NDMI012: Combinatorics and Graph Theory 2

Lecture \#12
Pólya enumeration theorem. Exponential generating functions

Irena Penev

1 Pólya enumeration theorem

Our goal in this section is to compute the number of different colorings of certain objects, up to symmetry. The symmetry will be determined by an appropriate group action.

A subgroup of a group G is a subset of G that is a group under the operation inherited from G. Note that every group is a subgroup of itself, as is the one-element group consisting only of the identity element.

Let X be a set of size n, and let G be a $\operatorname{subgroup}$ of $\operatorname{Sym}(X)$. Each element of G can be represented as a composition of disjoint cycles, the sum of whose lengths is n. Now, for $g \in G$ and $k \in\{1, \ldots, n\}$, we denote by $j_{k}(g)$ the number of cycles of length k, when g is written as a composition of disjoint cycles. ${ }^{1}$ For $g \in G$, we set $x^{\mathrm{cs}(g)}:=x_{1}^{j_{1}(g)} x_{2}^{j_{2}(g)} \ldots x_{n}^{j_{n}(g)}$. Finally, the cycle index of the group G is

$$
\mathcal{Z}_{G}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{|G|} \sum_{g \in G} x^{\operatorname{cs}(g)} .
$$

Example 1.1. Compute cycle index of the group Sym(2).
Solution. Here, using the notation from the definition of a cycle index, we have that $X=\{1,2\}$ and $n=2$. We have that $\operatorname{Sym}(2)=\{(1)(2),(12)\}$, and clearly,

- $x^{\mathrm{cs}((1)(2))}=x_{1}^{2} x_{2}^{0}=x_{1}^{2}$;
- $x^{\mathrm{cs}((12))}=x_{1}^{0} x_{2}^{1}=x_{2}$.

[^0]So,

$$
\mathcal{Z}_{\mathrm{Sym}(2)}\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}+x_{2}}{2} .
$$

Example 1.2. Compute cycle index of the group Sym(3).
Solution. Here, using the notation from the definition of a cycle index, we have that $X=\{1,2,3\}$ and $n=3$. $\operatorname{Sym}(3)$ has one element that is a composition of three 1 -cycles; it has three elements that are a composition of one 2-cycle and one 1-cycle; and it has two elements that consist of one 3 -cycle. So,

$$
\mathcal{Z}_{\mathrm{Sym}(3)}\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}^{3}+3 x_{1} x_{2}+2 x_{3}}{6} .
$$

Recall that for a set $X,\binom{X}{2}$ is the set of all 2-element subsets of X. For each positive integer n and permutation $\pi \in \operatorname{Sym}(n)$, we define a permutation π^{\prime} on the set $\left(\{1, \ldots, n\}_{\{1, \ldots}\right)$ by setting $\pi^{\prime}(\{i, j\})=\{\pi(i), \pi(j)\}$, and we set $\operatorname{Sym}^{\prime}(n)=\left\{\pi^{\prime} \mid \pi \in \operatorname{Sym}(n)\right\}$. It is easy to check that $\operatorname{Sym}^{\prime}(n)$ is a subgroup of $\operatorname{Sym}((\{1, \ldots, n\}))$. In particular, every permutation in $\operatorname{Sym}^{\prime}(n)$ can be represented as a composition of disjoint cycles, the sum of whose lengths is $\binom{n}{2}$.

Example 1.3. Compute the cycle index of the group Sym' $^{\prime}(5)$.
Solution. We remark that $\binom{5}{2}=10$, and so each permutation in $\operatorname{Sym}^{\prime}(5)$ can be represented as a composition of disjoint cycles, the sum of whose lengths is 10 .

We analyze the cycle structure of permutations in Sym(5): given the cycle structure of a permutation $\pi \in \operatorname{Sym}(5)$, we describe the cycle structure of π^{\prime}. If we, in addition, keep track of the number of permutations of each type in $\operatorname{Sym}(5)$, we can easily find the cycle index of $\operatorname{Sym}^{\prime}(5)$.

- There is one permutation π in $\operatorname{Sym}(5)$ (namely, the identity permutation) of the form $(a)(b)(c)(d)(e)$. For such a π, we have that π^{\prime} is the composition of ten cycles of length one. So, $x^{\operatorname{cs}\left(\pi^{\prime}\right)}=x_{1}^{10}$.
- There are 10 permutations π in $\operatorname{Sym}(5)$ of the form $(a b)(c)(d)(e)$. For such a π, we see that π^{\prime} has three cycles of the length two (these cycles are of the form $(\{a, x\},\{b, x\})$, with $x \notin\{a, b\})$, and it has four cycles of length one. So, $x^{\operatorname{cs}\left(\pi^{\prime}\right)}=x_{1}^{4} x_{2}^{3}$.
- There are 15 permutation π in $\operatorname{Sym}(5)$ of the form $(a b)(c d)(e)$. For such a π, we see that π^{\prime} has exactly two cycles of length one (namely, ($\{a, b\}$) and $(\{c, d\})$), and the remaining cycles of π^{\prime} (four of them) are of length two. So, $x^{\operatorname{cs}\left(\pi^{\prime}\right)}=x_{1}^{2} x_{2}^{4}$.
- There are 20 permutations π in $\operatorname{Sym}(5)$ of the form $(a b c)(d)(e)$. For such a π, we see that π^{\prime} has one cycle of length one (namely, $(\{d, e\})$), and the remaining cycles of π^{\prime} (three of them) are of length three. So, $x^{\operatorname{cs}\left(\pi^{\prime}\right)}=x_{1} x_{3}^{3}$.
- There are 20 permutations π in $\operatorname{Sym}(5)$ of the form $(a b c)(d e)$. For such a π, we see that π^{\prime} has one cycle of length one (namely, $(\{d, e\})$), one cycle of length three (namely, $(\{a, b\},\{b, c\},\{c, a\})$), and one cycle of length six (containing all the remaining elements of $\binom{\{1, \ldots, 5\}}{2}$). So, $x^{\mathrm{cs}\left(\pi^{\prime}\right)}=x_{1} x_{3} x_{6}$.
- There are 30 permutations π in $\operatorname{Sym}(5)$ of the form $(a b c d)(e)$. For such a π, we see that π^{\prime} has two 4-cycles (namely, $(\{a, e\},\{b, e\},\{c, e\},\{d, e\})$ and $(\{a, b\},\{b, c\},\{c, d\},\{d, a\}))$ and one 2-cycle (namely, $(\{a, c\},\{b, d\})$). So, $x^{\operatorname{cs}\left(\pi^{\prime}\right)}=x_{2} x_{4}^{2}$.
- There are 24 permutations π in $\operatorname{Sym}(5)$ of the form $(a b c d e)$. For such a π, we see that π^{\prime} has two 5-cycles (namely, $\left.\{a, b\},\{b, c\},\{c, d\},\{d, e\},\{e, a\}\right)$ and $(\{a, c\},\{b, d\},\{c, e\},\{d, a\},\{e, b\}))$. So, $x^{\operatorname{cs}\left(\pi^{\prime}\right)}=x_{5}^{2}$.
Since $\left|\operatorname{Sym}^{\prime}(5)\right|=|\operatorname{Sym}(5)|=5!=120$, we now see that

$$
\begin{aligned}
& \mathcal{Z}_{\mathrm{Sym}^{\prime}(5)}\left(x_{1}, \ldots, x_{10}\right) \\
= & \frac{1}{120}\left(x_{1}^{10}+10 x_{1}^{4} x_{2}^{3}+15 x_{1}^{2} x_{2}^{4}+20 x_{1} x_{3}^{3}+20 x_{1} x_{3} x_{6}+30 x_{2} x_{4}^{2}+24 x_{5}^{2}\right) .
\end{aligned}
$$

We now need a couple more definitions. Suppose $C=\left\{c_{1}, \ldots, c_{k}\right\}$ is some set of colors, and that G is a subgroup of $\operatorname{Sym}(X)$ acting on a finite set X in the natural way, i.e. for $\pi \in G$ and $x \in X$, we have $\pi \cdot x=\pi(x)$. Let \mathcal{C} be the set of all colorings of X using the color set C (formally, \mathcal{C} is simply the set of all functions from X to C). Then G acts on \mathcal{C} in the natural way: for all $\pi \in G, c \in C$, and $x \in X$, we set $(\pi \cdot c)(x)=c\left(\pi^{-1} \cdot x\right) ;^{2}$ the idea is

[^1]that $\pi \cdot c$ should assign to x the color that c assigned to the element of X that got "moved" to x via π, i.e. to the element $\pi^{-1} \cdot x$. Two colorings are equivalent if one can be transformed into the other via our group action, i.e. if they belong to the same orbit of our action. Now, let $\mathcal{D} \subseteq \mathcal{C}$.

- The coloring inventory of \mathcal{D} is a polynomial in c_{1}, \ldots, c_{k}, which is the sum of terms of the form $c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}$, and the coefficient in front of the term $c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}$ is the number of colorings in \mathcal{D} that, for each $i \in\{1, \ldots, k\}$, assign color c_{i} to precisely d_{i} elements of X.
- The pattern inventory of \mathcal{D} is a polynomial in c_{1}, \ldots, c_{k}, which is the sum of terms of the form $c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}$, and the coefficient in front of the term $c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}$ is the number of non-equivalent colorings in \mathcal{D} that, for each $i \in\{1, \ldots, k\}$, assign color c_{i} to precisely d_{i} elements of X.

Lemma 1.4. Let $C=\left\{c_{1}, \ldots, c_{k}\right\}$ be a set of colors, let X be a finite set of size n, and let G be a subgroup of $\operatorname{Sym}(X)$, acting on X in the natural way. ${ }^{3}$ Let \mathcal{C} be the set of all colorings of X with colors from C, and let G act on \mathcal{C} in the natural way. ${ }^{4}$ Then for all $\pi \in G$, the coloring inventory of \mathcal{C}^{π} (the set of fixed points of π in \mathcal{C}) is the polynomial $p_{\pi}\left(c_{1}, \ldots, c_{k}\right)$ obtained by substituting $\sum_{i=1}^{k} c_{i}^{r}$ for each x_{r} in $x^{c s(\pi)} .{ }^{5}$

Proof. We write π as a product of disjoint cycles, and we set up a correspondence between the cycles of π and the terms in the product $x^{\text {cs }}(\pi),{ }^{6}$ in such a way that a cycle of length r corresponds to an x_{r} term. ${ }^{7}$ Then a coloring $c \in \mathcal{C}$ is a fixed point of π if and only if, for each cycle of π, c assigns the same color to each element of X in the cycle. We can choose colors independently for each cycle. Now if we substitute $\sum_{i=1}^{k} c_{i}^{r}$ for each x_{r} in $x^{\operatorname{cs}(\pi)}$, then each r-cycle of π has a corresponding term of the form $\sum_{i=1}^{k} c_{i}^{r}$; selecting color c_{i} for all elements of the r-cycle is equivalent to choosing the summand c_{i}^{r} from the corresponding term $\sum_{i=1}^{k} c_{i}^{r}$ in the product defining the polynomial $p_{\pi}\left(c_{1}, \ldots, c_{k}\right)$. It follows that the number of ways that we can color X in such a way that π fixes the coloring, and that there are precisely d_{i} elements of X colored c_{i} (for each $i \in\{1, \ldots, k\}$) is precisely the coefficient in front of the summand $c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}$ in the polynomial $p_{\pi}\left(c_{1}, \ldots, c_{k}\right)$. The result now follows.

[^2]Pólya enumeration theorem. Let $C=\left\{c_{1}, \ldots, c_{k}\right\}$ be a set of colors, let X be a finite set of size n, and let G be a subgroup of $\operatorname{Sym}(X)$, acting on X in the natural way. ${ }^{8}$ Let \mathcal{C} be the set of all colorings of X with colors from C, and let G act on \mathcal{C} in the natural way. ${ }^{9}$ Then the pattern inventory of \mathcal{C} is $\mathcal{Z}_{G}\left(\sum_{i=1}^{k} c_{i}, \sum_{i=1}^{k} c_{i}^{2}, \ldots, \sum_{i=1}^{k} c_{i}^{n}\right)$.

Proof. Fix a vector $\mathbf{d}=\left(d_{1}, \ldots, d_{k}\right)$ with non-negative integer entries, and let $\mathcal{C}_{\mathbf{d}}$ be the set of all colorings in \mathcal{C} in which, for each $i \in\{1, \ldots, n\}$, the number of elements of X receiving color c_{i} is precisely $d_{i} .{ }^{10}$ Then $\mathcal{C}_{\mathbf{d}}$ is the union of some orbits of the action of G on \mathcal{C}, and so in fact, G acts on $\mathcal{C}_{\mathbf{d}}$ as well. By Burnside's lemma, we have that

$$
\left|\mathcal{C}_{\mathbf{d}} / G\right|=\frac{1}{|G|} \sum_{\pi \in G}\left|\mathcal{C}_{\mathbf{d}}^{\pi}\right| .
$$

and consequently,

$$
\left|\mathcal{C}_{\mathbf{d}} / G\right| c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}=\frac{1}{|G|} \sum_{\pi \in G}\left|\mathcal{C}_{\mathbf{d}}^{\pi}\right| c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}
$$

Now we sum up over all possible choices of the vector $\mathbf{d}=\left(d_{1}, \ldots, d_{k}\right)$, and we get ${ }^{11}$

$$
\sum_{\mathbf{d}}\left|\mathcal{C}_{\mathbf{d}} / G\right| c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}=\sum_{\mathbf{d}} \frac{1}{|G|} \sum_{\pi \in G}\left|\mathcal{C}_{\mathbf{d}}^{\pi}\right| c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}
$$

and consequently,

$$
\sum_{\mathbf{d}}\left|\mathcal{C}_{\mathbf{d}} / G\right| c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}=\frac{1}{|G|} \sum_{\pi \in G} \sum_{\mathbf{d}}\left|\mathcal{C}_{\mathbf{d}}^{\pi}\right| c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}
$$

Clearly, the left-hand-side of this last equality is precisely the pattern inventory of \mathcal{C}. On the other hand, for each $\pi \in G, \sum_{\mathbf{d}}\left|\mathcal{C}_{\mathbf{d}}^{\pi}\right| c_{1}^{d_{1}} \ldots c_{k}^{d_{k}}$ is precisely the coloring inventory of \mathcal{C}^{π}, which (by Lemma 1.4) is precisely $p_{\pi}\left(c_{1}, \ldots, c_{k}\right)$, where $p_{\pi}\left(c_{1}, \ldots, c_{k}\right)$ is the polynomial obtained by substituting $\sum_{i=1}^{k} c_{i}^{r}$ for each x_{r} in $x^{\operatorname{cs}(\pi)}$. So, the pattern inventory of \mathcal{C} is $\frac{1}{|G|} \sum_{\pi \in G} p_{\pi}\left(c_{1}, \ldots, c_{k}\right)$, which (by the definition of cycle index) is precisely $\mathcal{Z}_{G}\left(\sum_{i=1}^{k} c_{i}, \sum_{i=1}^{k} c_{i}^{2}, \ldots, \sum_{i=1}^{k} c_{i}^{n}\right)$. This completes the argument.

Example 1.5. Compute the number of non-equivalent colorings of a bracelet with four beads, using colors black and white for the beads. (Two colorings are equivalent if one can be transformed into the other via a rotation or a reflection.)

[^3]Solution. In this particular case, it is easy to see that there are exactly six non-equivalent colorings, represented below.

However, let us apply the Pólya enumeration theorem in order to illustrate the principle. We label the beads $1,2,3,4$ counterclockwise. The group acting on the beads is simply the dihedral group D_{8} (symmetries of the square). The elements of the group are:

- $(1)(2)(3)(4)$ - identity;
- (1234) - rotation by $90^{\circ} \mathrm{ccw} ;^{12}$
- (13)(24) - rotation by 180°;
- (1432) - rotation by $270^{\circ} \mathrm{ccw}$;
- (12)(34) - reflection about the axis through the centers of edges 12,34 ;
- $(14)(23)$ - reflection about the axis through the centers of edges 14,23 ;
- $(1)(24)(3)$ - reflection about the axis through vertices/beads 1,3 ;
- $(13)(2)(4)$ - reflection about the axis through vertices/beads 2,4 .

So,

$$
\mathcal{Z}_{D_{8}}\left(x_{1}, \ldots, x_{4}\right)=\frac{1}{8}\left(x_{1}^{4}+2 x_{1}^{2} x_{2}+3 x_{2}^{2}+2 x_{4}\right),
$$

and we have

$$
\begin{aligned}
& \mathcal{Z}_{D_{8}}\left(b+w, b^{2}+w^{2}, b^{3}+w^{3}, b^{4}+w^{4}\right) \\
= & \frac{1}{8}\left((b+w)^{4}+2(b+w)^{2}\left(b^{2}+w^{2}\right)+3\left(b^{2}+w^{2}\right)^{2}+2\left(b^{4}+w^{4}\right)\right) \\
= & b^{4}+b^{3} w+2 b^{2} w^{2}+b w^{3}+w^{4}
\end{aligned}
$$

The total number of colorings is equal to the sum of coefficients of the polynomial above: $1+1+2+1+1=6$.

We also remark that the polynomial above allows us to do more, namely, to count the number of non-equivalent colorings with a fixed number of black and white beads. So, there are two non-equivalent colorings with two beads colored black and two colored white. For any other (fixed) combination of black and white beads, where the total number of beads adds up to four, we only have one non-equivalent coloring.

[^4]Proposition 1.6. Let $n \geq 2$ and $k \geq 0$ be integers. Then the number of non-isomorphic graphs on n vertices and k edges is equal to the coefficient in front of the term x^{k} in the polynomial $\mathcal{Z}_{\operatorname{Sym}^{\prime}(n)}\left(1+x, 1+x^{2}, \ldots, 1+x^{\binom{n}{2}}\right)$.

Proof. Let \mathcal{C} be the set of all colorings of the set $\binom{\{1, \ldots, n\}}{2}$ using the color set $\{b, w\}$. We let $\operatorname{Sym}^{\prime}(n)$ act on \mathcal{C} in the natural way. Now, colorings in \mathcal{C} correspond to n-vertex graphs in the natural way: the vertex-set is $\{1, \ldots, 5\}$, and edges are pairs colored b ("black"), where as the non-edges are the pairs colored w ("white"). The number of non-isomorphic five-vertex graphs with k edges is precisely the number of non-equivalent colorings in \mathcal{C} (with respect to our group action) in which exactly k elements of $\left(\frac{\{1, \ldots, n\}}{2}\right)$ are colored b (and the remaining $\binom{n}{2}-k$ elements are colored white). By the Pólya enumeration theorem, the latter is precisely the coefficient in front of $b^{k} w^{\binom{n}{2}-k}$ in the polynomial $\mathcal{Z}_{\text {Sym }^{\prime}(5)}\left(b+w, b^{2}+w^{2}, \ldots, b^{\binom{n}{2}}+w^{\binom{n}{2}}\right)$. But this is exactly the coefficient in front of x^{k} in the polynomial $\mathcal{Z}_{\operatorname{Sym}^{\prime}(n)}\left(1+x, 1+x^{2}, \ldots, 1+x^{\binom{n}{2}}\right)$ (we replace b by x and w by 1).

Example 1.7. For each non-negative integer k, find the number of nonisomorphic k-edge graphs on five vertices.

Solution. We apply Proposition 1.6. By Example 1.3, we know that

$$
\begin{aligned}
& \mathcal{Z}_{\mathrm{Sym}^{\prime}(5)}\left(x_{1}, \ldots, x_{10}\right) \\
= & \frac{1}{120}\left(x_{1}^{10}+10 x_{1}^{4} x_{2}^{3}+15 x_{1}^{2} x_{2}^{4}+20 x_{1} x_{3}^{3}+20 x_{1} x_{3} x_{6}+30 x_{2} x_{4}^{2}+24 x_{5}^{2}\right),
\end{aligned}
$$

and so

$$
\begin{aligned}
& \mathcal{Z}_{\operatorname{Sym}^{\prime}(5)}\left(1+x, \ldots, 1+x^{10}\right) \\
= & \frac{1}{120}\left((1+x)^{10}+10(1+x)^{4}\left(1+x^{2}\right)^{3}+15(1+x)^{2}\left(1+x^{2}\right)^{4}+\right. \\
& +20(1+x)\left(1+x^{3}\right)^{3}+20(1+x)\left(1+x^{3}\right)\left(1+x^{6}\right)+ \\
& \left.+30\left(1+x^{2}\right)\left(1+x^{4}\right)^{2}+24\left(1+x^{5}\right)^{2}\right) \\
= & 1+x+2 x^{2}+4 x^{3}+6 x^{4}+6 x^{5}+6 x^{6}+4 x^{7}+2 x^{8}+x^{9}+x^{10} .
\end{aligned}
$$

Thus, up to isomorphism,

- there is one edgeless graph on five vertices;
- there is one graph on five vertices with one edge;
- there are two graphs on five vertices with two edges;
- there are four graphs on five vertices with three edges;
- there are six graphs on five vertices with four edges;
- there are six graphs on five vertices with five edges;
- there are six graphs on five vertices with six edges;
- there are four graphs on five vertices with seven edges;
- there are two graphs on five vertices with eight edges;
- there is one graph on five vertices with nine edges;
- there is one graph on five vertices with ten edges;
- there are no graphs on five vertices with more than ten edges.

2 Exponential generating functions

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence of real (or complex) numbers. The ordinary generating function (abbreviated ogf) of $\left\{a_{n}\right\}_{n=0}^{\infty}$ is the function

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

The exponential generating function (abbreviated egf) of $\left\{a_{n}\right\}_{n=0}^{\infty}$ is the function

$$
g(x)=\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{n!}=\frac{a_{0}}{0!}+\frac{a_{1} x}{1!}+\frac{a_{2} x^{2}}{2!}+\frac{a_{3} x^{3}}{3!}+\ldots
$$

Ordinary generating functions (or simply "generating functions") were studied in Combinatorics \& Graph Theory 1. Here, we give a brief introduction to exponential generating functions. We begin with a simple example, in which we contrast the use of ogf's and egf's.

Example 2.1.

(a) Find the number of ways that three letters from the word SEQUENCE can be selected (order does not matter). ${ }^{13}$
(b) Find the number of ways that three letters from the word SEQUENCE can be arranged (order matters).

[^5]Solution. (a) The number of ways we can select three letters from the word SEQUENCE is the coefficient in front of x^{3} in the polynomial

$$
f(x)=\left(1+x+x^{2}+x^{3}\right)(1+x)^{5}
$$

which is 26 . (Here, the polynomial $1+x+x^{2}+x^{3}$ corresponds to the letter E , and the five terms $1+x$ correspond to the remaining five letters of the word SEQUENCE.)

More generally, the coefficient in front of x^{k} in $f(x)$ is the number of ways we can select k letters from the word SEQUENCE (when order does not matter). So in fact, $f(x)$ is the ogf for the sequence $\left\{a_{k}\right\}_{k=0}^{\infty}$, where a_{k} is the number of ways of selecting k letters from the word SEQUENCE (when order does not matter).
(b) Here, we use an egf. The number of ways we can arrange three letters from the word SEQUENCE is the coefficient in front of $\frac{x^{3}}{3!}$ in the polynomial

$$
g(x)=\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\right)(1+x)^{5}
$$

which is 136 .
Let us explain why this is correct. For each $k \in\{0,1,2,3\}$, we select k E's and $3-k$ of the remaining five letters. The number of ways of selecting those $3-k$ other letters is precisely the coefficient in front of x^{3-k} in $(1+x)^{5}$, and then the number of ways of arranging our three chosen letters (k E's and $3-k$ other letters) is $\frac{3!}{k!}$. So, the total number of ways of arranging three letters from the word SEQUENCE is precisely the coefficient in front of $\frac{x^{3}}{3!}$ in $g(x)$.

More generally, the coefficient in front of $\frac{x^{k}}{k!}$ in $g(x)$ is the number of ways we can arrange k letters from the word SEQUENCE (when order matters). So in fact, $g(x)$ is the ogf for the sequence $\left\{b_{k}\right\}_{k=0}^{\infty}$, where b_{k} is the number of ways of arranging k letters from the word SEQUENCE (when order matters).

Example 2.2. Find the ogf and egf of the constant sequence $1,1,1,1, \ldots$
Solution. The ogf of the sequence is

$$
f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

whereas the egf of the sequence is

$$
g(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}
$$

For some sequences, it is possible to find a closed formula for the egf, but not for the ogf. For instance, consider the sequence $\{n!\}_{n=0}^{\infty}$. The ogf of this sequence is

$$
f(x)=\sum_{n=0}^{\infty} n!x^{n}
$$

which has radius of convergence $0,{ }^{14}$ i.e. the series only converges for $x=0$. On the other hand, the egf of the sequence is

$$
g(x)=\sum_{n=0}^{\infty} \frac{n!x^{n}}{n!}=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

with the radius of convergence 1 (the series converges when $|x|<1$).
The formulas for the basic operations with egf's are as follows. (Here, $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ are sequences, and c is a constant).

- $\left(\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{n!}\right) \pm\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n}}{n!}\right)=\sum_{n=0}^{\infty} \frac{\left(a_{n} \pm b_{n}\right) x^{n}}{n!}$
- $c\left(\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{n!}\right)=\sum_{n=0}^{\infty} \frac{c a_{n} x^{n}}{n!}$.
- $\left(\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n}}{n!}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} a_{k} b_{n-k}\right) \frac{x^{n}}{n!}$
- $\frac{d}{d x}\left(\sum_{n=0}^{\infty} \frac{a_{n} x^{n}}{n!}\right)=\sum_{n=0}^{\infty} \frac{a_{n+1} x^{n}}{n!}$

The first two formulas above are obvious. For the third, we observe that the coefficient in front of x^{n} is $\sum_{k=0}^{n} \frac{a_{k}}{k!} \frac{b_{n-k}}{(n-k)!}=\sum_{k=0}^{n}\binom{n}{k} \frac{a_{k} b_{n-k}}{n!}$, and the formula follows. Finally, for the fourth formula, we compute:

$$
a^{\prime}(x)=\sum_{n=1}^{\infty} \frac{n a_{n} x^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{a_{n} x^{n-1}}{(n-1)!}=\sum_{n=1}^{\infty} \frac{a_{n+1} x^{n}}{n!}
$$

Example 2.3. A derangement of a set X is a permutation of X that has no fixed points. ${ }^{15}$ For all integers $n \geq 0$, let d_{n} be the number of derangements of an n-element set. Find a recursive formula for the sequence $\left\{d_{n}\right\}_{n=0}^{\infty}$.

Solution. Clearly, $d_{0}=1$ and $d_{1}=0 .{ }^{16}$ Now, fix an integer $n \geq 0$, and let X be a set of size $n+2$. Fix any $a \in X$. Then a derangement of X can

[^6]map a to any element of $b \in X \backslash\{a\}$ (so, there $n+1$ choices for b). Now, suppose we have chosen b. Then our derangement of X either does or does not map b to a. If it does map b to a, then our derangement swaps a and b and then deranges $X \backslash\{a, b\}$; for fixed b, there are d_{n} choices for this type of derangement. ${ }^{17}$ Suppose now that our derangement π does not map b to a. The number of such derangement is equal to the number of derangements of $X \backslash\{b\},{ }^{18}$ which is d_{n+1}. So, $d_{n+2}=(n+1)\left(d_{n}+d_{n+1}\right)$.

We have now obtained the desired recursive formula:

- $d_{0}=1, d_{1}=0 ;$
- $d_{n+2}=(n+1)\left(d_{n}+d_{n+1}\right)$ for all integers $n \geq 0$.

In our next example, we use egf's to find a non-recursive formula for d_{n} (from Example 2.3).

Example 2.4. Let the sequence $\left\{d_{n}\right\}_{n=0}^{\infty}$ be defined recursively as follows:

- $d_{0}=1, d_{1}=0$;
- $d_{n+2}=(n+1)\left(d_{n}+d_{n+1}\right)$ for all integers $n \geq 0$.

Find a closed formula for the egf of the sequences $\left\{d_{n}\right\}_{n=0}^{\infty}$, and then find a non-recursive formula for d_{n}.

Solution. Let $d(x)=\sum_{n=0}^{\infty} \frac{d_{n} x^{n}}{n!}$ be the egf of the sequence $\left\{d_{n}\right\}_{n=0}^{\infty}$. We first differentiate $d(x)$, and then we apply the recursive formula, as follows.

$$
\begin{array}{rlr}
d^{\prime}(x) & =\sum_{n=0}^{\infty} \frac{d_{n+1} x^{n}}{n!} & \\
& =\sum_{n=1}^{\infty} \frac{d_{n+1} x^{n}}{n!} & \text { because } d_{1}=0 \\
& =\left(\sum_{n=1}^{\infty} \frac{n d_{n-1} x^{n}}{n!}\right)+\left(\sum_{n=1}^{\infty} \frac{n d_{n} x^{n}}{n!}\right) & \text { by the recursive formula } \\
& =x\left(\sum_{n=0}^{\infty} \frac{d_{n} x^{n}}{n!}\right)+x\left(\sum_{n=0}^{\infty} \frac{d_{n+1} x^{n}}{n!}\right) & \\
& =x d(x)+x d^{\prime}(x)
\end{array}
$$

[^7]So, we have obtained a differential equation:

$$
d^{\prime}(x)=x d(x)+x d^{\prime}(x)
$$

The differential equation above is equivalent to $\frac{d^{\prime}(x)}{d(x)}=\frac{x}{1-x}$, i.e.

$$
\frac{d^{\prime}(x)}{d(x)}=\frac{1}{1-x}-1
$$

By integrating both sides, we get

$$
\ln (d(x))=-\ln (1-x)-x+C
$$

and since $d(0)=d_{0}=1$, we have that $C=0$. So, $\ln (d(x))=-\ln (1-x)-x$. By exponentiating both sides, we get

$$
d(x)=\frac{e^{-x}}{1-x}
$$

We have now obtained a closed formula for the exponential generating function $d(x)$. To obtain a formula for d_{n}, we note that $e^{-x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}$ and $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty} \frac{n!x^{n}}{n!}$. By the formula for the product of egf's, we now have that, for all integers $n \geq 0$,

$$
d_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(n-k)!
$$

and we are done.

[^0]: ${ }^{1}$ For example, if $n=7$ and $g=(124)(35)(6)(7)$, then $j_{1}(g)=2, j_{2}(g)=1, j_{3}(g)=1$, and $j_{4}(g)=j_{5}(g)=j_{6}(g)=j_{7}(g)=0$. Do not forget to count cycles of length one!

[^1]: ${ }^{2}$ Let us check that this is really a group action. For $c \in \mathcal{C}$ and $x \in X$, we have that $\left(1_{G} \cdot c\right)(x)=c\left(1_{G}^{-1} \cdot x\right)=c\left(1_{G} \cdot x\right)=c(x)$, and it follows that $1_{G} \cdot c=c$. Further, for $\pi_{1}, \pi_{2} \in G, c \in \mathcal{C}$, and $x \in X$, we have that

 $$
 \begin{aligned}
 \left(\pi_{1} \cdot\left(\pi_{2} \cdot c\right)\right)(x) & =\left(\pi_{2} \cdot c\right)\left(\pi_{1}^{-1} \cdot x\right) \\
 & =c\left(\pi_{2}^{-1} \cdot\left(\pi_{1}^{-1} \cdot x\right)\right) \\
 & =c\left(\left(\pi_{2}^{-1} \pi_{1}^{-1}\right) \cdot x\right) \\
 & =\left(\left(\pi_{1} \pi_{2}\right)^{-1} \cdot c\right)(x) \\
 & =\left(\left(\pi_{1} \pi_{2}\right) \cdot c\right)(x) ;
 \end{aligned}
 $$

 so, $\pi_{1} \cdot\left(\pi_{2} \cdot c\right)=\left(\pi_{1} \pi_{2}\right) \cdot c$. Thus, this is indeed a group action on \mathcal{C}.

[^2]: ${ }^{3}$ This means that for all $\pi \in \operatorname{Sym}(X)$ and $x \in X$, we have that $\pi \cdot x=\pi(x)$.
 ${ }^{4}$ That is, for all $\pi \in G, c \in C$, and $x \in X$, we set $(\pi \cdot c)(x)=c\left(\pi^{-1} \cdot x\right)$.
 ${ }^{5}$ For example, if $C=\left\{c_{1}, c_{2}\right\}, X=\{1, \ldots, 7\}, G=\operatorname{Sym}(7)$, and $\pi=(125)(36)(47)$, then $x^{\operatorname{cs}(\pi)}=x_{2}^{2} x_{3}$; if we substitute $\sum_{i=1}^{k} c_{i}^{r}=c_{1}^{r}+c_{2}^{r}$ for each x_{r} in $x^{\operatorname{cs}(\pi)}$, then we get $p_{\pi}\left(c_{1}, c_{2}\right)=\left(c_{1}^{2}+c_{2}^{2}\right)^{2}\left(c_{1}^{3}+c_{2}^{3}\right)=c_{1}^{7}+2 c_{1}^{5} c_{2}^{2}+c_{1}^{4} c_{2}^{3}+c_{1}^{3} c_{2}^{4}+2 c_{1}^{2} c_{2}^{5}+c_{2}^{7}$.
 ${ }^{6}$ Here, $x_{i}^{d_{i}}$ is understood as a term of d_{i} different terms (namely, d_{i} copies of x_{i}), and not as a single term.
 ${ }^{7}$ For example, if $\pi=(125)(36)(47)$, then $x^{\operatorname{cs}(\pi)}=x_{2}^{2} x_{3}$, and we can set up a correspondence $(125) \mapsto x_{3},(36) \mapsto x_{2}$, and $(47) \mapsto x_{2}$. (So, two different cycles of length two get mapped to two "different" x_{2} 's.)

[^3]: ${ }^{8}$ This means that for all $\pi \in \operatorname{Sym}(X)$ and $x \in X$, we have that $\pi \cdot x=\pi(x)$.
 ${ }^{9}$ That is, for all $\pi \in G, c \in C$, and $x \in X$, we set $(\pi \cdot c)(x)=c\left(\pi^{-1} \cdot x\right)$.
 ${ }^{10}$ Note that if $d_{1}+\cdots+d_{k} \neq n$, then $\mathcal{C}_{\mathbf{d}}=\emptyset$.
 ${ }^{11}$ Note that our sums are in fact finite because if $d_{1}+\cdots+d_{k} \neq n$, then $\mathcal{C}_{\mathbf{d}}=\emptyset$.

[^4]: ${ }^{12} \mathrm{ccw}=$ counterclockwise

[^5]: ${ }^{13}$ Note that the letter E appears three times, and so we may select between zero and three copies of E. The three E's are considered the same: so, if we select (say) two E's, we do not care which particular two we selected.

[^6]: ${ }^{14}$ This can be shown using, for example, the Ratio Test.
 ${ }^{15}$ In other words, a derangement of X is a permutation π of X such that for all $x \in X$, $\pi(x) \neq x$.
 ${ }^{16}$ Indeed, the empty function is a permutation of the empty set, and it has no fixed points (so, it is a derangement). On the other hand, any one-element set admits only one permutation (namely, the identity), and this permutation has one fixed point (and so it is not a derangement).

[^7]: ${ }^{17}$ We are using the fact that $|X \backslash\{a, b\}|=n$.
 ${ }^{18}$ Indeed any derangement π of X such that $\pi(a)=b$ and $\pi(b) \neq a$ corresponds to a derangement of $X \backslash\{a\}$ that maps a to $\pi(b)$.

