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1 the Pólya enumeration theorem;
2 an introduction to exponential generating functions.
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Part I: Pólya enumeration

Our goal in this section is to compute the number of different
colorings of certain objects, up to symmetry.

The symmetry will be determined by an appropriate group
action.

Definition
A subgroup of a group G is a subset of G that is a group under the
operation inherited from G .

Every group is a subgroup of itself, as is the one-element
group consisting only of the identity element.



Part I: Pólya enumeration
Our goal in this section is to compute the number of different
colorings of certain objects, up to symmetry.

The symmetry will be determined by an appropriate group
action.

Definition
A subgroup of a group G is a subset of G that is a group under the
operation inherited from G .

Every group is a subgroup of itself, as is the one-element
group consisting only of the identity element.
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Definition
Let X be a set of size n, and let G be a subgroup of Sym(X ).
Each element of G can be represented as a composition of disjoint
cycles, the sum of whose lengths is n. Now, for g ∈ G and
k ∈ {1, . . . , n}, we denote by jk(g) the number of cycles of length
k, when g is written as a composition of disjoint cycles.a For
g ∈ G , we set x cs(g) := x j1(g)

1 x j2(g)
2 . . . x jn(g)

n . Finally, the cycle
index of the group G is

ZG(x1, . . . , xn) = 1
|G|

∑
g∈G

x cs(g).

aFor example, if n = 7 and g = (124)(35)(6)(7), then j1(g) = 2, j2(g) = 1,
j3(g) = 1, and j4(g) = j5(g) = j6(g) = j7(g) = 0. Do not forget to count cycles
of length one!



Cycle index: ZG(x1, . . . , xn) = 1
|G|

∑
g∈G

x cs(g).

Example 1.1
Compute cycle index of the group Sym(2).

Solution Here, using the notation from the definition of a cycle
index, we have that X = {1, 2} and n = 2. We have that
Sym(2) = {(1)(2), (12)}, and clearly,

x cs
(

(1)(2)
)

= x2
1 x0

2 = x2
1 ;

x cs
(

(12)
)

= x0
1 x1

2 = x2.
So,

ZSym(2)(x1, x2) = x2
1 +x2

2 .
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Cycle index: ZG(x1, . . . , xn) = 1
|G|

∑
g∈G

x cs(g).

Example 1.2
Compute cycle index of the group Sym(3).

Solution Here, using the notation from the definition of a cycle
index, we have that X = {1, 2, 3} and n = 3. Sym(3) has one
element that is a composition of three 1-cycles; it has three
elements that are a composition of one 2-cycle and one 1-cycle;
and it has two elements that consist of one 3-cycle. So,

ZSym(3)(x1, x2, x3) = x3
1 +3x1x2+2x3

6 .
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For a set X ,
(X

2
)

is the set of all 2-element subsets of X .

For each positive integer n and permutation π ∈ Sym(n), we
define a permutation π′ on the set

({1,...,n}
2

)
by setting

π′({i , j}) = {π(i), π(j)},

and we set Sym′(n) = {π′ | π ∈ Sym(n)}.
It is easy to check that Sym′(n) is a subgroup of
Sym

(({1,...,n}
2

))
.

In particular, every permutation in Sym′(n) can be represented
as a composition of disjoint cycles, the sum of whose lengths
is
(n

2
)
.
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Cycle index: ZG(x1, . . . , xn) = 1
|G|

∑
g∈G

x cs(g).

Example 1.3
Compute cycle index of the group Sym′(5).

Solution. We remark that
(5

2
)

= 10, and so each permutation in
Sym′(5) can be represented as a composition of disjoint cycles, the
sum of whose lengths is 10.
We analyze the cycle structure of permutations in Sym(5): given
the cycle structure of a permutation π ∈ Sym(5), we describe the
cycle structure of π′. If we, in addition, keep track of the number
of permutations of each type in Sym(5), we can easily find the
cycle index of Sym′(5).
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Cycle index: ZG(x1, . . . , xn) = 1
|G|

∑
g∈G

x cs(g).

Example 1.3
Compute cycle index of the group Sym′(5).

Solution (continued).

There is one permutation π in Sym(5) (namely, the identity
permutation) of the form (a)(b)(c)(d)(e). For such a π, we
have that π′ is the composition of ten cycles of length one.
So, x cs(π′) = x10

1 .

There are 10 permutations π in Sym(5) of the form
(ab)(c)(d)(e). For such a π, we see that π′ has three cycles
of the length two (these cycles are of the form
({a, x}, {b, x}), with x /∈ {a, b}), and it has four cycles of
length one. So, x cs(π′) = x4

1 x3
2 .
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Example 1.3
Compute cycle index of the group Sym′(5).

Solution (continued).

There are 15 permutation π in Sym(5) of the form
(ab)(cd)(e). For such a π, we see that π′ has exactly two
cycles of length one (namely, ({a, b}) and ({c, d})), and the
remaining cycles of π′ (four of them) are of length two. So,
x cs(π′) = x2

1 x4
2 .

There are 20 permutations π in Sym(5) of the form
(abc)(d)(e). For such a π, we see that π′ has one cycle of
length one (namely, ({d , e})), and the remaining cycles of π′
(three of them) are of length three. So, x cs(π′) = x1x3

3 .
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Example 1.3
Compute cycle index of the group Sym′(5).

Solution (continued).

There are 20 permutations π in Sym(5) of the form
(abc)(de). For such a π, we see that π′ has one cycle of
length one (namely, ({d , e})), one cycle of length three
(namely, ({a, b}, {b, c}, {c, a})), and one cycle of length six
(containing all the remaining elements of

({1,...,5}
2

)
). So,

x cs(π′) = x1x3x6.
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Example 1.3
Compute cycle index of the group Sym′(5).

Solution (continued).

There are 30 permutations π in Sym(5) of the form
(abcd)(e). For such a π, we see that π′ has two 4-cycles
(namely, ({a, e}, {b, e}, {c, e}, {d , e}) and
({a, b}, {b, c}, {c, d}, {d , a})) and one 2-cycle (namely,
({a, c}, {b, d})). So, x cs(π′) = x2x2

4 .

There are 24 permutations π in Sym(5) of the form (abcde).
For such a π, we see that π′ has two 5-cycles (namely,
{a, b}, {b, c}, {c, d}, {d , e}, {e, a}) and
({a, c}, {b, d}, {c, e}, {d , a}, {e, b})). So, x cs(π′) = x2

5 .
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Example 1.3
Compute cycle index of the group Sym′(5).

Solution (continued). Since |Sym′(5)| = |Sym(5)| = 5! = 120, we
now see that

ZSym′(5)(x1, . . . , x10)

= 1
120

(
x10

1 + 10x4
1 x3

2 + 15x2
1 x4

2 + 20x1x3
3 + 20x1x3x6+

+ 30x2x2
4 + 24x2

5

)
.



We now need a couple more definitions.

Here’s the set-up.
Suppose C = {c1, . . . , ck} is some set of colors, and that G is
a subgroup of Sym(X ) acting on a finite set X in the natural
way, i.e. for π ∈ G and x ∈ X , we have π · x = π(x).
Let C be the set of all colorings of X using the color set C
(formally, C is simply the set of all functions from X to C).
Then G acts on C in the natural way: for all π ∈ G , c ∈ C ,
and x ∈ X , we set (π · c)(x) = c(π−1 · x); the idea is that π · c
should assign to x the color that c assigned to the element of
X that got “moved” to x via π, i.e. to the element π−1 · x .
Two colorings are equivalent if one can be transformed into
the other via our group action, i.e. if they belong to the same
orbit of our action.
Now, let D ⊆ C.
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With the set-up from the previous slide:

The coloring inventory of D is a polynomial in c1, . . . , ck ,
which is the sum of terms of the form cd1

1 . . . cdk
k , and the

coefficient in front of the term cd1
1 . . . cdk

k is the number of
colorings in D that, for each i ∈ {1, . . . , k}, assign color ci to
precisely di elements of X .
The pattern inventory of D is a polynomial in c1, . . . , ck , which
is the sum of terms of the form cd1

1 . . . cdk
k , and the coefficient

in front of the term cd1
1 . . . cdk

k is the number of
non-equivalent colorings in D that, for each i ∈ {1, . . . , k},
assign color ci to precisely di elements of X .
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assign color ci to precisely di elements of X .



Cycle index: ZG(x1, . . . , xn) = 1
|G|

∑
g∈G

x cs(g).

Pólya enumeration theorem
Let C = {c1, . . . , ck} be a set of colors, let X be a finite set of size
n, and let G be a subgroup of Sym(X ), acting on X in the natural
way.a Let C be the set of all colorings of X with colors from C ,
and let G act on C in the natural way.b Then the pattern inventory
of C is ZG(

∑k
i=1 ci ,

∑k
i=1 c2

i , . . . ,
∑k

i=1 cn
i ).

aThis means that for all π ∈ Sym(X) and x ∈ X , we have that π · x = π(x).
bThat is, for all π ∈ G , c ∈ C , and x ∈ X , we set (π · c)(x) = c(π−1 · x).

Proof: Lecture Notes (uses Burnside’s lemma).

Let’s look at some examples.
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Cycle index: ZG(x1, . . . , xn) = 1
|G|

∑
g∈G

x cs(g).

Pattern inv. (via Pólya): ZG(
∑k

i=1 ci ,
∑k

i=1 c2
i , . . . ,

∑k
i=1 cn

i ).

Example 1.5
Compute the number of non-equivalent colorings of a bracelet with
four beads, using colors black and white for the beads. (Two
colorings are equivalent if one can be transformed into the other
via a rotation or a reflection.)

In this particular case, it is easy to see that there are exactly
six non-equivalent colorings, represented below.

However, let us apply the Pólya enumeration theorem in order
to illustrate the principle.
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∑k

i=1 ci ,
∑k

i=1 c2
i , . . . ,

∑k
i=1 cn

i ).

Example 1.5
Compute the number of non-equivalent colorings of a bracelet with
four beads, using colors black and white for the beads. (Two
colorings are equivalent if one can be transformed into the other
via a rotation or a reflection.)

In this particular case, it is easy to see that there are exactly
six non-equivalent colorings, represented below.
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Example 1.5
Compute the number of non-equivalent colorings of a bracelet with
four beads, using colors black and white for the beads. (Two
colorings are equivalent if one can be transformed into the other
via a rotation or a reflection.)

Solution.

We label the beads 1, 2, 3, 4 counterclockwise.
1

2 3

4

The group acting on the beads is simply the dihedral group D8
(symmetries of the square). The elements of the group are (next
slide):
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Example 1.5
Compute the number of non-equivalent colorings of a bracelet with
four beads, using colors black and white for the beads. (Two
colorings are equivalent if one can be transformed into the other
via a rotation or a reflection.)

Solution (continued). The elements of the group are:

1

2 3

4 (1)(2)(3)(4)
(1234)
(13)(24)
(1432)

(12)(34)
(14)(23)
(1)(24)(3)
(13)(2)(4)

So, ZD8(x1, . . . , x4) = 1
8(x4

1 + 2x2
1 x2 + 3x2

2 + 2x4).
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Example 1.5
Compute the number of non-equivalent colorings of a bracelet with
four beads, using colors black and white for the beads. (Two
colorings are equivalent if one can be transformed into the other
via a rotation or a reflection.)

Solution (continued). Reminder:
ZD8(x1, . . . , x4) = 1

8(x4
1 + 2x2

1 x2 + 3x2
2 + 2x4).

Consequently,

ZD8(b + w , b2 + w2, b3 + w3, b4 + w4)
= 1

8

(
(b + w)4 + 2(b + w)2(b2 + w2) + 3(b2 + w2)2 + 2(b4 + w4)

)
= b4 + b3w + 2b2w2 + bw3 + w4.
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Example 1.5
Compute the number of non-equivalent colorings of a bracelet with
four beads, using colors black and white for the beads. (Two
colorings are equivalent if one can be transformed into the other
via a rotation or a reflection.)

Solution (continued). Reminder:
ZD8(b+w , b2+w2, b3+w3, b4+w4) = b4+b3w+2b2w2+bw3+w4.

The total number of colorings is equal to the sum of coefficients of
the polynomial above: 1 + 1 + 2 + 1 + 1 = 6.

Remark: The polynomial above allows us to do more, namely,
to count the number of non-equivalent colorings with a fixed
number of black and white beads (details: Lecture Notes).
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For each positive integer n and permutation π ∈ Sym(n), we
define a permutation π′ on the set

({1,...,n}
2

)
by

settingπ′({i , j}) = {π(i), π(j)}, and we set
Sym′(n) = {π′ | π ∈ Sym(n)}.

Cycle index: ZG(x1, . . . , xn) = 1
|G|

∑
g∈G

x cs(g).

Pattern inv. (via Pólya): ZG(
∑k

i=1 ci ,
∑k

i=1 c2
i , . . . ,

∑k
i=1 cn

i ).

Proposition 1.6
Let n ≥ 2 and k ≥ 0 be integers. Then the number of
non-isomorphic graphs on n vertices and k edges is equal to the
coefficient in front of the term xk in the polynomial
ZSym′(n)(1 + x , 1 + x2, . . . , 1 + x(n

2)).
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non-isomorphic graphs on n vertices and k edges is equal to the
coefficient in front of the term xk in the polynomial
ZSym′(n)(1 + x , 1 + x2, . . . , 1 + x(n

2)).

Proof.

Let C be the set of all colorings of the set
({1,...,n}

2
)

using
the color set {b,w}. We let Sym′(n) act on C in the natural way.
Now, colorings in C correspond to n-vertex graphs in the natural
way: the vertex-set is {1, . . . , 5}, and edges are pairs colored b
(“black”), where as the non-edges are the pairs colored w
(“white”).
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Proposition 1.6
Let n ≥ 2 and k ≥ 0 be integers. Then the number of
non-isomorphic graphs on n vertices and k edges is equal to the
coefficient in front of the term xk in the polynomial
ZSym′(n)(1 + x , 1 + x2, . . . , 1 + x(n

2)).

Proof (continued). The number of non-isomorphic five-vertex
graphs with k edges is precisely the number of non-equivalent
colorings in C (with respect to our group action) in which exactly k
elements of

({1,...,n}
2

)
are colored b (and the remaining

(n
2
)
− k

elements are colored white).
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∑k

i=1 ci ,
∑k

i=1 c2
i , . . . ,

∑k
i=1 cn

i ).

Proposition 1.6
Let n ≥ 2 and k ≥ 0 be integers. Then the number of
non-isomorphic graphs on n vertices and k edges is equal to the
coefficient in front of the term xk in the polynomial
ZSym′(n)(1 + x , 1 + x2, . . . , 1 + x(n

2)).

Proof (continued). By the Pólya enumeration theorem, the latter
is precisely the coefficient in front of bkw(n

2)−k in the polynomial
ZSym′(5)(b + w , b2 + w2, . . . , b(n

2) + w(n
2)).

But this is exactly the
coefficient in front of xk in the polynomial

ZSym′(n)(1 + x , 1 + x2, . . . , 1 + x(n
2))

(we replace b by x and w by 1).
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Example 1.7
For each non-negative integer k, find the number of
non-isomorphic k-edge graphs on five vertices.

Solution.

We apply Proposition 1.6. By Example 1.3, we know that

ZSym′(5)(x1, . . . , x10)

= 1
120

(
x10

1 + 10x4
1 x3

2 + 15x2
1 x4

2 + 20x1x3
3 + 20x1x3x6+

+ 30x2x2
4 + 24x2

5

)
,

and so

ZSym′(5)(1 + x , . . . , 1 + x10)

= 1 + x + 2x2 + 4x3 + 6x4 + 6x5 + 6x6 + 4x7 + 2x8 + x9 + x10.
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ZSym′(5)(x1, . . . , x10)

= 1
120

(
x10

1 + 10x4
1 x3

2 + 15x2
1 x4

2 + 20x1x3
3 + 20x1x3x6+

+ 30x2x2
4 + 24x2

5

)
,

and so

ZSym′(5)(1 + x , . . . , 1 + x10)

= 1 + x + 2x2 + 4x3 + 6x4 + 6x5 + 6x6 + 4x7 + 2x8 + x9 + x10.



Example 1.7
For each non-negative integer k, find the number of
non-isomorphic k-edge graphs on five vertices.

Solution. Thus, up to isomorphism,
there is one edgeless graph on five vertices;
there is one graph on five vertices with one edge;
there are two graphs on five vertices with two edges;
there are four graphs on five vertices with three edges;
there are six graphs on five vertices with four edges;
there are six graphs on five vertices with five edges;
there are six graphs on five vertices with six edges;
there are four graphs on five vertices with seven edges;
there are two graphs on five vertices with eight edges;
there is one graph on five vertices with nine edges;
there is one graph on five vertices with ten edges;
there are no graphs on five vertices with more than ten edges.



Part II: Exponential generating functions

Let {an}∞n=0 be a sequence of real (or complex) numbers.
The ordinary generating function (abbreviated ogf) of {an}∞n=0
is the function

f (x) =
∞∑

n=0
anxn = a0 + a1x + a2x2 + a3x3 + . . .

The exponential generating function (abbreviated egf) of
{an}∞n=0 is the function

g(x) =
∞∑

n=0
anxn

n! = a0
0! + a1x

1! + a2x2

2! + a3x3

3! + . . .



Part II: Exponential generating functions

Let {an}∞n=0 be a sequence of real (or complex) numbers.

The ordinary generating function (abbreviated ogf) of {an}∞n=0
is the function

f (x) =
∞∑

n=0
anxn = a0 + a1x + a2x2 + a3x3 + . . .

The exponential generating function (abbreviated egf) of
{an}∞n=0 is the function

g(x) =
∞∑

n=0
anxn

n! = a0
0! + a1x

1! + a2x2

2! + a3x3

3! + . . .



Part II: Exponential generating functions

Let {an}∞n=0 be a sequence of real (or complex) numbers.
The ordinary generating function (abbreviated ogf) of {an}∞n=0
is the function

f (x) =
∞∑

n=0
anxn = a0 + a1x + a2x2 + a3x3 + . . .

The exponential generating function (abbreviated egf) of
{an}∞n=0 is the function

g(x) =
∞∑

n=0
anxn

n! = a0
0! + a1x

1! + a2x2

2! + a3x3

3! + . . .



Part II: Exponential generating functions

Let {an}∞n=0 be a sequence of real (or complex) numbers.
The ordinary generating function (abbreviated ogf) of {an}∞n=0
is the function

f (x) =
∞∑

n=0
anxn = a0 + a1x + a2x2 + a3x3 + . . .

The exponential generating function (abbreviated egf) of
{an}∞n=0 is the function

g(x) =
∞∑

n=0
anxn

n! = a0
0! + a1x

1! + a2x2

2! + a3x3

3! + . . .



Ordinary generating functions (or simply “generating
functions”) were studied in Combinatorics & Graph Theory 1.

Here, we give a brief introduction to exponential generating
functions.
We begin with a simple example, in which we contrast the use
of ogf’s and egf’s.

Example 2.1
(a) Find the number of ways that three letters from the word

SEQUENCE can be selected (order does not matter).a

(b) Find the number of ways that three letters from the word
SEQUENCE can be arranged (order matters).

aNote that the letter E appears three times, and so we may select between
zero and three copies of E. The three E’s are considered the same: so, if we
select (say) two E’s, we do not care which particular two we selected.
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Example 2.1
(a) Find the number of ways that three letters from the word

SEQUENCE can be selected (order does not matter).

Solution.

The number of ways we can select three letters from the
word SEQUENCE is the coefficient in front of x3 in the polynomial

f (x) = (1 + x + x2 + x3)(1 + x)5,

which is 26. (Here, the polynomial 1 + x + x2 + x3 corresponds to
the letter E, and the five terms 1 + x correspond to the remaining
five letters of the word SEQUENCE.)
More generally, the coefficient in front of xk in f (x) is the number
of ways we can select k letters from the word SEQUENCE (when
order does not matter). So in fact, f (x) is the ogf for the sequence
{ak}∞k=0, where ak is the number of ways of selecting k letters
from the word SEQUENCE (when order does not matter).
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Example 2.1
(b) Find the number of ways that three letters from the word

SEQUENCE can be arranged (order matters).

Solution.

Here, we use an egf. The number of ways we can
arrange three letters from the word SEQUENCE is the coefficient
in front of x3

3! in the polynomial

g(x) = (1 + x + x2

2! + x3

3! )(1 + x)5,

which is 136.
Indeed, for each k ∈ {0, 1, 2, 3}, we select k E’s and 3− k of the
remaining five letters. The number of ways of selecting those 3− k
other letters is precisely the coefficient in front of x3−k in (1 + x)5,
and then the number of ways of arranging our three chosen letters
(k E’s and 3− k other letters) is 3!

k! . So, the total number of ways
of arranging three letters from the word SEQUENCE is precisely
the coefficient in front of x3

3! in g(x).
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Example 2.1
(b) Find the number of ways that three letters from the word

SEQUENCE can be arranged (order matters).

Solution (continued). Reminder: g(x) = (1 + x + x2

2! + x3

3! )(1 + x)5.

More generally, the coefficient in front of xk

k! in g(x) is the number
of ways we can arrange k letters from the word SEQUENCE (when
order matters). So in fact, g(x) is the ogf for the sequence
{bk}∞k=0, where bk is the number of ways of arranging k letters
from the word SEQUENCE (when order matters).
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Example 2.2
Find the ogf and egf of the constant sequence 1, 1, 1, 1, . . . .

Solution.

The ogf of the sequence is

f (x) =
∞∑

n=0
xn = 1

1−x ,

whereas the egf of the sequence is

g(x) =
∞∑

n=0
xn

n! = ex .
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For some sequences, it is possible to find a closed formula for
the egf, but not for the ogf.

For instance, consider the sequence {n!}∞n=0.
The ogf of this sequence is

f (x) =
∞∑

n=0
n!xn,

which has radius of convergence 0, i.e. the series only
converges for x = 0.
On the other hand, the egf of the sequence is

g(x) =
∞∑

n=0
n!xn

n! =
∞∑

n=0
xn = 1

1−x ,

with the radius of convergence 1 (the series converges when
|x | < 1).
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Example 2.6
Let the sequence {dn}∞n=0 be defined recursively as follows:

d0 = 1, d1 = 0;
dn+2 = (n + 1)(dn + dn+1) for all integers n ≥ 0.

Find a closed formula for the egf of the sequences {dn}∞n=0, and
then find a non-recursive formula for dn.

Remark: dn is the number of “derangements” of an n-element
set, i.e. the number of permutations of {1, . . . , n} with no
fixed points. (details: Lecture Notes.)
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Example 2.3
Let the sequence {dn}∞n=0 be defined recursively as follows:

d0 = 1, d1 = 0;
dn+2 = (n + 1)(dn + dn+1) for all integers n ≥ 0.

Find a closed formula for the egf of the sequences {dn}∞n=0, and
then find a non-recursive formula for dn.

Solution.

Let d(x) =
∞∑

n=0
dnxn

n! be the egf of the sequence {dn}∞n=0.

We first differentiate d(x), and then we apply the recursive
formula, as follows.
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dn+2 = (n + 1)(dn + dn+1) for all integers n ≥ 0.
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then find a non-recursive formula for dn.

Solution (continued). So, we have obtained a differential equation:
d ′(x) = xd(x) + xd ′(x).

The differential equation above is equivalent to d ′(x)
d(x) = x

1−x , i.e.
d ′(x)
d(x) = 1

1−x − 1.
By integrating both sides, we get

ln(d(x)) = − ln(1− x)− x + C ,
and since d(0) = d0 = 1, we have that C = 0. So,
ln(d(x)) = − ln(1− x)− x .
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dn+2 = (n + 1)(dn + dn+1) for all integers n ≥ 0.
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Solution (continued). Reminder: ln(d(x)) = − ln(1− x)− x .

By exponentiating both sides, we get

d(x) = e−x

1−x .

We have now obtained a closed formula for the exponential
generating function d(x).
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e−x =

∞∑
n=0

(−1)nxn

n! ;

1
1−x =

∞∑
n=0

xn =
∞∑

n=0
n!xn

n! .
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(−1)k(n − k)!, and we are done.
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