ZOOTAXA

3378

A review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species

SALVADOR CARRANZA ${ }^{1 *}$ \& EDWIN NICHOLAS ARNOLD ${ }^{2}$
${ }^{1}$ Institute of Evolutionary Biology (CSIC-UPF). Passeig Marítim de la Barceloneta 37-49, E-08003 Barcelona, Spain.
E-mail: Salvador.carranza@ibe.upf-csic.es
${ }^{2}$ Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD U.K.
E-mail: ena@nhm.ac.uk
* Corresponding author

SALVADOR CARRANZA \& EDWIN NICHOLAS ARNOLD
A review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species
(Zootaxa 3378)
95 pp.; 30 cm .
4 Jul. 2012
ISBN 978-1-86977-949-8 (paperback)
ISBN 978-1-86977-950-4 (Online edition)

FIRST PUBLISHED IN 2012 BY

Magnolia Press
P.O. Box 41-383

Auckland 1346
New Zealand
e-mail: zootaxa@mapress.com
http://www.mapress.com/zootaxa/
© 2012 Magnolia Press
All rights reserved.
No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.

This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
ISSN 1175-5326 (Print edition)

ISSN 1175-5334 (Online edition)

Table of contents

Abstract 3
INTRODUCTION 5
MATERIAL AND METHODS 7
RESULTS AND DISCUSSION 19
Systematics 24
Hemidactylus persicus and similar species 24
Hemidactylus luqueorum sp. nov. 24
Hemidactylus hajarensis sp. nov. 30
Hemidactylus yerburii and similar species 34
Hemidactylus alkiyumii sp. nov. 35
Hemidactylus festivus sp. nov. 40
The Hemidactylus homoeolepis group 46
Hemidactylus homoeolepis Blanford, 1881 47
Hemidactylus paucituberculatus sp. nov. 50
Hemidactylus masirahensis sp. nov. 54
Hemidactylus inexpectatus sp. nov. 59
An enigmatic North Oman Hemidactylus from the stomach of a preserved snake 64
Hemidactylus endophis sp. nov. 65
The Hemidactylus turcicus group 67
Hemidactylus robustus Heyden, 1827 68
Members of the Tropical Asian clade of Hemidactylus 70
Biogeography of Arabian Hemidactylus 70
Ecological separation 72
Key to the genus Hemidactylus from Oman 73
ACKNOWLEDGEMENTS 74
REFERENCES 74
Appendix I 79
Appendix II 90
Appendix III 95

Abstract

The genus Hemidactylus is one of the most species-rich and widely distributed of all reptile genera, being found in the tropical and subtropical regions of the world and hundreds of continental and oceanic islands. Despite having already 111 species, the number of species described in recent years is very high. This has been facilitated, in part, by the use of molecular techniques, which in most cases have been employed to confirm the differentiation at the DNA level of some morphologically variable forms and to discover some cryptic lineages.

Preliminary analyses indicate that some Hemidactylus species from Oman are quite variable in their morphology and may include more than one species. In order to test this hypothesis we inferred a molecular phylogeny including 131 Hemidactylus (20 species) using 1385 base pairs of mitochondrial DNA ($353 \mathrm{bp} 12 S ; 302 \mathrm{bp}$ cytb; $588 \mathrm{bp} n d 4$ and 142 bp tRNAs) and 1481 bp of nuclear DNA ($403 \mathrm{bp} \mathrm{c}-$ mos; 668 bp mclr and 410 bp rag 2) and analyzed 226 specimens (15 species) for several meristic and pholidotic characters of which we took 3103 photographs that have been deposited in MorphoBank (project 483). Our results indicate the presence of eight new species of Hemidactylus geckos in Arabia: H. luqueorum sp. nov. and H. hajarensis sp. nov. from North Oman; H. masirahensis sp. nov. from Masirah Island; H. inexpectatus sp. nov. from one locality on coastal Central Oman; H. alkiyumii sp. nov., H. festivus sp. nov. and H. paucituberculatus sp. nov. from Dhofar, Southern Oman; and finally H. endophis sp. nov. probably from North Oman and described on the basis of morphology alone. An identification key to the genus Hemidactylus from Oman is also presented. With these descriptions, the number of Hemidactylus species found in Oman increases from 7 to 13 and the number of endemic Hemidactylus from 0 to 6 . The description of three new species endemic to the Hajar Mountains in North Oman highlights the importance of this mountain range as a biodiversity hotspot that, up to now, includes 12 reptile species that are found nowhere else in the World. Another hotspot of Hemidactylus biodiversity is the Dhofar Mountain range, in the extreme Southwestern corner of Oman and East Yemen. As a result of its particular geographic situation, orography and the effect of the Southwest Monsoons, this mountain range presents a diverse variety of habitats with different species of Hemidactylus adapted to them.

With the exception of H. flaviviridis and H. leschenaultii, which belong to the Tropical Asian clade of Hemidactylus, all Arabian Hemidactylus for which DNA sequence is available are members of the Arid clade of Hemidactylus. Relatively recent dispersal appears to have taken place within Arabia in the H. turcicus group, with the South Arabian H. lemurinus occurring far from other confirmed members of this assemblage. Hemidactylus flaviviridis and a clade of H. robustus are genetically uniform, widespread in Arabia and beyond and occur around human habitations, suggesting that

much of their large distributions are anthropogenic, as appears to be so in several other Hemidactylus species outside Arabia.

The way in which species of Arabian Hemidactylus separate ecologically is surprisingly varied. They may occur at similar altitudes but replace each other geographically, or if they are sympatric there may be altitudinal separation. Humidity may also be an important factor, and when animals exist within a few meters of each other, structural niche may be significant. While four native species occur close together in Dhofar, most Hemidactylus communities in Arabia consist of only one or two species, although climbing geckos belonging to other genera, such as Asaccus and Ptyodactylus, may also be present.

Key words. Hemidactylus, Arabia, phylogeny, molecular clock, taxonomy, systematics, mtDNA, nDNA, MorphoBank

Abstract in Arabic


```
    في العديد من الجزر القارية والمحيطية على حد السواء.
```

وعلى الرغم من أن عدد هذه الأنواع يصل إلى (111) نوععًا؛ فابن العديد منهـا تم اكتشافهه في السنوات القليلة المـاضية،
 اللبحوث العلمية لتأكيد وجود اللباين فى مستوى الحمض اللنووي (DNA) وهي المادة المسئولة عن نقل اللسمـات الوراثية من جيل

أيضكًا إكتشاف روابط وقرابة وراثيةّ غير ظاهرة بين أنواع أخرى من هذّه الوزغيات.
كما أشارت اللتحاليل الأولية لعينات الوزغ نصفي الإصبع من سلطنة عمـن إلى وجود تنوع واضح في المظهر الخارجي

 المستخرجة من الحمض النووي ؛ الأول من عضيات الميتوكونثوريا (mtDNA) ويطول (1385) قاعدة نيتروجينية مزدوجة(1)

والآخر من أنوية الخلايا (nuclear DNA) وبطول (1481) قاعدة نيتروجينية مزدوجة (2) (2) وتم اسنتخام هذين المؤشرين في تُليل (228) عينة لعدد (15) نوع في بيانات بتتعلق بمظهر بعض الأجزاء الخارجية لتلك السحالي، إضافة إلى عدد من تطبيقات صلات القرابة الوراثية (Meristic and Pholidotic characters) والتي قمنا بتوثيقها من خلال (3103) صورة فوتوغرافية والتي تم وضعها في ال مورفوباتك (MorphoBank) تحت مشروع رقم (483).
 شبه الجزيرة اللعربية، وتمت تسمية الأنواع الجديدة كالتّلي: (H. masirahensis) من جزيرة (H. hajarensis) من جبال الحجر بشمال سلطنة عُمانن، و (H. luqueorum)

 لتصنيف (identification key) الوزغ نصفي اللإصبع في سلطنة عمـنـن. ومن نتائج هذا البحث أن زان مجموع أنواع الوزغ نصفي الإصبع في سلطنة عمـن من سبعة أنواع إلى ثلاثة عشر نـوع،
 خاص لهنا النوع بالسلطنة.
إن انفراد سلسلة جبال الحجر والواقعة شمـل سلطـة عمـان بثـلالة أنواع جديدة من الوزغ نصفي الإصبع يشبير إلى
الحسانسية البيئية لهذه المنطقة؛ كمكن مهم للثنوع الأحيائي (Biodiversity hotspot) إضافـة" إلى (12) إلثّي عشر نوعكًا من الزواحف تستأثر به هذه المنطقة عن بقية العالم

واللتان تثنتيان إلى عائلة الوزغ نصفية الإصبع الآسيوية الإسنتوائية، فأن جميع الانواع الاخرى في شبه الجزيرة العربية والتي

لق ظهر تشتت حديث نسبيا(تم استثنتاج ذلك باستتذام تقنيات علم اللسلالات الجزيئية) لمجموعة

(lemurinus
(Hemidactylus flaviviridis) و (Hobustus) تحمـلان تماثلا واضحا على المستوى الوراثي،

أيضًا في نفس المكان تثنتمي لاجناس مختلفة أخرى كالوزغ مروحي الأصبع أو البرص Asaccus and Ptyodactylus .

INTRODUCTION

The gecko genus Hemidactylus Oken, 1817 is widely distributed in the warmer parts of the world and is one of the largest in the Gekkota, comprising approximately 111 recognized species (Uetz 2012), with more than 23 new species having being described within the last 10 years and some species belonging to other genera having been transferred to Hemidactylus (Arnold et al. 2008; Busais \& Joger 2011a; Carranza \& Arnold 2006; Giri 2008; Giri \& Bauer 2008; Giri et al. 2009; Mahony 2009; Moravec et al. 2011; Sindaco et al. 2007, 2009; Torki et al. 2011; Ullenbruch et al. 2010; among others). Recent investigations using mitochondrial DNA phylogenies (Carranza \& Arnold 2006) show that, although morphologically fairly uniform, Hemidactylus is quite diverse genetically with several main groups, some of which are geographically constrained. Many recognized species also show high levels of internal diversity and are better regarded as species complexes.

A region that has been recently investigated comprises the Arabian Peninsula and its hinterland, which extends as far North as the Sinai, Jordan, Iraq and Iran and is known to contain at least 16 recognized taxa of Hemidactylus: H. dawudazraqi Moravec, Kratochvíl, Amr, Jandzik, Smid and Gvozdik, 2011; H. flaviviridis Rüppell, 1835; H. homoeolepis Blanford, 1881; H. jumailiae Busais and Joger, 2011; H. lavadeserticus Moravec and Böhme, 1997; H. lemurinus Arnold, 1980; H. leschenaultii Duméril and Bibron, 1836; H. mindiae Baha el Din, 2005; H. persicus Anderson, 1872; H. robustus Heyden, 1827; H. romeshkanicus Torki, Manthey and Mirko, 2011; H. saba Busais and Joger, 2011; H. shihraensis Busais and Joger, 2011a; H. sinaitus Boulenger, 1885; H. turcicus (Linnaeus, 1758); H. yerburyii Anderson 1895. Some individuals of these forms were included in the molecular study on the phylogenetic relationships of Hemidactylus using mtDNA by Carranza and Arnold (2006) and several others have also been included in recent mtDNA phylogenies by Busais and Joger (2011a,b) and Moravec et al. (2011). However, H. homoeolepis, H. persicus and H. yerburii as presently understood are all quite variable in their morphology (Arnold 1977, 1980, 1986; Arnold \& Gallagher 1977) and may consist of more than one species. Several of these morphologically variable forms occur in the Sultante of Oman and neighboring Eastern Yemen.

With approximately 100 species of reptiles, Oman harbors around 50% of the total number of reptile species in the Arabian Peninsula. Within Oman, two biodiversity rich areas with high levels of endemicity are recognized: the Hajar Mountains in the North and the Dhofar Mountains in the South of Oman and East Yemen (Fig. 1). Although the Hajar Mountains have a complex geological history that dates back to approximately 300 mya, their history of uplift into a mountain range probably began some 30 mya, as a result of the opening of the Gulf of Aden (Bosworth et al. 2005; Glennie 2006; Laughton 1966). In fact, it has been suggested that they probably rose into a high range only in the last 4-6 my or even less, during the latest phase of plate tectonics that affected Oman (Glennie 2006). The Hajar Mountains run for about 650 km , from Ruus al Jibal (Musandam Peninsula) in Northwest Oman to the Jebel Qahwan in Northeast Oman (Fig. 1). Most of this region is within Oman but a small section, just South of Ruus al Jibal, is included in the United Arab Emirates. The mountains reach 2087 m above sea level (asl) at Ruus al Jibal and 2980 m at Jebel Akhdar. They are thus high enough to influence local climate significantly, the rainfall being considerably higher than that of the arid lowland regions to the West and South. Many of the mountain wadis have some surface water, at least intermittently, and they often support areas of quite luxuriant vegetation. It is in such wadis that much of the mountain herpetofauna is found. The Hajar Mountains are home to a relatively high number of reptile species that are endemic to this region, like the two lacertid species of the genus Omanosaura (O. jayakari (Boulenger, 1887) and O. cyanura (Arnold, 1972), four species of geckos of the genus Asaccus (A. montanus Gardner, 1994, A. gallagheri Arnold, 1972, A. caudivolvulus Arnold and Gardner, 1994, and A. platyrhynchus Arnold and Gardner, 1994), two Pristurus (P. celerrimus Arnold, 1977 and P. gallagheri Arnold, 1986), and a viper of the genus Echis (E. omanensis Babocsay, 2004). Moreover, preliminary analyses also indicate that the Hajar Mountain populations of the geckos Ptyodactylus hasselquistii (Donndorf, 1798) and Pristurus rupestris Blanford, 1874 may also represent new species (work in progress). Hemidactylus geckos assigned to H. persicus occur in isolation in the Jebel Akhdar region in North Oman (Arnold 1977, 1986; Arnold \& Gallagher 1977) and have recently been found in the adjoining mountains of the Eastern Hajars, as far south as the Jebel Qahwan.

The Dhofar Mountain range is situated within the Southern Province of Oman. It lies approximately between $16^{\circ} 30^{\prime}$ and $17^{\circ} 45^{\prime} \mathrm{N}$ and $52^{\circ} 45^{\prime}$ and $55^{\circ} 30^{\prime} \mathrm{E}$. It is bounded to the North by the Rub al Khali (also known as the Empty Quarter), the largest desert in Arabia, to the South by the Arabian Sea and is separated from the rest of Oman in the Northeast by a desert steppe (Sale 1980) (Fig. 1). The Dhofar Mountain range was uplifted as a result

FIGURE 1. Schematic map of the study region showing the position of the Northern and Southern Oman mountains with the name of some relevant massifs.
of the opening of the Gulf of Aden and the formation of the Red Sea by plate separation (Bosworth et al. 2005; Glennie 2006; Laughton 1966). The top of the mountain range constitutes a relatively flat plateau, for the most part between 700 and 900 m above sea level and some $10-25 \mathrm{~km}$ wide that runs for about 150 km , from the Jebel Qamar in the West, through the Jebel Qara in the central part, to the Jebel Samhan in the East (Fig. 1), the highest point reaching over 2000 m in this latter massif (Sale 1980). The Dhofar Mountains lie within the monsoon belt
and most rain falls as drizzle during the summer Southwest Monsoon in July and August and is responsible for the unique green vegetation on the Southward (sea) side of this mountain range, where the clouds form a variable belt along the coast from the Jebel Qamar to the Jebel Samhan that press against the mountain ridges. While the clouds only occasionally spill over the top of Jebel Qamar, on the much lower Jebel Qara they ride up to the summit (Sale 1980). However, the Northern slopes across the whole mountain range are in rain shadow. As a result of that, the Northward (land) side of the Dhofar Mountains is much drier and less vegetated than the lush Southward side. These climatic differences have played and important role in shaping the flora and fauna of this interesting biodiversity rich region (Arnold 1980; Buttiker \& Gallagher 1980; Gallagher \& Rogers 1980; Greathead 1980; Harrison 1980; Hoogstraal 1980; Larsen 1980; Waterston 1980; Wiltshire 1980).

As mentioned above, some species of Hemidactylus inhabiting the Hajar and Dhofar mountains as well as Masirah Island and some intervening areas in Oman have been found to be morphologically highly variable (Arnold 1977, 1980, 1986; Arnold \& Gallagher 1977). To investigate this further and explore the relationships and history of Arabian Hemidactylus, in the present work we have used morphology and phylogenies inferred with both mitochondrial and nuclear markers including many representatives of these conflictive species and also a good representation of Arabian Hemidactylus as well as other members of the Arid clade (Carranza \& Arnold 2006). The results of our morphological and molecular investigations have revealed the existence of eight new species of Hemidactylus that are described herein, six of them endemic to Oman.

MATERIAL AND METHODS

Morphological analysis

A total of 226 specimens were analyzed, including representatives of each one of the eight new species described herein plus other related Arabian and African taxa from the Arid clade (Carranza \& Arnold 2006). Most of the specimens compared were from material in the extensive collection of the Natural History Museum, London (BMNH), S. Carranza's field series housed at the Institute of Evolutionary Biology (IBE), Spain and some specimens from the Oman Natural History Museum, Muscat (ONHM). The following measurements were taken by the same person (S.C.) using a digital caliper with accuracy to the nearest 0.1 mm and were expressed in millimeters: snout-vent length (SVL), measured from tip of snout to vent; trunk length (TRL), measured from posterior edge of forelimb insertion to anterior edge of hindlimb insertion; tail length (TL), from vent to tip of tail; head length (HL), distance between retroarticular process of jaw and tip of snout; head width (HW), measured at its widest part, usually at the level of temporal region; head height (HH), maximum height of head, measured from occiput to underside of jaws; orbital diameter (OD), considered as the greatest diameter of orbit; nares to eye distance (NE), distance between tip of snout and anteriormost point of eye; internarial distance (IN), distance between nares; anterior interorbital distance (IO1), distance between left and right supracilary scale rows at anteriormost point of eyes; posterior interorbital distance (IO2), distance between left and right supracilary scale rows at posteriormost point of eyes. It is important to take into account that preservation often puts limits on taking some formal measurements and ratios. Those involving limb lengths are frequently difficult to obtain because museum specimens are often stiff. The depth of the head and its lateral appearance also varies very substantially with the position of the kinetic skull when the animal concerned was preserved, which makes ratios involving head depth, and its length or width, highly variable. Kinetic movements of the skull may also change the shape of the external opening of the ear. Allometric change in proportions is another potentially confounding factor, thus within a species of Hemidactylus head size tends to fall with growth, while the relative breadth of the adhesive pads on the digits usually increases markedly; these trends are also often apparent when similar species of different sizes are compared. In addition to the metric dimension measured, the following pholidotic (meristic) characters were also collected by the same person (S.C.) using a dissecting microscope: longitudinal tubercle rows (TB), counted across dorsum at mid-body; number of preanal pores (PAP); number of supralabial (SL) and infralabial (IL) scales; lamellae under the first and fourth toes of pes (LP $1^{\text {st }}$ and LP $4^{\text {th }}$).

The morphological characteristics of the 226 specimens studied belonging to 15 different taxa were carefully photographed using a Nikon 300 camera with a 60 mm macro, in order to build up a database of comparative material of Arabian Hemidactylus and to make all the data available to the scientific community. The complete
TABLE 1.- Information on the specimens included in the phylogenetic analyses listed in alphabetical order, with the corresponding GenBank accession numbers. Individuals with the specimen code highlighted with an asterisk $\left({ }^{*}\right)$ indicate specimens for which only the $12 S$ gene was sequenced. Individuals with the specimen code highlighted with a hatch symbol (\#) were included in with identical sequences have the same GenBank accession number. Hemidactylus sp. 1 corresponds to the same unnamed taxon reported by Moravec et al. (2011).

TABLE 1.(Continued)

TABLE 1.(Continued)

TABLE 1.(Continued)

collection of 3103 high-resolution photographs has been deposited in MorphoBank (Project 483; http:// www.morphobank.org/). Sexual differences on body size and shape were tested using a one-way ANOVA in the program JMP v. 5.5.1. Summary statistics (mean, maximum, minimum and Standard Error) were calculated for each character of all the species included in the present study. If a character was not dimorphic, summary statistics for all the specimens and for males and females independently were presented. If the character was dimorphic, only summary statistics for males and females were presented.

A list of all studied specimens with their corresponding Museum accession numbers, locality data, metric and meristic information and MorphoBank accession numbers is presented in Appendix I.

Molecular analyses

Molecular samples, DNA extraction and amplification

A total of 222 individuals were included in the molecular study. Sampling was more intense in Oman but relevant samples of the Arid clade from other places in the Middle East and Africa were also included. The ribosomal 12 S rRNA and cytochrome b genes for 15 specimens were from Carranza and Arnold (2006) and therefore were downloaded from GenBank and the same individuals were sequenced for the remaining genes. The ribosomal 12S rRNA of 15 specimens from Yemen (Busais \& Joger 2011a) including representatives of the three new species and one new subspecies described therein, were kindly donated by U. Joger for comparison with the new species described in the present study. A list of 207 individuals included in the molecular analyses (samples from Busais \& Joger 2011a not included) with their codes, voucher references, corresponding localities and GenBank accession numbers for all genes sequenced is presented in Table 1. As shown in Table 1, a total of 131 specimens were sequenced for up to seven genes (see below) and 76 individuals were sequenced for the 12 S rRNA only. The latter include six specimens of H. flaviviridis, three of H. lemurinus, five of H. homoeolepis and 62 individuals belonging to seven new species described herein. The 12 S rRNA sequences of these 76 specimens were used as a "Barcode" to crosscheck their morphological identification with molecular data and, in the case of samples belonging to the new species, they were also used to infer the level of genetic variability. The reasons for not amplifying all seven genes for these 76 specimens where the following: 1.-samples starting with code JS (Table 1) belong to another study on the molecular relationships of Arabian Hemidactylus (were not collected by us) and, therefore, data on the full set of mtDNA and nDNA genes will be presented elsewhere (work in progress); and/or 2.-morphological and molecular analyses were fully congruent in the taxonomic identification of the specimens and the new DNA samples did not represent any new lineage in the phylogeny of Arabian Hemidactylus.

Maps indicating the geographical distribution of all Omani Hemidactylus are shown in Figs. 2-4. For seven out of the eight new species described herein plus H. homoeolepis the distribution maps include both specimens used for the molecular analyses and bibliographic/museum records, so represent complete distribution ranges of the species. One of the new species described herein could not be mapped as a result of lack of precise locality of the single specimen available (see below). For the widely distributed H. robustus and the Tropical Asian (and most probably introduced) H. flaviviridis, only the geographic origin of the samples included in the molecular analyses is presented. For H. leschenaultii, the other Tropical Asian species and likely introduced, we show the single locality where it has been found (Gardner 1992).

Genomic DNA was extracted from ethanol-preserved tissue samples using the Qiagen DNeasy Blood \& Tissue Kit. One hundred and thirty-one specimens were sequenced for up to four mitochondrial genes encoding the ribosomal 12 S rRNA ($12 S$), cytochrome b (cytb), NADH deshidrogenase 4 ($n d 4$) and the adjacent tRNA region (t RNAs; including the complete sequences of $t R N A-H i s$ and $t R N A-S e r$ and the first eight nucleotides of $t R N A-L e u$) and three nuclear markers encoding the oocyte maturation factor MOS (c-mos), the melano-cortin 1 receptor (mclr) and the recombination activating gene 2 (rag2). Primers, PCR conditions and source references for the amplification of all mitochondrial and nuclear markers are listed in Table 2.
TABLE 2. Amplification conditions and information on markers used in this study

Locus	Fragment length (bp)	Primer sequence (5^{\prime} to 3^{\prime})	Primer orientation	T^{a} annealing	Reference
$12 S$	~ 390	12Sa AAACTGGGATTAGATACCCCACTAT 12Sb GAGGGTGACGGGCGGTGTGT	Forward Reverse	48°	Kocher et al. 1989
cyb	~ 300	cb1 CCATCCAACATCTCAGCATGATGAAA cb2 CCCTCAGAATGATATTTGTCCTCA	Forward Reverse	45°	Kocher et al. 1989
$n d 4+$ tRNAs	~ 800	ND4 CACCTATGACTACCAAAAGCTCATGTAGAAGC Leu CATTACTTTTACTTGGATTTGCACCA	Forward Reverse	52°	Arévalo et al. 1994
c-mos	~ 400	FUF TTTGGTTCKGTCTACAAGGCTAC FUR AGGGAACATCCAAAGTCTCCAAT	Forward Reverse	55°	Gamble et al. 2008
mclr	~ 670	MC1R-F AGGCNGCCATYGTCAAGAACCGGAACC MC1R-R ACTCCGRAAGGCRTAAATGATGGGGGTCCAC	Forward Reverse	52°	Pinho et al. 2009
Rag2	~ 410	RAG2-PY1-F CCCTGAGTTTGGATGCTGTACTT RAG2-PY1-R AACTGCCTRTTGTCCCCTGGTAT	Forward Reverse	65°	Gamble et al. 2008

[^0]

FIGURE 2. Distribution map of Hemidactylus luqueorum sp. nov., H. hajarensis sp. nov., H. alkiyumii sp. nov. and H. festivus sp. nov. Color dots indicate specimens included in the molecular analyses and listed in Table 1. Stars indicate Museum specimens included in the morphological analyses only and listed in Appendix I: 1) BMNH1975.916; 2) BMNH1975.41, BMNH1980.558; 3) BMNH1976.1404; 4) BMNH1977.35; 5) BMNH1983.706; 6) BMNH1977.975; 7) BMNH1977.976-981; 8) BMNH1977.963-966; 9)

BMNH1977.956-959; 10) BMNH1977.972-973 and BMNH1976.1409. Dashed lines delimit the different genetic lineages found within H. hajarensis (B1 and B2) and H. alkiyumii (C1, C2 and C3) and shown in Fig. 5 and Appendix III.

FIGURE 3. Distribution map of H. homoeolepis, H. paucituberculatus sp. nov., H. masirahensis sp. nov. and H. inexpectatus sp. nov. Color dots indicate specimens included in the molecular analyses and listed in Table 1. Stars indicate Museum specimens included in the morphological analyses only and listed in Appendix I. Specimen of H. homoeolepis BMNH1953.1.6.99 from Shaqra (Yemen; location: $13.35 \mathrm{~N}-45.70 \mathrm{E}$) is not shown in the map.

FIGURE 4. Distribution map with all known localities of H. lemurinus, the localities of H. flaviviridis and H. robustus specimens included in the molecular analyses and the only locality of H. leschenaultii in Oman. Color dots indicate specimens included in the molecular analyses and listed in Table 1. Stars indicate Museum specimens not included in the molecular analyses. The acronym MHNG refers to the Muséum d'Histoire Naturelle de la Ville de Genève.

Sequence analysis

Chromatographs were checked manually, assembled and edited using Geneious v. 5.3.6 (Biomatters Ltd.). DNA sequences were aligned using MAFFT v. 6 (Katoh \& Toh 2008) with the options maxiterate 1000 and localpair. Poorly aligned positions of the two non-transcribed mtDNA regions ($12 S$ and $t R N A s$) were eliminated with G-blocks (Castresana 2000) using low stringency options (Talavera \& Castresana 2007). Coding mtDNA and nDNA gene fragments were translated into amino acids and no stop codons were observed. For nuclear loci, c-mos, $m c 1 r$ and rag2, heterozygous individuals were identified based on the presence of two peaks of approximately equal height at a single nucleotide site. SEQPHASE (Flot 2010) (http://www.mnhn.fr/jfflot/seqphase/) was used to convert the input files, and the software PHASE v. 2.1.1 to resolve phased haplotypes (Stephens et al. 2001). Default settings of PHASE were used except for phase probabilities that were set as ≥ 0.7 (see Harrigan et al. 2008). All polymorphic sites with a probability of <0.7 were coded in both alleles with the appropriate IUPAC ambiguity code. Phased nuclear sequences were used for the network analyses and the unphased sequences for the phylogenetic analyses (see below). Uncorrected genetic distances were calculated using MEGA 5 (Tamura et al. 2011)

Phylogenetic and network analyses

Three datasets were assembled for the phylogenetic analyses of Hemidacytlus. Dataset 1 consisted of an alignment of 2866 base pairs (bp) of concatenated mitochondrial and unphased nuclear DNA for 131 Hemidactylus, of which 129 were representatives of the Arid clade (see Table 1). The 2866 bp of aligned sequence included 1385 bp of mtDNA ($353 \mathrm{bp} 12 S$; $302 \mathrm{bp} c y t b$; $588 \mathrm{bp} n d 4$ and $142 \mathrm{bp} t R N A s$) and 1481 bp of nDNA (403 bp c-mos; 668 bp mclr and 410 bp rag2).

Dataset 2 included a selection of 30 specimens from Dataset 1 (including a complete set of seven genes) and was used to infer the dates of the speciation events (see below). The alignment of Dataset 2 was exactly the same as Dataset 1 and therefore also included 2866 bp.

Dataset 3 consisted of an alignment of 350 bp of the 12 S mitochondrial gene only for 188 individuals. It included representatives of the three new species and one subspecies described from Yemen by Busais \& Joger (2011a), representatives of seven out of the eight new species described herein (no DNA is available for the eighth species) and individuals belonging to H. y. yerburii (this study and Busais \& Joger 2011a,b), H. robustus (this study and Busais \& Joger 2011a,b), H. sinaitus (Busais \& Joger 2011a,b), and H. homoeolepis (this study). Dataset 3 was assembled with two objectives: 1.- to show the genetic differentiation between the four new Hemidactylus taxa recently described from Yemen (Busais \& Joger 2011a,b) and the seven new Arabian species described herein for which DNA was available; and 2.- to show the level of genetic variability within the seven new species described herein for which DNA was available, including all the samples listed in Table 1. This explains why specimens not relevant for objectives 1 and 2 that were already included in Datasets 1 and 2 like H. modestus (Günther, 1894), H. citernii Boulenger, 1912, H. foundaii Baha el Din, 2003, H. macropholis Boulenger, 1896, H. turcicus, H. dawudazraqi and H. sp. 1 were excluded from Dataset 3 (the highly divergent sequences of some of these specimens affected the phylogenetic analyses using the short $12 S$ mitochondrial fragment). A thorough analysis of the phylogenetic relationships of Arabian Hemidactylus using both mtDNA and nDNA data and including all taxa known to date from both mainland Arabia and the Socotra Archipelago plus several new undescribed lineages from Yemen and Saudi Arabia is in progress (data not shown).

Phylogenetic analyses of Datasets 1 and 3 were performed using Maximum Likelihood (ML) and Bayesian (BI) methods. Separate ML and BI analyses were also performed on all seven independent partitions (12S, cytb, ND4, tRNAs, c-mos, mclr and rag2) of Dataset 1 to test for conflicting signal among genes (data not shown). Bestfitting nucleotide substitution models were selected for each partition under the Akaike information criterion (Akaike 1973) using jModelTest v.0.1.1 (Posada 2008). The GTR+I+G model was independently estimated for Dataset $3(12 S)$ and for each of the cytb, nd4, tRNAs, mclr and rag2 partitions of Dataset 1. The GTR+G and the HKY+G were selected for the 12 S and c-mos partitions of Dataset 1, respectively. Alignment gaps were treated as missing data and the nuclear gene sequences were not phased. Hemidactylus flaviviridis was used to root the tree, based on published evidence (Carranza \& Arnold 2006).

Bayesian analyses of both Datasets 1 and 3 were performed with MrBayes 3.1.2 (Huelsenbeck \& Ronquist

2001; Ronquist \& Huelsenbeck 2003) and, in the concatenated Dataset 1, with best fitting models applied to each partition (gene) and all parameters unlinked across partitions. Analyses were run for 2×10^{7} generations, with sampling intervals of 1000 generations, producing 20000 trees. Convergence and appropriate sampling of the BI analyses were confirmed examining the standard deviation of the split frequencies between the two simultaneous runs and the Potential Scale Reduction Factor (PSRF) diagnostic. Burn-in was performed discarding the first 5000 trees of each run for both Datasets 1 and 3 and a majority-rule consensus tree was generated from the remaining trees.

Maximum Likeliohood analyses of both Datasets 1 and 3 were performed in RAxML v.7.0.3 (Stamatakis 2006). A GTR $+\mathrm{I}+\mathrm{G}$ model was used and, in Dataset 1, parameters were estimated independently for each partition. Reliability of the ML tree was assessed by bootstrap analysis (Felsenstein 1985) including 1000 replications. Nodes were considered strongly supported if they received ML bootstrap values $\geq 70 \%$ and posterior probability (pp) support values ≥ 0.95 (Huelsenbeck \& Rannala 2004; Wilcox et al. 2002)

Haplotype networks were constructed for the three nuclear markers: c-mos, mclr and rag2 using phased haplotypes (see above) with TCS v.1.21 (Clement et al. 2000), applying default settings (probability of parsimony cut-off: 95%).

Estimation of divergence times

The lack of internal calibration points in Hemidactylus precluded the direct estimation of the time of the cladogenetic events in our phylogeny. Alternatively, the substitution rate of the same mitochondrial region calculated for other lizard groups could be used for this purpose. Mean substitution rates and their standard errors for the same $12 S$ and cytb gene regions used in the present study were extracted from fully-calibrated phylogenies of various lizard groups from the Canary islands: Tarentola sp. (Gekkonidae) (Carranza et al. 2000, 2002), Gallotia sp. (Lacertidae) (Cox et al. 2010), and Chalcides sp. (Scincidae) (Brown \& Pestano 1998; Brown \& Yang 2010; Carranza et al. 2008a).

As explained in (Cox et al. 2010), the Canary Islands are excellent to calibrate phylogenies as their geological history and island ages are very well known. All seven major islands have independent origins and tend to be older in the East and relatively recent in the West (Appendix II). The oldest islands are Fuerteventura and Lanzarote, with the origin of subaerial rocks being dated at 20.4-20.6 million years ago (mya) (Carracedo et al. 1998; Coello et al. 1992). The central island of Gran Canaria appeared 14.5 mya (Carracedo et al. 1998). In the West, some parts of Tenerife emerged approximately 11.6 mya (Ancochea et al. 1990; Guillou et al. 2004) and the island of La Gomera about 10.5 mya (Ancochea et al. 2006). Other parts of currently Tenerife appeared 6.5 mya (Anaga) and 7.4 mya (Teno) (Guillou et al. 2004). The two most recently emerged islands are in the Western extreme of the archipelago. La Palma appeared 1.77 mya (Guillou et al. 2001) while the oldest subaerial rocks on El Hierro have been dated at 1.12 mya (Guillou et al. 1996). Previous phylogenies all suggest a general East-West pattern of colonization as might be predicted from these ages. El Hierro was the last islands to be colonized by Gallotia and other lizards (Brown \& Pestano 1998; Carranza et al. 2002) and bats (Pestano et al. 2003) also appear to have colonized El Hierro soon after its appearance.

To infer the evolutionary rates of lacertid lizards, apart from the Canary Islands endemic Gallotia, we used other taxa and a second biogeographical event. This was the end of the Messinian Salinity Crisis (MSC) that occurred 5.3 mya. Approximately 5.59 mya, tectonic uplift of more than 1000 m along the African and Iberian continental margins formed the Gibraltar arch producing a land bridge. This closed the two marine gateways between the Atlantic Ocean and the Mediterranean Sea that existed in the Miocene (Duggen et al. 2003) and isolated the Mediterranean. Without input from the Atlantic Ocean, its surface level dropped by over 1000 m , perhaps in less than 1000 years (Blondel \& Aronson 1999; Hsü et al. 1977, 1973; Krijgsman et al. 1999). The fall desiccated large areas of the Mediterranean Sea bed, which were subsequently partly covered with freshwater sediments brought in by rivers. The end of the MSC at 5.3 mya was caused by the collapse of the Gibraltar arch, which opened the Strait of Gibraltar. This allowed the entire Mediterranean basin to fill again in less than 100 years (Blondel \& Aronson 1999; Hsü et al. 1977, 1973; Krijgsman et al. 1999) and broke the land connection, which had existed for nearly 300000 years. This event is very well known and has been associated with speciation in several other reptile and amphibian groups (Carranza et al. 2008b; Carranza \& Wade 2004; Escoriza et al. 2006; see

Pleguezuelos et al. 2008 for a review). According to Brown et al. (2008); the opening of the Gibraltar Strait acted as a vicariant event, giving rise to the two endemic lizards of the Balearic Islands: Podarcis lilfordii in the Gymnesic Islands (Mallorca, Menorca and surrounding islets) and P. pityusensis in the Pityusic Islands (Ibiza, Formentera and surrounding islets).

Comprehensive mtDNA datasets were assembled for each one of the three non-introduced reptile groups present in the Canary Islands (with the lacertids including also P. lilfordii and P. pityusensis from the Balearic Islands). Evolutionary rates for exactly the same $12 S$ and cytb mtDNA regions used in the present work were calculated with BEAST v.1.6.1 (Drummond \& Rambaut 2007). All analyses used calibrations from the biogeographical events described above (island ages and/or the end of the MSC; see Appendix II). Island ages represent times of earliest possible colonization of the islands and so were specified as maximal node age constraints (Cox et al. 2010). To implement this in BEAST, we used uniform priors from 0 to the time of emergence of the island. A minimal node age of 1 mya was also used to constrain the "El Hierro-La Gomera" node. A previous study indicate that reptiles have been present on El Hierro for substantial proportions of their postemergence periods (Thorpe et al. 1994). Application of this rather arbitrary minimal constraint therefore avoided proposal states with unrealistically recent node ages (Brown \& Yang 2010; Cox et al. 2010). The split between P. lilfordii and P. pityusensis as a result of the end of the MSC 5.3 mya was implemented in BEAST using a Normal prior: mean 5.25; Standard Deviation 0.03.

These values were used as informative priors in the three independent calibration analyses of Gallotia, Tarentola and Chalcides (Appendix II). From the results of these analyses we extracted the meanRate posterior (mean and standard error) for each mtDNA partition and for each one of the tree reptile taxa using Tracer v. 1.5 (Rambaut \& Drummond 2007). The values of the meanRate posteriors of all three reptile taxa were combined resulting in a single value for the $12 S: 0.00755 \pm 0.00247$ and cytb: $0.0228 \pm 0.00806 \mathrm{mtDNA}$ regions (see Appendix II).

The combined values of the meanRate posteriors were used to calibrate our Hemidactylus phylogeny. Specifically, we set a normal distribution prior for the ucld.mean parameter of the 12 S and cytb partitions based on the combined meanRate posteriors (mean and standard error) $(0.00755 \pm 0.00247$ for the $12 S$ and 0.0228 ± 0.00806 for the $c y t b$). We used BEAST to estimate dates of the cladogenetic events from the concatenated dataset. The dataset comprised sequences from all seven partitions (the nuclear genes c-mos, mclr and rag2 unphased) but, as is customary for such analyses, we used a phylogeny pruned arbitrarily to include one representative from each of the major lineages uncovered with the concatenated analysis (30 specimens in total; see Table 1). This method excludes closely related terminal taxa because the Yule tree prior (see below) does not include a model of coalescence, which can complicate rate estimation for closely related sequences (Ho et al. 2005). Analyses were run four times for 5×10^{7} generations with a sampling frequency of 10000 . Models and prior specifications applied were as follows (otherwise by default): GTR $+\mathrm{I}+\mathrm{G}(12 S, c y t b), \mathrm{TrN}+\mathrm{I}+\mathrm{G}(n d 4, m c 1 r), \mathrm{TrN}+\mathrm{I}(t R N A s), \operatorname{TrN}+\mathrm{G}(\mathrm{c}-$ mos), GTR+G (rag2); Relaxed Uncorrelated Lognormal Clock (estimate); Yule process of speciation; random starting tree; alpha Uniform (0,10); yule.birthRate (0,1000); ucld.mean of $12 S$ Normal (initial value: 0.00755 , mean: 0.00755 , Stdev: 0.00247); ucld.mean of cytb Normal (initial value: 0.0228, mean: 0.0228 , Stdev: 0.00806).

RESULTS AND DISCUSSION

The results of the molecular (Figs. 5-8; Appendix III; see also Table 1) and morphological (Appendix I) analyses confirm the presence of seven new species of Hemidactylus geckos in Arabia. One more species is recognized on the basis of morphology alone.

FIGURE 5. Maximum likelihood (ML) phylogenetic tree of 131 Hemidactylus specimens of the Arid clade (Carranza \& Arnold, 2006) based on 2866 bp of concatenated sequences of four mitochondrial ($12 S, c y b$, nd4 and $t R N A s$) and three nuclear (c-mos, mclr and rag2) genes. Two specimens of H. flaviviridis were used to root the tree and have not been included in the figure. Tree topology and branch lengths are for the sampled tree with the highest likelihood by RaxML (100 searches, log likelihood $=-20540.526926$). Each sequence is labeled with the specimen code and taxa name (see Table 1). Maximum-likelihood bootstrap support values above 70% are indicated above branches and black dots by the nodes indicate a posterior probability value ≥ 0.95 in the Bayesian analysis. Age estimates inferred with BEAST are indicated in italics below some relevant nodes and include the mean and, between brackets, the HPD 95\% confidence interval. Silhouettes of Hemidactylus taxa are not size-scaled.

melr

rag2

FIGURE 6. Statistical parsimony nuclear allele networks of c-mos, mclr and rag2 loci with colors corresponding to species H. persicus, H. luqueorum sp. nov. and H. hajarensis sp. nov.. Circle sizes are proportional to the number of alleles. White circles represent mutational steps. B1 and B2 refer to the different genetic lineages found within H. hajarensis (see Fig. 5 and Appendix III).

FIGURE 7. Statistical parsimony nuclear allele networks of c-mos, mclr and rag2 loci with colors corresponding to species H. yerburii, H. festivus sp. nov. and H. alkiyumii sp. nov.. Circle sizes are proportional to the number of alleles. White circles represent mutational steps. C1, C2 and C3 refer to the different genetic lineages found within H. alkiyumii (see Fig. 5 and Appendix III).

FIGURE 8. Statistical parsimony nuclear allele networks of c-mos, mclr and rag2 loci with colors corresponding to species H. homoeolepis, H. masirahensis sp. nov., H. inexpectatus sp. nov. and H. paucituberculatus sp. nov.. Circle sizes are proportional to the number of alleles.

Systematics

Family Gekkonidae Oppel, 1811

Genus Hemidactylus Oken, 1817

Hemidactylus persicus and similar species

The type locality of Hemidactylus persicus was restricted to Shiraz, Persia (=Iran) by Smith (1935). Morphologically typical animals occur in Northeast Saudi Arabia (as far South as AI-Hufof and perhaps arRiyadh), in Bahrain, Kuwait, and lowland Iraq, Southern Iran, Pakistan and Gujarat (India) (Anderson 1999; Leviton et al. 1992; Minton 1966; Sindaco \& Jeremcenko 2008; Smith 1935; Vyas et al. 2006). They are characterized by relatively small size (up to 67 mm SVL), a low number of lamellae under the $1^{\text {st }}$ toe of pes (mean $8.8,8-9$) and relatively numerous preanal pores in males (mean 9.2, 8-11) arranged in a V-shaped line in front of the vent (Appendix I). Other animals that have been assigned to H. persicus occur in isolation in the Jebel Akhdar region of North Oman (Arnold 1977, 1986; Arnold \& Gallagher 1977; see Figs. 1 and 2) and have recently been found in the adjoining mountains of the Eastern Hajars as far South as Jebel Qahwan. Morphology (Appendix I; Figs. 9-10, and 12), phylogenetic analysis of Dataset 1 (Fig. 5) and Dataset 3 ($12 S$ only; Appendix III) nuclear networks of three independent loci ($c-m o s, m c l r$ and rag2) (Fig. 6) indicate that there are two new species endemic to the Hajar Mountains in North Oman. These two new species are distinct both from each other and from typical H. persicus, and occur within $10-15 \mathrm{~km}$ of each other on the Jebel Akhdar. One is especially large and confined to the Jebel Akhdar area, while the other occurs here and in the Eastern Hajars, populations in the two areas of its distribution exhibiting marked genetic divergence (Fig. 5B1 and B2; Appendix IIIB1 and B2). These species are described below.

Hemidactylus luqueorum sp. nov.

(Figs. 2, 5A, 6, 9-11; Table 1; Appendix I; Appendix IIIA)
MorphoBank M94288-M94372 M94378-M94393 M100049-M100093

Hemidactylus persicus Arnold and Gallagher, 1977: 65; Arnold, 1977: 102; Arnold, 1986: 419; Leviton, Anderson, Adler and Minton, 1992: 38 (part.); van der Kooij, 2000: 112 (part.); Sindaco and Jeremcenko, 2008: 115 (part.).

Holotype

BMNH2005.1660, male from Sayq, 1961 m, Jebel Akhdar (North Oman), 23.07639’N 57.62861’E WGS84, collected in October 2005 by S. Carranza, E.N. Arnold and D. Donaire (MorphoBank M94288-M94303). Paratypes: BMNH1971.41, female from Wadi Sayq, 1900 m, Jebel Akhdar (North Oman), collected by M.D. Gallagher (MorphoBank M94304-M94312); BMNH1980.558, male from Wadi Sayq, 1900 m, Jebel Akhdar (North Oman), collected by M.D. Gallagher (MorphoBank M94313-M94350); BMNH1975.916, female from Birkat Sahfan, Jebel Akhdar (Oman), collected by D.L. Harrison (MorphoBank M94378-M94384). BMNH2005.1661, juvenile from Sayq, 1961 m, Jebel Akhdar (North Oman), 23.07639’N 57.62861’E WGS84, collected in October 2005 by S. Carranza, E.N. Arnold and D. Donaire; BMNH2005.1658, female from Wadi Bani Habib, 2200 m, Jebel Akhdar (North Oman), 23.0711’N 57.60417’E WGS84, collected in October 2005 by S. Carranza, E.N. Arnold and D. Donaire (MorphoBank M94363-M94372); BMNH2005.1659, female from Wadi Bani Habib, 2200 m, Jebel Akhdar (North Oman), 23.0711’N 57.60417’E WGS84, collected in October 2005 by S. Carranza, E.N. Arnold and D. Donaire (MorphoBank M94363-M94372); IBES8068, female from Wadi al Khahafa, 492 m , Jebel Akhdar (North Oman), 23.07419'N 57.12208'E WGS84, collected on the $10^{\text {th }}$ of October 2010 by S. Carranza and F. Amat (MorphoBank M100056-M100064); IBES7771, female from 1 km East of Hat, 1124 m, Jebel Akhdar (North Oman), 23.18292’N 57.41627’E WGS84, collected by S. Carranza, E. Gómez-Díaz and F. Amat on the $9^{\text {th }}$ of May 2011 (MorphoBank M100065-M100073); IBES6085, female, same collecting data as IBES7771 (MorphoBank M100083-M00093); ONHM3705, female from Wadi Bani Habib, 2200 m , Jebel

Akhdar (North Oman), 23.0711'N 57.60417'E WGS84, collected in October 2005 by S. Carranza, E.N. Arnold and D. Donaire (MorphoBank M94363-M94372).

Other material examined

Two vouchers listed in Appendix I under H. luqueorum sp. nov. and not mentioned above. Two unvouchered specimens (tissue codes S6080 and S7843) included in the molecular analyses only (Table 1).

Diagnosis

A large-sized Hemidactylus with a maximum recorded SVL of 88 mm ; with a mean of 14.2 (13-15) longitudinal rows of enlarged dorsal tubercles at mid-body; adhesive pads broad, in adults maximum width of pad on fourth toe of the pes more than half its length; lamellae under the $1^{\text {st }}$ toe of pes mean 10.3 (10-11); lamellae under the $4^{\text {th }}$ toe of pes mean 13.6 (13-14); preanal pores mean $5.3(5-6)$; expanded subcaudal scales extending proximally as far as the second whorl after the vent and starting just after the hemipenial bulge in males; dorsum grey-buff with irregular small spots; a dark stripe from the nostril, through the eye, on to cheek above ear and often on to neck; tail with small irregular dark blotches basally and numerous transverse dark bands more distally, the total number being around 17. Underside of tail pale but large subcaudals suffused with grey formed by dark chromatophores that increase in intensity distally; underside of toe pads also grey.

Hemidactylus luqueorum is generally similar to H. persicus in number of its moderately-sized dorsal tubercles across mid-body, and large adhesive pads on toes but differs from it in its much larger size (SVL mean 76.8 mm , max. 88 mm , compared with mean. 56.4 mm , max. 67 mm), reduced number of preanal pores in males (mean 5.3, $5-6$, compared with mean $9.2,8-11$), and presence of more lamellae under the first toe of pes (mean 10.3, 10-11, compared with mean $8.8,8-9$). For differences from the second North Oman species of Hemidactylus see below.

Etymology

The species epithet "luqueorum" is a collective genitive plural Latin noun to honour Salvador Carranza's wife, Maria Teresa Luque, and her family for all their love and support. Without their encouragement and help it would have been impossible to accomplish this work.

Genetic and phylogeographic remarks

Hemidactylus luqueorum is monophyletic in the phylogenetic analyses of Dataset 1 (Fig. 5A) and Dataset 3 (Appendix IIIA). In both phylogenetic trees it forms a clade together with H. persicus and the second North Oman species of Hemidactylus described below, although the bootstrap support and pp values are very low (see Fig. 5 and Appendix III). According to the results of the dating analysis inferred with Dataset 2, these three species split about 12.6 mya (95% HPD: 7.7-17.9). According to Fig. 5 and Appendix III, Hemidactylus luqueorum is more closely related to the second North Oman species of Hemidacytlus described below (Fig. 5B, Appendix IIIB), from which it split approximately 9.6 mya (95% HPD: 5.7-13.8). The level of genetic variability within H. luqueorum is 2% in the cytb and 0.2% in the $12 S$. The uncorrected genetic distances between H. luqueorum and the second North Oman species of Hemidactylus described below are 15.6% in the cytb and 6.9% in the $12 S$; and between H. luqueorum and H. persicus are 14.6% in the cytb and 9.8% in the $12 S$. The results of the nuclear networks presented in Fig 6 and a network analysis including all specimens from Dataset 1 (data not shown) indicate that all alleles of H. luqueorum for all three independent loci analyzed (c-mos, mclr and rag2) are private (not shared with any other species included in the present analyses).

Distribution

Despite intensive surveys across the Hajar Mountain range and especially the Eastern Hajars, H. luqueorum has only been found in the Jebel Akhdar, the largest structural domain of the Western Hajar Mountains in North Oman (Figs. 1 and 2). It has been recorded from 492 m altitude (Wadi Al Khahafa) up to 2200 m (Wadi Bani Habib).

Habits

The species occurs on rocky sides of wadis and on buildings and occasionally on gravely wadi floors. Mainly nocturnal, several specimens were active during the day in a narrow wadi 1 km East of Hat (Fig. 11A). According to Arnold and Gallagher (1977), specimens BMNH1971.41 and BMNH1975.916 were caught during the day, one

FIGURE 9. A) male, Holotype of H. luqueorum sp. nov. from Sayq, Jebel Akhdar (BMNH2005.1660); B) left: male of H. luqueorum Wadi Sayq, Jebel Akhdar (BMNH1980.558); right: female of H. hajarensis sp. nov. from Wadi Sabt, Jebel Akhdar (BMNH1977.35); C) above, H. hajarensis (BMNH1977.35); below H. luqueorum (BMNH1980.558); D) underside of right hind feet; left: H. luqueorum (BMNH1980.558), right: H. hajarensis (BMNH1977.35).

FIGURE 10. Live specimens of H. luqueorum sp. nov. A) and B) male from Wadi al Khahafa, Jebel Akhdar (IBES8068); C) unvouchered specimen photographed in its natural habitat in a cave at approximately 1 km E of Hat, Jebel Akhdar (photograph by Felix Amat); D) detail of an area of regenerated skin on the back of an unvouchered specimen, probably as a results of fights with conspecifics or attacks from predators.
on an overhanging rock-face and the other in a shallow cave. It can be locally abundant inside large caves and share habitat with Asaccus platyrhynchus. In Wadi Bani Habib, at 2000 m, it has been found together with Asaccus montanus and at Wadi al Kahafa, at much lower altitude, it shares habitat with both A. platyrhynchus and Ptyodactylus hasselquistii. It moves relatively slowly and is quite confident, sometimes allowing one to approach quite closely to take pictures. It losses the skin very easily when being handled and sometimes specimens have large scars of regenerated skin on the back, probably as a results of fights with conspecifics or attacks from predators (Fig. 10D).

Description

Head and body markedly depressed; head broad, especially posteriorly and neck well defined. Head length about $24-28 \%$ of SVL (mean males 25%, mean females 26%), head width $70-78 \%$ of head length (mean males 75%, mean females 74%), and head height $36-51 \%$ of head length (mean males 46%, mean females 44%). Adhesive pads broad; in adults maximum width of pad on fourth hind toe more than half its length.

Nostril between rostral, supranasal and two superposed postnasals, with the first supralabial scale usually also entering narrowly into its border. One, occasionally 2 scales separating supranasals on midline. About 14-19 scales in a straight line from postnasal to edge of orbit. Small conical tubercles scattered in orbital area, crown of head and temporal area above the level of ear opening and immediately in front of the upper part of this. Ear opening with its longest axis running upwards and backwards, smooth-edged, usually half or more of eye diameter. Supralabial scales mean 11.8 (10-14), infralabials mean 9.1 ($8-10$). Mental scale broadly triangular posteriorly bordered by two large postmentals making contact behind it, a second pair of more lateral postmentals also present, all four with a smooth transverse posterior border, the postmentals contacting the first and second supralabials; second and more posterior infralabials bordered by more irregular and smaller enlarged scales. Gulars fine.

Enlarged tubercles present on back, arranged in 14.2 (mean) (13-15) longitudinal rows at mid-body, which also form backwardly directed oblique rows from near midline to flank, 12-16 across mid-body, and 16-18 in a paravertebral row from the level of the axilla to that of the groin, where they are separated by spaces of about their own length. Enlarged tubercles keeled and trihedral but becoming smaller and more pointed on flanks. Ventrals small, but larger than dorsals and more imbricate, about 48-50 in a transverse row at mid body between lateral folds. Males with 5-6 preanal pores (mean 5.3) separated by one or two scales giving a formula of $2+3,3+2$ or $3+3$. Scales on upper forelimb small and imbricate, interspersed with enlarged tubercles on distal section. Scales on front of thigh and beneath about same size as belly scales and imbricate, rather larger under tibia, enlarged tubercles present on upper surface of both femur and tibia and also on posterior edge of foot. Lamellae under the toes of pes: $1^{\text {st }}$ toe mean 10.3 (10-11); $4^{\text {th }}$ toe mean 13.6 (13-14).

Tail relatively slender, although sometimes thickened proximally; six enlarged, keeled and pointed tubercles on each whorl proximally, dropping to four around whorl 8 or 10 . Tubercles about one third the length of basal whorls, becoming smaller and placed more posteriorly on whorls distally. About 10-11 small scales in longitudinal row on fourth whorl after vent, around seven small scales between tubercles on fourth and fifth whorls. Subcaudal scales enlarged and broad, extending proximally as far as the second whorl after the vent and starting just after the hemipenial bulge in males.

In spirit pale grey-buff; a dark stripe from the nostril, through the eye, on to cheek above ear and often on to neck; body with irregular small spots; some tubercles on forebody and vertebral area have opaque white coloring on one side and dark coloring on the other. Belly pale but there may be a slight stipple at the sides, the dark punctate spots being smaller than the scales. Tail with small irregular dark blotches basally and numerous transverse dark bands more distally, initially on every other whorl and then on each one, the total number being around 17. Underside of tail pale but large subcaudals suffused with grey formed by dark chromatophores that increase in intensity distally. Underside of toe pads also grey.

Distinctive features of Holotype

Male, 80.4 mm SVL; tail truncated, 59 mm long. Supralabial scales $13 / 12$; infralabials $9 / 9 ; 15$ rows of enlarged tubercles at mid-back; $6(3+3)$ preanal pores; lamellae under the $1^{\text {st }}$ toe of pes $10 / 11$, $4^{\text {th }}$ toe of pes $14 / 13$.

FIGURE 11. Different localities where H. luqueorum sp. nov. has been found A) 1 km E of Hat, Jebel Akhdar. In this locality H. luqueorum was found out during the day close to crevices and in small caves on the large boulders at the sides of the narrow Wadi; B) Wadi Bani Habib, Jebel Akhdar. In this locality H. luqueorum was found at night in man made constructions and on boulders; C) Wadi al Khahafa, Jebel Akhdar, where two specimens of H. luqueorum have been found at just 492 m altitude on the rocky sides of the wadi.

Hemidactylus hajarensis sp. nov.

(Figs. 2, 5B, 6, 9B-D, 12-13; Table 1; Appendix I; Appendix IIIB)
MorphoBank M94393-M94415 M94459-M94465 M94515-M94542 M94558-M94586 M94630-M94643
M94649-M94664 M94666-M94684 M94700-M94721 M99874-M99917 M99921-M99937 M99954-M99993

Hemidactylus persicus Arnold, 1986: 419; Leviton, Anderson, Adler and Minton, 1992: 38 (part.); van der Kooij, 2000: 112 (part.); Carranza and Arnold, 2006: 536; Sindaco and Jeremcenko, 2008: 115 (part.).

Holotype

BMNH2008.714, male from Wadi Bani Khalid, 647 m, Eastern Hajar (North Oman), 22.61609’N 59.09371’E WGS84, collected in May 2011 by S. Carranza, E. Gómez-Díaz and F. Amat (MorphoBank M99903-M99917; Fig. 12D). Paratypes: ONHM3706, male, same collecting data as Holotype (MorphoBank M99885-M99893); IBES7335, male, same collecting data as Holotype (MorphoBank M99894-M99902; Fig. 11D); IBES7336, female, same collecting data as Holotype (MorphoBank M99969-M99976).

Other material examined

Eighteen vouchers listed in Appendix I under H. hajarensis sp. nov. and not mentioned above. Specimens CAS227612, CAS227614, BMNH2008.705 (juvenile) and samples JS65, JS81, JS98 JS99, S7321, and S6061 were included in the molecular analyses only (Table 1).

Diagnosis

A medium-sized Hemidactylus with a maximum recorded SVL of 66.9 mm ; with a mean of 14.2 (13-15) longitudinal rows of enlarged dorsal tubercles at mid-body; adhesive pads fairly broad, in adults maximum width of pad on the fourth toe about $0.4-0.5$ of its length; lamellae under the $1^{\text {st }}$ toe of pes mean $8.0(7-9)$; lamellae under the $4^{\text {th }}$ toe of pes mean 12.1 (11-14); preanal pores mean 5.5 (4-6); expanded subcaudal scales extending proximally as far as the second or third whorl after the vent and starting just after the hemipenial bulge in males; dorsum grey-buff with irregular small spots; a dark stripe from the nostril, through the eye, on to cheek above ear and often on to neck; tail with small irregular dark blotches basally and numerous transverse dark bands more distally, the total number being around 17 . Underside of tail pale but large subcaudals may be suffused with grey formed by dark chromatophores that increase in intensity distally; underside of toe pads also grey.

Hemidactylus hajarensis is generally similar to H. persicus in the number of its moderately-sized dorsal tubercles across mid-body, and large adhesive pads on toes but differs from it in its reduced number of preanal pores in males (mean 5.5, 4-6, compared with mean 9.2, 8-11). Hemidactylus hajarensis differs from H. luqueorum sp. nov. in its smaller size (SVL mean 54 mm , max. 66.9 mm , compared with mean. 76.8 mm , max. 88 mm), and in having fewer lamellae under the $1^{\text {st }}$ toe of pes (mean 8.0, $7-9$, compared with mean $10.3,10-11$), and under the $4^{\text {th }}$ toe of pes (mean 12.1, 11-14, compared with mean 13.6, 13-14)

Etymology

The species epithet "hajarensis" is an adjective that refers to the mountain range where the species is found, the Hajar Mountains.

Genetic and phylogeographic remarks

Hemidactylus hajarensis is monophyletic in the phylogenetic analyses of Dataset 1 (Fig. 5B) and Dataset 3 (Appendix IIIB). In both phylogenetic trees it forms a clade together with H. persicus and H. luqueorum sp. nov., although bootstrap support and pp values are very low (see Fig. 5 and Appendix III). According to the results of the dating analysis inferred with Dataset 2, these three species split about 12.6 mya (95% HPD: 7.7-17.9). According to Fig. 5 and Appendix III, H. hajarensis is more closely related to H. luqueorum (Fig. 5B, Appendix IIIB), from which it split approximately 9.6 mya (95% HPD: 5.7-13.8). The level of genetic variability within H. hajarensis is very high, 6.1% in the cytb and 2.6% in the $12 S$. As shown in Fig. 5B and Appendix IIIB, H. hajarensis consists of two very well differentiated and well-supported clades, B1 and B2. The uncorrected genetic distances between these two clades are 10.5% in the cytb and 5% in the $12 S$. As shown in Fig. 2, the geographical limits between clades B1 and B2 are not very clear, being clade B1 present in the Jebel Akhdar and in the coastal areas close to

FIGURE 12. Live specimens of H. hajarensis sp. nov. A) male from Wadi Tanuf (IBES7151); B) male from Wadi Bani Khalid (IBES7335); C) female from Wadi Tanuf (IBES8064); D) male, Holotype, from Wadi Bani Khalid (BMNH2008.714); E) same specimen as in B.

Muscat (Wadi Mayh, Jebel Abu Daud and a wadi North of Qurayyat), while clade B2 seems restricted to the Eastern Hajars. According to the calibrations, clades B1 and B2 split approximately 4.7 mya (95\% HPD: 2.6-7.0). The uncorrected genetic distances between H. hajarensis and H. luqueorum are 15.6% in the cytb and 6.9% in the $12 S$; and between H. hajarensis and H. persicus 15.1% in the cytb and 10.7% in the $12 S$. The results of the nuclear networks presented in Fig 6 and a network analysis including all specimens from Dataset 1 (data not shown) indicate that all alleles of H. hajarensis for all three independent loci analyzed (c-mos, mclr and rag2) are private (not shared with any other species included in the present analyses). It is also interesting to notice that, although clades B1 and B2 share alleles of the c-mos gene, specimens of these two clades do not share a single allele of the $m c 1 r$ and rag2 nuclear genes. The high genetic differentiation between clades B 1 and B 2 of H. hajarensis suggests long separation of the two units. However, the absence of clear morphological differences between these two clades and the relatively low number of available vouchers to carry out a thorough morphological analysis prevents us from taking any taxonomic decisions at present. Future studies should clarify the taxonomic status of these two clades (work in progress).

Distribution

The species is widespread in the mountains of North Oman from the Jebel Akhdar to the East. Despite intensive surveys across the Hajar Mountain range, it has never been found to the West of the Jebel Akhdar, in the Western Hajars or in the Musandam Peninsula. Several localities exist for the coastal wadis near Muscat and the Eastern Hajars, from Jebel Al Abyad in the West to Jebel Qahwan in the extreme East. Across its distribution range it has been recorded from almost sea level (22 m in Wadi Mayh) up to 1683 m in a locality 9 km North of Al Chayan (Table 1).

Habits

Hemidactylus hajarensis has been found at sides of wadis low on rocks that were interspersed and sometimes partly overhung with vegetation. The species was also sometimes seen on gravel floors of wadis (Fig. 13). Strictly nocturnal, it has never been recorded during the day. H. hajarensis moves quickly and is very agile, fleeing to a nearby refuge seconds after being spotted. In Wadi Tiwi and Wadi Hebaheba, H. hajarensis occurs also low on rocks. As H. luqueorum, it losses the skin very easily when being handled and sometimes specimens have scars of regenerated skin on the back, probably as a results of fights with conspecifics or attacks from predators (Fig. 12D). This species has never been found in sympatry with H. luqueorum, however, it shares habitat with Asaccus platyrhynchus and Ptyodactylus hasselquistii.

Description

Head and body markedly depressed. Head breadth variable and neck well defined. Head length about $24-31 \%$ of SVL (mean males 28%, mean females 27%), head width $65-85 \%$ of head length (mean males 71%, mean females 72%), and head height $36-55 \%$ of head length (mean males and females 42%). Adhesive pads fairly broad; in adults maximum width of pad on fourth hind toe about $0.4-0.5$ of its length.

Nostril between rostral, supranasal and two superposed postnasals, with the first supralabial scale usually also entering narrowly into its border. Usually one scale separating supranasals on midline. About 14-18 scales in a straight line from postnasal to edge of orbit. Small conical tubercles scattered in orbital area, crown of head and temporal area above the level of ear opening and immediately in front of the upper part of this. Ear opening with its longest axis running upwards and backwards, smooth-edged, usually about half or more of eye diameter. Supralabial scales mean 10.7 (9-12), infralabials mean 8.8 (7-10). Mental scale broadly triangular posteriorly bordered by two large postmentals making contact behind it, a second pair of more lateral postmentals also present, the postmentals contacting the first and second supralabials; second and more posterior lower labials bordered by more irregular and smaller enlarged scales. Gulars fine.

Enlarged tubercles present on back, arranged in 14.2 (mean) (13-15) longitudinal rows at mid-body, which also form backwardly directed oblique rows from near midline to flank, and 16-18 in a paravertebral row from the level of the axilla to that of the groin, where they are separated by spaces of about their own length. Enlarged tubercles strongly keeled and trihedral but becoming smaller and more conical on flanks. Ventrals small, but larger than dorsals and more imbricate, about $34-43$ in a transverse row at mid body between lateral folds. Males with $4-6$ preanal pores (mean 5.5) separated by one or two scales giving a formula of $2+2$ or $3+3$. Scales on upper forelimb

FIGURE 13. Different localities where H. hajarensis sp. nov. has been found A) Wadi Tanuf, Jebel Akhdar. In this locality H. hajarensis has been found in several occasion during the night on the rocky sides of the wadi; B) Wadi Bani Khalid, Eastern Hajar Mountains, where H. hajarensis was found at night on the ground and on boulders; D) 9 km N of Al Chayan, in the Eastern Hajar Mountains, where H. hajarensis was relatively abundant and several specimens were found on the rocky substrate and on boulders and rocky sides of the small wadis.
small and imbricate, interspersed with enlarged tubercles on distal section. Scales on front of thigh and beneath hind leg about same size as belly scales and imbricate, enlarged tubercles present on upper surface of both femur and tibia. Lamellae under the toes of pes: $1^{\text {st }}$ toe mean $8.0(7-9), 4^{\text {th }}$ toe mean 12.1 (11-14).

Tail relatively slender; between eight and six enlarged, keeled and pointed tubercles on each whorl on tail base, dropping to four from about $4-10^{\text {th }}$ whorl after vent. Tubercles about one third the length of basal whorls, becoming smaller and placed more posteriorly on whorls distally. Subcaudal scales enlarged and broad, extending proximally as far as the second or third whorl after the vent and the starting just after the hemipenial bulge in males.

In spirit pale grey-buff; a dark stripe from the nostril, through the eye, on to cheek above ear and often on to neck; body with irregular small spots; some tubercles on forebody and vertebral area have opaque white coloring on one side and dark coloring on the other. Belly pale but there may be a very fine slight stipple at the sides, the dark punctuate spots being much smaller than the scales. Tail with small irregular dark blotches basally and numerous irregular dark bands more distally, the total number being around 17. Underside of tail pale but large subcaudals may be suffused in some places with grey formed by dark chromatophores that increase in intensity distally. Underside of toe pads also grey. In life, animals from many localities have dark blotches or bars on the upper surface that are suffused yellow-orange.

Distinctive features of Holotype

Male, 59.8 mm SVL; tail missing from the base. Supralabial scales $10 / 10$; infralabials $9 / 9 ; 14$ rows of enlarged tubercles at mid-back; $6(3+3)$ preanal pores; lamellae under the $1^{\text {st }}$ toe of pes $8 / 8,4^{\text {th }}$ toe of pes $12 / 12$.

Hemidactylus yerburii and similar species

According to Anderson, 1895: 636, the types of Hemidactylus yerburii come from "Haithalhim and Laheh" although the types were registered at the British Museum as from Haithalhim (BMNH95.5.23.9) and Aden (BMNH95.5.23.8) (Appendix I). Specimens from the type localities or near the type localities are characterized by relatively small size (SVL mean 63.6 mm , max. 67.6 mm), high number of enlarged tubercles present on back, arranged in 16.7 (mean) (16-17) longitudinal rows at mid-body, a high number of preanal pores in males (mean $12.8,10-15$) in a V-shaped line in front of the vent and the enlarged laterally expanded subcaudal scales often do not begin until 3-6 (average 4.5) tail whorls after the vent.

According to Arnold (1980, 1986), there is a very marked geographical variation among specimens assigned to H. yerburii. For instance, the Northernmost populations assigned to H. yerburyii, which come from around anNamas and Sabt Al Alaya in the Northern Asir Mountains (Saudi Arabia) are like Southern Asir animals in having fewer femoral pores (9-11) than typical H. yerburyii and in the expanded subcadual scales beginning closer to the vent, being separated from it by $2-4$ whorls (average 2.5), (pers. observ.). However, they are distinctive from typical H. yerburii in being large (up to 72 mm from snout to vent), and in having dorsal tubercles that are reduced in size and not obviously trihedral, at least on the mid-back. These animals may also sometimes have more dark transverse bars on the intact tail than typical H. yerburyii. The taxonomic status of these distinct Saudi Arabian populations of H. yerburii is under study.

Morphological variation of Yemeni populations formerly assigned to H. yerburii has been recently assessed using both morphological and molecular data by Busais and Joger (2011a,b). The results of these investigations led to the description of one new species: H. jumailiae, and one subspecies: H. yerburii montanus, endemic to the mountains of Southwest Yemen. Two other species of Hemidactylus that externally resemble H. yerburii but that are phylogenetically unrelated to it have also been described in the same work: H. shihraensis and H. saba. Before the studies by Busais and Joger (2011a,b), the only specimen of H. yerburii that had been included in a molecular phylogeny was a specimen from Najran, Saudi Arabia (Carranza \& Arnold 2006). According to the analysis by Carranza and Arnold (2006), H. yerburii branched outside the Arid clade, sister to H. mabouia. A closer examination of the mtDNA sequences revealed that the $12 S \mathrm{mtDNA}$ of H. yerburii was, in fact, from H. mabouia. The cytb sequence of H. yerburii from Carranza and Arnold (2006) was correct and it has been used in other studies (Moravec et al. 2011).

Medium-sized Hemidactylus with numerous enlarged dorsal tubercles that occur in the Dhofar area of Southern Oman and neighboring East Yemen have been previously assigned to H. yerburyii. However,
considerable geographic variation in the populations placed in this species has been noted including differences within Dhofar itself (Arnold 1980, 1986). Morphology (Appendix I; Figs. 14-15, 17-18), phylogenetic analyses of Dataset 1 (Fig. 5) and Dataset 3 (12S only; Appendix III), and nuclear networks of three independent loci (c-mos, $m c 1 r$ and rag2) (Fig. 7) indicate that two species are present in the Dhofar region in Southern Oman and neighboring East Yemen. Although they have been found in sympatry in one locality in East Yemen (Fig. 2), these two species usually differ in habitat.

Hemidactylus alkiyumii sp. nov.

(Figs. 2, 5C, 7, 14-16, Table 1; Appendix I; Appendix IIIC)
MorphoBank M95099-M95289 M99609-M99718

Hemidactylus yerburii Arnold, 1977: 101 (part.); Arnold, 1986: 283 (part.); Arnold, 1986: 420 (part.); Schätti and Desvoignes, 1999: 52 (part.); van der Kooij, 2000: 113 (part.); Sindaco and Jeremcenko, 2008: 117 (part.).

Holotype

BMNH2005.1662, male from Tawi Atair, 610 m , Dhofar region (South Oman), 17.11639’N 54.54861'E WGS84, collected in October 2005 by S. Carranza, E.N. Arnold and D. Donaire (MorphoBank M95264-M95275; Fig. 13A). Paratypes: ONHM3707, male, same collecting data as Holotype (MorphoBank M95290-M95304); BMNH2005.1663, female, same collecting data as Holotype (MorphoBank M95276-M95289); IBES8078, female from Tawi Atair, 610 m, Dhofar region (South Oman) 17.11639'N 54.54861’E WGS84, collected in October 2010 by S. Carranza and F. Amat (MorphoBank M99654-M99660); IBES8079, female, same collecting data as IBES8078 (MorphoBank M99661-M99667); IBES8080, female, same collecting data as IBES8078 (MorphoBank M99668-M99674).

Other material examined

Twenty-three vouchers listed in Appendix I under H. alkiyumii sp. nov. and not mentioned above. Specimen CAS227519, IBES7666, IBES7740 and samples S3337, S3472, S7789, JS2, JS3, JS4, JS7, JS62, JS63, JS64, JS77, JS78, JS79, JS80, JS87, JS88, JS89, JS90, JS91, JS92, JS93, JS94, JS95, JS96, JS97, and S7194 were included in the molecular analyses only (Table 1).

Diagnosis

A medium-sized Hemidactylus with a maximum recorded SVL of 74.5 mm ; with a mean of 12.9 (11-14) longitudinal rows of dorsal tubercles at mid-body; adhesive pads medium-sized; lamellae under the $1^{\text {st }}$ toe of pes mean $7.0(6-9)$; lamellae under the $4^{\text {th }}$ toe of pes mean 10.8 (10-12); preanal pores mean 7.3 ($6-10$); expanded subcaudal scales usually beginning $1-4$ verticils behind vent (average about 2); dorsum somber, sometimes with a pattern of irregular spots or dark transverse crosses with approximately one on neck, three on body and one or two on anterior sacrum (Fig. 15A), not diffused with yellow in life; tubercles on body sometimes with opaque white pigment, which may be on medial side of tubercles while lateral sides are dark; tail not light distally, with pattern of 11-14 dark bands that are not especially widely separated and only extend ventrally towards the tail tip where they are not very conspicuous.

Hemidactylus alkiyumii differs from H. yerburii in its larger size (SVL max. 74.5 mm , compared with max. 67.6 mm), in having fewer longitudinal rows of dorsal tubercles at mid-body (mean 12.9, 11-14, compared with mean 16.7, 16-17), fewer preanal pores in males (mean 7.3, 6-10, compared with mean 12.8, 10-15), and in having enlarged tubercles on tail that are not spinose. It differs from H. yerburii montanus, endemic to the highlands of Yemen, in its larger size (SVL max. 74.5 mm , compared with max. 68 mm), in having higher number of lamellae under the $1^{\text {st }}$ toe of pes (mean. $7.0,6-9$, compared with mean 6.2 in both males and females, $5-7$), in having fewer longitudinal rows of dorsal tubercles at mid-body (mean 12.9, 11-14, compared with mean 15.1 in males and 15.4 in females, $14-16$), and in having fewer preanal pores in males (mean $7.3,6-10$, compared with mean 10.1). It differs from H. jumailiae from Yemen (formerly H. yerburii) in its larger size (SVL max. 74.5 mm , compared with max. 47 mm), in having higher number of lamellae under the $1^{\text {st }}$ toe of pes (mean. 7.0, 6-9, compared with mean $6.3,6-7$), and in having large trihedral tubercles present on back (small cycloid tubercles in
H. jumailiae). It differs from H. shihraensis from Yemen in its larger size (SVL max. 74.5 mm , compared with max. 48.2 mm), in having higher number of lamellae under the $1^{\text {st }}$ toe of pes (mean $7.0,6-9$, compared with 6), and more preanal pores in males (mean 7.3, 6-10, compared with 6). It differs from H. saba in its larger size (SVL max. 74.5 mm , compared with max. 59 mm), in having more preanal pores in males (mean $7.3,6-10$, compared with 6), and more supralabials (mean 10.0, 9-12, compared with 8-9). For differences from the second species of Dhofar Hemidactylus see below.

Etymology

The species epithet "alkiyumii" is a genitive Latin noun to honor Ali bin Amer Al Kiyumi, Director General of Nature Conservation of the Sultanate of Oman, for his knowledge and interest in the preservation of the biodiversity of Oman and for his help and support towards our ongoing studies on the reptile fauna of Oman.

Genetic and phylogeographic remarks

Hemidactylus alkiyumii is monophyletic in the phylogenetic analyses of Dataset 1 (Fig. 5C) and Dataset 3 (Appendix IIIC). In both trees it is not closely related to any specific taxa. According to Fig. 5, it is sister to a well-

FIGURE 14. Preserved specimens of H. alkiyumii sp. nov. A) left: male, Holotype from Tawi Atair, Dhofar (BMNH2005.1662); right: male from Wadi Rubkat, Dhofar (BMNH1977.964); B) male from the Khadrafi Plateau, Dhofar (BMNH1977.972); C) detail of the head of the same specimen as in B; D) detail of the right hind foot of the same specimen as in B.
supported clade formed by H. robustus, H. sp. 1, lineages D, E, F, G and H. homoeolepis. In Appendix III it is also sister to a similar assemblage but in this latter case the sister clade of H. alkiyumii includes also H. sp. (OTU 7 in Busais \& Joger 2011a), H. shihraensis and H. saba; specimens for which only the $12 S$ gene was available. Based on this molecular evidence, it is clear from Fig. 5 and Appendix III that H. alkiyumii is not phylogenetically closely related to H. y. yerburii, H. y. montanus, or to former members of H. yerburii: H. jumailiae and the other Dhofar Hemidactylus described below (Fig. 5D) or the two new species of Hemidactylus similar to H. yerburii described from Yemen by Busais and Joger (2011a) (H. shihraensis and H. saba). According to the results of the dating analysis inferred with Dataset 2, H. alkiyumii split from its sister clade about 11.1 mya (95% HPD: 7.1-15.9). Uncorrected genetic distances between H. alkiyumii and H. y. yerburii are 19.4% in the cytb and 9.7% in the $12 S$; between H. alkiyumii and H. y. montanus 9.3% in the $12 S$; between H. alkiyumii and H. jumailiae 9.3% in the $12 S$; between H. alkiyumii and the other Dhofar Hemidactylus described below (Fig. 5D) 14.1% in the cytb and 6.5% in the $12 S$; between H. alkiyumii and H. shihraensis 7.3% in the $12 S$; and between H. alkiyumii and H. saba 9.5% in the $12 S$.

The level of genetic variability within H. alkiyumii is very high: 8.8% in the $c y t b$ and 2.5% in the 12 S . As shown in Fig. 5C and Appendix IIIC, H. alkiyumii consists of three very well differentiated and well-supported clades, $\mathrm{C} 1, \mathrm{C} 2$ and C 3 ; being in all the analyses C 1 sister to a clade formed by C 2 and C 3 . The uncorrected genetic distances between these three clades are $10.6 \%, 13.5 \%$ and 11% in the cytb $(\mathrm{C} 1$ vs. $\mathrm{C} 2, \mathrm{C} 1$ vs. C 3 and C 2 vs. C 3 , respectively) and $4.3 \%, 4.2 \%$ and 4.2% in the $12 S(C 1 v s . \mathrm{C} 2, \mathrm{C} 1$ vs. C 3 and C 2 vs . C 3 , respectively). As shown in Fig. 2, clades C1, C2 and C3 are clearly delimited geographically from East to West. According to the calibrations, clade C1 split from the ancestor of C2 and C3 approximately 4.4 mya (95% HPD: 2.5-6.5), while clades C2 and C3 split about 3.1 mya (95% HPD: 1.6-4.8) (see Fig. 5C). The results of the nuclear networks presented in Fig 7 and a network analysis including all specimens from Dataset 1 (data not shown) indicate that all alleles of H. alkiyumii for all three independent loci analyzed (c-mos, mclr and rag2) are private (not shared with any other species included in the present analyses). It is also interesting to notice that, although clades $\mathrm{C} 1, \mathrm{C} 2$ and C 3 share alleles of the c-mos and rag2 genes, specimens of clade C 1 do not share alleles of mclr with C 2 and C 3 and the latter two clades only share a single allele (AO129a) of the mclr gene. Despite the genetic differentiation between clades C 1 , C 2 and C 3 of H . alkiyumii, which suggests long separation of these three units, the absence of clear morphological differences between these three clades and the relatively low number of available vouchers to carry out a thorough morphological analysis (Appendix I), prevents us from reaching any taxonomic conclusions at present. Future studies should clarify the taxonomic status of clades $\mathrm{C} 1, \mathrm{C} 2$ and C 3 of H. alkiyumii (work in progress).

As shown in Fig. 5C, Appendix IIIC and Fig. 7, the mitochondrial and nuclear DNA of specimens AO128 and AO129 turn out to be virtually identical with that of a specimen originally identified as H. macropholis from 11 km NW of Bargal, Bari region, Somalia (CAS227519) that was included in the phylogeny by Carranza and Arnold (2006; Fig. 1). This makes the original determination of the Bargal individual doubtful, especially as a second specimen of H. macropholis, from the Bari region, 11 km SE of Bosasso (CAS227511) also included in Carranza and Arnold (2006) and in the present study (Table 1; specimen CAS227511), has quite different mitochondrial and nuclear DNA with a genetic divergence from H. alkiyumii of 19% in cytb and 9% in 12 S . As a result of that, and that the collector of the two specimens was the same and visited Tawi Atair (South Oman) and Somalia within the same trip, we consider specimen CAS22751 \AA_{λ} most probably from Tawi Atair (South Oman) and belonging to H. alkiyumii

Distribution

This species inhabits the forested seaward face of the mountains of Dhofar and Eastern Yemen, from Damqawt (Yemen) in the West to North of Wadi Hasik in the East (Fig. 2). Across its distribution range it has been recorded from sea level (8 m in Salalah City, South Oman) up to 800 m in Taiq Cave (South Oman) (Table 1). Habits

Often in relatively mesic forested areas, though also in more open wadis in East Dhofar and in the gardens within Salalah City (South Oman). Found on rock faces, in shallow caves and on buildings. Mainly nocturnal, several specimens were out during the day in the shadow in densely forested areas in Dalkut (South Oman) and hiding in the caves in Tawi Atair (South Oman) (Fig. 16). It can be locally abundant inside large caves. It is relatively quick and losses its skin when handled. Therefore, sometimes specimens have scars of regenerated skin

FIGURE 15. Live specimens of H. alkiyumii sp. nov. A) and B) female from 3.5 km NE of Sadah (IBES7441); C) and D) female from 3 km NW of Hasik (IBES7858); E) male from 3 km NW of Hasik (IBES7453); F) male from Dalkut (IBES7888); G) and H) female from Dalkut (IBES7891).
on the back, probably as a result of fights with conspecifics or attacks from predators (Fig. 15F). Hemidactylus alkiyumii shares habitat with Ptyodactylus hasselquistii and small Hemidacytlus of the H. homoeolepis group, although the latter Hemidactylus are mainly ground-dwelling, while H. alkiyumii is rock-dwelling.

FIGURE 16. Different localities where H. alkiyumii sp . nov. has been found. A) 3 km N of Hasik, where the species has been found on the floor and on the rocky sides of the wadi; B) and C) Tawi Atair sink hole, type locality of H. alkiyumii; D) and E) Jebel al Qamar in SW Oman; F) Dalkut, in the Jebel Al Qamar, a locality where many specimens of H. alkiyumii were found during the day in caves and large crevices in boulders and cliffs (see Appendix I and Table 1).

Description

Males up to 74 mm SVL. Head and body markedly depressed (but less so than in H. luqueorum, H. hajarensis and H. persicus and head less broad than in these species). Head length about $25-29 \%$ of SVL (mean males and females 27%), head width $68-85 \%$ of head length (mean males 78%, mean females 75%), head height $39-53 \%$ of length (mean males 47%, mean females 46%). Adhesive pads on digits quite broad; in adults maximum width of pad on fourth hind toe about half its length.

Nostril between rostral, supranasal and two superposed postnasals, with the first supralabial scale usually also
entering narrowly into its border. Usually one scale separating the supranasals on midline. About $10-15$ scales in a straight line from postnasal to edge of orbit. Small conical tubercles scattered on orbital area, on crown of head and larger on temporal area above the level of ear opening and immediately in front the upper part of this. Ear opening often elongated, its longest axis running upwards and backwards, smooth-edged, about half or more of eye diameter. Supralabial scales mean 10.0 (9-12), infralabials mean 7.9 (7-9). Mental scale broadly triangular, posteriorly bordered by two large postmentals making contact behind it, a second pair of more lateral postmentals also present, all four with a fairly smooth common transverse posterior border, which may be concave posteriorly, the postmentals contacting the first and second supralabials. Second and more posterior infralabials bordered by more irregular and smaller enlarged scales. Gulars fine.

Enlarged tubercles present on back, arranged in obliquely diagonal rows from near midline to flank, mean 12.9 (11-14) across mid-body and $13-15$ in a paraventral row from the level of the axilla to that of the groin, where they are separated by spaces usually less than their own length. Tubercles strongly keeled, trihedral and striated, largest on the upper flanks but becoming smaller and more projecting and rounded lower down. Ventrals small, but larger than dorsals and imbricate, about 44-48 in a transverse row at mid-body between lateral folds (when these are discernible). Males with 6-10 preanal pores (mean 7.3), sometimes separated by one or two scales giving a formula of $3+3,4+3,4+4$, or $5+5$. Scales on upper forelimb small and imbricate, interspersed with enlarged tubercles on distal section that are smaller in the East. Scales beneath hind leg about same size as belly scales and imbricate, rather larger on front surface of thigh, enlarged tubercles present on upper surface of both femur and tibia where may be in contact, but smaller in East; also on posterior edge of foot. Lamellae under the toes of pes: $1^{\text {st }}$ toe mean 7.0 (6-9), $4^{\text {th }}$ toe mean 10.8 (10-12).

Tail relatively slender, although sometimes clearly swollen at base; six enlarged, keeled and pointed tubercles on each whorl proximally, dropping to four around whorl $9-12$. Tubercles about one half the length of basal whorls, becoming smaller and placed more posteriorly on whorls distally. Small dorsal scales on tail may be muticarinate, $8-9$ in longitudinal row on fourth whorl after vent, around $2-5$ small scales between tubercles on fourth and fifth whorls. Subcaudal scales enlarged and broad, extending proximally as far as whorls $1-4$ after the vent (average 2), and starting just after the hemipenial bulge in males.

Color varying from brown-grey in the West to pale buff in the East; sometimes a dark stripe from the nostril, through the eye, on to the cheek above ear and often on to neck; body sometimes with irregular spots; occasionally dark transverse crosses on mid-back (one on neck, three on body and one or two on anterior sacrum; Fig. 15A). Some opaque white pigment on tubercles in the East, where it may occur on one side of tubercles while the other is dark. Belly pale. Tail with numerous transverse dark bands more distally, initially on every other whorl and then on each one, the total number being around 11-14. Underside of tail pale but large subcaudals grey, the color increasing in intensity distally and made up of dark chromatophores. Underside of toe pads also grayish.

Distinctive features of Holotype

Half grown male; 56.4 mm SVL ; tail 48 mm long with tip missing; some skin missing from mid-belly. Supralabial scales $11 / 12$, infralabials $8 / 7$; about 13 rows of enlarged tubercles at mid-back; $8(4+4)$ preanal pores; lamellae under the $1^{\text {st }}$ toe of pes $8 / 8,4^{\text {th }}$ toe of pes $12 / 12$.

Hemidactylus festivus sp. nov.

(Figs. 2, 5D, 7, 17-19, Table 1; Appendix I; Appendix IIID)
MorphoBank M95305-M95421 M99719-M99810

Hemidactylus yerburii Arnold, 1977: 101 (part.); Arnold, 1986: 283 (part.); Arnold, 1986: 420 (part.); Schätti and Desvoignes, 1999: 52 (part.); van der Kooij, 2000: 113 (part.); Sindaco and Jeremcenko, 2008: 117 (part.).

Holotype

BMNH1977.977, female from Wadi Ayoun, 670 m , Dhofar region (South Oman) 17.24671’N 53.88774’E WGS84, collected in October 1977 by E.N. Arnold (MorphoBank M95339-M95353). Paratypes: BMNH1977.978, female, same collecting data as Holotype (MorphoBank M95354-M95367); BMNH1977.976,
female, same collecting data as Holotype (MorphoBank M95323-M95338); BMNH1977.979, female, same collecting data as Holotype (MorphoBank M95368-M95379); BMNH1977.980, female, same collecting data as Holotype (MorphoBank M95380-M95392); BMNH1977.981, female, same collecting data as Holotype (MorphoBank M95393-M95407); IBES7419, female from 20 km South of Thumrait, 586 m , Dhofar region (South Oman) $17.4596^{\prime} \mathrm{N} 54.0446$ 'E, collected in October 2010 by S. Carranza and F. Amat (MorphoBank M99801-M99810); IBES7159, male from Wadi Ayoun, 670 m , Dhofar region (South Oman) 17.24671 'N 53.88774 'E WGS84, collected in May 2011 by S. Carranza, E. Gómez-Díaz and F. Amat (MorphoBank M99733-M99743); ONHM3708, male, same collecting data as IBES7159 (MorphoBank M99744-M99753); IBES7605, male, same collecting data as IBES7159 (MorphoBank M99754-M99763); IBES8062, male from Wadi Ayoun, 670 m, Dhofar region (South Oman) 17.24671'N 53.88774'E WGS84, collected in October 2010 by S. Carranza and F. Amat (MorphoBank M99764-M99773).

Other material examined

Five vouchers listed in Appendix I under H. festivus sp. nov. and not mentioned above. Samples AO126, AO82, AO122, AO120, AO154, AO121, JS1, JS12, JS15, JS70, JS71, JS72, JS73, JS85, and JS86 were included in the molecular analyses only (Table 1).

Diagnosis

A medium-sized Hemidactylus with a maximum recorded SVL of 53.6 mm ; with a mean of 13.3 (12-15) longitudinal rows of enlarged dorsal tubercles at mid-body; adhesive pads on toes medium-sized; lamellae under the $1^{\text {st }}$ toe of pes mean $6.9(6-7)$; lamellae under the $4^{\text {th }}$ toe mean 11.3 (10-12); preanal pores 6 ; expanded subcaudals usually beginning $1-8$ verticils behind vent (average about 4). Distinctive pattern of narrow dark bands - one on neck, three on body and one on anterior sacrum, often suffused with yellow in life; tubercles on body often with opaque white pigment, sometimes on medial side of tubercles, while lateral sides are dark. Tail very light distally with pattern of $7-9$ widely separated dark bands, the more distal of which extend to the ventral surface.

Distinguished from H. alkiyumii by its smaller adult size (SVL max. 53.6 mm , compared with max. 74.5 mm), fewer preanal pores in males (6 , compared with mean 7.3, 6-10), more slender habitus and distinctive coloring of the tail and body. Hemidactylus festivus differs from H. yerburii in its smaller adult size (SVL max. 53.6 mm , compared with max. 67.6 mm in H. yerburii), in having fewer longitudinal rows of dorsal tubercles at mid-body (mean 13.3, 12-15, compared with mean 16.7, 16-17), fewer preanal pores in males (6 , compared with mean 12.8, 10-15), and in having enlarged tubercles on tail that are not spinose. It differs from H. yerburii montanus, endemic to the highlands of Yemen, in its smaller adult size (SVL max. 53.6 mm , compared with max. 68 mm in $H . y$. montanus), in having fewer longitudinal rows of dorsal tubercles at mid-body (mean 13.3, 12-15, compared with mean 15.1 in males and 15.47 in females, $14-16$), and in having fewer preanal pores in males (6 , compared with mean 10.2). It differs from H. jumailiae from Yemen (formerly H. yerburii) in having large trihedral tubercles present on back (small cycloid tubercles in H. jumailiae), more slender habitus and distinctive coloring. It differs from H. shihraensis in having higher number of lamellae under the $1^{\text {st }}$ toe of pes (mean 6.9, 6-7, compared with 6), higher number of lamellae under the $4^{\text {th }}$ toe of pes (mean 11.3, 10-12, compared with 10). It differs from H. saba in having lower number of lamellae under the $1^{\text {st }}$ toe of pes (mean $6.9,6-7$ compared with 8), a higher number of ventral scales (about 45 in a transverse row at mid-body between lateral folds where these are discernible, compared with an average of 31 in males and 30 in females in H. saba).

Etymology

The species epithet "festivus" is an adjective that refers to the "happy" aspect of this species, with its bright coloring in the dorsal pattern of living animals and with the juveniles moving around leaping with the tail raised to show its conspicuous black and white coloring.

Genetic and phylogeographic remark

Hemidactylus festivus is monophyletic in the phylogenetic analyses of Dataset 1 (Fig. 5D) and Dataset 3 (Appendix IIID). The phylogenetic relationships of H. festivus are different in Fig. 5 and Appendix III, as a result of the different taxa included in Datasets 1 and 3. According to Fig. 5, H. festivus is sister to H. sp. 1, although

FIGURE 17. Preserved specimens of H. festivus sp. nov. A) left: female from Wadi Ayoun (BMNH1977.976); right: female, Holotype, from Wadi Ayoun (BMNH1977.977); B) detail of the head of the Holotype (BMNH1977.977); C) detail of the left hind foot of the Holotype (BMNH1977.977).
bootstrap and pp support values are very low. However, the phylogenetic tree from Appendix III suggest that H. festivus is sister to H. shihraensis, a species recently described from the Hadramaut, Eastern Yemen (Busais \& Joger 2011a) and also closely related to H. saba from Northwest Yemen and to an undescribed Hemidactylus (Hemidactylus sp.) from Western Yemen (Busais \& Joger 2011a). Both phylogenetic trees (Fig. 5 and Appendix III) support the position of H. festivus between H. robustus and the small Hemidactylus of the H. homoeolepis group (H. homoeolepis plus the three new species described below belonging to clades E, F and G). The support for this clade in Fig. 5 is very high. The absence of the sister taxa of H. festivus, H. shihraensis, and also of H. saba and H. sp. from Dataset 2 (the dataset used for calibrations), prevents us from commenting on the dates of the possible origin of H. festivus. Uncorrected genetic distances between H. festivus and H. alkiyumii are 14.1% in the cytb and 6.5% in the $12 S$; between H. festivus and H. y. yerburii 19.4% in the $c y t b$ and 10% in the $12 S$; between H. festivus and H. y. montanus 9.5% in the $12 S$; between H. festivus and H. jumailiae 10.3% in the $12 S$; between H. festivus and H. shihraensis 5.3% in the $12 S$; and between H. festivus and H. saba 8% in the $12 S$. An individual of H. festivus from the Hadramaut (JS1; see Fig. 1), just 110 km North of the type locality of H. shihraensis (Ghayl Ba Wazir in Google Earth - Ghail Bawazeer in Busais \& Joger 2011a), is genetically very similar to the other individuals of H. festivus situated between 430 and 600 km further East and maintains its genetic distinctiveness with the geographically closer H. shihraensis. Despite the relatively large area occupied by H. festivus (more than 850 km in a straight line between specimens JS1 and BMNH1983.706), the level of genetic variability is rather low: 0.4% in the cytb and 0.1% in the $12 S$, suggesting that H. festivus probably has a continuous distribution between the Hadramaut area in Yemen and Oman. Alternatively, the specimens from Wadi Hadramaut may be the result of a human-meditaed introduction, although we consider this hypothesis very unlikely.

The results of the nuclear networks presented in Fig 7 and a network analysis including all specimens from Dataset 1 (data not shown) indicate that all alleles of H. festivus for all three independent loci analyzed (c-mos, $m c 1 r$ and rag2) are private (not shared with any other species included in the analyses).

Distribution

Hemidactylus festivus is distributed across 850 km , from the Hadramaut area in Southeastern Yemen to Southern Dhofar province in Oman, as far East as Sawqirah (Fig. 2). Although it can be found geographically very close to H. alkiyumii (even in sympatry at one locality; see Fig. 2 specimens JS7, JS12 and JS15), H. festivus mainly occupies the dry landward (Northern) side of the mountains, on the other side of the Dhofar Mountains and, in general, much dryer habitats than H. alkiyumii. Interestingly, Hemidactylus festivus is also found in Wadi Mughsayl on the Salalah coast, an area between clades C2 and C3 of H. alkiyumii in which this latter species has never been recorded.

Habits

The species occurs on rock pavements and low down on large boulders. At the type locality, H. festivus is replaced further from the ground by Hemidactylus lemurinus and Ptyodactylus (Arnold 1980) and newborns and juveniles share the ground with the much smaller H. homoeolepis. Although it occurs in drier habitats than H. alkiyumii, it is not found in really arid situations (Fig. 19). This species is particularly agile and subadults especially progress in a series of leaps when pursued, with the tail raised to show its conspicuous black and white coloring. Specimens from Wadi Ayoun collected in June were gravid but none had eggs in early October (Arnold 1980). According to our observations, H. festivus seems a strictly nocturnal gecko, as it has never been observed active during the day.

Description

Up to 53.6 mm SVL. Head and body markedly depressed; head broad, especially posteriorly and neck well defined. Head length about $26-30 \%$ of SVL (mean males 28 , mean females 27%), head width $63-81 \%$ of head length (mean males 71%, mean females 72%), and head height $38-54 \%$ of length (mean males 45%, mean females 44%). Adhesive pads quite narrow; in adults the maximum width of pad on fourth hind toe a third to a half its length.

Nostril between rostral, supranasal and two superposed postnasals, with the first supralabial scale usually also entering narrowly into its border. Usually one scale separating supranasals on midline. About 13-15 scales in a straight line from postnasal to edge of orbit. Small conical tubercles scattered in orbital area and on crown of head

FIGURE 18. Live specimens of H. festivus sp. nov. A) female from Wadi Ayoun (IBES7616); B) male from Wadi Mughsayl (IBES7899); C) and D) complete body and detail of the head of an unvouchered specimen from Wadi Ayoun; E) female from 20 km S of Thumrait in typical posture with the tail raised (IBES7419).
and often larger on temporal area above the level of ear opening, and immediately in front of the upper part of this. Ear opening often broad inverted comma shape with its longest axis running upwards and backwards, smoothedged, usually less than one third of eye diameter. Supralabial scales mean 9.8 (9-11), infralabials mean 8.4 (7-10). Mental scale broadly triangular, posteriorly bordered by two large postmentals making contact behind it, a second

FIGURE 19. Different localities where H. festivus sp. nov. and H. homoeolepis have been found. A) Wadi Ayoun, type locality of H. festivus where H. festivus occurs on the ground and low down on large boulders and H. homoeolepis occurs exclusively on the ground; B) 20 km S of Thumrait, where H. festivus and H. homoeolepis have been found mainly moving around on the rocky substrate; C) Wadi Mughsayl, W of Salalah. As in Wadi Ayoun, at this locality H. festivus occurs on the ground and low down on the rocky sides of the wadi, while H. homoeolepis occurs exclusively on the ground.
pair of more lateral postmentals also present, all four with a smooth common transverse posterior border; second postmentals contacting the first and second upper labials; third and more posterior lower labials bordered by more irregular and smaller enlarged scales. Gulars fine, rounded with little overlap.

Enlarged tubercles present on back, arranged in obliquely diagonal rows from near midline to flank, mean 13.3 (12-15) across mid-body, and $15-17$ in a paravertebral row from the level of the axilla to that of the groin, and largest on upper flank, where they are separated by spaces of about their own length or less. Tubercles keeled, striated and trihedral but becoming smaller and more rounded on lower flanks. Ventral scales small, and flat, but larger than dorsals and imbricate, about 45 in a transverse row at mid body between lateral folds where these are discernible. Males with 6 preanal pores, sometimes separated by one or two scales giving a formula of $3+3$. Scales on upper forelimb small and imbricate, interspersed with enlarged tubercles of different sizes on distal section. Scales on front of thigh and beneath about same size as belly scales and imbricate, rather larger under tibia, enlarged tubercles present on upper surface of both femur and tibia and also on posterior edge of foot. Lamellae under the toes of pes: $1^{\text {st }}$ toe mean $6.9(6-7), 4^{\text {th }}$ toe mean 11.3 (10-12).

Tail relatively slender; 6 enlarged, keeled and pointed tubercles on each whorl proximally, dropping to 4 around whorl 8 or 10 . Tubercles about half the length of basal whorls, becoming smaller and placed more posteriorly on whorls distally. About $9-10$ small scales in longitudinal row on fourth whorl after vent, around five small scales between tubercles on fourth and fifth whorls. Subcaudal scales enlarged and broad, extending proximally as far as whorls $1-7$ after the vent (average 4).

In alcohol, often warm pale buff; sometimes a vague darker stripe from the nostril, through the eye and on to cheek above ear; neck and body with narrow darker bands that are convex posteriorly - one on neck, three on body and one on anterior sacrum, bars do not extend on to flanks and may be suffused with yellow in life. Tubercles away from midline with dense white pigment, often the medial surface white and the lateral one darker than background, where scattered dark chromatophores can be seen. Tubercles on limbs and basal tail also white. Belly white, throat limbs and tail pale buff beneath. Underside of adhesive pads on toes pale. Tail becoming much lighter towards tip, with $7-9$ widely separated dark bars above, beginning around verticil 8 or 9 , each about a whorl long and separated by one or two whorls from the next; bars much shorter than intervening areas; more posterior bars extend to ventral surface. Juveniles like adults but distal tail colouring more contrasting and intense.

Distinctive features of Holotype

Adult female, 49 mm SVL ; tail intact 58 mm long; a longitudinal incision present on left side of belly. Supralabial scales 9/10, infralabials 9/9; 14 rows of enlarged tubercles at mid-back; lamellae under the $1^{\text {st }}$ toe of pes $7 / 7,4^{\text {th }}$ toe of pes $11 / 11$.

The Hemidactylus homoeolepis group

Until 1977, Hemidactylus homoeolepis was regarded as endemic to Socotra Island, but the revision of Arabian geckos by Arnold (1977) reported it from the Arabian mainland. This work suggested that it might have an extensive if interrupted distribution along the Southeastern seaboard of the peninsula. On Socotra, H. homoeolepis is relatively large and robust with small, sometimes slightly imbricate, dorsal scales and ventrals that occasionally show a slight serration at their edges. Socotran H. homoeolepis have SVL up to 42 mm , a low number of lamellae under the $1^{\text {st }}$ toe of pes $4-5$ and under the $4^{\text {th }}$ toe of pes $7-8$; preanal pores in males $3-6$, arranged in a V-shaped line in front of the vent (Appendix I and pers. observ.). Morphological differences between Arabian mainland populations of H. homoeolepis were investigated in depth by Arnold (1977, 1980), who concluded that the differences between some of the known populations are greater than those between some recognized species of Hemidactylus. Morphology (Appendix I; Figs. 20-22, 24-25, 27-28), phylogenetic analyses of Dataset 1 (Fig. 5) and Dataset 3 ($12 S$ only; Appendix III), and nuclear networks of three independent loci (c-mos, mclr and rag2) (Fig. 8) indicate that there are three new species of the H. homoeolepis group, all endemic to Oman (Fig. 3). These three new species are distinct both from each other and from typical H. homoeolepis and, as a result of that, are described below.

Hemidactylus homoeolepis Blanford, 1881

(Figs. 3, 5, 8, 19-21, Table 1; Appendix I; Appendix III)
MorphoBank M95683-M95823 M100000-M100038 M102031-M102145

Hemidactylus (Liurus) homoeolepis Blanford, 1881: 464. (Syntypes: BMNH1946.9.6.99 male, and 1946.9.7.1 female; Socotra Island, Yemen; collected by I.B. Balfour)

Hemidactylus homoeolepis: Arnold, 1977: 103 (part.); Arnold, 1980: 279 (part.); Arnold, 1986: 419 (part.); Schätti and Desvoignes, 1999: 50 (part.); van der Kooij, 2000: 111 (part.); Carranza and Arnold, 2006: 536; Sindaco and Jeremcenko, 2008: 115 (part.).

Material examined

Twenty-seven vouchers listed in Appendix I under the name H. homoeolepis. Juvenile specimens AO81, AO85, AO119 and samples S4209, S3399, S7091, JS5, JS6, JS8, JS75 were included in the molecular analyses only (Table 1).

Diagnosis

A small member of the H. homeolepis group with a maximum recorded SVL of 42 mm . Undepressed head; scaling fine without tubercles with the exception of specimen BMNH1953.1.6.9 from Shaqara, Southwest Yemen, which presents large tubercles on the hind back, tail base and hind limbs. Lamellae under the $1^{\text {st }}$ toe of pes mean 4.7 (4-5); lamellae under the $4^{\text {th }}$ toe mean 8.4 ($7-10$); preanal pores mean 5.5 (3-6); expanded subcaudal scales beginning some way from tail base; dorsal pattern spotted. For differences from the three new species described herein formerly part of H. homoeolepis (clades E-G in Fig. 5 and Appendix III) see below.

Genetic and phylogeographic remarks

Hemidactylus homoeolepis is monophyletic in the phylogenetic analyses of Dataset 1 (Fig. 5) and Dataset 3 (Appendix III). According to both Fig. 5 and Apendix III, H. homoeolepis is sister to a clade formed by two of the new species described below (clades F and G). This topology is very well supported and is maintained even if the two endemic Hemidactylus from the island of Abd Al Kuri (Socotra Archipelago), H. oxyrhinus Boulenger, 1899 and H. forbesii Boulenger, 1899 are included in the analyses (Gómez-Díaz et al. in press). According to the analyses by Gómez-Díaz et al. (In press), the two endemics from Abd Al Kuri are sister taxa and branch within the "H. homoeolepis group", in a position between the new species from clade E (described below) and a monophyletic assemblage formed by clades F, G and H. homoeolepis. According to the results of the analysis of Dataset 2 (dates inserted in Fig. 5), H. homoeolepis split from its sister clade approximately 6.6 mya (95% HPD: 4.2-9.6) and the species colonized the Socotra Archipelago about 4.3 mya (95% HPD: 2.5-6.4). Since at that time Socotra was already close to its actual position (Bosworth et al. 2005; Laughton 1966; Samuel et al. 1997), our data suggests that, similar to the skinks of the genus Trachylepis and the ancestor of the two endemic Hemidactylus from Abd Al Kuri, H. homoeolepis arrived to the archipelago by transmarine dispersal from Southeast Arabia (Gómez-Díaz et al. in press; Sindaco et al. in press.). The dates of origin of H. homoeolepis and colonization of the Socotra Archipelago by H. homoeolepis do not differ much from the inferred dates of these two events by Gómez-Díaz et al. (In press) using the same methods and calibrations but including H. oxyrhinus and H. forbesii (5.9 mya [95% HPD: 3.6-8.6] and 4.3 [95% HPD: 2.5-6.4], respectively).

Uncorrected genetic distances between H. homoeolepis and the other three members of the " H. homoeolepis group" (described as new species below) are very high: H. homoeolepis vs. the new species from clade G (Fig. 5, Appendix III) 13% in the cytb and 8.4% in the $12 S$; H. homoeolepis vs. the new species from clade F (Fig. 5, Appendix III) 11.2% in the cytb and 8.8% in the $12 S$; H. homoeolepis vs. the new species from clade E (Fig. 5, Appendix III) 11% in the cytb and 8.5% in the $12 S$. The results of the nuclear networks presented in Fig. 8 and a network analysis including all members of Dataset 1 (data not shown) clearly show that all alleles of H. homoeolepis for all three independent loci analyzed (c-mos, mclr and rag2) are private (not shared with any other species included in the analyses).

The level of genetic variability within H. homoeolepis is rather high: 3.2% in the cytb and 1.3% in the $12 S$, and is the result of the relatively high level of genetic differentiation between mainland Arabia and Socotra Island populations of H. homoeolepis (uncorrected genetic distances of 10.4% in the $c y t b$ and 5.7% in the $12 S$). This

FIGURE 20. A) left: female of H. homoeolepis from Wadi Sayq (BMNH1977.919); right: male, Holotype, of H. paucituberculatus sp. nov. from Khor Sawli (BMNH1977.935); B) detail of the underside of the tail, left: H. homoeolepis (BMNH1977.919); right: H. paucituberculatus (BMNH1977.935); C) detail of the head of the Holotype of H. paucituberculatus (BMNH1977.935).

FIGURE 21. Live specimens of Homoeolepis. A) unvouchered specimen from Wadi Ayoun (photograph by Roberto Sindaco); B) male from Asylah (IBES7676); C) detail of the underside of the tail of the same specimen as in B; D) unvouchered specimen from Socotra Island, Yemen (photograph by Fabio Pupin).
genetic differentiation at the mtDNA level is also supported by differentiation at the nuclear level and by morphological differences in size, tuberculation, number of lamellae under the toes of pes, which suggests that Arabian mainland populations may, in fact, represent a new species (data not shown; work in progress). Although most specimens of H. homoeolepis across its distribution range in mainland Arabia are morphologically very uniform, one single isolated specimen from the coastal city of Shaqra ($13.35^{\prime} \mathrm{N} 45.70^{\prime}$ E; Southwest Yemen, 850 km to the West of the main distribution range of the species; BMNH1953.1.6.9; see Appendix I; MorphoBank: M102031-M102050) presents several differences from Eastern H. homoeolepis. The main differences are: dorsal scales flatter and slightly more imbricate; ventrals markedly larger with distinct serrated edges; presence of numerous enlarged unkeeled tubercles on the hind parts, just in front of the pelvic region that increase in size and frequency posteriorly. These are much bigger than the intermediate scales and are irregularly arranged although they tend to form transverse rows on tail base (rest of the tail is missing). Similar large scales occur on the tibia. Although no material is available for genetic comparisons, all these differences suggest that the specimen from Shaqra, Yemen may be part of yet another undescribed species of the H. homoeolepis group.

Distribution

Hemidacytlus homoeolepis is found in Socotra, Samha and Darsa Islands (Socotra Archipelago), Shaqra in Southwest Yemen, extreme Eastern Yemen, Dhofar region in South Oman and adjoining Central Oman and North Oman (Asylah) (Fig. 3). Across its distribution range it has been recorded from sea level (4 m in Wadi Mughsayl) up to 670 m in Wadi Ayoun (Table 1).

Habits

Hemidactylus homoeolepis is a small and strictly nocturnal gecko found in usually dry places on rock surfaces near the ground and on sandy and stony substrates close by. At Wadi Ayoun it occupies stony ground and sloping rock pavements and at Thumrait was found on screes of small stones (Fig. 19B). According to Arnold (1980), at these localities 62% of sixty-four animals checked were first sighted on the ground and all but one of the others were lower than 60 cm from it. At Wadi Ayoun H. homoeolepis is sympatric with three other nocturnal geckos: H. lemurinus, H. festivus and Ptyodactylus; although only newborns and juveniles of H. festivus are found in the same microhabitat (stony ground). Hemidacytlus homoeolepis is very agile, often proceeding in a series of leaps when pursued.

Hemidactylus paucituberculatus sp. nov.

(Figs. 3, 5, 8, 20, 22-23, Table 1; Appendix I; Appendix III)
MorphoBank M100347-M100537

Hemidactylus homoeolepis: Arnold, 1977: 103 (part.); Arnold, 1980: 279 (part.); Arnold, 1986: 419 (part.); Schätti and Desvoignes, 1999: 50 (part.); van der Kooij, 2000: 111 (part.); Sindaco and Jeremcenko, 2008: 115 (part.).

Holotype

BMNH1977.935, male from Khor Sawli, Salalah plain, Dhofar (South Oman), 17.04’N 54.32’E WGS84, collected in October 1977 by E.N. Arnold (MorphoBank M100347-M100363). Paratypes: BMNH1977.930, male, same collecting data as Holotype (MorphoBank M100364-M100380); BMNH1977.937, male, same collecting data as Holotype (MorphoBank M100381-M100397); BMNH1977.931, female, same collecting data as Holotype (MorphoBank M100416-M100431); BMNH1977.936, female, same collecting data as Holotype (MorphoBank M100432-M100447); BMNH1977.933, female, same collecting data as Holotype (MorphoBank M100448-M100464); BMNH1977.944, female, same collecting data as Holotype (MorphoBank M100465-M100479); BMNH1977.941, female, same collecting data as Holotype (MorphoBank M100480-M100496); BMNH1977.942, female, same collecting data as Holotype (MorphoBank M100497-M100501); ONHM3709, female from Khor Sawli, Salalah plain, Dhofar (South Oman), collected in October 2010 by S. Carranza and F. Amat (MorphoBank M100502-M100515); IBES7646, female, same collecting data as ONHM3709 (MorphoBank M100530-M100537);

Other material examined

Five vouchers listed in Appendix I under H. paucituberculatus sp. nov. and not mentioned above. Juvenile specimens IBES7988, IBEAO104 IBES7364, IBES7336, IBES7183 IBEAO91, IBES7492 and samples AO162, S3261, S3235, S7812, S7201 were included in the molecular analyses only (Table 1).

Diagnosis

A small, moderately depressed Hemidactylus with a maximum recorded SVL of 38.4 mm . Usually with flat enlarged tubercles on sides of dorsum as far forwards as mid-body that are also present on sides of dorsal tail base and on the hind legs where they are raised, and may also occur on the lower forelimb; lamellae under the $1^{\text {st }}$ finger of pes mean $4.9(4-5)$; lamellae under the $4^{\text {th }}$ toe mean 8.3 (7-9); preanal pores 6 in all males analyzed (Appendix I); expanded subcaudal scales usually extend almost to tail base. Dorsum with a pattern of irregular dark spots and streaks; tail with around 8-9 dark bands that increase in intensity distally and contrast strongly with smaller pale interstices.

Hemidactylus paucituberculatus differs from neighboring populations of H. homoeolepis from South Oman in its rather larger adult size (SVL mean 32.2 mm , max. 38.4 , compared with mean 30.1 mm , max. 33.4 mm), presence of enlarged tubercles and expanded subcaudal scales usually extending almost to tail base (expanded subcaudal scales beginning some way from tail base in H. homoeolepis). Not distinguished in its maximum adult body size from populations of H. homoeolepis from the Socotra Archipelago (SVL max. 39.7 mm) or from the single specimen from Shaqra (SVL 36.4 mm). For differences from the other two new species described herein formerly part of H. homoeolepis (clades F-G in Fig. 5 and Appendix III) see below.

Etymology

The species epithet "paucituberculatus" is an adjective derived from Latin that refers to the presence of few tubercles on sides of dorsum as far forward as mid-body that are also present on sides of dorsal tail base and on the hind legs.

Genetic and phylogeographic remarks

Hemidactylus paucituberculatus is monophyletic in the phylogenetic analyses of Dataset 1 (Fig. 5E) and Dataset 3 (Appendix IIIE). According to Fig. 5 and Appendix III, H. paucituberculatus is sister to a monophyletic group formed by H. homoeolepis and the two new species described below (clades F and G). However, this topology is altered when the two endemic Hemidactylus from the island of Abd Al Kuri (Socotra Archipelago), H. oxyrhinus and H. forbesii, are included in the analyses (Gómez-Díaz et al. in press). According to Gómez-Díaz et al. in press), the two endemic Hemidactylus from Abd Al Kuri form a clade that branches between H. paucituberculatus and the monophyletic assemblage formed by clades F, G and H. homoeolepis. According to the results of the analysis of Dataset 2 (dates inserted in Fig. 5), H. paucituberculatus split from its sister clade approximately 8.2 mya (95% HPD: 5.1-11.7). This date of origin of H. paucituberculatus does not differ much from the inferred date by (Gómez-Díaz et al. in press) using the same methods and calibrations and including H. oxyrhinus and H. forbesii (7.4 mya; 95\% HPD: 4.6-10.8).

Uncorrected genetic distances between H. paucituberculatus and the other members of the " H. homoeolepis group" (two of them described as new species below) are very high: H. paucituberculatus vs. H. homoeolepis 11% in the cytb and 8.5% in the $12 S$; H. paucituberculatus vs. the new species from clade F (Fig. 5, Appendix III) 12.9% in the cytb and 9.2% in the $12 S ; H$. paucituberculatus vs. the new species from clade G (Fig. 5, Appendix III) 13.5% in the cytb and 8.9% in the $12 S$.

The results of the nuclear networks presented in Fig. 8 are very interesting and, while all alleles of H. paucituberculatus for the nuclear genes c-mos and mclr are private (not shared with its closermost taxa (Fig. 8) or with any other species of Hemidactylus from Dataset 1 or the two endemics from Abd Al Kuri (data not shown)), 18 alleles of H . paucituberculatus out of a total of 20 alleles for the nuclear gene rag2 are shared with the new species of clade G described below (Figs. 5 and 8). Given the fact that there is complete lineage sorting for the mtDNA (Appendix III) and in the nuclear networks of c-mos and mclr (H. paucituberculatus even forms an independent network not connected to the other three species in $m c l r$; see Fig. 8), and that no hybrids have been detected, all evidence at hand points towards ancestral polymorphism rather than ongoing interspecific gene flow. The level of genetic variability within H. paucituberculatus is very low: 0.6% in the cytb and 0.2% in the $12 S$, and coincides with the high level of morphological homogeneity of this species (Appendix I).

FIGURE 22. Live specimens of H. paucituberculatus sp. nov. A) unvouchered specimen from Wadi Darbat (photograph by Roberto Sindaco); B) detail of the underside of the tail of the same specimen as in A; C) and D) detail of the head and underside of the tail of a female from Wadi Hasik (IBES7930); E) male from Wadi Darbat photographed from the underside (IBES7994); F), G) and H) different pictures including a detail of the head of a male from 3.5 km NE of Sadah (IBES8004); I) newborn from Khor Sawli (IBES7364).

The morphological investigation of a juvenile Hemidactylus (BMNH1974.4051) from Al-Hasikiyah island (spelling from Google Earth), Dhofar (South Oman), suggests that it may belong to H. paucituberculatus (data not shown). Although it would make sense biogeographically, the juvenile specimen is not very well preserved and therefore it cannot be indentified with confidence. Future exploration of Al-Hasikiyah Island and the nearby islands of Al-Sawda, Al-Hallaniyah, and Al-Qibliyah should clarify the taxonomic status of the populations of Hemidactylus inhabiting this interesting archipelago.

Distribution

Hemidacytlus paucituberculatus is endemic to South Oman and is found in Central Dhofar (Salalah plain), from Salalah to Hasik (Fig. 3). Like H. alkiyumii sp. nov., it inhabits the forested seaward (Southern) face of the Dhofar Mountains (Fig. 1) but in this case it is restricted to the area East of Salalah. Across its distribution range it has been recorded from sea level (9 m in Khor Sawli) up to 211 m in Wadi Darbat (Table 1)

Habits

A small and strictly nocturnal gecko found in usually dry places on rock surfaces near the ground and on the beach on sandy substrates with some rocks present (Fig. 23). In several places H. paucituberculatus is sympatric with H. alkiyumii and Ptyodactylus; although neither of these two gecko species occupy the same microhabitat (stony ground). Hemidacytlus paucituberculatus is very agile, often proceeding in a series of leaps when pursued.

Description

Up to 38.4 mm SVL. Head and body strongly depressed; head not especially broad posteriorly and neck well defined. In adults head length about $24-29 \%$ of SVL (mean males and females 25%), head width $60-78 \%$ of head length (mean males 70%, mean females 71%), and head height $38-49 \%$ of head length (mean males 39%, mean females 41%). Adhesive pads moderate; in adults maximum width of pad on fourth hind toe around a third its length.

Nostril between rostral, supranasal and two superposed postnasals, with the first supralabial scale usually also entering narrowly into its border. One scale separating supranasals on midline. About $10-13$ scales in a straight line from postnasal to edge of orbit. No enlarged scales or tubercles on head (occasionally very few weakly enlarged scales); ear opening with its longest axis running upwards and backwards, smooth-edged, usually half of eye diameter or less. Supralabial scales mean 8.9 (8-10), infralabial scales mean 7.4 (6-9). Mental scale broadly triangular posteriorly bordered by two large postmentals making contact behind it, a second pair of more lateral postmentals also present, the large postmentals contacting the first, or first and second, supralabials; second and more posterior infralabials bordered by more irregular and smaller enlarged scales. Gulars fine, imbricate posteriorly

Weakly enlarged flat smooth scales scattered on sides of mid-and posterior dorsum of body, becoming larger on sacral region and tail base, and on hind limbs where they are conical. Ventral scales small, but larger than dorsals and imbricate, about 32 in a transverse row at mid body between lateral folds (often not very apparent). All males analyzed have 6 preanal pores (Appendix I); usually 2 cloacal tubercles on each side. Scales on upper forelimb small and imbricate, often some enlarged tubercles on lower limb; scattered enlarged raised tubercles present on upper surface of both femur and tibia; scales on front of thigh and beneath about same size as belly scales or rather smaller; scales rather larger and more imbricate under tibia. Lamellae under the toes of pes: $1^{\text {st }}$ toe mean 4.9 (4-5); $4^{\text {th }}$ toe mean 8.3 (7-9).

Tail relatively slender with no tubercles after whorl 6 . About 7 small scales in longitudinal row on fourth whorl after vent. Subcaudal scales enlarged and broad, extending proximally almost to tail base and starting soon after the hemipenial bulge in males.

In alcohol pale grey-buff or buff; a broad dark stripe from the nostril, through the eye, on to cheek above ear and often on to neck; body with irregular dark spots and streaks that are often stronger anteriorly; belly pale. Tail with six or more dark bands each covering two or more whorls, being rather broader than pale intervening areas and increasing in intensity distally; ventral surface of tail pale and often irregularly blotched or stippled, the most distal four or so dorsal bands extending on to it.

FIGURE 23.-Different localities where H. paucituberculatus sp. nov. has been found. A) and B) Khor Sawli, where specimens were found under rocks during the day or moving around on the ground at night; C) and D) Wadi Darbat; E) 3 km N of Wadi Hasik, where H. paucituberculatus has been found in sympatry with H. alkiyumii; F) image of the Salalah plain, main habitat of H. paucituberculatus, taken from the summit of Jebel Samhan.

Distinctive features of Holotype

Adult male 33.5 mm SVL, tail 39 mm long, broken about half way along its length with a regenerated tip. Supralabial scales $10 / 9$, infralabials $7 / 7$; 6 preanal pores; lamellae under the $1^{\text {st }}$ toe of pes $4 / 4$, under the $4^{\text {th }}$ toe of pes 7/7.

Hemidactylus masirahensis sp. nov.

(Figs. 3, 5, 8, 24-26, Table 1; Appendix I; Appendix III)
MorphoBank M10094-M100230

Hemidactylus homoeolepis: Arnold, 1977: 103 (part.); Arnold, 1980: 279 (part.); Arnold, 1986: 419 (part.); Schätti and Desvoignes, 1999: 50 (part.); van der Kooij, 2000: 111 (part.); Sindaco and Jeremcenko, 2008: 115 (part.).

Holotype

BMNH1975.2080, male from East of R.A.F. camp, North end of Masirah Island (Oman), collected by T.D. Rogers (MorphoBank M10094-M100115). Paratypes: BMNH1975.2081, female, same collecting data as Holotype; BMNH1975.2082, male from Wadi dhu Mayhi, Masirah Island (Oman), 700 m , collected by T.D. Rogers (MorphoBank M100116-M100137); BMNH1975.2084, female, same data as BMNH1975.2082 (MorphoBank M100158-M100175); BMNH1975.2083, female, same data as BMNH1975.2082 (MorphoBank M100176-M100196); IBES7710, female from Wadi Maahdi, Masirah Island (Oman), collected in October 2010 by S. Carranza and F. Amat (MorphoBank M100220-M100226); ONHM3710, female, same collecting data as IBES7710 (MorphoBank M100227-M100230).

Other material examined

One voucher listed in Appendix I under H. masirahensis sp. nov. and not mentioned above. Juveniles or badly preserved specimens IBES7707, BMNH2008.713, IBES7661, IBES2004 and one sample (S3412) were included in the molecular analysis only (Table 1).

Diagnosis

A small, slender, depressed Hemidactylus with a maximum recorded SVL of 42 mm . Usually with scattered weakly enlarged scales on sides of dorsum of body that become larger posteriorly especially on sacral region, tail base, and hind legs where they are raised and tuberculate; adhesive pads narrow; lamellae under the $1^{\text {st }}$ toe of pes 6 ; lamellae under the $4^{\text {th }}$ toe mean $10.0(10-11)$; preanal pores 4 in the two males analyzed (Appendix I); expanded subcaudal scales usually extend almost to tail base. Dorsum with a pattern of irregular dark spots and streaks; tail with 8-9 dark bands that increase in intensity distally contrasting with smaller pale interstices, more distal 4-6 bands extend to ventral surface, each covering two or more whorls distally and being rather broader than interstices.

Hemidactylus masirahensis differs from H. homoeolepis in its larger adult size (SVL mean 32.2 mm , max. 45 mm , compared with mean 31.8 mm , max. 39.7 mm), greater depression of the head and body, more usual presence of dorsal tubercles on the body, lower number of preanal pores in males (4 compared with mean 5.5, 3-6), higher number of lamellae under the $1^{\text {st }}$ toe of pes (6 compared with mean $4.7,4-5$), and under the $4^{\text {th }}$ toe of pes (mean $10.0,10-11$, compared with mean $8.4,7-11$), presence of enlarged tubercles and expanded subcaudal scales usually extend almost to tail base (expanded subcaudal scales beginning some way from tail base in H. homoeolepis), different coloring (dark bands of the tail more conspicuous and marked in H. masirahensis, especially on the underside of tail). Distinguished from H. paucituberculatus by its larger adult size (SVL mean 32.2 mm , max. 45 mm , compared with mean 32.2 mm , max. 38.4 mm), greater depression of head and body, more usual presence of dorsal tubercles on body, lower number of preanal pores in males (4 compared with 6), higher number of lamellae under the $1^{\text {st }}$ toe of pes (6 compared with mean $4.9,4-5$), and under the $4^{\text {th }}$ toe of pes (mean $10.0,10-11$, compared with mean 8.3, 7-9), different coloring (dark bands of the tail more conspicuous and marked in H. masirahensis, especially on the underside of tail).

Etymology

The species epithet "masirahensis" is an adjective that refers to the place where the species is found, Masirah Island off the coast of Central Oman.

Genetic and phylogenetic remarks

Hemidactylus masirahensis is monophyletic in the phylogenetic analyses of Dataset 1 (Fig. 5F) and Dataset 3 (Appendix IIIF). According to Fig. 5 and Appendix III, it is sister to a new species described below (clade G). This topology is very well supported and is maintained even if the two endemic Hemidactylus from the island of Abd Al

FIGURE 24. Preserved specimens of H. masirahensis sp. nov. from Masirah Island A) male, Holotype, from E of R.A.F. camp (BMNH1975.2080); B) detail of the head of the Holotype; C) and D) female, from Wadi Maahdi (IBES7710); E) from left to right: female (BMNH1975.2081), female (BMNH1975.2083), male (BMNH1975.2082), female (BMNH1975.2084).

Kuri (Socotra Archipelago), H. oxyrhinus and H. forbesii, are included in the analyses (Gómez-Díaz et al. in press). According to the analyses by Gómez-Díaz et al. (In press), the two endemics from Abd Al Kuri are sister taxa and branch within the "H. homoeolepis group", in a position between H. paucituberculatus and a monophyletic assemblage formed by H. masirahensis, clade G and H. homoeolepis. According to the results of the analysis of Dataset 2 (dates inserted in Fig. 5), H. masirahensis split from its sister taxa approximately 4.4 mya (95% HPD: 2.6-6.5). This date of origin of H. masirahensis does not differ much from the inferred date by Gómez-Díaz et al. (In press) using the same methods and calibrations and including H. oxyrhinus and H. forbesii (4.2 mya; 95\% HPD: 2.4-6.3).

Uncorrected genetic distances between H. masirahensis and the other members of the " H. homoeolepis group" (one of them described as new species below) are very high: H. masirahensis vs. H. homoeolepis 11.2% in the cytb and 8.8% in the $12 S ; H$. masirahensis vs. H. paucituberculatus 12.9% in the cytb and 9.2% in the $12 S ; H$. masirahensis vs. the new species from clade G (Fig. 5, Appendix III) 14.8% in the $c y t b$ and 6% in the $12 S$.

The results of the nuclear networks presented in Fig. 8 are very interesting and, while all alleles of H. masirahensis for the nuclear genes c-mos and mclr are private (not shared with its closermost taxa (Fig. 8) or with any other species of Hemidactylus from Dataset 1 or the two endemics from Abd Al Kuri (data not shown)), all 14 alleles of H. masirahensis of the nuclear gene rag2 are shared with H. paucituberculatus. Given the fact that there is complete lineage sorting for the mtDNA (Appendix III) and in the nuclear genes c-mos and mclr, and that no hybrids have been detected, all evidence at hand points towards ancestral polymorphism rather than ongoing interspecific gene flow.

The level of genetic variability within H. masirahensis is very low: 0.3% in the cytb and 0.1% in the $12 S$, and coincides with the high level of morphological homogeneity of this species (Appendix I).

Distribution

Hemidactylus masirahensis is endemic to Masirah Island, Central Oman (Fig. 3). It has been found in very arid terrain of igneous rocks like basalt, serpentine, pyroclastics and some radiolarite almost completely devoid of vegetation (Fig. 26). Specimens for whom data is available indicate that it has been found between 40-52 m altitude.

Habits

Hemidactylus masirahensis is a small and strictly nocturnal gecko found in dry places on rock surfaces near the ground. Hemidactylus masirahensis is sympatric with Bunopus spatalurus hajarensis Arnold, 1980, with whom it shares the same spatial niche. Like all the other members of the "H. homoeolepis group" it is very agile, often proceeding in a series of leaps when pursued.

Description

Up to 45 mm SVL. Head and body strongly depressed; head not especially broad posteriorly and neck well defined. In adults head length about $24-28 \%$ of SVL (mean males and females 26%), head width $64-73 \%$ of head length (mean males 68%, mean females 69%), and head height $35-49 \%$ of head length (mean males 39%, mean females 42%). Adhesive pads moderate; in adults maximum width of pad on fourth hind toe less than a third of its length.

Nostril between rostral, supranasal and two superposed postnasals, with the first upper labial scale usually also entering narrowly into its border or not. One scale separating supranasals on midline. About 11-13 scales in a straight line from postnasal to edge of orbit. No more than a few slightly enlarged scales on dorsum of head. Ear opening with its longest axis running upwards and backwards, smooth-edged, usually half of eye diameter or less. Supralabial scales mean 9.0 (8-10), infralabials mean 7.3 (7-8). Mental scale broadly triangular posteriorly, bordered by two large postmentals making contact behind it, a second pair of more lateral postmentals also present, the large postmentals contacting the first or first and second upper labials; second and more posterior lower labials bordered by more irregular and smaller enlarged scales. Gulars fine, imbricate posteriorly

Weakly enlarged flat smooth scales scattered on sides of mid-and posterior dorsum of body, becoming larger and tuberculate on sacral region and tail base, and on hind limbs where conical. Ventral scales small, but larger than dorsals and imbricate, about 30-34 in a transverse row at mid body between lateral folds (often not very apparent). The only two males available have 4 preanal pores; $2-3$ cloacal tubercles on each side. Scales on upper forelimb small and imbricate, with no enlarged tubercles. Scales on front of thigh and beneath about same size as belly scales or rather smaller, larger and imbricate under tibia; scattered enlarged raised tubercles present on upper surface of both femur and tibia. Lamellae under the toes of pes: $1^{\text {st }}$ toe mean $6.0(6), 4^{\text {th }}$ toe mean $10.0(10-11)$.

FIGURE 25. Live specimens of H. masirahensis sp. nov. from Masirah Island A) unvouchered specimen from Wadi Harf (photograph by Roberto Sindaco); B) female from Wadi Maahdi (IBES7710); C) detail of the head of the same specimen as in B. D) juvenile from Wadi Maahdi (IBES7707); E) underside of the tail of the same specimen as in D.

FIGURE 26. Different localities in Masirah Island where H. masirahensis sp. nov. has been found. In all these localities H. masirahensis occurred on the ground and the rocky sides of the wadis A) and B) Wadi Haql; C) and D) Wadi Maahdi.

Tail relatively slender with no tubercles away from base. About 7-10 small scales in longitudinal row on fourth whorl after vent. Subcaudal scales enlarged and broad, extending proximally as far as about the second whorl after the vent and starting soon after the hemipenial bulge in males.

In alcohol pale grey-buff or buff; a broad dark stripe from the nostril, through the eye, on to cheek above ear and often on to neck, where narrower and more medial; body with irregular dark spots and streaks that may form a coarse irregular reticulation; Belly pale. Tail with 8-9 dark bands that increase in intensity and contrast with pale ground color distally; more distal 4-6 bands extend to ventral surface, each covering two or more whorls distally and being rather broader than interstices. Pale areas on underside of tail may be irregularly blotched or stippled.

Distinctive features of Holotype

Adult male 42.1 mm SVL; tail complete, 50 mm long; supralabial scales $9 / 8$, infralabials $7 / 8 ; 4$ preanal pores; lamellae under the $1^{\text {st }}$ toe of pes $6 / 6$, under the $4^{\text {th }}$ toe of pes $10 / 10$.

Hemidactylus inexpectatus sp. nov.

(Figs. 3, 5, 8, 27-29, Table 1; Appendix I; Appendix III)
MorphoBank M100233-M100346

Holotype

BMNH2008.711, male from 2.5 km Southeast of Ar Rumayliyah, 20.3319’N 57.78989 ' E, collected on the $29^{\text {th }}$ of October 2008 by S. Carranza, E.N. Arnold and S. Alrabiei (MorphoBank M100257-M100280). Paratypes: BMNH2008.712, male, same collecting data as Holotype (MorphoBank M100233-M100256); IBES1798, male, same collecting data as Holotype (MorphoBank M100281-M100301); IBES7722, male from the same locality as the Holotype, collected on the $11^{\text {th }}$ of October 2010 by S. Carranza and F. Amat (MorphoBank M100302-M100310); IBES7700, female, same collecting data as IBES7722 (MorphoBank M100311-M100315); IBES7735, female, same collecting data as IBES7722 (MorphoBank M100316-M100320); ONHM3711, female, same collecting data as IBES7722 (MorphoBank M100321-M100328).

Other material examined

Specimen BMNH1979.467 from Hamar-an-Nafur Island, Oman (see Appendix I).

Diagnosis

A small, slender, depressed Hemidactylus growing up to 44.1 mm SVL. Low conical or weakly keeled tubercles on back and neck, arranged in 14 regular rows at mid-body, largest on lateral dorsum compared with midback and flank; larger tubercles present on hind limbs and tail; adhesive pads narrow, lamellae under the $1^{\text {st }}$ toe of pes 6 , lamellae under toe $4^{\text {th }}$ toe mean 10.5 ($10-11$); preanal pores 4 ; expanded subcaudal scales extend to about 2-4 whorls from tail base. Dorsum with a pattern of irregular dark spots and streaks; tail with 8-9 dark bands that increase in intensity distally contrasting with pale interstices, the final 5-6 extending to the ventral surface.

Hemidactylus inexpectatus differs from H. homoeolepis by its larger adult size (SVL mean 37.5 mm , max. 44.1 mm , compared with mean 31.8 mm , max. 39.7 mm), presence of conical or weakly keeled and extensive tubercles on the body, nape hind legs and tail (generally absence of tubercles in H. homoeolepis), lower number of preanal pores in males (4 compared with mean 5.5, 3-6), higher number of lamellae under the $1^{\text {st }}$ toe of pes (6 compared with mean $4.7,4-5$), and under the $4^{\text {th }}$ toe of pes (mean 10.5, 10-11, compared with mean $8.4,7-11$). Distinguished from H. paucituberculatus by its larger adult size (SVL mean 37.5 mm , max. 44.1 mm , compared with mean 32.2 mm , max. 38.4 mm), larger conical or weakly keeled and more extensive tubercles on the body, nape, hind legs and tail, lower number of preanal pores in males (4 compared with 6), higher number of lamellae under the $1^{\text {st }}$ toe of pes (6 compared with mean $4.9,4-5$), and under the $4^{\text {th }}$ toe of pes (mean 10.5, 10-11, compared with mean 8.3, 7-9). Distinguished from H. masirahensis by having a less depressed head and body, larger conical or weakly keeled and more extensive tubercles on the body, nape, hind legs and tail, different coloring (dark bands of the tail less conspicuous and marked in H. inexpectatus, especially on adults and in the underside of the tail).

Etymology

The species epithet "inexpectatus" refers to the unexpected finding of this distinct new species of Hemidactylus in this area of Central Oman.

Genetic and phylogenetic remarks

Hemidactylus inexpectatus is monophyletic in the phylogenetic analyses of Dataset 1 (Fig. 5G) and Dataset 3 (Appendix IIIG). According to Fig. 5 and Appendix III, it is sister to H. masirahensis sp. nov. This topology is very well supported and is maintained even if the two endemic Hemidactylus from the island of Abd Al Kuri (Socotra Archipelago), H. oxyrhinus and H. forbesii, are included in the analyses (Gómez-Díaz et al. in press). According to the analyses by Gómez-Díaz et al. (In press), the two endemics from Abd Al Kuri are sister taxa and branch within the "H. homoeolepis group", in a position between H. paucituberculatus and a monophyletic assemblage formed by H. masirahensis, H. inexpectatus and H. homoeolepis. According to the results of the analysis of Dataset 2 (dates inserted in Fig. 5), H. inexpectatus and H. masirahensis split approximately 4.4 mya (95% HPD: 2.6-6.5). This date does not differ much from the inferred date of the same split by Gómez-Díaz et al. (In press) using the same methods and calibrations and including H. oxyrhinus and H. forbesii (4.2 mya; 95% HPD: 2.4-6.6).

Uncorrected genetic distances between H. inexpectatus and the other members of the " H. homoeolepis group" are very high: H. inexpectatus vs. H. homoeolepis 13% in the cytb and 8.4% in the $12 S$; H. inexpectatus vs. H. paucituberculatus 13.5% in the cytb and 8.9% in the $12 S$; H. inexpectatus vs. H. masirahensis 14.8% in the cytb and 6% in the 12 S .

The results of the nuclear networks presented in Fig. 8 and networks including all the specimens from Dataset 1 (data now shown) indicate that all alleles of H. inexpectatus for all three independent loci analyzed (c-mos, mclr and rag2) are private (not shared with any other species included in the analyses).

The level of genetic variability within H. inexpectatus is relatively high: 1.4% in the $c y t b$ and 0.5% in the $12 S$, especially if one considers that all the specimens have been collected within an area of less than $0.1 \mathrm{~km}^{2}$.

The assignation of specimen BMNH1979.467 from the offshore island of Hammar-an-Nafur to H. inexpectatus is based exclusively on morphological grounds. It will be very important to compare fresh material from this small island with the mainland specimens of H. inexpectatus (work in progress).

FIGURE 27. Preserved specimens of H. inexpectatus sp. nov. A-E) male, Holotype, from the type locality, 2.5 km SE of Ar Rumayliyah (BMNH2008.711); F) juvenile from Hamar-an-Nafur Island (BMNH1979.467).

Distribution

Known only from a single locality in Mainland Arabia (on the coast of the Gulf of Masirah, West of Barr al Hikman, Central Oman) and from the offshore island of Hammar-an-Nafur, situated 58 km Southeast of the type locality (Fig. 3). The altitude at the type locality is 65 m above sea level.

FIGURE 28. Live specimens of H. inexpectatus sp. nov. from the type locality, 2.5 km SE of Ar Rumayliyah. A-D) female (IBES7700); E) female (IBES7735); F) female (IBES7674).

FIGURE 29. View of the type locality of H. inexpectatus sp. nov., 2.5 km SE of Ar Rumayliyah. In this rather vegetated locality by the water, the species was found on rocky substrate like the one seen at the background of picture A.

Habits

Very little is known about this species of Hemidactylus. On the mainland, it is active after dark on low bare rock outcrops with very little or no vegetation. The only mainland locality known for this species is in a wadi and specimens were quite close to water (Fig. 29). Like all the other members of the "H. homoeolepis group" it is very agile, often proceeding in a series of leaps when pursued.

Description

Up to 44.1 mm SVL. Head and body depressed; head not especially broad posteriorly and neck well defined. In adults head length about $26-29 \%$ of SVL (mean males 26% mean females 27%), head width $63-70 \%$ of head length (mean males 67%, mean females 68%), and head height $34-41 \%$ of head length (mean males 35%, mean females 40%). Adhesive pads moderate; in adults maximum width of pad on fourth hind toe less than a third of its length.

Nostril between rostral, supranasal and two superposed postnasals, with the first upper labial scale usually also entering narrowly into its border. One scale separating supranasals on midline. About 13-14 scales in a straight line from postnasal to edge of orbit. No more than a few slightly enlarged scales or tubercles on dorsum of head. Ear opening with its longest axis running upwards and backwards, smooth-edged, usually half of eye diameter or less. Supralabial scales mean 10.4 (9-11), infralabials scales mean 8.2 (7-9). Mental scale broadly triangular posteriorly, bordered by two large postmentals making contact behind it, a second pair of more lateral postmentals also present, the large postmentals contacting the first or first and second upper labials; second and more posterior lower labials bordered by more irregular and smaller enlarged scales. Gulars fine, imbricate posteriorly

Low conical or weakly keeled tubercles on back and neck, arranged in 14 regular rows at mid-body, largest on lateral back compared with mid-back and flank; larger tubercles present on hind limbs. Ventral scales small, but larger than dorsals and imbricate, about 35-42 in a transverse row at mid body between lateral folds (often not very apparent). Preanal pores in males $4 ; 2-3$ cloacal tubercles on each side. Scales on upper forelimb small and imbricate, with a few enlarged tubercles or not. Scales on front of thigh and beneath about same size as belly scales (or rather smaller), rather larger and imbricate under tibia; enlarged raised tubercles present on upper surface of both femur and tibia. Lamellae under the toes of pes: $1^{\text {st }}$ toe mean 6.0 (6), $4^{\text {th }}$ toe mean 10.5 (10-11).

Tail relatively slender with 8 to 6 tubercles at the base, the number dropping to 4 and then to 2 about half way to tip and being absent distally. About $10-11$ small scales in a longitudinal row on fourth whorl after vent. Subcaudal scales enlarged and broad, extending proximally as far as whorl 2-4 after the vent.
In alcohol pale grey; a broad dark stripe from the nostril, through the eye, on to cheek above ear; body with irregular dark spots and streaks. Belly pale. Tail with 8-9 dark bands that increase in intensity and contrast with pale ground color distally; more distal 5-6 bands extend to ventral surface, each covering the equivalent of two or more whorls distally and being equal or rather broader than interstices. Pale areas on underside of tail may be irregularly blotched or stippled.

Distinctive features of Holotype

Adult male, 44.1 mm SVL; tail intact 50 mm long; 14 rows of enlarged tubercles at mid-back; supralabial scales $10 / 10$, infralabials $8 / 7 ; 4$ preanal pores; lamellae under the $1^{\text {st }}$ toe of pes $6 / 6,4^{\text {th }}$ toe of pes $11 / 11$.

An enigmatic North Oman Hemidactylus from the stomach of a preserved snake

In 1976, a distinctive male Hemidactylus was found in the stomach of a snake, Platyceps rhodorachis (Jan, 1865) (BMNH85.11.7.16), sent to the Natural History Museum, London by Colonel Atmaram Sadashiv G. Jayakar in 1885 with the locality 'Muscat' (Arnold 1986; Arnold \& Gallagher 1977) (Fig. 30). Colonel A.S.G. Jayakar (1844-1911) was sent to Oman by the Indian Medical Service in 1878 and during his 30 years in the Muscat area he studied the local wildlife and collected many specimens that he donated to the British Museum of Natural History, having several species named after him (some examples include the Arabian sand boa Eryx jayakari Boulenger, 1888, the lacertid Omanosaura jayakari, the seahorse Hippocampus jayakari Boulenger, 1900, the fish Lestidiops jayakari Boulenger 1889, and the endangered mountain goat Hemitragus jayakari Thomas, 1894). Although no similar Hemidactylus have been encountered since, it is unlikely that the specimen came from a
locality very far from Muscat itself, as all the other reptile and amphibian species in Jayakar's substantial collections have subsequently been found quite close to this town. Jayakar may, however, have obtained some of his material outside the immediate vicinity of Muscat. A possible indication of where this might be involves the type material of the lacertid Omanosaura jayakari, which Jayakar obtained. These specimens have higher average dorsal and other scale counts than those from other areas of North Oman where the species is known to occur, namely the Jebel Akhdar region, the Eastern United Arab Emirates, and the Musandam Peninsula (Arnold 1986; Arnold \& Gallagher 1977). Recently, specimens with such high counts have been found south of Muscat (in the Eastern Hajars at Wadi Tiwi and Wadi Bani Khalid), raising the possibility that Jayakar's Hemidactylus also came from there. However, careful searches south of Muscat, specifically in Wadi Mayh near Quryat, and at Wadi Tiwi, Wadi Bani Khalid, and Jebal Qahwan, only produced Hemidactylus hajarensis sp. nov. It is possible that the enigmatic Hemidactylus may not live in the rocky situations typical of other Arabian species of the genus, and may have a distinctive habitat of its own, for example trees or bushes. Such situations should be explored in further searches for this form. Meanwhile, as Jayakar's specimen is different from all other known Arabian Hemidactylus, it is described below as a new species.

Another enigmatic male Hemidactylus (BMNH1996.394) was also found in the stomach of a snake identified as Pseudocerastes persicus by M.D. Gallagher at Jebel Qahwan, above Wadi Hebaheba, near Sur (22.10N 59.20E, 808 m) in Northeast Oman. Most of this gecko had been digested and only the posterior body, hind-limbs and tail remain, but these show a combination of features that, when compared with other Hemidactylus from Wadi Habaheba and other parts of the Eastern Hajars, allowed us to confidently identify it as H. hajarensis sp. nov.

Hemidactylus endophis sp. nov.

(Fig. 30, Appendix I)
MorphoBank M101997-M102030
Hemidactylus sp: Arnold, 1977: 102; Arnold, 1980: 279 (part.); Arnold, 1986: 420; van der Kooij, 2000: 110.

Holotype

BMNH1976.1323, male, lodged in the gullet of a Platyceps rhodorachis (BMNH85.11.7.16) labeled as "Muscat", collected by A.S.G. Jayakar (MorphoBank M101997-M102030).

Diagnosis

Hemidactylus endophis can be distinguished from all currently described Arabian members of Hemidactylus based on the following combination of characters: A medium-sized Hemidactylus (only known specimen 59 mm SVL); large tubercles on dorsum relatively weakly keeled, arranged in 16 regular rows at mid-body, largest on lower flanks; scaling on belly coarse (about 26-28 in transverse row at mid-belly), coarse bluntly pointed and imbricate scales in front of vent similar to those on belly; adhesive pads on digits not especially broad, about half as wide as long on $4^{\text {th }}$ toe of pes; lamellae under the $1^{\text {st }}$ toe of pes 6 , lamellae under the $4^{\text {th }}$ toe $9 ; 7$ femoral pores under each thigh (14 in total), broadly separated medially by 6 scales.

Etymology

From the classical Greek prefix endŏ- meaning inside, and ŏphis, a snake.

Distribution

Presumably the Muscat region of North Oman.

Habits

Unknown.

Description of Holotype

Fifty-nine mm SVL. Head and body apparently not very markedly depressed; head not especially broad or neck well defined. Head length about 24% of SVL, head width 68% of head length, and head height 46% of head

FIGURE 30. Pictures showing different details of the Holotype of H. endophis sp. nov. (BMNH1976.1323).
length. Adhesive pads on digits not especially broad, maximum width of pad on fourth hind toe about a third of its length.

Nostril between rostral, supranasal and two superposed postnasals, with the first upper labial scale usually also entering narrowly into its border. One scale separating supranasals on midline. About 12-13 scales in a straight line from postnasal to edge of orbit. Small rounded and slightly keeled tubercles scattered in posterior interorbital, crown of head and temporal area above the level of ear opening and immediately in front of the upper part of this. The anterior part of the palpebral fold with very coarse scales. Ear opening with its smooth-edged, fairly rounded,
longest axis less than half diameter of eye. Supralabial scales 9/11, infralabials 9/10. Mental broadly triangular posteriorly, bordered by two large postmentals making contact behind this, a second pair of more lateral postmentals also present, their hind borders rounded and extending posterior of those of the larger more medial postmentals which contact the first and second supralabials; second and more posterior infralabials bordered by more irregular and smaller enlarged scales. Gulars small and imbricate.

Enlarged tubercles present on back, arranged in obliquely diagonal rows running from near midline posteriorly to flank, 16 across mid-body, and 19 in a paravertebral row from the level of the axilla to that of the groin, where they are separated by spaces of about their own length. Tubercles weakly keeled. The largest and most backwardly pointed on posterior flanks where tubercles finely striated and spaces between them smaller than tubercles themselves. Belly scales much larger than dorsals and flat and imbricate, about 26-28 in a transverse row at midbody between lateral folds. Femoral pores 7 under each thigh (14 in total), broadly separated medially by 6 scales. Scales on upper forelimb flat and imbricate above and largest distally, where there are a few enlarged tubercles posteriorly. Seven large tubercles on dorsal surface of femur and eleven on tibia. Underside of hindlimb with flat overlapping scales more or less like those on belly. Lamellae under the $1^{\text {st }}$ toe of pes 6 , under the $4^{\text {th }}$ toe of pes 9 . Tail missing

In alcohol beige grey above and paler below. No pattern discernible, probably because of partial digestion.

The Hemidactylus turcicus group

(Figs. 4, 5, 31, Table 1; Appendix I; Appendix III)

Hemidactylus turcicus turcicus (Linnaeus, 1758) has a mainly circum-Mediterranean distribution including many islands and with populations extending to the South along the Nile River up to the border with Sudan (Sindaco \& Jeremcenko 2008). They have also been introduced recently in the Canary Islands, Mexico, Cuba, Florida, and in other areas of the United States (Kraus 2009). According to a recent phylogenetic study from Carranza and Arnold (2006), H. turcicus may have originated in the Middle East from where it moved Westwards across the whole Mediterranean, eventually reaching the Atlantic Ocean. In this same study, the authors obtained two distinct mtDNA lineages of H. turcicus with little genetic divergence between them, suggesting that the phylogeographic pattern obtained was the result of a very rapid and recent spread. Results obtained for the European populations of another gecko, Tarentola mauritanica had, until recently, been interpreted to support the same scenario. However, Rato et al. $(2010,2011)$ have shown that the phylogeographic pattern of both T. mauritanica and H. turcicus are not solely the result of a recent colonization but represent two unprecedented cases of selective sweeps taking place in the same geographic area (Rato et al. 2010, 2011). While the circum-Mediterranean populations of H. turcicus represent two closely related lineages, the dark-colored H. lavadeserticus was described from the black Syrian basal desert, H. mindiae was reported from Southern Jordan (Amr et al. 2007) and a new morphologically and genetically distinct species, H. dawudazraqi, was recently described from a wide area ranging from Southern Syria to Southwestern Jordan (Moravec et al. 2011). Some inland North Arabian Hemidactylus may also form part of the H. turcicus assemblage, including ones from (spelling copied from the BMNH records) Qunfidah, Saudi Arabia (BMNH1992.170-171); 150 km south of Taymah, Saudi Arabia (BMNH1992.169); Hali, Saudi Arabia ($18^{\circ} 44^{\prime} \mathrm{N}$ 41° 24'E; BMNH1992.200-2001); 20 km East of Hail (BMNH1988.209) and Riyadh (BMNH1986.215). An animal from Hail is illustrated by Leviton et al. (1992; plate 5).

Interestingly, H. lemurinus described from Wadi Ayoun in Central Dhofar, South Oman (Figs. 4 and 31) turns out to be part of the H. turcicus group (Fig. 5; Appendix III), closely related to a clade formed by H. turcicus and H. dawudazraqi. According to the results of the dating analysis inferred with Dataset 2, H. lemurinus and the ancestor of H. turcicus and H. dawudazraqi split about 5.9 mya (95% HPD: 3.4-8.7). Uncorrected genetic distances between H. lemurinus and H. turcicus are 14% in the cytb and 4.6% in the $12 S$; between H. lemurinus and H. dawudazraqi 13.8% in the cytb and 4.4% in the $12 S$. As shown in Fig. 31, superficially H. lemurinus is unlike other members of the group, differing by its relatively large size, big head, slender limbs and tail, absence of enlarged tubercles on the dorsum, and in its pallid coloration. Since H. lemurinus was described, it has been recorded from near Mughsayl in Western Dhofar, South Oman (A.S. Gardner, pers. comm.; not shown in Fig. 4 as no specimens are available and its presence could not be confirmed in any of our trips), and close to the Southern coast of Yemen at Sayhut and Wadi Hajr (Schatti \& Desvoignes 1999). The latter record is about 650 km west of the type locality.

FIGURE 31. Pictures of live specimens and typical habitat of H. lemurinus. A-C) two unvouchered specimens (A and C are the same specimen) of H. lemurinus photographed in Wadi Ayoun, the type locality of the species. D) and E) detail of the big smooth white boulders at Wadi Ayoun, where H. lemurinus is found at night running with great agility, side by side with Ptyodactylus hasselquistii.

Hemidactylus robustus

(Figs. 4, 5, 32, Table 1; Appendix I; Appendix III)
The distribution of H. robustus is difficult to predict with certainty due to the confusion with H. turcicus and other similar taxa (Sindaco \& Jeremcenko 2008; Bauer et al. in press). In Arabia it is widely distributed, with populations on the Western coast starting from at least $22^{\circ} \mathrm{N}$ Southwards to the Aden region. It is also present in Socotra Island, the Hadramaut and occurs in Oman in coastal Dhofar, on Masirah Island and the neighboring mainland, around the Sharqiya Sands (formerly Wahiba Sands) and Northwards to the Eastern United Arab Emirates. Hemidactylus robustus also occurs in costal Iran, Pakistan, in Gurajat (India), along the African Red Sea coast of Southern Egypt and Sudan, in Eritrea, East Ethiopia, Djibuti, Somalia and extreme Northeast Kenya.

FIGURE 32. Pictures of a live specimen and one locality of H. robustus. A-C) unvouchered specimen from East Khor, Dhofar; D) picture of the locality 8 km W of Shannah, where representatives of the two divergent phylogenetic lineages of H. robustus have been found in sympatry (see main text, Fig. 5 and Appendix III).

Available material from widely separated localities (Fig. 4) in the United Arab Emirates, Al Azaiba in North Oman, 8 km W of Shannah (opposite Masirah), Dhofar (South Oman) and Yemen form a clade (Fig. 5) and are all genetically very similar, showing a low divergence from a specimen from Safaga, Egypt. In contrast, animals from Masirah Island and one from Shannah, on the nearby mainland, form a separate clade that differs by 8.7% in the cytb and 3.6% in the $12 S$. According to the results of the dating analysis inferred with Dataset 2 , the two clades of H. robustus split approximately 3.0 mya (95% HPD: 1.8-4.6).

Such divergence and restricted known coexistence at Shannah suggests that the two clades may represent separate species but, as yet, they are not associated with known morphological differences. The presence of two distinct mtDNA clades in Arabia suggests that H. robustus originated there. The genetic uniformity of the geographically widespread clade of H. robustus may indicate that it has spread over its very large range only quite recently. The frequent occurrence of this form in anthropogenic situations suggests that such dispersal may have been by inadvertent transport with people.

Members of the Tropical Asian clade of Hemidactylus

(Figs. 4, 33, Table 1)

Two species found in Arabia belong to the Tropical Asian clade (Carranza \& Arnold 2006). Hemidactylus flaviviridis extends from Northern India, Westwards around the coastal areas of the Arabian Peninsula, to the coast of Egypt, Sudan, Eritrea, Djibuti and Northern Somalia. According to Largen and Spawls (2010), its presence in Africa is believed to be the result of accidental introduction along with baggage or cargo carried by trading vessels. Specimens from Oman are not obviously different in morphology from animals elsewhere, including specimens from the species' main range in Northern India. Mitochondrial DNA is similar at widely separated localities in Iran, United Arab Emirates and Oman and also on Socotra (Carranza \& Arnold 2006), indicating relatively recent, perhaps anthropogenic spread, as with H. robustus (see above). A second member of the Tropical Asian clade, Hemidactylus leschenaultii of India and Sri Lanka, occurs in a locality on the Batinah coast of North Oman (Gardner 1992). According to van der Kooij (2000), it is a nocturnal arboreal gecko that is found exclusively on old Acacia trees with many hiding places. When present, it displaces H. robustus from this habitat. As for H. flaviviridis, populations in Oman show no obvious morphological differentiation suggesting that this species may also be the result of an introduction. Unfortunately, we could not visit the localities of H. leschenaultii in any of our expeditions to Oman and, as a result of that, this species was not included in the phylogenetic analyses.

Biogeography of Arabian Hemidactylus

Endemic species of Hemidactylus in Arabia and its northern hinterland for which DNA is available belong to the Arid clade of that genus. The ancestor of the assemblage is likely to have originated in adjoining Northeast Africa, as more basal members of the Arid clade are found there and on neighboring Socotra island (Carranza \& Arnold 2006; Gómez-Díaz et al. in press), and three of the four other main clades of Hemidactylus are primarily African (Carranza \& Arnold 2006).

It is likely that vicariance was the main driver of early divergence in Arabian Hemidactylus. Some of this was probably related to geological events. For example, disjunctions in many clades suggest that Northern Oman has been intermittently separated from the rest of Arabia, something that may have been caused by marine incursions (Arnold 2009; Glennie 2006). Climatic change, particularly aridification, may also have interrupted the ranges of Hemidactylus taxa, which are essentially fairly mesic in their requirements.

As with North Oman, other disjunctions in Hemidactylus elsewhere in Arabia are sometimes repeated in other taxa. For instance, in Southern Arabia, the separation of the Dhofar endemics, H. alkiyumii and H. festivus from the more Western H. yerburyii complex, is repeated in several other taxa including Uromastyx and Echis (Arnold et al. 2009; Wilms \& Schmitz 2007). Smaller-scale separations occur in the Dhofar region where endemics may occur in East Dhofar with related taxa being present to the West, and sometimes the North and further East as well. This pattern is found in H. paucituberculatus and H. homoeolepis, in H. alkiyumii and H. festivus, and among other geckos in the Pristurus rupestris and P. carteri complexes, and probably in Tropiocolotes as well (Arnold 1977, 1980, 2009).

FIGURE 33. Pictures of live specimens of the two representatives of Hemidactylus of the Tropical Asian clade (Carranza \& Arnold, 2006) present in Arabia (probably introduced). A) unvouchered H. flaviviridis from Socotra Island, Yemen (photograph by Fabio Pupin); B) H. leschenaultii from Sri Lanka (photograph by R. Alexander Pyron).

Although most genetic and morphological diversity in Arabian Hemidactylus is found in the South of the peninsula, the occurrence of some units in North Arabia and beyond may be long standing. For example, this is suggested in H. persicus by its strong divergence from other Arabian members of the Arid clade and by its genetic diversity within Iran (see above).

Wide, fragmented ranges that overlap other taxa indicate that some subclades of Hemidactylus that separated in Arabia later dispersed and then differentiated. More striking cases include the H. homoeolepis group with its four allopatric species in Southern Arabia, and the members of the H. turcicus group in the Levant (H. turcicus, H. lavadeserticus and H. dawudazraqi) and 2000 km away in Dhofar (H. lemurinus). It is important to notice that, although none of the seven non-introduced species of Hemidactylus from the Socotra Archipelago have been included in the present work, a thorough phylogenetic and phylogeographic analysis of Socotran Hemidactylus has been carried out by Gómez-Díaz et al. (in press) and the results indicate that the two endemic species from Abd Al Kuri (H. forbesii and H. oxyrhinus) and the morphologically and genetically distinct Homoeolepis from Socotra, Samha and Darsa have independently colonized the Socotra Archipelago from the Dhofar region in South Oman within the last 6.8 my . These results highlight the importance of Dhofar as a center of diversification in Hemidactylus.

As already noted, one clade of H. robustus and the studied populations of H. flaviviridis, which is a member of the Tropical Asian clade of Hemidactylus, are distinctive in their genetic uniformity and wide ranges in Arabia and outside it. These characteristics may result from recent spread with people, especially as the species are often found in and around human habitations. Similar and more marked cases are known in such Hemidactylus species as H. turcicus in the Mediterranean area and North America (although see Rato et al. 2011), H. mabouia in the Neotropics, H. frenatus in the Indian and Pacific Oceans, and H. garnotii in the Pacific Ocean (Carranza \& Arnold 2006). The disjunct presence of H. leschenaultii, another member of the Tropical Asian clade, on the Batinah plain in North Oman may also be anthropogenic. Given the diversity of Hemidactylus in Northeast Africa and Arabia, it is remarkable that the genus is not naturally more widespread in North Africa. The presence of Tarentola geckos throughout this region suggests that this species and Hemidactylus might exclude each other, especially as Tarentola itself does not penetrate into Arabia or Northeast Africa where so many Hemidactylus are found

Ecological separation

The way in which species of Arabian Hemidactylus separate ecologically is surprisingly varied. They may occur at similar altitudes but replace each other geographically, as in the H. homoeolepis group. Or if they are sympatric there may be altitudinal separation, such as that between H. hajarensis and H. luqueorum on the Jebel Akhdar in North Oman where these two species have never been recorded in the same locality. Humidity may also be an important factor, as in the separation of the relatively mesic H. alkiyumii and more xeric H. festivus in Dhofar. When animals exist within a few meters of each other, structural niche may be significant, as at Wadi Ayoun in Dhofar where H. festivus occurs on rocks closer to the ground than H. lemurinus, and H. homoeolepis lower still and on the ground (Arnold 1980). While four native species occur close together in Dhofar, most Hemidactylus communities in Arabia consist of only one or two species, although climbing geckos belonging to other genera, such as Asaccus and Ptyodactylus, may also be present. In Oman at least, Ptyodactylus tends to occur further from the ground than Hemidactylus species. Occurrence of Hemidactylus together with Asaccus in North Oman is very frequent and, for instance, H. luqueorum and A. platyrhynchus were found sharing the same microhabitat inside a cave close to Hat, Jebel Akhdar, and H. hajarensis and A. platyrhynchus have been found on the same rocks in Wadi Tanuf, Jebel Akhdar (pers. observ.). Hemidactylus luqueorum has also been seen found in syntopy with the small A. montanus but their size differences suggest that there are corresponding differences in the size of the prey taken. It is interesting to notice that H. luqueorum and H. hajarensis are not known to occur in the mountains running north from Jebel Akhdar to the Musandam Peninsula, where Ptyodactylus, Asaccus, H. robustus and H. flaviviridis have been recorded. The reasons for that interesting biogeographic pattern are unknown but the phylogenetic analyses presented here indicate that both species H. luqueorum and H. hajarensis have been present in the Hajar Mountains for the last 8 my , so its absence in the Western Hajar Mountains and Musandam Peninsula cannot be explained by lack of time to disperse to these areas further North. Ecological niche modelling of these two Hemidactylus species should indicate if this absence can be explained by environmental variables alone or if it
is the result of other ecological factors. A similar case occurs with P. rupestris, very abundant across the Hajar Mountain range but absent from the Musandam Peninsula (Arnold 2009).

Key to the genus Hemidactylus from Oman

1a - No enlarged tubercles on upper surface of body, hind legs and tail or, if present, tubercles on body few and weak. 2
1b - Numerous enlarged tubercles, which are usually raised and keeled, on the upper surface of the body, limbs and tail; those onthe body usually arranged in regular longitudinal rows 8
2a - Adults up to about 45 mm from snout to vent; 3-6 preanal pores in males only; lamellae under the $1^{\text {st }}$ toe of pes 4-6; $4^{\text {th }}$ toe ofpes 7-113
2 b - Adults over 50 mm from snout to vent, often considerably so; lamellae under the $1^{\text {st }}$ toe of pes 6-10; $4^{\text {th }}$ toe of pes $9-14$. 6
3a- Adults from Oman up to 34 mm from snout to vent; scaling fine, without any tubercles; expanded subcaudal scales beginningsome way from tail base, dorsal pattern spotted3b - Adults larger than 34 mm (up to 45 mm) from snout to vent; tubercles present on the body, nape, and hind legs; expanded sub-caudal scales usually extend almost to tail base4
4a - Adults larger than 39 mm (up to 45 mm) from snout to vent; presence of enlarged tubercles beyond mid-body; 4 preanal poresin males; lamellae under the $1^{\text {st }}$ finger of pes 6 ; lamellae under the $4^{\text {th }}$ toe of pes $10-11$ 5
4b - Adults up to 39 mm from snout to vent; usually with flat enlarged tubercles on sides of dorsum as far forwards as mid-bodythat are also present on sides of dorsal tail base and on the hind legs, and may also occur on the lower forelimb; 6 preanal poresin males; lamellae under the $1^{\text {st }}$ finger of pes 4-5; lamellae under the $4^{\text {th }}$ toe of pes $7-9$H. paucituberculatus sp. nov.
5a - Low conical or weakly keeled tubercles on back and neck, arranged in 14 regular rows at mid-body, largest on lateral dorsumcompared with mid-back and flank; larger tubercles present on hind limbs and tail; adhesive pads narrow; 4 preanal pores inmales, lamellae under the $1^{\text {st }}$ toe of pes 6 ; lamellae under the $4^{\text {th }}$ toe of pes $10-11 \ldots \ldots \ldots \ldots \ldots$. inexpectatus sp. nov.
5 b - Presence of flat enlarged tubercles mainly on the sides of the body and hind limbs; very contrasting tail with black bands withpale interstices, even in adults, that extend to the ventral surface; 4 preanal pores in males; lamellae under the $1^{\text {st }}$ toe of pes 6 ;lamellae under the $4^{\text {th }}$ toe of pes 10-11; Masirah Island.H. masirahensis sp. nov.
6a - Enlarged tubercles present on sides of tail; tail depressed; males with a series of femoral pores interrupted on the preanalregion, $4-16$ pores on the underside of each thigh. .7
6 b - No enlarged tubercles on the sides of the tail; tail round (not depressed); 3-8 pores present in front of vent in both sexesH. lemurinus
7a - Adults up to 95 mm from snout to vent; tubercles never present on back; tail with clear regular segments; 4-14 femoral poreson the underside of each thigh; lamellae under the $1^{\text {st }}$ toe of pes $7-10$; dorsal coloration yellowish-gray, pale yellow or yellow-ish-green, unmarked or with rather feeble dark wavy transverse bands; underside pale to bright yellow H. flaviviridis
7b - Adults up to 80 mm from snout to vent; upper surface of body covered with small granules, uniform or intermixed with moreor less numerous scattered round tubercles; 10-20 femoral pores on the underside of each thigh; lamellae under the $1^{\text {st }}$ toe ofpes 6-7, under the $4^{\text {th }}$ toe $9-12$; dorsal coloration grey, with darker markings, forming undulating cross bars, rhomboidal spotson the middle of the back, or regular longitudinal bands; a dark stripe form the eye tothe shoulder; lower surface white.......
8a - Femoral pores present, at least in males, 7 under each thigh, broadly separated medially by 6 scales; tubercles on the backlarge, strongly keeled and striate; lamellae under the $1^{\text {st }}$ toe of pes $6 ; 4^{\text {th }}$ toe of pes $9 \ldots \ldots \ldots \ldots \ldots \ldots$. endophis sp. nov.
8 b - Preanal pores $4-10$ in males, either in a continuous row or separated by one or two scales but never extend on to thighs . . . 9
9a - Adults up to 55 mm from snout to vent; adhesive pads not strongly expanded, not much wider than toe; claws short; tubercleson back rather small and not clearly striated; lamellae under the $1^{\text {st }}$ toe of pes $5-7$; $4^{\text {th }}$ toe of pes $9-11$; a very distinctive blackstreak running from the nostril through the eye to the ear opening.H. robustus
9 b - Adults up to 88 mm from snout to vent, although one species does not exceed 53 mm ; adhesive pads on digits stronglyexpanded, much wider than toe; tubercles on back of moderate to large size and striated; lamellae under the $1^{\text {st }}$ toe of pes $6-11$;$4^{\text {th }}$ toe of pes $10-14$10
10a - Lamellae under the $1^{\text {st }}$ toe of pes $7-11 ; 4^{\text {th }}$ toe of pes $11-14$; endemic to the Hajar Mountains, North Oman 11
10 b - Lamellae under the $1^{\text {st }}$ toe of pes 6-8; $4^{\text {th }}$ toe of pes $10-12$; South Oman 12

```
11a - Adults up to 67 mm from snout to vent; lamellae under the 1st toe of pes 7-9. . . . . . . . . . . . . . . . . . . H. hajarensis sp. nov.
```

11b - Adults up to 88 mm from snout to vent; lamellae under the $1^{\text {st }}$ toe of pes $10-11 \ldots \ldots \ldots \ldots \ldots \ldots$. luqueorum sp . nov.

12a - Adults up to 53.6 mm from snout to vent; preanal pores 6 ; slender habitus; distinctive pattern of narrow dark bands-one on neck, three on body and one on anterior sacrum, often suffused with yellow in life; tail very light distally with a pattern of 7-9 widely separated dark bands, the more distal of which extend to the ventral surface H. festivus sp. nov. Adults up to 74.5 mm from snout to vent; preanal pores $6-10$; more robust habitus; tail not light distally, with pattern of 11-14 dark bands that are not especially widely separated and only extend ventrally towards the tail tip where they are not very conspicuous.
H. alkiyumii sp. nov.

ACKNOWLEDGEMENTS

We are indebted to Ali Alkiyumii and the other members of the Ministry of Environment and Climate Affairs of the Sultanate of Oman for their help and support and for issuing all the necessary collecting permits (Refs: 08/2005; 16/2008; 38/2010; 12/2011). We are very grateful to our collaborator and friend Michael Robinson from the Sultan Qaboos University for all his help, advice and fruitful discussions during all our visits to Oman; to Salim Nasiir AlRubaiey for his help, advice and companionship during one of the fieldtrips and for doing the Arabic translation of the abstract; to David Donaire for participating in the 2005 fieldtrip; to Felix Amat for participating in the 2010 and 2011 fieldtrips and for some pictures and to Elena Gómez-Díaz for participating in the 2011 fieldtrip and for her help and advice; to Josep Roca for technical assistance; to Oscar Arribas for his help and advice in several taxonomic questions; to Roger Bour and Alain Dubois for advice on the specific epithets of the new species; to Philip the Pous and Aaron Bauer for their helpful comments; to Jiri Moravec and Jiri Smid for their valuable discussion concerning phylogeny and taxonomy of the Hemidactylus geckos and also for some samples of the new species described herein and other parts of Arabia; to Tomas Mazuch for information about Hemidactylus from East Africa; to Roberto Sindaco for samples, information and pictures of some of the new species described herein; to J. Vindum, California Academy of Sciences, San Francisco for some material from Africa and Arabia; to S. Baha el Din for material and advice; to Michael Gallagher both for collecting material and providing opportunities for E.N. Arnold to collect and observe Hemidactylus geckos in Oman and the United Arab Emirates in the 1970's; to David Modry, Terry D. Rogers, K. Al-Badry, M. Al-Safadi, Patsy Gasperetti, and the late John Gasperetti, Harry Hoogstraal, George Popov and H. J. St J. B. Philby for collecting critical material; to the Natural History Museum, London for facilities, including some of the photographs of preserved specimens, which were provided by Phil Crabb and Phil Hurst; to Fabio Pupin for his picture of Hemidactylus flaviviridis and R. Alexander Pyron for his picture of Hemidactylus leschenaultii, both included in Fig. 33. Research work by S.C. at the BMNH received support from the SYNTHESIS project GB-TAF-270, which is financed by the European Community Research Infrastructure under the FP7 "Structuring the European Research Area" Program. Laboratory and fieldwork was funded by the Natural Environmental Research Council, United Kingdom (NERC) (grants NER/A/S/2001/00511 to E. N. Arnold) and by grants CGL2008-00827/BOS and CGL2009-11663/BOS from the Ministerio de Educación y Ciencia, Spain to S.C.

REFERENCES

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N. \& Csaki, F. (Eds.), Information theory and an extension of the maximum likelihood principle. Akademiai Kiado, Budapest, pp. 267-281.
Amr, Z.S., Modrý, D., Abu Baker, M., Qarqas, M., Al Zaidanyen, J. \& Moravec, J. (2007) First record of Hemidactylus mindiae Baha El Din, 2005 from Jordan. Herpetozoa, 20, 73-75.
Ancochea, E., Fuster, J.M., Ibarrola, E., Cendrero, A., Coello, J., Hernán, F., Cantagrel, J.M. \& Jamond, C. (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. Journal of Volcanology and Geothermal Research, 44, 231-249.
Ancochea, E., Hernán, F., Huertas, M.J., Brändle, J.L. \& Herrera, R. (2006) A new chronostratigraphical and evolutionary model for La Gomera: implications for the overall evolution of the Canarian Archipelago. Journal of Volcanology and Geothermal Research, 157, 271-293.
Anderson, J. (1872) On some Persian, Himalayan, and other Reptiles. Proceedings of the Zoological Society of London, 1872, 371-404.
Anderson, J. (1895). On a collection of reptiles and batrachians made by Colonel Yerbury at Aden and its neighbourhood.

Proceeding of the Zoological Society of London, 1895, 635-663.
Anderson, S.C. (1999) The Lizards of Iran. Society for the Study of Amphibians and Reptiles, Oxford, Ohio, 442 pp.
Arévalo, E., Davis, S.K. \& Sites, J.W.Jr. (1994) Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43, 387-418.
Arnold, E.N. (1972). Lizards with northern affinities from the mountains of Oman. Zoologische Mededelingen, 47, 111-128
Arnold, E.N. (1977) The scientific results of the Oman flora and fauna survey 1975. Little-known geckoes (Reptilia: Gekkonidae) from Arabia with descriptions of two new species from the Sultanate of Oman. Journal of Oman studies special report, 1, 81-110.
Arnold, E.N. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). The reptiles and amphibians of Dhofar, southern Arabia. Journal of Oman studies special report, 2, 273-332.
Arnold, E.N. (1986) A key and annotated checklist to the lizards and amphisbaenians of Arabia. Fauna of Saudi Arabia, 8, 385-435.
Arnold, E.N. (2009) Relationships, evolution and biogeography of Semaphore geckos, Pristurus (Squamata, Sphaerodactylidae) based on morphology. Zootaxa, 2060, 1-21.
Arnold, E.N. \& Gallagher, M.D. (1977) The scientific results of the Oman flora and fauna survey 1975. Reptiles and amphibians from the mountains of northern Oman with special reference to the Jebel Akhdar region. Journal of Oman studies special report, 1, 59-80.
Arnold, E.N \& Gardner, A.S. (1994) A review of the Middle Eastern leaf-toed geckoes (Gekkonidae: Asaccus) with descriptions of two new species from Oman. Fauna of Saudi Arabia 14, 424-441.
Arnold, E.N., Robinson, M.D. \& Carranza, S. (2009) A preliminary analysis of phylogenetic relationships and biogeography of the dangerously venomous carpet vipers, Echis (Squamata, Serpentes, Viperidae) based on mitochondrial DNA sequences. Amphibia-Reptilia, 30, 273-282.
Arnold, E.N., Vasconcelos, R., Harris, D.J., Mateo, J.A. \& Carranza, S. (2008) Systematics, biogeography and evolution of the endemic Hemidactylus geckos (Reptilia, Squamata, Gekkonidae) of the Cape Verde Islands: based on morphology and mitochondrial and nuclear DNA sequences. Zoologica Scripta, 37, 619-636.
Babocsay, G. (2004) A new species of saw-scaled viper of the Echis coloratus complex (Ophidia: Viperidae) from Oman, Eastern Arabia. Systematics and Biodiversity, 1, 503-514.
Baha El Din, S.M. (2005) A new species of Hemidactylus (Squamata: Gekkonidae) from Egypt. African Journal of Herpetology 52, 39-47.
Baha El Din, S.M. (2005) An overview of Egyptian species of Hemidactylus (Gekkonidae), with the description of a new species from the high mountains of South Sinai. Zoology in the Middle East, 34, 27-34.
Bauer, A.M., Vyas, R., Jackman, T.R., Lajmi, A. \& Giri, V. Hemidactylus porbanadarensis Sharma, 1981 is a synonym of Hemidactylus robustus Heyden, 1827. Hamadryad, in press.
Blanford, W.T. (1874) Descriptions of new lizards from Persia and Baluchistàn. Annals and Magazine of Natural History, 13, 453-455.
Blanford, W.T. (1881) Notes on the lizards collected in Socotra by Prof. I. Bayley Balfour. Proceedings of the Zoological Society of London, 1881, 464-469.
Blondel, J. \& Aronson, J. (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, New York, 327 pp.
Bosworth, W., Huchon, P. \& McClay, K. (2005) The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences, 43, 334-378.
Boulenger, G.A. (1885) Catalogue of the lizards in the British Museum (Natural History). Vol. I. Geckonidae, Eublepharidae, Uroplatidae, Pygopodidae, Agamidae. Trustees of the British Museum, London, XII + 436 pp. + pls I-XXXII. Boulenger, G.A. (1887) Catalogue of the Lizards of the Collection of the British Museum. Vol. III. Lacertida, Gerrhosaurida, Scincida, Anelytropida, Dibamida, Chameleontidce Trustees of the British Museum (Natural History), London, xii $+575 \mathrm{pp}+40 \mathrm{pl}$.
Boulenger, G.A. (1887) A list of the reptiles and batrachians obtained near Muscat, Arabia, and presented to the British Museum by Surgeon-Major A.S.G. Jayakar. Annals and Magazine of Natural History, 20, 407-408.
Boulenger, G.A. (1888) Description of a new snake from Muscat, Arabia. Annals and Magazine of Natural History, 2, 508-509.
Boulenger, G.A. (1889) Second account of the fishes obtained by Surgeon-Major A. S. G. Jayakar at Muscat, east coast of Arabia. Proceedings of the Zoological Society of London, 1889 (pt 2), 236-246.
Boulenger, G.A. (1896) Report on Capt. Bottego's second collection of reptiles and batrachians from Somaliland. Annali del Museo Civico di Storia Naturale di Genova, 17, 15-23.
Boulenger, G.A. (1900) Description of a new sea-horse (Hippocampus) from Muscat. Annals and Magazine of Natural History, 6, 51-52.
Boulenger, G.A. (1912) Missione per la frontiera Italo-Etiopica sotto il comando del Capitano Carlo Citerni. Risultati zoologici. List of the reptiles and batrachians. Annali del Museo Civico di Storia Naturale di Genova, 5, 329-332
Brown, R.P. \& Pestano, J. (1998) Phylogeography of skinks (Chalcides) in the Canary Islands inferred from mitochondrial DNA sequences. Molecular Ecology, 7, 1183-1191.
Brown, R.P., Terrasa, B., Pérez-Mellado, V., Castro, J.A., Hoskisson, P.A., Picornell, A. \& Ramon, M.M. (2008) Bayesian estimation of post-Messinian divergence times in Balearic Island lizards. Molecular Phylogenetics and Evolution, 48, 350-358.
Brown, R.P. \& Yang, Z. (2010) Bayesian Dating of Shallow Phylogenies with a Relaxed Clock. Systematic Biology, 59, 119-131.
Busais, S.M. \& Joger, U. (2011a) Three new species and one new subspecies of Hemidactylus Oken, 1817 from Yemen (Squamata, Gekkonidae). Vertebrate Zoology, 61, 267-280.

Busais, S.M. \& Joger, U. (2011b) Molecular phylogeny of the gecko genus Hemidactylus Oken, 1817 on the mainland of Yemen. Zoology in the Middle East, 53, 25-34.
Buttiker, W. \& Gallagher, M.D. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). First records of ophthalmotropic behaviour of Lepidoptera in Oman. Journal of Oman studies special report, 2, 217-221.
Carracedo, J.C., Day, S., Guillou, H., Rodríguez-Badiola, E., Canas, J.A. \& Pérez Torrado, F.J. (1998) Hotspot volcanism close to a passive continental margin: the Canary Islands. Geological Magazine, 135, 591-604.
Carranza, S. \& Arnold, E.N. (2006) Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 38, 531-545.
Carranza, S., Arnold, E.N., Geniez, P., Roca, J. \& Mateo, J.A. (2008a) Radiation, multiple dispersal and parallelism in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara Desert. Molecular Phylogenetics and Evolution, 46, 1071-1094.
Carranza, S., Arnold, E.N., Mateo, J. \& Lopez-Jurado, L. (2000) Long-distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondrial DNA sequences. Proceedings of the Royal Society B: Biological Sciences, 267, 637-649.
Carranza, S., Arnold, E.N., Mateo, J.A. \& Geniez, P. (2002) Relationships and evolution of the North African geckos, Geckonia and Tarentola (Reptilia: Gekkonidae), based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 23, 244-256.
Carranza, S., Romano, A., Arnold, E.N. \& Sotgiu, G. (2008b) Biogeography and evolution of European cave salamanders, Hydromantes (Urodela: Plethodontidae), inferred from mtDNA sequences. Journal of Biogeography, 35, 724-738.
Carranza, S. \& Wade, E. (2004) Taxonomic revision of Algero-Tunisian Pleurodeles (Caudata : Salamandridae) using molecular and morphological data. Revalidation of the taxon Pleurodeles nebulosus (Guichenot, 1850). Zootaxa, 488, 1-24.
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540-552.
Clement, M., Posada, D. \& Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657.
Coello, J., Cantagrel, J.M., Hernán, F., Fuster, J.M., Ibarrola, E., Ancochea, E., Casquet, C., Jamond, C., Deteran, J.R.D. \& Cendrero, A. (1992) Evolution of the Eastern volcanic ridge of the Canary-Islands based on new K-Ar Data. Journal of Volcanology and Geothermal Research, 53, 251-274.
Cox, S.C., Carranza, S. \& Brown, R.P. (2010) Divergence times and colonization of the Canary Islands by Gallotia lizards. Molecular Phylogenetics and Evolution, 56, 747-757.
Doondorf, J.A. (1798) Amphibien und Fische, vol. Dritter Band. Zoologisches Beyträge zur XIII. Ausgabe des Linneischen Natursystems. Weidmannschen Buchhandlung, Leipzig, Germany, vi $+980+1$ pp.
Drummond, A. \& Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
Duggen, S., Hoernle, K., van den Bogaard, P., Rupke, L. \& Morgan, J.P. (2003) Deep roots of the Messinian salinity crisis. Nature, 422, 602-606.
Duméril, A.M.C. \& Bibron, G. (1836) Erpetologie Générale ou Histoire Naturelle Complete des Reptiles. Vol.3. Libr. Encyclopédique Roret, Paris, 528 pp .
Escoriza, D., Comas, M.M., Donaire, D. \& Carranza, S. (2006) Rediscovery of Salamandra algira Bedriaga, 1833 from the Beni Snassen Massif (Morocco) and phylogenetic relationships of North African Salamandra. Amphibia-Reptilia, 27, 448-455.
Felsenstein, J. (1985) Confidence-limits on phylogenies - an approach using the bootstrap. Evolution, 39, 783.
Flot, J.F. (2010) seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments. Molecular Ecology Resources, 10, 162-166.
Gallagher, M.D. \& Rogers, T.D. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). On some birds of Dhofar and other parts of Oman. Journal of Oman studies special report, 2, 347-385.
Gamble, T., Bauer, A.M., Greenbaum, E. \& Jackman, T. R. (2008). Evidence of Gondwanan vicariance in an ancient clade of geckos. Journal of Biogeography, 35, 88-104.
Gardner, A.S. (1992) Hemidactylus leschenaultii (Bark Gecko) Herpetological Review, 23, 123.
Gardner, A.S. (1994). A new species of Asaccus (Gekkonidae) from the mountains of northern Oman. Journal of Herpetology, 28, 141-145.
Giri, V.B. (2008) A new rock-dwelling Hemidactylus (Squamata: Gekkonidae) from Maharashtra, India. Hamadryad, 32, 25-33.
Giri, V.B. \& Bauer, A.M. (2008) A new ground-dwelling Hemidactylus (Squamata: Gekkonidae) from Maharashtra, with a key to the Hemidactylus of India. Zootaxa, 1700, 21-34.
Giri, V.B., Bauer, A.M., Vyas, R. \& Patil, S. (2009) New species of rock-dwelling Hemidactylus (Squamata: Gekkonidae) from Gujarat, India. Journal of Herpetology, 43, 385-393.
Glennie, K. (2006) Oman's Geological Heritage. Stacey International Publishers, London, 247 pp.
Gómez-Díaz, E., Sindaco, R., Pupin, F., Fasola, M. \& Carranza, S. Origin and in situ diversification in Hemidactylus geckos of the Socotra Archipelago. Molecular Ecology, in press,
Greathead, D.J. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). Beeflies (Bombyliidae, Diptera) from Oman. Journal of Oman studies special report, 2, 233-250.
Guillou, H., Carracedo, J.C. \& Duncan, R.A. (2001) K-Ar, 40Ar-39Ar ages and magnetostratigraphy of Brunhes and

Matuyama lava sequences from La Palma Island. Journal of Volcanology and Geothermal Research, 106, 175-194.
Guillou, H., Carracedo, J.C., Paris, R. \& Torrado, F.J. (2004) Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth and Planetary Science Letters, 222, 599-614.
Guillou, H., Carracedo, J.C., Pérez Torrado, F.J. \& Rodriguez Badiola, E. (1996) K-Ar ages and magnetic stratigraphy of a hotspotinduced, fast grown oceanic island: El Hierro, Canary Islands. Journal of Volcanology and Geothermal Research, 73, 141-155.
Günther, A. (1894) Report on the collection of reptiles and fishes made by Dr. J. W. Gregory during his expedition to Mount Kenia. Proceedings of the Zoological Society of London, 1894, 84-91.
Harrigan, R.J., Mazza, M.E. \& Sorenson, M.D. (2008) Computation vs. cloning: evaluation of two methods for haplotype determination. Molecular Ecology Resources, 8, 1239-1248.
Harrison, D.L. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). The mammals obtained in Dhofar by the 1977 Oman flora and fauna survey. Journal of Oman studies special report, 2, 387-397.
Heyden, C.H.G. von (1827) Atlas zu der Reise im nördlichen Afrika von Eduard Rüppel. Reptilien. Brönner, Frankfurt am Main, 24 pp .
Ho, S.Y.W., Phillips, M.J., Cooper, A. \& Drummond, A.J. (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution, 22, 1561-1568.
Hoogstraal, H. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). Ticks (Ixodoidea) from Oman. Journal of Oman studies special report, 2, 265-272.
Hsü, K., Montadert, J., Beernouilli, L.D., Cita, M.B., Erickson, A., Garrison, R.E., Kidd, R.B., Melieres, F., Muller, C. \& Wright, R. (1977) History of the Mediterranean Salinity Crisis. Nature, 267, 399-403.
Hsü, K.J., Ryan, W.B.F. \& Cita, M.B. (1973) Late Miocene desiccation of the Mediterranean. Nature, 242, 240-244.
Huelsenbeck, J.P. \& Rannala, B. (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology, 53, 904-913.
Huelsenbeck, J.P. \& Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754-755.
Katoh, K. \& Toh, H. (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics, 9, 286-298.
Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villablanca, F.X. \& Wilson, A.C. (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences USA, 86, 6196-6200.
Kraus, F. (2009) Alien Reptiles and Amphibians, a Scientific Compendium and Analysis. Springer Verlag, Dordrecht, xii + 567 pp., CD ROM.
Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J. \& Wilson, D.S. (1999) Chronology, causes and progression of the Messinian Salinity Crisis. Nature, 400, 652-655.
Largen, M. \& Spawls, S. (2010) The Amphibians and Reptiles of Ethiopia and Eritrea. Chimaira, Frankfurt, 693 pp.
Larsen, T.B. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). The butterflies of Dhofar and their zoogeographic composition. Journal of Oman studies special report, 2, 153-186.
Laughton, A.S. (1966) The Gulf of Aden. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 259, 150-171.
Leviton, A.E., Anderson, S.C., Adler, K. \& Minton, S.A. (1992) Handbook to Middle East amphibians and reptiles. Society for the Study of Amphibians and Reptiles, Oxford, Ohio, 252 pp.
Linnaeus, C. (1758). Systema nature per regna tria naturce, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Laurentii Salvii, Holmiae. 10th Edition, 824 pp.
Ljubisavljevic, K., Arribas, O., Dzukic, G. \& Carranza, S. (2007) Genetic and morphological differentiation of Mosor rock lizards, Dinarolacerta mosorensis (Kolombatovic, 1886), with the description of a new species from the Prokletije Mountain Massif (Montenegro) (Squamata: Lacertidae). Zootaxa, 1613, 1-22.
Mahony, S. (2009) A new species of gecko of the genus Hemidactylus (Reptilia: Gekkonidae) from Andhra Pradesh, India. Russian Journal of Herpetology, 16, 27-34.
Minton, S.A. (1966) A contribution to the herpetology of West Pakistan. Bulletin of the American Museum of Natural History, 134, 27-184.
Moravec, J., Kratochvíl, L., Amr, Z.S., Jandzik, D., Smíd, J. \& Gvozdík, V. (2011) High genetic differentiation within the Hemidactylus turcicus complex (Reptilia: Gekkonidae) in the Levant, with comments on the phylogeny and systematics of the genus. Zootaxa, 2894, 21-38.
Moravec, J. \& Böhme, W. (1997). A new subspecies of the Mediterranean gecko, Hemidactylus turcicus from the Syrian lava desert. (Squamata: Sauria: Gekkonidae). Herpetozoa 10, 121-128.
Pestano, J., Brown, R.P., Suarez, N.M. \& Fajardo, S. (2003) A mtDNA study of phylogeography and systematics of the Canary Island bats Pipistrellus and Hypsugo. Molecular Phylogenetics and Evolution, 26, 56-63.
Pinho, C., Rocha, S., Carvalho, B.M., Lopes, S., Mourão, S., Vallinoto, M., Brunes, T.O., Haddad, C.F.B., Gonçalves, H., Sequeira, F. \& Ferrand, N. (2010) New primers for the amplification and sequencing of nuclear loci in a taxonomically wide set of reptiles and amphibians. Conservation Genetic Resources, 2, 181-185.
Pleguezuelos, J.M., Fahd, S. \& Carranza, S. (2008) El papel del Estrecho de Gibraltar en la conformación de la actual fauna de anfibios y reptiles en el Mediterráneo Occidental. Boletín de la Asociación Hereptológica Española, 19, 2-17.
Posada, D. (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253-1256.

Rambaut, A. \& Drummond, A. (2007) Tracer v1.4. available from: http://beast.bio.ed.ac.uk/Tracer.
Rato, C., Carranza, S. \& Harris, D.J. (2011) When selection deceives phylogeographic interpretation: the case of the Mediterranean house gecko, Hemidactylus turcicus (Linnaeus, 1758). Molecular Phylogenetics and Evolution, 58, 365-373.
Rato, C., Carranza, S., Perera, A., Carretero, M.A. \& Harris, D.J. (2010) Conflicting patterns of nucleotide diversity between mtDNA and nDNA in the Moorish gecko, Tarentola mauritanica. Molecular Phylogenetics and Evolution, 56, 962-971.
Ronquist, F. \& Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
Rüppell, E. (1835) Neue Wirbelthiere zu der Fauna von Abyssinien gehörig. [vol. 3] Amphibien. S. Schmerber, Frankfurt am Main, 18 pp .
Sale, J.B. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). The environment of the mountain region of Dhofar. Journal of Oman studies special report, 2, 17-23.
Samuel, M.A., Harbury, N., Bott, R. \& Manan, A. (1997) Field observations from the Socotran platform: Their interpretation and correlation to Southern Oman. Marine and Petroleum Geology, 14, 661-673.
Schatti, B. \& Desvoignes, A. (1999) The herpetofauna of southern Yemen and the Sokotra Archipelago. Gilbert-E. Huguet, Genève, 1-179 pp.
Sindaco, R. \& Jeremcenko, V.K. (2008) The reptiles of the Western Palearctic. Annotated checklist and distributional atlas of the turtles, crocodiles, amphisbaenians and lizards of Europe, North Africa, Middle East and Central Asia. Monografie della Societas Herpetologica Italica - I. 579 pp.
Sindaco, R., Metallinou, M., Pupin, F., Fasola, M. \& Carranza, S. Forgotten in the ocean: systematics, biogeography and evolution of the Trachylepis skinks of the Socotra Archipelago. Zoologica Scripta, in press,
Sindaco, R., Razzetti, E., Ziliani, U., Wasonga, V., Carugati, C. \& Fasola, M. (2007) A New Species of Hemidactylus from Lake Turkana, Northern Kenya (Squamata: Gekkonidae). Acta Herpetologica 2, 37-48.
Sindaco, R., Ziliani, U., Razzetti, E., Carugati, C., Grieco, C., Pupin, F., Al-Aseily, B.A., Pella, F. \& Fasola, M. (2009) A misunderstood new gecko of the genus Hemidactylus from Socotra Island, Yemen (Reptilia: Squamata: Gekkonidae). Acta Herpetologica, 4, 83-98.
Smith, M.A. (1935) The fauna of British India, including Ceylon and Burma. Reptiles and Amphibia, Vol. II. Sauria. Taylor and Francis, London, 440 pp .
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688-2690.
Stephens, M., Smith, N.J. \& Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics, 68, 978-989.
Talavera, G. \& Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564-577.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. \& Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, evolutionary distance, and Maximum Parsimony methods. Molecular Biology and Evolution, 28, 2731-2739.
Thomas, O. (1894) Preliminary description of a new goat of the Genus Hemitragus, from South-eastern Arabia. Annals and Magazine of Natural History, 13, 365-366.
Thorpe, R.S., McGregor, D.P., Cumming, A.M. \& Jordan, W.C. (1994) DNA evolution and colonization sequence of island lizards in relation to geological history: mtDNA RFLP, cytochrome b, cytochrome oxidase, 12SrRNA sequence, and nuclear RAPD anaylsis. Evolution, 48, 230-240.
Torki, F., Manthey, U. \& Barts, M. (2011) A new Hemidactylus Gray, 1825 from Lorestan Province, western Iran, with notes on Hemidactylus robustus Heyden, 1827 (Reptilia: Squamata: Gekkonidae). Sauria, 33, 47-56.
Uetz, P. (2012) The Reptile Database. Available at http://wwwreptile-databaseorg (Accessed on 10 February 2012),
Ullenbruch, K., Grell, O. \& Boehme, W. (2010) Reptiles from southern Benin, West Africa, with the description of a new Hemidactylus (Gekkonidae), and a country-wide checklist. Bonn Zoological Bulletin, 57, 31-54.
van der Kooij, J. (2000) The herpetofauna of the Sultanate of Oman. Part 2: the geckos. Podarcis, 1, 105-120.
Vyas, R., Giri, V. \& Bauer, A. (2006) First records of Hemidactylus persicus Anderson, 1872 (Squamata: Sauria: Gekkonidae) from the republic of India, with notes on its distribution. Hamadryad, 30, 211-213.
Waterston, A.R. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). The dragonflies (Odonata) of Dhofar. Journal of Oman studies special report, 2, 149-151.
Wilcox, T.P., Zwickl, D.J., Heath, T.A. \& Hillis, D.M. (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25, 361-371.
Wilms, T.M. \& Schmitz, A. (2007) A new polytypic species of the genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Leiolepidinae) from southwestern Arabia. Zootaxa, 1394, 1-23.
Wiltshire, E.P. (1980) The scientific results of the Oman flora and fauna survey 1977 (Dhofar). The larger moths of Dhofar and their zoogeographic composition. Journal of Oman studies special report, 2, 187-216.
Appendix I:Measurements and scale counts of the specimens of Hemidactylus (all measurements in mm). Catalogue: $\mathrm{BMNH}=\mathrm{British}$ Museum, $\mathrm{IBE}=$ Institute of Evolutionary Biology; Locality : $\mathrm{OM}=\mathrm{Oman}, \mathrm{SA}=$
Saudi Arabia $\mathrm{SO}=$ Somalia $\mathrm{YE}=$ Yemen $\mathrm{IQ}=\mathrm{Iraq} \mathrm{BA}=$ Bahrain $\mathrm{PA}=$ Pakistan $\mathrm{UAE}=$ United Arab trunk length; TL: tail length; HL: head length; HW: head width; HH: head height; OD: orbital diameter; NE: nares to eye distance; IN: internarial distance; IO1: anterior interorbital distance; IO2: posterior interorbital distance; TB: longitudinal tubercle rows; PAP: number of preanal pores; SL: number of supralabial scales; IL: number of infralabial scales; LP 1st: number of lamellae under the first finger of the pes; LP 4 th: number of lamellae under the fourth finger of the pes; MorphoBank: MorphoBank codes (project P483) for the pictures of all specimens included in the morphological analysis. Individuals with the specimen code highlighted with a

Appendix I．（Continued）

Species	Catalogue	Locality	\％	\sum_{0}	$\stackrel{\sim}{2}$	$\stackrel{\rightharpoonup}{\square}$	E	良	E	号	en	O	\％	畩	Z	$\underline{0}$	§ิ	\＃	$\stackrel{1}{2}$	$\underset{\sim}{\underset{\sim}{c}}$	$\underset{\exists}{\underset{y}{2}}$			
H．luqueorum sp．nov．	BMNH2005．1660 ${ }^{\text {H }}$	OM，Sayq，Jebel Akhdar	M	80.4	35.8		21.3	15.9	9.9	0.26	0.75	0.46	5	7.4	2.2	6.2	9	15	3＋3	13／12	9／9	10／11	14／13	M94288－M94303
H．luqueorum sp．nov．	BMNH1980．558 ${ }^{\text {P }}$	OM，Wadi Sayq，Jebel Akhdar	M	88	38	95	23	18	10.9	0.26	0.78	0.47	5.8	8.4	2.6	7.4	10.4	15	2＋3	13／12	9／9	10／10	13／13	M94313－M94350
H．luqueorum sp ．nov．	BMNH2008．710	OM，Wadi al Khahafa，Jebel Akhdar	M	73	30.7		18.5	13.6	8.4	0.25	0.74	0.45	5.6	6.2	2.6	6.1	8.7	13		11／11	9／8	10／10	14／14	M94385－M94393
H．luqueorum sp．nov．	IBES7155	OM， 1 km E of Hat，Jebel Akhdar	M	82.1	34.6		21.7	16.5	10.2	0.26	0.76	0.47	5.6	8.3	2.7	7.3	10.5	14	3＋2	10／11	10／10	10／10	13／13	M100049－M100055
H．luqueorum sp．nov．	IBES8068 ${ }^{\text {P }}$	OM，Wadi al Khahafa，Jebel Akhdar	F	76.5	28.9	78	19.2	14	9.1	0.25	0.73	0.47	5.4	6.9	2.4	6.9	10	15		10／11	9／9	10／10	14／14	M100056－M100064
H．luqueorum sp．nov．	IBES7771 ${ }^{\text {P }}$	OM， 1 km E of Hat，Jebel Akhdar	F	76.4	36.4		19.8	14.8	8.2	0.26	0.75	0.41	5.1	7.1	1.9	6.3	8.6	14		12／13	10／10	10／10	13／13	M100065－M100073
H．luqueorum sp．nov．	IBES6056	OM， 1 km E of Hat，Jebel Akhdar	F	59	28.3		15.9	11.4	5.8	0.27	0.72	0.36	4.3	5.7	1.8	5.3	7.3			13／13	9／10	10／10	14／14	M100074－M100082
H．luqueorum sp．nov．	IBES6085 ${ }^{\text {P }}$	OM， 1 km E of Hat，Jebel Akhdar	F	83.4	43.1		20.3	15.1	8.5	0.24	0.74	0.42	5.3	7.4	2.3	7.9	10.9			11／10	9／8	11／11	14／14	M100083－M100093
H．luqueorum sp．nov．	BMNH1971．41 ${ }^{\text {P }}$	OM，Wadi Sayq，Jebel Akhdar	F	69	25.8		19.4	13.5	9.1	0.28	0.70	0.47	5		2.1		8.1	14		14／13	9／9	10／10	14／14	M94304－M94312
H．luqueorum sp．nov．	BMNH2005．1658 ${ }^{\text {P }}$	OM，Wadi Bani Habib，Jebel Akhdar	F	84.7	35.4		21.2	16.3	10.3	0.25	0.77	0.49	5.9	7.8	2.4	6.4	9	14		13／13	10／10	11／11	14／14	M94351－M94356
H．luqueorum sp．nov．	BMNH2005．1659 ${ }^{\text {P }}$	OM，Wadi Bani Habib，Jebel Akhdar	F	75	30		20	15	8.5	0.27	0.75	0.43	5	7.6	2.4	6.6	9	14		12／12	9／9	11／11	13／14	M94357－M94362
H．luqueorum sp．nov．	ONHM3705 ${ }^{\text {P }}$	OM，Wadi Bani Habib，Jebel Akhdar	F	85	35.3		21.3	16.7	10	0.25	0.78	0.47	6.1	6.8	2.4	7.2	10.2	14		11／10	9／9	10／11	14／13	M94363－M94372
H．luqueorum sp．nov．	BMNH1975．916 ${ }^{\text {P }}$	OM，Birkat Sahfan，Jebel Akhdar Sexual dimorphism	F	67	28.7		18.4	14.2	9.4	0.27	0.77	0.51	5.2	6.5	2.3	5.7	9			13／11	8／9	10／11	14／14	M94378－M94384
		Number of individuals（M／F）		4／9	4／9		4／9	4／9	4／9	4／9	4／9	4／9	4／9	4／9	4／9	4／9	4／9	4／6		4／9	4／9	4／9	4／9	
		One－way ANOVA F value		1.369	0.623		2.502	2.138	2.091	0.129	0.690	0.374	0.704	1.729	4.789	0.350	0.685	0.037		0.215	0.014	1.627	2.835	
		Degrees of freedom		11	11		11	11	11	11	11	11	11	11	11	11	11	8		11	11	11	11	
		Probability（ P ）		0.266	0.446		0.142	0.171	0.176	0.726	0.423	0.553	0.419	0.215	0.051	0.566	0.425	0.851		0.651	0.906	0.228	0.120	
		Summary Statistics（Total）																						
		Number of Individuals（ N ）		13	13	2	13	13	13	13	13	13	13	13	13	13	13	10	3	13	13	13	13	
		Mean		76.88	33.15	86.5	20	15	9.1	0.25	0.74	0.45	5.3	7.1	2.3	6.5	9.2	14.2	5.3	11.8	9.1	10.3	13.6	
		Maximum		88	43.1	95	23	18	10.9	0.28	0.78	0.51	6.1	8.4	2.7	7.9	10.9	15	6	13.5	10	11	14	
		Minimum		59	25.8	78	15.9	11.4	5.8	0.24	0.70	0.36	4.3	5.7	1.8	5.3	7.3	13	5	10.5	8.5	10	13	
		Standard Error Mean Summary Statistics（Males）		2.30	1.34	8.5	0.50	0.477	0.36	0.003	0.006	0.01	0.13	0.21	0.07	0.20	0.29	0.2	0.33	0.3	0.15	0.11	0.11	
		Summary Statistics（Males） Number of Individuals（N）		4	4	1	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	
		Mean		80.8	34.7	95	21.1	16	9.8	0.25	0.75	0.46	5.5	7.5	2.5	6.7	9.6	14.2	5.3	11.6	9.1	10.1	13.3	
		Maximum		88	38	95	23	18	10.9	0.26	0.78	0.47	5.8	8.4	2.7	7.4	10.5	15	6	12.5	10	10.5	14	
		Minimum		73	30.7	95	18.5	13.6	8.4	0.25	0.74	0.45	5	6.2	2.2	6.1	8.7	13	5	10.5	8.5	10	13	
		Standard Error Mean		3	1.5	－	0.94	0.91	0.52	0.002	0.008	0.004	0.17	0.51	0.11	0.34	0.46	0.47	0.33	0.51	0.31	0.12	0.23	
		Summary Statistics（Females）																						
		Number of Individuals（ N ）		9	9	1	9	9	9	9	9	9	9	9	9	9	9	6		9	9	9	9	
		Mean		75.1	32.4	78	19.5	14.5	8.7	0.26	0.74	0.44	5.2	6.9	2.2	6.4	9.1	14.1		11.9	9.1	10.4	13.7	
		Maximum		85	43.1	78	21.3	16.7	10.3	0.28	0.78	0.51	6.1	7.8	2.4	7.9	10.9	15		13.5	10	11	14	
		Minimum		59	25.8	78	15.9	11.4	5.8	0.24	0.70	0.36	4.3	5.7	1.8	5.3	7.3	14		10.5	8.5	10	13	
		Standard Error Mean		2.94	1.82	－	0.54	0.52	0.43	0.004	0.008	0.015	0.17	0.20	0.07	0.26	0.36	0.16		0.39	0.18	0.15	0.12	

Appendix I．（Continued）

Species	Catalogue	Locality	\％	3	\％	$\stackrel{1}{2}$	\pm	是	浐	O	O	읖포	\％	田	Z	$\underline{0}$	O	$\stackrel{\sim}{\sim}$	$\stackrel{1}{4}$	$\underset{\sim}{x}$	$\underbrace{\overparen{Y}}_{1}$	$\frac{\underset{y y}{x}}{2}$	$\stackrel{E}{5} \widehat{y}$	
H．hajarensis sp．nov．	BMNH2008．703	OM，Jebel Abu Daud	M	59.7	28.3		17.1	11.2	8	0.29	0.65	0.47	4.8	6.1	2.1	6	6.9	14	2＋2	？／11	？／9	2／9	12／13	M94544－M94557
H．hajarensis sp．nov．	BMNH2008．706	OM，Wadi Hebaheba，Jebel Qahwan	M	48.7	18.7		14.2	9.9	5.8	0.29	0.70	0.41	4	5.3	1.8	4.4	6.9	15	3＋3	11／11	7／8	8／？	12／？	M94572－M94586
H．hajarensis sp．nov．	IBES1777	OM，Wadi Hebaheba，Jebel Qahwan	M	46.2	19.6		13.6	9	5.4	0.29	0.66	0.40	3.8		1.8	3.9	5.8	14	2＋2	12／11	9／10	8／8	11／11	M94666－M94684
H．hajarensis sp．nov．	BMNH2008．708	OM，Wadi Hebaheba，Jebel Qahwan	M	40	15.8		12.2	8.2	5.3	0.31	0.67	0.43	3.3	3.8	1.3	3.6	5.2		3＋3	11／10	10／9	8／8	12／12	M94700－M94721
H．hajarensis sp．nov．	IBES7151	OM，Wadi Tanuf	M	56.7	23.5		15.6	12.2	5.6	0.28	0.78	0.36	3.8	5.6	2	5.6	6.8	14	3＋3	11／11	10／9	9／8	13／12	M99874－M99884
H．hajarensis sp．nov．	ONHM3706 ${ }^{\text {P }}$	OM，Wadi Bani Khalid	M	52.8	21.6		15.2	10.6	6.1	0.29	0.70	0.40	4.4	5.4	1.9	5.2	7.4	14	3＋3	10／10	8／9	8／8	12／12	M99885－M99893
H．hajarensis sp．nov．	IBES7335 ${ }^{\text {P }}$	OM，Wadi Bani Khalid	M	47.1	18.4		13.7	9.3	5.6	0.29	0.68	0.41	3.7	5	1.5	4.6	6.8	14	3＋3	10／10	9／9	$7 / 7$	12／12	M99894－M99902
H．hajarensis sp．nov．	BMNH2008．714 ${ }^{\text {H }}$	OM，Wadi Bani Khalid	M	59.8	23.7		15.5	12.7	7.4	0.26	0.82	0.48	4.5	6.3	1.7	5.8	8.5	14	3＋3	10／10	9／9	8／8	12／12	M99903－M99917
H．hajarensis sp．nov．	IBES7154	OM， 9 km N Al Chayan	M	62.7	28		17	12.9	7.2	0.27	0.76	0.42	4.3	6.3	1.8	5.5	8.2	14	3＋3	11／10	8／8	8／8	12／12	M99921－M99937
H．hajarensis sp．nov．	BMNH2005．1664	OM，Wadi Tanuf	F	56	23.8		16	11.5	7.1	0.29	0.72	0.44	4.1	5.1	1.9	5.6	7.1	15		11／11	9／10	8／8	13／13	M94393－M94404
H．hajarensis sp．nov．	BMNH1976．1404	OM，Ar Rustaq	F	50	21.7		13.2	9.7	6.1	0.26	0.73	0.46	3.3		2	4.1	6.3	15		11／11	10／9	9／9	14／14	M94405－M94415
H．hajarensis sp．nov．	BMNH1977．35	OM，Wadi Sabt，Jebel Akhdar	F	57.4	25.8	70	13.7	11.7	7.6	0.24	0.85	0.55	4.1	5.4	1.7	6	7.4	14		11／11	9／9	8／8	13／13	M94459－M94465
H．hajarensis sp．nov．	BMNH2008．702	OM，Wadi Mayh	F	61	26.2		17.1	11.4	6.4	0.28	0.67	0.37	4.4	5.8	1.9	4.8	7	15		？／11	8／9	8／8	12／13	M94515－M94529
H．hajarensis sp．nov．	BMNH2008．701	OM，Wadi Mayh	F	52	22.7		14.4	10.6	6.2	0.28	0.74	0.43	3.9	5.4	2.1	4.8	6.5	14		11／12	9／9	9／9	12／12	M94530－M94542
H．hajarensis sp．nov．	BMNH2008．704	OM，Wadi Tiwi	F	54.6	22.2		15.7	10.2	7.2	0.29	0.65	0.46	4	5.5	1.8	4.9	6.7	14		12／12	10／8	8／8	11／？	M94558－M94571
H．hajarensis sp．nov．	BMNH2008．709	OM，Wadi Hebaheba，Jebel Qahwan	F	60	26		16.7	12.2	7.1	0.28	0.73	0.43	4.3	5.4	1.8	5.2	7.6	15		12／12	8／9	$8 / 8$	12／12	M94630－M94643
H．hajarensis sp．nov．	BMNH2008．707	OM，Wadi Hebaheba，Jebel Qahwan	F	44.3	18.2		13.7	9.5	5.2	0.31	0.69	0.38	4	4.3	1.4	4.7	6.1	14		11／11	9／8	7／8	12／12	M94649－M94664
H．hajarensis sp．nov．	IBES8064	OM，Wadi Tanuf	F	47.8	20.1	63	13.5	10	6	0.28	0.74	0.44	2.9	5	1.4	4.8	6.2			9／10	9／9	8／8	12／12	M99954－M99961
H．hajarensis sp．nov．	IBES7076	OM，Wadi Tanuf	F	60.4	27.4		16.6	11.6	6.8	0.27	0.70	0.41	4.5	6	2.2	5.9	7.2			10／9	8／9	$8 / 8$	12／12	M99962－M99968
H．hajarensis sp．nov．	IBES $7336{ }^{\text {P }}$	OM，Wadi Bani Khalid	F	46.7	19.3		13.8	9.6	6	0.30	0.70	0.43	3.5	4.6	1.8	4.7	6.5	13		10／10	9／9	$7 / 7$	12／12	M99969－M99976
H．hajarensis sp．nov．	IBES7184	OM， 9 km N Al Chayan	F	57.5	24.5		15.5	11.4	5.8	0.27	0.74	0.37	4.3	5.3	1.7	4.5	7.1	15		10／10	9／9	8／8	12／12	M99977－M99986
H．hajarensis sp．nov．	IBES7587	OM， 9 km N Al Chayan	F	66.9	29.1		18.5	13.3	7.3	0.28	0.72	0.39	4.1	6.7	1.9	5.7	7.7	14		12／11	9／9	8／8	12／13	M99987－M99993
		Sexual dimorphism Number of individuals（M／F）		9／13	9／13		9／13	9／13	9／13	9／13	9／13	9／13	9／13	9／13	9／13	9／13	9／13	9／13		9／13	9／13	9／13	9／13	
		One－way ANOVA F value		0.592	1.053		0.254	0.121	0.497	0.800	0.128	0.162	0.313	0.014	0.222	0.102	0.040	0.827		0.530	0.158	0.005	1.296	
		Degrees of freedom		20	20		20	20	20	20	20	20	20	20	20	20	20	17		20	20	20	20	
		Probability（ P ）		0.450	0.317		0.619	0.731	0.488	0.723	0.584	0.691	0.581	0.905	0.642	0.751	0.842	0.375		0.474	0.695	0.940	0.268	
		Summary Statistics（Total）																						
		Number of Individuals（ N ）		22	22	2	22	22	22	22	22	22	22	22	22	22	22	19	9	22	22	22	22	
		Mean		54	22.9	66.5	15.1	10.8	6.4	0.28	0.71	0.42	4	5.2	1.79	5	6.9	14.2	5.5	10.7	8.8	8	12.1	
		Maximum		66.9	29.1	70	18.5	13.3	8	0.31	0.85	0.55	4.8	6.7	2.2	6	8.5	15	6	12	9.5	9	14	
		Minimum		40	15.8	63	12.2	8.2	5.2	0.24	0.65	0.36	2.9	3.8	1.3	3.6	5.2	13	4	9.5	7.5	7	11	
		Standard Error Mean		1.47	0.79	3.5	0.34	0.29	0.17	0.003	0.01	0.009	0.09	0.16	0.04	0.14	0.16	0.12	0.29	0.15	0.10	0.10	0.13	
		Summary Statistics（Males）																						
		Number of Individuals（ N ）		9	9		9	9	9	9	9	9	9	9	9	9	9	8	9	9	9	9	9	
		Mean		52.6	21.9		14.9	10.6	6.2	0.28	0.71	0.42	4	5.3	1.7	4.9	6.9	14.1	5.5	10.6	8.8	8	12	
		Maximum		62.7	28.3		17.1	12.9	8	0.31	0.82	0.48	4.8	6.3	2.1	6	8.5	15	6	11.5	9.5	9	12.5	
		Minimum		40	15.8		12.2	8.2	5.3	0.26	0.65	0.36	3.3	3.8	1.3	3.6	5.2	14	，	10	7.5	7	11	
		Standard Error Mean		2.54	1.43		0.54	0.56	0.33	0.004	0.019	0.012	0.15	0.30	0.08	0.28	0.34	0.12	0.29	0.18	0.23	0.17	0.14	
		Summary Statistics（Females）																						
		Number of Individuals（ N ）		13	13	2	13	13	13	13	13	13	13	13	13	13	13	11		13	13	13	13	
		Mean		54.9	23.6	66.5	15.2	10.9	6.5	0.27	0.72	0.42	3.9	5.2	1.8	5	6.8	14.3		10.8	8.9	8	12.3	
		Maximum		66.9	29.1	70	18.5	13.3	7.6	0.31	0.85	0.55	4.5	6.7	2.12	6	7.7	15		12	9.5	9	14	
		Minimum		44.3	18.2	63	13.2	9.5	5.2	0.24	0.65	0.37	2.9	4	1.4	4.1	6.1	13		9.5	8.5	7	11	
		Standard Error Mean		1.81	0.9	3.5	0.46	0.31	0.19	0.004	0.013	0.013	0.12	0.19	0.06	0.16	0.14	0.2		0.23	0.09	0.14	0.2	

Appendix I．（Continued）

Species	Catalogue	Locality	¢	$\frac{1}{n}$	를	E	\＃	是	\pm	曷		O	O－	¢	Z	$\overline{0}$	§̃	$\stackrel{\sim}{\sim}$	$\underset{む}{3}$	$\underset{\sim}{\underset{n}{3}}$	$\underset{A}{\underset{y}{\widehat{y}}}$	$\begin{aligned} & \frac{\pi}{3} \\ & \frac{5}{3} \end{aligned}$		
H．yerburii TYPE	BMNH95．5．23．9	YE，Haithalhim，near Aden	M	67.6	28.1		15.4	14.6	9.1	0.23	0.95	0.59	4.6	6.4	1.7			17	6＋6	？／11	？／8	7／7	10／10	M95614－M95629
H．yerburii TYPE	BMNH95．5．23．8	YE，Aden	M	61.5	24.8		16.4	12.4	8.3	0.27	0.76	0.51	4	5.9	1.7	6.2	7.7	17	$6+4$	10／10	8／8	7／7	10／10	M95597－M95613
H．yerburii	BMNH95．11．27．3	YE，Aden	M	63.6	25	72	17	13.1	7.9	0.27	0.77	0.46	4.4	6.4	1.7	6.2	8.1	16	15	11／11	10／8	7／7	10／10	M95630－M95647
H．yerburii	BMNH1987．846	YE，Al Hudaydah	M	62.7	25.1		16.3	12.1	8	0.26	0.74	0.49	4.4	6.2	1.8			17	12	11／10	8／8	7／？	11	M95659－M95672
H．yerburii	BMNH1987．847	YE，Al Hudaydah	M	63	24		16.4	13	7.4	0.26	0.79	0.45	4.5	6.2	1.8	6.1	8		15	11／10	9／8			M95673－M95682
H．yerburii	BMNH1945．12．18．12	YE，Jebel Shansan，Aden Summary Statistics（Males） Number of Individuals（N）	F	54	21.6	58	14.5	10.8	7	0.27	0.74	0.48	3.9	5.3	1.7	5.3	7.1	16		11／11	8／8	7／7	9／9	M95648－M95658
				5	5	1	5	5	5	5	5	5	5	5	5	3	3	4	5	5	5	4	4	
		Mean		63.6	25.4	72	16.3	13	8.1	0.25	0.82	0.5	4.3	6.2	1.7	6.1	7.9	16.7	12.8	10.6	8.3	7	10.2	
		Maximum		67.6	28.1		17	14.6	9.1	0.27	0.95	0.59	4.6	6.4	1.8	6.2	8.1	17	15	11	9	7	11	
		Minimum		61.5	24		15.4	12.1	7.4	0.23	0.74	0.45	4	5.9	1.7	6.1	7.7	16	10	10	8	7	10	
		Standard Error Mean		1.03	0.70		0.25	0.43	0.28	0.007	0.03	0.02	0.10	0.09	0.02	0.03	0.12	0.25	0.96	0.18	0.2	0	0.25	
		Standard Deviation		2.32	1.57		0.57	0.96	0.62	0.016	0.08	0.05	0.22	0.20	0.05	0.05	0.20	0.5	2.16	0.41	0.44	0	0.5	
		Upper 95\％Mean		66.56	27.34		17.01	14.23	8.91	0.27	0.90	0.56	4.66	6.47	1.80	6.31	8.45	17.54	15.49	11.11	8.85	7	11.04	
		Lower 95\％Mean		60.79	23.45		15.58	11.84	7.36	0.23	0.69	0.43	4.09	5.96	1.67	6.02	7.41	15.95	10.10	10.08	7.74	7	9.45	

Appendix I．（Continued）

Species	Catalogue	Locality	菅	$\frac{1}{\pi}$	$\stackrel{\underset{\sim}{x}}{\underset{\sim}{x}}$	$\stackrel{1}{2}$	E	E	\pm			量考	\％	累	Z	\bigcirc	ƠO	$\stackrel{\sim}{\sim}$	$\frac{e}{4}$	$\underset{\sim}{\underset{n}{n}}$	$\underset{A}{\underset{E}{E}}$	$\frac{\widetilde{2}}{\frac{\pi}{2}}$	首	$\begin{aligned} & \frac{1}{E} \\ & \frac{0}{0} \\ & \frac{0}{2} \\ & \frac{0}{0} \\ & \hline \end{aligned}$
H．alkiyumii sp．nov．	BMNH2005．1662 ${ }^{\text {H }}$	OM，Tawi Atair	M	56.4	22.5		15.4	11.5	7.5	0.27	0.75	0.49	3.8	5.4	2	5	6.3	13	4＋4	11／12	8／7	8／8	12／12	M95264－M95275
H．alkiyumii sp．nov．	ONHM3707 ${ }^{\text {P }}$	OM，Tawi Atair	M	49.5	20.2		14.1	10.6	6.6	0.28	0.75	0.47	3.5	4.7	1.9	4.8	6.7	12	$4+4$	9／9	7／7	8／8	12／12	M95290－M95304
H．alkiyumii sp．nov．	BMNH1977．972	OM，Khadrafi Plateau	M	74.5	31.5		18.4	15.6	9.3	0.25	0.85	0.51	5	6.6	2.8	5.8	9	14	$5+5$	9／9	7／7	7／7	10／10	M95233－M95248
H．alkiyumii sp．nov．	BMNH1977．964	OM，Wadi Rubkat	M	58.6	24.4		15.5	12.7	7.4	0.26	0.82	0.48	4.5	6	1.6	5.5	7.4	14	3＋3	11／11	8／8	7／7	11／11	M95187－M95202
H．alkiyumii sp．nov．	BMNH1977．963	OM，Wadi Rubkat	M	65.5	27.7		16.7	13.7	8.9	0.25	0.82	0.53	4	5.8	1.8	5.2	7.2	12	$3+3$	10／10	8／9	7／7	11／11	M95171－M95186
H．alkiyumii sp．nov．	BMNH1977．957	OM，Wadi Sayq	M	61	25		17.2	13.1	8	0.28	0.76	0.47	4.3	5.5	2.3	6.1	8.8	13	$4+3$	11／9	7／7	6／6	10／10	M95132－M95144
H．alkiyumil sp．nov．	BMNH1977．959	OM，Wadi Sayq	M	53.3	24.4		14.8	11	5.8	0.28	0.74	0.39	3.5	5	2.2	5.3	6.8	13	$4+4$	10／10	7／7	？／8	？／11	M95160－M95170
H．alkiyumii sp．nov．	IBES7453	OM， 3 km NW of Hasik	M	53	20.6	58.2	14.7	10.8	6.3	0.28	0.73	0.43	3.8	5.2	1.85	5.5	8	13	$3+3$	11／11	9／9	7／7	11／11	M99609－M99615
H．alkiyumii sp．nov．	IBES7837	OM，Dalkut	M	67.5	25.3		17.7	14.7	8.9	0.26	0.83	0.50	4.4	6.6	2	6.4	9.6	12	$4+3$	9／10	8／7	7／7	10／10	M99616－M99622
H．alkiyumii sp．nov．	IBES7888	OM，Dalkut	M	62.5	27.7		16.8	13.3	7.8	0.27	0.79	0.46	4.1	6.1	2.3	6.2	8.7	11	10	11／10	8／8	6／6	11／11	M99623－M99629
H．alkiyumil sp．nov．	IBES7397	OM，Dalkut	M	66.1	27.1		18.1	14.6	9.1	0.27	0.81	0.50	4.5	6.7	2.1	6.2	8.4	13	8	9／10	8／8	7／7	11／11	M99630－M99637
H．alkiyumil sp．nov．	IBES7053	OM， 3.5 km NE from Sadah	M	55	22.6		15.2	11.6	7.1	0.28	0.76	0.47	4.1	6	2	5.5	8.2	13	3＋3	10／11	8／8	8／8	12／12	M99638－M99644
II．alkiyumii sp．nov．	IBES7101	OM， 9 km SW of Hadbin	M	62.4	25		17.3	12.8	7.9	0.28	0.74	0.46	4.8	5.9	2.1	6.1	8.9		$3+3$	10／10	9／8	7／7	11／10	M99645－M99653
H．alkiyumii sp．nov．	BMNH2005．1663 ${ }^{\text {P }}$	OM，Tawi Atair	F	68.6	25.1		18.7	14.5	9.3	0.27	0.78	0.50	4.3	6.7	2.2	6.2	9.6	14		11／11	8／9	9／9	12／12	M95276－M95289
H．alkiyumii sp．nov．	IBES8078 ${ }^{\text {P }}$	OM，Tawi Atair	F	62.3	28.8		17.3	13.2	8.3	0.28	0.76	0.48	4.3	6.2	2.7	5.9	7.8	14		9／9	9／8	7／7	12／12	M99654－M99660
H．alkiyumii sp．nov．	IBES8079 ${ }^{\text {P }}$	OM，Tawi Atair	F	58	23.4		15.7	12.1	6.7	0.27	0.77	0.43	4.3	6.1	1.9	5.3	7.7	12		9／9	8／7	7／7	11／11	M99661－M99667
H．alkiyumii sp．nov．	IBES8080 ${ }^{\text {P }}$	OM，Tawi Atair	F	53.2	23.1		15.3	11	6.7	0.29	0.72	0.44	3.7	5.6	1.9	4.8	7.3	13		9／11	8／8	8／8	12／11	M99668－M99674
H．alkiyumii sp．nov．	BMNH1977．973	OM，Khadrafi Plateau	F	46.7	20.4	56	12.6	10.3	6.5	0.27	0.82	0.52	3.4	4.2	2	4.1	5.8	12		11／10	8／8	6／6	10／10	M95249－M95263
H．alkiyumii sp．nov．	BMNH1977．965	OM，Wadi Rubkat	F	55	23.1		14.7	11.8	6.9	0.27	0.80	0.47	4.4	5.3	2.1	5.3	7.3	14		11／11	8／9	7／7	11／10	M95203－M95216
H．alkiyumii sp．nov．	BMNH1977．966	OM，Wadi Rubkat	F	53.3	22.3		15.4	11.6	6.6	0.29	0.75	0.43	4.7	5.2	2.1	5.4	7.4	14		10／9	8／9	7／7	11／10	M95217－M95231
H．alkiyumil sp．nov．	BMNH1977．958	OM，Wadi Sayq	F	61.6	27.1	65	15.1	11.9	7.8	0.25	0.79	0.52	4.3	5.6	1.9	5.9	6.8	13		10／9	7／8	6／6	10／10	M95145－M95159
H．alkiyumii sp．nov．	BMNH1977．956	OM，Wadi Sayq	F	60.1	27		16.6	12.3	8	0.28	0.74	0.48	4.6	5.4	1.9	6.1	7.1	14		10／10	8／9	7／7	10／10	M95117－M95131
H．alkiyumii sp．nov．	BMNH1976．1409	OM，Khadrafi Plateau	F	64.2	28.8		17	13.5	8.7	0.26	0.79	0.51	4.5	6	2.5	6.3	8.1	13		10／9	8／8	7／7	11／11	M95099－M95116
H．alkiyumii sp．nov．	IBES7441	OM， 3.5 km NE Sadah	F	57.3	27.1		16.1	12.1	8.3	0.28	0.75	0.52	4	5.4	2.2	5.6	7.8	14		9／9	8／8	7／7	11／11	M99675－M99681
H．alkiyumii sp．nov．	IBES7858	OM， 3 km NW of Hasik	F	57	25.1		16	11.1	7	0.28	0.69	0.44	4.8	5.1	2.3	5.4	7	13		10／10	9／9	7／7	11／11	M99682－M99688
H．alkiyumii sp．nov．	IBES7891	OM，Dalkut	F	56.8	24.7		15.4	11.5	7	0.27	0.75	0.45	4	5.5	1.8	5.6	7.2	12		11／10	7／8	7／7	10／10	M99689－M99696
H．alkiyumil sp．nov．	IBES7879	OM，Dalkut	F	62.5	24.7		17	13.2	7.8	0.27	0.78	0.46	4.3	6.6	1.9	5.3	7.7			10／9	7／8	6／6	10／10	M99705－M99711
H．alkiyumii sp．nov．	IBES7897	OM，Dalkut	F	55.3	24		15	11.5	5.9	0.27	0.77	0.39	3.9	5.2	1.7	5.3	7.3	12		11／10	8／9	6／6	10／10	M99697－M99704
H．alkiyumii sp．nov．	IBES7192	OM， 3.5 km NE from Sadah	F	46.5	20.1		13.7	9.3	5.6	0.29	0.68	0.41	4	5.1	1.5	4.4	6.3			11／11	8／8	7／6	11／11	M99712－M99718

NiN
Appendix I．（Continued）

Species	Catalogue	Locality	＊	$\stackrel{B}{n}$	号	F	立	是	㩻	钲	是	오포촟	\％	师	3	$\bar{\square}$	§̃	$\stackrel{\sim}{\sim}$	$\stackrel{4}{2}$	$\underset{\sim}{\underset{\sim}{s}}$	$\underset{\underset{y}{\hat{y}}}{\underset{y}{e}}$		Sy	
H．festivus sp．nov．	BMNH1983．706	OM， 3 Km NW of Sawqirah	M	51.4	20.5	50	13.5	10.9	7.3	0.26	0.81	0.54	4.2	4.5	1.5	5.7	7.8	15	6	10／11	8／8	7／7	11／11	M95408－M95421
H．festivus sp．nov．	IBES7159 ${ }^{\text {P }}$	OM，Wadi Ayoun	M	52.5	22.3		14.7	10.4	6.7	0.28	0.71	0.46	3.7	5.1	1.7	5.3	7.2	13	$3+3$	11／11	9／9	$7 / 7$	12／12	M99733－M99743
H．festivus sp．nov．	ONHM3708 ${ }^{\text {P }}$	OM，Wadi Ayoun	M	50.1	22.9		14.4	9.6	5.6	0.29	0.67	0.39	3.7	4.7	1.8	4.7	6.1	12	3＋3	10／10	8／8	？／7	12／12	M99744－M99753
H．festivus sp．nov．	IBES7605 ${ }^{\text {P }}$	OM，Wadi Ayoun	M	53.6	23.9		15.8	10.5	6.2	0.29	0.66	0.39	4.3	5	2.1	4.9	7.4	12	3＋3	10／9	10／9	$7 / 7$	11／11	M99754－M99763
H．festivus sp．nov．	IBES8062 ${ }^{\text {P }}$	OM，Wadi Ayoun	M	51.5	22.4		14.5	10.5	6.9	0.28	0.72	0.48	4.5	5.1	1.4	5.8	7.6	13	3＋3	10／9	8／8	7／7	12／12	M99764－M99773
H．festivus sp．nov．	IBES7899	OM，Wadi Mughsayl	M	52.6	24		14.6	10.2	6.7	0.28	0.70	0.46	4.1	5.1	，	5.8	7.5	13	3＋3	10／9	8／8	7／7	11／11	M99774－M99780
H．festivus sp．nov．	BMNH1977．977 ${ }^{\text {H }}$	OM，Wadi Ayoun	F	49	20	58	13.1	10	6.9	0.27	0.76	0.53	3.5	4.7	1.9	4.5	6.2	14		9／10	9／9	7／7	11／11	M95339－M95353
H．festivus sp．nov．	BMNH1977．975	OM， 16 Km S of Thumrait	F	49	21.7		13.3	9.9	6.2	0.27	0.74	0.47	3.5	4.6	1.9	5.4	6.6	14		10／10	9／9	$7 / 7$	10／10	M95305－M95322
H．festivus sp．nov．	BMNH1977．978 ${ }^{\text {P }}$	OM，Wadi Ayoun	F	48.7	22	56	13	9.6	5.9	0.27	0.74	0.45	4	4.8	1.6	4.7	5.8	14		10／10	8／10	7／7	11／11	M95354－M95367
H．festivus sp．nov．	BMNH1977．976 ${ }^{\text {P }}$	OM，Wadi Ayoun	F	53.3	23.7		14	10.2	6.1	0.26	0.73	0.44	4.4	4.5	1.7	4.6	6.1	14		10／9	9／8	$7 / 7$	11／11	M95323－M95338
H．festivus sp．nov．	BMNH1977．979 ${ }^{\text {P }}$	OM，Wadi Ayoun	F	43.7	18		11.8	8.9	5.3	0.27	0.75	0.45	3.3	4.1	1.8	3.9	5.3	14		9／9	8／9	7／7	12／11	M95368－M95379
H．festivus sp．nov．	BMNH1977．980 ${ }^{\text {P }}$	OM，Wadi Ayoun	F	38	14.9		10.6	7.8	4.9	0.28	0.74	0.46	2.9	3.7	1.4	3.2	5.1	13		10／9	$8 / 7$	？／7	？／？	M95380－M95392
H．festivus sp．nov．	BMNH1977．981 ${ }^{\text {P }}$	OM，Wadi Ayoun	F	36	15.6		10.3	7.1	4.4	0.29	0.69	0.43	2.8	，	1.5	3.7	4.8	14		11／9	8／8	7／7	11／11	M95393－M95407
H．festivus sp．nov．	IBES7616	OM，Wadi Ayoun	F	53.1	26.6		14.5	9.2	6.1	0.27	0.63	0.42	4	5.1	1.8	5	7.3	13		10／10	8／9	7／7	12／？	M99781－M99790
H．festivus sp．nov．	IBES8063	OM，Wadi Ayoun	F	43.1	18.7	53.1	12.8	9	4.8	0.30	0.70	0.38	3.8	4.4	1.6	5	6.2	12		11／10	9／8	7／7	12／12	M99791－M99800
H．festivus sp．nov．	IBES7419 ${ }^{\text {P }}$	OM， 20 Km S of Thumrait Sexual dimorphism	F	40.6	18.3		11.6	8.3	4.9	0.29	0.72	0.42	3.5	4.2	1.2	4.3	5.5	13		9／9	9／8	6／6	10／11	M99801－M99810
		Number of individuals（ M / F ）		6／10	6／10		6／10	6／10	6／10	6／10	6／10	6／10	6／10	6／10	6／10	6／10	6／10	6／10		6／10	6／10	6／10	6／9	
		One－way ANOVA F value		6.19	2.00		10.91	8.98	7.52	0.276	0.165	0.176	5.59	6.52	0.564	9.489	10.69	0.693		1.355	0.074	0.686	2.288	
		Degrees of freedom		15	16		15	15	15	15	15	15	15	15	15	15	15	15		15	15	15	14	
		Probability（ P ）		0．025＊	0.177		0．004＊	0．009＊	0．015＊	0.606	0.690	0.680	0．031＊	0．022＊	0.464	0．007＊	0．005＊	0.418		0.262	0.788	0.420	0.152	
		Summary Statistics（Total）																						
		Number of Individuals（ N ）			16	4				16	16	16			16			16	6	16	16	16	15	
		Mean			20.8	54.2				0.27	0.71	0.44			1.6			13.3	6	9.8	8.4	6.94	11.3	
		Maximum			26.6	58				0.30	0.81	0.54			2.1			15	6	11	9.5	7	12	
		Minimum			14.9	50				0.26	0.63	0.38			1.2			12	6	9	7.5	6	10	
		Standard Error Mean			0.76	1.74				0.002	0.01	0.01			0.05			0.20	－	0.12	0.12	0.05	0.15	
		Summary Statistics（Males）																						
		Number of Individuals（ N ）		6	6	1	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
		Mean		51.4	22	50	14.4	10.2	6.5	0.28	0.71	0.45	4	4.92	1.7	5.3	7	13.1	6	10	8.4	7	11.5	
		Maximum		53.6	24	－	15.8	10.9	7.3	0.29	0.81	0.54	4.5	5.1	2.1	5.8	7.8	15	6	11	9.5	7	12	
		Minimum		50.1	22.3	－	13.5	9.6	5.6	0.26	0.66	0.39	3.7	4.5	1.4	4.7	6.1	12	6	9.5	8	7	11	
		Standard Error Mean		0.69	0.73	－	0.29	0.18	0.21	0.003	0.01	0.019	0.11	0.08	0.09	0.17	0.27	0.4	－	0.21	0.22	－	0.2	
		Summary Statistics（Females）																						
		Number of Individuals（ N ）		10	10	3	10	10	10	10	10	10	10	10	10	10	10	10		10	10	10	9	
		Mean		45.4	19.9	55.7	12.5	9	5.5	0.27	0.72	0.44	3.5	4.3	1.6	4.4	5.8	13.5		9.7	8.5	6.9	11.1	
		Maximum		53.3	26.6	58	14.5	10.2	6.9	0.30	0.76	0.53	4.4	5.1	1.9	5.4	7.3	14		10.5	9	7	12	
		Minimum		36	14.9	53.1	10.3	7.1	4.4	0.26	0.63	0.38	2.8	3	1.2	3.2	4.8	12		9	7.5	6	10	
		Standard Error Mean		1.92	1.14	1.4	0.43	0.31	0.25	0.003	0.012	0.012	0.15	0.19	0.07	0.21	0.23	0.22		0.15	0.14	0.1	0.21	

Appendix I. (Continued)

Appendix I. (Continued)

Species	Catalogue	Locality	\%	5	\%	$\stackrel{1}{2}$	E	E	E	号会	은	올	\%		Z	$\underline{\square}$	§̃	\because	\approx	$\underset{\sim}{\underset{\sim}{2}}$	$\underset{=}{\frac{\cong}{2}}$	$\begin{aligned} & \frac{2}{3} \\ & \frac{5}{2} \\ & \frac{3}{3} \end{aligned}$	Ex	
H. paucituberculatus sp. nov.	BMNH1977.935 ${ }^{\text {H }}$	OM, Khor Sawli	M	33.5	14.2		8.5	6.1	3.6	0.25	0.72	0.42	2.2	2.8	1.4	3.1	3.9		6	10/9	7/7	4/4	7/7	M100347-M100363
H. paucituberculatus sp. nov.	BMNH1977.930 ${ }^{\text {P }}$	OM, Khor Sawli	M	38.4	17.4		9.4	7	3.9	0.24	0.74	0.41	2.1	2.9	1.4	3	4.5		6	9/10	7/6	5/?	9/8	M100364-M100380
H. paucituberculatus sp. nov.	BMNHNH1977.937 ${ }^{\text {P }}$	OM, Khor Sawli	M	33.5	14.2		9	6.4	3.4	0.27	0.71	0.38	2.2	2.9	1.4	2.8	3.6		6	10/9	6/7	5/5	8/8	M100381-M100397
H. paucituberculatus sp. nov.	IBES7910	OM, East Khor	M	31.8	12.6		8.2	5.6	3.2	0.26	0.68	0.39	2.3	2.8	1.1	2.9	3.8		6	8/9	$7 / 7$	5/?	?/?	M100398-M100405
H. paucituberculatus sp. nov.	IBES8004	OM, 3.5 km NE Sadah	M	35.4	13.9		8.9	5.9	3.5	0.25	0.66	0.39	2.2	3.1	1.2	3.3	4.4		6	9/9	8/8	5/5	9/9	M100406-M100409
H. paucituberculatus sp. nov.	IBES7994	OM, Wadi Darbat	M	25.9	10.6	26.9	7	5	2.8	0.27	0.71	0.40	1.9	2.2	1.1	2.7	3.3		6	9/8	$7 / 7$	5/5	9/9	M100410-M100415
H. paucituberculatus sp. nov.	BMNH1977.931 ${ }^{\text {P }}$	OM, Khor Sawli	F	33.6	14.5		8.4	6.1	4.1	0.25	0.73	0.49	2.2	2.5	1.4	3.4	4.2			8/8	7/7	5/5	8/8	M100416-M100431
H. paucituberculatus sp. nov.	BMNH1977.936 ${ }^{\text {P }}$	OM, Khor Sawli	F	36.5	16.7		9.1	6.2	3.6	0.25	0.68	0.40	2.2	2.9	1.7	2.8	3.9			9/8	7/7	5/5	8/8	M100432-M100447
H. paucituberculatus sp. nov.	BMNH1977.933 ${ }^{\text {P }}$	OM, Khor Sawli	F	34.1	16.4	25.3	8.1	6.2	3.7	0.24	0.77	0.46	2	2.5	1.1	2.8	3.5			9/8	8/8	?/?	8/8	M100448-M100464
H. paucituberculatus sp. nov.	BMNH1977.944 ${ }^{\text {P }}$	OM, Khor Sawli	F	30.1	13		7.8	5.3	3	0.26	0.68	0.38	1.6	2.5	1.2	2.7	3.3			10/10	8/8	?/5	8/8	M100465-M100479
H. paucituberculatus sp. nov.	BMNH1977.941 ${ }^{\text {P }}$	OM, Khor Sawli	F	32	14.3		8	5.6	3.1	0.25	0.70	0.39	1.7	2.7	1.2	2.6	3.3			10/9	8/7	?/?	?/8	M100480-M100496
H. paucituberculatus sp. nov.	BMNH1977.942 ${ }^{\text {P }}$	OM, Khor Sawli	F	29.9	14.4		7.7	5.4	2.9	0.26	0.70	0.38	1.7	2.3	?	2.7	3.3			10/9	7/7	5/5	8/8	M100497-M100501
H. paucituberculatus sp. nov.	ONHM3709 ${ }^{\text {P }}$	OM, Khor Sawli	F	32.8	14.3	38.8	8.2	5.7	3.4	0.25	0.70	0.41	2.1	2.9	1.5	2.9	3.6			9/10	7/8	5/5	9/9	M100502-M100515
H. paucituberculatus sp. nov.	IBES7930	OM, Wadi Hasik	F	33.8	13.5	36.7	8.2	6.4	3.3	0.24	0.78	0.40	2.2	2.7	1.4	3.1	4.5			8/8	8/8	5/5	9/9	M100516-M100524
H. paucituberculatus sp. nov.	IBES7902	OM, 3 km NW of Hasik	F	34.3	14		8.2	6.2	3.4	0.24	0.76	0.41	2.2	2.8	1.1	3	4.1			8/8	8/7	5/5	9/9	M100525-M100529
H. paucituberculatus sp. nov.	IBES7646 ${ }^{\text {P }}$	OM, Khor Sawli \quad Sexual dimorphism	F	21	7.8		6	3.6	2.7	0.29	0.60	0.45	1.2	1.7		2.3	2.8			10/9	?/9	5/5	9/8	M100530-M100537
		Number of individuals (M / F)		6/10	6/10		6/10	6/10	6/10	6/10	6/10	6/10	6/10	6/10	6/8	6/10	6/10			6/10	6/10	6/8	5/10	
		One-way ANOVA F value		0.337	0.003		1.606	0.680	0.148	0.257	0.078	1.355	2.597	1.771	0.326	0.948	1.074			0.267	4.414	1.371	0.022	
		Degrees of freedom		14	14		14	14	14	14	14	14	14	14	12	14	14			14	14	12	13	
		Probability (P)		0.570	0.952		0.225	0.423	0.705	0.619	0.783	0.263	0.129	0.204	0.578	0.346	0.317			0.613	0.054	0.264	0.883	
		Summary Statistics (Total)																						
		Number of Individuals (N)		16	16	4	16	16	16	16	16	16	16	16	14	16	16		6	16	16	14	15	
		Mean		32.2	13.8	31.9	8.1	5.7	3.3	0.25	0.70	0.41	2	2.6	1.3	2.8	3.7		6	8.9	7.4	4.9	8.3	
		Maximum		38.4	17.4	38.8	9.4	7	4.1	0.29	0.78	0.49	2.3	3.1	1.7	3.4	4.5		6	10	9	5	9	
		Minimum		21	7.8	25.3		3.6	2.7	0.24	0.60	0.38	1.2	1.7	1.1	2.3	2.8		6	8	6.5	4	7	
		Standard Error Mean		1.03	0.57	3.4	0.20	0.19	0.09	0.003	0.01	0.007	0.07	0.08	0.04	0.06	0.12		0	0.16	0.16	0.07	0.15	
		Summary Statistics (Males) Number of Individuals (N)		6	6	1	6	6	6	6	6	6	6	6	6	6	6		6	6	6	6	5	
		Mean		33	13.8	26.9	8.5	6	3.4	0.25	0.70	0.39	2.1	2.7	1.2	2.9	3.9		6	9	7	4.8	8.3	
		Maximum		38.4	17.4	26.9	9.4	7	3.9	0.27	0.74	0.42	2.3	3.1	1.4	3.3	4.5		6	9.5	8	5	9	
		Minimum		25.9	10.6	26.9	7	5	2.8	0.24	0.66	0.38	1.9	2.2	1.1	2.7	3.3		6	8.5	6.5	4	7	
		Standard Error Mean		1.7	0.91	-	0.34	0.27	0.15	0.004	0.01	0.006	0.05	0.12	0.06	0.08	0.18		-	0.2	0.22	0.16	0.37	
		Summary Statistics (Females)																						
		Number of Individuals (N)		10	10	3	10	10	10	10	10	10	10	10	8	10	10			10	10	8	10	
		Mean		31.8	13.8	33.6	7.9	5.6	3.3	0.25	0.71	0.41	1.9	2.5	1.3	2.8	3.6			8.9	7.6	5	8.3	
		Maximum		36.5	16.7	38.8	9.1	6.4	4.1	0.29	0.78	0.49	2.2	2.9	1.7	3.4	4.5			10	9	5	9	
		Minimum		21	7.8	25.3	6	3.6	2.7	0.24	0.6	0.38	1.2	1.7	1.1	2.3	2.8			8	7	5	8	
		Standard Error Mean		1.35	0.76	4.19	0.24	0.25	0.13	0.004	0.01	0.01	0.10	0.11	0.07	0.09	0.16			0.24	0.19	-	0.15	

Appendix I. (Continued)

H. inexpectatus sp. nov.	вMNH2008.72 ${ }^{\text {P }}$	$\mathrm{OM}, 2.5 \mathrm{Km} \mathrm{SE} \mathrm{Ar} \mathrm{Rumayliyah}$	M	41	16.9	45	10.8	7.4	3.7	0.26	0.69	0.34	2.5	3.7	1.5	3	4.9	14	4	11/10	8/8	6/6	10/10	M10023-M100256
H. inexpectatus sp. nov.	вмлн2008.71 ${ }^{\text {H }}$	OM, 2.5 Km SE Ar Rumayliyah	M	44.1	18.1	50	11.5	7.8	4	0.26	0.68	0.35	2.4	3.6	1.6	4	5.5	14	4	10/10	87	616	11/11	M100257-M100280
H. inexpectatus sp. nov.	IBES1798 ${ }^{\text {P }}$	OM, 2.5 Km SE Ar Rumayliyah	M	39.3	16.6		10.2	6.4	3.8	0.26	0.63	0.37	2.2	3.7	1.5	3.5	4.7	14	4	11/11	$8 / 8$	6/6	11/11	M10028-M100301
H. inexpectatus sp. nov.	IBES7722 ${ }^{\text {P }}$	OM, 2.5 Km SE Ar Rumayliyah	M	32.3	12.6	38.5	9.1	6.3	3.3	0.28	0.69	0.36	2.2	2.9	1.2	2.8	3.9	14	4	11/11	8/8	? $?$	2?	M100302-M100310
H. inexpectatus sp. nov.	IBES7700 ${ }^{\text {P }}$	OM, 2.5 Km SE Ar Rumayliyah	F	39.9	17		10.3	7.1	3.9	0.26	0.69	0.38	2.5	3.5	1.4	3.7	5.1	14		$10 / 11$	819	$6 / 6$	11/11	M100311-M100315
H. inexpectatus sp. nov.	IBES7335 ${ }^{\text {P }}$	OM, 2.5 Km SE Ar Rumayliyah	F	30.1	13.4	34	8.7	5.7	3.6	0.29	0.66	0.41	2.3	2.7	1.3	3	4	14		$10 / 9$	8/9	616	10/10	M100316-M100320
H. inexpectatus sp. nov.	олнм3711 ${ }^{\text {p }}$	OM, 2.5 Km SE Ar Rumayliyah	F	36.4	16.1		9.6	6.7	3.9	0.26	0.70	0.41	2.4	3.5	1.1	3.4	4.6	14		$10 / 11$	919	6/6	10/10	M100321-M100328
H. inexpectatus sp. nov.	вMNH1979.467	OM, Hama--an-Nafur i sland	J	24.4	10.5	27	7.1	4.7	2.5	0.29	0.66	0.35	1.8	2.1	0.9	2.2	3	14		11/11	8/8	7/6	11/11	M100329-M100346
		Summary Statistics (Total)																						
		Number of Individuals (N)		7	7	4	7		,	7	7	7	7	7	7		7	7	4		7		6	
		Mean		37.5	15.8	41.8	10	6.7	3.7	0.26	0.67	0.37	2.3	3.3	1.3	3.3	4.6	14	4	10.4	8.2	6	10.5	
		Maximum		44.1	18.1	50	11.5	7.8	4	0.29	0.70	0.41	2.5	3.7	1.6	4	5.5	14	4	11	9	6	11	
		Minimum		30.1	12.6	34	8.7	5.7	3.3	0.26	0.63	0.34	2.2	2.7	1.1	2.8	3.9	14	4	9.5	7.5	6	10	
		Standard Error Mean		1.87	0.76	3.52	0.36	0.27	0.08	0.004	0.009	0.01	0.04	0.15	0.06	0.16	0.21	0	0	0.20	0.18	0	0.22	
		Summary Statistics (Males)																						
		Number of Individuals (\mathbb{N}) Mean		$\stackrel{4}{39.1}$	$\begin{gathered} 4 \\ 16 \end{gathered}$	$\stackrel{3}{4.5}$	$\stackrel{4}{10.4}$	${ }_{6}^{4} 9$	$\begin{aligned} & 4.7 \end{aligned}$	$\begin{gathered} 4 \\ 0.26 \end{gathered}$	$\stackrel{4}{4.67}$	$\begin{gathered} 4 \\ 0.35 \end{gathered}$	$\begin{gathered} 4 \\ 2.3 \end{gathered}$	${ }_{3}^{4.4}$	$\begin{gathered} 4.4 \\ 1.4 \end{gathered}$	$\stackrel{4}{4.3}$	4.7	14		$\begin{gathered} 4.6 \\ 10.6 \end{gathered}$	$\begin{gathered} 4 \\ 7.8 \end{gathered}$	3	3 10.6	
		Maximum		44.1	18.1	50	11.5	7.8	4	0.28	0.69	0.37	2.5	3.7	1.6		5.5	14	4		8		11	
		Minimum		32.3	12.6	38.5	9.1	6.3	3.3	0.26	0.63	0.34	2.2	2.9	1.2	2.8	3.9	14	4	10	7.5	6	10	
		Standard Error Mean		2.49	1.19	3.32	0.5	0.37	0.14	0.005	0.014	0.006	0.07	0.19	0.08	0.26	0.33	-		0.23	0.12	.	0.33	
		mmary Statistics (Females)																						
		Number of Individuals (N$)$ Mean		$\stackrel{3}{35.4}$	${ }_{15}^{3}$	$\stackrel{1}{34}$	3.5 9.	3 6.5	$\stackrel{3}{3.8}$	3 0.27	3 0.68	3 0.4	3.4 2	${ }_{3}^{3.2}$	3 1.2	3.3	${ }_{4}^{3}$	3 14		3 10.1	3 8.6		3 10.3	
		Maximum		39.9	17	34	10.3	7.1	3.9	0.29	0.7	0.41	2.5	3.5	1.4	3.7	5.1	14		10.5	9	6	11	
		Minimum		30.1	13.4	34	8.7	5.7	3.6	0.26	0.66	0.38	2.3	2.7	1.1	3	4	14		9.5	8.5	6	10	
		Standard Error Mean		2.86	1.08	-	0.46	0.41	0.1	0.001	0.012	0.001	0.05	0.26	0.08	0.20	0.31			0.33	0.16		0.33	
H.endophis	вMNH1976.1323 ${ }^{\text {¹ }}$	ом, "Muscar"	M	59	25.1		14.2	9.7	6.6	0.24	0.68	0.46	3	5.9	1.7	5	5.9	16	7+7	9/1	9/10	6/6	9/9	M101997-M102030
H. lemurinus	IBEss058	OM, Wadi Ayoun	M		26.3		16.8	12.8	7.9	0.26	0.76	0.47		6.1	2.1	6.7	10.1		3+3	1019	8/8	$7 / 7$	11/11	M100787-M100799
H. lemurinus	IBES8059	OM, Wadi Ayoun	F	46.6	18.1		13.9	11.1	6.8	0.30	0.80	0.49	4.3	5.1	1.7	6	7.8		3+3	10/10	8/8	27	11/11	M100800-M100809

Appendix I. (Continued)

Species	Catalogue	Locality	\%	5	$\underset{\sim}{z}$	${ }_{\text {H }}$	\#	E	E	$\frac{0}{5}$	on		\%	边	Z	¢	§	$\xlongequal{\cong}$	2	$\underset{\sim}{\underset{\sim}{2}}$	$\underset{=1}{\underset{y}{2}}$	$\frac{\widetilde{2}}{\frac{\tilde{y}}{2}}$		
H. robustus	BMNHNH 934.11 .8 .10	SA, Jeddah	M	46.2	21.1		10.4	8.9	5	0.23	0.86	0.48	2.6	3.7	1.3	4.1	5.3	16	6	9/8	9/8	6/6	?/10	M96106-M96123
H. robustus	BMNHNH1973.1842	UAE, S of Khor Jakkan	M	40.9	17.8		10.3	8	5.6	0.25	0.78	0.54	2.5	3.6	1.5	3.7	4.8	14	6	9/8	7/7	5/5	10/10	M96499-M96517
H. robustus	BMNH1982.258	UAE, Sharjah	M	45.7	21.2		10.8	8.9	5.7	0.24	0.82	0.53	2.6	3.5	1.3	3.9	5.2	14	6	8/9	8/8	5/5	9/9	M96738-M96754
H. robustus	BMNH1975.831	UAE, outskirts of Dubai	M	39.4	17.9		9.2	7.8		0.23	0.85		2.4	3.4	1.5	3.5	4.7	14	6	8/9	7/8	6/6	?/10	M96551-M96568
H. robustus	BMNH1976.1408	OM, Juzayrah, off Masirah Island	M	39.2	17.2	39	9.6	7.9	4.9	0.24	0.82	0.51	2.2	3.2	1.3	3.6	4.5	15	6	9/9	8/9	$6 /$?	? $/$	M96597-M96615
H. robustus	BMNH1985.564	OM, Salalah	M	44.3	22.6		12	8.1	5.5	0.27	0.68	0.46	2.3	4	1.3	3.9	5	16	3+3	9/9	8/8	6/?	2/10	M96755-M96773
H. robustus	BMNH1992.201	SA, Kiyat	M	44.4	19.3		11.4		5.3	0.26	0.79	0.46	3	3.6	1.2			15	6	10/9	$8 / 9$	6/?	10/?	M96791-M96805
H. robustus	BMNH1971.1143	UAE, 2 Km E of Sharjah	M	46.4	22.2		11.7	9	5.4	0.25	0.77	0.46	2.4	4.1	1.7	4	5.2	14	7	9/9	8/8	$6 / 6$	9/9	M96382-M96395
H. robusus	BMNH1971.1145	UAE, Sharjah Creek	M	33.4	14.5	30	8	6.4	4.1	0.24	0.80	0.51	1.8	2.9	1.6	3.1	4.4	14	6	10/9	8/8	6/6	9/9	M96413-M96429
H. robustus	BMNH1963.672	YE, near Al Hudaydah	M	45.7	21.6	35.1	10.6	8.9	5.7	0.23	0.84	0.54	2.6	,	1.5	4.5	5.6	15	3+3	10/8	717	6/6	?/10	M96321-M96336
H. robustus	BMNH1975.032	OM, R.A.F camp, Marisah Island	M	42	18.6	39	10.1	7.7	4.8	0.24	0.76	0.48	3.3	3.5	1.7	3.7	4.4	14	3+3	9/9	$8 / 7$	6/6	9/9	M96569-M96588
H. robustus	BMNH1959.1.5.11	ER, Alet	M	46.5	20.4	40	11	9.2	5.7	0.24	0.84	0.52	2.5	4.3	1.6	5.1	6	15	7	9/9	7/7	6/6	9/9	M96303-M96319
H. robustus	BMNH1973.440	PA, university campus, Karachi	M	38.9	17.9		9.5	7.2	4.3	0.24	0.76	0.45	2.6	2.9	1.4	3.7	5.1	15	6	9/9	8/8	6/6	$9 / 9$	M96464-M96481
H. robustus	BMNH1973.438	PA, university campus, Karachi	M	39.5	19.3	42	9.2	7.9	4.4	0.23	0.86	0.48	2.5	3.3	1.5	4.2	5.4	14	7	9/9	9/8	6/6	10/?	M96430-M96446
H. robustus	BMNH1973.439	PA, university campus, Karachi	M	36.2	17.8		8.7	6.9	4.2	0.24	0.79	0.48	2.1	2.8	1.4	3.6	4.7	14	6	9/9	8/9	6/6	10/10	M96447-M96463
H. robustus	BMNH83.3.26.5	PA, Karachi	M	44.8	20	52	10.6	8.1	5.1	0.24	0.76	0.48	2.4	3.9	1.2	3.8	4.5	16	6	10/10	7/8	$7 / 7$	10/11	M95840-M95855
H. robustus	BMNH84.7.25.6	IN, Sind	M	44.9	20.3		11.3	8.3	5.1	0.25	0.73	0.45	2.5	3.8	1.6	5	6	14	3+3	9/9	$7 / 7$	6/6	10/10	M95886-M95900
H. robustus	BMNH84.7.25.7	IN, Sind	M	43.6	18.6	38	10.5	8	4.9	0.24	0.76	0.47	2.7	3.8	1.5	3.8	5.2	17	3+3	11/10	9/8	$7 / 7$	10/10	M95872-M95885
H. robustus	BMNH1937.12.5.270	So, Bonama district, $41^{\circ} 50^{\prime} ; 10^{\circ} 10^{\prime}$	M	45.7	20		11.8	9.3	5.5	0.26	0.79	0.47	3	3.7	1.5	4	5.6	15	${ }^{6}$	8/10	$7 / 7$	6/6	9/9	M96056-M96072
H. robustus	BMNH1937.12.5.271	so, Bonama district, $44^{\circ} 55^{\circ} ; 10^{\circ} 10^{\prime}$	M	41.7	17.9		10.7	8.6	5	0.26	0.80	0.47	2.8	3.8	1.8	3.7	5.3	15	3+3	9/9	$7 / 7$	5/5	9/9	M96073-M96088
H. robustus	BMNH1937.12.5.272	So, Bonama district, $41^{\circ} 50^{\circ} ; 10^{\circ} 10^{\prime}$	M	42.8	20.1		10.9	8.6	5.1	0.25	0.79	0.47	3	3.9	1.6	4.1	5.6	15	5	10/10	8/8	6/6	9/9	M96089-M96105
H. robustus	BMNH1956.1.6.67	YE, Wadi Hatash, Hadramaut	M	54.6	26.8	48	13.4	9.9	6.1	0.25	0.74	0.46	3.2	4.4	1.7	4.2	5.9	15	6	7/8	$7 / 7$	$7 / 7$	11/11	M96245-M96263
H. robustus	BMNH1934.11.8.11	SA, Jeddah	F	42.6	19.4		10	7.5	5.1	0.23	0.75	0.51	2.5	2.8	1.6	3.7	5.1	14		8/9	$7 / 7$	6/6	10/10	M96124-M96137
H. robustus	BMNH1934.11.8.12	SA, Jeddah	F	38	16.3		10	6.7	4.5	0.26	0.67	0.45	2.5	3.6	1.2	3.5	4.4	14		9/9	8/8	6/6	10/10	M96138-M96151
H. robustus	BMNH1978.2031	SA, Jeddah	F	46.1	20.2	50	11.2	8.6	4.9	0.24	0.77	0.44	2.5	3.5	1.3	4.1	6	15		9/8	$7 / 8$	6/6	10/10	M96720-M96737
H. robustus	BMNH1978.910	SA, Jeddah	F	50.8	22.3		11.5	9.2	6.1	0.23	0.80	0.53	2.8	3.8	1.7	4.1	5.7	15		9/9	$7 / 7$	$6 / 7$	10/10	M96706-M96719
H. robustus	вмлн1970.1547	UAE, Sharjah	F	49.6	21.6	47	11	8.2	5.4	0.22	0.75	0.49	3.4	3.8		4.4	5.9	14		9/9	8/8	? $/ 7$	10/10	M96368-M96381
H. robustus	BMNH1977.36	OM, Wattayeh, near Muscat	F	42.4	21.3	45	10.5	7.5	5.2	0.25	0.71	0.50	2.3	3.3	1.6	3.9	4.9	15		8/9	8/8	777	10/10	M96671-M96684
H. robustus	BMNH1977.37	OM, Wattayeh, near Muscat	F	31.2	15.3	32	7.9	6.2	3.9	0.25	0.78	0.49	1.8	2.7	1.1	2.9	3.8	15		10/10	$7 / 8$	7/6	11/11	M96685-M96701
H. robustus	BMNH1973.1844	UAE, Ras Ghanada	F	39.2	16.7		10	7.4	4.7	0.26	0.74	0.47	2.5	3.2	1.5	3.2	4.2	16		10/9	777	6/6	10/10	M96535-M96550
H. robustus	BMNH1973.1843	UAE, S of Khor Jakkan	F	40.8	19.3		9.7	7	4.7	0.24	0.72	0.48	2.4	3.2	1.6	3.3	4.1	15		10/9	8/8	$6 / 5$?/?	M96518-M96534
H. robustus	BMNH1953.1.7.88	YE, Hadiboh, Socotra	F	47.1	22.7		10.3	8.4	5.7	0.22	0.82	0.55	2.2	3.7	5.1	4	5.1	16		9/9	7/8	$2 / 7$?/11	M96152-M96167
H. robustus	вмNH1953.1.7.89	YE, Hadiboh, Socotra	F	47.4	22.6		10	8.6	5.56	0.21	0.86	0.56	2.7	3.6	1.3	4	5.1	16		9/9	7/8	6/6	10/10	M96230-M96244
H. robustus	BMNH1965.1448	YE, Socotra	F	36	15.8		9.7	7	4.3	0.27	0.72	0.44	2.6	3.3	1.3	,	4	15		11/9	8/8	6/6	10/10	M96354-M96367
H. robustus	BMNH1973.1841	UAE, Ras al Kaymah	F	48.5	22.6		10.5	8.2	5.6	0.22	0.78	0.53	2.7	3.7	1.6	3.5	5	16		$9 / 9$	$8 / 8$	6/6	10/9	M96482-M96498
H. robustus	BMNH1992.200	SA, Kiyat	F	45.5	22		11.2	7.6	5.2	0.25	0.68	0.46	2.7	3.7	1.2	4	4.7	16		8/8	777	5/5	?/10	M96774-M96790
H. robustus	BMNH1971.1144	UAE, Shariah Creek	F	45.4	22	50	10.6	8.1	5.2	0.23	0.76	0.49	2.5	3.6	1.6	4	5.2	14		9/10	8/8	6/6	99	M96396-M96412
H. robustus	вмNн 1963.673	YE, near ABS	F	39	16.1		9.6	6.7	4.1	0.25	0.70	0.43	2.3	3.2	1.3	3.3	4.4	15		9/9	7/8	6/6	10/?	M96337-M96353
H. robustus	вMNH83.3.26.6	PA, Karachi	F	44	20.8	40	9.4	7.9	4.8	0.21	0.84	0.51	2.4	3.6	1.6	3	5	14		10/10	8/8	6/?	10/10	M95856-M95871
H. robusus	BMNH1937.12.5.267	So, Bonama district, 41950 ${ }^{\circ}$; $10^{\circ} 10^{\prime}$	F	42.4	19.5		10.8	7.4	4.5	0.25	0.69	0.42	2.5	3.4	1.6	3.5	4.5	15		9/9	$7 / 7$	$6 / 6$	919	M96023-M96055
H. robustus	BMNH1956.1.6.68	YE, Wadi Hatash, Hadramaut	F	49.1	22.5	55	12.2	8.5	5.3	0.25	0.70	0.43	3	4.4	1.6	3.9	5.1	14		10/9	$7 / 7$	$7 / 7$	10/10	M9626-M96285
H. robustus	BMNH1956.1.6.69	YE, Wadi Hatash, Hadramaut	F	34.2	16.1		8.9	6	3.7	0.26	0.67	0.42						14		8/8	$7 / 7$	$7 / 7$	10/11	M96286-M96302
H. robustus	вмпH97.11.31	YE, Hadramaut	F	51.3	22.5		12.2	9.5	6.2	0.24	0.78	0.51	2.8	4.4	1.7	4.3		14		9/10	$8 / 7$	717	10/10	м95929-M95946
H. robustus	BMNH97.11.32	YE, Hadramaut	F	44.7	20.3		10.9	8	5.1	0.24	0.73	0.47	2.9	4	1.6	4	5.5	14		8/9	7/7	$7 / 7$	10/10	M95947-M95961
H. robustus	BMNH97.11.33	YE, Hadramaut	F	42.6	20.6		9.8	6.9	4.6	0.23	0.70	0.47	2.7	3.6	1.4	4.3	5.1	14		9/8	$8 / 7$	$7 / 7$	10/10	M95962-M95976
		Sexual dimorphism																						
		Number of individuals (M/F)		22/23	22/23	$9 / 7$	$22 / 23$	$22 / 23$	$21 / 23$	22/23	22/23	21/23	22/22	$22 / 22$	22/21	21/22	21/22	22/23		$22 / 23$	22/23	22/22	21/22	
		One-way ANOVA F value		0.057	0.108	2.193	0.326	5.332	0.613	1.387	9.746	0.128	0.017	0.504	0.780	2.887	1.583	0.021		0.0001	2.544	3.143	4.654	
		Degrees of freedom		43	43	14	43	43	42	43	43	42	42	42	41	41	41	43		43	43	42	41	
		Probability (P) Summary Statistics		0.811	0.743	0.160	0.570	0.025*	0.437	0.245	0.003*	0.721	0.894	0.481	0.382	0.096	0.215	0.885		0.001	0.118	0.083	0.036*	
		Number of Individuals (N)		45	45	16	45		44	45		44	44	44	43	43	43	45	22	45	45	44		
		Mean		43.2	19.8	42.6	10.4		5	0.24		0.48	2.5	3.5	1.5	3.8	5	14.8	6	9	7.6	6.1		
		Maximum		54.6	26.8	55	13.4		6.2	0.27		0.56	3.4	4.4	5.1	5.1	6	17	7	10.5	8.5	7		
		Minimum		31.2	14.5	30	7.9		3.7	0.21		0.42	1.8	2.7	1.1	2.9	3.8	14	5	7.5	7	5		
		Standard Error Mean		0.72	0.37	1.81	0.163		0.09	0.002		0.005	0.05	0.006	0.088	0.07	0.08	0.12	0.09	0.08	0.07	0.08		
		Summary Statistics (Males)		22	22	9	22	22	21	22	22	21	22	22	2	21	21	22	22	22	22	22	21	
		Mean		43	19.6	40.3	10.5	8.3	5.1	0.24	0.79	0.48	2.5	3.6	1.4	3.9	5.1	14.8	2	9	7.7	2	9.6	
		Maximum		54.6	26.8	52	13.4	9.9	6.1	0.27	0.86	0.54	3.3	4.4	1.8	5.1	6	17	7	10.5	8.5	7	11	
		Minimum		33.4	14.5	30	8	6.4	4.1	0.23	0.68	0.45	1.8	2.8	1.2	3.1	4	14	5	7.5	7	5	9	
		Standard Error Mean Summary Statistics (Females)		0.93	0.52	2.1	0.25	0.17	0.11	0.002	0.009	0.006	0.07	0.09	0.03	0.1	0.11	0.18	0.09	0.13	0.13	0.11	0.13	
		$\underset{\text { Number of Individuals (} \mathrm{N} \text {) }}{\text { Summary Statister (Females) }}$		23	23	7	23		23	23	23	23	22			22	22	23		23	23		22	
		Mean		43.3	19.9	45.5	10.3	7.7	4.9	0.23	0.74	0.48	2.5	3.5	1.6	3.7	4.9	14.7		9	7.5	6.2	10	
		Maximum		51.3	22.7	55	12.2	9.5	6.2	0.27	0.86	0.56	3.4	4.4	5.1	4.4	6	16		10	8	7	11	
		Minimum		31.2	15.3	32	7.9	6	3.7	0.21	0.67	0.42	1.8	2.7	1.1	2.9	3.8	14		8	7	5	9	
		Standard Error Mean		1.11	0.54	2.86	0.2	0.18	0.13	0.003	0.011	0.008	0.006	0.08	0.17	0.09	0.13	0.16		0.12	0.08	0.12	0.09	

Appendix I．（Continued）

Species	Catalogue	Locality	＊	$\frac{3}{6}$	号	H	\＃	N	垔	$\overbrace{5}^{5}$	范	昆思	\％	\％	\underline{Z}	V	O	茼	$\hat{\star}$	$\underset{\sim}{\underset{n}{c}}$	$\underset{A}{\frac{ֻ}{x}}$	$\underset{\frac{\pi}{2}}{\substack{4}}$	E	
H．sinaitus HOLOTYPE	BMNH2．8．16．27	EG，Mount Sinai（prob．from Sudan）	M	41.2	17.5	43	8.4	6.9	4.6	0.20	0.82	0.55	2.5	3.4	1.2	3.8	5.2	15	4	9／9	8／8	5／5	9／9	M100538－M100557
H．sinaitus	BMNH97．10．28．85	SU，Durrur， N of Suakin	M	40.4	20.7		9.8	7.1	4.8	0.24	0.72	0.49	2.7	3.3	1.5	3.6	4.8	15	5	7／8	$7 / 7$	5／5	10／10	M100558－M100577
H．sinaitus	BMNH97．10．28．84	SU，Durrur， N of Suakin	M	45	22.5		10.7	8.2	5.2	0.24	0.77	0.49	2.8	3.7	1.8	4.5	5.8	15	4	8／8	7／6	5／5	9／9	M100578－M100595
H．sinaitus	BMNH97．10．28．87	SU，Wadi Haifa	M	40.3	18.1	44	9.1	7.3	4.7	0.23	0.80	0.52	2.3	3.6	1.3	3.9	5	14	8	9／9	7／7	7／7	10／10	M100596－M100615
H．sinaitus	BMNH1974．3931	ETH，Mule River，Danakil	M	39	19.1		9.8	7.3	4.5	0.25	0.74	0.46	2.7	3.1	1.7	3.4	4.7	16	4	8／8	8／6	？／？	9／9	M100622－M100638
H．sinaitus	BMNH1937．12．5．293	SO，Borama district， $43^{\circ} 15^{\prime} / 10^{\circ} 30^{\prime}$	M	40.4	17.7	35	10.9	7.9	4.8	0.27	0.72	0.44	2.6	3.4	1.5	3.6	5.2	15	6	8／8	7／7	？／6	？／10	M100639－M100657
H．sinaitus	BMNH1937．12．5．294	So，Borama district， $43^{\circ} 15^{\prime} / 10^{\circ} 30^{\prime}$	M	30.7	13.2	31	8.3	5.2	4.2	0.27	0.63	0.51	2.1	2.7	1.3	2.8	3.8		6	9／9	6／6	5／？	10／？	M100658－M100674
H．sinaitus	BMNH97．10．28．83	SU，Durrur， N of Suakin	F	47	23		10.4	8.4	5.5	0.22	0.81	0.53	2.9	4	1.4	4.9	5.7	14		10／9	8／7	5／5	10／10	M100675－M100691
H．sinaitus	BMNH95．5．23．7	YE，Sheikh Osman，near Aden	F	51.2	26	54	11.8	8.1	5.1	0.23	0.69	0.43	3.2	5	1.6	4.3	6.1	15		10／11	9／10	4／5	10／10	M100692－M100710
H．sinaitus	BMNH1945．12．12．14	YE，Bir Fadhl，Aden Summary Statistics（Total）	F	38.7	15.9		9.8	6.9	5.3	0.25	0.70	0.54	2.5	3.1	1.2	4.1	5.7	15		9／9	9／9	5／5	10／10	M100711－M100739
		Number of Individuals（ N ）		10	10	5	10	10	10	10	10	10	10	10	10	10	10	9	7	10	10	9	10	
		Mean		41.3	19.3	41.4	9.9	7.3	4.8	0.24	0.74	0.49	2.6	3.5	1.45	3.9	5.2	14.8	5.2	8.7	7.4	5.2	9.7	
		Maximum		51.2	26	54	11.8	8.4	5.5	0.27	0.82	0.55	3.2	5	1.8	4.9	6.1	16	．	10.5	9.5	7	10	
		Minimum		30.7	13.2	31	8.3	5.2	4.2	0.20	0.63	0.43	2.1	2.7	1.2	2.8	3.8	14	4	7.5	6	4.5	9	
		Standard Error Mean		1.73	1.18	3.98	0.34	0.29	0.12	0.006	0.019	0.013	0.09	0.19	0.06	0.18	0.21	0.20	0.56	0.28	0.34	0.21	0.15	
		Summary Statistics（Males）																						
		Number of Individuals（ N ）		7	7	4	7	7	7	7	7	7	7	7	7	7	7	6	7	7	7	6	7	
		Mean		39.5	18.4	38.2	9.5	7.1	4.6	0.24	0.74	0.49	2.5	3.3	1.4	3.6	4.9	15	5.2	8.3	6.9	5.5	9.5	
		Maximum		45	22.5	44	10.9	8.2	5.2	0.27	0.82	0.55	2.8	3.7	1.8	4.5	5.8	16	8	9	8	7	10	
		Minimum		30.7	13.2	31	8.3	5.2	4.2	0.20	0.63	0.44	2.1	2.7	1.2	2.8	3.8	14	4	7.5	6	5	9	
		Standard Error Mean		1.64	1.1	3.1	0.38	0.36	0.11	0.009	0.023	0.013	0.09	0.12	0.08	0.19	0.23	0.25	0.56	0.23	0.22	0.34	0.20	
		Summary Statistics（Females）																						
		Number of Individuals（ N ）		3	3	1	3	3	3	3	3	3	3	3	3	3	3	3		3	3	3	3	
		Mean		45.6	21.6	54	10.6	7.8	5.3	0.23	0.73	0.5	2.8	4	1.4	4.4	5.8	14.6		9.6	8.6	4.8	10	
		Maximum		51.2	26	54	11.8	8.4	5.5	0.25	0.81	0.54	3.2	5	1.6	4.9	6.1	15		10.5	9.5	5	10	
		Minimum		38.7	15.9	54	9.8	6.9	5.1	0.22	0.69	0.43	2.5	3.1	1.2	4.1	5.7	14		9	7.5	4.5	10	
		Standard Error Mean		3.6	2.99	－	0.59	0.45	0.11	0.008	0.038	0.035	0.20	0.54	0.11	0.20	0.13	0.33		0.44	0.6	0.16	－	
H．shugraensis TYPE	BMNH1953．1．6．97	YE，near Shugra，W of Aden	M	43.6	19.6	47	10.8	7.7	4.9	0.25	0.71	0.45	3.1	3.4	？	4.4	5.5	14	5	10／9	10／9	5／5	10／10	M100740－M100766
H．shugraensis TYPE	BMNH1953．1．6．98	YE，near Shugra，W of Aden	M	41.5	19.8		9.9	7.9	5.2	0.24	0.80	0.53	3.1	4	1.4	4.2	6	14	5	9／10	9／9	5／5	9／9	M100767－M100786

Appendix II: Calculation of independent and combined mean rates (μ) and Standard Deviations (σ) for the mtDNA genes $12 S$ and cytb based on the analysis of mtDNA phylogenies of the Canary Islands reptile genera Gallotia, Tarentola and Chalcides, using island ages and the Messinian Salinity Crisis as calibration points. A.- Canary Islands ages; B.- Result of the BEAST analysis of Gallotia. Nodes a-g, calibration points: a, age of the oldest islands Fuerteventura and Lanzarote (Uniform prior: 0-20.6); b, age of Gran Canaria (Uniform prior: 0-14.5); c, age of the oldest emerged part of Tenerife (Roque del Conde) (Uniform prior: 0-11.6); d, age of La Gomera (Uniform prior: 0-10.5); e, age of La Palma (Uniform prior: 0-1.77); f, age of El Hierro assuming that it was colonized soon after its appearance (see materials and methods) (Uniform prior: 1-1.12); g, end of the Messinian Salinity Crisis, a vicariant event that is assumed to have caused the split between the two endemic Podarcis from the Balearic Islands, P. lilfordii and P. pityusensis (see materials and methods) (Normal prior: mean 5.25 , standard Deviation 0.03). C.Result of the BEAST analysis of Tarentola. Nodes c-f calibration points, same priors as in Gallotia (B). D.- Result of the BEAST analysis of Chalcides. Nodes c, d and f calibration points, same priors as in Gallotia (B).

A

B

D

Independent and combined values of the mean rate and Standard Deviations obtained from each independent analysis of all three reptile taxa shown above (B-D).

The combined value of the mean rate (μ) was the average of the tree values calculated with the following simple formula:
$\mu_{X}=\frac{\sum_{i} N_{X_{i}} \mu_{X_{i}}}{\sum_{i} N_{X_{i}}}$

N (sample size) is equal in all three independent analyses on BEAST (B-C).

The combined value of the Standard Deviation was based on the following formula:

$$
\sigma_{X}=\sqrt{\frac{\sum_{i} N_{X_{i}}\left(\sigma_{X_{i}}^{2}+\mu_{X_{i}}^{2}\right)}{\sum_{i} N_{X_{i}}}-\mu_{X}^{2}}=\sqrt{\frac{\sum_{i} N_{X_{i}} \sigma_{X_{i}}^{2}}{\sum_{i} N_{X_{i}}}+\frac{\sum_{i<j} N_{X_{i}} N_{X_{j}}\left(\mu_{X_{i}}-\mu_{X_{j}}\right)^{2}}{\left(\sum_{i} N_{X_{i}}\right)^{2}}}
$$

Std. Dev. $(\sigma)=\mathrm{SE} / \sqrt{ } \mathrm{N}_{\mathrm{ESS}}$
$\mathrm{SE}=$ Standard Error of the mean
$\mathrm{N}_{\mathrm{ESS}}=$ Effective Sampling Size of the meanRate posterior after burnin.

Results:

$12 S$	Chalcides	Tarentola	Gallotia	Combined
Mean rate (μ)	0.00890	0.0102	0.00553	0.00755
Std. Dev. (σ)	0.00240	0.00207	0.00128	0.00247

cytb	Chalcides	Tarentola	Gallotia	Combined
Mean rate (μ)	0.0253	0.0334	0.0164	0.0228
Std. Dev. (σ)	0.00699	0.00680	0.00317	0.00806

Appendix III: Maximum-likelihood tree inferred using Dataset 3 (350 bp of the $12 S$ gene). Hemidactylus flaviviridis was used to root the tree (not shown). Specimens labelled as OTU 1, 3, 5, 6 and 7 refer to specimens from Busais \& Joger (2011a). Filled circles by the nodes indicate bootstrap support in the ML analysis $\geq 70 \%$ and posterior probability values in the Bayesian analysis ≥ 0.95.

[^0]: The PCR conditions were as follows: $95^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 35$ cycles of denaturation at $92^{\circ} \mathrm{C}$ for 30 sec , annealing (see table) for 45 sec , and extension at 72° for 1 min , and a final extension step at 72° for 5 min .

