Phylogenetic Relationships and Subgeneric Taxonomy of Toad-Headed Agamas Phrynocephalus (Reptilia, Squamata, Agamidae) as Determined by Mitochondrial DNA Sequencing

E. N. Solovyeva, N. A. Poyarkov, E. A. Dunayev, R. A. Nazarov, V. S. Lebedev, and A. A. Bannikova
Presented by Academician Yu.Yu. Dgebuadze October 25, 2013

Received October 30, 2013

DOI: 10.1134/S0012496614020148

Toad-headed agamas (Phrynocephalus) is an essential element of arid biotopes throughout the vast area spanning the countries of Middle East and Central Asia. They constitute one of the most diverse genera of the agama family (Agamidae), variously estimated to comprise 26 to 40 species [1]. The subgeneric Phrynocephalus taxonomy is poorly studied: recent taxonomic revision have been conducted without analysis of the entire genus diversity [1]; therefore, its phylogenetic position within Agamidae family remains unclear [2-5]. There were several attempts to reconstruct the phylogeny of this genus [4-10]. Reconstruction on the basis of the morphological traits is difficult because of high intraspecific morphological variation of the toad-headed agamas and because of prevalence of substrate races, the morphs confined to specific substrates [11]. At the same time, the phylogenetic schemes on the basis of molecular data $[4,5,10]$ are incomplete: they have been obtained on a small sample of species, and the genetic markers used were insufficiently informative.

To clarify the main patterns of herpetofauna differentiation in arid Eurasian areas, we studied phylogenetic relationships between 37 agama taxa encompassing about 80% of the known Phrynocephalus species and all the main species groups. The resultant scheme makes it possible to revise the subgeneric taxonomy of toad-headed agamas and to clarify the positions of some morphs.

Tissue samples of 52 Phrynocephalus specimens and eight closely related agamas from the Agaminae subfamily (the genera Laudakia, Paralaudakia,

[^0]Trapelus, and Stellagama) were used in molecular genetic analysis. In total, 69 sequences from the GenBank were studied, 28 of which served as outgroups (the members of Agamidae, Chamaeleonidae, Iguanidae, and Lacertidae).

The fragment sequences of the following four mitochondrial DNA genes were used in phylogenetic analysis: the genes of subunit I of cytochrome c oxidase (COI), of subunits II and IV of NADH-dehydrogenase (ND2 and ND4), and of cytochrome b (cyt b). The overall length of alignment was 2703 bp (GenBank numbers HQ919083; HM915020; and KF691616-KF691738, see table). The algorithms of the maximum likelihood (ML), maximum parsimony (MP), and Bayesian analysis (UBA) for the concatenated sequences of the four genes were used in analysis. To assess the level of genetic differentiation between taxa, the average uncorrected p-distances were calculated. The figure shows the dendrograms obtained. There is considerable topological similarity between the phylogenetic schemes for nucleotide and amino acid sequences; the differences concern the nodes with low values of support.

All kinds of phylogenetic analysis reliably confirm monophyly of Agaminae subfamily, which splits into two clades. The first clade combines Afro-Arabian genera (Agama, Xenagama, Pseudotrapelus), as well as the steppe (Trapelus; Central Asia and Middle East) and toad-headed (Bufoniceps; Rajasthan, India) agamas. The Bufoniceps genus was believed to be a part of Phrynocephalus because of similarity in outer morphology. Our data confirm the earlier data suggesting that it is close to Trapelus [3, 5]. The second clade of Agaminae combines the genus Phrynocephalus (Middle East, Central Asia) and the members of mountain agamas (Laudakia s. lato). Paraphyly of this genus relative to Phrynocephalus has been suggested in some reports [2, 3]; therefore, it was recently divided into the genera Laudakia s. stricto (Iran, east of Himala-

The list of samples of the members of Agaminae subfamily. The inventory and field numbers of individual specimens and samples are indicated, as well as the accession numbers of GenBank (underlined) and the sequences used

Taxon	The voucher specimen number	Accession number of sequences in Genbank (COI, cyt b, ND2, ND4)
Agama agama	-	NC014175; AB263940; AF128504; AF443225
Pseudotrapelus sinaitus	-	NC013603
Xenagama taylori	-	DQ008215
"Xenagama batillifera"*	-	AB113825
Bufoniceps laungwalaensis	-	DQ008214
Trapelus sanguinolentus	ZMMU R-12709; R-12732	- ; AY053997; GQ242223; KF691668
Paralaudakia caucasia	ZMMU R-12465; Lca	KF691701; KF691617; AF028687; HQ919083
Paralaudakia microlepis	Lmi	KF691703; KF691647; - KF691699
Paralaudakia lehmanni	ZMMU R-12248	KF691702; KF691618; KF691670; AF028677
Stellagama stellio	ZMMU R-11324	KF691700; KF691616; AF128516; KF691669
Laudakia nupta	ZMMU R-12711	HM915020; - AF128513; KF691667
Laudakia tuberculata	ZMMU R-11749	- ; ; AF128514; -
Phrynocephalus alpherakii	ZMMU R-12670	KF691729; KF691639; GQ242221; KF691692
Ph. arabicus	ZMMU R-12713	KF691708; - KF691675; KF691651
Ph. axillaris	ZMMU R-12302; R-13087	KF691724; KF691635; AY396570; AY054012
Ph. erythrurus	ZMMU R-12303	KF691718; KF691632; GQ141231; KF691684
Ph. forsythii	ZMMU R-12301	KF691720; KF691633; AY054017; KF691661
Ph. frontalis	ZMMU R-12309	KF691695; AY053909; AY396592; KF691733
Ph. g. guttatus	Pgut1; RuHF 080-3	KF691731; KF691640; GQ242203; KF691693
Ph. h. helioscopus	Phel11; ZMMU R-12525	KF691716; KF691630; KF691658; KF691683
Ph. helioscopus varius	ZMMU R-13089; R-12524	HQ543966; KF691628; GQ242183; AY054050
Ph. hispidus	ZMMU R-12837	KF691732; KF691644; KF691663; KF691694
Ph. incertus	ZMMU R-13088	KF691728; KF691637; GQ242206; KF691690
Ph. interscapularis	Uz-10-05; ZMMU R-12268	KF691704; KF691620; AF128517; KF691671
Ph. kulagini	ZMMU R-12939	KF691735; KF691641; KF691664; KF691696
Ph. kuschakewitschi	ZMMU R-12516; RuHF 082	KF691727; KF691643; GQ242210; KF691689
Ph. longicaudatus	Pmaclong1	KF691737; KF691645; KF691666; KF691698
Ph. maculatus	ZMMU R-12501; R-13029	KF691707; KF691623; KF691650; KF691674
Ph. melanurus	ZMMU R-12332	KF691725; KF691636; GQ242197; KF691687
Ph. moltschanovi	ZMMU R-12942	KF691730; KF691638; KF691662; KF691691
Ph. m. mystaceus	ZMMU R-12261; Pmy2	KF691713; KF691626; AF128518; AY054055
Ph. mystaceus ssp.	ZMMU R-13009-2	KF691714; KF691627; KF691656; KF691680
Ph. ocellatus	Uz-10-9-1; ZMMU R-12272	KF691709; KF691624; KF691652; KF691676
Ph. ornatus vindumi	ZMMU R-13026	KF691706; KF691622; KF691649; KF691673
Ph. persicus horvathi	ZMMU R-13243-1-3; R-12322	KF691715; KF691631; KF691657; KF691681
Ph. przewalskii	ZMMU R-8900	KF691734; AY053941; AY396586; AY054061
Ph. putjatai	ZMMU R-12308-1; KIZ20238	KF691722; KF691634; HM629331; KF691686
Ph. raddei boettgeri	Pra5; IZIP-998	KF691710; KF691625; KF691653; KF691678
Ph. saidalievi	ZMMU R-12802	KF691717; KF691629; KF691659; KF691682
Ph. scutellatus	ZMMU R-13020	KF691712; KF691619; KF691655; KF691677
Ph. sogdianus	T-11-18; T-11-13; R-12800	KF691705; KF691621; KF691648; KF691672
Ph. strauchi	Uz-10-15-4; ZMMU R-11386	KF691711; - KF691654; KF691679
Ph. theobaldi	ZMMU R-10816	KF691721; AY053965; EU275226; AY054089
Ph. versicolor	ZMMU R-12834; RuHF-048-2	KF691736; AY053968; KF691665; KF691697
Ph. vlangalii	KIZ20062	KF691719; KF691642; KF691660; KF691685
Ph. zetangensis	RuHF 086-2	KF691723; AY053992; EU275228; AY054114
Phrynocephalus sp. 1	KIZ14303	KF691738; KF691646; - -
Phrynocephalus sp. 2	ZMMU R-12327	KF691726; AY053919; AY396572; KF691688

[^1]
Phylogenetic ML-dendrograms of Phrynocephalus genus as constructed on the basis of nucleotide and amino acid sequences (to the left and right, respectively). Bootstrap supports in MP analysis, the values of Expected Likelihood Weights (ELW) in ML analysis and posterior probabilities (PP) in Bayesian analysis (UBA) are presented in the order indicated in the figure. Asterisk (*) marks the nodes with high support ($\mathrm{BS}>95 \%$; PP=1.0). The species groups of Phrynocephalus genus are indicated (A-I). Available designations of the generic and subgeneric rank are underlined.
yas), Paralaudakia (Central Asia, Caucasus), and Stellagama (SE Europe, NE Africa, Middle East, and Asia Minor) [12]. Our results do not make it possible to define unambiguously phylogenetic relationships between Phrynocephalus and the mountain agamas; nevertheless, there is a clear-cut tendency of Laudakia s. lato to monophyly, as well as monophyly of the combination Laudakia s. stricto and Paralaudakia.

All kinds of phylogenetic analysis confirm significantly monophyly of the genus Phrynocephalus. Phylogenetic relationships within the genus are not unambiguously defined: some nodes that reflect the earlier stages of Phrynocephalus differentiation are poorly supported. Nevertheless, the clades corresponding to the level of species and species groups have high values of bootstrap support and posterior probabilities (BS/PP 98-100\%/1.0). In total, we have identified the following nine clades within the genus Phrynocephalus, which correspond to the main species groups of Phrynocephalus (groups A-I in the figure).

Group A includes species rather different in morphology and ecology that inhabit Iran, Middle East, and the Arabian Peninsula. This group forms a clade that is a sister-clade in relation to all other species of the genus Phrynocephalus. The members of this clade have been earlier demonstrated to be significantly distant in morphology, especially Ph. arabicus [7]. The group with moderate support includes the Iranian species Ph. scutellatus, which was earlier assumed to be close to Ph. ocellatus (cited from [7]) and belong to Phrynosaurus [1]. Our data testify to paraphyly of Ph. maculatus s. lato relative to Ph. arabicus: Ph. m. longicaudatus from Oman forms a strongly supported group with Ph. arabicus. The morphological and ecological features of this form enable us to assume that it is an independent species Ph. longicaudatus Haas, 1957 comb. et stat. nov.

Group B. Small psammophilous species of the southern Central Asia, Turan, and Middle East (Iran, Afghanistan, Pakistan): Ph. interscapularis, Ph. sogdianus, and Ph. ornatus. This group forms at high significance a sister-clade in relation to the remaining Phrynocephalus of the Middle and Central Asia. Because of significant morphological isolation, this group of the smallest Phrynocephalus, along with Ph. clarckorum and Ph. luteoguttatus [13, 14], has been earlier referred to as Microphrynocephalidae, though no subgeneric designation has been proposed. Only insignificant differentiation ($p=3.80 \%$) has been found between Ph. interscapularis and Ph. sogdianus; the status of Ph. sogdianus should be verified.

Group C. The eared toad-headed agamas Ph. mystaceus. These are the biggest Phrynochephalus inhabiting the sands of Central Asia up to northern Iran. Analysis of nucleotide sequences suggests that Ph. mystaceus are close to the Tibet species Ph. axillaris (G); the amino acid analysis suggests that they are grouped into
a poorly supported clade together with Ph. axillaris and Phrynocephalus helioscopus (F). Because of uncommon morphology, Ph. mystaceus are often considered an independent subgenus Megalochilus [1]. The Central Asian Ph. m. mystaceus was found to be considerably isolated from the northern Iranian population ($p=7.36 \%$), which we regard as a new taxon of an undefined rank.

Group D. Tibetan toad agamas (Ph. erythrurus, Ph. putjatai, Ph. vlangalii, Ph. forsythii, Ph. theobaldi, and Ph. zetangensis) assigned to the Oreosaura subgenus [1]. This monophyletic [4] group of species from the highlands of the Tibetan Plateau differs from all other toad-headed agamas in the live birth, specific morphology, and behavior [7, 9]. Phylogenetic position of group D is ambiguous: according to nucleotide sequence analysis, it forms a sister-clade at moderate support with the toad-headed agamas of groups ($\mathrm{C}+$ $\mathrm{E}-\mathrm{I})$; the amino acid analysis suggests with low values of support that it forms a sister-clade with a combination of Ph. guttatus (H) and Ph. versicolor (I) groups. Within group D , two subclades are distinguishable, which correspond to the Tibetan-Himalayan Qinghai species (Ph. forsythii, Ph. theobaldi,Ph. zetangensis and Ph. erythrurus, Ph. putjatai, Ph. vlangalii, respectively).

Group E. Turanian species of Phrynocephalus, which inhabit sands (Ph. strauchi), mixed (Ph. ocellatus $[=$ Ph. reticulates $]$), and dense substrates (Ph. rad$d e i$) of the southern area of Central Asia. Phylogenetic position of this clade is not completely clear: according to data on amino acid sequences, it tends with moderate supports to be in the group that includes Oreosaura (D), Ph. guttatus (H), and Ph. versicolor(I).

Group F. A complex of sunwatcher toad-headed agamas includes sclerobiont species from Central Asia, Transcaucasia and Iran that inhabit only dense soils and which were earlier assigned to the species Ph. helioscopus s. lato of the genus Helioscopus [1]. The group is divided into two subclades: Persian (here, Ph. persicus horvathi) and Phrynocephalus helioscopus proper (here, Ph. h. helioscopus, Ph. h. varius, Ph. h. saidalievi). Phylogeny of this group is described in detail in [15].

The phylogenetic position of the complex is ambiguous, but, according to the amino acid sequence analysis, Phrynocephalus helioscopus is associated with Ph. axillaris (G). Genetic isolation of Ph. h. saidalievi from other subspecies is considerable ($p=9.53 \%-$ 10.29%) and comparable with the species level of differentiation.

Group G includes the only species Ph. axillaris inhabiting the highland stony deserts of Tibet and Kashgar; unlike other Tibetan agama, this is an oviparous species. According to mtDNA data, it is probably related to the Ph. helioscopus complex (F).

Groups H and I are close to each other and form monophyly with high support.

Group H comprises Phrynocephalus guttatus, which inhabit various types of deserts from the Caspian Sea to western China. There are three subclades within this area, two of which includes the species of Semirechye (Ph. kuschakewitschi, Ph. incertus) and Dzungaria (Ph. melanurus, Phrynocephalus sp. 2), while the third subclade includes species from the western part of the area (Ph.guttatus, Ph. moltschanovi) and Ili valley (Ph. alpherakii). We have confirmed isolation of Ph. moltschanovi from Ph. guttatus ($p=4.58 \%$), as well as differentiation of the TransBalkhash forms Ph. incertus and Ph. kuschakewitschi ($p=4.69 \%$) (their diagnosing on the basis of the morphological traits is difficult). The form from Dzungarian Gate (Ph. sp. 2) proved to be close to Ph. melanurus from Zaisan ($p=2.67 \%$); the morphological distinctions between them are probably due to the confinement of Ph. sp. 2 to dense soils [11].

Group I comprises the species of the Ph. versicolor complex encountered on different substrates. There are two subclades in this group: the first of them includes a species from Dzungarian Gobi, we have identified it as Ph. hispidus, and a related form of uncertain status from Gansu Phrynocephalus sp. 1 ($p=$ 4.90%). The second subclade includes the related species from northern China and central Mongolia, Ph. frontalis, Ph. przewalskii, and Ph. v. versicolor, as well as the more distant form Ph. v. kulagini from Tuva. Paraphyly of Ph. versicolor s. lato and isolation of Tuvinian toad agama ($p=5.18 \%-5.37 \%$) suggest that it is an independent species Ph. kulagini Bedriaga, 1909 comb. et stat. nov.

The taxonomic status of many recognizable forms of the Phrynocephalus genus is still discussed. In our study, genetic differences between the related species of toad-headed agamas are in general below the level of $p=5.0 \%$. Nevertheless, when determined on the basis of mtDNA genes, the genetic distances cannot serve as a universal marker of species differentiation [15]. For example, the distances between the morphologically discrete species of the group Ph. guttatus (H) ($p=4.58-8.75 \%$) [11] are significantly lower than the distances between the lineages of Ph. helioscopus (F) [15], which are traditionally considered to be subspecies. The complex Ph. versicolor-Ph. frontalisPh. przewalskii with its extremely short genetic distances ($p=2.14 \%-3.57 \%$) and clinal variation of the morphological traits [11] remains the most troublesome. Further studies could be helpful in determining the status of these forms. In this report, the violated monophyly of a taxon in its traditional sense served as the main criterion of species delimitation.

Our study has confirmed monophyly of the genus Phrynocephalus and demonstrated that three main significantly isolated clades constitute its phylogenetic
structure: the Middle East-Arabian and Iranian species (group A), small psammophilic species of the Middle East and Turan (group B), and the clade that unites all the remaining species (groups $\mathrm{C}-\mathrm{I}$). Two basic clades of Phrynocephalus (A, B) are spread over the Middle East, Arabia, Iran, and Turan; we suggest that the genus has originated from this very area. Probably, the formation of toad-headed agama is related to a gradual closing of Tethys because of collision of the Arabian plate and Iranian land in Miocene, which resulted in formation of the arid climate and desert landscapes in this area [see 6, 7]. Reconstruction of the ancient ecological niche of Prynocephalus is difficult, because basal lines of the genus include both psammophilic and sclerobiont species.

Modern intrageneric structure of Phrynocephalus implies isolation of only the Tibetan subgenus Oreosaura [1]. Our data testify conclusively to a higher genetic isolation of the Near East and Iranian (group A) and small psammophilic (group B) toad-headed agama species. The same is confirmed by the data of the multilocus analysis of nuDNA genes, which are not discussed in this study and will be reported later. Probably, a separate subgeneric designation can be given to the group A: Phrynosaurus Fitzinger, 1843 (type species, Phrynocephalus Olivieri Duméril et Bibron [=Ph. scutellatus]). However, considerable isolation of Ph. scutellatus (Olivier, 1807) from the remaining members of the group (Ph. arabicus Anderson, 1894, Ph. longicaudatus Haas, 1957, Ph. maculatus Anderson, 1872, and Ph. golubewii Shenbrot et Semenov, 1990) suggests that further studies are necessary. Isolation of small psammophilic species of the group B (Microphrynocephalidae) [13, 14] has been emphasized by many authors [7, 13]; we propose a new subgenus for this group.

Subgenus Microphrynocephalus subgen. nov.

Type species: Phrynocephalus interscapularis Lichtenstein, 1856. Species included: Ph. interscapularis Lichtenstein, 1856, Ph. sogdianus Chernov, 1948, Ph. luteoguttatus Boulenger, 1887, Ph. ornatus Boulenger, 1887, Ph. clarkorum Anderson et Leviton, 1967. Relation to the group Ph. euptilopus Alcock et Finn, 1897 is controversial and should be additionally studied.

Diagnosis. All of the members of the new subgenus differ from other Phrynocephalus species in the following combination of traits (our data [7] and the references therein): (1) small psammophilic species; in adults, the maximum body length is 48 mm and tail length is 60 mm ; (2) a series of enlarged scales on the gular skin extends from chin to mouth corners; (3) the suborbital and pretemporal scales are enlarged; (4) up to 13 supralabial scales; (5) $22-23$ presacral vertebrae; (6) the maxillary outer process underlies the premax-
illa offshoot; (7) there is one tooth on the premaxilla; (8) there is no offshoot of the nasal bone, the dorsal surface of the nasal bone is flat; (9) the middle episternal process is reduced or very short; (10) m. episternocleidomastoideus is attached to the occipital bone. The subgeneric taxonomy of Phrynocephalus and of Microphrynocephalus subgenus will be published in detail later.

Etymology. A Latin masculine noun formed from the Greek generic name Phrynocephalus and the root micro designating the small size of the members of the group.

Distribution. Inhabit the sand dunes of the desert of Central Asia (beginning from southern Kazakhstan and including Uzbekistan, Turkmenistan, and Tajikistan) and Middle East (northern and eastern Iran, Afghanistan, and Pakistan).

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project nos. 12-04-01552-a and 12-04-33150-mol-a-ved.

REFERENCES

1. Barabanov, A.V. and Ananjeva, N.B., Zootaxa, 2007, vol. 1399, pp. 1-56.
2. Macey, J.R., Schulte, J.A., Larson, A., Ananjeva, N.B., Wang, Y., Pethiyagoda, R., Rastegar-Pouyani, N., and Papenfuss, T.J., Syst. Biol., 2000, vol. 49, pp. 233-256.
3. Macey, J.R., Schulte, J.A., Fong, J.J., Das, I., and Papenfuss, T.J., Mol. Phylogen. Evol., 2006, vol. 39, pp. 881-886.
4. Pang, J., Wang, Y., Zhong, Y., Rus, Hoelzel, A., Papenfuss, T.J., Zeng, X., Ananjeva, N.B., and Zhang, Y.-P., Mol. Phylogen. Evol., 2003, vol. 27, pp. 398-409.
5. Melville, J., Hale, J., Mantziou, G., et al., Mol. Phylogen. Evol., 2009, vol. 53, pp. 99-112.
6. Ananjeva, N.B. and Tuniyev, B.S., Asiatic Herpetol. Res., 1992, vol. 4, pp. 76-98.
7. Arnold, E.N., Bull. Nat. Hist. Mus. London, 1999, vol. 65, pp. 1-13.
8. Likhnova, O.P., Biochemical polymorphism, systematics, and phylogeny of lizards of the genus Phrynocephalus (Agamidae, Reptilia), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Inst. Evol. Morphol. Ecol. Animals, 1992.
9. Dunayev, E.N., Rus. J. Herpetol., 1996, vol. 3, no. 1, pp. 32-38.
10. Guo, X. and Wang, Y., Mol. Phylogen. Evol., 2007, vol. 45, no. 2, pp. 643-662.
11. Dunaev, E.A., Tr. Zool. Muzeya Mos. Gos. Univ., 2009, vol. 50, pp. 274-298.
12. Baig, K.J., Wagner, P., Ananjeva, N.B., and Böhme, W., Vertebrate Zool., 2012, vol. 62, no. 2, pp. 213-260.
13. Golubev, M.L., Hamadryad, 1998, vol. 23, no. 2, pp. 162-168.
14. Sindaco, R. and Jeremcenko, V.K., The Reptiles of the Western Palearctic, Latina: Belvedere, 2008.
15. Solovyeva, E.N., Poyarkov, N.A., Dunaev, E.A., Duisebaeva, T.N., and Bannikova, A.A., Genetika, 2011, vol. 47, no. 7, pp. 952-967.

Translated by A. Nikolaeva

[^0]: Moscow State University, Moscow, 119992 Russia
 Scientific-Research Zoological Museum of Moscow
 State University, Bolshaya Nikitskaya ul. 6, Moscow, 125009 Russia
 e-mail: anolis@yandex.ru; n.poyarkov@gmail.com; dunayeve@mail.ru

[^1]: * Position of Xenagama batillifera is unclear because the sequence AB113825 published in Genbank under the name Xenagama batillifera seems to refer to an incorrectly defined specimen of Stellagama stellio $(p=7.56 \%)$ [12].

