cells has also been noted in other proterogynous and protandrous species, such as Sparus aurata (Bruslé-Sicard and

Procesos de SI muy similares a los descritos aquí para breca han sido descritos en otros espáridos relacionados. Kokokiris et al. (1999) registró un proceso casi idéntico para pargos cultivados (Pagrus pagrus), una especie proterogínica con machos primarios, hembras de 6 años, y SI no fijadas en el tiempo extendiéndose a lo largo de los años tercero al quinto. Besseau y BrusleSicard (1991) estudiando Lithognathus mormyrus, una especie protándrica, informaron asimismo del SI como una pequeña parte de un proceso mucho más lento. Restos de ambos tejidos a la vez perduraban durante 4-6 años en cada espécimen. La presencia de granulocitos fue también registrada en los testículos en degeneración. Esto parece ser un proceso común durante la inversión sexual, ya que


Fourcault, 1997).

dicha actividad de las células inmunes se ha registrado también en otras especies, proterogínicas y protándricas, como Sparus aurata (Bruslé-Sicard y Fourcault 1997).

Size during sexual reversion

Talla durante la reversion sexual: Nuestros resultados están de acuerdo con lo obtenido por Erzini et al. (2001), que encuentran asimismo una distribución de hermafroditas para P. erythrinus en un amplio rango de tallas desde 16cm a más de 40cm de TL.

Our results are in line with those obtained by Erzini et al. (2001), who also found a distribution of hermaphrodites for P.erythrinus in a wide range of sizes from 16 cm to over 40 cm TL. In any case, no ovotestis in transition was found in our sample during the reproductive season. Only some males with few oogonias still recognisable remained from April to September. Thus, simultaneous hermaphroditism, with sperm and oocyte production at the same time, appear highly unlikely. The scarce appearance of this stage also suggests that sex change is rapid.

En cualquier caso ninguna ovotestis en transición ha sido encontrada en nuestra muestra dentro de la estación reproductora. Solamente algunos machos con pocas oogonias aún reconocibles permanecen entre Abril y Septiembre. Por lo tanto, un hermafroditismo simultaneo, con producción de esperma y oocitos a la vez, parece muy improbable. La baja aparición de este estadío asimismo sugiere que el cambio de sexo es rápido.

Interpretation of the sex ratio and Interpretación de la Sex-ratio y factores iniciando el cambio de sexo factors indicating sex change As in other species of Sparidae, sexual inversion only involves a part of the population. Pajuelo and Lorenzo (1998) recorded a similar sex ratio, which was even more biased towards females, for the Canary Islands. This is very typical in proterogynous species (Shadovy and Shapiro, 1987 in Denny and Schiel, 2002). Since the proportion of females experiencing sexual reversion is less than expected, it is assumed that there is a mechanism preventing sex change. Interestingly, the highest increases in sexual reversion, as indicated by the male/female ratio, coincide with the greater decreases in population distribution between adjacent size classes (250-270 cm) (Fig. 9). This is due to the activity of fishing. Thus, it appears that marked depredation favours sex change in sea bream, as we would expect if the SI

Como en otras especies de Sparidae, la inversión sexual solamente implica a una parte de la población. Pajuelo y Lorenzo (1998) registraron una sex-ratio similar, incluso más sesgada hacia las hembras para las Islas Canarias. Esto es muy típico en especies proterogínicas (Shadovy y Shapiro 1987 en Denny y Schiel 2002). Puesto que la proporción de hembras experimentando la reversión sexual es menor de lo esperado se asume que hay un mecanismo que previene el cambio de sexo. De manera interesante los mayores incrementos en reversion sexual como señala la ratio macho/hembra coinciden con los decrementos mayores de la distribución poblacional entre clases de talla adyacentes (250-270cm) (Fig 9). Esto se debe a la actividad de los pescadores. Por tanto, parece que u na depredación fuerte es favorable al cambio de sexo en


were mainly controlled demographic factors.

by

socio- breca, como esperaríamos si la SI fuera controlada principalmente por factores sociodemográficos.

What is more difficult to determine, however, is precisely which sociodemographic factors we are dealing with. In Labridae, the lack of dominant males favours sexual inversion. (Denny and Schiel, 2002; Chan and Yeung, 1983). More so in some wrasses, where the presence of any male in the terminal colouring phase (even in the case of small fish) inhibits SI and is essential for the correct development of the ovary in the other older or younger females (Morrey, Nagahama and Grau, 2002). Sea breams, however, have no type of sexual dichromatism able to advise other fish on the gender of its neighbours. It is impossible (for humans) to distinguish between both sexes until the phase of female pregnancy, at which point other (behavioural, chemical, etc.) factors should occur. In any case, an increase in sexual inversion following the more exploited size classes is to be expected in the surviving fish due to the reorganisation of changes within their social system.

Más difícil es valorar de que tipo de factores sociodemográficos hablamos. En Labridae, la ausencia de machos dominantes favorece la inversión sexual. (Denny and Schiel 2002; Chan and Yeung, 1983). Más aún, en algunos "wrasses" [tipo de pez sin una equivalencia definida en español, sarrianos, botones, fredís...] la presencia de cualquier macho en fase de coloración terminal (incluso peces menores) inhibe la SI y es necesaria para un desarrollo correcto del ovario en las otras hembras mayores o menores [que él] (Morrey, Nagahama and Grau, 2002). Las brecas, sin embargo, no poseen ningún tipo de dicromatismo sexual que pueda informar a otros peces sobre el sexo de sus vecinos. Ambos sexos son imposibles de distinguir (para los humanos) por su apariencia hasta la fase de hembra grávida, luego otros factores (comportamentales, químicos, ...etc) deben de ocurrir. En cualquier caso, un incremento en la inversión sexual tras las clases de talla más explotadas debería esperarse en los peces supervivientes por reorganización de los cambios en su sistema social.

Diandry

Diandria

Sex change in these species is not genetically controlled by size, since different sized and aged individuals may undergo this transformation. Hermaphrodites may be observed in many months of the year, but the SI appears to occur especially during early spring, just before the start of the reproductive season.

El cambio de sexo en estas especies no está controlado genéticamente por la talla, puesto que ejemplares de diferentes tallas y edades pueden experimentar la transformación. Los hermafroditas pueden verse en muchos meses del año, pero la SI parece ocurrir principalmente en primavera temprana, justo antes de que la estación reproductora comience.

Masculinization of fish starts very early, from 15 cm TL, although a mature female phase is not compulsory since many primary and secondary males are practically undistinguishable due to their

La masculinización de los peces empieza muy temprano, desde los 15cm de TL, pero una fase previa de hembra madura no es obligatoria, ya que presentan machos primarios y secundarios prácticamente


external morphology.

indistinguibles por su morfología externa.

Overlapping between males and females, as illustrated in Fig. 9, is not the pattern we would expect in a monandric species. This is, rather, typical of a diandric proterogynous species. This has also been confirmed by the presence of primary males. Further studies are required on the lesser size classes to establish the magnitude of this process. Nevertheless, as shown in Figure 9, sea bream appears to have a marked tendency towards diandry. In some salmonidae species, the differences in water temperature during incubation are responsible for the lack of the intermediary phase in warm tanks (Chan & Yeung, 1983). It is possible that a process mediated by similar temperature may explain the presence of primary males in sea bream.

El solapamiento entre machos y hembras mostrado en la fig. 9 no es el patrón que esperariamos en una especie monandrica, sino que es típico de un proterogínico diándrico. Esto fue confirmado asimismo por la presencia de machos primarios. Son necesarios más estudios en las clases de talla menores para establecer la magnitud de este proceso, sin embargo de acuerdo con la figura 9, la breca parece tener una fuerte tendencia hacia la diandria. En algunas especies de salmonidos, las diferencias en la temperatura del agua durante la incubación son responsables de la ausencia de la fase intermedia en tanques cálidos (Chan & Yeung 1983). Es posible que un proceso mediado por la temperatura similar pueda explicar la presencia de machos primarios en breca.

Conclusions

Conclusiones El cambio de sexo en esta especie proterogínica es un proceso gradual, pero rápido. La inversión sexual es asimismo infrecuente, implicando a menos de un tercio de la población, y hay una fuerte inclinación hacia la diandria.

Sex change in this proterogynous species is a gradual but rapid process. Sexual inversion is also infrequent, involving at least a third of the population, with a marked trend towards diandry. Change of sex is not genetically determined by size, but it is possibly controlled by a combined effect of sociodemographic (e.g., extraction by fishing activities of the dominant males) and physical factors (temperature, photoperiod).

El cambio de sexo no está determinado genéticamente por la talla, sino que es posiblemente controlado por un efecto combinado de factores sociodemográficos (por ejemplo, la extracción por las actividades pesqueras de los machos dominantes) y físicos (temperatura, fotoperiodo).

Application of these results in the young La aplicación de estos resultados para la of this species may be summarized in the cría de esta especie puede resumirse en tres puntos: following three points: 1.

2.

The fertile life of reproductive females may extend beyond the 35 cm class at least. Since this is not a fixed process in time, nor a massive phenomenon, fluctuations in egg production due to the loss

1 - La vida fertil de las hembras reproductoras puede extenderse por encima de la clase de tallas de 35cm al menos. 2 - Puesto que este no es un proceso fijo en el tiempo o un fenómeno masivo, las fluctuaciones en la producción de huevo


3.

of females following sexual reversion should be minimal in a stable environment. A reproductive stock with 2 females per male should be more adequate for rearing purposes than a 1:1 sex ratio.

debidas a la pérdida de hembras tras la reversión sexual debería ser mínima en un ambiente estable. 3 - Un stock reproductivo con 2 hembras por cada macho debería ser más adecuado para propósitos de cultivo que una sexratio de 1:1.














Vol. 79: 289-302, 1992

MARINE ECOLOGY PROGRESS SERIES Mar. Ecol. Prog. Ser.

1

Published January 23

Flows and budgets of nutrient salts and organic carbon in relation to a red tide in the Ria of Vigo (NW Spain) Ricardo Prego Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello, 6, E-36208 Vigo, Spain

ABSTRACT- In late September 1986, a major red tide occurred in the Ria of Vigo Hydrographic conditions led to water retention, with circulation in a semi-closed circuit In this study nutrient salts and carbon fluxes were calculated, and their consumption quantified, by use of a box model for the ria. The dinoflagellate Gymnodinium catenaturn, scarcely present on 4 September, increased in concentration to l o 4 cell d m 3 by 21 September. This was favoured by chemical causes, such as the high availability of ammonium (6.2 mol s 1 were delivered to the upper water layer) and organic carbon, and by physical causes, such as the rapid circulation (862 X lo3 kg s l ) with reducing mixing, almost half that of the preceding date. The nutrient salts came mostly from the remineralisation of organic matter The amounts contributed by freshwater, 5 % of the total, did not have an appreciable influence on the formation of the red tide. Vertical migration of the dinoflagellate played an important role It is estimated that this organism was responsible for 22 % of the synthesis of nitrogenous organic matter The red tide came to an end with the November rains, which created rapid circulation which washed out the ria.

INTRODUCTION The presence of red tides in late summer is common in the Rias Bajas of Galicia and, in particular, the Ria of Vigo. The first scientific description of a red tide in Galician waters was made by Sobrino (1918). Later Margalef studied a similar phenomenon, caused by a dmoflagellate of the genus Gonyaulax, during the summer of 1955 (Margalef 1956). He considered that this red tide was no more than the culmination of the last stage of phytoplankton succession observed in the ria of Vigo (Margalef et al. 1955) and was brought about by hydrographic conditions which assured sufficient water column stability for 2 or 3 wk, It is only since 1976, coinciding with an important outbreak of paralytic shellfish poisoning in Europe (Luthy 1979),when toxicity was provoked by a red tide of the dinoflagellate Gymnodium catenaturn (Estrada et al. 1984),that the subject has acquired great interest in the rias of Galicia. A consequence of this interest is an improved knowledge of the hydrographic conditions during red tides. In late September 1986, a red tide was detected in the Ria of Vigo (Fraga et al. 1990).The concentration of Inter-Research/Printed in Germany

Gymnodium catenaturn over time is indicated in Fig. 1. The conditions prior to this were normal for the summer (Mouriiio et al. 1984) with a circulation pattern in 2 layers (Prego et al. 1990) typical for a partially stratified estuary (Beer 1983). The residual currents, or net advective horizontal flows (Fe and Fg in Fig. 2), were strengthened by the upwelling caused by northerly winds (Prego & Fraga in press). This situation was altered following a change in meteorological conditions (Fig. 1) to southerly winds and rain. Their effect on the ria was a retention of water and an unstable circulation in a semi-closed circuit (Fraga & Prego 1989).An outline of this circulation is shown in section in Fig. 3. The role that nutrient salts and organic matter may perform in red tides has scarcely been dealt with and precise information does not exist (Margalef 1989). In the course of a workshop on red tides, held in the I.E.O. (Institute Espaiiol de Oceanografia) Centre in Vigo, the subject of the possible sources of ambient salts in a red tide was put forward (Prego unpubl.): contributions from rivers, from the exterior oceanic water, remineralisation and dinoflagellate migration. In this article, this subject is developed. The fluxes of


Mar. Ecol. Prog. Ser 79: 289-302, 1992 -

sampling, 50 ml of water from each sample was taken and, without filtering, the following analyses were made using Technicon AutoAnalysers: nitrate (Mourifio & Fraga 1985), nitrite, phosphate and silicate (Hansen & Grasshoff 1983), ammonium (Grasshoff & Johannsen 1972) and organic carbon (Prego & Fraga 1988).These data were published in Prego et al. (1988). A box model (Prego & Fraga in press) was applied to the Ria of Vigo in order to calculate the water fluxes, The ria, or part of it, was considered as a box with 2 layers corresponding to the incoming (Fe)and outgoing (Fg)residual currents (Fig. 2). Vertical fluxes (Fa and Fa) occur between these layers. The difference between Fd and Fa is the incoming flux, Fe, and the lesser of them, Fa, is the mixing of water produced in the box. In this article, the box model is applied from Stns 1 to 3 (Fig, 2). Table 1 gives some characteristics of the box for the 3 study dates: the depth of the boundary between the layers where the velocity of residual current is zero (Fe and Fs have opposite directions), and the volumes of the layers. The calculation of water fluxes (Fin Fig. 2) is considered on the basis of the contribution of fresh water, using salinity as a natural tracer, and on the circulation in 2 layers. Prego & Fraga (m press) have determined these fluxes in stationary conditions, i.e. when the salinity of the water entering the ria from the ocean does not vary and the contribution of fresh water is constant. The calculated fluxes are summarised in Table 2. Fig 1 Top- concentration of Gymnodmiurn catenaturn at a station (near Stn 5 in Fig. 2) close to the mouth of the Ria of Vigo (data from Fraga et al. 1990).Middle: mean daily velocity of the northerly/southerlywinds middle measured at Peinador (see Fig. 2). Botton daily precipitation measured at Peinador (data from the Centro Meteorologico Zonal of La Comfia) nutrient salts and organic carbon are calculated and their consumption in the conditions observed in the Ria of Vigo during the red tide of 1986 is quantified. Results show how high availability of recycled nutrients and raised hydrographic stability favour the evolution of red tides, in accordance with the model of Margalef (1978). MATERIAL AND METHODS The Ria of Vigo has an area of 156.21 km2 and is the most southerly of the rids of Galicia, which are situated in the northwest of the Iberian Peninsula. The zone under consideration in this study covers the inner and middle part of the ria up to Stn 3 (Fig. 2). On 4 and 21 September and 3 October, transects were carried out from the RV 'Garcia del Cid', taking samples of sea water in Niskin bottles at the stations indicated in Fig. 2 and at the depths marked in Fig. 3. Immediately after

RESULTS

Flows of nutrient salts and carbon From the data for Stns 1, 2 and 3, the mean values of nitrate, nitrite, ammonium, phosphate, silicate and organic carbon in the upper and lower layer (see Fig. 2 inset) were calculated, averaging out the volume. From the data for Stn 3 (Fig. 2), mean values of the same parameters in the upper and lower portions of the section (vertical plane) at Stn 3 separating the estuarine and middle zones from the oceanic zone of the ria (Prego & Fraga in press) were calculated, averaging out the surface area; the results are shown in Fig. 4. In the box model used, the nutrient and carbon fluxes are obtained by multiplying the flow rates (Table 2) by the concentrations (Fig. 4). In this way, the ingoing, outgoing, ascending and descending fluxes of nutrient salts and organic carbon for the box are calculated. Results are collated in Table 3. These fluxes are completed by the contribution due to freshwater, derived from the flow rates (Prego & Fraga in press) entering the ria by run off, the River Oitaven, and residual waters from the city of Vigo, together with the corresponding concentrations (Prego 1989).


Prego: Nutrient and carbon fluxes in a red tide

291

river

Fig. 2 Ria of Vigo, NW Spain, and stations sampled on 4 and 21 September and 3 October. In order to apply the box model shown at lower right, the zone is considered in the upper ria to Stn 3 (56.48 km2 and 0.678 km3). Fe and FS:incoming and outgoing fluxes; Fd and Fa: descending and ascending fluxes; F r flux due to freshwater

Budgets of nutrient salts and carbon The balances, A and B respectively for the upper and lower layers, in nutrient salts and carbon are obtained from the fluxes in the 2 layers (Fig. 2) thus: upper layer: A

21 SeP

Fig. 3. Scheme of the vertical circulation which occurred abnormally on 21 September (Fraga & Prego 1989). Numbers correspond to stations shown in Fig. 2

=

Fa - Fd - Fc + Fr

(1)

lower layer: B = - Fa + Fd + Fe (2) where Fe, Fg,Fa and Fd are, respectively, the incoming, outgoing, ascending and descending nutrient and carbon fluxes in the box, and Fr is the contribution from freshwater (Table 3). The results for A and B are given in Table 4. The balance in each layer is non-zero since there are biogeochemical processes which remove or contribute substances independently of the physical processes. The principal source of error is due to the calculation of

Table 1. Depth at Stns 1, 2 and 3 (Fig 2) where the velocity of the residual current is zero, and at Stn 3 where the penetration of light is 1 %. Volumes of the 2 layers on the 3 dates studied. The total volume of the box is 678 x 10' m^

1

1

1

Date Stn 1

Stn 2

Depth (m) Stn 3

4 Sep 21 Sep 3 Oct a

Missing data estimated from data from the other stations

1%

Volume (10" m3) Upper layer Lower layer


Mar. Ecol, Prog, Ser. 79 289-302, 1992

292

N SECTION

SECTION

I

0

-

4Sep 21Sep 30ct 4Sep 21 Sep 30ct

4Sep 21 Sep 30ct 4Sep 21Sep 30ct

Table 2 Flows (lo3 kg s ) contributing to the residual circulation m the Ria of Vigo (data from Prego & Fraga in press). The outgoing flux, Fe, is the inconung flux, Fa, plus the flux of freshwater, Fr. The ascending flux, Fa, is the incoming flux, Fe, plus the mixing, Fa; see Fig 2. Tune, tr in days, needed to totally renew the water in the upper layer is also indicated

4 Sep 21 Sep 3 Oct

1.5 12 8 33

484 862 246

486 875 249

1012 651 359

Fig. 4 Mean concentrations of nitrite (2), nitrate (3) and ammonium (4), inorganic nitrogen (N), phosphate (P), silicate (Si) and organic carbon (C) m the box considered in the ria of Vigo and the dividmg section (1.e. E-3 in Fig. 2) for the 3 study dates (4 and 21 September; 3 October) Continuous hues: upper layer and subsection of the box, dashed lines: lower layer and subsection

1496 1513 605

105 5.0 15.0

the flow rates of fresh water emptying into the ria. This means that for each date the results may have an overall variation of ca 10 % for the fluxes and the balances obtained.

Photosynthesis and remineralisation of N, P and C The signs of the fluxes chosen for Eqs. (1)and (2) mean that the positive value of A (Table 4) indicates that inorganic nitrogen is retained in the upper layer due to its utilization in photosynthesis. On the other hand, the negative value of B (Table 4) indicates that the ingoing flux is less than the outgoing flux which means that morganic nitrogen must be regenerated in the lower layer to compensate for the shortage, i.e. remineralisation takes place. As both processes can take place in each layer of the box, A and B are both net values, i.e.the difference between the total photosynthesis and total remineralization occurring in each layer. Phosphate is a different case from that of inorganic nitrogen since its concentration can vary through

Table 3. Fluxes (mol s 1 b o x 1 ) of nutrient salts and carbon m the box m the Ria of Vigo (Fig. 2). Fr: flux due to freshwater; Fe and FS-incoming and outgoing fluxes; Fa and Fd- ascendmg and descendinq fluxes. Si: silicate, Nln and Cm: inorqanic nitroqen and carbon, Car: organic carbon Date 4 Sep

21 Sep

3 Oct

Flux

NO3-

NO2-

NH4+

Nm

Fr Fs Fe Fa Fd F, Fs Fa Fa Fd Fr Fs Fe Fa Fd

0.04 0 97 5 20 11.61 2 57 0.14 0.46 122 2.29 0.82 0.05 0 19 1 93 3 11 1.23

0 00 0 10 0 24 0 75 0.25 0.01 0 14 0.15 0.42 0.16 0.00 0.03 0. 17 -0 43 0 18

0.27 0.44 0 83 2 67 0 82 0.29 0.34 2.30 5 81 1.59 0.28 0.11 0.44 2 75 1.30

0.31 1.51 6.27 15.03 3 64 0.44 0.94 3.67 8.52 2.57 0.33 0.33 2.54 6.29 2.71

HPO~~-

'

0 041 0 162 0.442 1.373 0.535 0.042 0.268 0.333 0.986 0 366 0.064 0.067 0.192 0.631 0.311

Si

CIn

cnr

0.23 1.12 4.06 12.71 4.23 1.53 4.26 3.24 10 74 4,85 0 23 1.08 2 20 7 50 3 81

0 1017 1044 3165 2088 0 1799 1819 3182 1340 0 520 539 1308 754

3 43 29 103 91 4 67 58 105 51 3 25 13 44 30


Prego- Nutrient and carbon fluxes in a red tide

293

Table 4. Balance (mol s 1 box1) of nutrient salts and carbon fluxes in the box in the Ria of Vigo (Fig. 2). A positive value of inorgamc nitrogen in the upper layer, A, is due to its consumption m photosynthesis, and a negative value in the lower layer, B, is due to its appearance by reminerahsation. Phosphate and inorganic carbon need the corrections of Appendices 1 & 2. Si: silicate; Nm' inorganic nitrogen, Cm: inorgamc carbon; Cm. organic carbon Date

Layer

NOi-

NO2-

NH4"

4 Sep 21 Sep 3 Oct

the effects of flocculation (used here as a general term denoting change from the dissolved to the solid phase) and redissolution, according to the processes referred to by Aston (1980). These processes are included in the values A and B for phosphate balance shown in Table 4. The necessary correction factors are derived in Appendix 1, and the corrected values of phosphate consumed in photosynthesis or appearing through remineralisation presented in Table 5. The balance of inorganic carbon (A and B in Table 4) are affected, in a similar way to phosphate, by processes such as the dissolution or precipitation of carbonates as well as by the interchange of carbon dioxide with the atmosphere. The correction needed to calculate the inorganic carbon used in photosynthesis or remineralisation (Table 5) is derived in Appendix 2, where the input and sedimentation of particulate organic carbon in the lower layer is also calculated (Fig. 11).

Agreement of photosynthesis and remineralisation results The values for inorganic carbon, nitrogen and phosphorus consumed by photosynthesis or regenerated by remneralisation in the ria (Table 5) are related in accordance with the following stoichometric equation for photosynthesis-remineralisation: 129 HCO3- + 17 NO3- + HPO?" + 126 H 2 0 + 175 0 2 + 148 OH(Ci29H234Ni70?oP)

(3)

This expression is obtained from the ratio of C:H:N:O:P of 129:234:17:70:1calculated by Rios & Fraga (1987)for the phytoplankton of the Ria of Vigo and the forms in which the nutrient salts and inorganic carbon are found in seawater. Thus the values for photosynthesis and remineralization obtained in Table 5 can be compared. The balances of inorganic nitrogen and phosphate are expressed in mol C s 1 b o x 1 by the stoichiometric relations of Eq. (3) in Table 6. There is agreement

Table 5. Values obtained, after balance (Table 4) and corrections of Appendices 1 & 2 (Tables 7 & 8), for photosynthesis, fall, remineralisation and sedimentation of carbon, nitrogen and phosphorus m the box Date

4 Sep

21 Sep

Process

Photosynthesis Fall Remineralisataon Sedimentation Photosynthesis

Fall Remmeralisation Sedimentation 3 Oct

-: no data

Photosynthesis Fall Remmeralisation Sedimentation

Carbon (mol C s boxA1)

Nitrogen boxd1) (mol N s " ~

Phosphorus (mol P s"' box-l)


294

Mar. Ecol. Prog. Ser. 79: 289-302, 1992

Table 6. Values obtained (mol C s 1 b o x 1 ) for companng the results of the photosynthesis and the reminerahsation of nitrogen and phosphorus (Table 5) with that of carbon, as taken from the quotient of the stoichiometric coefficients bicarbonate:nitrate (7.59) and bicarbonate:phosphate (129) from Eq. (3) For the box considered there is the relation: 1 rnol C sC1 box-' = 18.4 mg C m-' dC1 Date

Photosynthesis C

4 Sep 21Sep 3 Oct

78 41 29

Remineralisation

Nx7.59 P x l 2 9 77 41 27

75 41 28

C 36 33 13

Nx7.59 P x l 2 9 39 17 8

36 26 9

between the 3 different methods described above for the values of photosynthesis and remineralization. The discrepancy in the nitrogen remnerahzation values for 21 September will be commented upon below.

DISCUSSION Before the red tide was detected, hydrographic conditions on 4 September were typical for the summer (Figs. 5 to 8). The northerly winds, which began in the last week of August, caused an upwelling which enriched the nutrient salts in the ria: the inflowing water transported 6.3 rnol s of inorganic nitrogen, of which 83 % was nitrate; 0.44 rnol s of phosphate; and 4.1 rnol s of silicate (Table 3 ) . The lower layer of the box was thus rich in nutrient salts (Fig. 4). The chlorophyll concentration was high (Fig. 8) as was photosynthesis: 78 rnol C s (Table 6), 1.5 times greater than the summer mean for this zone of the ria (Vives & Fraga 1961). There was an abundance of diatoms, 75 O/O of phytoplankton cells (Figueiras & Fraga 1990), which consumed 60 % of the silicate arriving in the upper layer: 7.6 rnol s (Table 4). The depth of penetration of 1 % light, obtained using a Secchi disc, is given m Table 1. This is shallower than the level of zero velocity, and is the reason why the outgoing current is not exhausted in nutrients: 1.5 rnol N s-I (with 64 % as nitrate), 0.16 rnol P s"' and 1.1 rnol Si s i flowed back to the ocean. The balance of organic carbon in the box is 14 rnol C s in favour of the outgoing flux (Table 3). On 21 September, when the winds had changed to southerly (Fig. I), an occlusion was produced in the ria at Stns 4 & 5 (Fig. 5). Circulation took place in a semiclosed circuit (Fig. 3) which affected the distribution of the nutrient salts (Figs. 6 & 7) and chlorophyll a (Fig. 8). The recirculation led to the concentrations of substances in the incoming and outgoing currents resembling each other, as shown by the closeness of the continuous and discontinuous lines in Fig. 4.

Gamma-6 21 Sep. 86

Fig. 5 Vertical distribution of density in the Ria of Vigo and its offshore waters (Prego et a1 1988). Gamma-9 is density minus 1000 kg m 3 , and the unit is kg mb3

The homogenization of the water in the ria was not due to greater mixing but rather to recirculation. This will have greater importance for the increase in water temperature than the inflow of warm water from the exterior, as indicated by Fraga et al. (1988).The mean


Prego: Nutrient and carbon fluxes in a red tide

295

NO, ,urn01 KQ"1 4

S G D 86

21 Sen 86

NTC JUmol kg-1

3 OCL 86

Fig 6 Vertical distribution of nitrate in the Ria of Vigo and its offshore waters (Prego et al. 1988)

Fig. 7. Vertical distribution of ammonium in the Ria of Vigo and its offshore waters (Prego et a1 1988)

temperature was 16.7 OC in the upper layer and 16.1'C in the lower layer (calculated from the data of Prego et al.1988). Tangen (1977) pointed out the importance of an increase in seawater temperature in the development of red tides in north European waters, and Chang & Carpenter (1985) found statistically significant correlations between the logarithm of cell densities and

water temperature during a bloom of Gyrodinium aureolum in the Carmans River estuary (Long Island, USA). This phenomenon may not have an influence on the development of red tides, but be simply one of the consequences of hydrographic conditions. More research would be needed on this subject and also on the possible role of resuspension of cyst due to recircu-


Mar Ecol Prog. Ser. 79: 289-302, 1992

296

Chla m 4

1'.

S ~ D 86

150 l o o w

Fig. 8. Vertical distribution of chlorophyll a in the Ria of Vigo and its offshore waters (Prego et al. 1988)

lation: the residual incoming flux is nearly double that measured during the preceding sampling (Fe in Table 2). Probably the more important effect of currents on the sediment would be in the frontal zone (between Stns 4 & 5; Figs. 2 & 3) where, near the seabed, the temperature increased from 12.5 to 16OC between 4 and 21 September.

The retention brought about the arrival of recycled nutrients in the incoming seawater. The 3.7 rnol N s-I entering (approximately half of that on 4 September) was now poor in nitrates (33 % ; Table 3). Remineralization was very high (Fig. 7), representing three-quarters of the amount photosynthesized (Table 5). Sedimentation, on the basis of carbon data (Table 5),was almost zero, i.e. there was strong decomposition of organic matter as a consequence of the water retention. Under these condictions, photosynthesis was maintained through remineralized nutrients (4.2 rnol s ' of NH4^ as opposed to 8.1 rnol s of N O 3 on 4 September; Table 4), 1.e. 80 % of the inorganic nitrogen used in photosynthesis on 4 September corresponded to nitrate, while on 21 September 77 % corresponded to ammonium. Yamochi & Abe (1984), by comparing changes in their concentrations, noted that the uptake rate for ammonium was much higher than for other forms of dissolved inorganic nitrogen. On 21 September, the consumption of silicate decreased 2.5 fold (Table 4) to less than half of that of 4 September, despite its influx to the upper layer being almost equal (10.7 rnol Si s in the ascending flux and 1.5 rnol Si s-' in the freshwater; Table 3). Of this silicate, only 26 YO was used and, on this date, export (4.3 rnol Si s l ) was greater than import (3.2 rnol Si s l ) coinciding with a large reduction in the concentration of diatoms in the ria (Figueiras & Fraga 1990). Organic carbon maintained its concentration (Fig. 4) despite the halving in production; it may have an important role as a source of organic substances for phytoplankton and bacteria or also in the stabilization of metals in the seawater, due to its capacity for complexing (Siege1 1971, Huntsman & Sunda 1980). Gymnodinium catenaturn, hardly present on 4 September (Fig. 9), increased its concentration in the box to lo4 cell d m 3 and probably grew from the inoculum of 4 September (Figueiras 1989). This was favoured not only by chemical causes such as ammonium and organic carbon availability, but also by physical causes such as the rapid circulation (862 x l o 3 kg s l , almost double that of the 4 September; Table 2), and low mixing (Fa in Table 2) of the water in the box, half that of the previous date. The rains (in September 1986, 232 mm of rainfall were recorded in Peinador, which is double the average for the month) which accompanied the southerly winds (Fig. 1) produced inputs of freshwater to the ria (Fig. 1) which increased the stability of the water as shown by the isopycnals of 21 September (Fig. 5). These hydrographic conditions favoured the growth of a population of mobile flagellates much more than diatoms (Eppley et al. 1978). Diatoms lose many cells by sedimentation, but dinoflagellates, due to movement of flagella, are able to keep near the surface (Margalef et al. 1979).The low turbulent diffusion and


Prego Nutrient and carbon fluxes in a red tide

/

f

100

-

.

4 Sen. 86

Fig 9 Vertical distribution of Gymnodinium catenatum in the Ria of Vigo and its offshore waters (Figueiras & Fraga 1990)

high concentration of nutrients gave rise to the formation of a red tide. Production fell from 1410 mg C m-2 d"' on 4 September to 755 mg C mA2d d l on 21 September (Table 6). As Margalef (1956) indicated, there occurs a concentration of phytoplankton rather than a maintenance of the total mass. Consequently, the Gyrn-

297

nodinium catenatum produced in the interior of the ria will accumulate in the zone of convergence (Stns 4 & 5; Fig. 9), where the increase in concentration will be higher than the losses (Slobodkin 1953). The sampling station for the data of Fig. 1 was situated near Stn 5 (Fig. 2), where an increase in Gymnodinium catenatum was observed on 21 September. The question posed in the 'Introduction', in relation to the sources of nutrient salts in this red tide, can now be answered. The contributions of nutrient salts will come mainly from the remineralization of organic matter and the amounts contributed by the freshwater will not have an appreciable effect. There are no important residues of anthropogenic origin entering the ria, as happens along the coasts of Scandinavia (Smayda 1990).In this ria the inputs of freshwater are only 5 % of the inorganic nitrogen and phosphorus and 12 % of the silicate contained in the flux rising to the upper layer (Table 3). Another factor which may play an important role is vertical migration of the dinoflagellates (Yamochi & Abe 1984, Cohen 1985). This vertical movement is ca 10 m d 1 (Cullen 1985). It is of significance in the ria (Fraga & Prego 1989, Figueiras & Fraga 1990) since it allows Gymnodinium catenatum to photosynthesise carbohydrates in the upper layer, and then to descend to the lower layer where it can assimilate nitrates, as in the case of other dinoflagellates (Eppley & Harrison 1975, MacIsaac 1978, Cullen & Horringan 1981, Dortch & Maske 1982), using the chemical energy accumulated. This causes a discrepancy between the remineralisation values for C , N and Pi calculated on 21 September (Table 6). The migration will, in the deep layer, produce a greater remineralization of organic carbon and a lower value for nitrogen remineralisation. Although more research is needed, it is possible to estimate the synthesis of organic matter in the lower layer. The discrepancy of 16 mol C s 1 (Table 6) between C and N will be redistributed, but P remineralisation is not affected by this process: 9 mol C s 1 in synthesized matter and 7 mol C s 1 as an energy source. 17 % of the photosynthesized material (21 O/O of the remineralised carbon) is used as an energy source for the synthesis of nitrogenous organic matter. The 9 mol C s 1 correspond, according to the above mentioned ratio, to 1.2 mol N s-', which is 22 % of the total synthesized in the box. Dissolved inorganic nitrogen will be therefore, as Harrison (1973), Lindahl (1983) and Holligan et al. (1984) have indicated, one of the major factors that control the occurrence of many dinoflagellate blooms. The retention of water in the ria disappeared by 3 October. The isopycnal of 26.7 kg m 3 (Fig. 5) was now found in the ria. The residual fluxes were about 250 x lo3 kg s 1 (Table 2), and a renewal of the water


Mar. Ecol. Prog. Ser.

298

in the box took place. The outgoing flux was now rich in ammonium (about 0.8 kmol k g 1 more than on 21 September; Fig. 4) but the incoming flow was abundant in nitrate (5.2 mol s-I; Table 3). Biological activity decreased slightly (Table 6) but was now represented to a great extent by diatoms (Figueiras & Fraga 1990), as may be expected from water entering the ria from the exterior (Campos & Gonzalez 1975). The concentration of Gymnodinium catenatum was still very high as a result of accumulation, but at the station of analysis (Fig. I), the value had decreased. The circulation carried it away to the exterior of the ria (Figs. 8 & 9). The time needed to replenish the water in the upper layer was calculated as 15 d (Table 2) but this was dependent on environmental conditions. The winds and rains of the end of October (Fig. 1) brought about a new increase in the red tide (Fig. 1) due to new retention of water in the ria. The situation broke down definitively with the rains in November which created a rapid circulation, sufficient to totally replenish the water of the box in 8 d, and 3.5 d in the upper layer (Prego & Fraga in press). The red tides of Gymnodinium catenatum recorded in the Ria of Vigo in 1976 (Estrada et al. 1984), 1985 (Fraga et al. 1988), and 1986 (Fraga & Prego 1989, Figueiras & Fraga 1990, Fraga et al. 1990) occurred under similar conditions in autumn, when the winds became southerly. The retention of water by certain wind patterns has already been considered by Conover (1954) as essential to red tide development in New Haven Harbor (Connecticut, USA). The 4 phases indicated by Steidinger (1983) for the formation and breakdown of a red tide remain evident: (1) high production due to upwelling, (2) high remineralisation with availability of nutrient salts, (3) concentration of Gymnodinium catenatum sufficient to cause a red tide, and (4) final washing out of the ria by winter conditions. The formation of a recirculation cell initiates the conditions of nutrient salt contribution and stability required by the model of Margalef (1978)for the formation of a red tide. The fluxes and consumptions of nutrient salts and particulate organic carbon for 4 and 21 September are given in Fig. 10.

APPENDIX 1

Correction to phosphate balance The results of the flux balance for phosphate, A and B in Table 4, include processes different from those of photosynthesis, P, or remineralisation, R, as indicated

c7 N 031 P 004

Si 0 2 3

Photosynthesis

N 10.2 Si 7.6

S i 112

Remineralisation

C 36

upper layer

Fr

lower l a y e r

P 0.

SEPTEMBER N 044 P 004 si 153

c

41

Si 4 26

P 0.32 Si 3.2

Remineral isat ion

21

upper l a y e r lower layer

SEPTEMBER

Fig. 10. Summary of the fluxes and budgets of nutrient salts in the box under consideration in the Ria of Vigo- inorganic nitrogen (N), phosphate (P), silicate (Si) and particulate organic carbon (C) for 4 September (high production due to upwelling) and 21 September (high remineralisation and red tide). Fe and Fg-incoming and outgoing fluxes; Fr: flux caused by freshwater. Umts m mol s 1 box-'

in 'Results'. The precipitation or redissolution of phosphates in the upper, Ks, and lower, Kp, layers must be treated as follows: A=Ks+P

(4

B=Kp-R

(5)

To determine P and R it is necessary to known Kg and Kp. This is done by taking PO, a parameter independent from that of photosynthesis and remineralisation. When selecting a component of each part of Eq. (3),i.e. O2 and N O s or H P 0 2 , and considering the quotients of the stoichometric coefficients (175:17 for the nitrate and 175:l for the phosphate), the resulting parameter (NO or PO) is independent of Eq. (3),i.e. it is unaffected


Prego: Nutrient and carbon fluxes in a red tide

by photosynthesis and remineralisation processes. This parameter will be, in common with the NO parameterr conservative, as indicated by Broecker (1974). The parameters PO and NO (Prego 1989, Rios et al, 1989) are defined as:

where INln] = [NO3-] + [NO2-] + [NH4+]. In Eq. (31,nitrate is considered although both nitrite or ammonium may be present in seawater. Both are related to nitrate by the equations:

For this reasonr a correction (- 0.5 [NO2-]- 2 [NH4+])is necessary for the parameters PO and NO defined by Eqs, (6) and (7). PO will only vary through interchange with oxygen from the atmosphere or through the inorganic processes of flocculation or redissolution. On this basis, it is possible to write the equation:

+ Og + 175 Ks

upper layer:

Apo

lower layer:

Bpo = 175 Kp

=

(10) (11)

where Apo and Bpo are the result of the balance PO in the upper and lower layers, respectively, and Ks and Kp the phosphate that appears and disappears by non-

299

biological processes. The term Og is the oxygen interchanged with the atmosphere which is zero in the lower layer. To determine Ks, it is necessary to make a prior calculation of Og. Due to the fact that inorganic nitrogen is not involved in processes of precipitation-redissolution, the balance for NO in the upper layer is:

As with the other balances, the data of measured seawater flows (Table 2) and oxygen and nutnent salts concentration (Prego et al. 1988) are used to calculate the fluxes of NO (Table 71, and the passage of oxygen, Ogr between aLr and water is determined (Table 7). Similarly, the data necessary to resolve Eqs. (10) and (11) are given in Table 7. From these data the values for phosphate consumption during photosynthesis or remineralization are obtained by Eqs. (4) and (5).These are presented in Table 7.

APPENDIX 2

Correction to inorganic carbon balance and calculation of fall and sedimentation of particulate organic carbon The values for the photosynthesis and remineralisation of carbon, which complement the results of the nutrient salts, are obtained by applying the system

Table 7, Data for solv~ngEqs. (41, (51, ( l o ) , (11) and (12) and results Units for the fluxes F (letters refer to Fig. 2) and balances Ape, Bpo and ANo are rn mol 0 2 sf1 box-'; and for flocculation (+) or red~ssolut~on (-1 of phosphates, Ks (upper layer) and Kp (lower l a ~ e r and ) ~ photosynthesis and remnerahzatlon are Ln mol P s f ' box-'. From the fluxes of NO are calculated the interchange of oxygen wlth the atmosphere Og. A negabve value means lts entrance lnto the ria^ The data of the balance of phosphate, A and B in Eqs. (4) and (51, are In Table 4

4 Sep 21 Sep 3 Oct

Fluxes of PO Date 4 Sep 21 Sep 3 Oct

I

1

Fe

FS

163 1 249.3 73.3

153.5 281,7 74.0

KS 4 Sep 21 Sep 3 Oct

K~

Photosynthesis

Reminerallsabon


Mar. Ecol Prog. Ser, 79: 289-302, 1992

300

Table 8. Data for solmng Eqs. (13) to (19) and their results. Units of A0 in mol O2 s-I box-'; rest In mol C s-I box-' C <C 0 2 which arnves (-1 from the atmosphere; Cs and Cd: precipltahon (+) or redissolution (-1 of carbonates m the upper and lower layers; P: consumpt~onof carbon In photosynthesis, D and S: fall and sedimentation of particulate carbon; R. remmeralisahon of organic carbon; see Fig 11

1

Date 4 Sep 21 Sep 3 Oct

A0

-

3.1 -21.0 + 4.0

A1

Bl

A2

+59.8 4-43 3 +33,8

-32.4 -23 4 -150

-28.2 - 9.8 - 84

B2

A3

C

+ I 6 9 - 17.0 + 11.0 - 12.7 + 4.0 + 9.1 +17.6 - 1 0 - 0 8 + 6.1 - 5.3 + 1.9

atmosphere

7

B3

1

Fig. 11. Carbon mterchanges in the box of ria. photosynthesis (P), fall (D), remineralisation (R) and sedimentahon (S) of particulate organic carbon; precipitabon or redissolution of carbonate m the upper (CJ and lower (Cd)layer; and a - w a t e r transfer of C 0 2 . Direchon of arrows m&cates a positive mterchange

suggested by Prego (1989) and Prego (unpubl.) to the biogeochemical cycle of carbon. In the box considered (Fig. 21, 7 interchanges of carbon take place, as shown in Fig. l l a In order to calculate them, the following set of 7 equations must be solved (AO, A1 etc, are defined below, and remaining terms in Fig. 11 legend):

Eq. (13) is considered as a CAO balance. It is similar to that made for NO in Eq. (12). CAO, in the same way as for NO and PO in Appendix l i is a conservative parameter (Prego 1989) defined as:

Cs

-5 1 +3 1 +3.2

Cd

P

D

R

S

-3.9 77 6 49.4 36,3 30,O + 9 6 41.2 31 4 33 0 2.4 -2.1 2 8 7 20.3 12.9 6 6

marine organisms, which is reflected in the alkalinity (Alk). The air-water interchange of C 0 2 , C, must be considered, This is converted from mol C s-I box-' to mol O2 s-' box-'# units of A0 and Og (oxygen interchange, Eq. (12)),with the factor 1.36 (175:129, the 0 : C quotient in Eq. (3)). Eqs. (14) and (151, the inorganic carbon balance, are similar to those of (4) and (51, also including the airwater interchange of C 0 2 . Eqs. (16) and (171, the organic carbon balance, take into consideration photosynthesis, remineralisation and the fall and sedimentation of organic carbon. Eqs. (18) and (lg),the alkalinity balance, arise from the appearance and disappearance of strong ions in the interchange shown in Fig. 11. The consumption of ammonia and the precipitation of carbonate decrease the value of alkalinity balance and the consumption of nitrate and nitrite will increase it. This is considered in the terms PN and RN. Data for the balances of CAO in the upper layer (AO), and the inorganic and organic carbon and the alkalinity in the upper layer (Al, A2, A3) and lower layer (Bl, B2, B3) are presented in Table 8. The value for Og is in Table 7 and PN and RN are the consumption or remmeralization of nitrates plus nitrites less ammonium, calculated from the data of Table 3. The results from Eqs. (13) to (19) are in Table 8. Acknowledgements I gratefully acknowledge the assistance and valuable comments on the manuscript promded by Drs Marta Estrada and Peter Wangersky. I am also ~ n d e b t e dto the 'Centro Meteoroloqco Zonal de La Corufia' for meteorolopcal data, and to the 1.E.O. of Vigo for their k1nd inntation to then workshop, which served as an mtroductlon for me to the study of red tides Specla1 thanks to Prof. Fernando Fraga, head of the project 'Intercambio de nutrientes entre las rias y la plataforma costera en el NO de la peninsula Iberica', from which we obtalned data for t h s paper. Thanks are also due to Ian Emmett for revision of the English text.

CAO = [02] + 1.36 ([C02]- Car)- 0,5 [NO2-] - ~[NHzI+](20)

LITERATURE CITED

where Car = 0.5 (Alk + [NO3-] - 0.45 [NO2-] 2 [NH4+]).Its correction is due to the consumption of carbonate in the formation of the skeleton of some

Aston, S. R. (1980). Nutr~ents,&ssolved gases, and general biogeochemistry in estuaries. In. Olausson, E B rCato, I. (eds ) Chemistry and biogeochemlstry of estuanes. Wdey, Chchester, p. 233-262


Prego: Nutrient and carbon fluxes ln a red tlde

Beer, T. (1983). Environmental oceanography. Pergamon Press, Oxford Broecker, W, S, (1974), 'NO', a conservative water-mass tracer. Earth planet. SCI.Lett. 23: 100-107 Campos, M. J.rGonzalez, N. (1975). Phytoplankton ln relahon with nutr~entconcentrat~onin the Ria de Arosa. In: Persoone, G., Jaspers* E. (eds.) Proc. 10th Eur Mar. Biol. Symp., Vol 2~Un~versaPressr Wetteren, p. 111-126 Chang, J , , Carpenter, E. J. (19851, Blooms of the dmoflagellate G y r o w u r n a u r e o l m in a Long Island estuary: box model analysis of bloom maintenance. Mar. Biol. 89: 83-93 Cohen, R. R. H. (1985). Physical processes and the ecology of a wmter dmoflagellate bloom of Katoainium rotundaturn. Mar, Ecol. Prog. Ser. 26: 135-144 Conover, S. M. (1954)>Observahons on the structure of red tldes ln New Haven harbor, Connect~cut. J. mar. Res. 13: 145-155 Cullen, J , J., Horringan, S. G, (1981). Effects of nitrate on the dlurnal verhcal migration, carbon to nltrogen ratlo and the photosynthetic capacity of the dinoflagellate Gymnoaimurn splendens. Mar. Biol. 62: 81-89 Cullen*J.J~ (1985). Dlel vertlcal m~grationby dinoflagellates: roles of carbohydrate metabolism and behamoral flexibillty. In: Ranklnr M A. (ed.) Migration: mechanisms and adaptatwe s~gmficanceMar. Scl. Inst., Univ. Texas, Mar. SCI.~ u p p l27: 135-152 Dortch, Q,, Maske, H, (1982). Dark uptake of nitrate and nltrate reductase actmty of a red hde populahon off Peru. Mar. Ecol. Prog. Ser 9: 299-303 Eppley, R. W , Harrlson, W, G. (1975). Physiological ecology of Gonyaulax polyedra, a red water dmoflagellate of southern Califomla. In, LoCicero, V. R, (ed.) Proc. 1st mt. Conf. TOXICdmoflagellate biooms. Massachusetts Sc~enceand Technology Foundahon, Wakefield, p 11-22 Eppley, R W., Koeller, P,, Wallace, G. T. (1978). Stlrring influences the phytoplankton specles composlhon within enclosed columns of coastal seawater. J. exp. mar. Biol. E c o ~32: . 219-239 Estrada, M , Sanchez, F. J . , Fraga, S. (1984). Gymnodinium catenatum (Graham) e n las rias gallegas (NO de Espafia). Invest Pesq. 48. 31-40 Figuelras, F. G. (1989). Formacion y mantenlmlento de las purgas de mar en las Rias Balas. In: Fraga, F., Figuelras, F. G. (eds.) Las purgas de mar como fenomeno natural Las mareas rojas. Cuadernos da Area de Ciencias Marlfias, Vol 4. Edlcios do Castro, La Corufia, p 73-84 Figuenas, F. G., Fraga, F (1990). Vefical nutnent transport dunng proliferation of Gymnodinium C a t e n a t m Graham m ria of Vigo, Northwest Spam. In, Granell, E., Sundstrom, B,, Edler, L,, Anderson, D. M. (eds.).Tomc manne phytoplankton. Proc, Fourth Int Conf. on Toxic Marme Phytoplanktonr June 26-30, 1989, Lund, Sweden. Elsevier, New York, p. 144-148 Fraga, S., Anderson7D. M., Bravo, I., Reguera, B., Steidinger, A., Yentsch, C, M. (1988). Influence of upwelhng relaxahon on dinoflagellates and shellfish tonclty m Ria de Vigo, Spain. Estuar. coast. Shelf Sci. 27: 349-361 Fraga, F., Prego$R, (19891, Con&cclones h~drograficasprevlas a la purga de mar. In: Fraga?F,, Flguelras, F. G, (eds.) Las purgas de mar como fenomeno natural. Las mareas rajasCuadernos da Area de Ciencias Marifias, Vol4. E&cios do Castro, La Corufia, p. 21-44 Fraga, S., Reguera, B , Bravo, I. (1990). Gymnodintm catenaturn bloom formatlon in the Spanlsh rias~ In: Graneli, E., Sundstrom, Brit Edler, L., Anderson, D, M. (eds.) TOXICmarine phytoplankton. Proc Fourth Int. C o d . on Toxic Marine Phytoplankton, June 26-30, 1989, Lund, Sweden. Elsevier, New York, p, 149-154

301

Grasshoff, K., Johannsen, H. (1972). A new sensltlve and &rect method for the automatic determination of ammonla in sea water J. Cons. mt. Explor. Mer. 34. 516-521 Hansen, H. P., Grasshoff, K. (1983). Automated chem~cal analysis. In: Grasshoff, K., Ehrhardt, M., Kremhng, K (eds.) Methods of seawater analysis. Verlag Chemie, Welnheln, p 368-376 Harrlson, W. G. (1973) Nltrate reductase actlvity durlng a dmoflagellate bloom. Lunnol. Oceanogr. 18: 457-465 Holllgan, P M., Williams, P. J. le B., Purdle, D., Harrls, R. P (1984). Photosynthesis, resplrahon, and mtrogen supply of plankton popdahons in stratified, frontal and tldally mixed shelf waters. Mar Ecol. Prog. Ser 17, 201-213 Huntsman, S. A,, Sunda, W, G. (1980). The role of trace metals m regulahng phytoplankton growth, with emphasls on Fe, Mn and Cu. In: Morns, I ( e d ) The pbyslolog~calecology of phytoplankton. Blackwell Scl Publ., Boston, p. 285-328 Llndahl, 0. (1983). On the development of a Gyrod~nium aureolum ocurrence on the Swe&sh west coast m 1982 Mar. Biol 77: 143-150 Luthy, J , (1979) Epidemic paralytic shellf~shpoisonmg m western Europe, 1976. In: Taylor, D. L , Sel~ger,H H (eds.) TOXICdmoflagellate blooms. Elsemer, New York, p. 15-22 MacIsaac, J . J. (1978).Die1 cycle of morganic nltrogen uptake m a natural phytoplankton population dommated by Gonyaulax polyedra Limnol. Oceanogr. 23: 1-9 Margalef, R. (1956).Estructura y dmamica de la purga de mar en la ria de Vigo. Invest. Pesq. 5: 113-134 Margalef, R. (1978). Lde-forms of phytoplankton as survival alternahves ln an unstable environment. Oceanol. Acta 1. 493-509 Margalef, R. (1989). Condlcc~onesde aparicion de la purga de mar y presiones de selecci6n sobre sus componentes. In. Fraga, F , Figuenas, F G (eds.) La purga de mar como fenomeno natural. Las mareas rojas. Cuadernos da Area de C~enclasManfias, Vol. 4. Edlcios do Castro, La Corufia, p. 13-20 Margalef, R., Duran, M., Saiz, F. (1955). El fltoplancton de la ria de Vlgo de enero de 1953 a marzo de 1954. Invest. Pesq. 2. 85-129 Margalef, R , Estrada, M., Blasco, D. (1979). Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In: Taylor, D. L , Seliger? H H (eds.) Toxic dlndlagellate blooms. Elsevier, New York<p, 89-94 Mourlfio, C , Fraga, F. (1985). Determnacion de nltratos en agua de mar. Invest Pesq. 49. 81-96 Mounno, C., Fraga, F., Fernandez Perez, F. (1984). Hldrografia de la ria de Vlgo In: As nas galegas Cuademos da Area de Ciencias Marifiasf Vol 1 Edmos do Castro, La Cormiar p. 91-103 Prego, R. (1989) Intercambio de sales nutnentes entre cuerpos de agua oceanicos, seguido por metodos q u h c o s , Ph.D t h e m . Servicio de Publ~caclonese Intercambio C~entiflco. Umversity of Santiago de Compostela Prego, R.t Fraga, F. (1988) A colorimetric method for the determination of organic carbon m sea water. Invest. Pesq 52: 421-435 Prego, R., Fragar F. (In press). A slmple model to calculate the residual flows In a Spanlsh ria. Hydrographc consequences in the ria of Vigo. Estuar. coast. Shelf, Sc1. Prego, R., Perez, F. F , Rfos, A~ F., Fraga, F , Figueiras, F F (19881, Datos hdrograflcos de la ria de Vigo: 1986. Datos Informahvos, 23, Inst, Inv. Marmas, Vigo


302

Mar Ecol. Prog. Ser. 79: 289-302, 1992

Pregot R.r Fraga, F., RIOS,A. F. (1990). Water interchange between the Rla of Vlgo and the coastal shelf. Suent. Mar. 54: 95-100 RIOS,A. F.$Fraga, F. (1987). Composlcl6n quimca elemental del plancton marlno, Invest. Pesq. 51: 619-632 Rlos, A F,, Fraga, F., Perez, F, F. (1989). Esbmation of coeffic~entsfor calculabon of 'NO', 'PO' and 'CO', start~ngfrom the elemental composition of natural phytoplankton. Sclent. Mar. 53: 779-784 S ~ e g e l A. ~ (1971), Orgamc compounds and the aquabc enwonment. Faust, S. P,, Hunter, J . V. (eds.)Dekker, New York, p. 265-295 Slobodkin, L. B. (1953). A possible d b a l condition for red tldes on the coast of Florlda. J . mar>Res. 1: 148-155 Smayda, T. J (1990). Novel and nmsance phytoplankton blooms rn the sea: evidence for a global epldemlc. In:

Granell, E., Sundstrom, B., Edler, L., Anderson, D~ M, (eds.) TOXICmarme phytoplankton. Proc. Fourth Int Conf, on TOXICMarlne Phytoplankton, June 26-30, 1989, Lundr Sweden Elsevler, New York, p. 29-40 Sobrino, R. (1918). La purga de mar o hematotalasia~Mem. R. Soc. ESP. Hist, Nat. 10: 407-458 Ste~dmger,K. An(1983) A re-evaluat~onof toxlc dinoflagellate b~ologyand ecology. Prog. Phycol. Res. 2: 147-188 Tangen, K. (1977). Blooms of Gyrodinium aureolum (Dynophlceas) ln north European waters, accompalned by mortality in manne orgamsms. Sarsla 63: 123-133 Vlves, F., Fraga, F. (1961).Producc16n b h c a en la ria de Vlgo (NW de Espafia). Invest. Pesq. 19: 129-137 Yamochl, Abe, T. (1984). Mechanisms to lnltlate a Heteroslgma akashiwo red tide ln Osaka Bay. 11. Dlel vertical m~gration,Mar. Blol. 83: 255-261

Thls arhcle was presented by P. J Wangersky, Halifax, N,S., Canada

Manuscript first received: February 14, 1991 Revlsed verslon accepted: November 27, 1991


SCI. MAR., 63 (2): 121-127

SCIENTIA MARINA

1999

On the distribution of silicic acid as a frontal zone tracer in the Indian sector of the Southern Ocean* R. PREGO1, Y.H. PARK2, M.C. BARCIELA1, J. MORVAN3, J. PONCIN4 and P. TRÉGUER4 1

Instituto de Investigaciones Marinas (CSIC). Eduardo Cabello, 6. 36208 Vigo, Spain. (e-mail: prego@iim.csic.es) 2 Muséum National d’Histoire Naturelle. 43 rue Cuvier. 75231 Paris, France. 3 Ecole Nationale Supérieure de Chimie. av. Général Leclerc. 35700 Rennes, France. 4 Institute d’Etudes Marins (UBO). 6, av. Le Gorgeu. 29287 Brest, France.

SUMMARY: The subantarctic frontal zone surveyed during the April-May 1991 SUZIL cruise in the Crozet-KerguelenAmsterdam area shows a strong horizontal (north to south) gradient of dissolved silicate, increasing with depth, from 5 to 10 µmolSi kg-1 at 100 m, and 10 to 70 µmolSi kg-1 at 600 m. The northern limit of this frontal zone, which is formed by the confluence of the Subtropical and Subantarctic Fronts, is delimited at the surface by the 2 µmolSi kg-1 silicate isoline. Silicate-salinity diagrams also allow different water regimes to be positioned relative to the frontal zone. This sloping interface is between two water bodies, one to the north with more saline subtropical waters of less concentrated silicate than the southern one, corresponding to subantarctic waters which are less saline and richer in silicate. It is concluded that dissolved silicate can be used as a useful tracer of frontal zone water masses in the Indian sector of the Southern Ocean, providing a sound complement to other hydrographic data. Key words: silicate, tracer, frontal zone, silicate-salinity diagram, Crozet Basin, Southern Ocean.

INTRODUCTION The Subtropical Front (STF) is considered the northern limit of the Subantarctic Surface Waters (Orsi et al., 1995). In the central Indian sector of the Southern Ocean, both the STF and the Subantarctic Front (SAF) are found north of the Crozet and Kerguelen Plateaus, forming an unique frontal zone (Gamberoni et al., 1982). In this frontal zone, the advection of water masses is driven by the Antarctic Circumpolar Current (ACC). The single-band frontal structure observed in the ACC is most pro*Received August 7, 1998. Accepted February 9, 1999.

nounced north of Kerguelen, where it is concentrated along the shelf edge within a narrow frontal zone of about 200 km (Park et al., 1991). In this Crozet Basin area, the Polar Front (PF) is completely separated from the frontal zone. The confluence of the Agulhas Return Current with the ACC at the entrance of the Crozet Basin, as well as the topographic control of the current flow by the Crozet and Kerguelen Plateaus are responsible for such a particular regional ACC frontal structure (Park et al., 1993a). The hydrography of the area has been well studied on the basis of the distribution of temperature, salinity and dissolved oxygen.

SILICATE FRONTAL ZONE TRACER IN CROZET BASIN AREA 121


FIG. 1. – Position of stations sampled in the Indian sector of the Southern Ocean during the April-May 1991 SUZIL cruise. Depth contours are in meters.

The nutrient richness of the Southern Ocean (Jones et al., 1990) and the low nutrient concentrations in the water masses to the north of the ACC is the reason for a strong lateral gradient of nutrients, the direction of a gradient is from high to low concentration (Lujeharms et al., 1985; Bennekom et al., 1988). The nitrate and phosphate concentrations change slowly close to the Antarctic convergence areas, but dissolved silicate concentration does so more rapidly (Walsh, 1971; Holm-Hansen et al., 1977). Near the PF in the Indian sector of the Southern Ocean (Jones et al., 1990), a high horizontal silicate gradient occurs in comparison to the much smaller change of the other two main nutrient salts, i.e. nitrate and phosphate (Le Jehan and Tréguer, 1983; Le Corre and Minas, 1983). For these reasons, silicate would be an appropriate tracer of the frontal zones in the Indian sector of the Southern Ocean, as has been highlighted in the Atlantic Ocean by Cooper (1952), and later by Metcalf (1969). The aim of this paper is to describe the distribution of dissolved silicate in the upper 600 m of the Crozet Basin area and to propose the silicate-salinity diagram as a useful tool in the position of the frontal zone (STF+SAF). 122 R. PREGO et al.

DATA AND METHODS Salinity, temperature and dissolved silicate data were obtained during the April-May 1991 SUZIL cruise, on board the French M/V Marion Dufresne. The cruise was carried out in the Indian sector of the Antarctic Ocean (Crozet, Kerguelen and New Amsterdam Islands, Fig.1). Water samples were taken with rosette using 12 L Niskin bottles mounted on a Neil Brown CTD and General Oceanic rosette, at the surface in all the stations and at depths of 50, 100, 150, 200, 250, 300, 400, 500 and 600 m on the stations 1931 and at 50, 100, 250 and 500 m on stations 32-58. Analyses of dissolved silicate were carried out on all samples soon after the rosette was brought on board. Non-filtered water samples were analyzed using a Technicon AAII autoanalyser, following the method given by Tréguer and Le Corre (1975). The overall measurement error for silicate is estimated as ± 0.1 µmolSi kg-1 based on duplicate sample analyses. Potential temperature was taken from the CTD record and salinity was determined on board using a Guildline “Portasal” salinometer, with water samples taken at the aforementioned depths. The calibrated CTD data are reported in Park et al. (1993b), and an analysis of the data in terms of water masses


and circulation is made in Park et al. (1993a). The data for salinity, temperature and dissolved silicate in discrete water samples taken in the upper 600 m appear in Lasalle (1991). RESULTS Surface dissolved silicate distribution The surface concentration of dissolved silicate vary from 1 to 18 µmolSi kg-1 (Fig. 2), in accordance with Le Corre and Minas (1983) and LeJehan

FIG. 3. – Vertical distribution of (a) salinity; (b) potential temperature; and (c) dissolved silicate along the section between stations 19 and 32 (Fig.1).

FIG. 2. – Surface isolines of (a) salinity; (b) temperature; and (c) dissolved silicate in the surveyed area during the April-May 1991 SUZIL cruise.

and Treguer (1985). The highest values appear in the southernmost stations (7 µmolSi kg-1 near stations 18, 19 and 20) and around Kerguelen and Crozet Islands (18 µmolSi kg-1 at stations 43 and 44, and 6 µmolSi kg-1 at stations 14 and 15). The larger horizontal gradients are also associated with these highsilicate content regions. The PF, defined as a northern limit of the subsurface temperature minimum of 2°C at around 200 m depth (Emery, 1977), is illustrated in Fig. 3 between stations 20 and 21 at about 50°S. But, the PF just

SILICATE FRONTAL ZONE TRACER IN CROZET BASIN AREA 123





© Sociedad Española de Malacología

Iberus, 25 (2): 73-143, 2007

Species and diagnosis of the Families and Genera of Solenogastres (Mollusca) Especies y diagnosis de las Familias y Géneros de los Moluscos Solenogastros Óscar GARCÍA-ÁLVAREZ* and Luitfried v. SALVINI-PLAWEN** Recibido el 23-V-2005. Aceptado el 15-X-2007 ABSTRACT Although Solenogastres molluscs are not rare animals, knowledge of this group is very incomplete since information on its biology, diversity and geographical distribution is still limited and unequal. Over the last few decades, however, research on their morphological and organizational diversity has increased considerably, and the systematics has been modified. For this reason, this contribution summarizes the diagnoses of all families and genera, and compiles a list of the species with information about their holotype, distribution and the most recent literature. The holotype of Anamenia heathi Leloup, 1947, is designated as neotype of Neomenia gorgonophila Kowalevsky, 1880.

RESUMEN Aunque los moluscos solenogastros no son animales raros, el conocimiento que se tiene sobre este grupo es muy incompleto, ya que las informaciones sobre su biología, diversidad y distribución geográfica son aún limitadas y desiguales. No obstante, en las últimas décadas las investigaciones sobre su diversidad morfológica y organizativa se han incrementado notablemente y su sistemática ha sufrido diversas modificaciones. Por ello en este artículo se hace un compendio de las diagnosis de todas las familias y los géneros y se recopila un listado de las especies con información sobre su holotipo, distribución y la bibliografía más reciente. Se designa el holotipo de Anamenia heathi Leloup, 1947, como neotipo de Neomenia gorgonophila Kowalevsky, 1880.

KEY WORDS: Mollusca, Solenogastres, diagnosis, families, genera, species. PALABRAS CLAVE: Mollusca, Solenogastres, diagnosis, familias, géneros, especies.

INTRODUCTION The Solenogastres are a class of molluscs of which our knowledge is fairly incomplete. Despite progress in researching this class over the last few decades, information on their diversity and geographical distribution is

extremely limited and uneven, and data on their biology continue to be scarce. Solenogastres are not, however, a rare animal group since they are present on most marine bottoms, from coastal areas to great depths.

* Department of Animal Biology, Faculty of Biology, University of Santiago de Compostela, E-15782 Santiago de Compostela. Spain. E-mail: baoscar@usc.es ** Zoologie, Universität Wien, Althanstraße 14, A-1090 Wien, Austria.

73


Iberus, 25 (2), 2007 Study of the Solenogastres commenced in the last decades of the 19th century when TULLBERG, in 1875, described the first species Neomenia carinata, collected on the Swedish West coast. In the initial years of research, the number of species described increased considerably, thanks to the meticulous work carried out and improvements to the methods used for collecting samples at great depths. Most of the new species came from samplings carried out in the course of scientific expeditions conducted at that time and from marine research in the vicinity of Biological Stations. The history of research on this molluscan class may be divided into three large periods. In the initial period, from the end of the 19th century to the third decade of the 20th century, numerous works were published on Solenogastres, by authors such as Danielssen, Heath, Hubrecht, Koren, Kovalevsky, Nierstrasz, Marion, Odhner, Pruvot, Thiele and Wirén, inter alia. They described new species, in many cases from the European coastline, and also studied numerous material from the various scientific expeditions conducted in seas, unexplored until that time. Thus NIERSTRASZ (1902) studied the Solenogastres from the Siboga expedition to the archipelagos of Southwest Asia; THIELE (1902, 1906) described species collected by Valdivia in the Indian Ocean; PELSENEER (1903), NIERSTRASZ (1908), THIELE (1913a) described samples taken during various Antarctic expeditions; and THIELE (1911, 1932) compiled the Solenogastres from Arctic expeditions. Other studies were also conducted on anatomy (THIELE 1894; NIERSTRASZ, 1905; HEATH 1905, 1914), physiology (PRUVOT 1890b; HEATH 1904a, 1908), behaviour (HEATH 1904b) and larval development (PRUVOT 1890a, 1892). Compilations were published by SIMROTH (1893), NIERSTRASZ (1909), THIELE (1913b) and HOFFMANN (1929-1930). Over the following three decades, research on Solenogastres was less productive, but several results were of special interest, such as those dealing with the anatomy, physiology and development (BABA 1938, 1940a, 1940b,

74

1951; HOFFMAN 1947/1949; LELOUP 1950; THOMPSON 1960; SCHWABL 1963). At the end of the 1960’s, the 20th century passed into a third period. Salvini-Plawen undertook new studies on Solenogastres and, a few years later, Scheltema started her work on this class of molluscs. These authors described numerous species, making contributions on anatomy, systematics and behaviour of the group and carrying out modern synopses on their organization (SALVINIPLAWEN 1971, 1972, 1985; SCHELTEMA 1988, 1993; SCHELTEMA, TSECHERKASSKY AND KUZIRIAN, 1994). SALVINI-PLAWEN (1967) compiled diagnoses of known genera and constructed keys for identifying families and genera. Some years later, he published the monograph on “Antarktische und subantarktische Solenogastres” (SALVINI-PLAWEN 1978), on which the current classification is based. In the course of the past decade, new researchers have joined SalviniPlawen and Scheltema in the study of this class of molluscs, conducting works on morphological and organizational diversity, based on the description of new species, contributing much data on their biology, distribution and development. In the past three decades since the publication by SALVINI-PLAWEN (1967) of the key for identifying the genera and the compilation of their diagnoses, knowledge on the diversity of the class has increased substantially. For this reason, this contribution provides a synopsis of the diagnoses of the families and genera, and compiles the species with information about the holotype, distribution and most recent literature.

SYSTEMATICS To date, the class Solenogastres includes about 250 described species. The current suprageneric classification (SALVINI-PLAWEN, 1978; HANDL AND TODT, 2005) is based on the characters of the mantle cover with cuticle and sclerites, as well as on the types of the radula (monoserial, biserial, distichous, tetraserial, polyserial/polystichous) and


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres on the paired ventral foregut glandular organs associated with it. Characters of the sclerites Sclerites are found inside the cuticle or projecting out of the same. The size of the sclerites varies from micrometric sizes to 3 or 4 mm in length, and there are two basic types that are related to the thickness of the cuticle. The thin cuticles, particular to the more primitive Solenogastres, correlate with smooth or striated scales arranged in one layer, whereas thick cuticles, characteristics of the more evolved Solenogastres, correlate with acicular sclerites, which are arranged in two or more layers. In the order Cavibelonia, sclerites are hollow aciculars with thick or thin walls, arranged both radially and tangentially. The latter may be located in a single layer, and thus are arranged obliquely, or may form two or more layers of sclerites interlacing among themselves almost perpendicularly. These are embedded in the cuticle arranged so as to form very small angles with the mantle epithelium (termed as skeletal by SCHELTEMA, 1999; SCHELTEMA and SCHANDER, 2000). In addition, Sterrofustia and Cavibelonia may have sclerites with a hooked distal end and/or with an asymmetrically flattened distal portion, and in Cavibelonia sclerites may occur with a distally asymmetric axe or harpoon shape (termed as “captate” by ARNOFSKY, 2000). Characters of the radula Solenogastres normally possess a radula, although in many species, this is regressive. The radular apparatus comprises a radula with a variable number of transversal rows of different shaped teeth, a cellular reinforcement and an operative musculature. Groups of odontoblasts in the dorsal radular sheath secrete radula teeth; there is no true radular membrane, rather a kind of preribbon of a material identical to that of the teeth (WOLTER, 1992). Used teeth are lost or retained in the anterolateral or ventral radular sac. Depending on the shape and arrangement of the teeth, various types

of radula may be differentiated (SALVINI-PLAWEN, 1978; HANDL, 2002): - Monoserial type: each row formed by one tooth or one more or less wide plate with a variable denticulation, characteristic of the genera Dondersia, Nematomenia, Alexandromenia and others. - Biserial type: each row formed by two teeth or denticulated plates, characteristic of the family Simrothielliedae; the pectinated radula, very characteristic of the genus Anamenia may be included within this group. - Distichous type: each row formed by a pair of hook-shaped teeth, characteristic of Wirenia, Pruvotina, Epimenia. - Tetraserial type: each row formed by four teeth, characteristic of the genus Imeroherpia. - Polystichous/Polyserial type: each row with many denticles/teeth, typical of the genera Proneomenia and Dorymenia. Characters of the ventral foregut glandular organs The ventral foregut glandular organs may be absent (Hemineniidae, Neomeniidae and Birasoherpia). When these organs are present, various types of arrangement may be recognized (SALVINI-PLAWEN, 1978; HANDL AND TODT, 2005): - Types with the main cell bodies subepithelially arranged and opening intercellularly. This can be a clustered type: main cell bodies of glands subepithelially arranged and opening intercellularly close together as a paired group directly into the pharynx; and a type A: with subepithelially arranged cell bodies into a pair of outleading ducts. - Type B: with a paired outleading duct, the intercellularly opening subepithelial gland cells being surrounded by an outer musculature. - Type C: with a paired duct (surrounded by musculature) of epithelially arranged gland cells. - Type of Simrothiella: with bulbous organs enclosing elongate epithelial gland cells with main cell bodies curved to be longitudinally arranged (modified type C).

75


Iberus, 25 (2), 2007 - Type D of Amphimeniidae: with a paired, ramified duct, each branch being terminally provided with a package of gland cells. The Class is divided into four orders, grouped within two supraorders. The supraorder Aplotegmentaria includes the orders Pholidoskepia (6 families) and Neomeniamorpha (2 families); the supraorder Pachytegmentaria includes the

orders Sterrofustia (3 families) and Cavibelonia (12 families). The Pholidoskepia represent the basal group and show different lines of development within the order and, on the one hand, gave rise to the Neomeniamorpha, on the other to the Sterrofustia among which, in turn, might have been the origin of the presumably monophyletic Cavibelonia (SALVINIPLAWEN, 1978, 1985, 2003).

SYSTEMATIC CLASSIFICATION OF CLASS SOLENOGASTRES TO THE LEVEL OF GENUS Class SOLENOGASTRES Gegenbaur, 1878 Supraorder APLOTEGMENTARIA Salvini-Plawen, 1978 Order PHOLIDOSKEPIA Salvini-Plawen, 1978 Family DONDERSIIDAE Simroth, 1893 Dondersia Hubrecht, 1888 Nematomenia Simroth, 1893 Ichthyomenia Pilsbry, 1898 Stylomenia Pruvot, 1899 Heathia Thiele, 1913 Micromenia Leloup, 1948 Lyratoherpia Salvini-Plawen, 1978 Helluoherpia Handl and B端chinger, 1996 Squamatoherpia B端chinger and Handl, 1996 Family SANDALOMENIIDAE Salvini-Plawen, 1978 Sandalomenia Thiele, 1913 Family LEPIDOMENIIDAE Pruvot, 1902 Lepidomenia Kowalevsky, 1883 Nierstraszia Heath, 1918 Tegulaherpia Salvini-Plawen, 1983 Family GYMNOMENIIDAE Odhner, 1921 Gymnomenia Odhner, 1921 Wirenia Odhner, 1921 Genitoconia Salvini-Plawen, 1967 Family MACELLOMENIIDAE Salvini-Plawen, 1978 Macellomenia Simroth, 1893 Family MEIOMENIIDAE Salvini-Plawen 1985 Meiomenia Morse, 1979 Meioherpia Salvini-Plawen, 1985 Incerta sedis 1 Pholidoherpia Salvini-Plawen, 1978 Order NEOMENIAMORPHA Salvini-Plawen, 1978 Family NEOMENIIDAE Ihering, 1876 Neomenia Tullberg, 1875 Family HEMIMENIIDAE Salvini-Plawen, 1978 Hemimenia Nierstrasz, 1902 Archaeomenia Thiele, 1906 Supraorder PACHYTEGMENTARIA Salvini-Plawen, 1978 Order STERROFUSTIA Salvini-Plawen, 1978 Family PHYLLOMENIIDAE Salvini-Plawen, 1978 Phyllomenia Thiele, 1913

76


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Harpagoherpia Salvini-Plawen, 1978 Lituiherpia Salvini-Plawen, 1978 Ocheyoherpia Salvini-Plawen, 1978 Family IMEROHERPIIDAE Salvini-Plawen, 1978 Imeroherpia Salvini-Plawen, 1978 Family HETEROHERPIIDAE Salvini-Plawen, 1978 Heteroherpia Salvini-Plawen, 1978 Incerta sedis 2 Rhabdoherpia Salvini-Plawen, 1978 Order CAVIBELONIA Salvini-Plawen, 1978 Family PRUVOTINIDAE Heath, 1911 Subfamily PARARRHOPALIINAE Salvini-Plawen, 1978 Pararrhopalia Simroth, 1893 Pruvotina Cockerell, 1903 Labidoherpia Salvini-Plawen, 1978 Subfamily ELEUTHEROMENIINAE Salvini-Plawen, 1978 Eleutheromenia Salvini-Plawen, 1967 Gephyroherpia Salvini-Plawen, 1978 Luitfriedia García-Álvarez and Urgorri, 2001 Subfamily LOPHOMENIINAE Salvini-Plawen, 1978 Lophomenia Heath, 1911 Metamenia Thiele, 1913 Hypomenia Van Lummel, 1930 Forcepimenia Salvini-Plawen, 1969 Subfamily HALOMENIINAE Salvini-Plawen, 1978 Halomenia Heath, 1911 Subfamily UNCIHERPIINAE García-Álvarez, Urgorri and Salvini-Plawen, 2001 Uncimenia Nierstrasz, 1903 Sialoherpia Salvini-Plawen, 1978 Unciherpia García-Álvarez, Urgorri and Salvini-Plawen, 2001 Subfamily uncertain Scheltemaia Salvini-Plawen, 2003 Family RHOPALOMENIIDAE Salvini-Plawen, 1978 Rhopalomenia Simroth, 1893 Pruvotia Thiele, 1894 Dinomenia Nierstrasz, 1902 Driomenia Heath, 1911 Entonomenia Leloup, 1948 Urgorria García-Álvarez and Salvini-Plawen, 2001 Family ACANTHOMENIIDAE Salvini-Plawen, 1978 Acanthomenia Thiele, 1913 Amboherpia Handl and Salvini-Plawen, 2002 Family AMPHIMENIIDAE Salvini-Plawen, 1972 Amphimenia Thiele, 1894 Proparamenia Nierstrasz, 1902 Alexandromenia Heath, 1911 Pachymenia Heath, 1911 Spengelomenia Heath, 1912 Paragymnomenia Leloup, 1947 Meromenia Leloup, 1949 Plathymenia Schwabl, 1961 Sputoherpia Salvini-Plawen, 1978 Utralvoherpia Salvini-Plawen, 1978

77


Iberus, 25 (2), 2007 Family SIMROTHIELLIDAE Salvini-Plawen, 1978 Simrothiella Pilsbry, 1898 Cyclomenia Nierstrasz, 1902 Kruppomenia Nierstrasz, 1903 Biserramenia Salvini-Plawen, 1967 Birasoherpia Salvini-Plawen, 1978 Helicoradomenia Scheltema and Kuzirian, 1991 Plawenia Scheltema and Schander, 2000 Spiomenia Arnofsky, 2000 Aploradoherpia Salvini-Plawen, 2004 Family DREPANOMENIIDAE Salvini-Plawen, 1978 Drepanomenia Heath, 1911 Family STROPHOMENIIDAE Salvini-Plawen, 1978 Strophomenia Pruvot, 1899 Anamenia Nierstrasz, 1908 Family PRONEOMENIIDAE Simroth, 1893 Proneomenia Hubrecht, 1880 Dorymenia Heath, 1911 Family EPIMENIIDAE Salvini-Plawen, 1978 Epimenia Nierstrasz, 1908 Epiherpia Salvini-Plawen, 1997 Family SYNGENOHERPIIDAE Salvini-Plawen, 1978 Syngenoherpia Salvini-Plawen, 1978 Family RHIPIDOHERPIIDAE Salvini-Plawen, 1978 Rhipidoherpia Salvini-Plawen, 1978 Thieleherpia Salvini-Plawen, 2004 Family NOTOMENIIDAE Salvini-Plawen, 2004 Notomenia Thiele, 1897

KEY TO FAMILIES 1. Sclerites as scales or as scales and solid acicular spicules. Cuticle thin or moderately thick relative to the body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Sclerites as acicular spicules only. Cuticle generally thick, with epidermal papillae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. With scales, ocassionally acicular sclerites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. With lancelolated sclerites (with distal wings) and smooth or groove-like scales, sometimes with solid acicles. Without ventral foregut glandular organs. With two pairs of copulatory stylets with glands. With respiratory organs . . . . . . . . . . . . . 12 3. Only with solid acicular sclerites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3. With hollow acicular sclerites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4. With claviform scales. With monoserial radula of serrate plates. Subepithelial ventral foregut gland cells (type A) . . . . . . . . . . . . . . . . . . Family Macellomeniidae 4. Without claviform scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5. Without radula. Subepithelial ventral foregut gland cells (type A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Dondersiidae (part) 5. With radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

78


GARCĂ?A-Ă LVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres 6. Monoserial radula with paired denticles. Subepithelial ventral foregut gland cells (type A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Dondersiidae (part) 6. Other type of radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7. Radula formed of simply serrate plates (with denticles subequal in size) . . . . . . . . 8 7. Other type of radula (heterodenticulate plates or distichous) . . . . . . . . . . . . . . . . . . 9 8. Biserial radula (probably) of serrate plates. Seminal receptacles in bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Sandalomeniidae 8. Monoserial radula. Subepithelial ventral foregut glandular organs (type A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Genus Pholidoherpia 9. Biserial radula (with paired plates or bars bearing denticles). Ventral foregut glandular organs not of so-called type A (paired duct with subepithelially arranged gland cells). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Simrothiellidae (part) 9. Radula distichous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10. Ventral foregut glandular organs of accumulated subepithelial pharyngeal glands (clustered type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Gymnomeniidae 10. Ventral foregut glandular organs of ducts with subepithelially arranged gland cells (type A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11. With only one type of scales . . . . . . . . . . . . . . . . . . . . . . . . . Family Lepidomeniidae 11. With three or more types of scales, one projecting radially from the cuticle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Meiomeniidae 12. Thin cuticle without epidermal papillae. With scales and solid spicules. With short harpoon-shaped bodies sclerites with pedestal restricted to certain parts of the body. Radula (if present) polyserial . . . . . . . . . . . . . . . . . . . . Family Hemimeniidae 12. Thick cuticle, in general with epidermal papillae. Sclerites as solid acicules and/or elongate groove-shaped elements, often distally lanceolate. Radula unknown /absent in known species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Neomeniidae 13. Without radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Genus Rhabdoherpia 13. With radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14. Radula tetraserial. Ventral foregut glandular organs with subepithelial gland cells surrounded by musculature (type B) . . . . . . . . . . . . . . . . . . Family Imeroherpiidae 14. Other type of radula and of ventral foregut glandular organs . . . . . . . . . . . . . . . 15 15. Biserial radula (rows of paired denticulate radula plates or bars). Ventral foregut glandular organs of accumulated subepithelially opening gland cells (clustered type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Simrothiellidae (part) 15. Radula distichous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16. Subepithelial gland cell bodies of ventral foregut glandular organs free (type A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Phyllomeniidae 16. Subepithelial gland cell bodies of ventral foregut glandular organs surrounded by musculature (type B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Heteroherpiidae 17. With hollow, hook shaped sclerites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 17. Without hollow, hook shaped sclerites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

79


Iberus, 25 (2), 2007 18. Ventral foregut glandular organs with epithelial gland cells (type C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Genus Scheltemaia 18. Ventral foregut glandular organs of ducts with subepithelially arranged gland cells (type A) or circumpharyngeal follicular glands . . . Family Pararrhopaliidae (part) 19. Without radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 19. With radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 20. Without ventral foregut glandular organs . . . . . . . Family Rhopalomeniidae (part) 20. With ventral foregut glandular organs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21. Circumpharyngeal follicular glands . . . . . . . . . . . . Family Pararrhopaliidae (part) 21. Ventral foregut glandular organs of another type . . . . . . . . . . . . . . . . . . . . . . . . . . 22 22. Foregut glandular organs of ramified ducts with terminal clusters of gland cells (type D), generally opening pre-radularly . . . . . . . . Family Amphimeniidae (part) 22. Foregut glandular organs of another type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23. Two types of foregut glandular organs: Gland cells subepithelial (type A) and gland cells epithelial (type C) . . . . . . . . . . . . . . . . . Family Rhopalomeniidae (part) 23. Foregut glandular organs of another type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24. Ventral foregut glandular organs with subepithelial gland cells surrounded by musculature (type B) . . . . . . . . . . . . . . . . . . . . . . . . . Family Strophomeniidae (part) 24. Ventral foregut glandular organs of another type . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25. Ventral foregut glandular organs of ducts with subepithelially arranged gland cells (type A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 25. Ventral foregut glandular organs with epithelial gland cells (type C) . . . . . . . . . 27 26. Mantle sclerites acicular and in several layers . . . Family Rhopalomeniidae (part) 26. Mantle bodies stout with cavity filled by a matrix, arranged in one layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Notomeniidae 27. Mantle sclerites arranged tangentially in several intercrossed layers. Without respiratory folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Rhopalomeniidae (part) 27. Mantle sclerites arranged radially in one layer. With respiratory organs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Drepanomeniidae 28. With biserial radula (series of paired plates or bars). Ventral foregut glandular organs of accumulated subepithelially opening gland cells (clustered type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Simrothiellidae (part) 28. Other type of radula and of ventral foregut glandular organs . . . . . . . . . . . . . . . 29 29. Radula pectinate (monoserial or divided with dense elongate denticles), ventral foregut glandular organs of tubes with subepithelial gland cells surrounded by musculature (type B) . . . . . . . . . . . . . . . . . . . . . . . . . Family Strophomeniidae (part) 29. Other type of radula (monoserial, distichous, polyserial/polystichous) . . . . . . . 30 30. With monoserial radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 30. Other type of radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

80


GARCĂ?A-Ă LVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres 31. Ventral foregut glandular organs of ducts with subepithelially arranged gland cells (type A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Acanthomeniidae 31. Foregut glandular organs of ramified ducts with terminal clusters of gland cells (type D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Amphimeniidae (part) 32. With polystichous/polyserial radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 32. With distichous radula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 33. Ventral foregut glandular organs of ducts with subepithelially arranged gland cells (type A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Rhipidoherpiidae 33. Ventral foregut glandular organs with epithelial gland cells (type C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Proneominiidae 34. Ventral foregut glandular organs of ducts with subepithelially arranged gland cells (type A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 34. Ventral foregut glandular organs of another type . . . . . . . . . . . . . . . . . . . . . . . . . . 36 35. Without respiratory organs . . . . . . . . . . . . . . . . . . . Family Rhopalomeniidae (part) 35. With respiratory organs . . . . . . . . . . . . . . . . . . . . . . . Family Pararrhopaliidae (part) 36. Ventral foregut glandular organs with subepithelial gland cells surrounded by musculature (type B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Syngenoherpiidae 36. Ventral foregut glandular organs with epithelial gland cells (type C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Family Epimeniidae

Class SOLENOGASTRES Gegenbaur, 1878 Solenogastres Gegenbaur, 1878, sensu Simroth, 1893. Amphineura in: H.G. Bronn’s Klassen and Ordnungen der Tierreichs, 3 (1): 131.

Bilaterally symmetrical molluscs with the mantle-epithelium covered by a chitinous cuticle and by calcareous sclerites of aragonite. Body laterally narrowed, foot restricted to a medioventral groove. Subterminal pallial cavity without ctenidia, in part with secondary respiratory formations. Mouth opening behind or fused with a papillous sensorial cavity (atrium, vestibulum). Midgut straight and spacious, without separate digestive gland, due to dorsoventral musculature generally with serial con-

strictions causing lateral pouches. Paired ventral and lateral nerve cords separated throughout, in part ganglionated. Hermaphrodites, with paired dorsal gonad generally opening by two short ducts into pericardium; pericardioducts opening into spawning ducts (internalised termino-lateral portions of pallial cavity). Without aorta and excretory organs. Marine, freely moving upon sediments or living epizoic on Cnidaria; carnivorous, mostly feeding on Cnidaria.

Superorder APLOTEGMENTARIA Salvini-Plawen, 1978 Aplotegmentaria Salvini-Plawen, 1978. Zoologica, 44 (128): 23.

Mantle sclerites as scales and/or solid acicular spicules in one layer only, no sclerites with internal

cavity; mantle cuticle relatively thin, mostly without epidermal papillae.

81


Iberus, 25 (2), 2007

Order PHOLIDOSKEPIA Salvini-Plawen, 1978 Pholidoskepia Salvini-Plawen, 1978. Zoologica, 44 (128): 23.

Mantle almost exclusively with scaly sclerites. Ventral foregut glandular organs

with subepithelially arranged gland cell bodies (clustered type or type A).

Family DONDERSIIDAE Simroth, 1893 Dondersiidae Simroth, 1893. Amphineura in: H.G. Bronn’s Klassen and Ordnungen der Tierreichs, 3 (1): 225. Synonyms: Myzomeniidae Thiele, 1894 (part).

Sclerites of two or more types of scales, occasionally with solid acicular spicules. Without epidermal papillae. Radula monoserial, with paired long

denticles. Ventral foregut glandular organs of ducts with subepithelial gland cells (type A). Without respiratory organs.

Genus Dondersia Hubrecht, 1888 Dondersia Hubrecht, 1888. Donders Feestbrendel, Amsterdam: 324. TYPE SPECIES: Dondersia festiva Hubrecht, 1888.

At least with two types of scales. Mouth separated from the atrium. Radula-plates with one pair of lateral, medially curved denticles. Midgut with

lateral constrictions. Unpaired secondary genital opening. With dorsoterminal sense organ. Without copulatory stylets and respiratory organs.

Dondersia festiva Hubrecht, 1888, in Feestbundel Donders Tijdschr. Geneesk. (Amsterdam) Holotype: Gulf of Naples (Italy); 60 m; Mus. Nat. Hist. Leiden, Netherlands. Literature: Nierstrasz and Stork, 1940, in Zoologica, 36 (99).

Dondersia annulata Nierstrasz, 1902, in Siboga-Exp. Monogr., 47 Holotype: Bima, Sumbawa, Sunda-Sea (Indonesia) (Siboga St. 47); 55 m; Zool. Mus. Univ. Amsterdam, Netherlands. Literature: Nierstrasz, 1902, in Siboga-Exp. Monogr., 47.

Dondersia californica Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: San Diego, (California, USA) (Albatross St. 4303); 38 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem.Mus.Comp.Zool. Harvard Coll., 45 (1).

Dondersia cnidevorans Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica); 659-714 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dondersia indica Stork, 1941, in Siboga-Exp. Monogr., 47b Holotype: Bima, Sumbawa, Sunda-Sea, (Indonesia); 55 m; (Type material missing). Literature: Stork,1941, in Siboga-Exp. Monogr., 47b.

82


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Dondersia laminata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Bransfield Strait, (Graham Land, Antarctica); 311-426 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dondersia stylastericola Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Shetland Islands (Antarctica); 300 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Nematomenia Simroth, 1893 Nematomenia Simroth, 1893. Zeitschrift für wissenschaftliche Zoologie, 56 (2): 324. Synonyms: Echinomenia Simroth, 1893; Myzomenia Simroth, 1893; Herpomenia Heath, 1911. TYPE SPECIES: Dondersia flavens Pruvot, 1890.

With leaf-shaped and scattered oarshaped scales. With common atriobuccal opening. Monoserial radula plates with two pairs of distally narrowed denticles, or missing in the radula sheath, or lacking and sheath forming

the outlet of the ducts of the ventral foregut glandular organs. Midgut without lateral constrictions. Secondary genital opening unpaired. With dorsoterminal sense organ. Without copulatory stylets and respiratory organs.

Nematomenia flavens (Pruvot, 1890) in Archives Zool. Exp. gén., sér. 2, 8 Dondersia flavens Pruvot, 1890 Holotype: Banyuls-sur Mer (France); 45-90 m; (Type material missing). Distribution: Banyuls (France), Costa Brava (Spain), Shetland Islands (North Sea); 45-167 m. Literature: Pruvot, 1891, in Arch. Zool. Exp. Gén., (2) 9. Salvini-Plawen, 1978, in Zoologica, 44 (128).

Nematomenia arctica Thiele, 1913, in Sitzungsber. Ges. Naturf. Freunde Berlin, 2 Holotype: Spitzbergen, (Svalbard archipelago, Arctic); Museum für Naturkunde, Berlin, Germany, Moll. 105.380 b. Literature: Thiele 1913 in Sitzungsber. Ges. Naturf. Freunde Berlin, 2.

Nematomenia banyulensis (Pruvot, 1890), in Archives Zool. Exp. gén., sér. 2, 8 Dondersia banyulensis Pruvot, 1890 Holotype: Côte Vermeille (Roussillon, France); 45-300 m; (Type material missing). Distribution: Dalmatia (Croatia) to Trondheimsfjord (Norway); 31-300 m. Literature: Nierstrasz and Stork, 1940, in Zoologica, 36 (99). Handl and Salvini-Plawen, 2001, in Sarsia, 86. Salvini-Plawen, 2003, in Iberus, 21 (2).

Nematomenia corallophila (Kowalevsky, 1881), in Izv. Imp. Obshch. Lyub. Estest. Antrop. Etnogr. Mosk. Univ., 43 (1) Neomenia corallophila Kowalevsky, 1881 Holotype: La Calle (Algeria): 73-183 m; (Type material missing). Literature: Salvini-Plawen, 1997, in Iberus, 15 (2).

Nematomenia glacialis Thiele, 1913, in Dtsch. Südpolar Exp., 14 (Zool. 6/1) Holotype: Gauss Station (Davis Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

83


Iberus, 25 (2), 2007 Nematomenia incirrata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Orkney Islands (Antarctica); 298-302 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Nematomenia platypoda (Heath, 1911), in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Herpomenia platypoda Heath, 1911 Holotype: Agattu Island (Aleutians Islands) (Albatross St. 4781); 880 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Nematomenia protecta Thiele, 1913, in Dtsch. Südpolar Exp., 14 (Zool. 6/1) Holotype: Gauss Station (Davis Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Nematomenia ptyalosa Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Sandwich Islands (Antarctica); 148-201 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Sandwich Islands to Tierra del Fuego (South America); 135-201 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Nematomenia squamosa Thiele, 1913, in Dtsch. Südpolar Exp., 14 (Zool. 6/1) Holotype: Gauss Station (Davis Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Nematomenia tegulata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Sandwich Islands (Antarctica); 148-201 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Sandwich Islands, Falkland Islands, Tierra del Fuego (South America); 135-494 m. Literature: Salvini-Plawen 1978 in Zoologica, 44 (128).

Genus Ichthyomenia Pilsbry, 1898 Ichthyomenia Pilsbry, 1898. Manual of Conchology, 17: 305. Synonyms: Ismenia Pruvot, 1891. TYPE SPECIES: Dondersia ichthyodes Pruvot, 1890.

With discoidal scales and with knifeblade shaped elements. With common atrio-buccal opening. Radula teeth each with one pair of lateral, medially curved

denticles. Midgut with lateral constrictions. Secondary genital opening unpaired. Without dorsoterminal sense organ, copulatory stylets and respiratory organs.

Ichthyomenia ichthyodes (Pruvot, 1890), in Arch. Zool.Exp.Gén., (2) 8 Dondersia ichthyodes Pruvot, 1890 Ismenia ichthyodes (Pruvot, 1891) Holotype: Roussillon (France); 80 m; (Type material missing). Literature: Pruvot, 1891, in Arch. Zool. Exp. Gén., (2) 9.

Genus Stylomenia Pruvot, 1899 Stylomenia Pruvot, 1899. Archives de Zoologie Expérimentale et Générale (3) 7: 461. TYPE SPECIES: Stylomenia salvatori Pruvot, 1899.

84


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

A

5 mm

B

3 mm

C

500 µm

D

5 mm

E

500 µm

F

1 mm

Figure 1. A: Anamenia gorgonophila (West of Galicia, NW Spain, 507-650 m deep); B: Neomenia sp. (Antarctic Peninsula, 1272 m deep); C: Biserramenia psammobionta (Ría de Ferrol, NW Spain, 12-14 m deep); D: Dorymenia menchuescribanae (South Shetland Island, Antarctica, 50-66 m deep); E: Amboherpia sp. (Abyssal Angola Basin, 5389-5395 m deep); F: Wirenia argentea (West of Galicia, NW Spain, 400 m deep). Figura 1. A: Anamenia gorgonophila (oeste de Galicia, NO de España, 507-650 m); B: Neomenia sp. (Península Antártica, 1272 m); C: Biserramenia psammobionta (Ría de Ferrol, NO de España, 12-14 m); D: Dorymenia menchuescribanae (isla Shetland del Sur, Antártida, 50-66 m); E: Amboherpia sp. (cuenca abisal de Angola, 5389-5395 m); F: Wirenia argentea (oeste de Galicia, NO de España, 400 m).

85


Iberus, 25 (2), 2007 Scales in one layer. Mouth separated from the atrium. Radula plates with one pair of lateral, medially curved denticles. Midgut with lateral constrictions.

Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Stylomenia salvatori Pruvot, 1899 in Arch. Zool.Exp.Gén., (3) 7 Holotype: Banyuls-sur-Mer (France); Litoral; (Type material missing). Literature: Pruvot, 1899, in Arch. Zool. Exp. Gén., (3) 7.

Stylomenia sulcodoryata Handl and Salvini-Plawen, 2001, in Sarsia, 86 Holotype: Herdlafjord (Bergen, Norway); 185 m; Zool. Mus. Uppsala Univ., Sweden. Distribution: Herdlafjord, Fillfjord (Norway); 185 m. Literature: Handl and Salvini-Plawen, 2001, in Sarsia, 86.

Genus Heathia Thiele, 1913 Heathia Thiele, 1913. Das Tierreich, 38: 17. TYPE SPECIES: Ichthyomenia porosa Heath, 1911.

Mantle with small scales and solid long paddle-like elements. With common atrio-buccal opening. Radula. absent. Midgut with lateral constric-

tions. Secondary genital opening unpaired. Without dorsoterminal sense organ. Without copulatory stylets and respiratory organs.

Heathia porosa (Heath, 1911), in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Ichthyomenia porosa Heath, 1911 Holotype: San Diego, (California, USA), (Albatross St. 4400), 920-990 m; Calif. Acad. Sci., San Francisco, USA. Literature: Scheltema, 1998, in Taxonomic Atlas benthic Fauna Sta Maria Bassin and West Sta Barbara Channel (Sta Barbara Mus. Nat. Hist., California).

Genus Micromenia Leloup, 1948 Micromenia Leloup, 1948. Bulletin du Musée royal d’Histoire naturelle de Belgique, 24 (19): 1. Synonyms: Rupertomenia Schwabl, 1955. TYPE SPECIES: Micromenia simplex Leloup, 1948.

Mouth separated from the atrium. Radula-plates with one pair of lateral, medially curved denticles. Midgut without lateral constrictions. Secondary

genital opening unpaired. With dorsoterminal sense organ. Without copulatory stylets and respiratory organs.

Micromenia simplex Leloup, 1948, in Bull. Mus. Roy. Hist. nat. Belgique, 24 (19) Holotype: Hope Island, (Barents Sea, Arctic); 48 m; Oceanograph. Mus. Monaco. Literature: Leloup, 1950, in Résult. Camp. Sc. Monaco, 110. Salvini-Plawen, 1972, in Zeitschr. zool. Syst. Evolut.-forsch., 10 (3).

Micromenia fodiens (Schwabl, 1955), in Österr. Zool. Zeitschr., 6 Rupertomenia fodiens Schwabl, 1955.

86


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Holotype: Gullmarfjord, (Sweden); 40 m; Naturhist. Mus. Wien, Austria. Distribution: Skagerrak to Trondheims-Fjord (Scandinavia). Literature: Salvini-Plawen, 1988, in Ann. Naturhist. Mus. Wien, 90 B; 2003 in Iberus, 21 (2).

Micromenia subrubra Salvini-Plawen, 2003, in Iberus, 21 Holotype: Malta (Mediterranean Sea); 140 m; Naturhist. Mus. Wien, Austria. Literature: Salvini-Plawen, 2003, in Iberus, 21 (2).

Genus Lyratoherpia Salvini-Plawen, 1978 Lyratoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 34. TYPE SPECIES: Lyratoherpia carinata Salvini-Plawen, 1978.

With at least two types of scales. Mouth separated from the atrium. Radula-plates with four denticles, the two inner ones medially curved. Midgut

with lateral constrictions. Secondary genital opening unpaired. With dorsoterminal sense organ. Without copulatory stylets and respiratory organs.

Lyratoherpia carinata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica); 344-351 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: Ross Sea (Antarctica); 344-714 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Lyratoherpia bracteata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Sandwich Islands (Antarctica); 148-201; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Lyratoherpia (?) incali Scheltema, 1999, in Ophelia, 51 Holotype: West European Basin; 2091 m; Mus. Nat. Hist. Nat. Paris, France. Literature: Scheltema, 1999, in Ophelia, 51.

Genus Helluoherpia Handl and Büchinger, 1996 Helluoherpia Handl and Büchinger, 1996. Annalen des naturhistorischen Museums in Wien, 98B: 66 TYPE SPECIES: Helluoherpia aegiri Handl and Büchinger, 1996

With scales and solid acicular spicules, no epidermal papillae. With common atrio-buccal opening. Radulaplates with three denticles. Secondary

genital opening unpaired. Without dorsoterminal sense organ.Without copulatory stylets and respiratory folds.

Helluoherpia aegiri Handl and Büchinger, 1996, in Ann. Naturhist. Mus. Wien, 98 B Holotype: Herdlafjord (Bergen, Norway); 185-250 m; Naturhist. Mus. Wien, Austria. Literature: Handl and Büchinger, 1996 in Ann. Naturhist. Mus. Wien, 98 B.

Genus Squamatoherpia Büchinger and Handl, 1996 Squamatoherpia Büchinger and Handl, 1996. Annalen des naturhistorischen Museums in Wien, 98B: 58.

87


Iberus, 25 (2), 2007 TYPE SPECIES: Squamatoherpia tricuspidata Büchinger and Handl, 1996.

With one type of scales, without epidermal papillae. Mouth separated from the atrium. Radula-plates with three denticles.

With dorsoterminal sense organ. Secondary genital opening unpaired. Without copulatory stylets and respiratory folds.

Squamatoherpia tricuspidata Büchinger and Handl, 1996, in Ann. Naturhist. Mus. Wien, 98 B Holotype: Bergen (Norway); 250 m; Naturhist. Mus. Wien, Austria. Literature: Büchinger and Handl, 1996, in Ann. Naturhist. Mus. Wien, 98 B.

Family SANDALOMENIIDAE Salvini-Plawen, 1978 Sandalomeniidae Salvini-Plawen, 1978. Zoologica, 44 (128): 48.

Thin cuticle, sclerites as scales in one layer. With (probably biserial) radula plates. Ventral foregut glandular organs with subepithelially

arranged gland cells (with or without ? surrounding musculature) opening into a pair of outleading ducts (type A or B).

Genus Sandalomenia Thiele, 1913 Sandalomenia Thiele, 1913. Deutsche Südpolar-Expedition 1901-1903, 14, Zoologie, 6 (1): 41. TYPE SPECIES: Sandalomenia papilligera Thiele, 1913.

Mantle with small scales, no epidermal papillae. Mouth separated from the atrium. Radula-plates simply serrate. Ventral forgut glandular organs open into a subradular sack. Secondary

genital opening unpaired. Without copulatory stylets. Recptacula seminis in bundles. Without dorsoterminal sense organ. Presence of respiratory organs uncertain.

Sandalomenia carinata Thiele, 1913, in Dtsch. Südpolar-Exp., 14 (Zool. 6/1) Holotype: Gauss Station (Davis Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Sandalomenia papilligera Thiele, 1913, in Dtsch. Südpolar-Exp., 14 (Zool. 6/1) Holotype: Gauss Station (Davis Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Family LEPIDOMENIIDAE Pruvot, 1902 Lepidomeniidae Pruvot, 1902. Archives de zoologie expérimentale et générale 3ème serie. Notes et Revue, 2: 22.

Thin cuticle, sclerites as scales in one layer. Radula distichous. Ventral foregut glandular organs with subepi-

88

thelially arranged gland cells opening into a pair of outleading ducts (type A?).


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

A

1 mm

B

C

1 mm

D

1 mm

F

1 mm

E

1 mm

1 mm

Figure 2. A: Dorymenia troncosoi (South Shetland Island, Antarctica, 65-240 m deep); B: Hemimenia sp. (West of Galicia, NW Spain, 1000 m deep); C: Urgorria compostelana (West of Galicia, NW Spain, 760-769 m deep); D: Unciherpia hirsuta (West of Galicia, NW Spain, 760-769 m deep); E: Spiomenia sp. (Abyssal Angola Basin, 5415 m deep); F: Rhopalomenia aglaopheniae (Peñas Cape, N Spain, 122-124 m deep). Figura 2. A: Dorymenia troncosoi (isla Shetland del Sur, Antártida, 65-240 m); B: Hemimenia sp. (oeste de Galicia, NO de España, 1000 m); C: Urgorria compostelana (oeste de Galicia, NO de España, 760-769 m); D: Unciherpia hirsuta (oeste de Galicia, NO Spain, 760-769 m); E: Spiomenia sp. (cuenca abisal de Angola, 5415 m); F: Rhopalomenia aglaopheniae (Cabo Peñas, N de España, 122-124 m).

89


Iberus, 25 (2), 2007

Genus Lepidomenia Kowalevsky, 1883 Lepidomenia Kowalevsky, 1883. Zoologischer Jahesbericht (1882), 3: 29. TYPE SPECIES: Lepidomenia hystrix Marion and Kovalevsky, 1886.

Mantle without epidermal papillae. With common atrio-buccal opening. Midgut without constrictions. Secondary

genital opening unpaired. Without copulatory stylets. Without dorsoterminal sense organ. Without respiratory folds.

Lepidomenia hystrix Marion and Kowalevsky, 1886, in C.R. Sci. Acad. Paris, 103 (2); non Swedmark, 1956, in Arch. Zool. Exp. gén. 93 Holotype: Marseille (France); 30 m; (Type material missing). Literature: Kowalevsky and Marion, 1887, in Ann. Mus. Hist. Nat. Marseille, Zool., III (1). SalviniPlawen, 1985, in Stygologia, 1.

Lepidomenia harpagata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Georgia; (Antarctica); 252-310 m; Univ. Zool. Mus. Uppsala, Sweden. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Lepidomenia (?) swedmarki Salvini-Plawen, 1985, in Stygologia, 1 Lepidomenia hystrix Kow. and Mar. in Swedmark, 1956, Holotype: Marseille (France); Interstitial; (Type material missing). Literature: Salvini-Plawen, 1985b, in Stygologia, 1. García-Álvarez, Urgorri and Cristobo, 2000, in Argonauta, XIV (2).

Genus Nierstraszia Heath, 1918 Nierstraszia Heath, 1918. Memoirs of the Museum of Comparative Zoology at Harvard College, 45 (2): 193. TYPE SPECIES: Nierstraszia fragile Heath, 1918.

Mantle without epidermal papillae. With common atrio-buccal opening. Midgut with constrictions. Secondary genital opening unpaired. With copula-

tory stylets. With several receptacula seminis. With dorsoterminal sense organ. Mantle cavity with glandular folds.

Nierstraszia fragile Heath, 1918, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (2) Holotype: New Jersey (USA); 865 m; (Type material missing). Literature: Heath, 1918, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (2).

Genus Tegulaherpia Salvini-Plawen, 1983 Tegulaherpia Salvini-Plawen, 1983. Mollusca, in: Riedl, R. 2d. Fauna and Flora des Mittelmeeres. P. Parey. Hamburg and Berlin: 253. TYPE SPECIES: Tegulaherpia stimulosa Salvini-Plawen, 1983.

Mantle epidermal separated without

90

with oval scales, without papillae Mouth opening from the atrium. Midgut constrictions. Secondary

genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.


GARCĂ?A-Ă LVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Tegulaherpia stimulosa Salvini-Plawen, 1983, in Mollusca: Fauna and Flora des Mittelmeeres (R.Riedl, Ed.; Parey-Verlag) Holotype: Dalmatia (Croatia); 75-80 m; Naturhist. Mus. Wien, Austria. Literature: Salvini-Plawen, 1988, in Ann. Naturhistor. Mus. Wien, 90 B.

Tegulaherpia myodoryata Salvini-Plawen, 1988, in Ann. Naturhistor. Mus. Wien, 90 B Tegulaherpia celtica Caudwell, Jones and Killeen, 1995 Holotype: Banyuls-sur-Mer (France); 75-80 m; Naturhistor. Mus. Wien, Austria. Distribution: Livorno (Italy) to Trondheim (Norway); 75-470 m. Literature: Salvini-Plawen, 1997, in Iberus, 15 (2); 2003, in Iberus, 21 (2). Handl and SalviniPlawen, 2001, in Sarsia, 86.

Tegulaherpia tasmanica Salvini-Plawen, 1988, in Ann. Naturhistor. Mus. Wien, 90 B Holotype: Bass Strait (Tasmania); 50-55 m; Tasmania Mus., Hobart, Australia. Distribution: Bass Strait; 50-120 m. Literature: Scheltema, 1999, in Rec. Australian Mus., 51.

Family GYMNOMENIIDAE Odhner, 1921 Gymnomeniidae Odhner, 1921. Bergens Museums Aarbok 1918-19, Naturvidenskabelig raekke, 3: 9. Synonyms: Wireniidae Salvini-Plawen, 1978.

Thin cuticle, sclerites as scales in one layer. Radula distichous. Ventral foregut glandular organs with subepithelially

arranged, pairwise accumulated gland cells (clustered type). Ventral ganglia with a commissural sac.

Genus Gymnomenia Odhner, 1921 Gymnomenia Odhner, 1921. Bergens Museums Aarbok 1918-19, Naturvidenskabelig raekke, 3: 48. TYPE SPECIES: Gymnomenia pellucida Odhner, 1921.

Mantle without epidermal papillae. Mouth opening separated from the atrium. Midgut with constrictions. Secondary genital opening unpaired.

With copulatory stylets. Without receptacula seminis. With dorsoterminal sense organ. Without respiratory organs.

Gymnomenia pellucida Odhner, 1921, in Bergens Mus. Aarbok, 1918/19 3 Holotype: Sunde, Hardangerfjord (Norway), 150 m; Syntypes in Svenska Mus.Nat.Hist., Stockholm, Sweden and Zoologisk Museum Oslo, Norway. Literature: Handl and Salvini-Plawen, 2001, in Sarsia, 86.

Gymnomenia (?) minuta Scheltema, 1998, in Taxonomic Atlas benthic Fauna Sta Maria Bassin and West Sta Barbara Channel (Sta Barbara Mus. Nat. Hist., California) Holotype: Sta Maria Bassin (California, USA), 409-410 m; Nat. Mus. Nat. Hist., Washington DC, USA. Literature: Scheltema, 1998, in Taxonomic Atlas benthic Fauna Sta Maria Bassin and West Sta Barbara Channel (Sta Barbara Mus. Nat. Hist., California).

Gymnomenia virgulata Scheltema, 1999, in Ophelia, 51 Holotype: Walvis Bay (Namibia); 619-622 m; Nat. Mus. Nat. Hist., Washington DC, USA. Literature: Scheltema, 1999, in Ophelia, 51.

91


Iberus, 25 (2), 2007

Genus Wirenia Odhner, 1921 Wirenia Odhner, 1921. Bergens Museums Aarbok 1918-19, Naturvidenskabelig raekke, 3: 31. Synonyms: Aesthoherpia Salvini-Plawen, 1985. TYPE SPECIES: Wirenia argentea Odhner, 1921.

Mantle with elongate scales, without epidermal papillae. With common atriobuccal opening. Slight constrictions of midgut. Secondary genital opening

paired or single. With copulatory stylets. With receptacula seminis. With dorsoterminal sense organ. With respiratory organs.

Wirenia argentea Odhner, 1921, in Bergens Mus. Aarbok, 1918/19 3 Aesthoherpia glandulosa Salvini-Plawen, 1985 Holotype: Sunde, Hardangerfjord (Norway); 150 m; Svenska Mus.Nat.Hist., Stockholm, Sweden Distribution: W-SW Norway, Galicia (NW Spain), Adriatic Sea, Aegean Sea; 95-700 m. Literature: Salvini-Plawen, 1988, in Ann. Naturhistor. Mus. Wien, 90 B. Handl and Salvini-Plawen, 2001, in Sarsia, 86. Todt and Salvini-Plawen, 2004, in Zoomorphology, 123, 2004 in J. Moll. Stud., 70.

Wirenia gonoconota (Salvini-Plawen, 1988), in Ann. Naturhistor. Mus. Wien, 90 B Aesthoherpia gonoconota Salvini-Plawen, 1988 Holotype: Norway (65° 43’ N, 05° 14’ W); 793 m; Naturhist. Mus. Wien, Austria. Literature: Salvini-Plawen, 1988, in Ann. Naturhistor. Mus. Wien, 90 B.

Genus Genitoconia Salvini-Plawen, 1967 Genitoconia Salvini-Plawen, 1967. Sarsia, 27: 3. TYPE SPECIES: Genitoconia rosea Salvini-Plawen, 1967.

Mantle without epidermal papillae. With common atrio-buccal opening. Midgut without constrictions. Secondary genital opening

single. With copulatory stylets. With receptacula seminis. Without dorsoterminal sense organ. With respiratory organs.

Genitoconia rosea Salvini-Plawen, 1967, in Sarsia, 27 Holotype: Korsfjord (Bergen, Norway), 690 m; Zoologisk Museum Bergen, Norway. Distribution: Korsfjord, Björnafjord (Bergen, Norway); 350-700 m. Literature: Salvini-Plawen, 1967, in Sarsia, 27. Todt and Salvini-Plawen, 2004a, in Zoomorphology, 123.

Genitoconia atriolonga Salvini-Plawen, 1967, in Sarsia, 27 Holotype: Korsfjord (Bergen, Norway), 690 m; Zoologisk Museum, Bergen, Norway. Distribution: Korsfjord, Björnafjord (Bergen/Norway); 350-700 m. Literature: Salvini-Plawen, 1967, in Sarsia, 27.

Genitoconia (?) mariensis Scheltema, 1998, in Taxonomic Atlas benthic Fauna Sta Maria Bassin and West Sta Barbara Channel (Sta Barbara Mus. Nat. Hist., California) Holotype: Sta Maria Bassin (California, USA), 145-154 m; Nat. Mus. Nat. Hist., Washington DC, USA. Literature: Scheltema, 1998, in Taxonomic Atlas benthic Fauna Sta Maria Bassin and West Sta Barbara Channel (Sta Barbara Mus. Nat. Hist., California).

92


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

A

1 mm

B

2 mm

C

200 µm

D

5 mm

E

2 mm

F

200 µm

Figure 3. A: Sputoherpia galliciensis (West of Galicia, NW Spain, 752 m deep); B: Rhopalomenia rhynchopharyngeata (South Shetland Island, Antarctica, 235 m deep); C: Luitfriedia minuta (West of Galicia, NW Spain, 507-769 m deep); D: Proneomenia sp. (Bellingshausen Sea, Antarctica, 603 m deep); E: Dorymenia hesperidesi (South Shetland Island, Antarctica, 235 m deep); F: Meioherpia sp. (Ría de Ferrol, NW Spain, 11-12 m deep). Figura 3. A: Sputoherpia galliciensis (oeste de Galicia, NO de España, 752 m); B: Rhopalomenia rhynchopharyngeata (isla Shetland del Sur, Antártida, 235 m); C: Luitfriedia minuta (oeste de Galicia, NO de España, 507-769 m); D: Proneomenia sp. (Mar de Bellingshausen, Antártida, 603 m); E: Dorymenia hesperidesi (isla Shetland del Sur, Antártida, 235 m); F: Meioherpia sp. (Ría de Ferrol, NO de España, 11-12 m).

93


Iberus, 25 (2), 2007

Family MACELLOMENIIDAE Salvini-Plawen, 1978 Macellomeniidae Salvini-Plawen, 1978. Zoologica, 44 (128): 24.

Thin cuticle, sclerites as nail-shaped bodies (basal plate with pointed acicle) in one layer. Radula monoserial. Ventral

foregut glandular organs of ducts with subepithelially arranged gland cells (type A).

Genus Macellomenia Simroth, 1893 Macellomenia Simroth, 1893. Zeitschrift für wissenschaftliche Zoologie, 56 (2): 323. Synonyms: Paramenia Pruvot, 1890 (no Bruer and Bergenstam, 1889). TYPE SPECIES: Paramenia palifera Pruvot, 1890.

Mantle without epidermal papillae. With common atrio-buccal opening, or mouth opening and atrium separate. Midgut without constrictions. Sec-

ondary genital opening single. Without copulatory stylets. With receptacula seminis. With dorsoterminal sense organ. With respiratory organs.

Macellomenia palifera (Pruvot, 1890), in Arch. Zool. Exp. gén., sér. 2, 8 Paramenia palifera Pruvot, 1890 Holotype: Port Vendres (France); 80 m; (Type material missing). Literature: Pruvot, 1891, in Arch. Zool. Exp. gén., sér. 2, 9. Salvini-Plawen, 2003, in Iberus, 21 (2).

Macellomenia aciculata Scheltema, 1999, in Ophelia, 51 Holotype: West European Bassin (50oN, 12oW); 2498 m; Mus. Nat. Hist. Nat., Paris, France. Literature: Scheltema, 1999, in Ophelia, 51.

Macellomenia adenota Salvini-Plawen, 2003, in Iberus, 21 (2) Holotype: Strait of Gibraltar, off Ceuta; 25-40 m; Mus. Nat. Hist. Nat. (Malacologie), Paris, France. Literature: Salvini-Plawen, 2003, in Iberus, 21 (2).

Family MEIOMENIIDAE Salvini-Plawen, 1985 Meiomeniidae Salvini-Plawen, 1985. Stygologia, 1 (1): 104.

Thin cuticle, sclerites as three or more types of scales in one layer. Radula distichous. Ventral foregut glandular

organs with subepithelially arranged, pairedly accumulated gland cells (clustered type).

Genus Meiomenia Morse, 1979 Meiomenia Morse, 1979. Zoologica Scripta, 8: 249. TYPE SPECIES: Meiomenia swedmarki Morse, 1979.

Mantle without epidermal papillae. With common atrio-buccal opening. Midgut without constrictions. With

94

copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Meiomenia swedmarki Morse, 1979, in Zool. Scripta, 8 Holotype: Isle of St John (Washington State, USA); 59 m; U.S.Nat.Mus. Washington DC, USA. Literature: Morse, 1979, in Zool. Scripta, 8. Morse, 1994, in Reproduction and Development of Marine Invertebrates (J. Hopkins Univ. Press): 195-205. García-Álvarez et al., 2000, in Argonauta, XIV (2).

Meiomenia arenicola Salvini-Plawen and Sterrer, 1985, in Stygologia, 1 Holotype: North Carolina (USA); 40-41 m; Bermuda Biol. Station, Bermuda. Distribution: North Carolina to Florida (USA); 11-41 m.. Literature: Salvini-Plawen, 1985b, in Stygologia, 1. Morse and Norenburg, 1992, in Proc. Biol. Soc. Washington, 105. Morse, 1994, in Reproduction and Development of Marine Invertebrates (J. Hopkins Univ. Press): 195-205. García-Álvarez et al., 2000, in Argonauta, XIV (2).

Genus Meioherpia Salvini-Plawen, 1985 Meioherpia Salvini-Plawen, 1985. Stygologia, 1 (1): 105. TYPE SPECIES: Meioherpia atlantica Salvini-Plawen, Rieger and Sterrer, 1985.

Mantle without epidermal papillae. Mouth opening separate from the atrium. Midgut without constrictions.

Without copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Meioherpia atlantica Salvini-Plawen, Rieger and Sterrer, 1985, in Stygologia, 1 Holotype: North Rock (Bermuda); 8 m; Naturhist. Mus. Wien, Austria. Distribution: Bermuda, Beaufort (North Carolina, USA); 8-30 m. Literature: Salvini-Plawen, 1985, in Stygologia, 1. García-Álvarez et al., 2000, in Argonauta, XIV (2). Todt, 2006, in Zoomorphology, 125.

Meioherpia stygalis Salvini-Plawen and Sterrer, 1985, in Stygologia, 1 Holotype: Castle Road, (Bermuda), below the tide-line, Naturhist. Mus. Wien, Austria. Literature: Salvini-Plawen, 1985, in Stygologia, 1. García-Álvarez et al., 2000, in Argonauta, XIV (2).

INCERTA SEDIS 1 Genus Pholidoherpia Salvini-Plawen, 1978 Pholidoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 51. TYPE SPECIES: Lepidomenia cataphracta Thiele, 1913.

Thin cuticle; sclerites as scales and solid slender elements in one layer; without epidermal papillae. With common atrio-buccal opening. Radula of monoserial (?) plates. Ventral foregut glandular organs with subepithelially

arranged gland cells opening into and a pair of ampullae (type A). Midgut without constrictions. Secondary genital opening unpaired. Without dorsoterminal sense organ. Presence of Copulatory stylets and respiratory organs unknown.

Pholidoherpia cataphracta (Thiele, 1913), in Dtsch. Südpolar-Exp., 14 (Zool. 6/1) Lepidomenia cataphracta Thiele, 1913 Holotype: Gauss Station (Davis Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

95


Iberus, 25 (2), 2007 Pholidoherpia ctenodonta Handl and Salvini-Plawen, 2001, in Sarsia, 86 Holotype: Fillfjord (Norway); depth unknown; Zool. Mus. Uppsala Univ., Sweden. Literature: Handl and Salvini-Plawen, 2001, in Sarsia, 86.

Pholidoherpia lepidota Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Off Staten Island, Tierra de Fuego (South America); 135-137 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Order NEOMENIAMORPHA Salvini-Plawen, 1978 Neomeniamorpha Salvini-Plawen, 1978. Zoologica, 44 (128): 24 [non Neomeniomorpha Pelseneer, 1906].

Members of stout body-shape which lack ventral foregut glandular organs. Sclerites arranged in one layer, exhibiting various solid elements (scales, acicular spicules, groove-like elements with or without lanceolate distal end, short

harpoon-shaped bodies). Cuticle moderate or thick, without or with intruding epidermal papillae. With a complicated copulatory apparatus including two pairs of copulatory stylets and associated glands. With respiratory organs.

Family HEMIMENIIDAE Salvini-Plawen, 1978 Hemimeniidae Salvini-Plawen, 1978. Zoologica, 44 (128): 53.

Cuticle thin, in general without epidermal papillae. Sclerites of various elements, among them short harpoon-

shaped bodies with pedestal limited to certain longitudinal areas of the body. Radula polyserial or missing.

Genus Hemimenia Nierstrasz, 1902 Hemimenia Nierstrasz, 1902. The Solenogastres of the Siboga Expedition. Monographie, 47: 25. TYPE SPECIES: Hemimenia intermedia Nierstrasz, 1902.

Sclerites mainly of scales and solid spicules; short harpoon-shaped bodies present. With common atrio-buccal opening.

Radula missing. Secondary genital openings separate or fused. With dorsoterminal sense organ. With respiratory organs.

Hemimenia intermedia Nierstrasz, 1902, in Siboga-Exp. Monogr., 47 Holotype: Celebes Islands, Indonesia, (Siboga St. 114); 75 m; Zool. Mus. Univ. Amsterdam, Netherlands. Literature: Nierstrasz, 1902, in Siboga-Exp. Monogr., 42.

Hemimenia dorsosulcata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Pacific; 549 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Hemimenia atlantica Salvini-Plawen, 2006, in Iberus, 24 (2) Holotype: Azores Islands (Atlantic); 1200-1240 m; Mus. Nat. Hist. Nat., Paris, France.

96


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Distribution: Azores to Banco A Quiniela off Galicia (NW Spain); 752-1240 m. Literature: Salvini-Plawen, 2006, in Iberus, 24 (2).

Hemimenia cyclomyata Salvini-Plawen 2006, in Iberus, 24 (2) Holotype: Banco de Galicia (NW Spain); 760-769 m; Mus. Nacional Cienc. Nat., Madrid, Spain. Literature: Salvini-Plawen, 2006, in Iberus, 24 (2).

Hemimenia glandulosa Salvini-Plawen, 2006, in Iberus, 24 (2) Holotype: Banco de Galicia (NW Spain); 760-769 m; Mus. Nacional Cienc. Nat., Madrid, Spain. Literature: Salvini-Plawen, 2006, in Iberus, 24 (2).

Genus Archaeomenia Thiele, 1906 Archaeomenia Thiele, 1906. Wissenschaftliche Ergebnisse der Deutschen Tiefsee Expedition auf dem Dampfer Valdivia, 1898-1899, 9 (2): 3. TYPE SPECIES: Archaeomenia prisca Thiele, 1906.

Sclerites mainly as groove-like elements (without lanceolate distal end) and solid needles; short harpoonshaped bodies present. With common

atrio-buccal opening. With polyserial radula. Secondary genital opening paired. With dorsoterminal sense organ. With respiratory organs.

Archaeomenia prisca Thiele, 1906, in Wiss. Ergebnisse Dtsch. Tiefsee-Exp. Valdivia 1898/1899, 9 Holotype: Agulhas Bay, (Soutj Africa); 564 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen and Paar-Gausch, 2004, in New Zealand Journ. Mar. Freshwater Res., 38.

Archaeomenia nova Scheltema, 1999, in Ophelia, 51 Holotype: West Scotland (North Atlantic); 609 m; Mus. Nat. Hist. Nat., Paris, France. Literature: Scheltema, 1999, in Ophelia, 51.

Family NEOMENIIDAE Ihering, 1876 Neomeniidae Ihering, 1876. Jahrbücher der Deutschen malakozoologischen Gesellschabt, 3: 137. Synonyms: Solenopodidae Koren and Danialssen, 1877.

Cuticle thick, epidermal papillae generally present. Sclerites as various solid,

elongate elements; short harpoon-shaped bodies missing. Type of radula unknown.

Genus Neomenia Tullberg, 1875 Neomenia Tullberg, 1875. Bihang Till K. Svenska Vetensk. Akad. Handlingar, 3 (13): 3. Synonyms: Solenopus Sars, 1868; Heathimenia Salvini-Plawen, 1967. TYPE SPECIES: Neomenia carinata Tullberg, 1875.

Sclerites as solid acicular spicules, and/or groove-like elements with or without lanceolate distal end, and/or slender scales. With common atrio-

buccal opening. Radula missing. Secondary genital openings separate or fused. With dorsoterminal sense organ. With respiratory organs.

97


Iberus, 25 (2), 2007 Neomenia carinata Tullberg, 1875, in Bih. Svenska Akad., 3 (13) Solenopus nitidulus M. Sars, 1869 Solenopus affinis Koren and Danielssen, 1877 Neomenia grandis Thiele, 1894 Holotype: Bohuslän (Sweden); ca. 90 m; (Type material missing). Distribution: North Sea (Norway to Scotland), Iceland, British Isles, off Roscoff (France), WMediterranean Sea to the S-Adriatic Sea; 10-565 m. Literature: Wirén, 1892, in Kungl. Svenska Vetensk. Akad. Handl., 25 (6). Salvini-Plawen, 1997, in Iberus, 15 (2).

Neomenia crenulata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: near Kerguelen Islands (South Indian Ocean); 585 m; Stat. marine d`Endoume, Marseille, France. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Neomenia dalyelli (Kor. and Dan., 1877), in Arch. Math. Naturvid. (Kristiania/Oslo), 2 Solenopus dalyelli Koren and Danielssen, 1877 ?Vermiculus crassus Dalyell, 1853 Holotype: Sondfjord (Norway); 183 m; Zoologisk Museum Bergen, Norway. Distribution: Scandinavia Coast, North Sea, Scotland, Iceland; 30-580 m. Literature: Wirén, 1892, in Kungl. Svenska Vetensk. Akad. Handl., 25 (6). Salvini-Plawen and PaarGausch, 2004, in New Zealand Jounr. mar. Freshwater Res., 38.

Neomenia herwigi Kaiser, 1976, in Mitt. Hamburg. Zool. Mus. Inst., 73 Holotype: Argentina; 350 m; Zool. Mus. Inst. Univ Hamburg, Germany. Literature: Kaiser, 1979, in Mitt. Hamburg. Zool. Mus. Inst., 73.

Neomenia labrosa Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Elefant Island (South Shetland Islands, Antarctica); 220-240 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Neomenia laminata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Orkney Islands (Antarctica); 298-302 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Neomenia megatrapezata Salvini-Plawen and Paar-Gausch, 2004, in New Zealand Jounr. mar. Freshwater Res., 38 Holotype: South Shetland Islands (Antarctica), 640-670 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen and Paar-Gausch, 2004, in New Zealand Jounr. mar. Freshwater Res., 38.

Neomenia microsolen Wirén, 1892, in Kungl. Svenska Vetensk. Akad. Handl., 25 (6) Holotype: Sta Lucia (W India); 290 m; (Type material missing). Literature: Wirén, 1892, in Kungl. Svenska Vetensk. Akad. Handl., 25 (6).

Neomenia monolabrosa Salvini-Plawen, 2006, in Iberus, 24 (2) Holotype: Livingston Island (South Shetlan Islands, Antarctica); 80 m; Dept. Biol Ani. University of Santiago de Compostela, Spain. Literature: García-Álvarez and Urgorri, 2003, in Iberus, 21 (1). Salvini-Plawen, in 2006, Iberus, 24 (2).

Neomenia naevata Salvini-Plawen and Paar-Gausch, 2004, in New Zealand Jounr. mar. Freshwater Res., 38 Holotype: New Zealand; 380-384 m; Portobello Marine Lab (Univ. Otago), New Zealand.

98


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Literature: Salvini-Plawen and Paar-Gausch, 2004, in New Zealand Jounr. mar. Freshwater Res., 38.

Neomenia oscari Salvini-Plawen, 2006, in Iberus, 24 (2) Holotype: Banco de Galicia (NW Spain); 760-769 m; Mus. Nacional Cienc. Nat., Madrid, Spain. Literature: Salvini-Plawen, 2006, in Iberus, 24 (2).

Neomenia permagna Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Pacific (ca. 55ºS 130ºW); 549 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Neomenia proprietecta Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica): 344-351 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Neomenia simplex Salvini-Plawen, 2006, in Iberus, 24 (2) Holotype: Banco de Galicia (NW Spain); 760-769 m; Mus. Nacional Cienc. Nat., Madrid, Spain. Literature: Salvini-Plawen, 2006, in Iberus, 24 (2).

Neomenia trapeziformis Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Antipodes Islands (New Zealand); 2010-2110 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Neomenia trivialis Salvini-Plawen and Paar-Gausch, 2004, in New Zealand Jounr. mar. Freshwater Res., 38 Holotype: South Shetland Islands (Antarctica), 640-670 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen and Paar-Gausch, 2004, in New Zealand Jounr. mar. Freshwater Res., 38.

Neomenia verilli Heath, 1918, in Mem. Mus. comp. Zool. Harvard Coll., 45 (2) Heathimenia verrilli (Heath, 1918) Holotype: Gulf of Saint Lawrence (Canada); 570-575 m; (Type material missing). Literature: Heath, 1918, in Mem.Mus.Comp.Zool. Harvard Coll., 45 (2).

Neomenia yamamotoi Baba, 1975, in Publ. Seto mar. Biol. Lab., 22 (5) Holotype: Muroran (Hokkaido, Japan); 160-200 m; Mus. Osaka, Japan. Literature: Baba, 1975, in Publ. Seto mar. Biol. Lab., 22 (5). Ivanov, 1996, in Ruthenica, 6.

Supraorder PACHYTEGMENTARIA Salvini-Plawen, 1978 Pachytegmentaria Salvini-Plawen, 1978. Zoologica, 44 (128): 24.

The supraorder is characterised by the formation of a generally thick cuticle mostly also enclosing pedunculated epidermal papillae and with one to several layers of mostly acicular sclerites; in case

of thin cuticle, this is combined either with the dominant presence of acicular spicules or with a biserial radula and latero-ventral foregut glandular organs not of so-called type A (as well as with solid sclerites).

Order STERROFUSTIA Salvini-Plawen, 1978 Sterrofustia Salvini-Plawen, 1978. Zoologica, 44 (128): 24.

99


Iberus, 25 (2), 2007 Cuticle generally thick; sclerites acicular partly combined with paddleshaped or with hook-shaped elements, all solid without internal cavity. Radula

distichous or tetraserial. Ventral foregut glandular organs with subepithelially arranged gland cell bodies (type A or type B).

Family PHYLLOMENIIDAE Salvini-Plawen, 1978 Phyllomeniidae Salvini-Plawen, 1978. Zoologica, 44 (128): 83.

Radula distichous. Subepithelially arranged gland cell bodies of ventral

foregut glandular organs without peripheral outer musculature (type A).

Genus Phyllomenia Thiele, 1913 Phyllomenia Thiele, 1913. Deutsche S端dpolar-Expedition 1901-1903. 14 Zoologie, 6 (1): 45. TYPE SPECIES: Phyllomenia austrina Thiele, 1913.

With epidermal papillae; solid sclerites acicular and paddle- to oar-shaped in various layers. Mouth separated from the atrium. Midgut with constrictions.

Gonads with true gonoducts. Secondary genital opening paired. With copulatory stylets. Without dorsoterminal sense organ. Without respiratory folds.

Phyllomenia austrina Thiele, 1913 in Dtsch. S端dpolar-Exp., 14 (Zool. 6/1) Holotype: Gauss Station (Davis Sea, Antarctica); 385 m; Museum f端r Naturkunde, Berlin, Germany. Distribution: South Sandwich Islands (Antarctica), Bransfield Strait (Antarctica), Ross Sea (Antarctica), Davis Sea (Antarctica); 148-465 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Phyllomenia cornuadentata Salvini-Plawen, 1978, in Zoologica, 44 (128) Phyllomenia austrina Thiele in Salvini-Plawen, 1970, Zeitschr. zool. Syst. Evolut.-forsch, 8. Holotype: Staten Island (Tierra del Fuego, South America); 384-494 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: Staten Island (Tierra del Fuego, South America); 384-903 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Harpagoherpia Salvini-Plawen, 1978 Harpagoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 95. TYPE SPECIES: Harpagoherpia tenuisoleata Salvini-Plawen, 1978.

Cuticle moderately thick, solid acicular sclerites in various layers. Mouth separated from the atrium. Midgut without constrictions. Secondary genital

opening unpaired. Without copulatory stylets. Presence of dorsoterminal sense organ unknown. Without respiratory organs.

Harpagoherpia tenuisoleata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Adelaide Archipelago (South Chile); 92-101 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

100


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Genus Lituiherpia Salvini-Plawen, 1978 Lituiherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 97. TYPE SPECIES: Lituiherpia spermathecata Salvini-Plawen, 1978.

Sclerites acicular combined with hook-shaped and scaly elements, arranged in several layers. With common atrio-buccal opening. Midgut

with constrictions. Without dorsoterminal sense organ. Genital opening unpaired. Without copulatory stylets. Without respiratory organs.

Lituiherpia spermathecata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Sandwich Islands (Antarctica); 118 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Sandwich Islands (Antarctica) to Falkland Islands; 40-137 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Ocheyoherpia Salvini-Plawen, 1978 Ocheyoherpia Salvini-Plawen, 1978. Zoológica, 44 (128): 101. TYPE SPECIES: Ocheyoherpia lituifera Salvini-Plawen, 1978.

Cuticle moderately thick, without epidermal papillae; sclerites acicular and hook-shaped in one layer. Mouth opening (in part well separated from atrium but) within common atrio-buccal

opening. Midgut with constrictions. Secondary genital opening unpaired. With copulatory stylets with gland. Without respiratory organs. Without dorsoterminal sense organ.

Ocheyoherpia lituifera Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Sandwich Islands (Antarctica); 148-201 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Georgia (South Sandwich Islands, Antarctica), Elefant and Joinville Islands (South Shetland Islands, Antarctica); 97-220 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Ocheyoherpia bursata García-Àlvarez and Urgorri, 2003, in Iberus, 21 (2) Holotype: Deception Island (South Shetland Islands, Antarctica); 248 m; Mus. Nacional Cienc. Nat., Madrid, Spain. Literature: García-Àlvarez and Urgorri, 2003, in Iberus, 21 (2).

Ocheyoherpia kerguelensis Salvini-Plawen, 2005, in Mitt. Mus. Naturkunde Berlin, Germany, Zool., 81 (1) Holotype: Kerguelen Islands (South Indian); unknown depth; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 2005, in Mitt. Mus. Naturkunde Berlin, Germany, Zool., 81 (1).

Ocheyoherpia trachia Scheltema, 1999, in Rec. Austral. Mus., 51 Holotype: Macquarie Islands (South Pacific); 11 m; Australian Museum, Sidney, Australia. Distribution: Macquarie Islands (South Pacific); 6,1-14 m. Literature: Scheltema, 1999, in Rec. Austral. Mus., 51.

Family IMEROHERPIIDAE Salvini-Plawen, 1978 Imeroherpiidae Salvini-Plawen, 1978. Zoologica, 44 (128): 79.

101


Iberus, 25 (2), 2007 Radula tetraserial. Ventral foregut glandular organs with subepithelially

arranged gland cell bodies surrounded by musculature (type B).

Genus Imeroherpia Salvini-Plawen, 1978 Imeroherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 79. TYPE SPECIES: Imeroherpia quadridens Salvini-Plawen, 1978.

Cuticle thick, with epidermal papillae, with solid acicular sclerites in various layers. With common atriobuccal opening. Midgut with constric-

tions. Secondary genital opening paired. With copulatory stylets with associated gland. With dorsoterminal sense organ. Presence of respiratory organs uncertain.

Imeroherpia quadridens Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Kap Bassin, (South Africa); 2785-2870; South African Museum, Cape Town, South Africa. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Imeroherpia laubieri Handl, 2002, in J. Moll. Stud. 68 Holotype: West European Bassin (47째 N, 9째 W), 2246 m; Mus. Nat. Hist.Nat. Paris, France. Literature: Handl, 2002, in J. Moll. Stud., 68.

Family HETEROERPIIDAE Salvini-Plawen, 1978 Heteroherpiidae Salvini-Plawen, 1978. Zoologica, 44 (128): 105.

Radula distichous. Ventral foregut glandular organs with subepithelially

arranged gland cell bodies surrounded by musculature (type B).

Genus Heteroherpia Salvini-Plawen, 1978 Heteroherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 106. TYPE SPECIES: Heteroherpia procera Salvini-Plawen, 1978.

Cuticle thick, with epidermal papillae, with solid acicular sclerites in various layers. With common atriobuccal opening. Midgut with constric-

tions. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Heteroherpia procera Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Kap Bassin, (South Africa); 2785-2870 m; South African Museum, Cape Town, South Africa. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Incerta sedis 2 Genus Rhabdoherpia Salvini-Plawen, 1978 Rhabdoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 110. TYPE SPECIES: Rhabdoherpia ventromusculata Salvini-Plawen, 1978.

102


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Phg Lg

Bg

Oeg

Oe

Ma

Go

Mg

Dc

Cg

A At Mo 250 µm

Go

Ph

Gd

Pp Pd

Vg Pr

Rs Ht

Vfg

Ra Sv

Rc

Re Rf Dso

B 250 µm

Ab Pc Sd Sr Co Mg Figure 4. A: schematic organization of the anterior body of Solenogastres; B: schematic organization of the posterior body of Solenogastres. Abbreviations, Ab: abdominal spicule; At: atrial sense organ; Bg - buccal ganglion; Cg: cerebral ganglion; Co: copulatoty stylet; Dc: dorsal caecum; Dso: dorsoterminal sense organ; Gd: gonopericardioduct; Go: gonad; Ht: heart; Lg: lateral ganglion; Ma: mantle with sclerites; Mg: midgut; Mo: mouth; Oe: oesophagus; Oeg: oesophageal glands; Pc: pallial cavity; Pd: pericardioduct; Ph: pharynx; Phg: pharynx glands; Pp: pedal pit; Pr: pericardium; Ra: radula; Rc: supra-rectal commissure; Re: rectum; Rf: respiratory fold; Rs: radular sac; Sd: spawining duct; Sr: seminal receptacle; Sv: seminal vesicle; Vfg: Ventral foregut glandular organs; Vg: ventral ganglion. Figura 4. A: esquema de la organización de la parte anterior de los Solenogastros; B: esquema de la organización de la parte posterior de los Solenogastros. Abreviaturas, Ab: espículas abdominales; At: órgano sensitive atrial; Bg: ganglio bucal; Cg: ganglio cerebral; Co: estilete copulador; Dc: ciego dorsal; Dso: órgano sensitive dorsoterminal; Gd: gonopericardioducto; Go: gónada; Ht: corazón; Lg: ganglio lateral; Ma: manto con escleritos; Mg: intestino; Mo: boca; Oe: esófago; Oeg: glándulas esofágicas; Pc: cavidad paleal; Pd: pericardioducto; Ph: faringe; Phg: glándulas faringeas; Pp: foseta pedea; Pr: pericardio; Ra: rádula; Rc: comisura suprarrectal; Re: recto; Rf: pliegues respiratorios; Rs: saco radular; Sd: conducto de desove; Sr: receptáculo seminal; Sv: vesícula seminal; Vfg: órganos glandulares ventrales de la faringe; Vg: ganglio ventral.

103


Iberus, 25 (2), 2007 Sterrofustia with acicular sclerites in various layers; cuticle thick, with epidermal papillae. Mouth opening separate from the atrium. Without radula. Without (?) ventral foregut glandular

organs. Midgut with constrictions. Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Rhabdoherpia ventromusculata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica); 344-351 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: Ross Sea (Antarctica); 344-549 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Order CAVIBELONIA Salvini-Plawen, 1978 Cavibelonia Salvini-Plawen, 1978. Zoologica, 44 (128): 24.

Predominantly provided with hollow, acicular sclerites in one or several layers within a thick cuticle, or provided with solid sclerites and with a biserial radula combined with lateroventral foregut glandular organs not of

so-called type A (ducts with subepithelially arranged gland cells). Radula of differnt types (monoserial, biserial, distichous or polypolystichous-polyserial) or missing. Latero-ventral foregut glandular organs of different types.

Family PRUVOTINIDAE Heath, 1911 Pruvotinidae Heath, 1911. Memoirs of the Museum of Comparative ZoĂślogy at Harvard College, 45 (1): 47. Synonyms: Parameniidae Simroth, 1893; Paramenidae Pruvot, 1902; Perimeniidae Nierstrasz, 1908 (part); Pruvotiniidae Heath, 1911; Pararrhopaliidae Salvini-Plawen, 1972.

Sclerites acicular with cavity. Radula distichous or missing. With or without hollow, hook-shaped elements, and with or without a dorso-paryngeal papilla gland, and with or without respiratory organs. Ventral foregut glandu-

lar organs of ducts with subepithelially arranged gland cells (type A), of circumpharyngeal subepithelial-follicular glands, or with epithelial gland cells (type C). Diverse group with subfamilies.

Subfamily PARARRHOPALIINAE Salvini-Plawen, 1978 Pararrhopaliinae Salvini-Plawen, 1978. Zoologica, 44 (128): 25.

Hollow hook-shaped sclerites present. Ventral foregut glandular

organs of type A. With dorso-pharyngeal papilla gland.

Genus Pararrhopalia Simroth, 1893 Pararrhopalia Simroth, 1893. H.G. Bronn’s. Klassen and Ordnungen des Tierreichs, 3 (1): 232. Synonyms: Paramenia Pruvot, 1890 (part.) (non Brauer and Bergenstamm, 1889). TYPE SPECIES: Pararrhopalia pruvoti Simroth, 1893

104


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Tangential sclerites in two or more layers; with epidermal papillae Mouth separated from the atrium. Distichous radula present. Midgut without regular

constrictions. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Pararrhopalia pruvoti Simroth, 1893, in Zeitschr. wiss. Zool., 56 Proneomenia vagans Kow. and Mar. in Pruvot, 1891 Holotype: Banyuls-sur Mer (France); 80 m; (Type material missing). Distribution: Galicia (Spain); 150 m. Literature: Pruvot, 1891, in Arch. Zool. Exp. gén., sér. 2, 9. Todt, 2006, in Zoomorphology, 125 (3).

Pararrhopalia fasciata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Shetland Islands (Antarctica); 220-240 m; Smithonian Institution, Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Pruvotina Cockerell, 1903 Pruvotina Cockerell, 1903. The Nautilus, 16 (10): 118 Synonyms: Paramenia Pruvot, 1890 (part.) (non Brauer and Bergenstamm, 1889); Perimenia Nierstrasz, 1908 (part.). TYPE SPECIES: Paramenia impexa Pruvot, 1890.

Mouth opening (in part separated from atrium but) within common atriobuccal opening Distichous radula present. Midgut with constrictions. Se-

condary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Pruvotina impexa (Pruvot, 1890), in Arch. Zool. Exp. gén., sér. 2, 8 Paramenia impexa Pruvot, 1890 Holotype: Banyuls-sur Mer (France); 60-80 m; (Type material missing). Literature: Pruvot, 1891, in Arch. Zool. Exp. gén., sér. 2, 9.

Pruvotina cryophila (Pelseneer, 1901), in Bull. Acad. Belgique, 9-10 Paramenia cryophila Pelseneer, 1901 Holotype: Bellinghausen Sea (Antarctica); 500-550 m; Inst. Roy. Sci. Nat. Belg., Brussels, Belgium. Distribution: Bellinghausen Sea, Ross Sea (Antarctica); 342-550 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Pruvotina gauszi Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Gauss Station (Davis Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Pruvotina longispinosa Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Drake Strait (South Sandwich Islands, Antarctica); 115 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Shetland Islands (Antarctica), South Sandwich Islands (Antarctica), Adeleide Archipelago (South Chile); ? Bellinghausen Sea; 64-220 m (-3890 m?). Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Pruvotina megathecata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Staten Island (Tierra del Fuego, South America); 135-137 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA.

105


Iberus, 25 (2), 2007 Distribution: Tierra del Fuego, South America; 118-903 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Pruvotina pallioglandulata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Shetland Islands (Antarctica); 210-220 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Pruvotina peniculata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Staten Island (Tierra del Fuego, South America); 135-137 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: Tierra del Fuego, South America, ?Ross Sea; 119-549 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Pruvotina praegnans Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Sandwich Islands (Antarctica); 148-201 m; Smithsonian Institution (Nat. Mus. Nat. Hist.) DC, USA. Distribution: South Sandwich Islands (Antarctica), South Shetland Islands (Antarctica); 148-220 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Pruvotina providens Thiele, 1913, in Dtsch. Südpolar-Exp., 14 (Zool. 6/1) Holotype: Gauss Station (Davis Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Pruvotina uniperata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica); 344-351 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Shetland Islands, Bransfield Strait, Ross Sea (Antarctica); 210-2306 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Labidoherpia Salvini-Plawen, 1978 Labidoherpia Salvini-Plawen, 1978. Zoológica, 44 (128): 145. TYPE SPECIES: Pruvotina spinosa Thiele, 1913.

Mouth opening within common atrio-buccal opening Distichous radula present. Midgut with constrictions. Se-

condary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Labidoherpia spinosa (Thiele, 1913), in Dtsch. Südpolar-Exp., 14 (Zool. 6/1) Pruvotina spinosa Thiele, 1913 Holotype: Gauss Station (David Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Subfamily ELEUTHEROMENIINAE Salvini-Plawen, 1978 Eleutheromeniinae Salvini-Plawen, 1978. Zoologica, 44 (128): 25.

Hollow hook-shaped sclerites present. Ventral foregut glandular organs

106

of type A. Without dorso-pharyngeal papilla gland.


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

30 µm

50 µm

A

C

B

50 µm

D

50 µm

Figure 5. Sclerite types in Solenogastres orders. A: Pholidoskepia; B: Neomeniomorpha; C: Sterrufustia; D: Cavibelonia. Figura 5. Tipos de escleritos en los órdenes de Solenogastros. A: Pholidoskepia; B: Neomeniomorpha; C: Sterrufustia; D: Cavibelonia.

107


Iberus, 25 (2), 2007

Genus Eleutheromenia Salvini-Plawen, 1967 Eleutheromenia Salvini-Plawen, 1967. Zeitschrift für zoologischer Systematik und Evolutionsforschung, 5,S: 428. Synonyms: Paramenia Pruvot, 1890 (no Brauer and Bergenstamm, 1889) (part); Perimenia Nierstrasz, 1908 (part). TYPE SPECIES: Paramenia sierra Pruvot, 1890.

Without epidermal papillae. Mouth opening within common atriobuccal opening Distichous radula present. Midgut with constrictions.

Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Eleutheromenia sierra (Pruvot, 1890), in Arch. Zool. Exp. gén., sér 2, 8 Paramenia sierra Pruvot, 1890 Holotype: Costa Brava (Spain), 80 m; (Type material missing). Distribution: Costa Brava, Roscoff (France), Irish Sea, Trondheim (Norway); 40-128 m. Literature: Pruvot, 1891, in Arch. Zool. Exp. Gén., sér.2, 9. Salvini-Plawen, 2003, in Iberus, 21 (2).

Eleutheromenia carinata Salvini-Plawen and Öztürk, 2006, in Spixiana, 29 Holotype: Bay of Izmir (Turkey); 75 m; ESFM Museum (Ege University, Faculty of Fisheries) Turkey. Literature: Salvini-Plawen and Öztürk, 2006, in Spixiana, 29.

Genus Gephyroherpia Salvini-Plawen, 1978 Gephyroherpia Salvini-Plawen, 1978. Zoológica, 44 (128): 114. TYPE SPECIES: Gephyroherpia antarctica Salvini-Plawen, 1978.

Epidermal papillae present. Mouth opening separated from the atrium Distichous radula present. Midgut with constrictions. Secondary

genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Gephyroherpia antarctica Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica), 342-360 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: Ross Sea, Davis-Sea (Antarctica); 342-714 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Luitfriedia García-Álvarez and Urgorri, 2001 Luitfriedia García-Álvarez and Urgorri, 2001. Cahiers de Biologie Marine, 42 (3): 198. TYPE SPECIES: Luitfriedia minuta García-Álvarez and Urgorri, 2001.

Epidermal papillae present. Mouth opening within common atrio-buccal opening. Radula missing. Secondary

genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Luitfriedia minuta García-Álvarez and Urgorri, 2001, in Cah. Biol. mar., 42 Holotype: Galicia (NW Spain); 760-769 m; Mus. Nacional Cienc. Nat. Madrid, Spain. Literature: García-Álvarez and Urgorri, 2001, in Cah. Biol. mar., 42.

108


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Subfamily LOPHOMENIINAE Salvini-Plawen, 1978 Lophomeniinae Salvini-Plawen, 1978. Zoologica, 44 (128): 25.

Without hook-shaped sclerites. Ventral foregut glandular organs of

type A. With dorso-pharyngeal papilla gland.

Genus Lophomenia Heath, 1911 Lophomenia Heath, 1911. Memoirs of the Museum of Comparative Zoologie at Harvard College, 45 (1): 47. TYPE SPECIES: Lophomenia spiralis Heath, 1911.

Cuticle thick. Mouth opening within common atrio-buccal opening. Distichous radula present. Midgut with constrictions. Secondary genital

opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With (?) respiratory organs.

Lophomenia spiralis Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: Nilhau Islands (Hawaii) (Albatross St. 4176), 100-1200 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Genus Metamenia Thiele, 1913 Metamenia Thiele, 1913. Deutsche Südpolar-Expedition 1901-1903. 14 Zoologie, 6 (1): 52 TYPE SPECIES: Metamenia intermedia Thiele, 1913

Cuticle thick. Mouth opening separated from the atrium. Distichous radula present. Midgut with constrictions. Se-

condary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Metamenia intermedia Thiele, 1913 in Dtsch. Südpolar-Exp., 14 (Zool. 6/1) Holotype: Gauss-Station (Davis-Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Distribution: Wilkes Land (Davis-Sea, Antarctica); 293-385 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Metamenia triglandulata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica); 342-360 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: Ross Sea; 342-1610 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Hypomenia Van Lummel, 1930 Hypomenia Van Lummel, 1930. Zeitschrift für Morphologie und Ökologie der Tiere, 18: 347. TYPE SPECIES: Hypomenia nierstraszi Van Lummel, 1930.

Cuticle thick. Mouth opening separated from the atrium. Distichous radula present. Midgut without regular constrictions. Secondary genital

opening unpaired. Without copulatory stylets. Without (?) dorsoterminal sense organ. Without respiratory organs.

109


Iberus, 25 (2), 2007 Hypomenia nierstraszi Van Lummel, 1930, in Zeitschr. Morph. Ökol. Tiere, 18 Holotype: Gulf of Naples (Italy); unknown depth; Mus. Nat. Hist. Leiden, Netherlands. Distribution: Gulf of Naples (Italy), Monaco; 150-200 m. Literature: Salvini-Plawen, 1972, in Zeitschr. zool. Syst. Evolut.-forsch., 10 (3).

Genus Forcepimenia Salvini-Plawen, 1969 Forcepimenia Salvini-Plawen, 1969. Zoologische Jahrbücher. Abteilung für Systematik, Ökologie and Geographie der Thiere, 96 (1): 61. TYPE SPECIES: Forcepimenia protecta Salvini-Plawen, 1969.

Cuticle thin, without epidermal papillae. Mouth opening separated from the atrium. Distichous radula present. Midgut with constrictions. Secondary

genital opening, presence of copulatory stylets and of respiratory organs unknown. Without dorsoterminal sense organ.

Forcepimenia protecta Salvini-Plawen, 1969, in Zool. Jahrb. Syst., 96 Holotype: Gubal Strait (Hurghada, Red Sea), 30 m; Naturhist. Mus. Wien, Austria. Literature: Salvini-Plawen, 1969, in Zool. Jahrb. Syst., 96.

Subfamily HALOMENIINAE Salvini-Plawen, 1978 Halomeniinae Salvini-Plawen, 1978. Zoologica, 44 (128): 25.

Without hook-shaped sclerites. Ventral foregut glandular organs of type

A. Without dorso-pharyngeal papilla gland.

Genus Halomenia Heath, 1911 Halomenia Heath, 1911. Memoirs of the Museum of Comparative Zoologie at Harvard College, 45 (1): 47. TYPE SPECIES: Halomenia gravida Heath, 1911.

Mouth opening separated from the atrium. Distichous radula present. Midgut with constrictions. Secondary

genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Halomenia gravida Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: vor Simushir Islands (Kuril Islands) (Albatross St.4804), 420 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Subfamily UNCIHERPIINAE García-Álvarez, Urgorri and Salvini-Plawen, 2001 Unciherpiinae García-Álvarez, Salvini-Plawen and Urgorri, 2001. Journal of Molluscan Studies, 67 (1): 114.

With or without hook-shaped sclerites. Foregut glandular organs as circumpha-

110

ryngeal subepithelial-follicular glands. Without dorso-pharyngeal papilla gland.


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

3 2

1

7

5

4

6

8

9

10

11

16

15

14

12

17

18

19

13

20

21

28

24

27 26

23 22

25

Figure 6. Forms of the sclerites. 1: leaf shaped scales; 2: oval shaped scales; 3: smooth discoidal scales; 4: striated discoidal scales; 5: triangular scales; 6: pallet shape scales; 7: claviform scales; 8: oar shaped scales; 9: smooth laminar scales; 10: striated laminar scales; 11: excavated scales; 12 lanceolate scales with keel; 13: solid acicular sclerites; 14: solid sclerites with serrate end; 15: solid oar shaped sclerites; 16: solid pallet-shaped sclerites; 17: solid axe-shaped sclerites; 18: solid hookshaped sclerites; 19: solid sclerites with arrow point; 20: solid lanceolate sclerites; 21: pointed hollow hook-shaped sclerites pointed at the curvature; 22: blunt hook-shaped hollow sclerites; 23: hollow axe-shaped sclerites (captate); 24: hollow harpoon-shaped sclerites; 25: serrated hollow acicular sclerites; 26: hollow acicular sclerites; 27: knife-shaped hollow sclerites; 28: scales of pedal groove. Figura 6. Formas de los escleritos: 1: escamas en forma de hoja; 2: escamas ovaladas; 3: escamas discoidales lisas; 4: escamas discoidales estriadas; 5: escamas triangulares; 6: escamas en forma de paleta; 7: escamas claviformes; 8: escamas en forma de remo; 9: escamas laminares lisas; 10: escamas laminares estriadas; 11: escamas excavadas; 12 escamas lanceoladas con quilla; 13: escleritos macizos aciculares; 14: escleritos macizos con el extremo aserrado; 15: escleritos macizos en forma de remo; 16: escleritos macizos en forma de paleta; 17: escleritos macizos en forma de hacha; 18: escleritos macizos ganchudos; 19: escleritos macizos con punta de flecha; 20: escleritos macizos lanceolados; 21: escleritos huecos ganchudos apuntados en la curvatura; 22: escleritos huecos ganchudos romos; 23: escleritos huecos en forma de hacha (captate); 24: escleritos huecos en forma de arpón; 25: escleritos aciculares huecos aserrados ; 26: escleritos aciculares huecos; 27: escleritos huecos en forma de cuchillo; 28: escamas del surco pedio.

111


Iberus, 25 (2), 2007

Genus Uncimenia Nierstrasz, 1903 Uncimenia Nierstrasz, 1903. Zoologische Jahrbücher. Abteilung für Anatomie and Ontogenie der Tiere, 18 (3): 376. TYPE SPECIES: Uncimenia neapolitana Nierstrasz, 1903.

Cuticle thin, without epidermal papillae. Sclerites acicular, hook-shaped without apical prominence, and harpoon-shaped, arranged in one layer. Mouth opening within common atrio-

buccal opening. Radula missing. Secondary genital opening unpaired. Without copulatory stylets. Dorsoterminal sense organ present. With respiratory organs.

Uncimenia neapolitana Nierstrasz, 1903, in Zool. Jb. Anat., 18 (3) Holotype: Gulf of Naples (Italy); 70 m; Mus. Nat. Hist. Leiden, Netherlands. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128). García-Álvarez, Salvini-Plawen and Urgorri, 2001, in J. Moll. Stud., 67.

Genus Sialoherpia Salvini-Plawen, 1978 Sialoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 221. TYPE SPECIES: Sialoherpia aculeitecta Salvini-Plawen, 1978.

Cuticle thick, with epidermal papillae. With hollow and solid acicular sclerites, without hook-shaped elements. Mouth opening separated from atrium but within common atrio-buccal

opening. Radula missing. Secondary genital opening, presence of copulatory stylets and of respiratory organs unknown. With (?) dorsoterminal sense organ.

Sialoherpia aculeitecta Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Drake Strait (South America); 2782-2827 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Unciherpia García-Álvarez, Salvini-Plawen and Urgorri, 2001 Unciherpia García-Álvarez, Salvini-Plawen and Urgorri, 2001. Journal of Molluscan Studies, 67 (1): 114. TYPE SPECIES: Unciherpia hirsuta García-Álvarez, Salvini-Plawen and Urgorri, 2001.

Cuticle thin, with epidermal papillae. Sclerites acicular, hookshaped, and harpoon-shaped, arranged in one layer. Mouth opening within common atrio-buccal opening. Radula

missing. Midgut with constrictions. Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Unciherpia hirsuta García-Álvarez, Salvini-Plawen and Urgorri, 2001, in J. Moll. Stud., 67 Holotype: Galicia (NW Spain); 760-769 m; Mus.Nacional Cienc. Nat. Madrid, Spain. Literature: García-Álvarez et al., 2001, in J. Moll. Stud., 67.

112


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Subfamilia incerta Genus Scheltemaia Salvini-Plawen, 2003 Scheltemaia Salvini-Plawen, 2003. Iberus, 21 (2): 53. TYPE SPECIES: Eleutheromenia mimus Scheltema and Schander, 2000.

Cuticle thick. Hollow sclerites acicular and hook-shaped. Mouth opening within common atrio-buccal opening. Radula distichous. Ventral foregut glandular organs with epithelial gland cells

(type C). Ventral ganglia with a commissural sack. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Scheltemaia mimus (Scheltema and Schander, 2000), in Biol. Bull., 198 Eleutheromenia mimus Scheltema and Schander, 2000 Holotype: Bass Strait (Tasmania); 140 m; Museum of Victoria, Australia. Literature: Scheltema and Schander, 2000, in Biol. Bull., 198. Salvini-Plawen, 2003, in Iberus, 21 (2).

Scheltemaia bassensis (Scheltema and Schander, 2000), in Biol. Bull. 198 Eleutheromenia bassensis Scheltema and Schander, 2000 Holotype: Bass Strait (Tasmania); 70 m; Museum of Victoria, Australia. Literature: Scheltema and Schander, 2000, in Biol. Bull., 198. Salvini-Plawen, 2003, in Iberus, 21 (2).

Family RHOPALOMENIIDAE Salvini-Plawen, 1978 Rhopalomeniidae Salvini-Plawen, 1978. Zoologica, 44 (128): 158.

Thick cuticle, with epidermal papillae. Sclerites acicular in various layers; neither hook-shaped elements, nor dorso-pharyngeal papilla gland, nor respiratory organs. Radula distichous or

missing. Foregut glandular organs of ducts with subepithelially arranged gland cells (type A) and/or with epithelial glands (type C) with outleading duct.

Genus Rhopalomenia Simroth, 1893 Rhopalomenia Simroth, 1893. Zeitschrift für wissereschaftliche Zoologie, 56 (2): 322. TYPE SPECIES: Proneomenia aglaopheniae Kowalevsky and Marion, 1887.

Mouth separated from the atrium. Without radula, but sheath may be present. With two pairs of foregut glandular organs: a pair of ducts with subepithelially arranged gland cells

(type A) and a pair with epithelial glands (type C). Midgut with constrictions. Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ.

Rhopalomenia aglaopheniae (Kow. and Mar., 1887), in Ann. Mus. Marseille, 3 Proneomenia agalopheniae Kowalevsky and Marion, 1887 Rhopalomenia eisigi Thiele, 1894 Holotype: Banyuls-sur-Mer (France); 60-80 m; (Type material missing). Distribution: South Peloponnese (Greece) to Schottland; 50-137 m. Literature: Nierstrasz and Stork, 1940, in Zoologica, 36 (99). Salvini-Plawen, 1997, in Iberus, 15 (2). García-Álvarez, Urgorri and Cristobo, 2000, in Iberus, 18 (1). Eisenhut and Salvini-Plawen, 2006, in Zootaxa, 1184.

113


Iberus, 25 (2), 2007 Rhopalomenia glandulosa Eisenhut and Salvini-Plawen, 2006, in Zootaxa, 1184. Holotype: NW Schottland; 1270 m; National Museum of Scotland, Edinburgh, UK Literature: Eisenhut and Salvini-Plawen, 2006, in Zootaxa, 1184

Genus Dinomenia Nierstrasz, 1902 Dinomenia Nierstrasz, 1902. The Solenogastres of the Siboga Expedition. Monographie, 47: 11. TYPE SPECIES: Dinomenia hubrechti Nierstrasz, 1902.

Mouth separated from the atrium. Radula distichous. Ventral foregut glandular organs as a pair of ducts with subepithelially arranged gland cells

(type A). Midgut with constrictions. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ.

Dinomenia hubrechti Nierstrasz, 1902, in Siboga-Exp. Monogr., 47 Holotype: Moluccas Sea (Indonesia) (Siboga St. 310); 73 m; Zool. Mus. Univ. Amsterdam, Netherlands. Literature: Nierstrasz, 1902, in Siboga-Exp. Monogr., 47.

Genus Driomenia Heath, 1911 Driomenia Heath, 1911. Memoirs of the Museum of Comparative Zoology at Harvard College, 45 (1): 45. TYPE SPECIES: Driomenia pacifica Heath, 1911.

Mouth separated from the atrium. Without radula, but sheath may be present. Foregut glandular organs as a pair of ducts with subepithelially arranged gland cells (type A) only.

Midgut with constrictions. Pericardium with a pair of ventro-anterior diverticles. Secondary genital opening unpaired. Without copulatory stylets. Without dorsoterminal sense organ.

Driomenia pacifica Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: NW Pacific (near Japan); 120-230 m; (Type material missing). Literature: Heath, 1911, in Mem. Mus. Comp.Zool. Harvard Coll., 45 (1).

Genus Entonomenia Leloup, 1948 Entonomenia Leloup, 1948. Bulletin du Musée royal d’Histoire naturelle de Belgique, 24 (37): 1. Synonyms: Rhopalomenia Simroth, 1893 (part). TYPE SPECIES: Entonomenia atlantica Leloup, 1948.

Mouth separated from the atrium. Without radula, but sheath may be present. Foregut glandular organs as a pair of ducts with subepithelially arranged

gland cells (type A) only. Midgut with constrictions. Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ.

Entonomenia atlantica Leloup, 1948, in Bull. Mus. Roy. Hist. nat. Belgique, 24 Rhopalomenia atlantica (Leloup, 1948) Holotype: Fuerteventura (Canary Islands, Atlantic); 540 m; Oceanogr. Mus. Monaco. Literature: Leloup, 1950, in Résult. Camp. Sc. Monaco, 110. Salvini-Plawen, 1972, in Zeitschr. zool. Syst. Evolut.-forsch., 10 (3). Salvini-Plawen, 2003, in Iberus, 21 (2). Eisenhut and Salvini-Plawen, 2006, in Zootaxa, 1184.

114


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

A

200 µm

B

10 µm

C

50 µm

D

100 µm

Figure 7. A: microphotograph of Urgorria compostelana; B: microphotograph of sclerites of Dorymenia hesperidesi; C: microphotograph of sclerites of Unciherpia hirsuta; D: microphotograph of the mantle with sclerites of Anamenia gorgonophila. Figura 7. A: microfotografía de Urgorria compostelana; B: Microfotografía de los escleritos en Dorymenia hesperidesi; C: microfotografía de los escleritos en Unciherpia hirsuta; D: microfotografía del manto con escleritos en Anamenia gorgonophila.

Entonomenia carinata (Salvini-Plawen, 1978), in Zoologica, 44 (128) Rhopalomenia carinata Salvini-Plawen, 1978 Holotype: South Georgia (Antarctica); 97-101; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Georgia, South Shetland Islands (Antarctica); 97-220 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128). Salvini-Plawen, 1990, Lavori S.I.M., 23. García-Álvarez and Urgorri, 2003, in Iberus, 21 (1).

Entonomenia cristata (Salvini-Plawen, 1978), in Zoologica, 44 (128) Rhopalomenia cristata Salvini-Plawen, 1978 Holotype: South Shetland Islands (Antarctica); 109 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Sandwich Islands (Antarctica), South Shetland Islands (Antarctica), Ross Sea, Crozet-Islands; 91-351 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Entonomenia microporata (Handl and Salvini-Plawen, 2002), in Sarsia, 87 Rhopalomenia microporata Handl and Salvini-Plawen, 2002 Holotype: Hjeltefjord (Bergen, Norway); unknown depth; Zool. Mus. Univ. Uppsala, Sweden. Literature: Handl and Salvini-Plawen, 2002, in Sarsia, 87.

115


Iberus, 25 (2), 2007 Entonomenia rhynchopharyngeata (Salvini-Plawen, 1978), in Zoologica, 44 (128) Rhopalomenia rhynchopharyngeata Salvini-Plawen, 1978 Holotype: South Shetland Islands (Antarctica); 210-220 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Sandwich Islands, South Shetland Islands, Ross Sea (Antarctica); 148-732 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128). García-Àlvarez and Urgorri, 2003, in Iberus, 21 (1).

Entonomenia sertulariicola (Salvini-Plawen, 1978), in Zoologica, 44 (128) Rhopalomenia sertulariicola Salvini-Plawen, 1978 Holotype: South Sandwich Islands (Antarctica); 148-201 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Entonomenia tricarinata (Salvini-Plawen, 1978), in Zoologica, 44 (128) Rhopalomenia tricarinata Salvini-Plawen, 1978 Holotype: South Sandwich Islands (Antarctica); 148-201 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Sandwich Islands, South Georgia, South Shetland Islands, Palmer Archipelago (Bransfield Strait), Ross Sea, Balleney-Islands, Dumont d’Urville-Sea (Antarctica); 97-1444 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Pruvotia Thiele, 1894 (position uncertain) Pruvotia Thiele, 1894. Zeitschrift für wissereschaftliche Zoologie, 58 (2): 272. TYPE SPECIES: Proneomenia sopita Pruvot, 1891.

Sclerites acicular in various layers. Mouth separated from the atrium. Without radula, but sheath may be present. Foregut glandular organs unknown. Midgut with constrictions.

Secondary genital opening unpaired. Without copulatory stylets. Without dorsoterminal sense organ. With two (respiratory ?) folds in the pallial cavity.

Pruvotia sopita (Pruvot, 1891), in Arch. Zool. Exp. gén., sér. 2, 9 Proneomenia sopita Pruvot, 1891 Holotype: Banyuls-sur-Mer (France); 45-70 m; (Type material missing). Literature: Pruvot, 1891, in Arch. Zool. Exp. gén., sér. 2, 9.

Genus Urgorria García-Álvarez and Salvini-Plawen, 2001 Urgorria García-Álvarez and Salvini-Plawen, 2001. Sarsia, 86 (3): 183. TYPE SPECIES: Urgorria compostelana García-Álvarez and Salvini-Plawen, 2001.

Mouth within common atrio-buccal opening. Without radula. Foregut glandular organs with epithelial glands only (type C) with outleading duct.

Midgut with constrictions. Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ.

Urgorria compostelana García-Álvarez and Salvini-Plawen, 2001, in Sarsia, 86 Holotype: Banco de Galicia (NW Spain); 760-769 m; Mus. Nacional Cienc. Nat., Madrid, Spain. Distribution: Banco de Galicia, Gulf of Cádiz (Spain) (pers. obs. García-Álvarez); 760-769 m. Literature: García-Álvarez and Salvini-Plawen, 2001, in Sarsia, 86.

116


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Urgorria monoplicata Salvini-Plawen, 2003, in Iberus, 21 (2) Holotype: Costa Brava (Spain); 35 m; Mus. Nacional Cienc. Nat., Madrid, Spain. Literature: Salvini-Plawen, 2003, in Iberus, 21 (2).

Family ACANTHOMENIIDAE Salvini-Plawen, 1978 Acanthomeniidae Salvini-Plawen, 1978. Zoologica, 44 (128): 25.

Cuticle thin, without epidermal papillae. Sclerites in one layer as hollow acicular spicules and scales. Radula monoserial with a pair of

denticles. Ventral foregut glandular organs as a pair of ducts with subepithelially arranged gland cells (type A).

Genus Acanthomenia Thiele, 1913 Acanthomenia Thiele, 1913. Deutsche Südpolar-Expedition 1901-1913. 14 Zoologie, 6 (1): 61. TYPE SPECIES: Acanthomenia gaussiana Thiele, 1913.

Mouth opening (in part separated from atrium but) within common atrio-buccal opening Midgut without constrictions. Secondary genital

opening unpaired. Without copulatory stylets. Without (?) dorsoterminal sense organ. With respiratory folds.

Acanthomenia gaussiana Thiele, 1913 in Dtsch. Südpolar-Exp., 14 (Zool. 6/1) Holotype: Gauss-Station (Davis Sea, Antarctica); 3398 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen,1978, in Zoologica, 44 (128).

Acanthomenia arcuata Scheltema, 1999, in Ophelia, 51 Holotype: West European Bassin (47° N, 9° W - 55° N, 13° W); 2897 m; Mus.Nat.Hist.Nat., Paris, France. Distribution: West European Bassin (47° 29´ - 58° N, 9° 34´ - 13° 08´ W); 2081-4327 m. Literature: Scheltema, 1999, in Ophelia, 51. Handl and Salvini-Plawen, 2002, in Sarsia, 87.

Genus Amboherpia Handl and Salvini-Plawen, 2002 Amboherpia Handl and Salvini-Plawen, 2002. Sarsia, 87: 427. TYPE SPECIES: Amboherpia heterotecta Handl and Salvini-Plawen, 2002.

Mouth opening within common atrio-buccal opening. Subepithelially arranged glands of foregut glandular organs in groups with long necks surrounded by musculature. Midgut

without constrictions. Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. Without respiratory folds.

Amboherpia heterotecta Handl and Salvini-Plawen, 2002, in Sarsia, 87 Holotype: Korsfjord (Bergen, Norway); 610 m; Zool. Mus. Univ. Bergen, Norway. Literature: Handl and Salvini-Plawen, 2002, in Sarsia, 87.

117


Iberus, 25 (2), 2007

Family AMPHIMENIIDAE Salvini-Plawen, 1972 Amphimeniidae Salvini-Plawen, 1972. Zeitschrift f端r wissenschaftliche Zoologie, 184 (3/4): 262.

Cuticle thick; sclerites acicular, arranged in several layers. Radula monoserial or missing; anterio-ventral radula sack (when present) unpaired. Foregut glandular organs as ramified

ducts with terminally arranged clusters of gland cells (= type D), generally opening pre-radularly. Spawning ducts with subepithelially arranged, intercellularly opening glands.

Genus Amphimenia Thiele, 1894 Amphimenia Thiele, 1894. Zeitschrift f端r wissenschaftliche Zoologie, 58 (2): 244. TYPE SPECIES: Proneomenia neapolitana Thiele, 1889.

Epidermal papillae present. Mouth opening within common atrio-buccal opening. Radula present. Pre-radular outlet of foregut glandular organs without cone.

Midgut without constrictions. Secondary genital opening unpaired. Without copulatory stylets. Without dorsoterminal sense organ. Without respiratory organs.

Amphimenia neapolitana (Thiele, 1889), in Zeitschr. wiss. Zool., 49 (3) Proneomenia neapolitana Thiele, 1889 Holotype: Gulf of Naples (Italy); 30-35 m; Museum f端r Naturkunde, Berlin, Germany. Literature: Nierstrasz and Stork 1940 in Zoologica, 36 (99).

Genus Proparamenia Nierstrasz, 1902 Proparamenia Nierstrasz, 1902. The Solenogastres of the Siboga Expedition. Monograph 47: 18. TYPE SPECIES: Proparamenia bivalens Nierstrasz, 1902.

Epidermal papillae present. Mouth within common atrio-buccal opening. Radula present. pre-radular outlet of foregut glandular organs into pouch with cone. Midgut

constrictions unknown. Secondary genital opening unpaired. Without copulatory stylets. Without dorsoterminal sense organ. With respiratory organs.

Proparamenia bivalens Nierstrasz, 1902, in Siboga-Exp. Monogr., 47 Holotype: Java (Indonesia) (Siboga St.320); 82 m; Zool. Mus. Univ. Amsterdam, Netherlands. Literature: Nierstrasz, 1902, in Siboga-Exp. Monogr., 47.

Genus Alexandromenia Heath, 1911 Alexandromenia Heath, 1911. Memoirs of the Museum of Comparative Zoology at Harvard College, 45 (1): 47. TYPE SPECIES: Alexandromenia agassizi Heath, 1911.

Epidermal papillae present. Sclerites in two main sizes; Mouth within common atrio-buccal cavity. Radula present. Pre-radular outlet of foregut glandular organs into pouch with

118

cone; midgut with constrictions. Secondary genital opening unpaired; without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Dso

At

Cu Dv

Pa

A

500 µm

Cu

B

500 µm

Ep

Dso Rf

C

250 µm

D

500 µm

Figure 8. A: microphotograph through the atrium in Dorymenia menchuescribanae; B: microphotograph through the pallial cavity in Dorymenia menchuescribanae; C: microphotograph of the cuticle in Dorymenia menchuescribanae; D: microphotograph through the pallial cavity in Hemimenia sp. Abbreviations, At: atrium; Cu: cuticle; Dso: dorsoterminal sense organ; Dv: diverticle; Ep: epidermal papilla; Pa: papilla; Pc: pallial cavity; Rf: respiratory fold. Figura 8. A: microfotografía del atrio en Dorymenia menchuescribanae; B: microfotografía de la cavidad paleal en Dorymenia menchuescribanae; C: microfotografía de la cutícula en Dorymenia menchuescribanae; D: microfotografía de la cavidad paleal en Hemimenia sp. Abreviaturas, At: atrio; Cu: cutícula; Dso: órgano sensitivo dorsoterminal; Dv: divertículo; Ep: papila epidérmica; Pa: papila; Pc: cavidad paleal; Vg: ganglios ventrales; Rf: pliegue respiratorio.

Alexandromenia agassizi Heath, 1911 in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: Near Revillagigedo Islands (W Pacific, Mexico) (Albatross St. 2992); 840 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Alexandromenia acuminata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Scotia Sea (Antarctica); 2886-3040 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128)

119


Iberus, 25 (2), 2007 Alexandromenia antarctica Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Bransfield Strait (Antarctica); 662-1120 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Alexandromenia (?) crassa Odhner, 1921, in Bergens Mus. Aarb. 1918/19, 3 Holotype: Färöskallen, Hjeltefjord (Bergen, Norway); 100-200 m; Svenska Mus. Nat. Hist., Stockholm, Sweden. Literature: Odhner, 1921, in Bergens Mus. Aarb. 1918/19, 3. Handl and Salvini-Plawen, 2002, in Sarsia, 87.

Alexandromenia grimaldii Leloup, 1946, in Bull. Mus. Roy. Hist. nat. Belgique, 22 (16) Holotype: Azores Islands (Atlantic); 1250 m; Oceanograph. Mus. Monaco. Literature: Leloup, 1950, in Résult. Camp. Sc. Monaco, 110. Salvini-Plawen, 1972, in Zeitschr. zool. Syst. Evolut.-forsch., 10 (3).

Alexandromenia latosoleata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Pacific; 459 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Alexandromenia pilosa Handl and Salvini-Plawen, 2002, in Sarsia, 87 Holotype: Trondheimsfjord (Nowey); 180-240 m; Zool. Mus. Univ. Copenhagen, Denmark. Literature: Handl and Salvini-Plawen, 2002, in Sarsia, 87.

Alexandromenia valida Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: California (USA) (Albatross St. 4282); 1100-2500 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Genus Pachymenia Heath, 1911 Pachymenia Heath, 1911. Memoirs of the Museum of Comparative Zoology at Harvard College, 45 (1): 45. TYPE SPECIES: Pachymenia abyssorum Heath, 1911.

Epidermal papillae present. Mouth within common atrio-buccal cavity. Radula missing. Pre-radular outlet of foregut glandular organs into pouch with cone; midgut

without constrictions. Secondary genital opening unpaired; without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Pachymenia abyssorum Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: California (USA) (Albatross St. 4397); 4018-4077 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Genus Spengelomenia Heath, 1912 Spengelomenia Heath, 1912. Zoologische Jahrbücher. Supplement 15 (1): 465. TYPE SPECIES: Spengelomenia bathybia Heath, 1912.

Epidermal papillae present. Mouth within common atrio-buccal cavity. Radula present. Pre-radular outlet of foregut glandular organs into pouch with cone; midgut

120

without constrictions. Secondary genital opening unpaired; without copulatory stylets. Without dorsoterminal sense organ. With respiratory organs.


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Spengelomenia bathybia Heath, 1912 in Zool. Jb., Suppl. 15 Holotype: Florida (USA); 1500-2000 m; (Type material missing). Literature: Heath 1912 in Zool. Jb., Suppl. 15.

Spengelomenia intermedia Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Drake Strait (South Shetland Islands, Antarctica); 2672-3020 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Spengelomenia procera Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Drake Strait (Palmer Archipelago, Antarctica); 2763-2818 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Spengelomenia polypapillata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Scotia Sea (near South Georgia, Antarctica); 2869-3038 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Paragymnomenia Leloup, 1947 Paragymnomenia Leloup, 1947. Bulletin du Musée royal d’Histoire naturelle de Belgique, 23 (35): 1. TYPE SPECIES: Paragymnomenia richardi Leloup, 1947.

Epidermal papillae present. Sclerites in two main types. Mouth within common atrio-buccal cavity. Radula present. Pre-radular outlet of foregut glandular organs into pouch with cone;

midgut without constrictions. Secondary genital opening unpaired; without copulatory stylets. With several dorsoterminal sense organs. With respiratory organs.

Paragymnomenia richardi Leloup, 1947, in Bull. Mus. Roy. Hist. Nat. Belgique, 23 Holotype: Cap Martin (Monaco); 46-60 m; Oceanogr. Mus. Monaco. Literature: Leloup, 1950, in Résult. Camp. Sc. Monaco, 110. Salvini-Plawen, 1972, in Zeitschr. zool. Syst. Evolut.-forsch., 10 (3).

Genus Meromenia Leloup, 1949 Meromenia Leloup, 1949. Bulletin Institut royal des Sciences naturelles de Belgique, 25 (1): 1. TYPE SPECIES: Meromenia hirondellei Leloup, 1949.

Epidermal papillae present. Organs of anterior body unknown. Midgut without constrictions. Secondary genital

opening unpaired; without copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Meromenia hirondellei Leloup, 1949, in Bull. Inst. Roy. Sci. nat. Belgique, 25 (1) Holotype: N Bay of Biscay (W Atlantic); 166 m; Oceanograph. Mus. Monaco. Literature: Leloup, 1950, in Résult. Camp. Sc. Monaco, 110. Salvini-Plawen, 1972, in Zeitschr. zool. Syst. Evolut.-forsch., 10 (3).

121


Iberus, 25 (2), 2007

Genus Plathymenia Schwabl, 1961 Plathymenia Schwabl, 1961. Zoologischer Anzeiger, 167 (3/4): 113. TYPE SPECIES: Plathymenia branchiosa Schwabl, 1961.

Without epidermal papillae. Mouth within common atrio-buccal cavity. Radula missing. Ventral foregut glandular organs small with simple outlet, not pre-radular;

midgut with constrictions. Secondary genital opening unpaired; without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Plathymenia branchiosa Schwabl, 1961 in Zool. Anz., 167 Holotype: California (USA); 730 m; Los Angeles County Museum, USA. Literature: Schwabl, 1961, in Zool. Anz., 167; 1963, in Pacific Science, 17.

Genus Sputoherpia Salvini-Plawen, 1978 Sputoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 193. TYPE SPECIES: Sputoherpia fissitubata Salvini-Plawen, 1978.

Epidermal papillae present. Mouth within common atrio-buccal cavity. Radula present. Pre-radular outlet of foregut glandular organs into pouch with cone; midgut

with constrictions. Secondary genital opening unpaired; without copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Sputoherpia fissitubata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Kerguelen Islands (South Indian Ocean); 3025 m; Station marine d’Endoume, Marseille, France. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Sputoherpia exigua Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Pacific; 567-604 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Sputoherpia galliciensis García-Álvarez, Urgorri and Salvini-Plawen, 2000, in Ophelia, 53 Holotype: Galicia (NW Spain); 752 m; Mus. Nacional Cienc. Nat. Madrid, Spain. Literature: García-Álvarez, Urgorri and Salvini-Plawen, 2000, in Ophelia, 53 (3).

Sputoherpia laxopharyngeata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Kap Bassin, (South Africa); 3157-3257 m; South African Museum, Cape Town, South Africa. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Sputoherpia megaradulata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Scotia Sea (near South Georgia, Antarctica); 2886-3040 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Utralvoherpia Salvini-Plawen, 1978 Utralvoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 204. TYPE SPECIES: Utralvoherpia abyssalis Salvini-Plawen, 1978.

122


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Dc Mu Lc

Ph Gl

Bg Vc

A

100 µm

Pgr

B

250 µm

Cgl

Lc Sf

Ph

C

100 µm

Vc

D

250 µm

Figure 9. A: microphotograph through the pharynx and the dorsal caecum in Anamenia gorgonophila; B: microphotograph through the pharynx and nerve cords in Neomenia monolabrosa; C: microphotograph through the pharynx and circumpharyngeal glands in Unciherpia hirsuta; D: microphotograph through the pharynx sphincter of Neomenia monolabrosa. Abbreviations, Bg: bucal ganglion; Cgl: circumpharyngeal glands; Dc: dorsal caecum in the midgut; Gl: gland; Lc: lateral nervous cord; Mu: musculature; Pgr: pedal groove; Ph: pharynx; Sf: sphincter; Vc: ventral nerve cord. Figura 9. A: microfotografía de la faringe y ciego dorsal en Anamenia gorgonophila; B: microfotografía de la faringe y cordones nerviosos en Neomenia monolabrosa; C: microfotografía de la faringe y glándulas circunfaríngeas en Sputoherpia galliciencis; D: microfotografía del esfinter de la faringe en Neomenia monolabrosa. Abreviaturas, Bg: ganglio bucal; Cgl: glándulas circunfaríngeas; Dc: ciego dorsal del intestino; Gl: glándula; Lc: cordón nervioso lateral; Mu: musculatura; Ph: faringe; Sf: esfínter; Vc: cordón nervioso ventral.

Epidermal papillae present. Sclerites of two sizes. Mouth within common atrio-buccal cavity. Radula present. Pre-radular outlet of foregut glandular organs into pouch

with cone; midgut without constrictions. Secondary genital opening unpaired; without copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

123


Iberus, 25 (2), 2007 Utralvoherpia abyssalis Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Orkney Trench (Antarctica); 5259-5274 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Family SIMROTHIELLIDAE Salvini-Plawen, 1978 Simrothiellidae Salvini-Plawen, 1978. Zoologica, 44 (128): 25.

Sclerites hollow-acicular or solidelongate to scaly. Radula biserial (rows of paired denticulate radula plates or bars); anterio-ventral radula sack (when present) paired. Lateroventral

foregut glandular organs with various configuration, but not of the so-called type A (i.e. subepithelially arranged gland cells with outleading ducts).

Genus Simrothiella Pilsbry, 1898 Simrothiella Pilsbry, 1898. Manual of Conchology, 17: 296. Synonyms Solenopus Sars, 1869 (part). TYPE SPECIES: Solenopus margaritaceus Koren and Danielssen, 1877.

Thick cuticle with epidermal papillae. With hollow acicular sclerites in various layers. Mouth within common atrio-buccal cavity. Radula plates with lateral reinforcement (buttress) and heterogeneous denticulation with elongate lateral denticle; with paired anterioventral radula sack. Lateroventral

foregut glandular organs bulbous with elongate epithelial glands interspersed by low supporting cells (modified type C). Midgut with moderate constrictions. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Simrothiella margaritacea (Kor. and Dan., 1877), in Arch. Math. Nat. vidensk, 2 Solenopus margaritaceus Koren and Danielssen, 1877 Holotype: Boknfjord (Kvitingsog, Stavanger, Norway); 75-115 m; Zoologisk Museum Bergen, Norway (2 Syntypes); Swedish Mus. Nat. Hist. Stockholm, Sweden (Odhner description). Distribution: Galicia (Spain) (Simrothiella cf. margaritacea); 800 m. Literature: Odhner, 1921, in Bergens Mus. Aarbok 1918/1919, 3. Opinion 1185 in Bull. Zool. Nomencl., 38. Salvini-Plawen, 2004, in J. Moll. Stud., 70. Todt, 2006, in Zoomorphology, 125 (3).

Simrothiella abysseuropaea Salvini-Plawen, 2004, in J. Moll. Stud., 70 Simrothiella margaritacea (part.) in Scheltema and Schander, 2000, in Biol. Bull. 198. Holotype: West European Bassin (51째 N, 13째 W); 2173 m; Nat. Mus. Nat. Hist., Washington DC, USA. Literature: Scheltema and Schander, 2000, in Biol. Bull., 198. Salvini-Plawen, 2004, in J. Moll. Stud., 70.

Simrothiella comorensis Todt and Salvini-Plawen, 2003, in The Veliger, 46 (3) Holotype: Mozambique Channel, (Indian Ocean); 3716 m; Mus. Nat. Hist. Nat. Paris, France. Literature: Todt and Salvini-Plawen, 2003, in The Veliger, 46 (3).

Simrothiella digitoradulata Salvini-Plawen, 2004, in J. Moll. Stud., 70 Holotype: Atacama Trench (N Chile); 1927-1997 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 2004, in J. Moll. Stud., 70.

124


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Genus Cyclomenia Nierstrasz, 1902 Cyclomenia Nierstrasz, 1902. The Solenogastres of the Siboga Expedition, 47: 29. TYPE SPECIES: Cyclomenia holoserica Nierstrasz, 1902.

Thick cuticle, without epidermal papillae. With hollow acicular sclerites in various layers. Mouth separated from the atrium. Radula plates wide with small denticles. Ventral foregut glandular organs

globular with epithelal gland cells (type C). Midgut without constrictions. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Cyclomenia holoserica Nierstrasz, 1902, in Siboga-Exp. Monogr., 47 Holotype: Timor-See (Indonesia) (Siboga St. 300); 918 m; Zool. Mus. Univ. Amsterdam, Netherlands. Literature: Nierstrasz, 1902, in Siboga-Exp. Monogr., 47; 1905, in Zool. Jahrh. Abt. Anat., 21.

Genus Kruppomenia Nierstrasz, 1903 Kruppomenia Nierstrasz, 1903. Lo Bianco: Mittheilungen aus der zoologischen Satation zu Neapel, 16: 249. TYPE SPECIES: Kruppomenia minima Nierstrasz, 1903.

Cuticle moderately thick, epidermal papillae present. With hollow acicular sclerites in various layers. Mouth within common atrio-buccal cavity. Radula plates simply serrate; with paired anterio-ventral radula sac. Ventral

foregut glandular organs with elongate epithelial gland cells (type C). Midgut with moderate constrictions. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. With respiratory organs

Kruppomenia minima Nierstrasz, 1903, in Lo Bianco in Mitt. Stat. Neapel, 16 Holotype: Gulf of Naples (Italy); 950-1100 m; Mus. Nat. Hist. Leiden, Netherlands. Literature: Nierstrasz and Stork, 1940, in Zoologica, 36 (99). Handl and Salvini-Plawen, 2002, in Sarsia, 87.

Kruppomenia borealis Odhner, 1921, in Bergens Mus. Aarbok 1918/1919, 3 Holotype: Sunde (Hardangerfjord, Norway); (2 syntypes); depth unknown; Zool. Mus. Univ. Oslo, Norway and Svenska Mus. Nat. Hist. Stockholm, Sweden. Distribution: Norwegen to NW Spain; 110-835 m.. Literature: García-Álvarez, Salvini-Plawen and Urgorri, 2001, in Iberus, 19. Handl and SalviniPlawen, 2002, in Sarsia, 87.

Kruppomenia delta Scheltema and Schander, 2000, in Biol. Bull., 198 Holotype: West European Bassin; 4307 m; Mus. Nat. Hist. Nat. Paris, France. Literature: Scheltema and Schander, 2000, in Biol. Bull., 198.

Kruppomenia levis Scheltema and Schander, 2000, in Biol. Bull., 198 Holotype: West European Bassin; 4327 m; Mus. Nat. Hist. Nat. Paris, France. Literature: Scheltema and Schander, 2000, in Biol. Bull., 198.

Kruppomenia macrodoryata Todt and Salvini-Plawen, 2003, in The Veliger, 46 (3) Holotype: Mozambique Channel, (Indian Ocean); 3716 m; Mus. Nat. Hist. Nat. Paris, France. Literature: Todt and Salvini-Plawen, 2003, in The Veliger, 46 (3).

Kruppomenia nanodentata Todt and Salvini-Plawen, 2003, in The Veliger, 46 (3) Holotype: Mozambique Channel, (Indian Ocean); 520-830 m; Mus. Nat. Hist. Nat. Paris, France. Literature: Todt and Salvini-Plawen, 2003, in The Veliger, 46 (3).

125


Iberus, 25 (2), 2007 Kruppomenia rhynchota (Salvini-Plawen, 1978), in Zoologica, 44 (128) Simrothiella rhynchota Salvini-Plawen, 1978 Holotype: South Pacific; 3694 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Biserramenia Salvini-Plawen, 1967 Biserramenia Salvini-Plawen, 1967. Zeitschrift für Morphologie und Ökologie der Tiere, 59 (3): 321. TYPE SPECIES: Biserramenia psammobionta Salvini-Plawen, 1967.

Cuticle thin; without epidermal papillae. With hollow acicular sclerites in one layer. Mouth separated from the atrium. Radula plates simply serrate. Ventral foregut glandular organs with

epithelial gland cells (type C). Midgut without constrictions. Secondary genital opening unpaired. Without copulatory stylets. Without dorsoterminal sense organ. Without respiratory organs.

Biserramenia psammobionta Salvini-Plawen, 1967, in Zeitschr. Morph. Ökol. Tiere, 59 Holotype: Roscoff (France) 8-10 m; Naturhist. Mus. Wien, Austria, Nº. 77160. Distribution: Galicia (NW Spain), Bretagne, Plymouth; Irish Sea; 8-30 m. Literature: Salvini-Plawen, 1997, in Iberus, 15 (2). García-Álvarez et al., 2000, in Argonauta, XIV (2).

Genus Birasoherpia Salvini-Plawen, 1978 Birasoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 217. TYPE SPECIES: Birasoherpia trisialota Salvini-Plawen, 1978.

Cuticle thick, with epidermal papillae. With hollow acicular sclerites in various layers. Mouth within common atrio-buccal cavity. Radula plates with heterogeneous denticles, with paired anterio-ventral radula sack. With post-

buccal epithelial glandular organs, ventral foregut glandular organs absent. Midgut with constrictions. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Birasoherpia trisialota Salvini-Plawen, 1978, in Zoologica 44 (128) Holotype: Cape Basin, (South Africa), 2785-2870 m; South African Museum, Cape Town, South Africa. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Genus Helicoradomenia Scheltema and Kuzirian, 1991 Helicoradomenia Scheltema and Kuzirian, 1991. The Veliger, 34 (2): 196. TYPE SPECIES: Helicoradomenia juani Scheltema and Kuzirian, 1991.

Cuticle thick. With solid acicular sclerites in one layer. Mouth within common atrio-buccal cavity. Radula plates with few large denticles, with paired anterio-ventral radula sack. Foregut glandular organs as two accumulated groups of long-necked, subepithelially

126

arranged gland cells (clustered type) with proximal musculature. Midgut with moderate constrictions. Secondary genital opening unpaired. With copulatory stylets. With a dorsofrontal sensory pit and with dorsoterminal sense organ. With respiratory organs.


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres A

Sg

Cg Mu Cs Mu

Ag

Ld

Gl

Mu Gl Dt

B

E C

D

Figure 10. Ventral foregut glandular organs types of Solenogastres. A: accumulated groups of cell bodies subepithelially arranged opening directly into the foregut (type clustered); B: duct surrounded by glandular cells or subepithelial glandular follicles (type A); C: duct with subepithelial glandular cells wrapped by connective tissue or muscular fibres (type B); D: tubular organs or in blister shaped full of epithelial glandular cells and only covered by a muscular wrapping (type C; type Simrothiella); E: lateral partly ramified tubes, with subepithelial follicles of glandular cells packed distally (type D). Abbreviations, Ag: glandular cell apex; Cg: glandular cell neck; Cs: supporting cell; Dt: duct; Gl: gland; Ld: lateral duct; Mu: musculature; Sg: glandular cell soma (A: HANDL AND TODT, 2005; B-D: SALVINI-PLAWEN, 1978). Figura 10. Tipos de órganos glandulares ventrales de la faringe de Solenogastros. A: acumulaciones de cuerpo celulares subepiteliales que se abren directamente en la (tipo clustered); B: conducto rodeado por células glandulares o folículos glandulares subepiteliales (tipo A); C: conducto con células glandulares subepiteliales envuelto por tejido conectivo o fibras musculares (tipo B); D: órgano tubular o en forma de ampolla lleno de células glandulares epiteliales o sólo cubierto por una envoltura muscular (tipo C; tipo Simrothiella); E: tubos laterales en parte ramificados con folículos subepiteliales de células glandulares empaquetadas distalmente (tipo D de Amphimeniidae). Abreviaturas, Ag: ápice de la célula glandular;Cg: cuello de la célula glandular; Cs: célula de soporte; Dt: conducto; Gl: glándula; Ld:conducto lateral; Mu: musculatura; Sg: cuerpo de la célula glandular. (A: HANDL AND TODT, 2005; B-D: SALVINI-PLAWEN, 1978).

Helicoradomenia juani Scheltema and Kuzirian, 1991, in The Veliger, 34 Holotype: Juan de Fuca Ridge (Pacific, USA); 2250 m; Nat. Mus. Nat. Hist, Washington DC, USA. Distribution: Eastern and western Pacific, hydrothermal vents; 1800-3271 m. Literature: Scheltema, 2000, in Argonauta, 14 (2).

Helicoradomenia acredema Scheltema, 2000, in Argonauta, 14 (2) Holotype: East Pacific Rise (Mexico); 2600 m; Nat. Mus. Nat.Hist., Washington DC, USA. Distribution: East Pacific (Central America); 2400-3362 m. Literature: Scheltema, 2000, in Argonauta, 14 (2).

Helicoradomenia bisquama Scheltema, 2000, in Argonaura, 14 (2) Holotype: East Pacific Rise (Mexico); 2633 m; Nat. Mus. Nat.Hist., Washington DC, USA. Literature: Scheltema, 2000, in Argonauta, 14 (2).

127


Iberus, 25 (2), 2007

Genus Plawenia Scheltema and Schander, 2000 Plawenia Scheltema and Schander, 2000. The Biological Bulletin, 198: 138. TYPE SPECIES: Simrothiella schizoradulata Salvini-Plawen, 1978.

Cuticle moderately thick, without epidermal papillae. With hollow acicular sclerites in one layer. Mouth within common atrio-buccal cavity. Radula plates with lateral reinforcement (buttress), with heterogeneous denticles; with paired anterio-ventral

radula sack. Ventral foregut glandular organs with epithelial gland cells (type C). Midgut with moderate constrictions. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Plawenia schizoradulata (Salvini-Plawen, 1978), in Zoologica, 44 (128) Simrothiella schizoradulata Salvini-Plawen, 1978 Holotype: South Shetland Islands (Drake Strait, Antarctica); 4748 m; Nat. Mus. Nat. Hist., Washington DC, USA. Distribution: South Shetland Islands (Drake Strait, Antarctica) and Atacama Trench (N Chile); 4758-5931 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128). Scheltema and Schander, 2000, in Biol. Bull., 198.

Plawenia argentinensis Scheltema and Schander, 2000, in Biol. Bull., 198 Holotype: Argentina Bassin; 4382 m; Nat. Mus. Nat. Hist., Washington DC, USA. Literature: Scheltema and Schander, 2000, in Biol. Bull., 198.

Plawenia sphaera Scheltema and Schander, 2000, in Biol. Bull., 198 Holotype: West European Bassin; 2091 m; Nat. Mus. Nat. Hist., Washington DC, USA. Literature: Scheltema and Schander, 2000, in Biol. Bull., 198.

Genus Spiomenia Arnofsky, 2000 Spiomenia Arnofsky, 2000. The Veliger, 43 (2): 110. TYPE SPECIES: Spiomenia spiculata Arnofsky, 2000.

Cuticle thick, without epidermal papillae. With hollow acicular sclerites of two or more types in one layer, several with a distal asymmetrical enlargement (captate). Mouth within common atrio-buccal cavity. Radula plates with lateral reinforcement (buttress), with heterogeneous denticles;

with paired anterio-ventral radula sack. Ventral foregut glandular organs ampullar with epithelial gland cells (type C). Midgut configuration not known. Secondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Spiomenia spiculata Arnovsky, 2000, in The Veliger, 43 (2) Holotype: West European Bassin; 2897 m; Mus. Nat. Hist. Nat., Paris, France. Distribution: West European Bassin; 2040-4307 m. Literature: Arnofsky, 2000, in The Veliger, 43 (2).

Spiomenia praematura Todt and Salvini-Plawen, 2003, in The Veliger, 46 (3) Holotype: Mozambique Channel, (Indian Ocean); 1480 m; Mus. Nat. Hist. Nat. Paris, France. Literature: Todt and Salvini-Plawen, 2003, in The Veliger, 46 (3).

128


GARCĂ?A-Ă LVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Spiomenia phaseolosa Todt and Salvini-Plawen, 2003, in The Veliger 46 (3) Holotype: Mozambique Channel, (Indian Ocean); 3716 m; Mus. Nat. Hist. Nat. Paris, France. Literature: Todt and Salvini-Plawen, 2003, in The Veliger 46 (3).

Genus Aploradoherpia Salvini-Plawen, 2004 Aploradoherpia Salvini-Plawen, 2004. Journal of Molluscan Studies, 70: 83. TYPE SPECIES: Aploradoherpia insolita Salvini-Plawen, 2004.

Cuticle moderately thick, without epidermal papillae. With hollow acicular sclerites in one layer. Mouth within common atrio-buccal cavity. Radula plates with few simple denticles. Ventral foregut glandular organs

with epithelial gland cells (type C). Midgut without regular constrictions. Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Aploradoherpia insolita Salvini-Plawen, 2004, in J. Moll. Stud., 70 Holotype: Atacama Trench (N Chile); 1863-1965 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 2004, in J. Moll. Stud., 70.

Family DREPANOMENIIDAE Salvini-Plawen, 1978 Drepanomeniidae Salvini-Plawen, 1978. Zoologica, 44 (128): 25.

Hollow acicular sclerites in a single layer. Radula type unknown. Ventral foregut glandular organs with epithelial

gland cells (type C). Midgut with constrictions. Without seminal receptacles. With respiratory organs.

Genus Drepanomenia Heath, 1911 Drepanomenia Heath, 1911. Memoirs of the Museum of Comparative Zoology at Harvard College, 45 (1): 44. TYPE SPECIES: Drepanomenia vampyrella Heath, 1911.

Cuticle thick, with epidermal papillae; sclerites arranged fairly radially. Mouth within common atrio-buccal cavity. Radula missing. Midgut with

constrictions. Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. With respiratory organs.

Drepanomenia vampyrella (Heath, 1905), in Zool. Jahrb. Anat., 21 (4) Neomenia vampyrella Heath, 1905 Holotype: Oahu Islands (Hawaii) (Albatross St. 3907); 555-575 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Coll. Harvard Coll., 45 (1).

Drepanomenia incrustata (Kor. and Dan., 1877), in Arch. Math. og Naturvid. (Oslo), 2 (2) Solenopus incrustatus Koren and Danielssen, 1877 Holotype: Hasvik (Finmarken, Norway); 365-550 m; Svenska Mus. Nat. Hist. Stockholm. Literature: Odhner, 1921, in Bergens Aarb. 1918/19, 3.

129


Iberus, 25 (2), 2007 Drepanomenia perticata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica); 1883-1890 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Drepanomenia pontisquamata Salvini-Plawen, 2004, in J. Moll. Stud., 70 Holotype: SE Canada; 403 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 2004, in J. Moll. Stud., 70.

Drepanomenia tenuitecta Salvini-Plawen, 2004, in J. Moll. Stud., 70 Holotype: near New Zealand; 531-659 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 2004, in J. Moll. Stud., 70.

Family STROPHOMENIIDAE Salvini-Plawen, 1978 Strophomeniidae Salvini-Plawen, 1978. Zoologica, 44 (128): 25.

Cuticle thick; hollow acicular sclerites arranged in several layers. Radula pectinate (monoserial to divided-biserial) or missing. Ventral foregut glandular organs with a paired outleading

duct, the intercellularly opening subepithelial gland cells being surrounded by an outer musculature (type B). Seminal receptacles in bundles. Without respiratory organs.

Genus Strophomenia Pruvot, 1899 Strophomenia Pruvot, 1899. Archives de zoologie expérimentale et générale, 3ª série, 7: 489. TYPE SPECIES: Strophomenia lacazei Pruvot, 1899.

Epidermal papillae often pseudoepithelially arranged. Mouth within common atrio-buccal cavity. Radula missing. Midgut with constrictions. Sec-

ondary genital opening paired or fused. Without copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Strophomenia lacazei Pruvot, 1899, in Arch. Zool. Exp. gén., sér. 3, 7 Holotype: La Calle (Algeria); Litoral; (Type material missing). Literature: Pruvot, 1899, in Arch. Zool. Exp. gén., sér. 3, 7.

Strophomenia debilis (Nierstrasz, 1902), in Siboga-Exp. Monogr., 47 Rhopalomenia debilis Nierstrasz, 1902 Holotype: Buton Strait (Indonesia) (Siboga St. 204); 90 m; Zool. Mus. Univ. Amsterdam, Netherlands. Literature: Nierstrasz, 1902, in Siboga-Exp. Monogr., 47.

Strophomenia indica (Nierstrasz, 1902), in Siboga-Exp. Monogr., 47 Rhopalomenia indica Nierstrasz, 1902, non S. indica in Nierstrasz and Stork, 1940 (= spec.nov.) Holotype: Kei Islands (Indonesia) (Siboga St. 265 and 262) (?); 304-560 m; (Syntype) Zool. Mus. Univ. Amsterdam, Netherlands. Literature: Nierstrasz, 1902, in Siboga-Exp. Monogr., 47.

130


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Ph Ph

Vfg Vfg

A

100 µm

B

100 µm

Ph Ph

Vfg

Vfg

C

100 µm

D

250 µm

Figure 11. A: microphotograph through the subepithelial ventral foregut glandular organs (type A) in Rhopalomenia aglaopheniae; B: microphotograph through the subepithelial-epithelial ventral foregut glandular organs (type B) in Anamenia gorgonophila; C: microphotograph through the epithelial ventral foregut glandular organs (type C) in Dorymenia menchuescribanae; D: microphotograph through the ramified ventral foregut glandular organs (type D) in Sputoherpia galliciensis. Abbreviations, Ph: pharynx; Vfg: ventral foregut glandular organs. Figura 11.- A: microfotografías de los órganos glandulares ventrales de la faringe subepiteliales (tipo A) en Rhopalomenia aglaopheniae; B: microfotografías de los órganos glandulares ventrales de la faringe subepiteliales-epiteliales (tipo B) en Anamenia gorgonophila; C: microfotografías de los órganos glandulares ventrales de la faringe epiteliales (tipo C) en Dorymenia menchuescribanae; D: microfotografías de los órganos glandulares ventrales de la faringe con tubos laterales ramificados (tipo D) en Sputoherpia galliciensis. Abreviaturas, Ph: faringe; Vfg: órganos glandulares ventrales de la faringe.

Strophomenia ophidiana Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: Honshu Islands (Japan) (Albatross St. 3755); 95-140 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Strophomenia regularis Heath, 1911 in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: Honshu Islands (Japan) (Albatross St. 3717), 130-180 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Strophomenia scandens (Heath, 1905), in Zool. Jb. Anat., 21 (4) Rhopalomenia scandens Heath, 1905 Holotype: Bird Islands (Hawaii) (Alabtross St. 4156); 625-1035 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

131


Iberus, 25 (2), 2007

Genus Anamenia Nierstrasz, 1908 Anamenia Nierstrasz, 1908. National Antarctic Expedition 1901-1904. Natural History. 4. Zoology: 11. Synonyms: Solenopus Sars, 1868 (part.). TYPE SPECIES: Proneomenia amboinensis Thiele, 1902.

Epidermal papillae often pseudoepithelially arranged. Mouth within common atrio-buccal cavity. Radula present, pectinate. Midgut with constric-

tions. Secondary genital opening generally paired. Without copulatory stylets. With dorsoterminal sense organ (s). Without respiratory organs.

Anamenia amboinensis (Thiele, 1902), in Denkschrift med.-naturwiss. Ges. Jena, 8 Proneomenia amboinensis Thiele, 1902 Holotype: Amboina (Banda Sea, Indonesia); unknown depth; Museum für Naturkunde, Berlin, Germany. Literature: Thiele, 1913, in Das Tierreich, 38.

Anamenia agassizi (Heath, 1918), in Mem. Mus. Comp. Zool. Harvard Coll., 45 (2) Strophomenia agassizi Heath, 1918 Holotype: Cape Cod (Massachusets, USA); 745-1240 m; (Type material missing). Literature: Heath 1918 in Mem. Mus. Comp. Zool. Harvard Coll., 45 (2).

Anamenia borealis (Kor. and Dan., 1877), in Arch. Math. og Naturvid. (Oslo), 2 (2) Solenopus borealis Koren and Danielssen, 1877 Holotype: Vadsö (Norway), depth unknown; Zoologisk Museum, Bergen, Norway. Distribution: Baffin-Bucht (W- Greenland), North Sea, Norway; 70-1200 m. Literature: Odhner, 1921, in Bergens Mus. Aarb. 1918/19, 3.

Anamenia farcimen (Heath, 1911), in Mem.Mus.Comp.Zool. Harvard Coll., 45 (1) Strophomenia farcimen Heath, 1911 Holotype: Honshu Islands (Japan) (Albatross St. 3748), 130-365 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1). Thiele, 1913, in Das Tierreich, 38.

Anamenia gorgonophila (Kowalewski, 1880), in Zool. Anz., 3 Neomenia gorgonophila Kowalevsky, 1880 Proneomenia nierstraszi Stork, 1940 Anamenia heathi Leloup, 1947 Holotype: East Algeria (Mediterranean Sea); depth unknown; (Type material missing). Neotype: Gorringe Bank (WSW Cape Sao Vicente,Portugal); 65-90 m (Sta. 2731); (Holotype of A. heathi Leloup, 1947, Oceanograph. Mus. Monaco) herein designated by the junior author following arguments presented in SALVINI-PLAWEN (1972b) and considering the need of stabilizing the name by reference to a detailed anatomical description. Distribution: West Mediterrean to Azores and to Galicia (Spain); 65-845 m. Literature: Leloup, 1950, in Résult. Camp. Sc. Monaco, 110. Salvini-Plawen, 1972, in Zeitschr. zool. Syst. Evolut.-forsch., 10 (3). García-Álvarez, Urgorri and Cristobo, 1999, in Nova Acta Cient. Compostelana, 9.

Anamenia spinosa (Heath, 1911), in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Strophomenia spinosa Heath, 1911 Holotype: Misaki (Honshu Islands, Japan) (Albatross St. 4935/4936/3748), 130-365 m; Calif.Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1). Thiele, 1913, in Das Tierreich, 38.

132


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Anamenia triangularis (Heath, 1911), in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Strophomenia triangularis Heath, 1911 Holotype: Honshu Islands (Japan) (Albatross St. 3716/4935/4936), 120-230 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1). Thiele,1913, in Das Tierreich, 38.

Family PRONEOMENIIDAE Simroth, 1893 Proneomeniidae Simroth, 1893. H. G. Bronn’s Klassen and Ordnungen des Tierreichs, 3 (1): 225; non Proneomenidae Mitchell, 1892 (cf. Salvini-Plawen, 2004).

Cuticle thick; hollow acicular sclerites arranged in several layers. Radula polystichous-polyserial. Ventral foregut

glandular organs with epithelial gland cells (type C). One pair of seminal receptacles.

Genus Proneomenia Hubrecht, 1880 Proneomenia Hubrecht, 1880. Zoologischer Anzeiger, 3: 589. TYPE SPECIES: Proneomenia sluiteri Hubrecht, 1880.

With epidermal papillae. Mouth within common atrio-buccal cavity. Midgut with constrictions. Secondary

genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ (s). Without respiratory organs.

Proneomenia sluiteri Hubrecht, 1880, in Zool. Anz., 3 Proneomenia langi Simroth, 1893 Holotype: Barents Sea; 200-292 m; (Type material missing). Paratype: Mus. Comp. Zoology Harvard Univ. Distribution: Spitzbergen, Barents Sea, Kara Sea to Laptev Sea; 45-300 m. Literature: Hubrecht, 1881, in Niederl. Arch. Zool., 9 (1). Heuscher, 1892, in Jena. Zeitschr. Nat.wiss., 27. Thiele, 1932, in Fauna arctica (Römer and Schaudinn), 6 (IV).

Proneomenia acuminata Wirén, 1892 in Kungl. Svenska Vetensk. Akad. Handl., 25 (6) Holotype: W Indian Ocean; 550 m; (Type material missing). Distribution: Straits of Florida, Martha’s Vineyard and Mantucket (USA); 250-650 m. Literature: Heath, 1918, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (2).

Proneomenia desiderata Kowalevsky and Marion, 1887, in Ann. Mus. Marseille, 3 (1) Holotype: Marseille (France); 20-30 m; (Type material missing). Literature: Kowalevsky and Marion, 1887, in Ann. Mus. Marseille, 3 (1).

Proneomenia epibionta Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: near Falkland Islands (SW Atlantic); 646-845 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Proneomenia gerlachei Pelseneer, 1901, in Bull. Acad. Belgique, 9-10 Holotype: Bellinhausen Sea (Antarctica); 550 m; Inst. Roy. Sci. Nat. Belg., Brussels, Belgium. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Proneomenia hawaiiensis Heath, 1905, in Zool. Jb. Anat., 21 (4) Holotype: Kauai Islands (Hawaii) (Albatross St. 4001); 300-500 m; Calif. Acad. Sci., San Francisco, USA.

133


Iberus, 25 (2), 2007 Distribution: Mokuhoonoki Islet and Molokai Island (Hawaii) (Albatross St. 3864); 270-330 m. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Proneomenia insularis Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: Modu Manu (Vogel Islands, Hawaii) (Albatross St. 4157); 1400-1800 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Proneomenia praedatoria Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Kerguelen Islands (S Indian Ocean); 585 m; Station marine d’Endoume, Marseille, France. Distribution: S Indian Ocean and Drake Strait (South Sandwich Islands, Antarctica); 585-1240 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Proneomenia stillerythrocytica Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Falkland Islands (SW Atlantic); 512-586 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Proneomenia valdiviae Thiele, 1902, in Wiss. Ergebnisse Dtsch. Tiefsee-Exp. Valdivia 1898/1899, 3 Holotype: Zanzibar (East Africa); 748 m; Museum für Naturkunde, Berlin, Germany, Moll. 105 406. Literature: Thiele, 1902, in Wiss. Ergebnisse Dtsch. Tiefsee-Exp. Valdivia 1898/1899, 3.

Genus Dorymenia Heath, 1911 Dorymenia Heath, 1911. Memoirs of the Museum of Comparative Zoology at Harvard College, 45 (1): 46. TYPE SPECIES: Dorymenia acuta Heath, 1911.

With epidermal papillae. Mouth within common atrio-buccal cavity. Midgut with regular constrictions. Secondary genital

opening unpaired. With copulatory stylets. With dorsoterminal sense organ(s). Without respiratory organs.

Dorymenia acuta Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1) Holotype: Santa Barbara Islands (California, USA) (Albatross St. 4415); 550-1150 m; Calif. Acad. Sci., San Francisco, USA. Literature: Heath, 1911, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (1).

Dorymenia acutidentata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Bransfield Strait (Graham-Land, Antarctica); 494-507 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC. Distribution: Bransfield Strait (Antarctica), South Shetland Islands (Antarctica); 494-1437 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia antarctica (Thiele, 1913), in Dtsch. Südpolar-Exp., 14 (Zool. 6/1) Proneomenia antarctica Thiele, 1913; non P. antarctica Thiele in Hoffman, 1947/1949, = Dorymenia hoffmani Salvini-Plawen, 1978. Holotype: Gauss Station (Davis Sea, Antarctica), 385 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia cristata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Bransfield Strait (Graham-Land, Antarctica); 884-935 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA.

134


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

A

10 µm

C

B

5 µm

F

E

D 30 µm

G 10 µm

40 µm

25 µm

20 µm

H

25 µm

I 40 µm

Figure 12. Radula types of Solenogastres. Monoserial, A: Macellomenia adenota; B: Nematomenia flavens; C: Sputoherpia galliciensis. Biserial, D: Spiomenia praematura; E: Kruppomenia borealis. Pectinate, F: Anamenia gorgonophila. Distichous, G: Tegulaherpia myodoryata. Tetraserial, H: Imeroherpia laubieri. Polystichous, I: Dorymenia troncosoi. (A: SALVINI-PLAWEN, 2003b; B: SALVINIPLAWEN, 1978; C: GARCÍA-ÁLVAREZ ET AL., 2000; D: TODT AND SALVINI-PLAWEN, 2003; E: GARCÍA-ÁLVAREZ ET AL., 2001; F: SALVINI-PLAWEN, 1972b; G: HANDL AND SALVINI-PLAWEN, 2001; H: HANDL, 2002; I: GARCÍA-ÁLVAREZ ET AL., 1998). Figura 12. Tipos de rádula en Solenogastros. Monoseriada, A: Macellomenia adenota; B: Nematomenia flavens; C: Sputoherpia galliciensis. Biseriada, D: Spiomenia praematura; E: Kruppomenia borealis. Pectinada, F: Anamenia gorgonophila. Dística, G: Tegulaherpia myodoryata. Tetraseriada, H: Imeroherpia laubieri. Polística, I: Dorymenia troncosoi. (A: SALVINI-PLAWEN, 2003b; B: SALVINI-PLAWEN, 1978; C: GARCÍA-ÁLVAREZ ET AL., 2000; D: TODT AND SALVINI-PLAWEN, 2003; E: GARCÍA-ÁLVAREZ ET AL., 2001; F: SALVINI-PLAWEN, 1972b; G: HANDL AND SALVINI-PLAWEN, 2001; H: HANDL, 2002; I: GARCÍA-ÁLVAREZ ET AL., 1998).

Distribution: Bransfield Strait, South Shetland Islands, Ross Sea (Antarctica); 311-1437 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia discoveryi (Nierstrasz, 1908), in Nat. Antarctic Exp.1901-1904, Nat. Hist., 4 Proneomania discoveryi Nierstrasz, 1908 Holotype: Ross Sea (Antarctica); 180-185 m; Brit. Mus. Nat. Hist. London, UK. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia harpagata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Macquarie Islands (South Pacific); 86-101 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

135


Iberus, 25 (2), 2007 Dorymenia hesperidesi García-Álvarez, Urgorri and Salvini-Plawen, 2000, in J. mar. biol. Ass. UK, 80 Holotype: Livingston Islands (South Shetland Islands, Antarctica); 235 m; Mus. Nacional Cienc. Nat., Madrid, Spain. Literature: García-Álvarez, Urgorri and Salvini-Plawen, 2000, in J. mar. biol. Ass. UK, 80.

Dorymenia hoffmani Salvini-Plawen, 1978, in Zoologica, 44 (128) Proneomenia antarctica Thiele in Hoffman, 1947/1949 Holotype: Weddel Sea (Antarctica); 125 m; Univ. Zool. Mus. Uppsala, Sweden. Distribution: Antarctica-Subantarctica; 75-549 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia interposita Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Sandwich Islands (Antarctica), 118 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia longa (Nierstrasz, 1902), in Siboga-Exp. Monogr., 47 Proneomenia longa Nierstrasz, 1902 Holotype: Sunda-Sea (Indonesia) (Siboga St. 211); 1150 m; Zool. Mus. Univ. Amsterdam, Netherlands. Literature: Nierstrasz,1902, in Siboga-Exp. Monogr., 47.

Dorymenia menchuescribanae García-Álvarez, Urgorri and Salvini-Plawen, 2000, in J. mar. biol. Ass. UK, 80 Holotype: Livingston Islands (South Shetland Islands, Antarctica); 50 m; Mus. Nacional. Cienc. Nat., Madrid, Spain. Literature: García-Álvarez et al., 2000, in J. mar. biol. Ass. UK, 80.

Dorymenia parvidentata García-Álvarez and Urgorri, 2003, in Iberus, 21 (1) Holotype: Livingston Islands (South Shetland Islands, Antarctica); 80 m; Mus. Nacional. Cienc. Nat., Madrid, Spain. Literature: García-Àlvarez and Urgorri, 2003, in Iberus, 21 (1).

Dorymenia paucidentata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Palmer Archipelago (Graham Land, Antarctica); 49 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: Graham Land (Antarctica), False Bay (South Africa); 49-426 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia peroneopsis Heath, 1918, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (2) Holotype: North America (West Atlantic); 3200 m; (Type material missing). Literature: Heath, 1918, in Mem. Mus. Comp. Zool. Harvard Coll., 45 (2).

Dorymenia profunda Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Amundsen Sea (Antarctica); 2426-2635 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: Amundsen Sea (Antarctica); 2416-4795 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia (Doryherpia) quincarinata (Ponder, 1970), in J. Malacol. Soc. Australia, 2 (1) Proneomenia quincarinata Ponder, 1970 Holotype: E New Zealand, 238 m; Dominion Museum, Wellington, New Zealand. Distribution: New Zealand; 14-238 m. Literature: Salvini-Plawen, 2004, in J. Moll. Stud., 70.

136


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres Dorymenia sarsii (Kor. and Dan., 1877), in Arch. Math. og Naturvid. (Oslo), 2 (2) Solenopus sarsii Koren and Danielssen, 1877 Dorymenia sarsi Auct.; Dorymenia tortilis Scheltema and Schander, 2000 Holotype: Oslofjord (Norway); 190-225 m; Svenska Mus. Nat. Hist., Stockholm and Zoologisk Museum, Bergen, Norway. Distribution: Scandinavia, Bay of Biscay (pers. obs. Salvini-Plawen), Gorringe Bank (Cap Sao Vicente, Portugal); 164-681 m. Literature: Handl and Salvini-Plawen, 2002, in Sarsia, 87.

Dorymenia singulatidentata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Bransfield Strait (Graham-Land, Antarctica); 662-1120 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia tetradoryata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica); 909-923 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: Ross Sea (Antarctica); 344-923 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia tricarinata (Thiele, 1913), in Dtsch. Sudpolar-Exp., 14 (Zool. 6/1) Proneomenia tricarinata Thiele, 1913 Holotype: Gauss-Station (Davis Sea, Antarctica); 385 m; Museum für Naturkunde, Berlin, Germany. Distribution: Antarctica - Subantarctica; 187-385 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia troncosoi García-Álvarez, Urgorri and Salvini-Plawen, 1998, in Polar. Biol., 20 Holotype: Livingston Islands (South Shetland Islands, Antarctica); 66 m; Mus. Nacional. Cienc. Nat., Madrid. Distribution: South Shetland Islands (Antarctica); 65-240 m. Literature: García-Álvarez, Urgorri and Salvini-Plawen, 1998, in Polar Biol., 20.

Dorymenia usarpi Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Ross Sea (Antarctica); 344-351 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Distribution: South Orkney Islands (Antarctica), Bransfield Strait, Ross Sea (Antarctica); 311732 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Dorymenia vagans (Kor. and Mar., 1887), in Ann. Mus. Hist. Nat. Marseille, Zool. III (1) Proneomenia vagans Kowalevsky and Marion, 1887; non Proneomenia vagans Kow.and Mar. in Pruvot, 1891 (= Pararrhopalia pruvoti Simroth) Holotype: Marseille (France); 20 m; (Type material missing); Neo-Holotype: Gulf of Neaples (Italy); Zool. Mus. Univ. Amsterdam, Netherlands. Distribution: Marseille (France), Neapel, Livorno (Italy); 20-60 m. Literature: Nierstrasz and Strork, 1940, in Zoologica, 36 (99).

Dorymenia weberi (Nierstrasz, 1902), in Siboga-Exp. Monogr., 47 Proneomenia weberi Nierstrasz, 1902 Holotype: Java See (Indonesia) (Siboga St. 314); 694 m; Zool. Mus. Univ. Amsterdam, Netherlands. Literature: Nierstrasz 1902 in Siboga-Exp. Monogr., 47.

137


Iberus, 25 (2), 2007

Family EPIMENIIDAE Salvini-Plawen, 1978 Epimeniidae Salvini-Plawen, 1978. Zoologica, 44 (128): 25.

Cuticle thick; hollow acicular sclerites arranged in several layers. Radula distichous to biserial. Ventral foregut

glandular organs with epithelial gland cells (type C). Seminal receptacles in bundles.

Genus Epimenia Nierstrasz, 1908 Epimenia Nierstrasz, 1908. National Antarctic Expedition 1901-1904. Natural History. 4. Zoology: 11. TYPE SPECIES: Proneomenia australis Thiele, 1897.

With epidermal papillae. Mouth within common atrio-buccal cavity. Ventral foregut glandular organs with pre-radular outlet. Midgut without regular constrictions. With a pair of pha-

ryngeal ganglia, buccal ganglia vestigial. Secondary genital opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Epimenia australis (Thiele, 1897), in Zool. Anz., 20 Proneomania australis Thiele, 1897 Dinomenia verrucosa Nierstrasz, 1902, non in Baba 1938-1950 (= E. babai Salvini-Plawen) Holotype: Timor Sea (Indonesia); 110 m; Museum f端r Naturkunde, Berlin, Germany. Distribution: Indonesia (Timor Sea, Banda Sea, W Flores), Papua Neu Guinea; 15-110 m. Literature: Salvini-Plawen 1997 in J. Moll. Stud., 63. Scheltema and Jebb, 1994, in J. Natural Hist., 28.

Epimenia allohaemata Salvini-Plawen, 1997, in J. Moll. Stud., 63 Holotype: Korea Strait; 165 m; Zool. Mus. Copenhagen, Denmark. Literature: Salvini-Plawen, 1997, in J. Moll. Stud., 63.

Epimenia arabica Salvini-Plawen and Benayahu, 1991, in Marine Ecology, 12 (2) Holotype: Tiran-Strait (Sinai-Peninsula, Red Sea); 5 m; Zool. Mus. Tel Aviv Univ, Israel. Distribution: off Sinai-Peninsula, Hurghada (pers. obs. Salvini-Plawen); 2-23 m. Literature: Salvini-Plawen, 1997, in J. Moll. Stud., 63.

Epimenia babai Salvini-Plawen, 1997, in J. Moll. Stud., 63 E. verrucosa (Nierstrasz) in Baba, 1938, non Dinomenia verrucosa Nierstrasz, 1902 (= E. australis (Thiele, 1897) Holotype: Tomioka/Amakusa (Kyushu, Japan), 40-60 m; Amakusa Mar. Biol. Lab., Kyushu, Japan. Distribution: Tomioka/Amakusa to Nomo/Nagasaki (Kyushu, Japan); 40-92 m. Literature: Salvini-Plawen, 1997, in J. Moll. Stud., 63.

Epimenia indica Salvini-Plawen, 1978, in J. Moll. Stud., 63 Holotype: Nilandu Atoll (Maldives Islands, Indian Ocean), 2-66 m; Brit.Mus.Nat.Hist London, UK. Literature: Salvini-Plawen, 1997, in J. Moll. Stud., 63.

Epimenia ohshimai Baba, 1940, in Venus, 2 Holotype: Tomioka/Amakusa (Japan), 40-60 m; (Type material missing). Literature: Salvini-Plawen, 1997, in J. Moll. Stud., 63.

138


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Rc

Ht

Pr Pd

Pd

Re Re

Sd

Sd

A

100 µm

B

500 µm

Ht Re

Rc Pr Re

Gl Pd

Sd Sd

Pc

200 µm D 200 µm C Figure 13. Microphotographs of cross section through the reproductive system. A: Anamenia gorgonophila; B: Dorymenia menchuescribanae; C, D: Sputoherpia galliciensis. Abbreviations, Gl: gland; Go: gonad; Ht: Heart; Pc: pallial cavity; Pd: pericardioduct; Pr: pericardium; Rc: supra-rectal commissure; Re: rectum; Sd: spawning duct. Figura 13. Microfotografias de cortes en sección del sistema reproductor. A: Anamenia gorgonophila; B: Dorymenia menchuescribanae; C, D: Sputoherpia galliciensis. Abreviaturas, Gl: glandula; Go: gónada; Ht: corazón; Pc: cavidad paleal; Pd: pericardioducto; Pr: pericardio; Rc: comisura suprarrectal; Re: recto; Sd: conducto de desove.

Genus Epiherpia Salvini-Plawen, 1997 Epiherpia Salvini-Plawen, 1997. Journal of Molluscan Studies, 63 (2): 151. TYPE SPECIES: Epimenia vixinsignis Salvini-Plawen, 1978.

With epidermal papillae. Mouth within common atrio-buccal cavity. Ventral foregut glandular organs opening next to radula. Midgut with constrictions. Buccal ganglia typically

present. With dorsoterminal sense organ. Secondary genital opening unpaired. Seminal receptacles, copulatory stylets and respiratory organs unknown.

Epiherpia vixinsignis (Salvini-Plawen, 1978), in Zoologica, 44 (128) Epimenia vixinsignis Salvini-Plawen, 1978 Holotype: Ross Sea (Antarctica); 659-714 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1997, in J. Moll. Stud., 63.

139


Iberus, 25 (2), 2007

Family SYNGENOHERPIIDAE Salvini-Plawen, 1978 Syngenoherpiidae Salvini-Plawen, 1978. Zoologica, 44 (128): 26.

Cuticle thick; hollow acicular sclerites arranged in several layers. Radula distichous to biserial. Ventral foregut glandular organs with a paired outlead-

ing duct, the intercellularly opening subepithelial gland cells being surrounded by an outer musculature (type B). Seminal receptacles in bundles.

Genus Syngenoherpia Salvini-Plawen, 1978 Syngenoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 284. TYPE SPECIES: Syngenoherpia intergenerica Salvini-Plawen, 1978.

With epidermal papillae. Mouth within common atrio-buccal cavity. Midgut with regular constrictions. Sec-

ondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Syngenoherpia intergenerica Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: South Pacific; 567-604 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Syngenoherpia sanguicuneosa Salvini-Plawen, 1978, in Zologica, 44 (128) Holotype: Balleny Islands (Antarctica); 1442-1444 m; Smithsonian Institution (Nat. Mus. Nat. Hist.), Washington DC, USA. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

Family RHIPIDOHERPIIDAE Salvini-Plawen, 1978 Rhipidoherpiidae Salvini-Plawen, 1978. Zoologica, 44 (128): 26.

Cuticle thick; hollow acicular sclerites arranged in several layers. Radula polystichous. Ventral foregut glandular

organs with ducts and subepithelially arranged gland cells (type A). Seminal receptacles in bundles.

Genus Rhipidoherpia Salvini-Plawen, 1978 Rhipidoherpia Salvini-Plawen, 1978. Zoologica, 44 (128): 295. TYPE SPECIES: Rhipidoherpia copulobursata Salvini-Plawen, 1978.

With epidermal papillae. Mouth within common atrio-buccal cavity. Midgut with regular constrictions. Sec-

ondary genital opening unpaired. With copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Rhipidoherpia copulobursata Salvini-Plawen, 1978, in Zoologica, 44 (128) Holotype: Kerguelen Islands (Indian Ocean); 585 m; Station marine d’Endoume, Marseille, France. Distribution: Kerguelen Islands, Crozet Islands (Indian Ocean); 187-585 m. Literature: Salvini-Plawen, 1978, in Zoologica, 44 (128).

140


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres

Genus Thieleherpia Salvini-Plawen, 2004 Thieleherpia Salvini-Plawen, 2004. Journal of Molluscan Studies, 70: 86. TYPE SPECIES: Thieleherpia thulensis Thiele, 1900.

With epidermal papillae. Mouth within common atrio-buccal cavity. Midgut with regular constrictions. Secondary genital

opening unpaired. Without copulatory stylets. With dorsoterminal sense organ. Without respiratory organs.

Thieleherpia thulensis (Thiele, 1900), in Fauna arctica, 1 Proneomenia thulensis Thiele, 1900 Holotype: Hinlopen Strait, Spitzbergen (NE Atlantic); 480 m; Museum für Naturkunde, Berlin, Germany. Literature: Salvini-Plawen, 2004, in J. Moll. Stud., 70.

Family NOTOMENIIDAE Salvini-Plawen, 2004 Notomeniidae Salvini-Plawen, 2004. Journal of Molluscan Studies, 70: 89.

Cuticle thick. Hollow club-shaped sclerites in one layer, generally not calcareous and with the internal space filled with a

matrix. Radula unknown. Ventral foregut glandular organs with ducts and subepithelially arranged gland cells (type A).

Genus Notomenia Thiele, 1897 Notomenia Thiele, 1897. Zoologischer Anzeiger, 20: 398. TYPE SPECIES: Notomenia clavigera Thiele, 1897.

Epidermal papillae present. Mouth separated from the atrium. Radula missing. Midgut with constrictions. One pair of seminal receptacles.

Secondary genital opening paired. Without copulatory stylets. Dorsoterminal sense organ and respiratory organs unknown.

Notomenia clavigera Thiele, 1897, in Zool. Anz., 20 Holotype: Torres Strait (N Australia); 36 m; Museum für Naturkunde, Berlin, Germany. Distribution: North Australian and South Australian (Bass Strait) seas; 36-40 m. Literature: Thiele, 1902, in Zeitschr. wiss. Zool., 72. Salvini-Plawen, 2004, in J. Moll. Stud., 70.

ACKNOWLEDGEMENTS This paper is part of the research projets “DIVA-Artabria I” (Xunta de Galicia - PGIDT01PXI20008PR) and “DIVA-Artabria II” (M.E.C – Spanish government CTM-2004-00740). We are

grateful to Prof. Dr. Victoriano Urgorri at the University of Santiago de Compostela for his valuable help. Our thanks also to Ian Emmett for the English translation.

141


Iberus, 25 (2), 2007 BIBLIOGRAPHY ARNOFSKY, P., 2000. Spiomenia spiculata, gen. et sp. nov. (Aplacophora: Neomeniomorpha) collected from the Deep Waters of West European Basin. The Veliger, 43 (2): 110-117. BABA, K., 1938. The later development of a solenogastre, Epimenia verrucosa (Nierstrasz). Journal of the Department of Agriculture, Fukuoka, 6 (1): 21-40. BABA, K., 1940a. The mechanisms of absortion and excretion in a solenogastre, Epimenia verrucosa (Nierstr.).Journal of the Department of Agriculture, Fukuoka, 6 (4): 119-166. BABA, K., 1940b. The early development of the solenogastre, Epimenia verrucosa (Nierstr.). Annotationes Zoologicae Japonenses, 19 (2): 107113. BABA, K., 1951. General sketches of development of a solenogastre, Epimenia verrucosa (Nierstr.). Miscellaneous Reports of the Research Institute for Natural Resources, Japan, 19-20: 3846. GARCÍA-ÁLVAREZ, O., SALVINI-PLAWEN, L. v. AND URGORRI, V., 2001. The presence of Simrothiella borealis (Odhner, 1921) (Mollusca, Solenogastres: Simrothiellidae) in waters off the Iberian Peninsula. Iberus, 19 (2): 1-8. G ARCÍA -Á LVAREZ , O., U RGORRI , V. AND CRISTOBO, F. J., 2000. Rhopalomenia aglaopheniae (Kowalevsky y Marion, 1887) (Mollusca, Solenogastres, Rhopalomeniidae), presente en la costa norte de la Península Ibérica. Iberus, 18 (1): 125-131. GARCÍA-ALVAREZ, O., URGORRI, V. AND SALVINIPLAWEN, L. v., 1998. Dorymenia troncosoi sp. nov. (Mollusca Solenogastres: Proneomeniidae), a new species from the South Shetland Islands (Antarctica). Polar Biology, 20: 382-387. HANDL, C., 2002. Imeroherpia laubieri, a new solenogaster from the Bay of Biscay. Journal of Molluscan Studies, 68: 329-335. HANDL, C. AND SALVINI-PLAWEN, L. v., 2001. New records of Solenogastres-Pholidoskepia (Mollusca) from Norwegian fjords and shelf waters including two new species. Sarsia, 86: 367-381. HANDL, C. AND TODT, CH., 2005. Foregut glands of Solenogastres (Mollusca): Anatomy and revised terminology. Journal of Morphology, 265: 28-42. HEATH, H., 1904a. The nervous system and subradular organ in two genera of Solenogastres. Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere, 20: 399-408. HEATH, H., 1904b. The habits of a few Solenogastres. Zoologischer Anzeiger, 27: 457-461.

142

H EATH , H., 1905. The morphology of a Solenogastre. Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere, 21 (4): 701-734. HEATH, H., 1908. The Solenogastre subradular nervous system. Anatomischer Anzeiger, 33: 365-367. HEATH, H., 1914. Certain features of Solenogastre development. Proceedings of the Academy of Natural Sciences of Philadelphia, 66: 535-541. HOFFMAN, S., 1947/1949. Studien über das Integument der Solenogastren nebst Bemerkungen über die Verwandtschalt zwischen den Solenogastren und Placophoren. Zoologiska Bidrag från Uppsala, 27: 293-427. HOFFMANN, H., 1929-1930. Aplacophora. In: Klassen und Ordungen des Tierreichs, 3 (1) H.G. Bronn (ed.) (Nachtr. I and II): 1-368. LELOUP, E., 1950. Solenogastres provenant des Campagnes du Prince Albert 1er de Monaco. Résultats des campagnes scientifiques accomplies sur son yacht par Albert 1er, Prince souverain de Monaco, 110: 1-37. NIERSTRASZ, H., 1902. The Solenogastres of the Siboga Expedition. Siboga Expedition, Monograph 47: 1-46. NIERSTRASZ, H. F., 1905. Kruppomenia minima und die Radula der Solenogastren. Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere, 21: 665-702. NIERSTRASZ, H., 1908. The Solenogastres of Discovery-Expedition. National Antarctic Expedition 1901-1904, Natural History, 4: 38-46. NIERSTRASZ, H., 1909. Die Amphineuren: I. Die Solenogastren. Ergebnisse und Fortschritte der Zoologie, 1: 239-306. PELSENEER, P., 1903. Zoologie: Mollusques (Amphineures, Gastropodes et Lamellibranches). Résultats du Voyage du S.Y. Belgica en 18971898-1899 sous le commandement de A. de Gerlache de Gomery: Rapports Scientifiques (19011913), 14: 1-85, pl. 1-9. Buschmann: Anvers. PRUVOT, G., 1890a. Sur le développement d’un Solenogastre. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 111: 689692. PRUVOT, G., 1890b. Sur le prétendu appareil circulatoire et les organes génitaux des Néoméniées. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 111: 5962. PRUVOT, G., 1892. Sur l’embryogénie d’une Proneomenia. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 114: 12111214.


GARCÍA-ÁLVAREZ AND SALVINI-PLAWEN: Species and diagnosis of Solenogastres S ALVINI -P LAWEN , L. v., 1967. Kritische Bemerkungen zum System der Solenogastres (Mollusca, Aculifera). Zeitschrift für Zoologische Systematik und Evolutionforschung, 5 (4): 398-444. S ALVINI -P LAWEN , L. v., 1971. Schild- und Furchenfüsser (Caudofoveata und Solenogastres). Die Neue Brehm-Bucherei, 441: 1-95. SALVINI-PLAWEN, L. v., 1972a. Zur Morphologie und Phylogenie der Mollusken: Die Beziehungen der Caudofoveata und der Solenogastres als Aculifera, als Mollusca und als Spiralia.Zeitschrift für wissenschaftliche Zoologie, 184 (3/4): 205-394. SALVINI-PLAWEN, L. v., 1972b. Revision der monegassischen Solenogastres (Mollusca, Aculifera). Zeitschrift für Zoologische Systematik und Evolutionforschung, 10 (3): 215-240. SALVINI-PLAWEN, L. v., 1978. Antarktische und subantarktische Solenogastres Eine Monographie: 1898-1974. Zoologica (Stuttgart), 44 (128): 1-315. SALVINI-PLAWEN, L. v., 1985. Early evolution and the primitive groups. In: The Mollusca. (E.R. Trueman and M.R. Clark., Acad. Press, Inc. Orlando) 10 (Evolution): 59-150. SALVINI-PLAWEN, L. v., 2003a. On the phylogenetic significance of the aplacophoran Mollusca. Iberus, 21 (1): 67-97. SALVINI-PLAWEN, L. v., 2003b. Contributions to West-Mediterranean Solenogastres (Mollusca) with three new species. Iberus, 21 (2): 37-60. SCHELTEMA, A., 1988. Ancestors and descendents: relationships of the Aplacophora and Polyplacophora. American Malacological Bulletin, 6: 57-68. SCHELTEMA, A., 1993. Aplacophora as progenetic aculiferans and the coelomate origin of mollusks as the sister taxon of Sipuncula. Biological Bulletin, 184 (1): 57-78. SCHELTEMA, A., 1999. New eastern Atlantic neomenioid aplacophoran molluscs (Neomeniomoprha, Aplacophora). Ophelia, 51: 1-28. SCHELTEMA, A. AND SCHANDER, CH., 2000. Discrimination and phylogeny of Solenogaster species through the morphology of hard parts (Mollusca, Aplacophora, Neomeniomorpha). Biological Bulletin, 198: 121-151.

S CHELTEMA , A. T SECHERKASSKY , M. AND KUZIRIAN, A. M., 1994. Aplacophora. In: Microscopic Anatomy of Invertebrates, 5: Mollusca Y. Wiley-Liss, Inc: 13-54. SCHWABL, M., 1963. Solenogastres mollusks from southern California. Pacific Science, 17 (3): 261-181. SIMROTH, H., 1893. Aplacophora. In Bronn, H. G. (Ed.): Klassen und Ordnungen des Tierreichs, III (I):97-240. THIELE, J., 1894. Beiträge zur vergleichenden Anatomie der Amphineuren: I. Ueber einige neapeler Solenogastres. Zeitschrift für wissenschaftliche Zoologie, 58 (2): 222-302. THIELE, J., 1902. Proneomenia valdivia n. sp. Wissenschaftliche Ergebnisse der Deutschen TiefseeExpedition auf dem Dampfer “Valdivia” 18981899, 3: 167-174. THIELE, J., 1906. Archaeomenia prisca n. g. n. sp. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898-1899, 9: 317-324. THIELE, J., 1911. Die Solenogastres der russischen Polar-Expedition 1900-1903. Mémoires de l’Académie impériale des Sciences St. Pétersbourg, sér. 8, classe physico-mathématique, 29 (5): 1-61. THIELE, J., 1913a. Antarktische Solenogastren. Deutsche Südpolar-Expedition 1901-1903, 14 (Zool., 6) (1): 35–65. THIELE, J., 1913b. Solenogastres. Das Tierreich, 38 (I-X): 1-57. THIELE, J., 1932. Die Solenogastren des arktischen Gebietes. Fauna Arctica, Römer and Schaudinn, 6 (IV): 379-382. THOMPSON, T. E., 1960. The development of Neomenia carinata Tullberg (Mollusca Aplacophora). Proceedings of the Royal Society of London, Ser B, 153: 263-278. TODT, C. AND SALVINI-PLAWEN, L. v., 2003. New Simrothiellidae (Mollusca: Solenogastres) from the Mozambique Channel, Western Indian Ocean. The Veliger, 46 (3): 252-266. TULLBERG, T., 1875. Neomenia, a new genus of invertebrate animals. Kungliga Svenska Vetenskaps-Akademiens Handlingar, 3: 1-12, pl. 1-2. WOLTER, K., 1992. Ultrastructure of the radula apparatus in some species of aplacophoran molluscs. Journal of Molluscan Studies, 58: 245256.

143








Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.