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Foreword 

More than a generation of Gennan-speaking students around the world have worked their 
way to an understanding and appreciation of the power and beauty of modem theoretical 
physics - with mathematics, the most fundamental of sciences - using Walter Greiner' s 
textbooks as their guide. 

The idea of developing a coherent, complete presentation of an entire field of science 
in aseries of elosely related textbooks is not a new one. Many older physicists remember 
with real pleasure their sense of adventure and discovery as they worked their ways 
through the elassic series by Sommerfeld, by Planck and by Landau and Lifshitz. From 
the students' viewpoint, there are a great many obvious advantages to be gained through 
use of consistent notation, logical ordering of topics and coherence of presentation; beyond 
this, the complete coverage of the science provides a unique opportunity for the author to 
convey bis personal enthusiasm and love for his subject. 

The present five volume set, Theoretical Physics, is in fact only that part of the 
complete set of textbooks developed by Greiner and his students that presents the quantum 
theory. 1 have long urged hirn to make the remaining volumes on elassical mechanics and 
dynamics, on electromagnetism, on nuelear and partiele physics, and on special topics 
available to an English-speaking audience as weIl, and we can hope for these companion 
volumes covering all of theoretical physics some time in the future. 

What makes Greiner's volumes of particular value to the student and professor alike 
is their completeness. Greiner avoids the all too common "it follows that.." which conceals 
several pages of mathematical manipulation and confounds the student. He does not hesi
tate to include experimental data to illuminate or illustrate a theoretical point and these 
data, like the theoretical content, have been kept up to date and topical through frequent 
revision and expansion of the lecture notes upon which these volumes are based. 

Moreover, Greiner greatly increases the value of his presentation by ineluding some
thing like one hundred completely worked examples in each volume. Nothing is of greater 
importance to the student than seeing, in detail, how the theoretical concepts and tools 
under study are applied to actual problems of interest to a working physicist. And, finally, 
Greiner adds brief biographical sketches to each chapter covering the people responsible 
for the development of the theoretical ideas and/or the experimental data presented. It 
was Auguste Comte (1798-1857) in his Positive Philosophy who noted, "To understand a 
science it is necessary to know its history". This is all too often forgotten in modem physics 
teaching and the bridges that Greiner builds to the pioneering figures of our science upon 
whose work we build are welcome ones. 
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Greiner's lectures, which underlie these volumes, are intemationally noted for their 
clarity, their completeness and for the effort that he has devoted to making physics an 
integral whole; his enthusiasm for his science is contagious and shines through almost 
every page. 

These volumes represent only apart of a unique and Herculean effort to make all of 
theoretical physics accessible to the interested student. Beyond that, they are of enormous 
value to the professional physicist and to all others working with quantum phenomena. 
Again and again the reader will find that, after dipping into a particular volume to review 
a specific topic, he will end up browsing, caught up by often fascinating new insights and 
developments with which he had not previously been familiar. 

Having used a number of Greiner's volumes in their original German in my teaching 
and research at Yale, I welcome these new and revised English translations and would 
recommend them enthusiastically to anyone searching for a coherent overview of physics. 

VI 

D. Al/an Bromley 
Henry Ford 11 Professor of Physics 
Yale University 
New Haven, er USA 



Preface 

Theoretical physics has become a many-faceted science. For the young student it is diffi
cult enough to cope with the overwhelming amount of new scientific material that has to 
be learned, let alone obtain an overview of the entire field, which ranges from mechanics 
through electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion sci
ence, statistical mechanics, thermodynamics, and solid-state theory to elementary-particle 
physics. And this knowledge should be acquired in just 8-10 semesters, during which, in 
addition, a Diploma or Master's thesis has to be worked on or examinations prepared for. 
All this can be achieved only if the university teachers help to introduce the student to 
the new disciplines as early on as possible, in order to create interest and excitement that 
in turn set free essential, new energy. Naturally, all inessential material must simply be 
eliminated 

At the Johann Wolfgang Goethe University in Frankfurt we therefore confront the stu
dent with theoretical physics immediately, in the first semester. Theoretical Mechanics I 
and 11, Electrodynamics, and Quantum Mechanics I - An Introduction are the basic courses 
during the first two years. These lectures are supplemented with many mathematical ex
planations and much support material. After the fourth semester of studies, graduate work 
begins, and Quantum Mechanics 11 - Symmetries, Statistical Mechanics and Thermody
namics, Relativistic Quantum Mechanics, Quantum Electrodynamics, the Gauge Theory 
of Weak Interactions, and Quantum Chromodynamics are obligatory. Apart from these, 
a number of supplementary courses on special topics are offered, such as Hydrodynam
ics, Classical Field Theory, Special and General Relativity, Many-Body Theories, Nuclear 
Models, Models of Elementary Particles, and Solid-State Theory. Some of them, for ex
ample the two-semester courses Theoretical Nuclear Physics and Theoretical Solid-State 
Physics, are also obligatory. 

The form of the lectures that comprise Relativistic Quantum Mechanics - Wave Equa
tions follows that of all the others: together with a broad presentation of the necessary 
mathematical tools, many examples and exercises are worked through. We try to offer 
science in as interesting a way as possible. With relativistic quantum mechanics we are 
dealing with a broad, yet beautiful, theme. Therefore we have had to restrict ourselves 
to relativistic wave equations. The selected material is perhaps unconventional, but corre
sponds, in our opinion, to the importance of this field in modern physics: 

The Klein-Gordon equation (for spin-O particles) and the Dirac equation (for spin-~ 
particles) and their applications constitute the backbone of these lectures. Wave equations 
for partieles with higher spin (the Rarita-Schwinger, spin- ~, Kemmer and Proca, spin-I, 
and general Bargman~Wigner equations) are confined to the last chapters. 

After introducing the Klein-Gordon equation we discuss its properties and difficulties 
(especially with respect to the single-particle interpretation); the Feshbach-Villars repre-

VII 



sentation is given. In many worked-out exercises and examples its practical applications 
can be found: pionic atoms as a modern field of research and the particularly challeng
ing examples on the effective pion-nucleus potential (the Kisslinger potential) and its 
improvement by Ericson and Ericson stand in the foreground. 

Most of these lectures deal with Dirac's theory. The covariance properties of the 
Dirac equation are discussed in detail. So, for example, its free solutions are on the one 
hand determined directly and on the other hand through Lorentz transformations from 
the simple solutions in the rest frame. Here the methodical issue is emphasized: the 
same physical phenomenon is illuminated from different angles. We proceed in a similar 
manner in the discussion of single-particle operators (the odd and even parts of an operator) 
and the so-called Zitterbewegung, wbich is also derived from the consideration of wave 
packets of plane Dirac waves. In many worked-out problems and examples the new tools 
are exercised. Thus the whole of Chap. 9 is dedicated to the motion of Dirac particles 
in external potentials. It contains simple potential problems, extensively the case of the 
electron in a Coulomb potential (the fine-structure formula), and muonic atoms. In Chap. 10 
we present the two-centre Dirac equation, which is of importance in the modem field of 
heavy-ion atomic physics. The fundamental problem of overcritical fields and the decay 
of the electron-positron vacuum is only touched upon. A full treatment is reserved for 
Quantwn Electrodynamics (Vol. 4 of this series). However, we give an extended discussion 
of hole theory and also of Klein's paradox. The Weyl equation for the neutrino (Chap.14) 
and relativistic wave equations for particles with arbitrary spin (Chap. 15) follow. Starting 
with the Bargmann-Wigner equations the general frame for these equations is set, and 
in numerous worked-out examples and exercises special cases (spin-l particles with and 
without mass, and spin-~ particles according to Rarita and Schwinger) are considered in 
greater detail. In the last chapter we give an overview of relativistic symmetry principles, 
which we enjoy from a superior point of view, since by now we have studied Quantwn 
Mechanies - Symmetries (Vol. 2 of tbis series). 

We hope that in this way the lectures will become ever more complete and may lead 
to new insights. 

Biographical notes help to obtain an impression, however short, of the life and work 
of outstanding physicists and mathematicians. We gratefully acknowledge the publishers 
Harri Deutsch and F.A. Brockhaus (Brockhaus Enzyklopädie, F.A. Brockhaus - Wiesbaden 
indicated by BR) for giving permission to use relevant information from their publications. 

Special thanks go to Prof. Dr. Gerhard Soff, Dr. Joachim Reinhardt, and Dr. David 
Vasak for their critical reading of the original draft of these lectures. Many students and 
collaborators have helped during the years to work out examples and exercises. For this 
first English edition we enjoyed the help of Maria Berenguer, Christian Borchert, Snjezana 
Butorac, Christian Derreth, Carsten Greiner, Kordt Griepenkerl, Christian Hofmann, Raf
faele Mattiello, Dieter Neubauer, Jochen Rau, Wolfgang Renner, Dirk Rischke, Alexander 
Scherdin, Thomas Schönfeld, and Dr. Stefan Schramm. Miss Astrid Steidl drew the graphs 
and prepared the figures. To all of them we express our sincere thanks. 

We would especially like to thank Mr. Bela Waldhauser, Dipl.-Phys., for his overall 
assistance. His organizational talent and his advice in technical matters are very much 
appreciated. 

Finally, we wish to thank Springer-Verlag; in particular, Dr. H.-U. Daniel, for his 
encouragement and patience, Mr. Michael Edmeades for expertly copy-editing the English 
edition, and Mr. R. Michels and his team for the excellent layout. 

Frankfurt am Main, May 1990 Walter Greiner 
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1. Relativistic Wave Equation for Spin-O Particles 
The Klein-Gordon Equation and Its Applications 

The description of phenomena at high energies requires the investigation of relativistic 
wave equations. This means equations which are invariant under Lorentz transformations. 
The transition from a nonrelativistic to a relativistic description implies that several con
cepts of the nonrelativisti theory have to be reinvestigated, in particular: 

1) Spatial and temporal coordinates have to be treated equally within the theory. 
2) Since 

n n 
L1xrv- rv--

L1p moc 

a relativistic partic1e cannot be localized more accurately than ~ ntmoc; otherwise pair 
creation occurs for E > 2moc? Thus, the idea of a free partic1e only makes sense, if 
the partic1e is not confined by external constraints to a volume which is smaller than 
approximately the Compton wavelength .Ac = ntmoc. Otherwise the partic1e automatically 
has companions due to partic1e-antipartic1e creation. 

3) If the position of the partic1e is uncertain, Le. if 

n 
L1x>-

moc 

then the time is also uncertain, because 

L1x n 
L1trv- >-

c moc2 
In a nonrelativistic theory L1t can become arbitrarily small, because c --+ 00. Thereby, we 
recognize the necessity to reconsider the concept of prob ability density 

e(x, y, z, t) , 

which describes the probability of finding a partic1e at adefinite place r at fixed time t. 
4) At high (relativistic) energies pair creation and annihilation processes occur, usually 

in the form of creating partic1e-antipartic1e-pairs. Thus, at relativistic energies partic1e 
conservation is no longer a valid assumption. A relativistic theory must be able to describe 
pair creation, vacuum polarization, partic1e conversion, el. 

1.1 The Notation 

First we shall remark on the notation used. Until now we have expressed four-vectors by 
Minkowski's notation, with an imaginary fourth component, as for example 



x = {x, y, z, ict} 

P = {Px, Py' Pz, iE/c} 

A = {Ax , A y , A z , iAO} 

{ 8 8 8 8} 
V = 8x' 8y' 8z' W(ct) 

(world vector) , 

(four-momentum) , 

(four-potential) , 

(four-gradient), etc. (1.1) 

The letters x, p, A, V abbreviate the fuH four-vector. Sometimes we shall also denote 

them by !, =p, 1. V, etc., i.e. with a double arrow. As long as there is no confusion 
arising, we prefer the former notation. For the foHowing it is useful to introduce the metric 
tensor (covariant components) 

(

900 

9 v = 910 
J.' 920 

930 

901 
911 
921 
931 

902 
912 
922 
932 

903) (1 913 _ 0 
923 - 0 
933 0 

o 
-1 

o 
o 

o 
o 

-1 
o J) (1.2) 

Thereby, one can denote the length of the vector dx = {dxJ.'} as ds2 = dx· dx = 
9J.'vdx J.'dx v . This relation is often taken as the defining relation of the metric tensor.IThe 
contravariant form 9/l-V of the metric tensor foHows from the condition 

G 
0 0 

D 
def 1 0 

9WT 9uv = 8t == 0 1 
0 0 

(1.3) 

p" - ( -1) - Llp" - e 0 0 

J) -1 0 
9 - 9 ---- 0 -1 J.'U 9 0 

0 0 0 

(1.4) 

Here .dJ.'u is the cofactor of 9J.'u [i.e. the subdeterminant, obtained by crossing out the 
I-Lth row and the uth column and multiplying it with the phase (-1 )J.'+U] and 9 is given by 
9 = det(9 J.'v) = -1. For the special Lorentz metric the contravariant and covariant metric 
tensor are identical: 

9J.'V = 9J.'v [for Lorentz metric!] 

From now on we will use the contravariant four-vector 

(1.5) 

for the description of the space-time coordinates, where the time-like component is denoted 
as zero component. We get the covariant form of the four-vector by "lowering" the index 
I-L with the help of the metric tensor, i.e. 

(1.6) 

I We adopt the same notation as J.D. Bjorken, SD. Drell: Relativistic Quantum Mechanics (McGraw Hili, 
New York 1964). 
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Similarly the indices can be "raised" to give 

xl-' =gl-'Vxv = {xO, xl, x 2, x3 } 

This means that one can easily transform the covariant into the contravariant form of a 
vector (respectively of a tensor) and vice versa. Except in special cases, where we denote 
it explicitly, we use Einstein's summation convention: We automatically add from 0 to 3 
over indices occuring doubly (one upper and one lower index). So we have, for example, 

3 
xox=xl-'xl-' == Lxl-'xl-' =xOxO+xIXI+x2x2+x3x3 

1-'=0 
= e2t2 _ x 2 _ y2 _ z2 

= e2t2 _ z2 

The definition of the four-momentum vector is analogous, 

pi' = {Eie, Pz, Py' pz} 

and we write the scalar product in four dimensions (space-time) as 

I-' EI E2 
PI 0 P2 = PI P2 = - - - PI 0 P2 , I-' e e 

or equally 

x 0 P = xl-'pl-' = xl-'pI' = Et - z 0 P 

We identify the four-vectors by a common letter. Thus, for instance, 

a= {ao, al, a2, a3} 

In contrast to this we denote three-vectors by bold type as in 

Often we write only the components. Hence, 

al-' = {aO, a l , a2, a3 } 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

means a four-vector with contravariant components. Greek indices, such as 1-', always run 
from 0 to 3. Latin indices, as for example i, imply values from 1 to 3. A three-vector can 
thus also be written in contravariant form as 

in covariant form. So the Jour-momentum operator is therefore denoted by 

AI-' .Ii. ß {.Ii. ß .Ii. ß .Ii. ß .Ii. ß } 
P = 1 ~ = 1 ~( )' + 1 ~, + 1 ~, + 1 ~ 

uXI-' U cl uXI uX2 uX3 

== ili.VI-' = {~, - ili.~, - ili.~, - ili.~} 
~~ fu ~ fu 

= ili. { ß~t)' - V } (1.11) 

3 



It transfonns as a contravariant four-vector. so that 

(1.12) 

This equation defines both the three-dimensional delta operator (.1 = V 2) and the four
dimensional d' Alembertian (0 = (l/t?ffl/at2 - .1). Finally we check the commutation 
relations of momentum and position by means of (1.11 and 1.5). obtaining 

[ .:J.I V] _ ." [{} vu] _. " vu {}x u 
y • x _ - 1" -{} • g Xu - l"g -{} 

xl-' _ xl-' 

= ingVU l)~ = ingVI-' = ingl-'v . (1.13) 

On the right hand side (rhs). the metric tensor gl-'V appears expressing the covariant form 
of the commutation relation. 

The four-potential of the electromagnetic field is given by 

AI-' = {Ao. A} = {Ao. A z • Ay• A z } = gl-'V Av . (1.14) 

Here AI-' are the contravariant. and AI-' = {Ao. - A z • - A y • - A z } the covariant 
components. From AI-' the electromagnetic field tensor follows in the well-known way: 

1.2 The Klein-Gordon Equation 

EZ) -By 

Bx 
o 

From e1ementary quantum mechanics2 we know that the Schrödinger equation 

corresponds to the nonrelativistic energy relation in operator fonn, 

A2 
E= L +V(al) 

2mo 
where 

A {} 

E = in at • p = -inV 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

are the operators of energy and momentum, respectively. In order to obtain a relativistic 

2 See Vol. 1 of this series, Quantum Mechanies - An Introduction (Springer, Berlin, Heidelberg 1989). 
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wave equation we start by considering free particles with the relativistic relation 

E 2 2 2 
pf.Jpf.J = 2 - p' P = moc 

c 

We now replace the four-momentum pf.J by the four-momentum operator 

? =i1i~ =i1i{~ - ~ - ~ -~} 
8xf.J 8(ct) , 8x' 8y' 8z 

= i1i{ 8(~t)' - V} = {ßo, p} 

(1.19) 

(1.20) 

FoHowing (1.6) and (1.11), the result is in accordance with (1.18). Thus, we obtain the 
Klein-Gordon equation for free particles, 

(1.21) 

Here mo is the rest mass of the particle and c the velocity of light in vacuum. With the 
help of (1.12) we can write (1.21) in the form 

(1.22) 

We can immediately verify the Lorentz covariance of the Klein-Gordon equation, as Pf.JPf.J 
is Lorentz-invariant. We also recognize (1.22) as the classical wave equation including the 
mass term m5~/1i2. Free solutions are of the form 

?JI = exp ( -ipf.JXf.J) = exp [ -i (poxo - p. z) ] = exp [+i(p·z - Et)] . (1.23) 

Indeed, insertion of (1.23) into (1.21) leads to the condition 

Pf.J??JI = m5c2 ?J1 -+ p/.Jpf.J exp ( -ipf.JXf.J ) = m5c2 exp ( -~Pf.JXf.J ) 
f.J 22 E2 22 

-+ P Pf.J = moc or --;;2 - p • p = moc 

which results in 

E=±Jm5c2 +y (1.24) 

Thus, there exist solutions both for positive E = +c(m5~ + p2)1f2 as weH as for neg

ative E = -c(m5~ + p2)1f2 energies respectively (see Fig.1.1). We shall see later that 
the solutions yielding negative energy are physically connected with antiparticles. Since 
antiparticles can indeed be observed in nature, we have already obtained an indication of 
the value of extending the nonrelativistic theory. 

Next we construct the four-current jf.J connected with (1.21). In analogy to our con
siderations concerning the Schrödinger equation, we expect a conservation law for the j w 
We start from (1.22), in the form 

(Pf.J? - m5c2)?JI = 0 , 

5 
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+moe2 

Fig.l.l. Fnergy spectrum of the 
free Klein-Gordon equation 



and take the complex conjugate of this equation, i.e. 

(ßI'p1l - mac2) tP* = 0 . 

Multiplying both equations from the left, the first by tP* and the second by tP, and calcu
lating the difference of the resulting two equations yields 

or 

tP* (ßI'p1l - mac2) tP - tP (ßI'p1l - mac2) tP* = 0 

-tP* (r,?VI' VI' + möc2) tP + tP ( h2VI' VI' + möc2) tP* = 0 

=} VI'(tP*Vl'tP - tPVl'tP*) == Vl'jl' = 0 

The four-current density is therefore 

. -~ (tP*V tP - tPV tP*) JI' - 2rno I' I' 

(1.25) 

(1.26) 

Here we have multiplied by i1i/2mo, so that the zero component jo has the dimension 
of a probability density (that is l/cm3). Furthermore this ensures that we obtain the correct 
nonrelativistic limit [cf. (1.30-31)] below. In detail, (1.25) reads 

~ [~(tP* otP - tP otP*)] + div ( -ih) [tP*(VtP) - tP(VtP*)] = 0 (1.27) &t 2moc2 &t ot 2mo 

This expression possess the form of a continuity equation 

oe di . 0 ot + vJ= 

As usual integration over the entire configuration space yields 

Hence, 

J ed3 x = const. , 
V 

i.e. Iv ed3 x is constant in time. It would be a natural guess to interpret 

e = ~ (tP* otP - tP otP*) 
2moc2 &t &t 

(1.28) 

(1.29) 

as a probability density. However, there is a problem with such an interpretation: At a given 
time t both tP and o#&t may have arbitrary values; therefore, e(z, t) in (1.29) may be 
either positive or negative. Hence, e(z, t) is not positive definite and thus not a probability 
density. The deeper reason for this is that the Klein-Gordon equation is of second order 
in time, so that we must know both tP and otP(z, t)/ot for a given t. Furthermore there 
exist solutions for negative energy [see (1.24) and (1.38) below]. This and the difficulty 
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with the prob ability interpretation was the reason that, for a long time, the Klein-Gordon 
equation was regarded to be physically senseless. One therefore looked for a relativistie 
wave equation of first order in time with positive definite probability, which was finally 
derived by Dirae (cf. Chap. 2). However, it turns out that this equation has negative energy 
solutions too. As we have previously remarked and as we shall diseuss in greater detail 
later, in Chap.2, these solutions are eonneeted with the existence of antiparticles. 

1.3 The Nonrelativistic Limit 

We ean study the nonrelativistic limit of the Klein-Gordon equation (1.21). In order to do 
this we make the ansatz 

'ljJ(r, t) = cp(r, t)exp ( -*moc2t) (1.30) 

i.e. we split the time dependenee of 'ljJ into two tenns, one eontaining the rest mass. In 
the nonrelativistic limit the differenee of total energy E of the particle and the rest mass 
moc2 is small. Therefore we define 

E' = E - moc2 

and remark that the kinematic energy E' is nonrelativistie, which means E' ~ moc2• 

Henee, 

lili ~ I ~ E'cp ~ moc2cp 

holds also and with (1.31) we have 

or 

.mo~ (i 2 ) -l-li-cpexp -h:moc t 

(1.31) 

(1.32) 
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This is the free Schrödinger equation for spinless particles. As the type of particle 
which is described by a wave equation does not depend upon whether the particle is 
relativistic or nonrelativistic, we infer that the Klein-Gordon equation describes spin-zero 
particles. Later on we will obtain this important result in a totally different manner by 
making use of the transformation properties of the Klein-Gordon field 'IjJ. 

1.4 Free Spin-Zero Particles 

Previously we have remarked that in a relativistic theory the concept oJ a free particle is 
an idealization. Furthermore spin-zero partides, like pions or kaons, interact strongly with 
other partides and fields. Nevertheless we can discover some of the practical methods 
for dealing with these problems by studying the free solutions of (1.21). We return to the 
interpretation of the current density (1.26) that we discarded due to e in (1.29) not being 
positive definite. As usual integrating the continuity equation (1.28) yields 

J c:: d3 x = ! J e(~, t)d3 x = - J div jd3x = - J j. dF= 0 , 
V V V F 

which means that 

J ed3 x = const , 
V 

(1.33) 

i.e. the constancy in time of the normalization (which is a reasonable result). The question 
remains of how to interprete e and j. The probability interpretation is not applicable, as 
we have just seen in context with (1.29). However, we da have the following alternative: 
We obtain the Jour-current density oJ charge by multiplication of the current density (1.26) 
with the elementary charge e to give 

., ien ( * *) {' ., } J/-l=2mo 'IjJ V/-l'IjJ-'ljJV/-l'IjJ = ce,-3 (1.34) 

where, ine (*8'IjJ 8'IjJ*) 
e = 2moc2 'IjJ 7ii - 'ljJ7Jt (1.35) 

signifies the charge density, and 

j' = _ ien ('IjJ*V'IjJ _ 'ljJV'IjJ*) 
2mo 

(1.36) 

denotes the charge-current density. The charge density (1.35) is allowed to be positive, 
negative or zero. This equates with the existence of partides and antipartides in the theory. 
By calculating the solutions Jor free partie/es, we may understand this still better. Starting 
from (1.22), written in the form 

(ßI-lP/-l - möc2) 'IjJ = 0 , 

and from the ansatz (1.23) for free waves 
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tP = AeXp ( -*PIlXIl ) = Aexp [*(P.:r - Et)] 

we obtain the necessary condition that 

_J.L 22_ 0 _ 2 2 22 
Y Pil - mOc - - Po - P - mOc 

or, because of PO = Elc, 

E2 = C2 (p2 + möc2) . (1.37) 

Consequently, there exist two possible solutions for a given momentum p: one with 
positive, the other with negative energy, 

Ep = ± cJp2 + möc2 , tPe±) = Ae±) exp [*(P.:r =f IEp1t)] (1.38) 

Ae±) are normalization constants, to be determined later. Inserting this into the density 
formula (1.35), we find 

elEpl * {?e±) = ± --2 tPe±) tPe±) 
mOc 

(1.39) 

This suggests the following interpretation: tPe+) specifies particles with charge +e; tPe-) 
specifies particles with the same mass, but with charge -e. The general solution of the 
wave equation is always a linear combination of both types of functions. This point may 
be further clarified by discretizing the continuous plane waves (1.23). For that purpose 
we confine the waves to a large cubic box (normalization box) with edge length L (see 
Fig. 1.2) and, as usual, we demand periodic boundary conditions at the box walls. This 
yields in the well-known manner z 

tPne±) = Ane±) exp [* (Pn • :r =f Epn t) ] (1.40) 

where 

27r 
Pn = Ln , n = {nz , n y, n z } 

and 

(1.41) 

Here n is a (discrete) vector in the lattice space with axes n z , ny, n z . Using (1.39), the 
normalization factors Ae±) are determined by the requirement that 

J 3 eEpn 2 3 
±e = d Xl?(±)(:r) = ± m c2 IAn(±)1 L 

L3 0 

Choosing the phases in such a way that the amplitudes are real, we get 

An (±) = (1.42) 
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and thereby 

(1.43) 

Notice that the normalization of either type of solution (corresponding to positive and 
negative charge) is the same. The only difference is due to the time factor exp(± Epn t). 
The most general solutions of the Klein-Gordon equation for positive and negative spin-O 
particles read then as 

(1.44) 

respectively. Solutions for spin-O particles with zero charge can be constructed too. One 
immediately recognizes from the form of the expression for the charge density (1.35) that 
the Klein-Gordon field t/J has to be real/or neutral partie/es, in which case 

t/J* = t/J . (1.45) 

By means of (1.43) we can easily describe a wave front for a neutral particle: 

= (1.46) 

Thus t/J(O) = t/J(O) holds and, therefore, according to (1.35) 

, _ ilie (.1.* iNn(O) .1. at/J~(O)) - 0 
(! - 2moc2 'f"n(O) ~ - 'f"n(O) ~ - . 

Furthermore, we realize that the current density j'(z, t) of neutral particles (1.36) vanishes 
too. Consequently in this case there is no conservation law. Obviously the relativistic 
quantum theory necessarily leads to novel degrees of freedom, that is to say the charge 
degrees 0/ freedom of particles. In a nonrelativistic theory free, spinless particles can 
propagate freely with a well-defined momentum p. In the relativistic case of a free, spinless 
particle, three solutions, which correspond to the electric charge (+, -, 0) 0/ the partie/es, 
exist tor every momentum p. 
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EXAMPLE .................................................................. .. 

1.1 The Charged Klein-Gordon Field 

Hitherto we have inspected the Klein-Gordon equation both 
for areal, i.e. uncharged, and for a complex, i.e. charged, 
scalar field. In the case of the complex field we specified 
a current 

jJl = ien (c.p*VJlc.p _ c.pVJlc.p*) , 
2mO 

(1) 

with 8j1J/8xJl = 0 and acharge 

Q = (ien/2moc2) J d3x(c.p*cp - c.pcp*) (2) 

Now we want 10 examine charged fields in a litde bit more 
detail. To that end we decompose the complex wave func
tion c.p(x) into real and imaginary components as 

c.p(x) = ~[c.pI(X) +ic.p2(X)] (3) 

where c.pI (x) and c.p2(X) are real. If c.p(x) fulfills the Klein
Gordon equation 

(4) 

then it immediately follows that c.pI and c.p2 also obey the 
Klein-Gordon equation, i.e. 

Conversely the following holds: If two fields c.pI (x) and 

c.p2(X) separately fulfill a Klein-Gordon equation with the 
same mass m = ml = m2, then the equations can be 
replaced by one equation for a complex field, i.e. 

c.p= ~(c.pI+ic.p2) and c.p*= ~(c.pI-ic.p2) (6) 

fulfill 

. (7) 

By interchanging c.p and c.p* in 

Q ien Jd3 ( *. .*) = 2moc2 x c.p c.p - c.pc.p (8) 

we obtain the opposite charge. Hence c.p and c.p* charac
terize opposite charges. These studies can, for example, be 
applied to the pion triplet (7r +, 7r -, 7r0): The 7r0, being a 
neutral particle, is characterized by a real wave function, 
whereas 7r + and 7r - being charged fields have to be rep
resented by complex wave functions. 7r+ and 7r- have the 
same mass and opposite charges, i.e. we can define 

* 1 ( .) c.p7r++ = c.p = .j2 c.pI - lc.p2 

c.p7r- = c.p = ~(c.pI +ic.p2) 

and 

* <P 7r0 = <PO = c.po 

(9) 

(10) 

Before we start to discuss the degrees of freedom, with respect to charge in detail, 
let us consider the energy. Is the energy positive (for positive particles), negative (for 
negative particles) or even equal to zero (for neutral particles)? In order to answer this 
question, we have to discuss the energy of the Klein-Gordon field within the scope of the 
general canonical formalism. 

1.5 Energy-Momentum Tensor of the Klein-Gordon Field 

In classical mechanics the energy is always given by the Hamilton function H which 
depends on the Lagrange function by means of the relation 

(1.47) 
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3 See H. Goldstein: Classi
cal Mechanics, 2nd ed. (Addison
Wesley, Reading, MA 1980) or 
W. Greiner: Theoretische Physik 
11: Mechanik 11 (Harri Deutsch, 
Frankfurt a.M. 1989). 

4 See JD. Jackson: Classi
cal Electrodynmnics, 2nd ed. (Wi
ley, New York 1975). 

The classical equations of motion are obtained from the variational principle 

8JLdt=0, (1.48) 

which leads to the Lagrange equations in the familiar way3, i.e. 

o oL oL _ 0 
8t oin - oqi - . (1.49) 

The field theory is based on a similar concept4 where the starting point is the Lagrange 
density 

(1.50) 

from which one obtains the Lagrange junction by integration over the three-dimensional 
volume V 

J ( o'IjJu) 3 L = C 'ljJu, OX I-' d x . 
V 

(1.51) 

In general, the Lagrange density C depends on the various wave fields 'ljJu and all their 
derivatives o'IjJu/oxw Derivatives of higher order are not considered because they would 
lead to nonlocal theories. So the variation al principle (l.48) reads 

8 J L dt = 8 J C ('ljJu, ~~:) d3 x dt 

= 8 J C ('ljJu, ~~:) cfx =0 (1.52) 

and yields in the well-known way (see the following Exercise 1.2) the field equations 

~ oC _ oC =0 
oxl-' o(o'IjJu/oxl-') o'IjJu . 

(1.53) 

Within the theory of wave fields (1.53) represent the equations of motion and are analogous 
to the classical equations of motion (1.49). Note the similarities and differences between 
(1.49) and (1.53): the variable t (time) distinguished in (1.49) is of the same significance 
as allother coordinates of xl-' in (1.53). In (1.49) one considers the Lagrange function L, 
whereas in the field equations (1.53) L is replaced by the Lagrange density C. 

EXERCISE .................................................................. .. 

1.2 Derivation of the Field Equations for Wavefields 

Problem. Derive the equations of motion (field equations) 
from the variation principle for the fields 'ljJu(x) 

8 J C ('ljJu, ~::) cf x = 0 . 
V4 

Solution. The variation is defined by 

12 

8 J c('ljJu, ~:; )cfx 

= J [:~ 8'IjJu + O(8!~OXI-') 8( ~:; )] cfx = O. (1) 

We make use of the possibility of interchanging variation 
and partial differentiation, 

o~ 0 0 0 
8 oxl-' = oxl-' ('ljJu + 8'IjJu) - oxl-' 'ljJu = oxl-' (8'IjJu) (2) 



The second tenn in (1) is integrated by parts, taking into 
account that the variation of 'ljJu vanishes at the integration 
boundaries. This leads to 

As these equations are valid for arbitrary variations 8'IjJu, 
one obtains the field equations (Euler-Lagrange equations) 

(3) 
oC 0 oC 
--- =0 
o'IjJu oxJt o(o'IjJu!8xJt ) 

We will now demonstrate the procedure of the Lagrange fonnalism for the Klein
Gordon field. In this case we deal with two wave fields 'IjJ and 'IjJ* (for charged particles). 
We could also choose the real and imaginary part of 'IjJ as independent fields, but prefer 
the choice of 'IjJ and 'IjJ*. Now, the Lagrange density tor the Klein-Gordon field is of the 
form 

(1.54) 

The constant 1i2!2mo is chosen in such a way that J Cd3x has the dimension of energy, 
so that in particular the plane waves (1.43) carry the energy Epn [see (1.61) below]. The 
proof that this expression is the correct Lagrange density for the Klein-Gordon field is 
given by showing that, with the help of (1.53), one obtains the Klein-Gordon equations 
for 'IjJ and 'IjJ* as resulting field equations. We note that one can immediately recognise 
from (1.54) that C is a Lorentz scalar if 'IjJ and 'IjJ* are scalar fields, which we assume. 
Because of the covariance of (1.53), the resulting field equations (in our case the Klein
Gordon equation) are also Lorentz-invariant. Indeed, by inserting (1.54) into (1.53) one 
immediately obtains 

or o 0 m 2c? gJtV __ --'IjJ + _o_'IjJ = 0 
oxJt ox v 1i2 

(1.55) 

and, analogously for the 'IjJ* field, 

or 

(1.56) 

Hence, the Lagrange density (1.54) yields precisely the Klein-Gordon equation for the 'IjJ 
field as weIl as for the 'IjJ* field. 

The energy and momentum of the wave field are described by the energy-momentum 
tensor5 , defined as 

5 See Example 1.3 and, for a detailed discussion, J.D. Jackson: Classical Electrodynamics, 2nd ed. (Wiley, 
New York 1975) or W. Greiner: Theoretische Physik III, Klassische Elektrodynamik (Harri Deutsch, Frankfurt 
a.M.1985). 
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11 ~ o'I/Ju o,c 11 
TI-' = ~ oxl-' O(o'I/JU/OXIl) -'cg I-' • 

The energy density 1i(x) of the field is identical with '1"8, 

1i(x) = Tg(x) . 

In OUT case one obtains from (1.54) that 

T 11 
I-' 

o'I/J o,c o'I/J* o,c ,c 11 
= oxl-' o(otP!oxll ) + oxl-' o(o'I/J*/ox ll ) - gl-' 

(1.57) 

(1.58) 

= ~ [gUIIO'I/J* o'I/J + gUIl o'I/J o'I/J* _ (gu(}iN* o'I/J _ m5~ 'I/J*'I/J)g 11] 
2mo oxu oxl-' oxu oxl-' oxu ox(} 1;, I-' 

(1.59) 

(1.60) 

The energy H, which belongs to the plane wave solutions (1.43), is given by the integral, 
over the energy density in the volume L3, 

H n(±) = J Tg(n, ±)d3x 

L3 

= J ~ [moc2 (T E pn )2 + mo~ Pn • Pn + m5c2 mo~ 1 d3 
2mo L3E 1;,2~ L3E 1;,2 1;,2 L3E x 

L3 Pn pn pn 

1;,2 moc2 [E2 1 = __ --1!!!:...+p2 +m2c2 L3 
2mo L3 E 1;,2 c2 n 0 

Pn 

1;,2 2 2E2 
= _ moc -.E:!:...L3 = E (1.61) 

2mo L3E 1;,2 c2 pn pn 

Although we chose the constant 1;,2/2mO of the Lagrange density (1.54) in such a way 
that the wave 'l/Jn(+) carried the energy +Epn , the result (1.61) shows that the wave 'l/Jn(-) 

also carries energy + Epn • Thus, we have found the interesting result that plane waves 
'l/Jn(±) from (1.43) describe particles with positive and negative charge, respectively [see 

(1.39) and (1.42)], but that both waves carry positive energy +Epn = +c(~ + m5c2)1!2. 
Hence, energy plays two roles: On one hand +Ep characterizes particles with positive 
charge according to (1.39) - the plane wave in this case reading as 'I/J(+) l'Vexp[i(p.:l! -
Ept)/h] - and -Ep, particles of negative charge - the plane wave in this case reads 
as 'I/J( _) I'V exp[i(p. :l! + Ep t)/1;,]. On the other hand IEp I always gives the energy of the 
particles. 
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EXAMPLE .................................................................... . 

1.3 Determination of the Energy-Momentum Tensor 
for a General Lagrange Density 
C("pu, fNu/oxIJ) 

In order to calculate the energy-momentum tensor we start 
with the Noether theorem: Each continuous symmetry trans
formation which leaves the Lagrange density invariant, 
corresponds to a conservation law and, hence, to a con
stant of motion. Specifically we shall discuss the conser
vation laws, which follow from the translational invariance 
of classical field theory. 

Consider the infinitesimal displacement 

I 
xIJ=xIJ+cIJ ' 

SXIJ = x~ - xIJ = cIJ (1) 

The corresponding variation of the Lagrangian is given by 

oC oC 
SC=-SxIJ=cIJ-

oXIJ oXIJ 
(2) 

If, on the other hand, C is translationally invariant then C 
does not explicitly depend on the coordinates. Thus, we 
can write C = C("pu, o"pu/oxIJ). From this follows the 
variation 

(3) 

The variation of "pu is obtained as 

(4) 

In the following we will also use the Euler-Lagrange equa
tions (field equations) 

oC _~ oC =0 
o"pu oxlJ o(o"pu/oxlJ) 

(5) 

where we have used 

S(o"pu) 0 (o"pu)s 0 (O"pu) 
oXIJ = oXv oXIJ Xv = oXv oXIJ Cv 

(7) 

The rhs of (6) can be expressed as 

C oC = ~ ['E oC Cv o"pu] 
IJ oXIJ oXIJ u 8(o"pu/oxlJ) oXv 

(8) 

Since the result holds for arbitrary translations cIJ we can 
write 

o 
~TIJv =0 
uXIJ 

(9) 

These are four continuity equations (one for every v) and, 
thus, four conservation laws. TIJv is the energy-momentum 
tensor (stress tensor), given by 

oC o"pu 
TIJv = -gIJvC + ~ o(o"pu!8xIJ) oxv (10) 

For a better understanding of its physical content we will 
illustrate the meaning of the Too-component. For that rea
son, in analogy to classical mechanics, where the general
ized momentum is given by Pn = oLloqn, we define the 
momentum-density conjugate to "pu(z, t) by 

( t) _ oC("pu, o"pu/oxv) 
7ru z, - o~u(z, t) (11) 

Here the short-hand notation ~u == o"pu/o(ct) has been 
used. The classical Hamiltonian reads 

H(p, q) = pq - L(q, q) . (12) 

Analogously, we express the Hamiltonian as a volume in
tegral over a Hamiltonian density 1i(7r, "p) with the defi
nition 

H = J d3 x1i (7r(z, t), "p(z, t») , 

and 

Using (14) and (11), Eq. (10) yields 

Pv = J d3xTOv = J d3x [ ~ 7ru ~~~ - govC] 
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(13) 

(14) 

(15) 



with opv/ot = O. The quantities pv are therefore constant 
in time, which follows from (9), because J d3 xoTov/cOt = 

- J d3xoTiv/OXi = 0 according to Gauß's theorem. For 
the Too component of the stress tensor it clearly follows 
that 

Too = L 'lru~u - e = 1i , 
u 

and, therefore, from (13) 

J d3xToo = H . 

(16) 

(17) 

Hence, we can identify pv with the energy-momentum 
four-vector. Its time component is clearly the energy, and 
also each component of pv is conserved in time, i.e. it is 
a constant of motion. 

EXERCISE _______________ _ 

1.4 Lagrange Density and Energy-Momentum Tensor 
of the Schrödinger Equation 

Problem. Derive the Lagrangian for the Schrödinger equa
tion and discuss the corresponding energy-momentum ten
sor. 

Solution. The Lagrangian is given by 

1i2 
C = - -(V1/;*). (V1/;) 

2mo 

_ !!: (1/; * o1/; _ o1/; * 1/;) _ 1/; * V1/; 
2i ot Ot 

(1) 

Using the Euler-Lagrange differential equation we will 
show that the variation of tbis Lagrangian yields the Scbrö
dinger equation.1/; and 1/;* have to be varied independently. 

The Euler-Lagrange equation, split up into space and 
time components, reads 

oe _ ~ oe _ i oe = 0 
o1/;u oxi o(o1/;u/Oxi) Ot O~u ' 

(2) 

where the summation over i runs through i = 1, 2, 3 or 

o oe _ oe v oe 
Ot o~u - o1/;u - . o(V?jJu) 

(3) 

First we vary with respect to ?jJ* and obtain 

1i2 2 Ii . 
-V?jJ + -V ?jJ - -:-?jJ = 0 

2mo 1 
(4) 
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Analogously, variation with respect to ?jJ yields 

-V?jJ* + ~V2?jJ* + ~~* = 0 . 
2mo 1 

(5) 

Rewriting (4) and (5) yields the Schrödinger equation for 
?jJ and ?jJ* in the familiar form, 

.. 1i2 2 A 

lli?jJ = --V 1/; + V1/; == H?jJ 
2mO 

. 1i2 2 A t 
-ili?jJ* = - 2mo V ?jJ* + V?jJ* == H?jJ* , 

where 

A 1i2 
H = --..:1 + V(:c) 

2mO 

is the Hamiltonian. The conjugate momenta to ?jJ are 

'Ir = :~ = i: ?jJ* , 

and 

* oe ili 
'Ir = -. = --?jJ 

o?jJ* 2 

Hence, tbe Hamiltonian density reads 

(6) 

(7) 

(8) 

. ili 2i 
1i = L 'lru?jJu - e = --V'Ir· V?jJ - - V'Ir?jJ (9) 

u mo Ii 

We also determine the stress tensor belonging 10 the La
grange density (1), 

v o1/; oe o?jJ* oe v 
TI' = oxl' o(o?jJ/OXV) + oxl' o(o?jJ*/OXV) - e81'. (10) 

In particular the T8 component, split up into space and 
time components, is 

(11) 

that is, in accordance with (9). To 0 gives the energy density 



of a given system. The total energy of the Schrödinger field 
is then 

H = J To o,jlx = J (2~ V.p·· V.p + .p.v.p) d'x 

= J .,p* ( - 2~o V2 + v) .,pd3x = J .,p* H.,pd3x , 

i.e. the expectation value of the Hamiltonian. 

Calculation 0/ the energy flux S: In analogy to the 
Poynting vector in electrodynamics, S = Ex B, the canon
ical formulation generally follows as 

(12) 

where ei are the Cartesian unit vectors. In the case of the 
Schrödinger field we get 

. oe .* oe 
S =.,p o(V.,p) +.,p 8(V.,p*) 

= -~(?j;*v.,p + ?j;V.,p*) 
2mo 

Calculation 0/ the momentum density p: 

p = elTI 0 + e2T2o + e3T3 0 

= (V.,p) o~ + (V.,p*) o~ 
o.,p o.,p* 

n * * = - 2/.,p V.,p - .,pV.,p ) 

(13) 

(14) 

This is the expression known to us from elementary quan
tum mechanics6 • The remaining components of the tensor 
are called momentum fluxes. 
EXERCISE ______________ _ 

1.5 Lorentz Invariance of the Klein-Gordon Equation 

Problem. Show the Lorentz invariance of the Klein-Gor
don equation. 

Solution. The Lorentz invariance of the Klein-Gordon 
equation is a direct consequence of the invariance of the 
underlying energy-momentum relation. In four-vector no
tation it reads 

6 See Vol. 1 of this series: Quantum Mechanics - An Introduction 
(Springer, Berlin, Heidelberg 1989). 

3 

E PIJp/"' = PIJp/"' = E 2/r? - p. p = m5c2 
iJ=O 

Now it is helpful to express the Klein-Gordon equation in 
four-vector notation, i.e. 

_n2 ~.,p = ( _ n2c2V2 + möc4) .,p 

changes to 

[0 + (m~c Y] .,p(xiJ) = 0 , where 

o 0 
0=-

oXiJ oxiJ 

Hence, in the transformed system the Klein-Gordon equa
tion should read 

[ 0 0 2]" . mOc 
ox~ ox'iJ + K, .,p (xiJ) = 0 Wlth K, = T ' 

thus, it has to be shown that the operator (oloxlJ)(oloxlJ) 
is invariant under Lorentz transformations. This may easily 
be seen, beause 

A • .,0 dth s: PIJ = +1"-0 an, erelore, 
x lJ 

o 0 A.:Jj 

-0 0 IJ "'PIJ}F . xlJ x 

The length of the vector PiJ is, as stated before, Lorentz 
invariant and, therefore, the operator 0 is too. 

The transformation properties of the wave function 
can easily be deduced by looking at the plane-wave solu
tions of the Klein-Gordon equation, 

The difference between .,p'(x~) and .,p'(xlJ) should be no
ticed: .,p(xlJ) and .,p'(x~) refer to the same space-time point, 
. , ,,3 v h v· Lo s: l.e., x IJ = L.."v=O alJ xv, w ere alJ IS a rentz translor-
mation, whereas .,p(xlJ) and .,p'(xlJ) refer to two different 
points with coordinates x IJ in the old and new system, 
respectively. 
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1.6 The Klein-Gordon Equation in Schrödinger Form 

To demonstrate the new degrees of freedom of the charge in a more distinct way, it is 
advantageous to transfonn the Klein-Gordon equation (1.22) - which is of second order 
in the time coordinate - into a system of two coupled differential equations that are of 
first order in time. This is achieved by the ansatz 

./. ·tßtP 2( ) 
'f/ = cp + X , 1"& = rnoc cp - X , (1.62) 

in which tP and the time derivative o'IjJ/at are expressed by the two functions cp and X. 
According to (1.22), the Klein-Gordon field fulfills 

It is easily proved that the two coupled differential equations, 

. ocp n2 2 In- = ---L\(cp + X) + moc cp , ot 2mo 
(1.63a) 

OX n2 
in- = --L\(cp + X) - moc2x , 

at 2mo 
(1.63b) 

are equivalent to the Klein-Gordon equation (1.22). By adding and subtracting the (1.63), 
the following arguments can be made: 

a) addition yields 

in ! (cp + X) = moc2(cp - X) . 

This is the second equation of (1.62); it leads to the trivial equation o'IjJ/at = o'IjJ/at. 
b) subtraction yields 

in~(cp - X) = -~L\(cp - X) + moc2(cp + X) ot rno 
or, using (1.62), 

which is just the Klein-Gordon equation (1.22). 
The coupled equations (1.63) may be combined to fonn one equation. For this purpose 

we introduce the column vector 

(1.64) 
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and make use of the four 2 x 2 matrices 

A (0 
T} = 1 ~) , ll=(~ ~) 

(1.65) 

These are identical to the Pauli matrices7, with the signifiant difference that the 
matrices (1.65) do not act in spin space, but in the vector space defined by (1.64). The 
Pauli matrices fulfill the algebraic relations 

{k, I, m = 1, 2, 3 - cyclic} . (1.66) 

Using (1.64--66) we can combine the coupled equations (1.63) to form a Schrödinger-type 
equation, namely, 

where the Hamiltonian Hf for free particles is given by 
A2 

HA (A .A) P A 
f = 'T3 + 172 -2 + T3moc2 

mo 

1) A2 (1 
-1 2~o + 0 

0) 2 -1 moc . 

(1.67) 

(1.68) 

Hence, in (1.67) we have found a Schrödinger formulation of the Klein-Gordon equation. 
Starting from (1.67) and using the relation 

(1.69) 

it is easily proved that each componenr of the vector tP of (1.64) individually satisfies the 
Klein-Gordon equation. This is most elegantly shown by applying (WIßt + !If ) to the lhs 
of (1.67), yielding 

(in! +!If ) (in! - !If)tP =0 

( 2 ffl A 2) - n ßt2 - Hf tP = 0 

( - n2 !!.... + n2c2 Ll- m 2c4 ) tP = 0 ßt2 0 ' 

or 

(1.70) 

7 These were introduced in Vol.} of this series Quantum Mechanies - An Introduction (Springer, Berlin, 
Heidelberg 1989). 
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In this representation the expression for the density (1.35) becomes especially simple. 
With (1.62) we find 

e' = ~ (t/J* 8t/J - t/J 8t/J* ) 
2moc2 &t &t 

emo~ ( * .1.( * *») = -, t/J (cp - X) + 0/ cp - X 
2moc-

= ~ [(cp* + X*)(cp - X) + (cp + X)(cp* - X*)] 

e[* * ~V.'AJY * * 'AJY~*.J = 2 cp cp - X X - y ~ +...lf"A + cpcp - xx -...lf"A + 't'~ 

= e(cp*cp - X*X) 

= e!li't f:3!li' . (1.71) 

Similarly, from (1.36) we can infer the current vector in Schrödinger representation 

j' = 2~:i [!li't T3 (T3 +ifz)V'!li' - (V'!li't)f:3(f:3 + iT2)!li'] 

For the normalization of charge it follows that 

J e'(2!)d3x = ± e , or 

J !li't T3 !li'd3 x = ± 1 = J(cpcp* - Xx*)d3x 

Let us once again consider free particles in this new representation. If we write 

!li' = (~) = A (~~) exp [lt(P· 2! - Et)] 

and substitute this ansatz into (1.67) by means of (1.68), we find 

1) p2 (cp) (1 
-1 2mO X + 0 

or, alternatively, 

(1.72) 

(1.73) 

(1.74) 

(1.75) 

(1.76) 

CPO and xo are therefore readily determined by the solution of the coupled equations 

( E - L - moc2) CPO - L xo = 0 , 
2mo 2mo 

( 2~ ) ~ + (E + 2~ +~,,) Xo = 0 , (1.77) 

and, since the determinant necessarily needs to vanish, 
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p2 
E--- -moc2 

2mo 

+L 
2mo 

It follows that 

e2 _ (L + moc2)2 + (L)2 = 0 
2mo 2mo 

=0 . 

We thus recover the relativistic energy-rnornenturn relation 

E 2 = p2c2 + m5c4 or E = ± cJr + m5c2 == ± Ep , 

the corresponding solutions following frorn (1.77) and (1.74). We shall discuss the positive 
and negative energy solutions separately: 

1) E = +Ep : 

( 
(+») 

Iji"(+)(p) = A(+) ~&+) exp[i(p.:z: - Ept)/1i] == (1.78a) 

where 

(1.78b) 

(1.78c) 

Equations (1.78) are readily understood if we refer to (1.76), frorn which we can deduce 
that 

( 2) (+) ( 2) (+) (+) __ moc2 + Ep (+) 
Ep - moc <Po = - Ep + moc Xo or <P X o moe2 _ Ep 0 

Choosing 

X~+) = moc2 - E p , 

it consequently follows that 

<p~+) = moc2 + Ep • 

Equation (1.73) allows us to calculate the normalization constant A(+) frorn 

IA 12 J ( (+)* (-) (+)* (+») d3 
(+) <Po <Po - Xo <Po x 

= IA(+) 12 L3 [ ( moc2 + E p )2 - (moc2 - E p f] = 1 . 

If we chose the phase to be real, the result is 
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1 1 
A(+) = --;:.==== = -------;::== 

VL3 (moc2Ep ) J4moc2 JL3Ep 

We proceed similarly in the other case. 

2) E= -Ep: 

( (-») ( (-)( ») (-) cpo· CPo P tP (P)=A(_) (_) exp[l(p.:c+Ept)/Ii] == (_) 
Xo Xo (P) 

where 

In the nonrelativistic limit we obtain 

Ep = cJp 2 + möc2 = moc2 VI + ::c2 

and, hence, 

and 

( A(_)CP~-) ) 
A (-) 

(-)Xo 

(1.79a) 

(1.79b) 

(1.79c) 

(1.80) 

(1.81) 

(1.82) 

Thus, we can see that in the nonrelativistic limit for states with positive charge, the upper 
component is large and the lower one is small and vice versa for states with negative 
charge. 
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1.7 Charge Conjugation 

By comparing (1.78a) with (1.79a), we may write down the relation 

_ (i+)*(+p») 
- 1f'(+) * ( +p) 

= (~~:~:~::~) = TIW(+)*(+p) (1.83) 

This can be interpreted in the following way: If the state 

(1.84) 

represents a positive charge, then the state 

A A -1 _ * (x*) CwC = Wc = TIW = 1f'* (1.85) 

describes a particle with negative charge. We call Wc the charge-conjugated state o[ W. 
Similarly, W is the charge-conjugated state of Wc because it obeys 

(1.86) 

Explicitly, the charge conjugation implies the following transformations according 10 

(1.83): 

(+) 
-t Xb-) 1f'O , 

(+) 
-t <Pb-) Xo , 

P -t -p , 
+Ep -t -Ep (1.87) 

If we (arbitrarily) call the particle described by W as the particle, then we call the particle 
described by Wc antiparticles. If we call, for example, the 7r- mesons particles, then the 
7r+ mesons are antiparticles. Neutral particles fit into this picture too, in that for these the 
charge-conjugated state is the state itself. In other words, neutral particles are their own 
antiparticles. So we have 

(1.88) 

The factor a has to be real. This important point can be understood if we imagine that, 
for a neutral particle, the Klein-Gordon-wave function W = <P + X (1.62) has to be real; 
therefore, 

Im<p = -Im X (1.89) 

must always hold. Since 1/Jc in (1.88) is describing neutral particles, then similarly, 

Im(a<p) = -Im(ax) (1.90) 

must hold: Both conditions, (1.89) and (1.90), necessarily lead 10 
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areal . 

This can also be deduced from (1.88), where for neutral particles both 'IjJ and a'IjJ are real. 
From 

OP'c)c = W , 

it follows that 

(aw)c = Tl (aw)* = aTl w* = aaW = W , 

so that 

a 2 = 1 a = ±1 

Accordingly there exist two different kinds of neutral particles, namely 

a) neutral particles with positive charge parity, i.e. a = + 1 

Wc == Tl w* = W (or c.p* = X) ; 

b) neutral particles with negative charge parity, i.e. a = -1 

Wc == TlW* = -w (or c.p* = -X) 

(1.91) 

(1.92) 

(1.93) 

EXAMPLE .......................................................................... ... 

1.6 C Parity 

C parity stands far charge-conjugationparity or, less accu
rately, particle-antiparticle conjugation symmetry. To ob
tain a general definition, we choose to characterize a par
ticle state in the following way: 

1'IjJ) = IM, p, J, '\; B, Q, L, Nil) (1) 

This characterization is based on a set of quantum numbers 
with the following definitions: 

M 

p 

J 
,\ 

= 

= 

= 

= 

mass == energy of the system, 

momentum of the system, 

angular momentum quantum number, 

helicity = eigenvalue of the helicity operator, 
(,\ characterizes the spin projection onto the 
momentum direction), 

B = baryon number, 

Q = charge, 

L = lepton number. 

Nil =muon number, compiled in the following table. 

Equivalently we can use the hypercharge Y, the Strangeness 
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S and the Isospin T3, which are connected via 

B=Y-S 

to the charge and baryon number.8 

Value of NI' for different particles 

Particle e+, e-. v.v. 

NI' 0 +1 

+ -Il , vI' 

-1 

All other 
particles 

o 

The following processes are forbidden due to muon num
ber conservation: 

1r- ~ J.L- +ve} 

vll+p~e++n 

On the other hand reactions like 

ve +p~e+ +n} 

vll+p~J.L++n 

are allowed. 

8 See Vo1.2 ofthis series: QuantumMechanics-Symmetries (Springer, 
Berlin, Heidelberg 1989). 



The muonic charge NJ1. and the lepton-number L may 
be replaced by the alternative lepton numbers Le and LJ1.' 
which are listed, for convenience, in the following table. 

Values of Le and L" for different particles 

Particle e+, Ve e-, Ve + -J1. ,v" -J1. , v" All other 
particles 

Le -I +1 0 0 0 
L" 0 0 -I +1 0 

The introduction of Le and LJ1. has the advantage that the 
set of quantum numbers is symmetrie with respect to elec
trons and muons. Clearly one has 

L = Le +LJ1. (2) 

and state (1) can be written as 

ItP) = IM, p, J, .\; B, Q, Le, LJ1.) (3) 

The charge conjugation is now defined by the equation 

GI M,p, J, .\; B, Q, Le, LJ1.) 

== IM,p, J, .\; B, Q, Le, LJ1.)e 

= 7JcIM, p, J,.\; - B, - Q, - Le, - LI-') , (4) 

whih is simply saying that the G operator reflects (i.e. 
changes the sign ot) charge-like quantum numbers, whereas 
other properties such as M, p, J, .\, remain unchanged. 
The former quantities are called intrinsie , while the latter 
are named external. The state IM, p, J, .\; B, Q, Le, LJ1.) 
is called aparticle state, the state IM, p, J, .\; B, -Q, -
Le, - L J1.) is called an antiparticle state. Since GI tP) = tPe 
should be normalized, e.g. 

<tPeltPe) = 1 , 

and because the states (3) are also normalized, it follows 
that 

I 12 1 ia Ve = or Tle=e , Q real . (5) 

This formal property does not yet guarantee that the oper
ator G corresponds to a physical symmetry. For this, the 
states on the rhs of (4) have to be physically realized, which 
is the case for Gin nearly all known theories; however, an 
important exception occurs for neutrinos and antineutrinos. 

Although neutrinos, in particular, are of great impor
tance in the theory of weak interactions, the G conjugation 

cannot be chosen in this case as a symmetry operation9 • 

On the other hand careful investigations have shown that 
the Hamiltonians of the strong and the electromagnetic in
teractions have a vanishing commutator with G, Le. 

G H strong = H strong G , 
GHelm = HeimG . (6) 

Consequently, Gis, as a matter of fact, a symmetry oper
ation for all strong and electromagnetic processes. 

Let us now return to (4). If one of the charge-like 
quantum numbers is not equal to zero, then Tle has no phys
ical meaning. Since, in this case, one is free to choose a rel
ative phase factor between the states IM, p, J, .\; B, Q, 
Le, LJ1.) and IM, p, J, .\; -B, -Q, -Le, -LJ1.) (which 
are assumed to be different), then we can choose Tle = 1. 
But if partieies and antipartieies are identical, then (4) 
turns to be an eigenvalue equation 

IM, p, J, .\; 0, 0, 0, O)e 

= TleIM, p, J, .\; 0, 0, 0, 0) (7) 

The eigenvalue Tle is named C-parity. It is natural to pos
tulate that the double application of the charge conjugation 
G leads back to the original state. Thus, 

(IM, p, J, .\; 0, 0, 0, O)e)e 
=IM,p, J, .\;0,0,0,0) 

= Tl2IM, p, J, .\; 0,0,0,0) 

Therefore, 

Tl~ = 1 or Tle = ± 1 

(8) 

(9) 

If one considers a many-particle state, e.g. a two-particle 
state like 

(10) 

where each particle state l4>i) has the C parity Tl~i), then it 
holds that 

014>10 4>2) = Tlcl4>1o 4>2) = 14>I)el4>l)e 

= Tl~I)I4>I)Tl~2)I(h) = Tl~1)Tl~2)14>1)14>2) 

= Tl~1)Tl~2)14>1' 4>2) (11) 

9 This is discussed in more detail in Vol. 5 of this series: Gauge The
ory ofWeak Interactions (Springer, Berlin, Heidelberg) to be published. 
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Thus, 

TJc = TJ~l) TJ~2) (12) 

Since, from (6), (; should be a symmetry operation, then 
C parity is a conserved quantum number for all strong and 
electromagnetic reactions. To illustrate this we consider the 
following three neutral particles: 

a) The TJ meson, for which mTJc? = 548.8 MeV, rTJ = 
Ii/TTJ = 2.3keV [1 MeV~(3/2) x 1031 s-l], charge =0, 
spin/parity = 0+; 

b) the pion 7["0, with m 7r0c? = 134.97MeV, r 7r0 = 
1i/T7r0 = 7.geV, charge=O, spin/parity=O-; 

c) the photon, having m"(c2 = 0, r"( = Ii/T"( = 0, 
charge = 0, spin/parity = 1 - . 

For these particles, the decay processes 

TJ --t,+, , 

TJ --t 37["0 , 

TJ --t 7["0 +,+, 

7["0 --t, +, , (13) 

may be observed, but the following reactions do not occur: 

TJ +7["0 +, 

TJ +3, 
7["0 + 3, . (14) 

We can understand both the allowed as well as the 
forbidden processes by assuming the conservation 0/ C 

parity and assigning the C parities to the particles as shown 
in the accompanying table. 

Particle , 7["0 TJ 
C parity -1 1 +1 

Of course, within a given process the C parity is only 
conserved if there occur solely particles with a well-defined 
C parity. This is true for reactions (13) and (14). The 
negative C parity 0/ the photon, as shown in the table, can 
be understood more precisely: The photons are coupled to 

allother particles by the electric curent j Jl' The interaction 
part of the Lagrangian is 

(15) 

where AJ.I(x) is the four-potential ofthe photon. Obviously, 
the current jJ.l(x) changes its sign under (; transformation, 

(16) 

Therefore, 

(;AJ.I(x)(;-l = -AJ.I(x) (17) 

must h~ld to save the invariance of the Lagrangian (15) 
under C transformation, i.e. 

A A_l 
C leim C = leim . (18) 

The positive C parities of 7["0 and TJ follow from the exis
tence of the decays (13) using (12). 

1.8 Free Spin-O Particles in the Feshbach-Villars RepresentationlO 

We saw in (1.81) and (1.82) that positively charged particles possess a large upper com
ponent in the nonrelativistic limit (I <p(+) I > li+)p while negatively charged particles have 
a large lower component (Ii-)I > l<p(-)P. Now there exists a representation - the so
called ~ representation - in which the positive and negative solutions are always of the 
following form 

~(-)(p) rv (~) 

This representation is established by the transformation 

10 H. Feshbach, F. Villars: Rev. Mod. Phys. 30, 24 (1958). 
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where (; is the operator 

(; = n. (moc2 + Ep ) - Tl (moc2 - Ep ) 

J4moc2Ep 

(1.95) 

(1.96) 

with Ep = c(p2 + m5~)1!2 and ljJ t denotes the Hennitian conjugate of 1jJ; similarly (;t. 
The 2 x 2 matrix (; is not unitary in the usual sense «(;-1 =F Ut) since 

A_1 A AA (moc2 +Ep) +T1 (mo~-Ep) 
U = T3U T3 = n . -'----~=======----'-'-

J4moc2Ep 

This can be seen directly with the aid of (1.66) and by the relation, 

(;(;-1 = n. (mo~ + Epl - (moc2 - Epl = TI. 4moc2 Ep = TI 
4moc2 Ep 4moc2 Ep 

Besides this, according to (1.78a) and (1.79a), plane waves are transfonned by 

1jJ(+)(p) = (;rJ/+)(p) 

All ( moc2 + E) . = U I?f 7. EP exp[l(p.:z: - Ept)/Ii) 
v L3 J 4moc2 Ep moc- - p 

( (moc2 + Ep )2 ) ( (moc2 _ Ep )2 ) 
= _1_ (moc2 + Ep) (moc2 - Ep) - (moc2 - Ep) (moc2 - Ep) 

Vi) 4moc2Ep 
x exp[i(p. :z: - Ept)/Ii] 

(1.97) 

(1.98) 

= Jv (~) exp[i(p.:z: - Ept)/Ii] (1.99) 

Similarly, we get 

l-)(p) = (;tJ!(-)(p) 

All (mo~ - E ) = U I?f 7. E P exp[i(p.:z: + Ept)/Ii] 
V L3 J 4moc2 E p moc- + p 

( (moc2 + Ep) (moc22 - Ep)) _ (( mo~ + Ep) (moc2 2- Ep) ) 
= _1_ (moc2 + Ep) «(moc2 + Ep) 

Vi) 4moc2Ep 
x exp[i(p.:z: + Ept)/Ii) 

= Jo (~) exp[i(p.:z: + Ept)/Ii) . (1.100) 

This is, in fact, the result required by (1.94). The nonnalization of the iP representation 
follows from that of tJ! (1.73): 
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± n = J!li t fJ!lid3x = JC(;-I~) t fJ(;-I~d3X 

= J ~t«(;-I)tT3(;-I~d3X = J ~tT3~d3x 

since, due to (1.97), fJU- 1 = UfJ and therefore 

(U- 1)tfJU-1 = (U-1)tUT3 = U-1(;T3 = T3 

(1.101) 

(1.102) 

Here we have made use of (U-1)t = U- 1 which also follows from (1.97). In analogy to 
(1.101) we define a generalized scalar product or ~ product 

(!liI!li')4>~ J !litfJ !lid3x . (1.103) 

One recognizes immediately that, as in (1.101), 

(1.104) 

i.e. the generalized scalar product is invariant under the transfonnation (1.95). It seems 
natural to call an operator A, with the property 

(1.105) 

~ unitary. Such an operator has to fulfil the condition 

AH~fJAtfJ=A-l , (1.106) 

since J!li t fJ!li'd3x = J~tAtfJA~'d3x and, thus, At f:3A = fJ or f:3At f:3 = A-1. The U 

operator (1.96) is a member of this dass. If A and T3 commute, then the relation At = A-1 

follows from (1.106), i.e. the usual unitary relation. 
The charge Q of astate !li is given by the integral 

(1.107) 

In the following exercise we will show that the average energy of astate !li is detennined 
by 

(1.108) 

EXERCISE .................................................................... .. 

1.7 Lagrange Density and Energy-Momentum 
Tensor of the Free Klein-Gordon Equation in the 
Feshbach-ViIIars Representation 

Problem. Detennine the Lagrange density of the free Klein
Gordon equation in the Schrödinger representation (Fesh
bach-V1l1ars representation). Subsequently calculate the en
ergy-momentum tensor and show that the energy is given 

by the expression E = J!li t fJ H f!li d3 x. 
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Solution. In the Schrödinger representation the equation 
of motion for the Klein-Gordon field reads 

ili,8t!li = Hf!li with 
A2 

HA (A . A ) P A 2 (1) f= 7'J+IT2 -2 +T37T1{)C mo 
The vector !li has two components, !li = (~) => !li t = 
(1jJ*, X*), and we define !li == !li t T3. To prove that the La
grange density 



C = ilitJißttJi - 2~ VtJi(fJ +ifl)VtJi - moc2tJifJtJi (2) 

yields the correct equation of motion, we vary the action 
integral 1 = J ctf x using the standard method. This varia
tion with respect to the components of tJi results in equation 
(1), 

81 =0 
8tJio: 

=> 8v 8C _ 8C = 0 
8(8v tJi 0:) 8tJi 0: 
8C 8C 8C => &,-.- + V • - -=- = 0 

8tJi 0: 8(VtJi 0:) 8tJi 0: 

=> - 2li2 (fJ + ifl)VtJio: - (ili8t tJio: - mo~73tJio:) = 0 
mo 

with (0: = 1, 2) . 

Similarly, variation of tJi results in the corresponding equa
tion of motion for tJi, Le. 

8C 8C 8C 
=> 8t 8rPo: + V· 8(VtJio:) - 8tJio: = 0 , 

(0: = 1, 2) 

=> -ili8ttJiO:=-2~ V2(W(73+ i72»)0: 

2-+ mOc (tJifJ)o: . 

If we had defined the Lagrange density with tJi t instead of 
tJi, the same equation of motion (1) would have resulted 

from the variation with respeci to tJil. However, we de
mand the action 1 = J d3 x dtC to be real which results in 
the condition that 

J [tJi(+ili8t )tJi - VtJili2(~~i72) . VtJi 

-moC2tJifJ tJi] d3 x dt 

(partial integration) 

must be real. This is the case if each of the operators 

ili&, , 

fulfills the generalized hermiticity condition 

~H ~t ~ o = 730 f) = 0 . 

This has already been proven [see (1.109) and (1.110)] to 
be true. The integral 1 would not be real if, instead of ?f, 
the spinor tJi t had been used. 

We now calculate the energy-momentum tensor from 
C, i.e. 

to obtain 

Too = ilitJi8t tJi - ilitJi8ttJi + 2~ VtJi(73 + i72) . VtJi 

2-+ mOc tJif)tJi , 

and 

E = J 1§d3x = J Tood3x 

= ! (2~ VtJi· (fJ + i72) VtJi + moc2tJifJ tJi) d3 x 

J tJi ( li2 (~ . ~ ) '02 2 ~ ) tJid3 = - 2mO 73 + 172 v +mOc 73 x 

(3) 

(4) 

= J tJi t fJ HftJi d3 x (5) 

which is just (1.108). 

From (1.107) and (1.108) we can now guess the generalization of the expectation 
values of arbitrary operators L and define the mean value (expectation value) (L) by 

(L) = J tJitf:3LtJid3x , (1.109) 

where (L) must be real. This results from the condition that 
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/ !litTJL!lid3x = (/ !lit T-jL!lid3xY = / !lit Lt f}!lid3x 

Therefore, 

A At Hdef At A 
T-jL = L ~ or L == f3L f:3 = L , (1.110) 

which is the generalized hermiticity for an operator 1. We immediately see that the 
hermiticity of the Hamiltonian Hf is general, because 

AH AAtA [(A .A)p2 A 2]A 
Hf = 7"3 H f TJ = TJ -17"2 2mo + TJmoc 7"3 

= [(f:3 + ih) 2:0 + f:3 moc2] f:3f:3 == Hf . (1.111) 

Nevertheless, the operator (; (1.96) is ordinary hermitian (i.e. hermitian in the standard 

sense), i.e. (;t = (;. 
The generalized scalar product (1.103), (1.109) necessarily leads to a transformation 

law for the operators L when changing the states according to (1.95). We simply calculate 

/ !lit f:3L!li'd3x = J ~t«(;-1)tf:3L(;-1~'d3x 

= J~tf:3(;L(;-1~'d3x 

== / ~t f3L.p~' d3x , 

using (1.102). Thus, 

L.p = (; L(;-1 (1.112) 

This is the transformation law for operators covering the transition from !li representation 
to ~ representation (1.95). 

Remark: Notice that the transformation law for operators depends on the definition 
of the scalar product. If, instead of the ~ product (1.103,109), we had used the ordinary 
scalar product 

with the matrix elements for operators L being 

(!liILI!P') = J!pt L!p' d3x , 

then the operator L in ~ representation (we denote it by L~) would have been 

J !lit L!lid3x = J ~t«(;-l)tL(;-l~'J3x == J ~tL~~'d3x . 

Thus, 
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i.e. a different law from (1.112). It is important that, because of physical reasons (charge 
interpretation), only the generalized scalar product (41 product) makes sense to us and thus 
the transformation law (1.112) will be used in the following. 

EXERCISE .................................................................. .. 

1.8 The Harniltonian in the Feshbach-Villars 
Representation 

Problem. Show that, in the Feshbach-Villars representa
tion, the Hamiltonian for all momentum eigenstates is given 
by H~ = U HfU-1 = TjEp• 

Solution. According to (1.112) the Hamiltonian Hf of 
(1.68) for a free Klein-Gordon field transforms, under the 
transition 10 the Feshbach-Villars representation (1.95), ac
cording to 

~ ~ ~ ~-l [(Ep+moc2)1l-(moc2-Ep),Tt] 
H~=UHfU = 

J4moc2Ep 

x [(Tj+if2)2~O + Tjmoc2] 

x [(mo~ + Ep) n + (mo~ - Ep)TI] 

J4moc2Ep 

If we define 

~ =moc2+Ep , 

then it follows that 

H~ = 4mo~Ep [a+ - a_Tt] 

x [!'~ (i) +if,) + ai)] (a, + "-'1) 

1 [ ~2 = c2 [a+-a_Tt] a+ 2P (Tj+if2) 
4mo Ep mO 

For momentum eigenstates the operator p can be substi
tuted by its eigenvalue. Therefore, with TiTj = iCijkTk 
(i=lj = 1, 2, 3) one has 

and 

~ ~ ~ ~ (-1 
Tl T'3TI = -T3 = 0 ~) 
as weH as 

~ ~ (0 
-Tl T'3 = -1 6) 
and we get 

U sing the relation 

p2 p2 
(a+ + a_)2 2mo = 4m5c4-- = 2moc2p2c2 E , 

2mO 
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we obtain 

- -4-mo-~-:-E-p b· 4mot? E; + if2 •0] 

=~Ep . 

From the free Klein-Gordon equation in Schrödinger representation (1.67) 

{)1]1 A 

inat: = Hf1]l 

and by the application of U from the left it follows that 

in {)U1]I = U HfU- I U1]I 
8t 

Using the results of Exercise 1.8 and (1.95), we obtain the free Klein-Gordon equation in 
the Feshbach-Villars representation, i.e. 

in: = fJEp~ (1.113) 

This equation yields two different solutions for any given momentum p, one with positive 
(+Ep) and one with negative (-Ep) time factor. They are precisely the solutions (1.99) 
and (1.100), obtained by the direct transformation, and can be interpreted, according to 
the time factor, as belonging to positive charge or negative charge, respectively (see the 
following Exercise 1.9 for further details). 

EXERCISE .................................................................. .. 

1.9 Solution of the Free Klein-Gordon Equation 
in the Feshbach-Villars Representation 

Problem. Solve the free Klein-Gordon equation in the 
Feshbach-Villars representation (1.113) directly and show 
that the solutions are identical to (1.99) and (1.100). 

Solution. The Feshbach-Villars representation of the Schrö
dinger equation reads 

in: =~Ep~ 
where the (/>, s are eigenstates of the momentum operator 

~ = exp(ip • r/n) B , B = (~~) 
Ep = Jmijcf + p2Cl 

By inserting the matrix f3 we get 
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and, thus, 

inJ I = Eprh , inJ2 = -Eprh 

Integration yields BI and B2 is the form of 

191 = NI exp ( -*Ept) 

192 = N2 exp ( +*Ept) 

NI and N2 are normalization constants which are deter
mined by the normalization condition (1.101), 

J ~t ~~d3r = J Bt fJBd3r = ± 1 

yielding 

INtl2 -IN212 = ± ~ 
Hence, we obtain two independent solutions [see (1.99) 



and (1.100)]. 

~(+) = ]v (~) exp [i(p· r - Ept)] 

~(-) ]v (~) exp[i(por+Ept)] 

charge + 1 

charge - 1 

Again each linear combination 

nl~(+) + n2~(-) , with Inll2 -ln212 = 1 , 

is a normalized eigenfunction of the momentum p with 
charge + I, and each linear combination with Inll2 -ln212 = 
-1 is a normalized solution with charge -1. 

We denote the solutions (1.99) and (1.100) of the Klein-Gordon equation (1.113) for 
fixed momentum p (see Exercise 1.9) by 

ni = 0, ± I, ± 2, ... ; A=+I, -I (1.114) 

From now on we drop the index i on Pi, which has its origin in the box normalization, to 
simplify the notation, e.g. Lp means Lpi • The index A = + 1 denotes a positive charge 
state whereas A = -I denotes a negative one. The states ~p.). in (1.114) form a complete 
orthonormalized system. Hence, the foHowing relation holds: 

(1.115) 

where A, A' = ± 1 and p, p' take the values given in (1.114). Let us now consider a 
general state ~ containing particles with positive as weH as negative charge. We can 
recognize and distinguish between the charged partic1es by expanding ~ in terms of <Pp,). 

to give 

~ = L ap,).~p,). = L (ap,+l~p.+l + ap , -l~p,-t) , (1.116) 
P.). p 

where the expansion coefficient ap .). is given by 

ap ,). = J ~!,).f3~d3x . (1.117) 

For the total charge we obtain 

e J ~t71~d3x = e L [lap,+d2 -lap,_112] = ± Ne . 
p 

(1.118) 

The total number N of elementary charges which are contained in the state ~ can be 
positive, negative or zero. Lp lap.+112 is equal to the total number of positive elementary 

charges and Lp lap,_d2 equal to the total number of negative elementary charges in~. 
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1.9 The Interaction of a Spin-O Particle 
with an Electromagnetic Field 

The electromagnetic field is described by the four-vector [defined in (1.14)] 

AI-' = {~, A} = {~, A z , A y , A z } = gl-'l/ AI/ , 

AI-' = gl-'I/AI/ = {~, - A} . 

In the case of nonrelativistic quantum mechanis we specified minimal coupling of the 
electromagnetic field, 

E ~ i1i.~ - e.<l- pA ~ - i1i.V - =A 8t "'\/, C ' 

which can be compressed 10 the four-dimensional and covariant form as 

:.J.I :.J.I e AI-' A A e A 
JE ~ JE - - or PI-' ~ PI-' - - I-' • 

c c 
(1.119) 

With the same minimal coupling, the free Klein-Gordon equation (1.21) is transformed into 
the Klein-Gordon equation with an electromagnetic field (compare with the later passage 
on gauge invariance of the coupling), 

(1.120) 

or 

(1.121) 

and, explicitly, 

~ (i1i.! - e~ ) tP = 

(1.122) 

In order to examine the charge and current densities, we start with (1.121), multiply by 
tP* from the Ihs and subtract the complex conjugate. These operations can be symbolized 
by tP*(xx) - tP(xx)*, where (xx) denotes (1.121), and they result in 
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One calls 

. ine (.1.* 0 .1. .1. 0 .1.*) e2 A .1 .• 1.* _ { I Jv=-- 'f' -'f'-'f'-'f' --- V'f''f' - Ce, 
2mo oxv oxv moc 

"} -J (1.123) 

the four-current density in the electromagnetic field A v . Obviously, the following relation 
holds: 

gI1V~jv=~jl1=O (1.124) ox l1 ox l1 

This is a continuity equation for the four-current density, usually its meaning is that of a 
conservation law. Suitable normalization [like in (1.123)] yields charge conservation. Note 
that (1.123) is identical to the previous result, (1.34), if we exc1ude the term proportional 
to Av . To make this fact more evident we write explicitly, 

(1.125) 

and 
'n 2 

j' = _!...!:....(t/l*Vt/l - t/lVt/l*) - _e_At/lt/l* 
2mo mOc 

(1.126) 

and compare these expressions with (1.35) and (1.36). It is remarkable that electromagnetic 
potentials appear in the charge and current densities (1.125) and (1.126). To obtain a deeper 
understanding of this fact, we consider a negatively charged partic1e in a central Coulomb 
potential, which is given by 

eAo(r) = -Ze2V(r) , A = 0 , (1.127) 

V(r) '" l/r for large r and rounded off as for an oscillator within the range of the nuc1eus 
(see Fig. 1.3). A stationary state of the Klein-Gordon equation has the form 

t/l(r, t) = t/l(r) exp( -ict/n) , (1.128) 

where !cl is the energy of the particle (see Exercises 1.10 and 1.11). The charge density 
(1.125) can be calculated as follows: 

e'(r) = e [c; - eAo(r)] t/lt/l*(r) = e [c + Ze2V(r)] t/lt/l*(r) 
mo~ mo~ 

(1.129) 

Therefore, the charge density becomes 

e' > 0 for c; > eAo(z) , e' < 0 for c; < eAo(z) . (1.130) 

In the first case the charge density has the same sign as the charge, e, of the partic1e; 
in the second it is the other way round. The charge density has the opposite sign to 
the partic1e charge e, wherever the potential energy has values so that c; < eAo(z). The 
physical meaning of this change of sign of e' in strong fields can only be understood 
within the frame of the field theory where the number of particles becomes variable. One 
can imagine that in the areas of strong fields, partic1e-antiparticle pairs will be produced 
and that the potential term in the charge density (1.129) may be interpreted as simulating 

such many-body aspects. 
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Ao<r) .& nuclear radius 

1 
r 

Fig.l.3. The Coulomb potential of 
a negatively charged particle in the 
vicinity of the atomic nucleus 

r 



Z = 2158 

Now let us carry over what we have said about nonnalization and the energy factor c 
for the Klein-Gordon equation to our present case. The charge nonnalization is carried out 
according to J e'(z)d3 x = ± e (e being the charge of the electron). For 7r- mesons (e < 0) 
we take the positive sign, for bound 7r+ mesons we choose the negative sign. Hence, the 
charge density for 7r - mesons becomes 

,/(z) = e [e + ze2;(z)] .,p*(z).,p(z) 
mO 

(1.131) 

Figures 1.3 and 1.4 illustrate strong Coulomb potentials and the corresponding charge 
density.11 

- E = -0.958027 
..... E = -0.983275 

Fig.l.4. The radial density qr2 of a 1r meson in the 18 state of an exponential potential of 
the form Ver) = -ZOIexp(-r/a) (see Exercise 1.15). The range parameter a of the potential 
is chosen to be a = 0.2A, where A" = n/m"c is the Compton wavelength of the pion. The 
coupling strength is fixed by Z = 2158. Such an extreme central charge is chosen to make 
various new features of the Klein-Gordon equation especially obvious. The energy eigenvalue 
of the 18 pion bound in this extremely shon range and deep potential is E = -0.958027 
measured in units of the rest energy m ... c?- of the pion. It is evident that the charge density 
is not positive definite, and that antipanic1es can also be bound in this potential. The radial 
density of antipanicle in the same potential is shown by the dashed line - the energy eigenvalue 
of abound antipanic1e is E = -0.983275 m"c?-

r [fm] 
2 3 

11 W. Fleischer, G. Soff: Z. 
Naturforsch. 39a, 703 (1984). 

An interpretation of the positive part of the charge density is that, in strong fields, 
some fraction of 7r+ mesons is always mixed with the 7r- meson. This indicates the great 
difficulties of the single particle interpretation in strong potentials. 

EXERCISE ................................................................ .. 

1.10. Separation of Angular and Radial Parts of the 
Wave Function for the Stationary Klein-Gordon 
Equation with a Coulomb Potential 

Problem. Separate the angular and the radial part of the 
wave function for the stationary Klein-Gordon equation for 
spherically symmetrie Coulomb potentials. 

Solution. We put eAo = V(r) and A = O. Then the sta
tionary Klein-Gordon equation reads 

(1) 

or, explicitly, 

-n - - r - + - sm ()-2[18(28) 1 8(, 8) 
r 2 8r 8r r 2 sin B 8B 8B 

1 [fl] 
+ r2 sin2 B 84>2 .,p( r) 

= [(c - V(r)Y - m5c4].,p(r) (2) 
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For the wave function .,p(r) we make the following sepa
ration ansatz 

.,p(r) = u(r)Y(B, 4» (3) 

This leads to 

22 18 2 8u {( )2 24 .x} n c r 2 8r r 8r + c - V(r) - mOc - r 2 u = 0 , 

1 8. 8Y 1 [fly 
--;---() 811 sm () 8 11 + -'-2- 8 2 +.xy = 0 (4) sm 17 17 sm () 4> 

where .x is the separation constant. The solutions of the last 
equation are the spherical harmonics Yim with .x = 1(1 + 1), 
1 = 0, 1,2 ... and m = 0 ± 1, ± 2, ± 3 .. ,12 With this the 
radial differential equation follows as 

12 See Vol. 1 of this series: Quantum Mechanies - An Introduction 
(Springer, Berlin, Heidelberg 1989). 



(5) 

Hence, using the common ansatz u(r) = R(r)/r, follows 
the transfonnation of (5) into 

[ 
d2 1(1 + I) 2] 
dr2 - ---;r- + k R(r) = 0 

where 

k2 = (c - V(r)r - möc4 
n2c2 

(6) 

(7) 

EXERCISE ______________ _ 

1.11 Pionie Atom with Point-Like Nucleus 

Problem. Find the solution of the Klein-Gordon equation 
for the 7r- meson in a Coulomb potential and discuss 
the energy eigenvalues. The pion has the mass m7r~ = 
139.577 MeV and spin O. It obeys the Klein-Gordon equa
tion. 

Solution. We use the result of the previous Exercise 1.10. 
The attractive Coulomb potential Ao(r) = -Ze/r is cou
pled as the 0 component of the four-potential in the Klein
Gordon equation (a = e2/1i~ = 1/137.03602 is the fine 
structure constant, giving 

[i!.- _ 1(1 + 1) - (Za)2 

dr2 r 2 

2cZa möc4 - c2] 
+ ncr - n2c2 R/(r) = 0 (1) 

Now the energies and the wave functions for the bound 
states in the energy range -mo~ < c < mo~ are to be 
calculated. Therefore, we first transfonn the above differ
ential equation with the help of the substitutions 

[m2c4 _ c2]1!2 
ß = 2..::...-..>O:..-._~ 

nc 
(! = ßr with 0 < (! < 00 , (2) 

(3) 

In order to find an ansatz for the solution it is useful to 
first study the limits (! -+ 00 and (! -+ O. In the case e -+ 00 

we can neglect the tenns proportional to e-1 and e-2 in 
(3) and, therefore, 

(4) 

Its solution can easily be detennined with the help of the 
exponential function 

(5) 

b = 0 follows from the requirement of nonnalization of the 
wave function. In the case e -+ 0 one can neglect the last 
two tenns in the above radial equation and is led to 

( :~ - J-l2 ;21/4) R/(e) = 0 (for e -+ 0). (6) 

With 

(7) 

it follows that 

av(v - l)e ll - 2 - a (J-l2 - !) (!1I-2 = 0 , (8) 

which is a detennining equation for the power v, given by 

v± = i ± V! + J-l2 - ! = i ± J-l . (9) 

Since J-l can, in principle, take all positive values, and the 
wave function must not have any nonintegrable divergence 
at the origin, this unambigously fixes V,13 

(10) 

Furtbennore, we see that the radial function u(r) = R(r)/r 
has a singularity at the origin (r = 0) when I = 0, though 

13 This is not nue in the special case / = O. Here the solution with 
11_ can also be nonnalized. and one must set another criterion in order to 
exclude this case. For example. on can demand that an expectation value 
of the kinetic energy should exist. See exercises 9.8 and 9.9 in which 
the analogue problem for the Coulomb-solutions of the Dirac equation is 
carefully discussed. 
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this singularity can be integrated; therefore, the wave func
tion can be nonnalized in spite of the singularity. This be
haviour of the wave function for r _ 0 is quite novel com
pared to the Schrödinger wave function and characteristic 
of relativistic s wave functions in the Coulomb potential. 
Because of the definition of I-' we further see that, for 1 = 0, 
only real wave functions can be found for Z a < 1/2. For 
larger values of Z the parameter I-' becomes imaginary. 

Because of (5) and (7) we no choose 

Rl(e) = N e1fl+/J e-efl !(e) (11) 

as an ansatz for the full radial equation, where the still 
unknown function !(e) should be constant for e - 0 and 
should guarantee the nonnalization for e - 00. Inserting 
(11) into the radial equation (3) we find the following dif
ferential equation for !(e): 

d2! + (21-' + 1 _ 1) d! _ I-' + 1/2 - A !(e) = 0 . (12) 
de2 e de e 

For simplification let us introduce the new abbreviations 

21-' + 1 = e , I-' + ~ - A = a , 

so that 

d2! + (~ _ 1) d!(e) _ ~ ! = 0 
de2 e de e 

results. 

(13) 

Now we try to solve the differential equation for !(e) 
with the help of apower series expansion, 

00 

!(e) = E an' en' . 
n'=O 

Inserting (14) into (13) yields 

00 00 

E an,n' (n' - l)en'-2 + e E n' an' en'-2 
n'=2 n'=1 

00 00 
~ I n'-1 ~ n'-1 

- L.J n an' e - a L.J an' e = 0 
n'=1 n'=O 

(14) 

(15) 

A comparison of coeffiients of equal powers in e gives 

aao 
al=-

e 
al(a + 1) 

a2 = 2(e+ 1) 

(16) 
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or, generally 

am-l a+m -1 
am=--

m e+ m-l 

Therefore, !(e) can be written as 

!(e) ( a aa+le2 ) =ao 1+-e+----+ ... 
e ee+12 

00 () n' 
=ao E an' L 

n'=O (e)n' n'l 

(17) 

(18) 

The function defined by the series (18) is called a con
ftuent hypergeometrie junction IFI (a, e; e). Note, there is 
always a generalized faculty function in the nominator and 
denominator of each tenn of the sumo However, the con
fluent hypergeometric function diverges for e - 00 as 

F ( . ) r(e) a-c e 
1 1 a, e, e - 00 =? r(a) e e . (19) 

Thus, the nonnalization condition can only be fulfilled if 
it is certain that the series breaks off at a fixed value of 
n' . If a + n' = 0 holds, i.e., if a is a negative integer, then 
all tenns of higher order, m > n' , are also equal to zero. 

The energy eigenvalue for bound spin-O particles in 
a Coulomb potential can be calculated from (13). Starting 
from 

1 I Zac 
A=I-'+-+n =----~ 

2 (möd' _ c2)lfl 
it follows that 

2[ (Za)2 j-lfl 
Cn'l = -moe 1 + -------=--.:..--------=-

(n' + ~ + [(1 + ~)2 - (Za)2] lfl f 
(20) 

Thereby, we have chosen the negative square root, because 
in the case of no fields (Za - 00) the free solutions, i.e. 
the negative time evolution factors for negatively charged 
particles, must be obtained. The energy itself is given by 

Enl = J Tood3 x 

2 [1 (Za)2 j-lfl =moe +---_-..:..----.:_----". 
(n' + ~ + [(I + ~)2 - (Z a)2] 1/2f 

(21) 

(see Exercise 1.12). Defining the principal quantum num-



ber as 

n = n' + 1 + 1 (22) 

(21) may be rewritten in the following form; 

E n/ = moc2 [1 + (Za)2 ]-1/2 

(n -1- ~ + [(1 + ~)2 - (Za)2]I/2l 

n = 1, 2, 3.. . 1 = 0, 1, 2 .. . (n - 1) (21a) 

Setting N' = N ao, the eigenfunction can be written as 

R/(g) = N' gJJ+l/2 e-e/2 1Fl (Il +! - A, 21l + 1; g) 
= N'w.~, ig) , (23) 

where W.x,JJ(g) are called Whittaker functions. Expanding, 
finally, the above eigenvalue in aseries of powers of Z 
yields 

E.,:~,,{± -~ -,~(i+Tri -D+,"} 
energy scluÖdinger reI~ 

eigenvalue COITeCIion (24) 

The binding energy of abound Klein-Gordon particle is 
defined as Eb = E - mo~. Some numerical values for 
the binding energy of ls pions (n = 1, 1 = 0) with mass 
m1r~ = 139.577 MeV are listed in the following table. 

Binding energies of 18 pions for various central charges Z 

Z Eb [MeV] Z Eb [MeV] 

10 
20 
30 
40 

-0.374 50 
-1.528 60 
-3.568 65 
-6.725 

-11.51 
-19.391 
-26.34 

1.10 Gauge Invariance of the Coupling 

From the energy relation (21), one leams that for Za > 1/2, 
there is no energy eigenvalue for the Is state (n = 1, 1 = 
0), because the energy becomes imaginary. The energy 
eigenvalue for ls-pions at Z = a- 1/2 ~ 68 are Enl = 
m1r~(2)-I/2 (see next figure). The corresponding binding 
energy is about Eb rv - 40 MeV. 

1 
1 18 

72 
1 

---.710 68.518 205.55 
~ 0 
kl 20 40 60 80 100 140 1802 

Z 

-1r-------------------------
Solution of the Klein-Gordon equation for a central Coulomb potential. 
The energy is given in units of the rest energy m,..c1. For the 18 level 
there are no solutions for Z > 68, and, sirnilarly, for the 2p level when 
Z > (3/2)(1/Ot) ~ 205. This changes if the finite size of the central nu
cleus is taken into account (Exarnpie 1.13) 

To determine the energy eigenvalues for s states for which 
Za> 1/2, we must investigate the relativistic case of ex
tended atomic nuclei. Therefore, in Exercise 1.13 we will 
solve the Klein-Gordon equation for the Coulomb poten
tial rounded off by an oscillator potential. Furthermore, 
one has to take into account that pions and the nucleus in
teract strongly. Since the pion is 270 times more massive 
than an electron, its wave function already has a consid
erable overlap with the nucleus. Therefore, corrections to 
equation (21) are to be expected, based on the strong inter
action, which can be quite massive. to be expected, based 
on the strong interaction, which can be quite massive. 

We know that electrodynamics is gauge invariant. By that we mean that the electrodynamic 
laws (Maxwell equations) do not change under gauge transformations 

A' ( ) = A ( ) + 8x(x) 
JJ x JJ x 8x JJ (1.132) 

The argument x represents all space-time coordinates, i.e. 

_ {O 1 2 3} _ { } x - x, x , x , x - ct, x, y, z 
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We now investigate the consequences of the gauge transformation (1.132) for the Klein
Gordon equation (1.121), the transformation producing the change, 

gJ.'v (in~ - ~A') (in~ - ~A' )tP - mo2c2tP = 0 , 8xv c v 8xJ.' c I' 

or 

v (. 8 e e 8x ) (. 8 e e 8x) 2 2 gJ.' In- - - Av - - - In- - - A - - - tP - mOc tP = 0 , 
8xv c c 8xv 8xJ.' c I' c 8xJ.' 

or 

J.'v (.10 8 e A ) (.10 8 e ), 2 2 , 9 1,,- - - v 1,,- - - AI' tP - moc tP = 0 , 
8xv c 8xJ.' c 

(1.133) 

with 

, (ie) tP = exp ncX tP· (1.134) 

In other words the gauge transformation (1.131) changes the phase of the wave function 
only. The phase factor exp[(ie/Iic)x] is the same for all states tP. Since all physical observ
ables are represented by bilinear forms of the structure tP:n ... tPn, a common, identical 
phase factor does not play any role in the physics. Thus, we say that the Klein-Gordon 
equation is gauge invariant for the minimal coupling 

[ ( A e,)] ( ie) [ (A e e 8x )] (ie) Pv - ~Av tP exp ncX = Pv - ~Av - ~ 8xv tP exp nc X 

= [ (in 8=V - ~Av) tPexp (~:x) ] (1.135) 

and therefore also for arbitrary powers 

[(ßv - ~A~ JtP] exp (~:x) = [(ßv - ~Av J tPexp (~:x) ] 
= [ (ßv - ~Av J] tP', (1.136) 

and, consequently, also for arbitrary operator functions f (ßv - (e/c)Av) which are ex
pandable in power series of (ßv - (e/c)Av), giving 

(1.137) 

Thus, minimal coupling is gauge invariant in this very general sense. The parentheses 
[ ... ] used in the above formulae shall help to illustrate the action of the ß operators more 
clearly. 
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1.11 The Nonrelativistic Limit With Fields 

We can study the nonrelativistic limit of the Klein-Gordon equation in the form of (1.122) 
with the help of the transformation 

'IjJ(z, t) = <p(z, t) exp ( -*moc2t) (1.138) 

ep(z, t) characterizes the nonrelativistic part of the wave function, for which the relations 

lili: I ~ moc2 1epl , le.4o<p1 ~ moc2 1<p1 (1.139) 

must be valid, The first expresses the smallness of the nonrelativistic energy (ili(olat) is 
the energy operator) compared to the rest energy; the second condition means that the 
potentials involved have to be flat compared to the rest energy: potentials which are too 
deep would lead to increased binding energies and, finally, to spontaneous pair creation 
(see Chaps, 12 and 13), This would make the nonrelativistic limit impossible, Next we 
find that 

and 

(ili! - e.4o)'IjJ = (ili: - eAo<P + moc2<p) exp ( -*moc2t) 

( 'li 0 .40)2.,. (1i2fflep 'Ii oAo ' o<p, 2 0ep 1 at - e 'i" = - 8t2 - 1 e7itep - 1lie.4oat + 1limoc- at 

'Ii 8<PA 2 2 
- 1 e at ° + eAQ<p - e.4omoc <p 

, 2 8<p 2 2 4) (i 2 ) + 1limoc at - e.4o<pmoc + mOc exp -limoc t 

~ exp ( -*moc2t) ( m6c4 - 2moc2e.4o + 2mo~ili! 

'Ii 8.40) -1 eTt ep , 

With regard to (1.139), the small quadratic terms have been omitted in the last step, 
Inserting this into 1.122) yields 

or 

'Ii Oep 1 -
8t 

[ 1 ( e)2 ilie 8Ao] = 2mO +iliV + ~A + e.4o + 2moc2 Tt <p 

[ p2 e ilie ilie OAO] = ---A.p+ eAo+--(V.A)+-2 ? ~ ep 
2mO mOc 2mOc mOc- U~ 

(1.140) 
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This is the Schrödinger equation for electromagnetic potentials. But be careful: In studying 
radiation problems we generally choose the Coulomb gauge, defined by 

div A =0 . 

In this case the term proportional to 8AoIat must be included. Only in the Lorentz gauge, 
for which 

! 8Ao +div A = 0 
c at 

is valid, do both of the last terms in (1.140) vanish. 

EXERCISE .................................................................. .. 

1.12 Lagrange Density and Energy-Momentum 
Tensor for a Klein-Gordon Particle 
in an Electromagnetic Field 

Problem. Specify the Lagrange density for a Klein-Gordon 
particle in the electromagnetic field AI'" Determine the 
canonical energy-momentum tensor. 

Solution. The Lagrange density for the coupled system of 
the Maxwell field and the Klein-Gordon field is 

e = - ~ FlJvFlJv + 2~ [ (i1i81J - ~ AIJ }p* 
x (-iIi81J - ~AIJ)tP - mijc2tP*tP] 

FlJv = 8IJAv - 8vAIJ . (1) 

The variation of I = J e~x with respect to tP* yields the 
Klein-Gordon equation for a tP field, minimally coupled to 
the electromagnetic field, Le. 

8I 
- =0 =9- (2) 
otP* 

J {O(iIi8JJ tP* - ~AlJtP)] (-iIi81J - ~AIJ)tP 
-mijc2tP8tP* }tf x = 0 . 

Using 88JJ tP* = 8JJ 8tP* and with partial integration of the 
first term, we obtain under the assumption that 8tP* van
ishes at the boundaries of integration, 

J { ( -i1i8JJ - ~AJJ ) (-iIi8JJ - ~AIJ)tP 
-mijc2tP }otP*tfx = 0 . (3) 
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Due to the free choice of otP*, this yields the Klein-Gordon 
equation 

(ßIJ - ~ AIJ) (plJ - ~ AIJ ) tP = mijc2tP . (4) 

Variation of I with respect to AIJ yields the Maxwell equa
tion in an analogous way 

(5) 

The canonical energy-momentum tensor is calculated ac
cording to (1) from 

JJ _ 8e 8 .1. + 8e {} .1.* 
T v - {}({}lJtP) V'l-' (}({}lJtP*) v'l-' 

+ 8(~~u) 8vAu - oe e , (6) 

giving 

TIJ = _1_(-iIi8vtP) (iIi8JJtP* - ~AJJtP*) 
v 2mo c 

+ _1_ (ili{}vtP*) (-ili{}lJ tP - ~ AJJ tP) 
2mo c 

- {}vAuFUIJ - oe e (7) 

1 1 
= 48eFuuFuU - {}vAu FUJJ + 2mo 

x [(ili{}IJ - ~AJJ )tP*(-ili{}vtP) + (ili{}vtP*) 

x (-ili{}1J - ~ AIJ) tP - 8JJ (ili{) - ~ A ) tP* c v U c U 

x (-iIi8U - ~ AU) tP + oemijc2tP*tP] (8) 



(9) 

Here (Tl-'v)1/J represents the energy-momentum tensor for 
a Klein-Gordon particle with the minimal coupled electro
magnetic field [last three terms of Eq. (1)], while the first 
two terms are standing for the free electromagnetic field. 

EXAMPLE ............................ . 

1.13 Solution of the Klein-Gordon Equation for the 
Potential of an Homogeneously Charged Sphere 

We solve the Klein-Gordon equation for a sphere with ra
dius a since we consider this model to be an improved 
approximation for a realistic pionic atom. The results are 
subsequently discussed. Inside the sphere the correspond
ing potential is given by 

Ze2 ( r2 ) eAo(r) = -- 3 - -
2a a2 

for r::; a (1) 

This is an osillator potential which yields, after insertion 
into the radial Klein-Gordon equation [see Exerise 1.10, 
(6) and (7)], 

[~ _ 1(1 + 1) + (E + 3Za)2 mac2 
d1,2 r 2 hc 2a - "fi2 

_2(E + 3Za) Za r 2 + (za3 )2r4]R(r) =0 . (2) 
lic 2a 2a a2 2a 

This may be further simplified by introducing the following 
abbreviations: 

E 3Za 2 ma~ C = Za 
A = lic + ~' B = A -"fi2' 2a3 (3) 

For the total radial wave function, the following ansatz in 
the form of an infinite series is introduced: 

00 

R = r1+1 L: bn,r2n' 
n'=O 

Insertion into the differential equation leads to 

L: bn,(2n' + 1+ 1)(2n' + l)r2n'+I-1 
n' 

n' n' 

n' n' 

(4) 

(5) 

Ordering with respet to equal powers in r and comparing 
the coefficients, we find 

Bbo 
bl = 2(21 + 3) 

Bbl - 2ACbo 
~ = - 2(41 + 10) 

b] = _ B~ - 2ACbl + C2 bo (6) 
2(61 + 21) 

or, generally, 

Bbn'_1 - 2ACbn'_2 + C2bn'_3 

4n'l + (2n' + 1)2n' 
(7) 

The energy is determined by specifying that the wave func
tions and their first derivatives should be continuous at 
r = a. In the region r 2:: a the wave functions are given by 
the Whittaker function w.~I-'({?) with {? = ßr [see Exercise 
1.11, (23)]. Thus, and by using (4), the energy can be fixed 
by 

where (8) 

n' 

ß = 2 (mac4 - E 2 )1/2/hc , 

( 2 4 2)-1/2 >. = ZaE mOc - E , 

fl = [(1 + ~f - (Za)2f/2 (9) 

For the point nucleus there exist bound solutions (for I = 0) 
only up to Z = 1/2a ~ 68. In contrast to this, equation (8), 
containing the finite extension of the nucleus, also yields 
solutions for larger values of Z (see figure below). Chosing 

50 

0 100 

-50 

-100 

500 

-m~c2~~~~~~~~~~~~~ 

Energy eigenvalues for a ~- meson in the Coulomb potential of an 
extended nucleus. The charge distribution of the nucleus is assumed to 
be a Fermi distribution [see (10)] 
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the nuclear radius to be a '" 10 fm = 10-12 cm, we get a 
nearly parabolic growth with Z for the binding energy. 

At Z'" 1500 the energy eigenvalue for a 18 pion ap
proaches E = O. For larger Z this value even becomes neg
ative. At Z ~ Zcritical '" 3000 we find E = -m7rCl. An ex
trapolation of this behaviour for still larger Z would make 
the state dive into the lower continuum of E < - m 7rCl. 
But at this point at least the single particle interpretation 
collapses totally because the new degree of freedom of pair 
creation has to be considered (see the later discussion, to
gether with the Dirac equation, Chap. 12). One also has to 
take into account that, for pions (being bosons), the Pauli 
principle is not valid; thus, in principle, astate may be 
occupied by any number of pions. This is only true as far 
as the pion-pion interaction is neglected. 

u(r) 

c 

7 r 

Fermi charge distribution of a nucleus 

The interaction among the pions will, in fact, in
hibit the infinite spontaneous 11"+11"- -production. That this 
critical region, in which spontaneous pion production is 
possible, can be reached only for very large Z values 
may at once be estimated by considering the condition 
IVI > IBoI > 2m7rc2. Only for Z'" 1500 does the depth of 
the potential reach the value IV I '" 2m7rCl '" 280 MeV. In 
the above figure the energies for 18 and 2p pions, calcu
lated for the potential of a Fermi charge distribution, are 
shown. The Fermi charge distribution has the form 

N 
Unucleus(r) = 1 +exp(4In3[(r - c)/t]) (10) 

with the constant of normalization N given by 

00 

411" J u(r)r2dr = Z , (11) 

o 

and is shown in the second figure. Here c is the half-density 
radius. The surface thickness t characterizes the region in 
which the density drops from 90% to 10% of its value at 
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the origin (r = 0). This also determines the constant, 41n 3. 
The potential results as a solution of the Poisson equation 
and is given by 

V (r) = -4~e2 { !: I tI/)r'2 dr' + f (>(r')r' dr' } . (12) 

The value E = -m7rCl is reached at Z = 3280 for the 18 
state and at Z = 3425 for the 2p state. 

EXAMPLE ............................ . 

1.14 The Solution of the Klein-Gordon Equation 
for a Square Weil Potential 

This situation corresponds to minimal coupling for V, which 
is described by (see Figure below) 

{ -VO 
V= o 

v 

for r ~R 

for r>R 

R 
r 

- Va I-----...J Square weil potential 

We set 

ki = ;c J(e; + VO)2 - m5c4 for r ~ R 

and 

ko = ;c Je;2 - möc4 for r > R . 

Wit this the Klein-Gordon-equation reads 

[~(r2~) -1(Z+1)+k2r2]u(r)=0 

The substitution (! = kr leads to 

d d d2 d2 
-=k- and _=k2 _ 
dr du dr2 drr 

Hence, one finally arrives at Bessel' s equation 

(1) 

(2) 

(3) 



The solution for r ~ R is u(e) = Nj/(kir). The Neumann 
function n/(kir) must be excluded as a solution beeause it 
is irregular at e = O. For V = 0, we always get 

u(e) = N j/(kr) with k = ~c Je2 - möc4 

and where N is the normalization faetor. Obviously, the 
solution is symmetrie for positive and negative values of 
e. The Bessel funetions ean easily be ealculated, and one 
gets 

'() sin{} JO e = -- , 
e 

'() sine eosl? 
Jl I? = -- ---

1?2 e 
Furthermore, one ean use the general reeurrence rela

tion 

(4) 

where In stands for the Bessel function jn, the Neumann 
funetion nn(l?) or the Hankelfunctions 

h~)(I?) = jn(l?) + inn(e) or 

h<;)(I?) = jn(l?) - inn(l?) 

In the outer region we set 

2 4 2 
2 moc - e 2 

k = 1i,2c2 = -ko . (5) 

With the substitution e = ikr the differential equation (3) 
becomes 

d2u + 21? du [1 _ Z(l + 1)] u(l?) = 0 , 
du2 dl? 1?2 

(6) 

and the general solution of this differential equation is 

(7) 

We see that hc;) can not be a solution for r > R, sinee that 
function increases exponentially and so can not be nor
malized. For an imaginary argument the Hankel function 
of the first kind is given by14 

hb1)(ißr) = - ;r e-ßr , 

14 See M. Abramowitz, LA. Stegun: Handbook 0/ Mathematica/ Func· 
tions (Dover, New York 1965), p.438. 

h~I)(ißr) = i(;r + ßlr2) e-ßr , 

h(l)('ß ) _ ( 1 3 3) -ßr 
2 1 r - ßr + ß2r 2 + ß3r 3 e (8) 

Higher orders ean be ealeulated by use of the above re
currenee relation (4), and the derivative ean in general be 
calculated to yield 

d 
(2n + 1) dzln(z) = nln-l(Z) - (n + 1)ln+l(Z). (9) 

The determination of the energy value e requires the equal
ity of the logarithmic derivatives of the solutions at r = R, 
so that 

1 dUi 1 duo 
- - = - - for r = R , 
Ui dr Uo dr 

(10) 

where the normalization constants cancel. The eigenvalues 
e can be derived from 

ji(ki R ) h~I)'(ikR) 
j/(ki R ) = h~I)(ikR) 

(11) 

Now consider the special case of s states for the determi
nation of e. For this case one obtains after insertion of the 
definitions of jo and hg) and ealculation of (11) 

(12) 

From this transcendent equation one can iteratively deter
mine the eigenvalue e. Numerical solutions of that problem 
are shown in the following three figures. 

In the first figure the depth of the potential is set to 
Vo = - Z e2t R, where the nuelear radius is R = roA 1/3 

m~~~~~~~~~~~~~~~ 

100 

50 

0 100 200 5000 Z 

-50 

-100 

- m~~~~~~~~~~~~"",~~ 

The energy of a 11'- meson in the 18 state as a function of the nuclear 
charge Z. The radius of the nucleus is increased according to R = roA1/2 
where A = 2.5 Z is the number of nucleons in the nucleus 
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with ro = 1.2 fm and the number of nucleons A = 2.5 Z. 
At Z = 5150, c reaches the critical value Ccrit = -m1rdl. 
There the bound pion level dives into the lower (negative 
energy) continuum. 

In the second figure R was fixed (independent of Z). 
For smaller radii ccrit is shifted 10 sm aller values of Z. 

100 

50 

0 100 200 5000 Z 

-50 

-100 

The energy of a 1r- meason in the 18 state as a function of the nuclear 
charge Z. The radius was fixed at R = 3, 4, 5 fm, etc. 

In the final figure the radius is compressed to R = 
0.25 fm. Furthermore, the charge symmetrie solutions to 
the potential are plotted. These curves show reftection sym
metry about the C = 0 axis. It is essential in this case that 
the curves exhibit "critical points" for R ~ 1 fm, character
ized by the infinite slope of the binding energy as a function 
of Z. The first critical value is at c ~ - 0.8modl. 

Here the solutions coming from the lower continuum 
into the region of bound states (1['+ states) meet with the 
solutions from the upper continuum (1['- states). This leads 
to the possibility of the spontaneous production of many 
1['+ - 1['- pairs (a true pion condensate). The deeper mean
ing of the phenomenon will be more clearly understood 
after the discussion of the phase transition of the electron
positron vacuum in supercritical fields. It is remarkable that 
a given short-range potential is able to simultaneously bind 

1['- as weIl as 1['+ particles. This Schiff-Snyder-Weinberg 
effect has its physical basis in the pionic charge density 
g'(r), the definition of which includes positive as weIl as 
negative frequencies. Therefore, the pion is not a parti
cle with a charge distribution of only one sign [see our 
discussion in connection with (1.129)]. 
EXERCISE _____________ _ 

1.15 Solution of the Klein-Gordon Equation 
for an Exponential Potential 

Problem. Solve the Klein-Gordon equation for an expo
nential potential of the form 

V(r) = _Zae-r/a (1) 

with a = modle2/hc. In natural units (h = c = mo = 1) 
a is equivalent to the Sommerfelds fine structure constant, 
Le. a ~ 1/137. a characterizes the range of the potential. 
Restriet yourself to s states (1 = 0) only. 

Solution. Under the restrietion 10 s states, and, thus, the 
neglection of the centrifugal term, the Klein-Gordon equa
tion assumes a very simple form. From (6) and (7) in Ex
ercise 1.10 we have 

(::2 + k2) R(r) = 0 

with 

2 [c - V(r)]2 - möc4 

k = h2c2 

With the aid of the separation ansatz 

R(r) = er/2a w(t) 

and the substitution 

t = 2iZa~ e-r/a 
hc 

(2) 

(3) 

(4) 

(5) 

m1fc?~~~~~~)~~~~~:":"'::""':~~~~ 
100 

50 

Olr---~--~~~~~~~~~~~~-E~--~~--~--~~--~ z 
-50 

-100 
_ m"c2k..;~~~~~~~~~~~~~""",~~"""",....,....~~"""""""""""""",~~~~ 

46 

The energy of 1r mesons as a function of 
the nuclear charge Z, if the radius R of 
the nucleus is compressed 



we can transfonn the differential equation (2) into 

d2w + { _ ! _ i€a + 1/4 - p2a2 }w = 0 
dt2 4 hct t2 

with 

(6) 

(7) 

Equation (6) corresponds to the Whittaker differential equa
tion 15 for which the regular solution for r ~ 00 (Le. t = 0) 
is, thus, 

w(t) = NW, (t) = N e- t(2 t l (2+1' 1\,1' 

IFI (! + JL - .\, 1 + 2JL; t) 
with 

.\ = _ i€a 
hc 

JL=pa . 

and 

(8) 

(9) 

(10) 

N is the nonnalization constant. For the radial 1s-wave 
function we can write, in summary, 

R(r) = N er(2a W,x (2iza~ e-r1a ) 
,I' hc (11) 

To obtain the energy eigenvalues we demand that R(r) 
vanishes at the origin (r = 0). This is the only way to 
guarantee the nonnalization of the radial wave functions. 
This condition leads to the eigenvalue equation 

IF1(~+JL-.\' 1+2JL; 2iza:J =0 (12) 

which is an implicit equation for the detennination of the 
energy eigenvalues € for s states. € can be obtained from 
(12) only by using numerical methods. The calculated en
ergy eigenvalue € of an 1s pion in an exponential potential 
are shown in the above figure as a function of the coupling 
strength Z. The range constant a of the potential is chosen 
to be a = 1 • .\11"' where .\11" = 1iJm1l"c denotes the Compton 
wavelength of the pion. At Zer ~ 778 the 1s state reaches 
the boundary (6 = -m1l"~) of the negative energy contin
uum. In a second numerical calculation the range constant 
is changed to a = 0.2 • .\11"' 

15 M. Abramowitz, I.A. Stegun: Handbook 0/ Mathematical Functions 
(Dover, New York 1965). 

1.0 r---:::::-------------, 
E 

0.5 

0.0 100 Z 

-0.5 

- 1.0'----------___ ~...J 

The energy eigenvalue of a 18 pion in an exponential potential as a func
tion of the coupling strength parameter Z. The constant a characterizing 
the range of the potential is a = JA ... The critical charge is Zer ~ 778. 
Eis given in units of the rest-energy m .. Cl 

This causes a rise in the critical value to Z ~ 2158, 
which can be seen in the next figure. Additionally, we find 
here, for the domain 2150< Z < 2158, abound state for 
the antiparticle. The corresponding energy eigenvalues can 
be taken from the dashed line in the insert to the figure. 
The appearance of these bound antiparticle states is corre
lated with the short range of the potential and the fact that 
the radial density er2 is not positive definite. The radial 
densities are depicted in Fig. 1.3 following (1.131). 
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-0.5 
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The same as in the foregoing figure for a = 0.2'x ... The energy eigenval
ues of bound antiparticles are also calculated. Zer ~ 2158. The insen 
in the figure shows E: for the domain 2150 $ Z $ 2158. The dashed line 
characterizes the energy of the antiparticle state 

EXERCISE ______________ _ 

1.16 Solution of the Klein-Gordon Equation for a 
Scalar 1fr Potential 

Problem. Solve the Klein-Gordon equation for a scalar 
interaction of the fonn 
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W(r) = -ZOi/r (1) 

which is coupled to the square of the mass. For the present 
let Oi be an arbitrary constant, the coupling strength is de
termined by Z. 

Solution. As an example of scalar coupling, we want to 
solve the Klein-Gordon equation for a long-range l/r in
teraction. We introduced the Coulomb potential into the 
Klein-Gordon equation by minimal coupling (pp - Pp -
(e/c)Ap ). In contrast to this we now couple a scalar interac
tion U(r) to the square of the mass in the equation of mo
tion, i.e. we perform the substitution m5c4 _ m5c4+U2(r). 
A direct coupling to the mass would yield mixing terms 
of the form 2moc2U(r); however, we do not want to in
vestigate this case in greater detail here. Thus, the radial 
Klein-Gordon equation with an arbitrary scalar interaction 
reads 

(.!:..- _ Z(l + 1) + ~ _ m5c4 _ U2(r»)R(r) = 0 
dr2 r 2 1i,2c2 1i,2c2 1i,2c2 . (2) 

The scalar interaction is independent of the charge of the 
spin-O particle considered, i.e. it has the same effect on par
ticles and antiparticles respectively. However, since there 
is no experimental evidence for such a long-range interac
tion, our calculations are only of academic interest. Never
theless, it is instructive to pursue the formal solution of the 
Klein-Gordon equation for this unusual type of potential 
and to determine possible critical values of the coupling 
strength. So we devide (2) by m5c4/1i,2c2 and substitute 

, mo~ 
r =r~ , (3) 

r' is a dimensionless quantity. This yields 

( 
d2 1(1 + 1) €2 U2(r'»), a - -'-2- + 24 - 1 - ---y-:r R(r) = O. (4) 

dr r moc moc 

Now we specify the interaction by 

U2(r') = W(r') = _ Zoi (5) 
m 2c4 r' o 

and, further, by 

€2 
b2 = 1- 24 (6) 

moc 

Thus, we get 
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Substituting again with 

{! = 2br' 

we now have 

with 

Zoi 
c=Tb 

(7) 

(8) 

(9) 

(10) 

Now consider the asymptotics {! - 00 and {! - O. For 
{! _ 00 it follows from (9) that 

( d2 1) - - - R({!) =0 
de2 4 

which yields immediately 

R({!) cxe-e{l . 

Analogously for {! - 0, 

( d2 _ Z(l + 1»)R({!) = 0 
de2 e2 

with the solution 

(11) 

(12) 

(13) 

(14) 

that may be normalized. Thus, for the solution we choose 

(15) 

where F({!) must still be determined. Putting (15) into the 
differential equation (9), we get 

d2 F({!) dF({!) 
{!~ + [(21 + 2) - {!]~[c - (1 + l)]F({!) = O. (16) 

This is Kummer's differential equation l6 , with the solution 

F({!) =1 Fl(l + 1 - c, 21 +2, (!) . (17) 

The conftuent hypergeometrie series only allows normal
ization if the first arguments equals a negative integer or 

16 M. Abrarnowitz, I.A. Stegun: Handbook 0/ Mathemiltical Funetions 
(Dover, New York 1965). 



zero. Henee, the eondition for the detennination of the en- 1.0r--=-=;::;::::::::::--------1 

ergy eigenvalue is E 

1 + 1 - c = -nr with (18) 

nr = 0, 1, 2, ... (19) 

With the definition of the principal quantum number 

n = 1 + 1 + n r , (20) 

we get from (18) 

{ 
(Zo:)2 }lfl 

c = ± 1 - 4n2 moc2 (21) 

In analogy to Sehrödinger's equation for a Coulomb po
tential the energy eigenvalue c does not depend on the 
orbital angular momentum quantum number I. Addition
ally, c is symmetrie for particle and antiparticle states, as 
expeeted. The critieal value for the eoupling strength Z is 
easily detennined: it follows that 

2n 
Zer = -

0: 
(22) 

Inserting the value 1/137 for Sommerfeld's fine strueture 
eonstant, we get Zer(1s) ~ 274.07 and Zcr(2s) = Zer(2p) 
~ 548.14, and for these valaues the derivative of the 

energy as a funetion of the eoupling strength is 

~; Iz=zcr = ± 00 . 
(23) 

In summary, the eomplete radial wave funetion has the 
fonn 

(24) 

where R(e) ean be expressed by the generalized Laguerre 
po/ynomia/s 

R(e) = N /+1 (n (~ ~ ~)!1)! (21 + I)! 

x L(2/+1) ()e-(}{1 . 
n-I-1 e (25) 

The normalization factor N of the radial wave funetion is 
detennined by 

00 

J e(r)r2 dr = ± 1 , 
o 

(26) 

0.5 

0.0 1--...I..-....J1O'--O...l..-2:-'OO'--... -'-/...Lj3:-'OO-::---'--4~OO.,,--'--:5~OO-::-.-/~z 

- 0.5 . . .........•......•............ 

.. :::< .. :~:~ ..... 
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18 and 28 energies of the Klein-Gordon panieIes (straight lines) and 
antiparticles (dashed lines) in a scalar l/r potential 

with the radial density 

e(r)r2 = cR2(r) . (27) 

The plus sign in (26) is valid for those states whieh with 
decreasing eoupling strength enter from the upper eon
tinuum (c > mo~) into the energy domain of the bound 
states, while the minus sign is valid for antiparticles which 
enter from the lower eontinuum (c< - mo~) ioto the do
main of bound states. The evaluation of the nonnalization 
integral yields 

N= (n + l)! 1 (2p)3fl . 
21c1n(n - I - I)! (21 + I)! 

(28) 

The above figure shows the energy eigenvalue of the Is 
state and the 2s state as a funetion of Zo: ~ 1/137. The 
values for particle (straight line) and antiparticle (dashed 
line) states are given. c(Z) shows the square root behaviour 
due to (21). 

EXAMPLE ............................ . 

1.17 Basics of Pionic Atoms 

Pionie atoms eonsist of a nucleus and one (or more) 7r
mesons whieh "eircle" around it. The pions are generated 
in an inelastie proton seattering process (e.g.: p + p -+ p + 
P+7r- +7r+), slowed down, filtered out of the beam and are 
incident on the elements under investigation as slow pions. 
Passing near an atom, the pion is captured by a simultane
ous emission of eleetrons (Auger eapture). The probability 
that two or more pions are simultaneously eaptured is ex
tremely low. Thus, in general pionie atoms have only one 
pion, as oceurs similarly with muonie atoms. Sinee pions 
have spin 0, they are deseribed by the Klein-Gordon equa-
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tion. The interaction of a pion with a nucleus consists of 
two essential parts: first the electromagnetic interaction, 
which is described by the Coulomb potential Ao(x), and 
second the strong interaction. The latter consists of areal 
and an imaginary potential. A pion interacts with the nu
cleons in the nucleus according to the reactions: 

71"- +p-+n , 

71"+ +n-+p , 

7I"+2N-+7I"+2N (1) 

For example, a 71"- can completely disappear in a nucleus 
if it is caught in the conversion of a proton into a neutron. 
This capture process leads to an imaginary potential, by 
which it is globally simulated. Another possibility is a kind 
of "chain reaction" of the form: 

(2) 

We abbreviate this - as above - by 7I"+2N -+7I"+2N. This 
chain reaction leads to an effective, real, optical potential 
for the pion, which is known as the Kisslinger potential, 

(3) 

An improved form of this potential, the Ericson-Ericson 
potential, is given by 

VKiSSI.-Er-Er(z)A = A u(z) - A V· ( e(z) V) 
,.. 0 1 l+au(z)/3 ' 

(4) 

where U(z) denotes the nucleon density and Ao, Al and a 
are constants which are fitted to a large number of nuclei 
(71" atoms). The imaginary potential is also a function of 
the nucleon density, namely, 

(5) 

where Bo and BI are again constants.17 

Because of these nuclear potentials, which we derive 
and confirm more rigorously in Examples 1.22-24, there 
are deviations from the spectrum of a pionic atom, cal
culated on the basis of the Coulomb potential for a point 
nucleus in Exercises 1.11 and 1.13. Since the Kisslinger 

17 See, for example, Y.N. Kim,: Mesonie Atoms and Nuclear Structure 
(North-Holland, Amsterdam 1971); J.M. Eisenberg, W. Greiner: Nuclear 
Theory, Vol. 2: Reaction Mechanisms • 3rd ed. (North-Holland. Amsterdam 
1987). 
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potential is short range [its range is reduced to the nucleus 
because of the dependene on u(z)], then mainly the Is, 
2s and 2p states are inftuenced, because only the wave 
functions of these inner states overlap considerably with 
the nucleus. Finally, the imaginary potential generates a 
broadening of these inner states, which expresses the pion 
capture by the nucleus. The figure below illustrates the sit
uation qualitatively. 

=::::::;:==:r;:== 3d 3p 
----~--~---3s 

+--+--+.o..-.,......p<+-+-I- 2 p 
t-I'-I-"'I-+-I-+-+-1-2s 

l J : { " ( { /1 J " J l Is 
Schematic spectrum of a pionic atom. The hatching indicates the broaden
ing of the inner levels due to pion capture by the nucleus. The 3p -+ 18-
and 3d -+ 18 - radiative transitions are also shown 

Behaviour of Solutlons of the Klein-Gordon Equation 
under Lorentz Transformation 
Our acceptance of the special theory of relativity requires 
that relativistic wave equations have to be form invariant 
under Lorentz transformations, Le. 

x'Jl. = aJl. XV v (6) 

with aJl. vav 0' = b~ . For further investigations of the wave 
function 'Ij; it is convenient to use the covariant notation 
(1.21) of the Klein-Gordon equation (see Exercise 1.5). 
Since the square of the four-vector ff', i.e. ß2 = ff'ßJl , 

does not change under Lorentz transformations, one can 
see that the wave function is just multiplied by a factor of 
absolute value 1 in these transformations. In other words, 
in the case of the coordinate transformations (6), which are 
simply abbreviated by 

I A 

x-+x =ax , (7) 

the transformation law of the wave function of the Klein
Gordon equation (1.21) reads as 

'Ij;(x) -+ 'Ij;' (x') = >"'Ij;(x) , (8) 

with 1>"1 = 1. If the Lorentz transformation is a continu
ous one (rotation through an arbitrary angle in the four
dimensional space), i.e. if the transformation matrix aJl. V 



depends continuously on variable parameters (Yl, (Y2, ••• , 

then the factor ,\ is equal to one, because ,\ = 1 holds 
for the identity transformation characterized by (Yl = (Y2 = 
... =0. 

Let us now consider space inversion, which is a dis
crete Lorentz transformation: 

X,i = _xi 

x,O = xO (9) 

Two-fold performance of space inversion leads to the iden
tical transformation. Since the wave function should be 
unique, one has 

,\2 = 1 or ,\ = ± 1 

This means that in the case ,\ = 1 (8) yields 

'IjJ'(z', t') = 'IjJ'(-z, t) = 'IjJ(z, t) . 

Thus, the 'IjJ function is then a scalar. For ,\ = -1 is 

'IjJ'(z', t') = 'IjJ'(-z, t) = -'ljJ(z, t) , 

(10) 

(11) 

(12) 

and one is dealing with a pseudoscalar wave function. 
We conclude: solutions 'IjJ(z) of the Klein-Gordon equa
tion are either scalar or pseudoscalar functions, i.e. func
tions which are both invariant under spatial rotations and 
proper Lorentz transformations and also which are invari
ant (scalars) or change sign (pseudoscalars) under space 
inversions. 

The transformation laws of the wave functions (8) are 
an essential characteristic for the properties of particles de
scribed by the Klein-Gordon equation (the same is true for 
particles which satisfy other wave equations). Wave func
tions which do not change under spatial rotations describe 
particles with spin 0, which is, so to say, a group theoretical 
argument18 for the fact that the Klein-Gordon equation de
scribes particles with spin O. The absence 0/ level splitting 
due to spin interactions in pionic atoms (no 2Pl(l - 2P3(l, 
3d3(l - 3d5(l' ... splitting, but only 2p-, 3d-, ... levels) 
uniquely leads to the conclusion that pions have spin zero. 
It has turned out that the K mesons also (mK ~ 960 me) 
have spin zero. The question whether pions are described 
by scalar or pseudoscalar wave functions has to be decided 
experimentially. 

18 See the detailed discussion of this point in Vol. 2 of this series: 
Quantum Mechanics - Symmetries (Springer, BeTUn, Heidelberg 1989), 
Chap.1. 

The Pion's Pseudoscalar Character 
To complete our knowledge of the pion inner wave func
tion, people have searched for the creation 0/ two neu
trons in the capture 0/ a slow 7r- meson by a deuteron and 
this reaction has, indeed, been observed. We now show 
that this proves the pseudoscalar character of the pionic 
wave function. The first phase of the process is the cre
ation of a 7r-mesic deuterium atom in the 18 state. The 
spins of the deuteron and the 7r- meson are 1 and 0, re
spectively. Therefore, the total angular momentum of this 
starting state, i.e. the pionic deuteron atom in its ground 
state, is 1. Its parity is equal to the inner parity of the 
pion, because the inner parities of both nucleons (which 
make up the deuteron) can be assumed to be equal, and 
the parity of the 18 relative wave function equals 1. In the 
final state two neutrons have been created and the pion 
has been absorbed. Due to Pauli's principle a system of 
two neutrons can only be in the following antisymmetrical 
states (pay attention to the spin!): 

ISO 3Po 3P1 3P2 ID2 ... (13) 

During this reaction parity and total angular momentum 
are conserved. Since the total angular momentum in the 
starting state was 1, only those states shown in (13) which 
have spin 1 can appear in the final state. The only one satis
fying this demand is 3Pl with L = S = J = 1 and, because 
of L = 1, this state is of negative parity P. Consequently, 
the starting state of the reaction is of negative parity too. 
This is only possible with a negative inner parity of the 
pion. Panofsky et al. 19 verified this with the observation of 
the reaction 

7r- + d --+ 2n . 

19 W K.H. Panofsky, R.L. Adenot, J. Halley,: Phys. Rev. 81, 565 
(1951). 
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1.12 Interpretation of One-Particle Operators 
in Relativistic Quantum Mechanics 

This is a rather general subject. However, in this section we want to study the possibilities 
of measuring eigenvalues of one-partic1e operators, especially for the case of spin-zero 
particles described by the Klein-Gordon equation. This point is rather important, because 
we will see that the naive one-particle interpretation encounters problems. We have already 
seen this fact in the charge distribution (1.131) of a pionic atom. Nevertheless, we shall 
try to maintain the one-partic1e interpretation as far as possible. 

with 

Let us return to the Schrödinger form ofthefree Klein-Gordon equation, 

ßlJt A 

ili7§t = HflJt 

lJt(:t:, t) = (</>(:t:, t)) 
x(:t:, t) 

and the Hamiltonian 

A2 
HA (A . A ) P 2 A 

f = 'T3 + 172 2mo + moc 1'3 

(1.141) 

(1.142) 

(1.143) 

With the help of (1.141), the column vector lJt(:t:, t) may be evaluated at any later time t, 
if the values lJt(:t:, 0) are known at t = O. This may be expressed by the transformation 

lJt(:t:, t) = S(t)lJt(:t:, 0) . (1.144) 

The transformation operator reads 

A 1 A -lHf -lHf ( .) (. A) (. A )2 
S(t) = exp -AHft = 1 + hi! t + 1i2! t2 + ... (1.145) 

and is CP unitary because of the property 

SH(t) = T3St(t)T:3 = exp ( -kifft) = S-1 (1.146) 

As in nonrelativistic quantum mechanics, time dependence in the relativistic case need not 
be expressed by the state vectors lJt(:t:, t) (Schrödinger picture) but can also be incorporated 
in the operators. This picture, where the operators and not the state vectors are time
dependent, is referred to as the Heisenberg picture. The change from the Schrödinger to 
Heisenberg picture is performed by the transformations 

!JiH(:t:) = S-I(t)lJt(:t:, t) (1.147) 

and 

(1.148) 

For the scalar products it yields 
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(!li(z, t)IF(O)I!li'(z, t» = (S(t)!liH(z)IF(O)IS(t)!liH(z» 

= (!liH(z)ISH(t)F(O)S(t)I#i(z» 

= (!liH(z)IFH(t)I!liH(z» , (1.149) 

i.e. the change from the Schrödinger to the Heisenberg picture leaves the cf! scalar product 
invariant. In doing so we have made use of (1.146). From (1.148), it follows directly that 
for time independent Hf, 

."dF 1,,-
dt 

= ili. ! { eiHrt/rt F(O) e -iHrt/rt } 

= -HfF + F Hf = [F, HfL (1.150) 

in analogy to nonrelativistic quantum mechanics20• From this relation it follows that the 
physical observables F, whose corresponding operator F commutes with Hf, are constants 
of motion. This means that the expectation values of these operators are constant in time. 
One of the basic postulates in nonrelativistic quantum mechanics states that the eigenvalues 
of an operator describe the measurable values of the corresponding classical observable 
(physical quantity) in astate of the system. To satisfy this postulate in the relativistic 
theory we must modify the definitions of some of the operators. 

We illustrate this for the well-known example of energy. The eigenvalues and eigen
states of the operators Hf (1.143) are determined - in the case of free motion with 
momentum p - by the equation 

(1.151) 

We know from our earlier discussions [see (1.74-79 and 114)] and from Exercise 1.9, that 
(1.151) has two solutions 

!li.\(z)=_I_ (<f'O.\) eipoz/rt , A= ±1 , 
Vi} XO.\ 

for the corresponding "energies" 

(1.152) 

(1.153) 

E-l is negative and, therefore, we cannot interpret it as a one-particle energy, which 
must always be positive. Here we have to remember the double meaning of the energy 
eigenvalues of the Hamiltonian in nonrelativistic quantum mechanics: first they represent 
the energy of stationary states and second they characterize the time-dependence (time 
evolution) of the wave functions. We have already learned that the eigenvalues E.\ of Hf 
also represent the time-dependence of the wave functions in the relativistic theory [the 
time factors exp(± iEpt/li.) in (1.78) and (1.79)]: 

!li.\(z, t) = exp( - iHft/li.) !li.\(z) = exp( - UEpt/li.) !li.\(z) 

= !li.\(z)exp( - UEpt/li.) (1.154) 

20 See Vol. 1 of this series: Quantum Mechanics - An Introduction (Springer, Berlin, Heidelberg 1989), 
Chap.15. 
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The energy of these states is always positive and, henee, ,X-independent. Previously, we 
derived this result by using the eanonical formalism [see (1.61)]. We ean also see this 
from the following statement: The energy C of a system in a stationary state is identieal 
with the mean value of the energy, i.e. 

CA = J llilf:3Hf lliAd3x (1.155) 

We proved this in Exercise 1.7 by making use of the eanonieal formalism. Now with 

Hf = EAlliA = ,XEplliA and J llil f:3lliAd3x =,X , 

we have 

CA = ,XEp J llil T3lliAd3x = ,X2 Ep = Ep (1.156) 

The energy is always positive and independent of ,X. Thus, the problem of the energy is 
solved. To resume: The dual eharaeter of the eigenvalues of Hf, i.e. as a charaeteristie 
faetor of the time evolution and as an energy, evolves quite naturally in the relativistie 
quantum theory. We ean give the eorreet interpretation of the energies of the states by 
making use of the eanonieal formalism. Henee, the energy operator is not Hf but f:3Hf 
[see (1.155)]. 

In nonrelativistie quantum mechanics there is always a eorrespondenee between a 
relation of operators and that of classical objeets (measurable values). For example, New
ton's classical equation of motion eorresponds to the operator equation 

dp 1 A A 

- = _r~ H] = -VU 
dt ih LY' , 

with H = p2f2m + U(a:) (Ehrenfest's theorem). Another example is given by the operator 
relation 

da: 1 A P 
-;ji = ih [a:, H] = mo (1.157) 

which eorresponds to the classical relation between the velocity and linear momentum. 
Beeause these operator-equations are of the same form as the classical equations, it is cer
tain that the quantum mechanieal mean values satisfy the classical equations of motion21 • 

In relativistic quantum theory the situation is different. For instanee, in the last example 
the expression for the "velocity operator" of a relativistie spin-O particle was 

da: 1[ HA] (A .A)P -d =. t: a:, f = T3 + 1T2 -
t 1" mo 

(1.158) 

while the classical relativistie velocity is given by 

d2! P c2p c2p 
-;ji= M= Mc2=E" (1.159) 

where M = mo/(l - v2/~)I(l denotes the relativistie mass, i.e. 

21 See Vol. 1 of this series: Quantum Mechanis - An lntroduction (Springer, BerUn, Heidelberg 1989). 
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E -M 2_ mo~ _ mo~ ./v2 (1 V 2 ) 
- c - VI _ v2jc2 - VI - v2jc2 V c2 + - c2 

m5v2 + m5c2(1 - v2jc2) 

1 - v2jc2 
=c 

=c 

is the total energy of a free particle with rest mass mo. Obviously, the rhs of (1.158) and 
(1.159) are different. Furthermore, we notice that the eigenvalues of the matrix 

A 'A (1 
7'j+17'j= -1 

are zero! This also means that the eigenvalues of the velocity operator (1.158) are zero 
too. Hence, we again notice that, in general within a relativistic theory, the eigenvalues 
(expectation values) of a reasonably constructed operator are not the same as the values of 
the corresponding classical quantity. Therefore, we conclude that not all operators of the 
nonrelativistic theory can be transferred to the relativistic one-particle theory. The reason 
for this is the restrietion to the one-partic/e concept. In relativistic quantum mechanics 
the consistency of the one-particle description is limited. This may be specified more 
precisely: From a mathematical point of view the formulation of the relativistic theory 
within a one-particle concept implies the condition that the only valid operators are those 
which do not mix different charge states. Such operators are called even operators or true 
one-partic/e operators. More formally, an operator [F] is called even, if 

(1.160) 

is valid. Yi,(±) are functions with positive and negative frequencies, respectively. Similarly, 
an operator {F} is called odd if it satisfies the conditions 

(1.161) 

Therefore, the Hamiltonian of the free Klein-Gordon equation in the Schrödinger rep
resentation Hr and the momentum operator p = -iliV are even operators. This means 
that 

Hr = [Hr] , p = [P] . (1.162) 

Any operator can generally be split into an even and an odd part, e.g. 

F = [F] + {F} . (1.163) 

Therefore, one can separate from any given operator Fa true one-particle operator [F]. 
The investigation of even and odd operators can be simplified in the Feshbach-Villars 

representation, especially if one uses momentum eigenfunctions (p representation). In the 
P representation the wave functions of the two charge states are given by (1.99) and 
(1.100), i.e. 
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cp(+)(p) = Jv (~) exp [k(p 0:1: - Ept)] 

cp(-)(p) = Jv (~) exp[k(p0:1: + Ept)] (1.164) 

In this representation an even operator is diagonal because of the column vectors (ö) and 

(~) for the two charge states. Therefore, we can deduce that fI~ is an even operator, 
because 

fI~=ryEp=(~ _~)Ep=[fI~] . (1.165) 

Also, for cp(P) (1.164), the momentum operator P is diagonal, since with (1.96) and 
(1.112), we find that 

A (rO-1 A(1 01) =pA =r.:.] . p~ = p = p 0 LI' (1.166) 

An even operator has to be a diagonal matrix in the cP representation; therefore, it will be 
especially simple to separate the even part of any operator F, 

according to 

F.A 
_ (F1l 

~- 0 

(1.167) 

Having completed the introduction to odd and even operators, we now apply this method 
to the :i: operator which caused problems in (1.158) and (1.159). In the p representation 
the :i: operator is given by 

A ' ''{ 8 8 8} ''''C'''7 :I: = 1" -8 '-8 '-8 = 1" Vp , 
pz Py Pz 

(1.168) 

which can be calculated to be 
A _ UA ''''C'''7 UA -1 _ ''''C'''7 n _ ihpTI 
:I:~ - 11~Vp -1r,vp 2 

2(r + moc;2) 
(1.169) 

in cP representation (cf. Exercise 1.18). Since Tl is non-diagonal, the true one-particle 
position operator in cP representation reads 

(1.170) 

Clearly, this is the canonical conjugate operator ofthe momentum operator since, due to 
(1.166), 

[[:i:~]i' [p]jL =ih[8~/Pj]_ =iMij , (1.171) 

as it should according to quantum mechanics22• With the help of the true position operator 

22 See Vol. 1 of this series: Quantum Mechanies - An Introduction (Springer, BerJin, Heidelberg 1989). 
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(1.170) we can calculate the velocity operator: 

~ [;1:4>] = i~ [iIiVp11, H4>L = [Vp11, 73 EpL 

= 73 [Vp , c.Jp2 + möc2]_ = 73 cp = 1:3 ~p 
.Jp2 + möc2 Ep ' 

(1.172) 

with eigenvalues 

+ ~p and 
p 

(1.173) 

We have already stated the corresponding eigenfunctions in (1.164); therefore, we get 

d[;l:4>] p(±)(p) = ~p 73 P(±)(P) = ± c2p p(±)(p) 
dt Ep Ep 

(1.174) 

EXERCISE ................................................................ .. 

1.18 Calculation of the Position Operator 
in the P Representation 

Problem. Show that the x operator in P representation is 
given by 

A' ilip71 
Z4> = lliVp11 - (2 2') 2 p +moc-

Solution. We know that in the Schrödinger picture the 
position operator in momentum space is just the derivative 
with respect to p, i.e. 

;I: =iliVp . 

By substituting the Feshbach-Villars representation, a11 op
erators change according to (1.112); hence, 

;1:4> = O(iIiVp)O-1 , where 

0= (moc2 + Ep ) n - (mo~ - Ep )71 

.J4moc2Ep 

Therefore, we get 

Since 

we get 

V 0-1 p 

= 1 (11- 71)Vp Ep 

.J4moc2Ep 

A 1 1 2 
- u- 2(4moc2 Ep) 4moc VpEp 

1 A pc2 
= (11- rt)-

.J 4moc2 Ep Ep 

_ 1 {(11 + 71)mo~ + (11- 71)Ep} :; 
.J4moc2Ep p 

= - vc: {(U + Tl)""''' - (n - ft)E.) J 1 
2~ 4moc2~ 

= _pc2~1 { (mo~ + Ep )l1 + (mo~ - Ep )71 } 
2Ep .J 4moc2 Ep 

A _lP~71 
= -u 2E2 

p 
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If z~ acts on P the result is 

$;~p = (;(ihVp )(;-lp 

= (; [ihVp (;-l] P + (;(;-lihVpp as required. 

= _(;(;-lihPc?T1 + (;(;-lihV, P 
2E2 p 

p 

For states of positive charge (time evolution factor E = + Ep ) the same relation 
between velocity and momentum holds as in classical relativistic mechanics, (1.159). 
For states of negative charge this is true only for the absolute values. Antiparticles with 
momentum p move in the direction opposite to p. This is not unreasonable, especially if 
we think of the current density of the charge, e(d[z~/dt]) = e(c?p/Ep)Tj, which must 
change its sign for antiparticles because of their negative charges. Therefore, the operator 
[$;~] fulfills a number of plausible conditions and can be accepted as a true one-particle 

operator. Since the position operator [$;~] and the charge operator Q~ = eTj commute, 

there exists a set of simultaneous eigenfunctions p~±)(p) with 

[$;~]p~±)(p) = ihVpP~±)(p) = zp~±)(p) , and (1.175) 

Q~P~±)(p) = ± ep~±)(p) . 

The p~±)(p), which are normalized to fJ functions, are given by 

p~)(p) = ~ (b) exp( -ip. z/h) , 

cp~-)(p) = ~ (°1) exp(-ip.z/h) 
(27rh)3 

(1.176) 

This is the P - p representation. In order to derive the w - p representation (i.e. the 
unusual Schrödinger momentum representation) we must apply (;-1 to p~±)(p) according 
to (1.95), so that 

w~±)(p) = (;-lp~±)(p) 
( moc? + Ep) n + (moc2 - E p) Tl (±) 

= J CPz (p) 
4moc2Ep 

= (moc2 + Ep ) (~ ~) + (mo~ - Ep ) (~ ~ ) <jl~±)(p), (1.177) J4moc2E p 

where (;-1 is given by (1.97). This can immediately be calculated, yielding the explicit 
form 

(±) 1 1 ( moc2 ± E ) wz (P)= ~ J 2 EP exp(-ip,z/h) 
V 27rhJ 4m0c2Ep moc =F p 

(1.178) 
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As we have already noted these are the eigenfunctions (1.176) in Schrödinger momentum 
representation. We perform the transition from p representation to :c representation by23 

A lengthy calculation, which we shall perform in Exercise 1.20, yields 

.T<i±) (""I) = (AA!BB) (l/z7/4 ± l/z9/4 ) -z 
!t"",'" T z;:1 l/z7/4 =t= l/z9l4 e , (1.180) 

where 
l:c-:c/l 

Z = "----'-
li./moc 

The meaning of this result is that the eigenfunctions of the true position operator [z] in 
Schrödinger position representation are not 8(:c - :c'), as we would have expected from 
nonrelativistic quantum mechanies, but a kind of smeared-out 8 function. According to 
(1.180) the functions are smeared out over a region of the order 

1 . l' 1 '1 n z IV , unp ymg :c -:c IV - , 

moc 

Le. the dimension of the Compton wavelength of the particle. 

(1.181) 23 See Vol. 1 of this series: 
Quantum Mechanics-An Introduc
tion (Springer, Berlin, Heidelberg 
1989), Chap. 15. 

EXERCISE .................................................................. .. 

1.19 Calculation of the Current Density in the 
~ Representation for Particles and Antiparticles 

Problem. Calculate the current density (1.36) in the cP rep
resentation for partieles and antiparticles. 

Solution. By means of the Klein-Gordon field the current 
density reads 

j = _ ien (t/l*Vt/l - t/lVt/l*) 
2mo 

rp = (~) <P+X=t/l, 

j = - ien {rpt T3 (T3 + iT2)Vrp - (Vrpt)T3(T3 +ifl)rp}, 
2mo 

which can be verified by direct calculation, 

= ('1'*, x*) ( ~ ~ ) V (~ ) 

- [V(<p*, x*)] (~ ~) (~) 
= ('1'* + x*)V(<p + X) - V(<p* + x*)· ('I' + X) 

= t/l*Vt/l - t/lVt/l* 

Using 

rp = (;-lcp , rpt = cpt = cpt «(;t)-1 , 

where (; is given by (1.96), and, because of 

(UA t)-1 _ (A UA -1 A )-1 _ A-I UA A-l _ A UA A - 1"3 1"3 - T3 T3 - 1"3 1"3 , 

rp t (11 + Tl) Vrp = cpt T3 (;7j (11 + 7j) (;-1 VCP . 

Furthermore, 7j (7j + iT2) = 11 + Tl is valid. We commute 

(; with 7j to give 
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and we get 

because (; -1 commutes with 1 + 71. Since 

((;-1 f 
= 4mo~Ep ((Ep + mo;)ll - (Ep - moc2)71 f 
= 4mo~Ep ((Ep + moc2)2 ll + (Ep - moc2fll 

- 2(E~ - mijc4)71 ) 

1 .( (2 2 4) (2 2 4 A ) = 4moc2Ep 2 Ep + moc II - 2 Ep - moc )T1 

1 (24 A 2 A) = 2moc2 Ep moc (ll + Tl) + Ep(ll - TI> , 

and 

(1 + 71)(;-2 

= 2mo~ Ep { mijc4(ll + 71)2 + E~(ll - 71)(ll - 71) } 

= ~; (ll+71) , 
p 

then the current density is 

For a free particle solution !l>~) = l//V (Ö) exp[i(p • z -
Ept)/Ii.] we, thus, get for the current density 

;(+) _ 1 ep~ 
J -VE ' 

p 
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and the current 

.1+) = Jl+)d3r = e ;p 
Ep 

For a free antiparticle solution with momentum p, !l>~-) = 

l//V (~) exp[i(p • z + Ept] the current is then given by 

.1-) = Jd3r (.!..e c2p ) = e ;p = .1+) 
V Ep Ep 

Thus, we see at once that 

,,(±) _ Jd3 ",,(±)t A d[zct>l ""(±) 
J' - r'.l:'p 'T3 e dt '.I:'p 

= J d3 ""(±) t c2p ""(±) r'.l:'p e E '.I:'p , 
p 

Le. the current is equal to the expectation value of the 
operator 

d[zct>l 
e~ == ev . 
But why are the currents for particle and antiparticle with 
energy Ep and momentum p equal although the charges 
are different? The reason is that for antiparticles with mo
mentum p the velocity operator is _c2p/ Ep , i.e. velocity 
and momentum have opposite directions. The expectation 
value of the operator, however, has the same direction as 
p because the norm or "charge" of the wave function is 
included. To get the physical velocity we have to divide 
the expectation value of v by the norm of the state. This 
velocity again has opposite direction to the momentum. 
One says that the antiparticles move "backwards in time". 

EXERCISE ______________ _ 

1.20 Calculation of the Position Eigenfunctions 
in the Coordinate Representation 

Problem. Carry out explicitly the calculation leading from 
the exact expression (1.179) for the eigenfunctions of po
sition 

!Ji. (') 1 1 
z(±) z = (27r1i.)3 J4moc2 

J ( mo; ± Ep ) exp[ip. (z - Z/)/Ii. d3p 

mo; =f Ep yEp 



to the approximation (1.180). 

Solution. In the analysis of (1.179) we face, in particular, 
two integrals: 

11 = 1 ßp exp[ip • (:c - :c/)/h d3 p , 

lz = 1 ~ exp[ip • (:c - :c/)/n d3 p With 

p .(:c - :c') = Ipll:c - :c/l cos f) == pr cos f), p = Ipl ' 

and f) being the angle between p and (:c - :c'), we can 
introduce polar coordinates. With the z axes in the direc
tion of (:c - :c'), the volume element is given by d3p = 
dc.p d(cos f)) p2dp, and we have 

00 1 211" 

11 = 1 1 1 ~ m5c4 + p2c2 eCi!n)pr cos f} dc.p d(cos f))i dp 

o -1 0 

001 

= 27r 1 1 ~ m5c4 + p2c2 eCi/n)pr cos f} d cos f) p2 dp 

o -1 

001 « eCi/n)pr _ e -Ci!n)pr 2 
= 27r m 2c4 + p2c2 p dp 

o ipr/n 
o 

00 

= -i 2~n 1 ~ m5c4 + p2c2 2i sin(pr/n)p dp 

o 
00 

= 4~n 1 ~m5c4 + p2c2 sin(pr/h)pdp 

o 
We write 

p pr moc 
q = mo ' h = qz and z = T r == kor , 

and thus obtain 

47r(mo)3 ;--; 00/ 2 1/4 . 
11 = z Vmoc2 (1+q) qsm(qz)dq 

o 

== 167r3n3 Jmoc2B 

with 

k3 00 

B = ---L2 1 q(1 + q2)1/4 sin(qz)dq 
47r z 

o 

In an analogous way we find 

00 

47rn / ( 2 4 2 2)-1/4 
lz = -r- moc + p c sin(pr/n)pdp 

o 

47r(moc)3 
= z 

with 

Thus, 

The integrals A and B can be expressed by modified spher
ical Bessel functions (see Mathematical Supplement 1.21), 
giving 

Here we have used the Basset formula 

00/ cos(qz)dq ZV fo 
(q2 + l)v+1/2 = r(v + 1/2) Kv(z) . 

o 
These expressions far A and B can at once be verified by 
substitution. For large z the modified Bessel functions can 
be expanded as 
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[7r ( 4v2 -1 ) Kv(z) = V 2z e-z 1 + Sz + ... 

For v = 3/4 it follows immediately that 

K3/4(Z) ~ If e-z ( 1 + 3~z + .. .) 

~ (z3/4 K3/4(Z») 

~ ~ ~ [e-z (zl/4 + ~z-3/4 + ... )] 
z~l V'2 dz 32 

= Vi e- Z ( _zl/4 + :2 z-3/4 ... ) 

Thus, we have 

A kÖ (;2 1 1 -7/4 -z 
~ 47r2 V T r(5/4) 2z e 

For v = 1/4 we get 

If z( 3 1 ) Kl/4(Z) ~ -e- 1 - - - + ... 
z~l 2z 32 z 

d~ (zl/4 K1/4(Z») 

~ fi7r ~ [ -z( -1/4 _ 2 -5/4 )] 
2 d ez 32 z + ... 

z~1 z 

= E. e-z (_z-I/4 _ ~z-5/4 + ) V'2 32 ... 
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and, therefore, 

B kÖ P 1 (1) -z -9/4 
~ 47r2 V T r(3/4) -2 e z 

with the result that 

./, (') I k~ 
'f"z(±) Z 1.,-.,/I~h/moc--

Sv27r 

( 
1 -7/4 1 -9/4 ) 

-z r(5/4) z =F r(3/4) z 
xe 1 -7/4 1 -9/4 

r(5/4) z ± r(3/4) z 

EXAMPLE ............................ . 

1.21 Mathematical Supplement: Modified Bessel 
Functions of the Second Type, Kv(z) 

The modified Bessel functions are defined by the differen
tial equation 

2 d2y dy 2 2 
z - + z- - (z + v )y = 0 

dz2 dz 
(1) 

while the ordinary Bessel functions obey 

2 d2y dy 2 2 
z - + z- + (z - v )y = 0 

dz2 dz 
(2) 

(1) can be transformed into (2) by the substitution z -t iz, 
that is the modified Bessel functions are identical to the 
ordinary Bessel functions with imaginary arguments. 

Let us denote the solutions of (2) by Jv(z) and J-v(z), 
and the solutions of (1) by Iv(z) and Lv(z). For z -t 0, Iv, 
Jv are the regular, and J- v, I-v the irregular solutions. 
Then the following relation 

(3) 

holds. Jv(z) and Iv(z) are real functions of z, whereas 
J v(iz) is not. This is the reason for the special choice of 
the phase factor in (3). The second type of functions K v 

are defined by 

Kv(z) = ~ Lv(~) - Iv(z) 
2 sm V7r 

(4) 

The limit v -t n(n E N) exists (though will not be proved 
here) and is 



Kn(z) = ~ lim LI/(z) - II/(z) (n E N) . 
2 1/ -+ n sin vtr 

A few examples are: 

J1/2(Z) 
= fb sin Z 

V-; Z 

J-1/2(Z) = fb cos Z 
V~ Z 

= fb(Sin Z _ cos z) 
V~ z2 Z 

= fb(_ cos Z _ sin Z) 
V~ z2 Z 

JS/2(Z) = fb[(~ _ !) sin Z - ~ cos z] V ~ z3 z z2 

LS/2(z) = ~[ (:3 -~) cos z + :2 sin z] 

(5) 

(6) 

One may express the Bessel functions Jn+1/2(Z) in terms 
of the spherical Bessel functions jn(z). The relation24 is 
given by 

jn(Z) = [fJn+1/2(Z) . (7) 

In analogy to (7) also the following relations hold for the 
II/(z) and KI/(z): 

IS/2(z) 

LS/2(z) 

= fb sinhz 
V~ Z 

= fb coshz 
V~ z 

= fb(_ sinh z + cosh z) 
V~ z2 z 

= fb(+ sinh z _ cosh z) 
V~ z z2 

= - - + - smh z - - cosh z ~z [( 3 1). 3 ] 
7f' z3 z z2 

= - -- smhz+ - + - coshz ~z [ 3. (3 1) ] 
7f' z3 z3 z 

24 See, e.g. Afken, G.: Mathematical Methodsfor Physicists, 2nd edi
tion (Aeademie, New York 1970), p. S22. For a more extensive discussion 
of Bessel funetians, see Watson, G.N.: Theory 01 Bessel Funetions (Cam
bridge University Press, Cambridge 1966). 

(8) 

EXAMPLE ............................ .. 

1.22 The Kisslinger Potential 

The calculation of bound states of pions in atomic nuclei 
or the scattering of pions at atomic nuclei are complicated 
many-body problems which can not be solved without sim
plifications. However, we will now derive a kind of effec
tive potential to describe the strong interaction between the 
pion and the nucleus. The Lagrangian of the nonrelativis
tic pion-nucleon interaction (i.e. the interaction between 
pion and nucleon describing the processes 7f'- +p -+ n and 
7f'+ +n-+p) is 

eint = g;j}n U • V 4>t/J-p + h.c. 

= g(;j}nut/J-p) • (V 4» + h.c. , (1) 

where -rPn and -rPp are the neutron and the proton wave 
functions. The spin vector which is proportional to U acts 
on the nucleon wave function, whereas the gradient acts 
on the pion wave function 4>. This so called Chew-Low in
teraction describes quite weIl the low energy pion-nucleon 
experiments. The 7f'- meson (described by the wave func
tion 4» creates the transition of a proton into a neutron; 
the Hermitian conjugate term of (1) describes the transi
tion of a neutron into a proton by a 7f'+ meson (described 
by the wave function 4>*). 9 is the coupling constant for 
these reactions. The operator product u . V is rotationally 
invariant but not parity invariant. The parity invariance of 
the whole interaction is ensured by the pseudoscalar 4>(r). 

In the following we discuss the problem of how to de
scribe the interaction between one pion and many bound 
nucleons, starting with this free pion-nucleon interaction 
(1). The simplest approximation is to describe the interac
tion between the pion and nucleon by the free interaction 
between them. This is called the impulse approximation 
and is reasonable for pions interacting with only one of 
the nucleons inside the nucleus, Le. the other nucleons just 
appear in kinematic factors (e.g. altered energy-momentum 
balance of the nucleon). Since the 7f'-N interaction is of 
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short range ('" 1 fm), and the mean distance .x between the 
nucleons is larger than 1 fm, the impulse approximation 
should be applicable at least for low energies. To estimate 
the potential energy we assume that, on its way through 
the nucleus, the pion has several interactions in series, but 
that every interaction is only between the pion and one 
"free" nucleon. The model based on these assumptions is 
called the multiple scattering model.2S We shall now study 
the multiple scattering of pion and nucleus according to 

this model. The incoming state lin) and the outgoing state 
lout) of the pion-nucleus system are related by the S ma
trix S via 

lout) = Slin) (2) 

It is convenient to introduce a matrix R = S - n, Le. 
the case for no interaction (Iout) = lin» is subtracted. 
We consider the scattering of a particle with momentum 
p -+ p. Then, because of energy conservation, we have 

(p'IRlp) = 6(Epl - Ep)t(p -+ p') , (3a) 

where 

t(p -+ p') = lim (p'IT(Ep + ie)lp) 
e-+O 

(3b) 

The T matrix (transition-matrix) has a complex argument 
z = Ep +ic. To understand the intention behind this for the 
present, purely mathematical, manipulation, we consider 
the theory of Hermitian operators: 

Let Ho = p2/2mo and H = Ho + V. The corresponding 
Green operators or resolvents are defined by 

A (A )-1 Go(z) = z - Ho 
G(z) = (z - H)-1 (4a) 

provided the inverse exists. The name is easily understood 
since 

(z - Ho)Go(z) = n . (4b) 

Taking the matrix elements of Ho in coordinate space, we 
have, since Ho = -1i,2V2/2mo, 

A 1i,2V2 
(zIHolt/J) = - 2mo (zlt/J) (Sa) 

Equation (4a) yields 

2S K.M. Watson: Phys. Rev. 89, 575 (1953). 
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(Sb) 

and, after insertion of a complete set Iz'), 

or 

J d3x"(z - HO(z») (zlz")(z"IGo(z)lz') 

= (z - HO(z») (zIGo(z)lz') = 6(3)(z - z') 

Since z is a complex number, (5b) results, using (5a) (with 

It/J) = Iz», in 

(z - HO) (zIGo(z)lz') = 6(3)(z - z') 

and, thus, 

(~;:2 + z) (zIGo(z)lz') = 6(3)(z - z') 

In conventional notation (6a) reads 

(~;:2 + z) Go(z; z, z') = 6(3)(z - z') 

(6a) 

(6b) 

Thus Go is indeed a Green's function, Le the solution of a 
differential equation where the inhomogeneity is a point
like source (6 function). From the definition (4a) we see 
that Go and G do not exist for aIl values of z: If, say, En 

is an eigenvalue of H, Le. (En - H)ln) = 0, then G does 
not exist for z = En ! Obviously, the poles of G signal the 
eigenvalues of the system. Addition of an imaginary term 
to E, Le. z = E + ie defines the movement of the integra
tion around the pole.26 In particular it may be shown how, 
thereby, perturbations (waves) propagate into the future, 
thus ensuring causality. If H has a purely discrete spec
trum, En are the eigenenergies and {I n) } the orthonormal 
basis of eigenvectors, then, because of n = 2:n In) (n I, we 
obtain 

G(z) = (z - H)-1 = L In)(nl 
n z-En 

= L In)(nl 
n E - En +ie 

(7) 

26 A discussion of this subject may be found in Vo1.4 of this se
ries, Quantum Electrodynamics (Springer, Berlin, Heidelberg, to be pub
lished), Chap.2. 



Imz 

EI'" En Rez 

llIustration of a typical distribution of the eigenvalues of a Hamiltonian 
with discrete and continuous spectrum 

If, in addition to the discrete spectrum, H also has a con
tinuous spectrum, then a branch cut appears in the z plane 
from E = 0 to E = 00, because every E > 0 is an eigen
value. The branch cut runs along the whole z axis (see 
above figure). The operator identity 

where A = z - H and iJ = z - Ho, yields 

G(z) = Go(z) + Go(z)VG(z) 

which relates G and Go. 

(8) 

(9) 

lf A and iJ are exchanged, the following relation can 
also be derived: 

G(z) = Go(z) + G(z)VGo(z) . (10) 

Equations (9) and (10) are called the Lippmann-Schwinger 
equations. 

Next we define the operator 

T(z) = V + VG(z)V . 

Multiplication with Go from the lhs yields 

GoT = (Go + GoVG)V 

or, beause of (9), 

Go(z)T(z) = G(z)V 

(11) 

(12) 

(13) 

Inserting this result into (11), one arrives at the Lippmann
Schwinger equation for T(z), namely, 

T(z) = V + VGo(z)T(z) . (14a) 

For sufficiently sm all values of V this equation can be 
solved iteratively, starting with the so-called Born approx
imation l' ~ V. Substituting this approximation into (14a) 

we obtain l' ~ V + V Go V. Continuation of this procedure 
yields the infinite Born series given by 

l' = V + VGo V + VGo VGo V + .. , . (14b) 

We should bear in mind that this series does not neces
sarily converge for all V! However, further considera
tions of specific examples are based on the assumption of 
proper convergence of the Born series (14b), with which 
we have a method to handle the pion-nucleus problem: Let 
the Hamiltonian be of the form 

A 

H = T1r + Hnuc + L Va = Ho + V (15) 
a=I 

Here T1r is the free-pion Hamiltonian and Hnuc describes 
the nucleus, which we assume to be known. The Lippmann
Schwinger equation for l' is now given by (14b), using (4) 
for Go(E), so that 

AAl 
Go = (E - Ho + ie)- , e - 0+ . (16) 

As we have introduced l' as a scattering operator, we 
can write the multiple scattering solution (14b) as follows 

A '""' ff '""' I AI A AI T = L..J ta + L..J tal Gota2 

(17) 

The first term corresponds to the scattering at a single 
nucleon (summed over all nucleons), the second term de
scribes the scattering at two nucleons, etc. The notation 
~' means that a2 =I- aI, a3 =I- a2, etc. so that we exclude 
multiple scattering at the same nucleon. These terms are 
already contained in the definition of the t' matrix for the 
scattering of a pion at abound nucleon, which, according 
to (14), reads 

(18) 

t~ contains the total nuclear Hamiltonian through Go, and 
the free pion-nucleon amplitude ta obeys an equivalent 
equation, in which Hnuc in Go is replaced by a free one
nucleon Hamiltonian. Thus, t~ is a complicated many
body operator, whereas ta is not! The elastic scattering 
is given by 

Tel = (011'10) (19) 

Here 10) represents the ground state of the nucleus. In (19) 
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the integration over the coordinates of the nuc1eus has to be 
perfonned. Therefore, Tel depends only on the coordinates 
of the pion. Analogously to (14), we define the optical 
potential of the pion as 

Tel = V1l' + V1I'GoTei (20) 

for which, according to (17), 

(21) 

follows. Consequently, the pion wave function obeys the 
one-partic1e equation 

(22) 

In principle this optical potential always exists, but in gen
eral it is energy-dependent and non-Iocal, as we will see 
in the following. 

In order to proceed with out calculation, we have to 
make a number of approximations, which we shall now 
discuss: 

1) The Impulse Approximation. According to our previ
ous considerations, the scattering inside the nucleus is the 
same as free scattering and, therefore, 

(23) 

i.e. the complicated many-partic1e operator for the bound 
nuc1eon will be replaced by the one-partic1e operator ta . 

2) The Approximation of an Uncorrelated Nucleus. Nuc
leons are fennions. Thus, the wave function of the nuc1eus 
has to be antisymmetrical with respect 10 the coordinates 
of the nuc1eons. Instead, we use here products of the one 
partic1e wave functions which are not antisymmetrized (i.e. 
uncorrelated). For different nuc1eons (al'/: a2) this means 
that the nuc1eon, which is excited from the groundstate 10) 
to the state In) by tcx2 and then propagates freely through 
the action of Go, cannot be scattered back from the state 
In) into the groundstate by tal' i.e. 

(0Itcxt ln)Go(nlta2 10) = 0 . 

Only for In) = 10) (no scattering) is this equation not 
valid. At the same time this means that, for an elastic final 
amplitude, all the intennediate processes must be elastic 
too, so that the double scattering tenn in (21) becomes 
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L (tat Gota2 )el = L tat el Gota2 el 
CXt '/: a2 at '/: a2 

(24) 

3) Assumptlon of Coherence. This assumption implies 
that the nuc1eus remains in the groundstate the whole time 
during the scattemg process, or, in other words, inter
mediate states of the excited nuc1eus do not exist; the 
assumption of an uncorrelated nuc1eus (24) implies for 

al '/: a2 '/: a3··· 

(tat Gota2 GotCl:'j ... )el 
= tat el GotQ:2 el Gota2 el Gota3 el ... (25) 

In this sense coherence means that, though the pion 
scatters from nuc1eon 1 at the space point :z: I, the prob
ability of colliding again with the same nuc1eon at :z:i is 
still given by the ground-state wave function. However, the 
slowly moving nuc1eon will stay c10se to :z: I. The probabil
ity of colliding with the nuc1eon twice without exciting the 
nuc1eus is very small, because the consequence would be 
a large momentum transfer to the nuc1eon in the intenne
diate state. Nevertheless, we also assurne that for repeated 
scattering at the same nuc1eon (al> a2, a3 ... , not all ai 

are different) (25) is still valid, and 

(tat Gota2 Gotat )el ~ tat el Gota2 el Gotat el (26) 

According to previous statements, this assumption must 
be used with care, because one would actually expect that 
the backward scattering tenns (connected with large mo
mentum transfer) are negligible. With these three assump
tions, (17) reads as 

+ L tateIGotQ:2elGotCl:'jel + ... (27) 
at. a2. a3 

4) Assumption of a Heavy Nucleus: If the number A of 
nuc1eons is very large, we abandon the restrictions in the 
sums (27) i.e. we allow ai = ak (coherence). Furthennore, 
the number of the excited states is then very large, since 
the sums over ai can separately be perfonned, with the 
result 



Tel = (Eiael) + (Eiael) Co ( Eiael) 

+ (Eiael)Co( Eiael)Co( Eiael) + ... 

x (Eiael ) + (Eiael) Co Tel . (28) 

Comparing the result with the definition of V1r in (20), 
Tel = V1r + V1rCoTelo it follows that 

(29) 

because the elastic amplitude of the groundstate expecta
tion value is Tel = (011'10). The expression (29) is called 
the optical potential 0/ the lowest order, and is the first 
term of an infinite series for V1r . 

5) Absence of Recoil: The final approximation is to take 
the position of the nucleon after scattering a pion as un
changed (no recoiI), i.e. if r, r' are the pion coordinate 
and Rh R~ the coordinates of the first nucleon, we as
sume that 

(30) 

Here (k'lllk) is the Fourier amplitude of the scatter
ing of a pion at a free nucleon. From this we can now 
derive the optical potential of the lowest order, and, for 
that purpose, we integrate over Rl and R~ to obtain 

(r'li1ellr) 

= J J d3Rld3R~tPi(~)(r', ~Iidr, R1)tPI(Rt) 

= J J d3 k d3 k' e+ik' 0 r' (k'li Ik) 
(271")3 (271")3 1 

X e-ikor J; RdtPl (RdI2e+i(k-k')oRI (31) 

Summing over all nucleons for the calculation of 

t J ItPa(Ra) 12 e+i(k-k') 0 ROt d3 Ra 
a=1 

= A J e(R) e+i(k-k') 0 R d3 R = Ae(k - k') (32) 

Here e(R) is the nuclear density distribution per nucleon 
(therefore, the factor A for the number of nucleons), and 
eCk - k') its Fourier transform (form factor). Thereby, re
sults the generally non-Iocal potential according to (29), 

V1r(r, r') = (r'IV1rlr) = (r'l Eiaedr) 

= A I I d3 k d3 k' e +ik' 0 r' 
11 (h)3 (271")3 

x eCk - k')(k'lilk)e-ikor 

= ff d3k d3k' e+ik'or' (k'lV Ik)e-ikor . 
11 (h)3 (271")3 1r (33) 

Conversely, in momentum representation it clearly follows 
that 

(k'IV1rlk) = Ae(k - k')(k'lilk) . (34) 

For a better understanding of this result, first consider 
the simplest case: Let the incoming pion wave function 
be aplane wave with the momentum ko. Then the total 
wave function within the nucleus is a wave packet, cen
tred at ko, which we call tPko(k). The form factor of the 
nucleus Ae(k - k') has an extension of :::::: 1/ Rnucleus in 
momentum space, while the scattering amplitude for scat
tering at one nucleon is (k'lilk) :::::: 1/Rnucleon' By multi
plication of tPk (k) with e(k - k'), whose width is given o , 
by 1/Rnucleus ~ 1/Rnucleon, only the momenta k '" k '" ko 
contribute to the scattering amplitude, because the pion 
wave function tPko(k) is centred at k :::::: ko. Therefore, in 
(34) we can put 

(35a) 

According to (33), in coordinate space the Fourier-transfor
med expression follows as 

~ II d3 k d3 k' 
V1r = A(koltlko) 11 (271")3 (271")3 

+ik' 0 r' -ik 0 r (k k') xe e e-
~ ff d3 k d3k' 

= A(koltlko) 11 (271")3 (h)3 

+ik' 0 (r-r') -i(k-k') 0 r (k k') xe e e -

67 



= A(k Itlk ) J d3k' e+ik' • (r-r ' ) o 0 (271")3 

x J d3 K -iK·r (K) 
(271")3 e (! 

= A(koltlko)8(r - r'){!(r) (35b) 

The nonlocal potential acts on the pion wave function 
tf;1r(r') in coordinate space so that, e.g. the stationary Schrö
dinger equation for nonrelativistic pions reads 

- 2~ V 2 tf;1r(r) + J d3r'V1r (r, r')tf;1r(r') = Etf;1r(r) , 

(36a) 

or the Klein-Gordon equation, 

(~ ::, - ~2V2 + mij? ) .p(r, t) 

+mo J d3r'V1r(r, r')tf;(r', t) = 0 (36b) 

Clearly, the simple approximation (35a) has the effect 
that the generally non-Iocal potential of the pion-nucleus 
interaction is approximated by a loeal one. The 8 function 
in (35b) naturally ensures this. Furthermore, the 8(r - r')
function dispappears by integrating over r', which has to 
be done in (36a, b). The result is a "common" Schrödinger 
or Klein-Gordon equation, with a local potential that reads 

(37) 

The resulting potential is local, and proportional to 
the so called pion-nucleon forward seattering amplitude 

0{) = (koltlko) (38a) 

However, the potential V1r (r) = AO{){!(r) gives an insuf
ficient description of the pion-nucleus scattering experi
ments and it is a small step to assume, analogously to 
(38a)27, that 

(38b) 

This is the next best generalization to (38a), keeping rota
tional invariance. Insertion into (34) results (after Fourier
transformation into coordinate space, see next Exercise 
1.23) in 

27 L.S. Kisslinger: Phys. Rev. 98, 761 (1955). 
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V;tf; = AO{){!tf; - Aal V • ({!Vtf;) , (39) 

which represents the so called Kisslinger potential. It is 
obviously non-Iocal because it contains momentum opera
tors which are proportional to V. In view of a term propor
tional to V {! one may deduce a strong surface sensitivity in 
pion-nucleon-scattering, since the gradient of the nuclear 
density contributes mainly at the surface of the nucleus. 
By means of the Kisslinger potential most of the data of 
pion-nucleus scattering is quite weH described, although 
further evaluation is still plagued with certain difficulties 
(divergencies in the wave functions). 

EXERCISE ______________ _ 

1.23 Evaluation of the Kisslinger Potential in 
Coordinate Space 

Problem. Evaluate the Kisslinger potential in coordinate 
space, starting with 

(k'IV1rlk) = A{!(k - k')(k'ltlk) , 

together with (see previous Example 1.22) 

'I A , (k tlk)=ao+a1(k ·k) . 

Solution. In coordinate space one has 

V tf;1r = A J (ao + a1 k' • k){!(zo)tf;1r(z') eik' • (z-z,,) 

-ik.(ZI_Z ) d3 k d3 k' d3 'd3 
xe" (271")3 (271")3 Z Za 

where Za denote the space vectors of a single nucleon [see 
(31) and (32) of the previous Example 1.22]. Evaluating 
the firs"t term ao leads to (37) of the previous Example. 
Considering the second term we reexpress the momenta 
k, k' by k = iVZI, and k' = -iVz , where the gradients act 
on z and z', respectively: 

v' tf;1r = = Aal J e(za)tf;1r(z')V zeik' • (z~z,,) 

.V,e-iko(z'-z,,) d3 k d3 k' d3 'd3 
z (271")3 (271")3 Z Za 

Since there is no integration over z, we can take Vz out 
of the integrand and substitute VZI = - Vz", 



v' '1/11r = Aal V z ' J e(ZO/)'I/11r(Z') eik' • (z-z",) 

x (_ V ) e-ik'(z'-z",) d3k d3k' d3 'd3 
z", (27r)3 (27r)3 z ZO/ 

Evaluating the integral over k', 

V''I/11r 

= Aal Vz ' J e(zO/)'I/11r(z')( -1)6(z - zO/) ( - V z", ) 

X e-ik.(z'-z",) d3k d3z'd3 
(27r)3 ZO/ 

= Aal Vz ' J e(z)'I/11r(z')(+Vz ) 

-ik'(z'-z) d3k d3 , xe -- z 
(27r)3 

= Aal Vz • (e(z) J 'I/11r(z')(+Vz ) 

xe -- z -ik' (z'-z) d3 k d3 ,) 
(27r)3 

Next, performing the integration over k, one obtains 

v',;. = Aal V •. ( e(z) J ,;.(z'X + V. )6(z - z')d3 z') 
and, after partial integraton, 

V''I/11r = alAVz ' (e(z) { + J 'I/11r(z')6(z - z')d3z' 
surface 

-J (V 'I/11r(z')) 6(z - z')d3 z' } ) 

The surface term vanishes if the surface tends to infinity, 
and we are left with 

V''I/11r = -alAV· (eV'I/11r) , 

i.e. altogether 

EXAMPLE .............................. . 

1.24 Lorentz-Lorenz Effect in Electrodynamics and 
Its Analogy in Pion-Nucleon Scattering 
(the Ericson-Ericson Correction) 

In order to understand OUT motivation and the physical 
nature here, let us first recall the electrodynamical Lorentz
Lorenz effect. For this reason we consider the propagation 
of light in a dielectric medium. The electric polarization P 
is related to the electric field E via E = ap, a being the 
polarizibility. Accordingly, the D field is given by D = 
E+47r P= (1 + 47r/a)E. Considering the propagation along 
the z axis only, the fields E, D and H are proportional 
to exp[i(qz - wt)]. The fields E and D have only the 
components Ez and D z , i.e. the magnetic field consists 
only of the component H y • Maxwell's equations 

8D A 

-=VxH and 
8t 

18H 
V x E= --

c at 
imply 

.w D . H 
-1- z = -1q Y , 

c 
.w H =1- z , 

C 

and elimination of the component H y produces 

q2 
D z =c22 Ez 

w 

(1) 

(2) 

(3) 

Using the relation Dz = (1 + 47r/a)Ez one thus obtains the 
refractive index as 

c2 47r 
n2 = - =c; = 1 +-

v2 a 
(4) 

Also the phase velocity in a medium v = w/q is obtained 
from (3). In order to determine a we must have a c10ser 
look at the details of the scattering process. We choose 
electrons as the centres of the scattering process, assuming 
that they are harmonically bound by means of arestoring 
force f. The c1assical equation of motion of an electron 
moving in the z direction thus reads 

(5) 

where ~ denotes the elongation of the electron from its 
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equilibrium position. The frequency of this hannonic os
cillator is then given by w~ = f/mo, and the electric dipole 
moment per electron, pz = ee, leads to a moment per unit 
volume of 

(6) 

where {! stands for the electric charge density of the elec
tron. Under the influence of the external oscillating field 
E = ap, the electron performs forced oscillations, i.e. 
the total force acting on the electron is not given by the 
external field E alone, but by the resulting loeal field28 

E + (411"/3)P. This local field is the origin of the Lorentz
Lorenz correction! 

llIustration of the polarization in the surrounding of an electron under 
consideration 

To make this more evident let us assume that the os
cillating electron be surrounded by a small sphere (see 
above figure). The surface cuts some polarization vectors, 
which causes a charge per surface element du. The sur
face charge can be written as {!(1' = p. du. Since V • D = 0 
is valid if real external charges are absent. One can con
c1ude, in accord with Gauß's law, that the surface charges 
on the inner and outer side of the sphere are equal, i.e. 
(E· dS)inside = [(E + 411" p) • dS]outside. Averaging over all 

directions P cos2 () = P/3leads to (Ez)inside = (Ez)outside+ 

(411"/3)Pz in the x-direction. Accordingly, the equation of 
motion of the electron becomes 

which can be written in a more convenient form using the 
relation Pz = e{!e [see (6)]: 

mo ~Pz 411" f 
2 -d 2 = E z + -3 11" Pz - 2 Pz 
{!e t {!e 

(7) 

The requirement that the electrons should oscillate har
monically, i.e. 

28 See J.D. Jackson: Classical Electrodynamics 2nd edition (Wiley. 
New York 1975). 
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.. 2 
Pz +w Pz =0 , 

leads to the condition 

( f mow3 411") Ez = 2 - --3- - -3 Pz = aPz 
{!e {!e 

(8) 

For the hannonic case the frequency is given by w~ = 

f/mo. Considering n 2 = 1 + 411"/a we, further, obtain 

n2 _ 1 = 411" {!e2/mo 

(w~ - w2 ) - (411"/3){!e2/mo 
(9) 

In the above derivation the radiative damping, which leads 
to a complex refractive index, has been neglected If po
larization corrections [2nd terms in the denominator of 
(9)] are ignored, the refractive index diverges when the 
frequency of the external field reaches the resonance fre
quency (resonance catastrophe), i.e. n2 --+ 00 for w --+ w R. 

Thus the Lorentz-Lorenz correction prevents this catastro
phe for w = WR. 

Relation (9) is of the form used in optics, 

n2 - 1 = - 411"{!f(k w) 
k2 ' , 
o 

(10) 

where f(k, w) represents the forward-scattering amplitude 
of particles with momentum k and frequency w propagat
ing in a medium which is characterized by a density of 
scattering centers {!. The momentum of the incoming par
tic1e (light) is denoted by ko. This formulation suggests, 
in analogy to light scattering inside a medium with den
sity {!, the consideration of the scattering of a pion (initial 
momentum ko) at a nuc1eus with density {! by means of 
optical methods. 

Nucleon surrounded by a sphere free of nuclear matter 



In analogy to the Lorentz-Lorenz correction -47l'"ee2/3m5 
in (9), let us now derive the higher order correction in 
e of the "optical" potential of a pion29• For this purpose 
we assume that a nucleon - as a scatterer - pushes off 
allother nucleons in its vicinity, with the effect that, in 
a sphere with radius R enclosing the particular nucleon, 
there is no other nuclear matter in it (see above figure). 
In what follows we have to show, as in the electrostatic 
case, that the result is independent of R. Therefore, we first 
rewrite the Klein-Gordon equation for the pion containing 
the Kisslinger potential WIßt -t iw), 

(11) 

where a1 = Aal according to (39) of example (1.22). The 
first, less important term of the Kisslinger potential (39) 
has been neglected alltogether. This can be expressed as 

(12) 

The field <P7r must be continuous on each boundary. Thus, 
we can conclude that the rhs of (12) must be continuous 
at a boundary. In analogy to the continuity of D in the 
electromagnetic case, the normal component of 

(13) 

must also be continuous. To make this explicit we enclose 
each boundary by a (cylindrical) volume, as in the follow
ing figure. In the limiting case of the vanishing height of 
the cylinder, i.e. i1h -t 0, 

I V· (1 - aw)V<p7rdT = (1 - ale) I V<P7r' dF-tO. (14) 
r 

Since the rhs of (12) is continuous at the boundary, the 
expression (1 - ale) V <P7r • dF has to be equal on both sides 
of the boundary. There exists a direct analogy between 

(1 - a1 e)V<p1r +-+ D and 

V<P7r +-+ E . (15) 

lllustration of the cylinder with faces dF 
and height äh surrounding the bound
ary. The different media at both sides 
are indicated by (1) and (2) respectively 

29 G.E. Brown, W. Weise: Phys. Rep. 22,279 (1975). 

In order to pursue this further, we discuss the Chew
Low model which is based on the Lagrangian [see Example 
1.22, (1)] 

(16) 

For the pion it leads to the equation of motion 

(17) 

where 

u(r) = tpu'IjJ(r) , (h = c = 1) . 

Accordingly, the pion field couples to the spin-density 
u( r), and the <P7r field should be stationary, i.e. 

(18) 

We further assume that w rv m 7r , i.e. we study the case 
where nuclear effects may represent only a sm all correction 
to the binding. This is realized in pionic atoms; thus, 

:2 <p7r(r, t) = (-im7r)2<p7r(r, t) = -m;<p7r(r, t) . 

Inserted into (17) this leads to the Laplace equation 

(17a) 

As known from electrostatics3o, the Laplace equation 
(17a) can be solved by means of the Green function with 
the result 

(19) 

Vr ' is the gradient acting on r'. This shows explicitly that 
(gI47l'")V • u(r') plays the role of acharge density as in the 
electrostatic case. Analogously to the electric field E Eq. 
(14) yields 

(V<p7r - a1 e V <P7r )exterior • dF = (V <P7r )interior • dF, (20) 

which implies a surface charge 

es = -a1e(V<p7rJ)exterior· (21) 

30 See ID.lackson: Classical ElectrodyTUlmics, 2nd ed. (Wiley, New 
York 1975) or W. Greiner: Theoretische Physik 111, Klassische Elektrody· 
TUJmik (Harri Deutsch, Frankfurt 1989), Chap. 1. 
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V <P7r.l represents the component of V<P7r perpendicular to 
the boundary and gives rise to a contribution to V<p7r(r E 

surface), which we denote by (V <P7r )local> 

8(V <P7r )local == (V <P7r"mk:riar - V<P7rexkrior ) 

1 
= -3"al e(V <P7r)exterior (22) 

where the averaging < ) over all angles, Le. over the sm all 
sphere around the nucleon, has already been carried out. 
This term corresponds to the (47r/3)Pterm in electrostatics. 
Equation (22) is correct to the lowest order in al e. How
ever, note that if (V <P7r )local has to be corrected by the term 
(22), then the same has to be done for the Kisslinger term 
-aleV<p7r, i.e. we must write 

1 
8(V <P7r )local = - 3" a 1 e(V <P7r )local (23) 

The inftuence of the nucleon on the optical potential 
of the pion happens locally at the nucleon. From (23), 

1 
(V<p7r)local = (V<p7r) - 3"ale(V<p7r)local (24) 

and thus 

(25) 

Here we have renamed (V <P7r )exterior = V <P7r' because 
this is just the pion field inside a medium. Furthermore 
the corrections of the correction, etc. have summed up in 
terms of a geometrical series. The expression (25) repre
sents the Ericson-Ericson correction31 to the gradient of the 
pion field. Replacing (V <P7r )Kisslinger by (V <P7r )local in the 
Kisslinger potential leads to 

V;C·-E.-E. <p7r(r, t) 

= A ( aoe - V· { 1 +a~: ef3 V} ) <p7r(r, t) (26) 

as the new optical potential for pions inside a nucleus; and 
thereby, al = Aal is proportional to al. A more detailed 
analysis shows that the potential (26) is valid only in the 
limiting case k _ 0, because in the above derivation we 
restricted W of W '" m 7r . The dependence of W and k on 
ao is quite complicated, and for this reason al is fitted 
to experimental data. Until now no unique fit has been 
found32, because the corresponding experimental effects 
represent very small corrections. 

31 M. Ericson, T.E.O. Ericson: Ann. of Physics 36, 323 (1966). 

32 E. Friedrnan, A. Gal, V.B. Mandelzweig: Phys. Rev. Leu. 41, 794 
(1978). 
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2. A Wave Equation for Spin-i Particles -
The Dirac Equation 

We ßollow the historical approach of Dirae who, in 1928, searched for a relativistic 
covariant wave equation of the Schrödinger form 

(2.1) 

with positive definite probability density. At that time there were doubts concerning th~ 
Klein-Gordon equation, which did not yield such probability density [see (1.29)]. The 
charge density interpretation was not known at that time and would have made linie 
physical sense, because 7r+ and 7r- mesons as charged spin-O particles had not yet been 
discovered. 

Since an equation in the form (2.1) is linear in the time derivative, it is natural to try 
to construct a Hamiltonian that is also linear in the spatial derivatives (equality of spatial 
and temporal coordinates). Hence, the desired equation (2.1) has to be of the form 

(2.2) 

The - yet unknown - coefficients ai cannot be simple numbers, otherwise (2.2) would 
not be form invariant with respect to simple spatial rotations. We suspect that the ai are 
matrices and indicate this by the operator sign 1\. Then t/J cannot be a simple scalar, but 
has to be a column vector 

t/J = (~~~~:!~ ) 
t/J N(~, t) 

(2.3) 

from which a positive definite density of the form 

(2.4) 

can be constructed immediately. We still have to show that g(x) is the temporal component 
of a four-vector (current) for which a continuity equation must exist so that the spatial 
integral J gd3 x becomes constant in time. Only then is the probability interpretation of 
g(x) ensured. It is clear that the wave function t/J in (2.3) is a column vector analogous 
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to the spin wave functions of the Pauli equation1• Hence, we shall call them spinoTS, 
specifying this name later. The dimension N of the spinor is not yet known, but we will 
be able to decide this soon. The coefficients Oi and ß must obviously be quadratic N x N 
matrices so that a column vector of dimension N stands on the lhs as weIl as on the rhs 
(2.2). Thus the Schrödinger-like equation (2.1) and (2.2) represents a system of N coupled 
first-order differential equations of the spinor components tPi, i = 1, 2, ... , N. We also 
indicate this point in the notation and write (2.2) in the form 

. Ii, 8tPu li,c ~ (A 8 A 8 A 8) ./, 2 ~ßA ./, 
I 7ft = T L..J al 8x1 + a2 8x2 + a3 8x3 '/'T + moc L..J UT'/'T 

r-=1 UT r-=l 

N 

== L(Hf)UTtPT (2.5) 
T=l 

Equation (2.2) is a short form of (2.5), in which the four NxN matrices (Oi)UT (i = 1, 2, 3) 
and ßUT are expressed in the usual abbreviated form for matrices by Oi (i = 1, 2, 3) and 
ß respectively. To continue, we demand the following natural properties: 

a) the correct energy - momentum relation for a relativistic free particle 

(2.6) 

b) the continuity equation for the density (2.4) and 

c) the Lorentz covariance (i.e. Lorentz form-invariance) for (2.2) and (2.5), respectively. 

To fulfill requirement a), every single component tPu of the spinor tP has to satisfy 
the Klein-Gordon equation2, i.e. 

_1i,2 ~~U = ( _ li,2c2V 2 + mÖc4) tPu (2.7) 

On the other hand, from (2.2) it follows by iteration that 
",. 3 A A A A .... 2 

_1i,2 :tP2 = _ li,2c2 " aiaj ; ajai crtP 
U~ L..J 8xi8xj 

i,j=1 

li,moc3 3 A A 8tP A2 2 4 
+ -i- L (Oiß+ ßOi) 8 i + ß moc tP 

i=1 x 

1 See Vol. 1 of this series, Quantum Mechanies - An Introduction (Springer, Berlin, Heidelberg 1989) 
Chaps. 12, 13. 

2 Notice !hat the analogy to classcal electrodynarnics, where the six electromagnetic fields Ex, E y , E z , 
Hx, Hy , Hz satisfy the first-order differential equations (Maxwell equations) 

8E 8H 
(V x H) = -, (V x E) = - -, V· E = 0, V· B = 0 

cBt c8t 
in a vacuum. Each single component Ei and Hi satisfies simultaneously the differential equation of the second 
order (wave equation) 

(V2 - 2.. ~)Ei =0 and (V2 - 2.. ~)Hi =0 
Cl 8t2 Cl 8t2 

For further discussion of this analogy we refer to Exercise 2.1. 
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Comparison with (2.7) shows the following requirements for the matrices Ui, /3: 
UiUj + UjUi 

ui/3 + ßUi 
ur = /32 

= 28ij 11 , 

=0 , 

=11 (2.8) 

These anticommutation relations define an algebra for the t/J matrices. In order to establish 
hermiticity of the Hamiltonian fIf in (2.2), the matrices Ui, /3 also have to be Hermitian; 
thus, 

(2.9) 

Therefore, the eigenvalues of the matrices are real. Since, according to (2.8), one has ur = 1 and /32 = 1, it follows that the eigenvalues can only have the values ± 1. Because 
the eigenvalues are independent of the special representation3 this can best be shown in the 
diagonal representation of the single matrices. For example, Ui in its eigenrepresentation 
has the form 

c 
0 0 

1) a; = ~ 
A2 0 
0 A3 

0 0 

with the eigenvalues Ab ... , AN, and (2.8) now yields 

u? = 11 = , 

from which 

A~ = 1 

(~ 
0 0 ... ) 1 0 .. . 
0 1 

i.e. Ak = ± 1 

( ~l 
0 

.. "') A2 ...... 
2 

= 

... A7v 

(2.10) 

Furthermore, from the anticommutation relations (2.8) it follows that the trace (i.e. the 
sum of the diagonal elements of the matrix) of each Ui and of /3 has to be zero. Namely, 
according to (2.8) one has 

Ui = -ßUi/3 . 
Because of the identity 

3 This folIows, because AtP", = atP'" implies !hat 
••• -1 • • 
UAU UtP",=aUtP", , 

and, therefore, 

A' ( (; tP'" ) = a ((; tP", ) 

The solutions of the rotated matrix A' = (;.4(;-1 are just the rotated vectors tP~ = (; tP", with the same 
eigenvalues a. 
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tr AB = -tr BA , 

one concludes that 

trai = +tr ß2ai = tr ßaiß = -trai =? trai = 0 (2.11) 

The trace of a matrix is always equal to the sum of its eigenvalues, which can be seen if 
(; transforms the matrix ai into its diagonal form, 

...... ) 

...... uA A uA - l . = (ti 

... AN 

Then 

( ~l 
tr . 

which proves the above statement. Because the eigenvalues of ai and ß are equal to 
± 1, each matrix ai and ß has 10 possess as many positive as negative eigenvalues, and 
therefore has to be of even dimension. The smallest even dimension, N = 2, can not be 
right, because only three anticommuting matrices exist, namely the three Pauli4 matrices 
;h Therefore, the smallest dimension for which the requirements (2.8) can be fulfilled 
is N = 4. We now study this case in more detail and indicate immediately one possible 
explicit representation of the Dirac matrices, i.e. 

A (n ß= o (2.12) 

where Ui are Pauli's 2 x 2 matrices and 1 is the 2 x 2 unit matrix. With the explicit form 
of the Pauli matrices of (1.65), we have, in detail, 

C 
0 0 

D C 
0 0 -ü A 0 0 1 A 0 0 

(tl = ~ 1 0 (t2 = ~ -i 0 
0 0 0 0 

c 
0 1 

-D ·e 
0 0 

J) A 0 0 0 1 0 
(t3 = ~ 0 0 ß= 0 0 -1 (2.13) 

-1 0 0 0 0 

Indeed, we can easily check the validity of the relations (2.8). For example, 

4 See Vol.l of this series, Quantum Mechanics - An Introduction (Springer, Berlin, Heidelberg 1989), 
Chaps. 12, 13 and especially Exercise 13.1. 
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- I) (
<7'<7' 

- 0 

= ((,i(,j ~ (,j(,i 26~.n) I) 

= 26ij (g ~) 

holds. Here we have used the relation for the Pauli matricesS 

(2.14) 

We also notice that (2.12) describes just one possible choice of the Dirac matrices ai, ß. 
Each set ai = (; a/;-l, ß' = (; ß(;-l, which is obtained from the original ai, ß of (2.13) 

by a unitary transformation (;, can be used equally as weH as the one introduced here [see 
(2.21)]. In Example 3.1 it will be shown that all representations of the Dirac algebra are 
unitarily equivalent to each other. Therefore, physical results do not depend on the special 
choice of the Dirac matrices ai and ß, but the calculations can become particularly simple 
in a certain representation. 

Next we want to construct the four-current density and the equation of continuity. 

For that we multiply (2.2) from the left by tP t = (tPi, tP2' tP3' tP,!) and obtain 

ilitP t ~tP = ~c t, tP t ak 0 k tP + mo c2 tP t ßtP 
8t 1 k=l ox 

(2. 15a) 

Furthermore, we form the Hermitian conjugate of (2.12), Le. 

-ili otP t = _ lic t, otP tat + moc2 tP t ßt 
ot i k=l oxk k ' 

and multiply this equation from the right by tP, taking into consideration the hermicity of 

the Dirac matrices (ar = ai, ßt = ß), to give 

otPt lic 3 otPt 2 tA 
-ili-tP = --:- L.: -k aktP + moc tP ßtP 

ot 1 k=10X 
(2. 15b) 

Then, subtraction of (2. 15b) from (2.15a) yields 

(2.16) 

or 

(2.17) 

5 This relation is covered in detail in Vol. 1 of this series, Quantum Mechanies - An Introduction (Springer, 
Berlin, Heidelberg 1989). 
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where 

4 

(! = t/J t t/J = L t/J*t/Jj 
i=1 

is the positive definite density (2.4) and 

l = ct/J t &kt/J or j = ct/J t &t/J 

is the current density. Here we have symbolically introduced the three-vector 

(2.18a) 

(2. 18b) 

(2.19) 

and introduced the upper and lower indices according to our former convention [see (1.5) 
and (1.6)]. From (2.17) the conservation law follows immediately in the usual way 

! J d3 xt/J t t/J = - J div jd3 x = - J j . df = 0 (2.20) 

v V F 

where V denotes a certain volume and F its surface. Since (! is positive definite and because 
of the conservation law (2.17) we can accept the interpretation of (! as a probability density 
[in contrast to the density (! obtained for the Klein-Gordon equation, see (1.29) which was 
not positive definite]. Accordingly, we call j the probability current density. Here we 
have presumed that j is a vector, i.e. that its components (2.18b) transform under spatial 
rotations as the components of a three-vector. This still has to be shown. Furthermore, 
{C(!, j} should form a four-vector. Hence, it should transform from one inertial system into 
another one by a Lorentz transformation. This point and, in addition, the form invariance 
of the Dirac equation (2.2) with respect to Lorentz transformations (we also call the form 
invariance covariance) have still to be shown, before we can regard the Dirac equation as 
an acceptable relativistic wave equation. 

We also notice that we have achieved a special representation with (2.12). The choice 
of the matrices (2.12) is not unequivocal. One recognizes immediately that each unitary 
transformation S yields the matrices 

(2.21) 

which also satisfy the algebra (2.8). We check this for the first commutator (2.8), as an 
example: 

S&jS-l S&jS-l + S&jS-l S&iS- 1 = 2OjjSnS-1 

=? &~&'. + &'.&'. = 26·· n I) ) 1 I) (q.e.d.) 

EXERCISE ................................................................ .. 

2.1 Representation of the Maxwell Equations 
in the Form of the Dirac Equation 

Problem. Write the Maxwell equations 

1 oH 1 oE 411'. 
curl E + ~ Ot = 0 curl H - ~ 7ft = ---;: J 
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(a) 

in the form analogous to the Dirac equation (spinor equa
tion): 

1.0 A' 0 411' 
--;- L...JOo)-.tjJ = --~ 

1 j=O ox) c 
(b) 



Detennine the matriees M and their eommutation relations 
and deduee the wave equation for 1/J from (b). 

Solution. We define the four-eomponent eolumn vectors 

~= (~) Md ~= (E) (I) 

where </>0 = cg, </>1 = iI = jz, </>2 = 12 = jy, </>3 = i3 = jz. 
Furthennore, we have xO = xO = ct, xl = -xI = x, x2 = 
-x2 = y, x3 = -x3 = z. Now we define the eomponents 
of 1/J as 

1/J0 == 0, 1/JI = HI - iEI' 

~=~-~,~=~-~ rn 
From this definition it follows that the matriees &i have 
partly real and partly pure imaginary matrix elements. From 
(b) we get the equation 

1 (AO 1 0 AI 0 A2 0 A3 0 ) --; a - -1/J + a -1/J + a -1/J + a -1/J 
z c Ot ox oy oz 

411" =--. ~ c 

Denoting now the matrix elements of the matriees &j by 

a{k we ean write down the eomponents of (3) explicitly. In 
the same manner we write the eomponents of the Maxwell 
equations (a) and eompare the eoeffieients of both systems 
oi equations. In order to obtain the eorreet signs in the 
Maxwell equations using (2) we infer, as there appears a 
faetor -l/i, that the a{k only take values ± 1 or ± i. 

Important Remark. As 1/J0 = 0, this procedure detennines 
the eolumns 1,2,3, but not eolumn O. We ean fix the re-
maining eolumn by requiring that M is Hermitian and that 
(M)2 = 11. For the matries M we now find 

&O=ß= G 
0 0 

D 
1 0 
0 1 
0 0 

&I=U 
-1 0 

-D 
0 0 (4) 
0 0 
0 

&2=e 
0 -1 

D 
0 0 

-1 0 0 
0 -i 0 

o 
o 
i 
o 

o 
-i 
o 
o 

and the operators M are Hermitian. We see immediate1y 
that traee M = 0 holds for j = 1, 2, 3 and, thus, we obtain 
the eommutation relations 

&1&2+&2&1=0, &1&2=i&3 , 

&2&3 + &3&2 = 0 , &2&3 = i&1 

&3&1 + &1&3 = 0 , &3&1 = i&2 and 

(&1)2 = (&2)2 = (&3)2 = 1 

U sing these, we infer from (b) that 

(5) 

(6) 

(7) 

as the mixing tenns are proportional to the antieommuta
tors (5) and henee vanish. This means, from (3) and (7), 

411" 3 . 0 
D1/J = -. E &J -. • . (8) 

1 j=() OxJ 

Henee, if there are no source terms (. = 0) the eomponents 
of 1/J, that is the eomponents of the eleetromagnetie field, 
obey a wave equation. If there are sourees present, then 
for the upper eomponent of (8) with 1/J0 = 0 

E o</>~ = og + div j = 0 
j=O oxJ Ot 

(9) 

follows as a necessary eondition of a solution of (b). Ob
viously, (9) is just the eontinuity equation. We also ean ree
ognize the analogue to the Dirae equation in the Sehrödinger 
form: 

( 1 0 A) -i Ot - Ho 1/J = -411". , (10) 

where Ho = (l/i) 2:~=1 &k%xk has the same form as the 
Dirae Hamiltonian for vanishing mass mo. 
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2.1 Free Motion of a Dirac Particle 

We examine the solution of the free Dirac equation (2.2) (that is, the Dirac equation 
without potentials) and again write it in the fonn 

'Ii 8t/J HA ./. (A A 2ßA) ./. 
I 8t = f'l-' = ca· p + mOc '1-" 

Its stationary states are found with the ansatz 

t/J(~, t) = t/J(~) exp[ - (i/Ii)ct] , 

which transfonns (2.2) into 

ct/J(~) = iIft/J(~) . 

(2.22) 

(2.23) 

(2.24) 

Again the quantity c describes the time evolution of the stationary state t/J(~). For many 
applications it is useful to split up the four-component spinor into two two-component 
spinors 4> and X' i.e. 

(2.25a) 

(2.25b) 

Using the explicit fonn (2.12) for the 0: and ß matrices (2.24) can be written as 

or 

A A 2 
cl.{) = cu • PX + mOc I.{) , 

A A 2 
cX = cu . PI.{) - mOc X (2.26) 

States with definite momentum P are 

(~) = (~~) exp[(i/Ii)p.~] . (2.27) 

The equations (2.26) are transfonned into the same equations for 4>0 and xo, but replacing 
the operators p by the eigenvalues p. Ordering with respect to 4>0 and xo results in the 
system of equations 

(c - moc2) 111.{)0 - cu· pxo = 0 , 

-cu· PI.{)O + (c + moc2) lIxo = 0 (2.28) 

This linear homogenous system of equations for 4>0 and xo has nontrivial solutions only 
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in the ease of a vanishing determinant of the eoeffieients, that is 

I (e _-c:o.Clp) II -cir • p I 
u (e+moCl)ll =0 . 

U sing the relation6 

(ir • A)(ir • B) = A • Bll + iir • (A x B) , 

equation (2.29) transforms into 

(e2 - möc4) ll- c2(ir. p)(ir. p) = 0 , 

e2 = möc4 +~p2 , 

from which follows 

e= ±Ep , Ep =+cJp2+ möc2 

(2.29) 

(2.30) 

(2.31) 

The two signs of the time-evolution faetor e eorrespond to two types of solutions of the 
Dirae equation. We eall them positive and negative solutions, respeetively. From (2.28), 
for fixed e, 

c(ir • p) 
XO = ') + <PO moc- e 

(2.32) 

Let us denote the two-spinor <PO in the form 

<PO = U = (g~) (2.33) 

with the normalization 

utu = UiUI + UiU2 = 1 

where UI, U2 are eomplex. Using (2.27) and (2.23) we obtain the eomplete set of positive 
and negative free solutions 0/ the Dirae equation as 

e 
............... 

( 

(
A U ) ) exp[i(p.:c - >"Ept)jli] 

wpA(:c,t)=N cu·p U 3 
m oc2 + >"Ep V27r1i 

(2.34) 

Here >.. = ± 1 eharaeterizes the positive and negative solutions with the time evolution 
faetor e = >"Ep• The normalization faetor N is determined from the eondition 

(2.35) 

Henee, 

6 Encountered previously in Vol. 1 of this series, Quantum Mechanics - An lntroduction (Springer, Berlin, 
Heidelberg 1989), Exercise 13.2. 
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E 

Fig. 2.1. Spectrum of the eigenval
ues of the free Dirae equation 

N2 (utu + Ut c?(o- 0 p)(o- 0 p~ u) = 1 
(moc2 + )"Ep ) 

or, using (2.30) 

= 

= 

= 

= 1 

(m6c4 + c2p2) + 2moc2 )"Ep + E~ 

(moc2 + )"Ep )2 
2 (moc2 + )"Ep)"Ep 

(moc2 + )"Ep ) 

2)..Ep 
(2.36) 

The spectrum of C:p>.. = )..Ep , corresponding to the spinors !Vp>..(:z:, t), is shown in 
Fig. 2.1. There appears - as in the case of the Klein-Gordon equation - a domain of 
positive and negative frequencies ("energy eigenvalues"). We will discuss the interpretation 
of the states with ).. = -1 in detaillater on. We now recognize that all states (2.34) are 
eigenfunctions of momentum 

(2.37) 

For every momentum p there are two different kinds of solutions, those with ).. = +1(c: = 
+Ep ) and those with ).. = -1(c: = -Ep ). We will now show that another quantum number, 
the helicity, can be used to classify the free one-particle states (2.34). First we note that 
the opertor 

A (0-lJop= 0 0) A 0- op (2.38) 

commutes with the free Dirac-Hamiltonian operator Hf [cf. (2.2)]. Here 

~) (2.39) 

is the four-dimensional generalization of the spin vector operator7 • We calculate 

[Hf, i7 0 pL = [c&oP+ßmoc2, i7 0 pL =c[&op, i7 0 pL 
7 See Vol. 1 of this series, Quantum Mechanics - An Introduction (Springer, Berlin, Heidelberg 1989), 

Chaps.12,13. 
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as ß is a diagonal matrix and hence [ß, EL = O. Furthermore, we obtain 

Hence, 

and naturally 

[p, EopL =0 , 

(ft 0 p)2) 
=0 o 

(2.40a) 

(2.40b) 

This means that E 0 p, fIf and p can be diagonalized together. The same holds for 
the helicity operator 

~ h~ P ~ P 
As = "2 E 0 iPT = S 0 iPT (2.41) 

as we can immediately see by repeating the calculations which led us to (2.40a, b). He
licity has an obvious interpretation: it is the projection of the spin onto the direction of 
momentum, as illustrated in Fig. 2.2. 

If the electron wave propagates into the direction of the z axis, we have 

p = {O, 0, p} 

o 0 
-1 0 
o 1 
o 0 J) 

with the eigenvalues ± h/2. Clearly, the eigenvectors of 1s are 

(~) (UOI) (~J ( 0) with 
u-I 

UI=(6) and U-l=(~) 

(2.42) 

(2.43) 

Now we can classify eompletely the free Dirae waves propagating in the z direction; we 
denote them by !Jtpz• A. SZ (:I:, t) and write explicitly 

!Jtp•A.+ll2 = N ( m.~~) (1)) exp[i(pz - >'Ept)/h] (2.44a) 

moc2 + >'Ep 0 
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Ca) (b) 

Fig.2.2. Electrons with positive (a) 
and negative (b) helicity. The dou
ble arrow denotes spin . .() and G. 
symbolize the two possible rota
tions of the electron 



+ mo?:+====== 

Fig.2.3. The nesative energy states 
with E < mocZ are occupied by 
electrons and form the "Dirae sea". 
As we shall see later on in greater 
detail, they represent the vacuum 
state and are unobservable; where
as real, Le. observable, electrons in 
general exist only in states of pos
itive energy 

tJi'p,>.,-l/l = N ( cu.~n (0)) exp[i(pz - .AEpt)/h] 

moc2 + >'Ep 1 

(2.44b) 

From (2.35) one immediately recognizes the validity of the orthonormality relations 

(2.45) 

2.2 Single-Particle Interpretation of the Plane (Free) Dirac Waves 

In this section we shall examine the single-particle interpretation of the free Dirac equation 
and its solutions in greater detail. Many of our considerations will be similar to those 
carried out when discussing the Klein-Gordon equation and, indeed, we can already remark 
at this stage that we will find that a single-particle interpretation can be performed to a 
large extent after a suitable modification of the operators. However, such an interpretation 
will not stand a rigorous treatment. 

First we shall discuss the interpretation of the energy. From (2.31) we know that 
the eigenvalues of the free Dirac-Hamiltonian Hf (2.2) are c; = ± Ep• As in the previous 
discussion of the Klein-Gordon equation we have to find out whether the time evolution 
factors can be interpreted as energies. In order to answer this question we use the canonical 
(Lagrange) formalism. In the following Exercise 2.2 it is shown that the Lagrange density, 
leading to the free Dirac equation (2.2) is given by 

C = ihw t ! W + ihcw t V • &wG - moc2w t ßW , (2.46) 

and, using this result, we will also calculate, as previously in (1.59-61), the energy related 
to the free solutions (2.44) of the Dirac equation. The result is that 

E = c; = ±Ep (2.47) 

is identical with the energy of the states. This is different from the case of the Klein
Gordon equation: The free Dirac equation posesses positive and negative energy solutions, 
whose energies are given by (2.47). What is their interpretation since there is none in the 
framework of a one-particle theory? With the proposal of the hole theory, Dirae showed 
the following way out of this diffieulty: let us assume that real eleetrons are deseribed 
only by positive energy states (2.47), these are the states with E = + Ep• All states of 
negative energy are oceupied by eleetrons, one electron in each state of negative energy 
and given spin projeetion [see (2.44)]. This is illustrated in Fig.2.3. 
In this way areal electron of positive energy is also prevented from falling into energet
ieally lower and lower states by radiation emission. A radiation eatastrophe of this kind 
is averted by the effeetive Pauli principle which simply does not allow these transitions. 
On the other hand the question arises as to the meaning of a hole in this oceupied "sea 
of ilegative states". Later on in Chap. 12, we will see that this leads to a meaningful de
seription of the positron (the antiparticle of the eleetron). One thing should already have 
beeome clear here: The interpretation of the negative energy states of the Dirae equation 
takes us out of the one-particle picture and into the many-particle picture (more precisely, 
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infinitely many particles are necessary for the formation of the Dirac sea). Therefore a 
consistent single-particle interpretation of the Dirac theory is not possible, a fact which 
is contrary to Dirac's initial intentions. Figure 2.3 gives an especially clear view of this 
aspecl. 

However, we pursue the single-particle aspect further and devote ourselves to the 
investigation of modified one-particle operators and to Ehrenfest's theorems. This way, 
perhaps, a consistent single-particle description can be obtained. For this it is helpful to 

introduce the sign operator A, 

A = Hr = ca . p + ßm oc2 

fiii c) p2 + mijc2 
(2.48) 

Of course it commutes with the free Dirac-Hamiltonian Hr. Furthermore, Ais Hermitian 
and unitary, Le. 

In momentum representation A has an especially simple form, that is 

A c(a • p) + ßmoc2 
A = ---''----'---''--

Ep 

The name "sign operator" comes from the fact that 

A!li: =..!:...-!li: = >..Ep!li: = >"!li: p,'>',sz E p,'>',sz E p,.>.,sz p,.>.,sz 
p p 

(2.49) 

(2.50) 

(2.51) 

A has as eigenvalue the sign >..( = ± 1) of the time-evolution factor. >.. = + 1 means positive
energy states, >.. = -1 negative-energy states. An arbitrary state with fixed >.. can be written 
in the form 

tP.>. = ~ J A sz (p)tPp,.>.,szd3p . 
Sz 

We can use A in order to introduce the projection operators fI ± by 

with the useful properties 

ktP'>'=+l = tP'>'=+l 

A+tP'>'=_l = 0 • 

A_ tP'>'=+l = 0 , 

A-tP'>'=-l = tP.>.=-l 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

The operators A± split off the positive (or negative) parts of the state to which they are 
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applied. As earlier, in the eontext of the Klein-Gordon equation [cf. (1.160, 161)pp], we 
eall operators "even" or "odd" if they transform positive (negative) funetions into positive 
(negative) or negative (positive) funetions, respectively. The produet of two even or two 
odd operators is always an even operator, and the produet of an even and an odd operator 
is always an odd operator. Sinee all positive funetions (.x = ± I) are orthogonal with 
respect to all negative (.x = -I) funetions, the expectation value of an odd operator with 
states of fixed .x is always zero; henee, 

A eonsistent one-particle theory ean only use states with a specified sign (either .x = +1 
or .x = -I), because the energy ean only be defined meaningfully in that way (cf. our 
preeeding diseussion). However, from that it follows that in a consistent one-particle theory 
all physical quantities must necessarily be defined by even operators. In the following we 
shall see that for Dirac's theory, Ehrenfest's theorems follow under this eondition too, 
i.e. the quantum-mechanieal operator equations and the eorresponding classical equations 
beeome identieal. Onee again this means that the mean-values eomply with the classical 
equations, a fact which is quite signifieant. We formalize these eonsiderations by splitting 
up every operator A into an even [A] and an odd {A} part 

(2.56) 

If we simply write in short form w± for w).= ± 1 we obtain 

(2.57a) 

(2.57b) 

(2.57e) 

(2.57d) 

Henee, it follows by, say, addition and subtraetion of (2.57a) and (2.57e) or, also, (2.57b) 
and (2.57d) that 

[A] = ~(A + AAA) , {A} = ~(A - AAA) . (2.58) 

We immediately reeognize that the free Dirae Hamiltonian Hr is an even operator sinee 

AHrA = Hr and therefore [Hr] = !(Hr + AHrA) = Hr . 
EXERCISE ................................................................ .. 

2.2. Lagrange Density and Energy-Momentum 
Tensor of the Free Dirac Equation 

Problem. Determine the Lagrangian density of the free 
Dirae field. Caleulate the energy-momentum tensor and 
intetpret the individual results. 
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Solution. We claim that the free Dirae Lagrange density 
has the form 

(1) 

-:;r,:= 'l/J t "(0 is ealled the spinor adjoint to 'l/J and the abbre
viation "(IJ stands for "(0 = ß, "(i = ßai [cf. Chap.3 (3.8)]. 



Also 0,,:= O/ox" is a shorthand notation. Straight away 
we introduce these "(" matrices instead of the &i and ß, 
but will revert to the &i, ß representation in all important 
sections. The "(" are appropriate for the covariant formu
lation of the Dirac equation. The Lagrangian density (1) 
can therefore be rewritten as 

C = 'ljJ t i1tOt'ljJ + c'ljJ h1t"(o "(i oi'ljJ - moc2'ljJ t "(0'ljJ, (2) 

since "(0 = "(0. Because of Oi = o!8x i = (V~, this yields 

C = 'ljJt (i1tOt + i1tca· V - mo c2 "(0 )'ljJ 

= 'ljJt ( i1tot - ca.p - ßmoc2)'ljJ , (3) 

which uses the &i, ß matrices instead of the ,,(". We realize 
that this is the corret Lagrangian density if we determine 
the equations of motion by variation. Variation with respect 
to -:;j; yields 

8 J cctx = 0 oC OC 
8'ljJ :::} o-:;j; - 0" 0(0,,'ljJ) = 0 

:::} (ci1t"(" 0" - moc2) 'ljJ = 0 

This is Dirac's equation 

i1tßt'ljJ = (a . p + ßmoc2)'ljJ 

== Hf'ljJ 

with the free Hamiltonain 

A A 2) Hf (ca • p + ßmOC . 

(4) 

(5) 

(6) 

We recognize that for the solutions of the equations of 
motion (5) 

8C('ljJ) == 0 . (7) 

Variation with respect to 'ljJ yields 

(8) 

+- -
where 0 I' acts to the lhs on 'ljJ. One can easily calculate 
the canonial energy-momentum tensor from the Lagrangian 
density C: 

T" = oC 0 ./. + oC 0 y. - 8" C (9) 
v 8(0,,'ljJ) V'f/ 0(0,,'ljJ) V'f/ v , 

which follows explicitly with (1) as 

Tl'v = -:;j;i1t"("ov'ljJ - 8~-:;j;i1tc"(u ou'ljJ + 8~moc2-:;j;'ljJ . (10) 

From that one obtains the energy density ~o' 

~o = -'ljJti1ta. Vc'ljJ + moc2-:;j;'ljJ 

= 'ljJt (a. pc + ßmoc2)'ljJ = 'ljJt Hf'ljJ (11) 

Consequently 

(12) 

(that is, the energy), is just the expectation value of Hf 
in the state 'ljJ. By analogy the momentum density ~i is 
given by 

(13) 

in other words, Pi == O/c) J~id3x = ('ljJI(P)il'ljJ) is the 
expectation value of the momentum operator in the state 
'ljJ. The components 

(14) 

which can simply be written for each solution of the equa
tion of motion as 

T~ = -:;j;i1tC"fiOj 'ljJ = _-:;j;"(ipjc'ljJ = _'ljJt&ipjc'ljJ, (15) 

are called the components of the stress-strain tensor. The 
trace of T"v is given by 

(16) 

which, for every solution of the equation of motion, just 
becomes 

(17) 

One should notice that this is not proportional to the charge 
density 

(18) 
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EXERCISE ______________ _ 

2.3 Calculation of the Energies of the Solutions 
to the Free Dirac Equation in the Canonical 
FormaIism 

Problem. Calulate in the framework of the eanonical for
malism the energies of the solutions (2.44) of the free Dirae 
equation. 

Solution. We ean determine the energy as the integral 

E = J yrOod3x . (1) 

V 

If we insert (11) of Exereise 2.2 as weH as the solutions 
(2.44a) for 'ljJ into this, we obtain 

Sinee for (2.44) p = (0, 0, p) holds, we get by ealeulation 

2 (11 +moe 0 

2 ( pe ) = N V 1, 0, 2 >..E' 0 
moe + p 

x (pe ( moli >..EP
) + moe2 ( -~e ) 

1 moc2 +>"Ep 
o 0 

2 (2p2e2 2 moe2p2~) = N V +moe - 2 
moe2 + >"Ep (moc2 + >..Ep ) 

= N 2V ( moe2 + >"Ep ) -2 ( 2p2 e2moe2 + 2p2 e2 >"Ep 

+ möe6 + 2m5e4 >"Ep + möe6 + moe2p2e2 - moe2p2e2) 

= N 2V ( moe2 + >"Ep ) -2 (2(>..Ep )3 + 2möe6 

+2moe2p2e2) 

= N 2V( moe2 + >"Ep )-12>..2 E; (3) 

Here we have used wave funetions which are normalized 
with respect to a finite spherieal volume V. If we further
more insert the normalization faetor N from (2.36) 

N2 _ V-I ( 2>"Ep )-1 
- m oc2 + >"Ep 

(4) 

we finally obtain 

E=>"Ep , 

that means 

E = +J~c2 + m5e4 

for the upper energy eontinuum (>.. = + 1) and 

E = -J~c2 + m5c4 

for the lower energy eontinuum (>.. = -1). Henee, the free 
Dirae equation leads to states with positive and negative 
energy. 

As for the Dirae Hamiltonian Hf, for the momentum operator p also 

ApA = p , so that [P] = p . 

Let us also determine the even part of the & operator. We have 
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and therefore 

[ A] 1 (A AA A AA) A A 
(}j = - (}j + (}j = CPj--;==== 

2 cJp2 +m5c2 
(2.59) 

In a similar way one calculates 

(2.60) 

Now we determine the velocity operator in the Dirac theory. Since we are concemed 
with an equation of Schrödinger type [cf. (2.2)], the theorems for the time derivatives of 
operators which we formulated in (1.157) are also valid here and we obtain 

dz 1 [ A] Ti = in z, Hf -
1 [ A ( A A) ßA 2] = in :c, ca· p + moc _ 

c [A A A] A A = in :c, a . p _ = ca == v (2.61) 

Since the eigenvalues of & have the values ± 1 we obtain here the paradoxical result that 
the absolute value of the velocity of a relativistic spin-i particle always equals the velocity 
of lights. Moreover, since the O:j do not commute with each other the components of the 
velocity d:Cj/dt would not be simultaneously measurable. Of course, this is nonsense 
and certainly would not yield the classical relations for the mean values (Ehrenfest's 
theorems). According to previous statements, however, we find, using (2.59), the true 
velocity operator, that is the even part of dz/dt, to be 

(2.62) 

Accordingly, the true velocity equals ~PlEp for positive and -~PlEp for negative free 
solutions of the Dirac equation. This exactly corresponds, for positive solutions, to the 
classical picture. For waves with negative energy the result is paradoxical in the first 
instance since their velocity is directed against their momentum. Therefore particles with 
negative energy behave formally as if they would have a negative mass. Later on we shall 
comprehend these facts better in the context of the hole theory (Chap. 12). Accordingly, 
the motion of a single particle can be visualized as follows (cf. Fig.2.4). The particle has 
to perform - if we adhere to the one particle interpretation - a kind of Zitterbewegung 
(trembling motion) around the classicallocation [:cl (classical trajectory). 

Now we investigate the result (2.62) from yet another point of view. If we consider 
wave packets built up from free Dirac waves, we show that only the mean of the centre 
of the wave packet generally follows a classical trajectory. 

In order to understand this we integrate the equations 0/ motion in the Heisenberg 
representation: 

dz 1 [A HA] A Ti = ih:C' f _ = ca , (2.63) 

8 This was first recognized by Gregory Breit in 1928. 
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Fig.2.4. lllustration of the Zitter· 
bewegung in the forced one-parti
eie pieture. The location z per
forrns a Ziuerbewegung around the 
mean (classical) trajectory [z] 



d& 1 [A A i [A A A A] 2i A A 2icp 2i A A 
dt = ili 0, HrL = h Hro+oHr - h oHr = T - hoHr . (2.64) 

Since p and Hr are constant in time (because [p, HrL = 0 = [Hr, HrL), one can easily 
integrate the fonner equation and obtain 

&(t) = (&(0) _ cP) exp( _ 2iHrt/li) + cp . 
Hr Hr 

(2.65) 

If this result is inserted into (2.63), then z(t) can be explicitly calculated with the result 

z(t) = z(O) + ~p t + (&(0) _ cP) iliAc exp( - 2iHrt/li) 
Hr Hr 2Hr 

(2.66) 

This result detennines the space operator z(t) in the Heisenberg representation at time 
t. Of course, the operator z(t) also depends on &(0) and Z(O). Making use of (2.66), 
the equation of motion of the centre (z(t)} of each wave packet can be detennined. It is 
interesting to compare this with the classical equation of motion, which reads 

ZCl(t) = Zcl(O) + (~p) t . 
P cl 

(2.67) 

The comparison of (2.67) with (2.66) shows that the free wave packet indeed follows the 
unifonn classical motion [first two tenns in (2.66)], but that moreover a rapidly oscillating 
rrwtion is superposed, namely 

(Ii( &(0) - i) 2~/xP( - 2iHrt/li) I) . (2.68) 

The amplitude and frequency of these additional oscillations are of the order li/2moc 
and 2moc2/1i, respectively. This oscillating motion is the previously mentioned Zitter
bewegung. It vanishes if wave packets with exclusively positive or negative energy are 
considered. This becomes clear if we calculate, with (2.54), 

AA ( A CP) exp ( - 2iHrt/li) A 
± 0 - "'A' A A± = 0 , 

Hr 2Hr 
(2.69) 

where A± are the projection operators for the states of positive and negative energy, 
respectively. Namely, 

[Hr, &L = 2cp - 2&Hr , (2.70a) 

Hr& + &Hr = 2cp ; (2.70b) 

[A±, &L = H(1 ±A), &L = ± HA, &] 

1 [Hr A] 1 1 [A A] cp A Hr = ± 2' -, 0 = ± - - Hr, 0 _ = ± - =f 0-
Ep - 2 Ep Ep Ep 

(2.7Oc) 
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With this we can write 

A (A CfJ) A exp( - 2iHft/n) _ Aexp( - 2iHft/n) 
A± Q -"'"'A" A± A = A A 

~ 2~ 2~ 

and, because of the preceding calculation (2.7Oc), one gets 

AA A A AA cfJ A Hf 
±Q=Q ±±- 1= Q

Ep Ep 

Thus one obtains 

A [A A cfJ A Hf cfJ ] A A = QA± ± - 1= Q- -"'"'A" A± , 
Ep Ep Hf 

(2.7Od) 

(2.70e) 

and the identity A±A± = A± for the projection operators is recovered in a trivial way, 
finally resulting in 

AA _ [A ± cfJ A (± Ep ) cfJ ] AA - 0 
- Q - 1= Q-- - "'"'A" ± - . 

Ep Ep Hf 

Hence, the Zitterbewegung is caused by the interference between the positive and 
negative energy compounds of a wave packet. It demonstrates that in a real sense a single
particle theory is not possible, it can only be approximately obtained if the associated wave 
packets can be restricted to one energy range. 

2.3 Nonrelativistic Limit of the Dirac Equation 

Before we proceed further with the extension of the Dirac theory, it is important to 
check whether the Dirac equation yields physically reasonable results in the nonrelativistic 
limiting case. First we study the case of an electron at rest, in this case we obtain the 
Dirac equation by setting fJ'l/J = 0 in (2.2), 

f}'l/J A 2 
inat = ßmoc 'l/J . (2.71) 

In the particular representation (2.12) with 

A (11 ß= o 
we are able to write down the fOUT solutions 
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(2.72) 

The first two wave functions correspond to positive, the last two to negative energy 
values. The interpretation of the solutions with negative energy still causes problems and 
is postponed [cf. (2.47) pp.)]; however, the correct interpretation leads to a considerable 
triumph of relativistic quantum theory by forecasting and describing antiparticles. At first 
therefore we restrict ourselves to solutions of positive energy. In order to show that the 
Dirac equation reproduces the two-component Pauli equation9 in the nonrelativistic limit, 
we introduce the electromagnetic four-potential 

AIJ = {Ao(a:), A(a:)} 

into the Dirac equation (2.2). We know that the minimal eoupling 

pP' _ fP - ~AIJ == lllJ 
c 

(2.73) 

ensures gauge invariance of the theory, where lllJ is the kinetic momentum and ß/J the 
canonical momentum. So we are inevitably guided to the Dirae equation with eleetromag
netie potentials 

or 

This contains the interaction with the electromagnetic field 

fit = - ~ ca . A + eAo 
c 

= -~v. A + eAo , 
c 

where 

A dz A 

v= - =ca 
dt 

(2.74) 

(2.75) 

is the relativistic velocity operator. The expression (2.75) corresponds to the classical inter
action of a moving charged point-like particle with the electromagnetic field. The velocity 
operator, however, is the fonnal operator v from (2.61) which contains the Zitterbewegung. 

9 See Vol.1 of this series, Quantum Mechanies - An Introduction (Springer, Berlin, Heidelberg 1989), 
Chap.12. 
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EXERCISE .................................................................. .. 

2.4 Time Derivative of the Position and 
Momentum Operators for Dirac Particles 
in an Electromagnetic Field 

Problem. Calculate the time derivative of the position op
erators :i: and of the kinetic momentum II = p - (e/c)A 
for Dirac particles in an electromagnetic field. Compare 
the result with the corresponding classical expressions and 
discuss Ehrenfest's theorems. 

Solution. The Hamiltonian of a Dirac particle in the eletro
magnetic field is [setting Ao(:r:) equal to 4>(:r:)] 

A (e) A 2 H = c&· P - -;; A + ßmOc + e4> . (1) 

Furthermore, the equation of motion of an arbitrary oper
ator F is given by 

and for the position operator we obtain 

d:i: _ i [HA A] dt -i ,:r: 

since o:i:/&t = O. With (1), the commutator reads 

[H, :i:L = cl&· p, :i:L - e[&· A, zL 

+ moc2 [,8, zL + e[4>, zL ' 

(2) 

(3) 

(4) 

4> is the Coulomb potential, i.e. [4>, z L = O. The po
sition operator z is nothing but a simple multiplication 
operator z'IjJ = :r:'IjJ (i.e. it is diagonal with respect to 
the spinor indices) and contains no differentiation. Hence 
[,8, zL = 0 = [&, :i:L. Furthermore we will use the iden

tity [AB, CL = [A, CLB + A[B, CL to show that 

[&. p, zL = L {[aj, XkLpjek + aj[pj, xkLek} 
j,k 

= "" !!:.a.e. = !!:.& 
L:--"i JJ i ' 
J 

. r~ A] nc smce lYj, xk _ = 7 Ujk 
1 

(5) 

[& • ..4., :i:] _ = 0 since :i: commutes with & as weIl as with 

A: we obtain [H, :i:L = (Ii/i)c&, and hence 

dz A A 

dt = ca == v (6) 

hence the velocity operator of a Dirac particle is given by 

v=c& . (7) 

Let us now see how this operator acts on a Dirac 
spinor. Considering the single components, this reads as 

vj'IjJ = caj'IjJ = ±c'IjJ 

since the operator & has the eigenvalues Ci: j = ± 1. This 
result means that a Dirac particle always moves with the 
speed of light and it is clear that tbis finding has no classi
cal analogy [cf. the discussion following (2.61)]. The equa
tion of motion for the kinetic momentum II = p - (e/c)A 
is 

dll oll i A A i A A e oA 
Tl = &t + i[H, 11L = i[H, 11L - -;; Bi ' (8) 

because the potential A(r, t) can depend on time explicitly. 
The commutator is given by 

A A A e A 

[H, 11L = [H, pL - -[H, AL . 
c 

First we calculate the single commutators 

[H, pL = c[&·p, pL - e[&·A, pL 

+ moc2 [,8, pL + e[4>, p] , 

(9) 

(10) 

and p = -inV, it follows that i.e. [,8, p] = 0 since ,8 does 
not depend on space coordinates. Furthermore it holds that 

e[4>, pL = ien[V, 4>L = ien(V4> - 4>V) 

Making use of this relation we obtain 

e[4>, pL'IjJ = ien(V 4> - 4>V)'IjJ = ien(V 4>'IjJ - 4>V'IjJ) 

= ien{'IjJ V 4> + 4> V 'IjJ - 4> V 'IjJ } = ien(V 4»'IjJ 

for any wave function 'IjJ, i.e. e[4>, pL = ien(V4». Further 
we find 

i,j 

+adpi, pjLej} =0 , 

because [Pi, PjL = 0 and [ai, PjL = 0 (since aj does 
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not depend on the space coordinates). This leaves 

-e[&· A, pL = -e L {[ai, PjLAiej + ai[Ai, PjLej 
i,j 

= -e LadAi, PjLej 
i,j 

The second commutator in (9) yields 

-~[11, AL = - ~{e[& .p, AL - e[& ·A, AL 
e e 

2 A 

+mOe [ß, AL +e[l/>, AL} . 

(11) 

Since [,8, AL = [I/>, A]i = 0 and [&. A, AL = 0 (A 
commutes with & and also with itself), we get 

-e[&.p, AL 

=-e [~{[ai' AjLpiej+adpi, AjLej }] 
I,) 

= -e Lai[Pi, AjLej 
i,j 

In total we have 

d1: = * [ieh(VI/» - e ~ai{[Ai' PjL 
Z,) 

+ r~. A.] }e.] _ ~ ßA 
U''')-) eßt 

= +e ( -~ a: -V I/> ) 
" ~ V' 

E 

+ ~ ~ad - [Ai, PjL - [Pi, AjL}ej. 
I,) 

(12) 

(13) 

Additionali y, 

[Pi, AjL1P = -ih(ViAj - AjV i)1P 

= -ih(Vi(Aj1P) - AjVi1P) 

= -ih{ 1PViAj + AjVi1P - AjVi1P} 

= -ih(ViA j)1P , 

where the gradients acts on A only! Hence [Pj' AiL -
[Pi, AjL = ih(VjAi - ViAj), and thus we find 

dir 
= eE+ ~ ~ ea·(V·A- - v'·A ·)e· dt e~ Z J Z Z)) 

Z,) 

= e( E+ ~c& x CUrlA) (14) 

The final step is verified by perfonning some simple alge
bra, leading to 

dir = e(E+!V x B) 
dt c 

(15) 

In the classical case this is just the Lorentz force. Thus, we 
realize that the operator :C does not satisfy classical equa
tions of motion whereas a "classical" equation of motion 
can be set up for the operator fI, in which the fonnal ve
locity operator (7) appears. Hence (15) seems to coincide, 
at least fonnally, with the corresponding classical equation, 
although we always have to bear in mind that any expecta
tion values of (15) are not very useful because v contains 
the Zitterbewegung. Only the projection of the even contri
butions of (15) produces results which are relevant within 
the scope of a (classical) single-particle description. Obvi
ously at this point we reach the limits of the single-particle 
interpretation. 

The nonrelativistic limiting case of (2.74) can be most efficiently studied in the 
representation 

1P=(~) (2.76) 

where the four-component spinor 1P is decomposed into two two-component spinors <p 
and x. Then the Dirac equation (2.74) becomes 

ih! (~) = (~::Z ~) + eAo (~) +moc2 (!x) (2.77) 

the ai as weH as the ,8 matrices having been inserted according to (2.12). If the rest energy 
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mo~, as the largest oceuring energy, is additionally separated by 

(~) = (~) exp[ - i(moc2/Ii)t] , (2.78) 

then (2.77) takes the form 

ili! (~) = (~:: z ~ ) + eAo (~) - 2moc2 (~ ) (2.79) 

Let us eonsider first the lower (second) of the above equations. For the eonditions lilioX/at I 
~ Imo~xl and IeAoxl ~ Imoc2xl (Le. ifthe kinetic energy as weH as the potential energy 
are small eompared to the rest energy) we obtain from the lower eomponent of (2.79) 

fT ·ll 
X=--'P . 

2moc 
(2.80) 

This means that X represents the sm all eomponents of the wave funetion tjJ, a result we 
already know from (2.32), while 'P represents the large eomponents x'" (v!2c)'P. Insertion 
of (2.80) into the first equation (2.79) results in a nonrelativistie wave funetion for 'P 

·1i0'P (fT • ll)(fT • ll) Ao 
1 - = 'P+ e 'P . ot 2mo 

(2.81) 

With the help of (2.30) we eontinue the ealeulation, 

(fT . ll)(fT . ll) = ll2 + ifT· (ll x ll) 

= (p- ~A J +ifT· [(-iIiV - ~A) x (-iIiV - ~A)] 
= (p - ~A J -~lifT .("1 x A) 

= (p- ~A J -e: fT •B 

and finally obtain (2.81) in the form 

ili o'P = [(p - ~ A)2/2mo - ~fT • B + eAo] 'P ot c 2moc 
(2.82) 

This is, as it should be, the Pauli-equation 10 • The two eomponents of 'P, therefore, 
deseribe the spin degrees of freedom, which we have already dealt with in the seetion 
dealing with free Dirae-waves [cf. (2.38-44)]. From the former diseussion on the Pauli 
equation we know that this equation, and henee also (2.82), yields the eorreet gyromagnetie 
faetor of 9 = 2 for a free eleetron. This ean be demonstrated onee again by tuming on a 
weak, homogeneous magnetic field 

B=eurlA, A=~Bx:c, 

10 This is weH known from Vo!.l of this series, Quantum Mechanics - An Introdution (Springer, Berlin, 
Heidelberg 1989) Chap.12. 
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11 cf. in this context the lin
earization of the Schrödinger equa
tion in Vol. 1 of this series, Quan
tum Mechanics - An lntroduction 
(Springer, Berlin, Heidelberg 1989) 
Chap.13. 

where the quadratic tenns of A in (2.82) have been neglected. With 

~2 e(B ) ~ 
~ p - - x:J:·p 

C 

where t = :J: X P is the operator of orbital angular momentum, and 

S= !lio-

is the spin operator, it follows for the Pauli equation (2.82) that 

a [ ~2 1 p e ~ ~ 

ili-tp = - - --(L + 28) • B + eAo tp 
~ 2~o 2~oc 

(2.83) 

This fonn shows explicitly the g-factor 2. However, the most important result is that, in 
the nonrelativistic limit, the Dirac equation transfonns into the Pauli equation, i.e. to the 
proper nonrelativistic wave equation for spin-! particles. Since spin exists both at low as 
weIl as at high velocities, tbis implies that the Dirac equation describes particles with spin 
~. In contrast to the Klein-Gordon equation [cf. (1.140), Chap. 1], valid for spin-O particles, 

we have now found a relativistic wave equation for spin-! particles. Clearly spin comes 
into the theory by linearization of the second-order differential equation (Klein-Gordon 
equation).H 
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3. Lorentz-Covariance of the Dirac Equation 

A proper relativistic theory has to be Lorentz-covariant, Le. its fonn has to be invariant 
under a transition from one inertial system to another one. To establish this we will first 
restate the essentials of Lorentz transfonnations and also refer to Chap. 14 for supporting 
group theoretical argumetns. 

Two ob servers, A and B, in different inertial systems describe the sarne physical 
event with their particular, different space-time coordinates. Let the coordinates of the 
event be xl' for ob server A and x' I' for ob server B. Both coordinates are connected by 
means of the Lorentz transformation 

3 
(x')V = L:avJ.lxJ.l == aVJ.lxJ.l == (a it (3.1) 

1'=0 

adenotes the abbreviated version of the transfonnation matrix and i the four-dimensional 
world vector. Equation (3.1) is a linear, homogeneous transfonnation and the coefficients 
at depend only on the relative velocities and spatial orientations of the reference frarnes. 
The distance between two space-time points is invariant under the Lorentz transfonnations 
(3.1), which can be expressed differentially by means of the invariance of the line element 
(see Fig.3.1) 

ds2 = dxJ.ldxJ.l = 9J.1vdxJ.ldxV 

Hence 

(3.2) 

(3.3) 

This mayaiso be deduced from the empirical fact that the velocity of light is the same in 
every inertial system l Now, from (3.3) and (3.1) it follows that 

I I I 
(dx )J.I(dx )1' = aJ.l val' U dxv dxu == dxv dxv = D~ dxv dxu 

hence 
aJ.l a u = DU v I' v (3.4) 

These are the orthogonality relations for Lorentz transformations. We now distinguish 
between proper and improper Lorentz transfonnations. Narnely, from (3.4) follows 

[det( a~) t = 1 , i.e. det( a~) = ± 1 (3.5) 

1 See J.D. Jackson: Classical Electrodynmnics, 2nd ed. (Wi1ey, New York 1975). 
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Xii + dxP 

dxlldxp = (dx')P(dx')p 

Fig.3.1. 



For the proper Lorentz transformations the determinant of the transformation coefficients 
is 

det( a~) = +1 (3.6) 

These proper Lorentz transformations can be obtained from the identity (which has deter
minant +1 too) by an infinite number of successive, infinitesimal Lorentz transformations. 
They consist of the group of all transformations of coordinates from one coordinate sys
tem into another one which moves with constant velocity in an arbitrary direction. Normal 
three-dimensional rotations and translations belong to the proper Lorentz transformation 
too. The improper Lorentz transformations contain a (discrete) reflection either in space or 
in time. Such discrete transformations can not be obtained from the identity by successive 
infinitesimal transformations. The determinant of the transformation coefficients of the 
improper Lorentz transformation is 

det( a~) = -1 (3.7) 

It will now be our task to find a relation between the measurements of ob server A and 
those of ob server B which have been performed by both of them in their respective inertial 
systems. More precisely, we have to find a relation between (Fig.3.2) 

(ili/ JL a:JL - moe) 1j;( i ) = 0 and (ili/' JL a: JL - moe) 1j;' ( i' ) = 0 

'Ij;(x) < 3> 'Ij;'(x') 

xO = ct! _ .. _0 __ ' 

~x 
and 

xtO=ct'~ 
systemB 

x' Fig.3.2. 

For given 1j;( i ) for A, the transformation must enable us to calculate 1j;'( i' ) for B. 
The requirement of Lorentz covariance now means that 1j;( i ) in system A as weH as 

1j;'( i' ) in system B have to satisfy the respective Dirac equations, which have the same 
form in both systems. This is precisely the relativity principle: only in this way do both 
inertial systems become completely equivalent and indistinguishable. 

In the following considerations it is much more convenient to denote the Dirac equa
tion in four-dimensional notation to show the symmetry between the time-coordinate ct 
and the space coordinates xi. Therefore we start with [from (2.2)] 

? I (i~! + i~c E a, &:' -ßmoc') ,p ~ 0 , 

which we multiply by SIe from the lhs to obtain 

( Sili aa + 1:, ßakili a k - moe) 1j; = 0 
ct k=l ax 

With the definitions 
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,0 = /l , ,i = /lai , i = 1, 2, 3 

this can finally be written in the form 

,(00 1 0 2 ( 3 0 ) 
In , oxo +, ox1 +, ox2 +, ox3 t/J - mOct/J = 0 

(3.8) 

(3.9) 

From now on we will write the matrices ,I' without the operator sign A; likewise we will 
denote the four-dimensional radius vector (world vector) by x; hence 

(3.10) 

which will simplify the notation in the following considerably and will scarcely lead to 
confusion. A more elegant formulation of the anti-commutation relations (2.8) is possible 
using the , matrices. Because of /l2 = II it is obvious that they now read 

,I',V + ,V ,I' = 2gl'Vll , (3.11) 

"ll" being the 4 x 4 unit matrix. The ,i(i = 1,2,3) are unitary [(lir 1 = ,it] and 

anti-Hermitian [( ,i)t = _,i]; indeed, 

(,i)2 = -ll = _,i,it , i = 1, 2, 3 =} (,ir1 = ,it . 

The fact that they are antihermitian follows directly from (2.8) and (2.9). 

,it = (/lad = a! /lt = ai/l = -/lai = _,i 
On the other hand ,0 is unitary and Hermitian, 

(l0l = +11 = +,o,Ot =} ,Ot = ,0 . 

(3.12a) 

(3. 12b) 

In the so-far used standard representation the ,I' can be written down explicitly using 
(2.13) 

,i = ( A~ 
-(7 

° (n ,= 0 ~) (3.13) 

A further short hand notation is often convenient: It is the so-called Feynman-dagger 
notation, i.e. for example 

3 
/>. == ,I' AI' = gl'v,P- AV = ,0 AO _ L ,i Ai = ,0 AO -,. A 

i=1 

Another example is the nabla dagger: 

o 0 3 . 0 ,0 0 
Vl == ,1'_ =,0_+ L,'-. = - - +,·V 

oxP- oct i=l ox' c ot 

With this the Dirac equation (3.9) can be written in the very concise form 

(in Vl - moc)t/J = 0 , 

or, with PI' = ino/Oxl' , 

(3.14) 

(3.15) 

(3.16) 
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(jJ - mOc)t/J = 0 . (3.17) 

Introducing the eleetromagnetie potentials using minimal (gauge-invariant) eoupling yields 

(3.18) 

Both ff' and AI' are four-veetors; henee the differenee ff' - (e/c)AI' is a four-vector too. 
While diseussing the eovarianee in the following part we ean thus confine ourselves to 
the free equations (3.16) and (3.17). 

3.1 Formulation of Covariance (Form Invariance) 

Covarianee of the Dirae equation means two different things: 

1) There must be an explieit rule to enable ob server B to ealeulate his t/J'(X/) if t/J(x) of 
ob server A is given. Henee t/J'(x') of B describes the same physieal state as t/J(x) of A. 

2) Aeeording to the principle ofrelativity, whieh states that physies (i.e. the basic equations 
of physies) is the same in every inertial system, t/J/(X') must be a solution of a Dirae 
equation whieh has the form (3.16) 

( . '" 8 ) " 0 l1i.')' r" __ - moc t/J (x ) = 
8x'I' 

(3.19) 

in the primed system, too. Additionally the i I' have also to satisfy the anti-eommutation 
relations (3.11). This is a requirement of the prineiple of relativity, as otherwise A and B 
eould distinguish their inertial systems. Therefore, 

(3.20) 

and 

(3.21a) 

(3.21b) 

Within the sense of the prineiple of relativity these eonditions of Hermiticity and anti
hermiticity must hold in all inertial systems, something we ean also understand in the 
following: Let us first write (3.19) in the form 

'1i. I08t/J'(X') _ ( Ik.1i. 8 )"',1 
1 ')' 8ct' - - i 1 8x' k + mac 'f/ or 

'1i. ,08t/J'(x') _ ( Ik+.1i. 8 + 2)",,1 - H~/"'J 
1 i - - Ci 1 -- mOc 'f/ - 'f/ or &t' 8x'k -

(3.22a) 

(3.22b) 
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The last form (3.22b) is Schrödinger type; the former (3.22a) is not Schrödinger type, 
because on the lhs the factor ,'0 appears with the time derivative. Here we have used 
(,'0)2 = 1 from (3.20). The Hamiltonian H' from (3.22b), given by 

H' = _q'O,'k (in a:'k ) + ,'Omoc2 , 

must be Hermitian in order to have real eigenvalues 

(H')t = H' 

(3.23) 

This is perhaps a more evident requirement of the principle of relativity because it ensures 
that both ob servers see real energy eigenvalues. Now the momentum operators 

A' . t: 0 
Pp =ln~ 

uX i-' 

are Hermitian and commute with the " matrices. Hence, both 7'° as well as the products 
,'O,'k from (3.23) must be Hermitian, which means that 

(7'0) t = 7'0 , 

{f'O,'k)t = (,'k)t{f'O)t = {f'k)t,'O J, ,'O,'k 
=> {f'k)t = ,'O,'k,'O = _,'k 

Again we have used the relations ,'O,'k = _,'k7'O and (iO)2 = 1 which are included in 
(3.20) and we stress the point that only H' from (3.23) has to be Hermitian, but not 

':. , ,k (. t: 0) 2 H == - c, 1,,-- + moc ax'k 
from (3.22a), the first part of which is indeed antihermitian. Therefore, we have 

( A)t A 
fI' :/= fI' 

It can be shown by means of a rather long algebraic proof (see Example 3.1 for better 
understanding) that all 4 x 4 matrices ,'i-' which satisfy (3.20) and (3.21) are identical up 
to a unitary transformation 0, i.e. 

(3.24) 

Hence it follows, because unitary transformations do not change the physics, that without 
loss of generality we can use the same , matrices in the Lorentz system of observer B 
as in the Lorentz system of physicist A, i.e. the matrices (3.13).2 Therefore, we shall no 
longer differentiate between ,'i-' and ,i-', instead we rewrite (3.19) as 

(jI' - moc)7/1'(x') = 0 , 

where now 
;I. • t: V 0 ,,= I", -ax'v 

holds. 

(3.25) 

(3.26) 
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sidered to be a consequence of the 
principle of relativity, since other
wise the different structure of the 
-y-matrices in the inertial systems 
of A and B would indicate to A 
and B in which of the systems 
theyare. 



EXERCISE .................................................................. .. 

3.1 PauIi's Fundamental Theorem: 
The 16 Complete 4 x 4 Matrices FA 

Problem. Show that all representations of the Dirac alge
bra /I-'/v +/v/I-' = 2gl-'vn for 4 x 4 matrices which satisfy 
lOt = /0, fit = _li are unitary equivalent! 

Solution. The proof3 is divided into two parts: 

i) Proof of the fundamental theorem for Dirac matrices: For 
two four-dimensional representations /1-" /~ of the Dirac 

algebra there exists a nonsingular 4 x 4 matrix 8 with 
/~ = 8/1-'8-1. 

ii) If additionally /0 = /6, ii = -iit, /0 = i'j, /~ = -/'l, 
then 8 can be chosen to be unitary. 

The proof uses the 16 following 4 x 4 matrices FA 
(A = 1, ... , 16) (see also Chap.5): 

FA= n , 
/0, i/I, i/2, i/3 , 

h2'Y3, i/3/t. hl'Y2, /l'YO, /2/0, /3'YO , 

/l'Y2'Y3, hl'Y2'Yo, h3/l'YO, h2/3'YO , 

hl'Y2'Y3/0 , 

for which 

A2 
FA = 1 (A = 1, ... , 16) . 

(1) 

(2) 

Let us denote hl'Y2'Y3/0 = /5. It can easily be proven that 
/5 anticommutes with /1-' (Jl = 0, ... , 3), 

(3) 

Now let us prove the fundamental theorem for Dirac ma
trices: 

1) For all FA but the n there exists a FB with 

FBFAFB = -FA . (4) 

We will specify for every FA a corre~ponding FB: 

(5) 

One verifies easily by explicit calculation that (4) holds. 

3 This argument sterns from R.H. Good: Rev. Mod. Phys. 27, 187 
(1955). 
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2) The traces 0/ all FA (A = 2, ... , 16) are zero. From (2) 
and (4) 

-tr(FA) = tr(FBFAFB) = tr( F~FA) = +tr(FA). 

3) The FA are linearly independent. From 

16 z= a A FA = 0 follows 
A=1 

aA = 0 (A = 1, ... , 16) , 

because if we multiply the sum by FB' 

aBI + z= aAFAFB = 0 
A=FB 

and 

4aB + z= aA tr(FAFB) = 0 
A=FB 

(6) 

(7) 

(8) 

Equation (1) implies that FAFB = constFe, i.e. by means 
of the algebra a product of two matrices of (1) can be 
expressed in terms of another such matrix. In the case 
where A =F B then Fe =F n; therefore the sum in (8) van
ishes and consequently aB = O. This condusion is valid 
far all B = 1, ... , 16. The linear independence of the ma
trices FA is most important and will frequently be used in 
the following. 

4) Each 4 x 4 matrix can be expanded in terms o/the 
t, 

16 

X = z= xAFA . (9) 
A=1 

This is evident since the 16 linearly independent FA gen
erate a 16-dimensional space, that is the space of the 4 x 4 
matrices. Then 

(10) 

5) Each 4 x 4 matrix which commutes with all FA is 
a multiple 0/ n (Schur's Lemma). Consider the matrix X' 

X = xBFB + z= xAFA , (11) 
A=FB 

where we have singled out a particular matrix FB on which 



we shall focus our attention. We will show that x B = O. 
With respect to (4) we first choose re such that if fulfills 

(12) 

and, since X commutes with all rA and therefore also with 
re, 

=} XBrB + L XArA = XBrerBre 
A:/:B 

+ L XArerAre 
A:/:e 

(13) 

XBrB+ L XArA=-XBrB+ E (±)XArA' (14) 
A:/:B A:/:B 

due to the fact that re and rA commute or anticommute. 
Next we multiply with rB, take the trace and obtain 

(15) 

Thus, x B = 0 as claimed. 

6) If 'YjJ anti 'Y~ are two representations ofthe Dirac 

algebra anti rA , r~ are the correspontiing 16-dimensional 
bases, then 

where 

16 
s= L r~FrB 

B=1 

(16) 

(17) 

with an arbitrary 4 x 4 matrix F. To understand this, con
sider the matrix 

16 

r~SrA = E r~FEFFBFA (18) 
B=1 

According to (1) we have rBrA = ceFe with ce E 
{± 1, ± i}. For fixed A, if B runs from 1 to 16 then C 
takes all values from 1 to 16. This is so, since otherwise 
we would have 

(19) 

leading to FB = ceFeFA = (cc!SC>FD, which contradicts 
the linear independence of the rA. Since the r~ are con
structed from the 'Y~ in the same way as the FA from the 
'YjJ' we also have the relation 

AI A I AI 
rBrA =cere 

with the same ce. Inverting (20) yields 

AI AI 1 AI 
rArB=-re ce 

and substituting (21) into (18) then gives 

AI A ~ 1 AI A A ~ AI A A A 
rASrA = L.J -reFcere = L.J reFre = S 

e=1 ce e=1 

thus proving the relation (16). 

(20) 

(21) 

(22) 

7) The matrix F can be chosen such that S does not 
vanish. If S = 0 did hold for all F, then by a special 
choice of F such that a single element has the value 1, all 
the remaining elements being set to zero (i.e. Fvu = 1, all 
other Faß = 0), we could infer from (17) that 

16 

L (r~)jJv(rB)ue = 0 
B=1 

(23) 

which must hold for all l/, a, due to the arbitrary choice 
of F. From the relations (23) for the various combinations 
l/, a we infer the matrix equation 

16 

L (r~)jJvrB = 0 . 
B=1 

(24) 

Since r'J = 1, the (r'E)jJv cannot vanish simultaneously, 
so that (24) is in contradiction to the linear independence 
of the rB. 

8) The matrix F can be chosen such that S is not 
singular. To prove this lemma, we construct 

16 

T= L rBGrE (25) 
B=l 

with arbitrary G, specified below. In analogy to point 6) 
we can show that 
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FAT = TF!.t ' (26) 

which, together with (16) leads to 

FATS = TF!.tS = TSFA , (27) 

i.e. (1' S) commutes with all FA and is therefore, according 
to point 5), a multiple of the unit matrix 

(28) 

Here we choose G such that l' :/: 0 (cf. point 7). This 
enables us to choose F in (17) such that K :/: O. This is 
so because the assumption K = 0 for all F would, with 
respect to (28) and (17), result in 

16 

E TF~FFB =0 . (29) 
B=1 

With a choice of F in line with point 7), we have, from 
(29), 

16 

E (TF~)lly(FB)e(T = 0 or 
B=1 

(30) 

16 

E (TF~) yFB = 0 
B=I 11 

(31) 

The (TF~)I-w do not vanish simultaneously since l' I- 0 

and {FB} contain the unit matrix n. Consequently this 
yields a contradiction to the linear independence of the 
FB. Thus S is not singular, and 

I A A_l 
'Yll = S'YIlS , (32) 

completing part i) of the proof. 

ii) Now we will show that in case of 

t 't _ I 
'Y 11 = 91l1l'Y1l ' 'Y 11 - 91l1l'Y 11 • (33) 

S can be chosen as a unitary operator. To see this let 

I " A -1 .... 
'Y1l=V'YIlV ,detV=I, (34) 

i.e. 

(35) 

Except for an arbitrary factor ± 1, ± i, due to det V = 
det(± V) = det(±iV) = 1, the matrix V is completely 
determined. To assume in contrast to this that 

I A A -1 A A -1 
'Yll = Vnll VI = V2'Y1l V2 ' (36) 

would lead to 

A -1 A A -1 A 

V2 Vnll = 'Yll V2 VI (37) 

and, with respect to point 5) of part i), v2- 1 VI = k· n; 
hence 

(38) 

Therefore, taking the Hermitian conjugate of (34), we ob
tain 

'Y't = (V-1)t'YtVt 

and, by means of (33), 

'Y~ = (Vt)-I'Y1l vt , 

(39) 

(40) 

i.e. (Vt)-1 likewise fulfills (35) as does V. From (38), it 
follows that 

(Vt)-1 = eim1l"f2V , vt = e-im1l"f2V-1 , (41) 

(42) 

Since the diagonal elements of the product of a matrix and 
its Hermitian conjugated counterpart have the form 

(VtV)ii = E(Vt)ij(V)ji = E Vji Vji , (43) 
j j 

and V~Vji is positive definite and real, the factor e-im1l"f2 
in (41) must be positive definite and real too, implying 
m = O. Hence, 

(44) 

which was to be proven. 

We will now explicitly construct the transformation between 1jJ(x) and 1jJ1(X' ). This 
transformation is required to be linear, since both the Dirac equation as weil as the Lorentz 
transformation (3.1) are linear in the space-time coordinates. Hence it must have the form 
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ljJ'(x') = ljJ'(a.x) = S(a.)ljJ(x) = S(a.)1jJ(a.- 1X') , (3.27) 

where a. denotes the matrix of the Lorentz transfonnation a~ of (3.1) and S(a.) is a 4 x 4 
matrix which is a function of the parameters of the Lorentz transfonnation a. and operates 
upon the four components of the bispinor ljJ(x). Through a. it depends on the relative 
velocities and spatial orientations of the observers A and B. The principle of relativity, 
stating the invariance of physicallaws for all inertial systems, implies the existence of the 
inverse operator S-l(a.) that enables the observer A to construct his wave function ljJ(x) 
from the ljJ'(x') of observer B. Therefore, it must hold that 

Because of (3.27) we can also write 

ljJ(x) = S(a. -1 )ljJ' (x') = S(a. -1 )ljJ' (a.x) 

and, comparing with (3.28a), we find 

S-I(a.) = S(a.- 1) • 

(3.28a) 

(3.28b) 

(3.29) 

Our aim is to construct S fulfilling (3.27-29). Starting from the Dirac equation (3.16) 
of the observer A, i.e. 

(ili.')'1' 0:1' - moc) ljJ(x) = 0 , 

and expressing ljJ(x) by means of (3.28a) yields 

( ih')'l' S-I(a.)~ - mOCS- 1(a.») ljJ'(x') = 0 
oxl' 

Multiplication with S(a.) from the left and using S(a.)S-I(a.) = n then gives 

(ihS(&,)-Y1' S-I(&,) 0:1' - moc) ljJ'(x') = 0 . 

With regard to (3.1) we transfonn %xl' to the coordinates of the system B, 

o ox,v 0 0 _= ____ =av --
oxl' oxl' ox,v I' ox,v ' 

so that (3.30) becomes 

[ih(S(&,)-Y1' S-I(&')av 1') o:'v - moc] ljJ'(x') = 0 

(3.30) 

(3.31) 

(3.32) 

This has 10 be identical with the Dirac equation (3.25), since fonn-invariance of the 
equations of motion is required, i.e. S(a.) must have the property 

S(&,)-yl' S-I(a.)av I' = ')'v (3.33) 

or equivalently 

S(a.)-yv S-I(a.) = al'v')'l' (3.34) 

107 



This is the fundamental relation determining the operator 8: To find 8 means solving 
(3.34) which holds for discrete as well as continuous Lorentz transformations since the 
above deduction does not depend on det al-' v = ± 1. Once we have shown that there exists a 
solution 8(0,) of (3.34) and have found it, we will have proven the covariance of the Dirac 
equation. We may already now specify more precisely the definition of a spinor which, we 
have previously introduced somewhat inaccurately as a four-component column vector: 
In general, a wave function is termed a four-component Lorentz spinor if it transforms 
according to (3.27) by means of the fundamental relation (3.34). Such a four-component 
spinor is also frequently called a bispinor, since it consists of two two-component spinors, 
known to us from the Pauli equation4 • 

In determining 8(0,) we expect to deal with novel features which are not present in 
ordinary tensor calculus, since bilinear forms of 'I/J, e.g. the current four-vector of (2.18) 

{ce, i} with e = 'I/J t 'I/J and i = 'I/J t Otk 'I/J ; k = 1, 2, 3 , 

have to transform like four-vectors; we will now discuss these properties. As we have 
already learneds, in general it is simplest to generate a continuous group transformation 
by constructing the group operators for infinitesimal transformations and then composing 
operators for finite rotations, translations, etc., by connecting the infinitesimal operators 
in series. Following the same pattern in our case of Lorentz transformations, we first 
construct the operator 8(0,) for infinitesimal proper Lorentz transformations given by 

(3.35) 

with 
(3.36a) 

The antisymmetrie form (3.36) follows from (3.4) by neglecting quadratic terms [of the 
order (Llw)2]: 

al-' va/' = c5: = (c5e + Llwl' v) (c5; + Llw/') 

~ c5ec5; + c5eLlw/' + c5/T Llwl-' v = c5~ + Llwv 0' + LlwO' V" (3.36b) 

Hence, 

Llwv 0' + LlwO' v = 0, or gl-'V ( Llwv 0' + LlwO' v) = 0 = Llwl-'O' + LlwO'I-' 

Consequently, there are six independent non-vanishing parameters Llwl-'v. Each of 
these group-parameters (rotation angle in the four-dimensional Minkowski space) gener
ates an infinitesimal Lorentz transformation. We will now give two examples pointing out 
the physical significance of the Llwl-'v: 

a) LlwlO = Llw01 == -.L1ß j. 0 , all other Llwl-'V = 0 . 

This implies that 
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.L1wI0 = 910'.L1WO'O = 911.L1w lO = -.L1wlO = +Llß = +.L1w01 = .L1wo1 = -.L1wOl 

4 See Vol. 1 of this series, Quantum Mechanies - An Introduction (Springer, Berlin, Heidelberg 1989). 

5 See Vol. 2 of this series, Quantum Mechanics - Symmetries (Springer, Berlin, Heidelberg 1989). 



and 

LlWil = giuLlwul = 0 for all i = 1, 2, 3 

According to (3.1) we then find 

= (8V+Llwl 8v tf!.+Llwo 8V8l )xl-' I-' 011-' 101-' 

= (8~ - Llß8r ~ - Llß8ö 8~) xl-' 

or, explicitly, 

o 1 0 Llv 1 = x - Llßx = x --x 
c 

o 1 Llv 0 1 =-Llßx +x =--x +x 
c 

(X' )2 = x2 , 

(x / )3 = x3 

(3.37a) 

(3.37b) 

Therefore the inertial system (') of the ob server B moves along the positive xl axis relative 
to the system of ob server A according to 

I 1 xl Llv 
(x) = 0 -t 0 = - = Llß 

x c 

This means that case a) describes an (infinitesimal) Lorentz transformation for a motion 
parallel to the x' axis with a velocity Llv = Llßc, (see Fig.3.3). 

b) Llwi = _Llw12 = Llw2l == Llcp , 

According to (3.1), 

(x't = [8~ + 8r 8~Llcp + 82' 8~( -Llcp)] xl-' 

or explicitly 

(x/)o = xO , 

(x/)l = xl + Llcpx2 , 

(x /)2 = -Llcpx l + x2 , 

(x' )3 = x 3 

all other Llwl-'V = 0 . 

(3.38a) 

(3.38b) 

Clearly this transformation generates an infinitesimal rotation around the z axis by an 
angle Llcp, (Fig.3.4). For finite rotations it would read 

(x/)l = xl cos cp + x2 sin cp 

(x' )2 = _xl sin cp + x2 cos cp (3.38c) 
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t'L 
x' 

Fig.3.3. The x' system moves rel
ative to the x system with velocity 
Llv=cLlß 

\...:::=---_=.!:.-"-_~ X 1 

Fig. 3.4. An infinitesimal rotation 
of the coordinate system around 
the z axis 



3.2 Construction of the S Operator for Infinitesimal Lorentz 
Transformations 

We now return to our original aim of detennining the operator 5(a) = 5(Llwl'lI), by 
expanding 5 in powers of LlWI'II and keeping only the linear tenns of the infinitesimal 
generators LlWI'II; hence we write 

5(Llwl'lI) = II - ~o-I'IILlWI'II , 

SA -1 ( "WI'II) II i A "1'11 
"-l = + 40"1'11 "-lW , (3.39) 

The factors i/4 in the second tenn of the rhs are chosen such that the six coefficients 
0-1'11 can be expressed in a convenient fonn, as will become clear later. Each 0/ the six 
coefficients 0-1'11 is a 4 x 4 matrix, which is indicated by the operator sign A ! Of course, 
the same holds for the operator S and the unit matrix ll. By finding the 0-1'11' we can 
detennine the operator 5. The second relation (3.39) results from (3.29), which means 
that the inverse operator is obtained by substituting Llw~ - - Llw~. Inserting (3.39) and 
(3.35) into (3.34) which detennines 5, we find 

(6111' + LlWI'II }rl' = (ll - ~o-aßLlwaß ) ')'1' ( II + ~o-aßLlwaß ) 
or, omitting the quadratic tenns in LlWI'II, 

LlwI'II')'1' = _~Llwaß (o-aß')'1I - ')'lIo-aß) (3.40) 

Taking into account the antisymmetry (3.36) LlwI'II = - Llwlll', the lhs of (3.40) becomes 

Hence, we end up with the relation 

= Llw/ (gll a')'ß) = Llwßa (gll a')'ß) 

= !Llwßa(glla')'ß - gIlß')'a) 

= -! Llwaß (gll a')'ß - gll ß')'a) 

-2i (gll a ')'ß - gll ß')'a) = [0-aß' ')'11 L (3.41) 

The problem of constructing 5 according to the fundamental relation (3.34) is now 
reduced to that of detennining the six matrices uaß. Since uaß has to be antisymmetric 
in both indices, a and ß, it is natural to try an antisymmetric product of two matrices: 

o-aß = ~ba, ')'ßL (3.42) 

This fonn fuHills the requirement (3.41), which will be proven in the following 
exercise by taking into consideration the commutation relations (3.11). 
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EXERCISE .................................................................. .. 

3.2 Proof of the Coefficients a Otß 
for the Infinitesimal Lorentz Transformation 

Problem. Prove that the aOtß = ibOt, 'YßL/2 futfill (3.41), 

b", a OtßL = +2i(gll Ot'Yß - g" ß'YOt ) 

Solution. Inserting the expression for aOtß in (3.41), we 
get 

[1'", aOtß L = ~ [1'11, ['Yot, 'YßL L 
= & {[I' 11 , 'YOt'YßL - [1'", 'Yß'YOtL} 

By means of the algebra (3.11) it then follows that 

[1'", aOtßL = &{2['Y"' 'YOt'YßL -2[1'", gOtßL} 

= i [1'", I' Otß L 
Furthermore we have 

i [1'", 'YOt'Y ß L 
= i{ 1'" 'Yot 'Yß - 2g"ß'YOt +'YOt'Y"'Yß} 

.{ 11 2 11 2 11 11 } = 1 I' 'YOt'Yß - 9 ß'YOt + 9 Ot'Yß - I' 'YOt'Yß 

= 2i (gll Ot'Yß - g" ß'Yß) 

which is the required form. 

According to (3.39), the operator S(Llw llll ) for infinitesimal proper Lorentz transfor
mations is now 

(3.43) 

The next step is to construct S(ii) for finite proper Lorentz transformations by suc
cessive application of the infinitesimal operators (3.43). To construct the finite Lorentz 
transformation of (3.1) from the infinitesimal one (3.35), we write 

(3.44) 

Here Llw is an infinitesimal paranteter of the Lorentz group [infinitesimal (generalized) 
rotation angle] around an axis in the n direction. {1n)1I 11 is the 4 x 4 matrix (in space and 
time) for a unit Lorentz rotation around the n axis. For the Lorentz rotation (3.37), which 
- as we already know - corresponds to a Lorentz transformation along the x axis with 
velocity Llv = cLlß, we find 

(3.45) 

With Llw = Llß, 

U,t" = -(or~ +o~o~) = ( -~ 
-1 0 
o 0 
o 0 
o 0 

(3.46) 

that only the matrix elements 

A ° A )1 (A )01 (A )10 (Iz) 1 = (Iz ° = - 1z = + 1z = -1 
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are different from zero. Besides, we can easily calculate the relations 

(j.f= (-~ 
-1 0 

D ( -~ 
-1 0 

D = (~ 
0 0 

D 
0 0 0 0 1 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

and 

U.t = G 
0 0 

D ( -~ 
-1 0 

D 
1 0 0 0 
0 0 0 0 
0 0 0 0 

= (-~ 
-1 0 0) 0 0 o A 

(3.47) 
0 0 ~ = 1z 

0 0 

3.3 Finite Proper Lorentz Transformations 

The algebraic properties (3.47) for 1z are of value, because we can use them, following 
(3.1) and (3.45), to construct the finite proper Lorentz transformations. Indeed we get by 
successive application of the infinitesimal Lorentz transformations 

(x')V = NI~ 00 ( n + ~ 1z 5 VI ( n + ~ 1z 51 Vl ••• XVN 

= lim [(n + :::.-1z )N] V xl' 
N-too N /J 

(The last summation index VN of the matrix multiplication has been renamed {L in the last 
step.) 

(3.48) 

(3.49a) 
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or 
x,o =XOCOShw-xlsinhw=coshw(xO-xltanhw) , 

X,l = _XO sinhw + Xl coshw = coshw(x l - xO tanhw) , 

X,2 = X2 , 

X,3 = X3 (3.49b) 

Now the finite Lorentz rotation angle w can easily be related to the relative velocity 
Vx = cßx of both inertial systems. Let us observe the origin of the x' system and its 
motion from the x system, 

x,l = 0 = coshw(x l - xO tanhw) . 

From this we can deduce the velocity of the x' system along the x axis of the x system. 

xl xl Vx 
- = - = - = tanhw = ß 
xO ct c 

(3.50a) 

and so by use of the relation cosh2w - sinh2w = 1 we get 

(3.50b) 

so that (3.49b) results in the known Lorentz transfonnations 

,0 xO - ßx' 
x = 
~ 

(3.51) 

This procedure to construct Lorentz transfonnations can be generalized to motion in an 
arbitrary direction or to arbitrary spatial rotations. There exist six different matrices (gener
ators) (in)V I' corresponding to the six independent Lorentz transfonnations. They represent 
the four-dimensional generalization of the generators of spatial rotations known from non
relativistic quantum mechanics.6 We refer to Chap. 16 for a deeper discussion of the group 
theoretical structure of the Lorentz transfonnations. 

3.4 The S Operator for Proper Lorentz Transformations 

Now we can construct the spinor transfonnation operator S(&) for a finite "rotation angle". 
We start from the infinitesimal transfonnation (3.39) with the rotation angle (3.44) around 
the n axis and apply N of these infinitesimal transfonnations. 

1jJ'(x') = S(a)1jJ(x) = NI~oo (n - ~ ;a-l'v(in)l'v)N 1jJ(x) 

(3.52) 

6 See the discussion of angular momentum operators in Vol. 2 of this series, Quantum Mechanics - Symme
tries (Springer, Berlin, Heidelberg 1989). 
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In particular for the rotation (3.46) which corresponds to a Lorentz transformation along 
the x axis we get 

t/J'(x') = exp{ - (i/4)w [UOl<i:~)OI + UIO(1z)lO] }t/J(x) 

= exp{ - (i/4)w [0'01(+1) + UIO(-1)]}t/J(x) 

= exp [ - (i!2)WUOl] t/J(x) , (3.53) 

because following (3.42) we have UOl = -0'10 and following (3.46), (1z)OI = 1 and 
(1z)OI = -1. Analogously we can write for a rotation around the z axis 0/ angle c.p 
(to avoid confusion we use the notation 1z, 1y , 1z for the Lorentz transformation into a 
moving system and 110 12, 13 for spatial rotations, according to (3.28) and (3.44), 

L1w~ = L1c.p(13)V w 

Where. v e 0 0 

D 
0 1 

(13) I' = g -1 0 
0 0 

Thus only the elements (13)12 = _(13)21 are non-zero, in which case we get 

t/J' (x') = exp [ - (i/4)c.pu I'v(13)I'V ] t/J(x) 

= exp [ - (i/4)c.p (0'12(13)12 + 0'21 (13)21) ] t/J(x) 

= exp [(i/4)c.p(UI2(-I) + 0'21(+1))] t/J(x) 

= exp[(i!2)c.pUI2]t/J(X) = exp[(i!2)c.pU I2]t/J(x) , 

Here ui are the well-known 2 x 2 Pauli matrices, in particular 

A (1 
U3 = 0 
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(3.54) 

(3.55) 

(3.56) 

(3.57) 



We recognize the similarity between the spinor transformation (3.56) and the rotation 
of the two-component Pauli spinor, 

(3.58) 

with which we are already acquainted.7 We can call the wlW the covariant angular vari
ables, because they arise in a similar way as did the components of the axial rotation 
vector w for the spatial three-dimensional rotations. The existence of half-angles in the 
transformation law (3.56) is a result of the pecularity ofthe spinor-rotation laws. A spinor 
is first transformed into itself by a rotation of 471", not 271", as one might expect. Therefore, 
physically observable quantities have to be bilinear in the spinors tjJ(x) in spinor theory 
(Dirac theory), and hence they have to be of even order in the fields tjJ(x). Only in this 
case do observables become identical under a rotation of 271", a property of observables 
we know from experience. 

Following (3.52) and (3.56) the operator 5 R for spatial rotations of spinors is given 
by 

i, j = 1, 2, 3 . (3.59) 

Note that in the previous case7 we subsequently used active rotations, whereas for the 
Lorentz transformations we have used passive rotations. It is unitary, because the &ij 
(i, j = 1, 2, 3) are Hermitian and 

51 = exp [(i/4)&!jwij ] = exp [(i/4)&ijWij ] = 5i/ (3.60) 

For proper Lorentz transformations (e.g. transformation into a moving frame) this does 
not hold. For example, for a Lorentz transformation into a moving inertial system along 
the x axis (3.53) we find that 

5L = e-(i!2)wo-o1 = e+(w!2)Crl = st :I: 5-\' , 

where we have followed from (3.42) 

&01 = ~ (701'1 -1'11'0) = ~ (ßßa1 - ßa1ß) 

i(A A)'A = 2 0:1 + 0:1 = 10:1 

In the following Exercise 3.3 we shall prove that in this case 

A 1 At 
S- L = 1'OSL 1'0 

holds and further that, because of 

(3.61) 

(3.62) 

we can combine (3.60) and (3.62). Hence, for any Lorentz transformation (i.e. for proper 
Lorentz transformations and for spatial rotations) we can write 

(3.63) 
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EXERCISE ................................................................ .. 

3.3 Calculation of the Inverse Spinor 
Transformation Operators 

Problem. Show that for S = exp ( - !wo-/-lV (in)PV ) the 

inverse operator is given by: 

A 1 At s- = 'YoS 'YO . (1) 

Solution. We prove (1) separately for transformations on 
a moving coordinate system and for spatial rotations. 

(i) Spatial rotations: For spatial rotations the time coordi
nate remains unchanged. So the components jO/-l, jOv of 
the corresponding generators vanish identically. Thus we 
can write 

S = exp ( _~wij o-ij ) 

st = exp (~wij O-!j ) = exp (~wij aij ) 

because the o-ij are Hermitian and 

a!j =-&{<'Yi'Yj)t -('Yj'Yi)t} 

= -& {'Yni - 'Ynj} = o-ij 

(2) 

(3) 

According to (3.41) 'YO commutes with aij and thus 'YO 
commutes with st to O. Hence we get 

(4) 

(ü) Transformation onto a moving coordinate system: First 
we rotate the coordinate system such that the boost coin
eides with the x direction. For this transformation we have 

A (i A ) S = exp -2WO"OI 

[see (3.61)] and 

st =exP(&w0-61) =exp ( -&WO-Ol ) = s . 
because 

0-61 = -~{ <'YO'Yl)t - ('Yl'Yo)t} 

i ) A = 2 ('Yl'Y0 - 'YO'Yl = -0"01 

From 
i 

'YO 0-0 1 = 2<'Y0'Y0'Yl - 'Y0'Yl'Y0) 

i 
= 2('Yl'Y0'Y0 - 'Y0'Yl'Y0) 

= 0-1O'Y0 = -aOI 'YO 

we get 

'YoSt 'YO 

= 'YO [E ( -&waOl Jl 'YO = E 'YO ( -&WO-Ol J 'YO 

(5) 

(6) 

(7) 

= ~ 'YO ( -&waOl )'YO'YO (-&waOI )'YO ... 'YO ( -&waOI )'YO 
~. . ..... 

n-times 

= E (+&wa01J = exp (&wO-01 ) = S-1 
(8) 

Thus (1) holds for a1l Lorentz transformations S. 

3.5 The Four-Current Density 

Next we prove the covariance of the continuity equation (2.16) and (2.17). According to 
(2.18) the probability current density reads 

{j/-l} = {jOt j} = {c~t~, c~t &~} = {c~t 'Y0'Y/-l~} • 

i.e. 

(3.64) 
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This current density transfonns under the Lorentz transfonnation (3.1) as 

= c1jJ,f (x')-Y°,,{f.J.1jJ' (x') 

= c1jJ t (x )st ,,{O "(f.J. S1jJ(x) 

= c1jJ t (x)-y° S-I"{f.J. S1jJ(x) 

= caf.J. ",1jJ t (x)-y°"{'" 1jJ(x) 

= af.J. ",j"'(x) 

[because of (3.63)] 

[because of (3.33)] 

(3.65) 

and is such recognized as a four-vector. This is the reason for calling jf.J.(x) the four
current density. The continuity equation (2.17) can now be written in Lorentz-invariant 
form 

8jf.J.(x) = 0 
8xf.J. . 

By this we have explicitly proven that the probability-density 

jO(x) = cg(x) = c1jJt 1jJ(x) 

(3.66) 

transfonns like the time-component of a (conserved) four-vector. Thus an invariant prob
ability is guaranteed, because it holds for the Lorentz system of observer A 

! J jO(x)d3x = 0 =? J jO(x)d3x = 1 

and for ob server B 

~, J j'°(x')d3x' = 0 =? J j'°(x')d3x' = 1 

For further considerations it is useful to introduce the short-hand notation 

(3.67) 

for the combination 1jJ t ,,(O, which occurs very often. -;jJ is called the adjoint spinor and is 
converted by Lorentz transfonnations as [using (3.63)] 

-;jJ'(x') = 1jJ,f(x')-Y° = (S!li(x»)t,,{O = 1jJt(x)st"{O 

= 1jJt(x)"{OS-1 = -;jJ(x)S-1 (3.68) 
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LORENTZ, Hendrik Antoon, Dutch physicist, *18.7.1853 in Arnheim, 
t4.2.1928 in Haarlern. Professor at Leiden, founded in 1895 the theory 
of electrons, with which he explained the Zeemann effect as weil as the 
rotation of the plane of polarization of light in a magnetic field. He gave, 
funhermore, a first explanation of the results of the Michelson-Moriey 
experiment (L. contraction) and established the Lorentz transformation. 
Together with P. Zeeman he was awarded the Nobel prize in physics in 
1902. 

FEYNMAN, Richard Phillip, *11.5.1918 in New York, t 15.2.1988 in 
Pasadena, professor at the California Institute of Technology in Pasadena. 
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4. Spinors under Spatial Reflection 

Next we explore the improper Lorentz transformations of spatial reftections, which are 
given by 

~' = -~ , 
t' = t , 

with a corresponding transfonnation matrix 

aV = (~ I-' 0 
o 

o 
-1 
o 
o 

o 
o 

-1 
o 

~) = gl-'V 

-1 

(4.1) 

(4.2) 

In this case the Dirac equation should be covariant too, because (4.1) is nothing other 
than a special case of the general Lorentz transfonnation (3.1). All of our considerations 
from Chap. 3 can therefore be used again here, except for those which are based on 
infinitesimal transfonnations. This is a consequence of the fact that a spatial reflection 
cannot be generated by means of infinitesimal rotations acting on the identity element. 
Let us call the operator of the spinor transfonnation P (for parity). For S = P holds also 
the defining equation (3.34) which now reads with (4.2) as 

aV",1-' = P,v p-1 or 

aU" aV ",I-' = paU" "'v p-1 
v I-' I V I 

3 
{:} 8;,1-' = P L gU"v,v p-1 

v=0 
~ 1 ~ {:} p- ,U"p = gU"U",U" . (4.3) 

Notice that on the rhs there is no summation over 0', because conventionally summation 
is only defined over identical indices occuring simultaneously in the top and bottom of an 
expression. Equation (4.3) has the simple solution 

(4.4) 

where for the time being 'P is an unobservable arbitrary phase. It can e.g. be chosen in the 
following way. In analogy to the proper Lorentz transfonnations for which a rotation of 
411" reproduces the original spinor, we postulate that four space-inversions will reproduce 
the spinor, Le. 
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This implies that 

(ei 'P)4 = 1 

and thus 

ei'P = ± 1, ± i 

The operator P given by (4.4) is unitary, 

p-l = e-i'P/,o = pt , 

and, as will be seen shortly, also fulfills 

P-l=/,optl 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

which is analogous to (3.63). We are now able to write down explicitly the transformation 
of the spinor under space inversion, [cf. (3.27)] 

t/J'(x') = t/J'(~', t') = t/J'(-~, t) = Pt/J(x) = ei'P/,0t/J(~, t) 

= Pt/J( -~', t') 

In the nonrelativistic limit 

t/J(x) = ( ~~) ) 

and thus ~ is an eigenvector of P. For an electron at rest [see (2.71)], 

Ft/J(l) = ei'Pt/J(l) , 

Pt/J(2) = ei 'P<p(2) , 

Pt/J(3) = _ei'Pt/J(3) , 

Pt/J(4) = _ei'Pt/J(4) . 

(4.9) 

(4.10) 

Therefore the eigenfunctions of positive energy t/J(1) and t/J(2) have a P eigenvalue ("in
ternal parity") opposite to that of the states with negative energy t/J(3) and t/J(4). 

Another improper transformation is time reversal but since this is more complicated 
we shall deal with it later, in Chap. 12.5. The parity of spinors is also discussed in Example 
9.3 and is further illustrated in Chap. 12.5. 
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5. Bilinear Covariants of the Dirac Spinors 

There must exist 16 linearly independent 4 x 4 matrices which we denote by (1'n)aß' 1t 

turns out that one can construct 16 (a complete set) of these 1'n (n = 1, ... , 16) from the 
Dirac matrices and their products. We write 

rAS = 11 , rAV _ '" rAT _ ~ _ ~ 
/J - I/J' /JV - v/JV - -VV/J ' 

(1) (4) (6) 

jJ' = i",O",I",2",3 = "'5 == ",5 1'A - '" '" 
(1) 1 1 1 1 1 1 , /J (4) 15 I/J (5.1) 

and verify step by step the postulated properties of the 1'n as weH as some extra ones 
(also cf. Example 3.1). First we shall prove that in (5.1) there are indeed 16 matrices. 
This is easily done by adding the values written in brackets below the symbols. The upper 
indices of the matrices ("S", "V", "T", "P", and "A") have the meaning "scalar", "vector", 
"tensor", "pseudovector", and "axial vector", and these specifications will become clear 
in the following. Furthermore it holds that: 

a) For each 1'n holds (1'n)2 = ± 11. We shall prove this for some of the 1'n: 

(1'V )2 - ('" )2 - I1g /J - I/J - /J/J ' (5.2) 

due to the commutation relations (3.11), 

A2 1( )2 = a /JV = -4 I/JIV -,V'/J 

= -~('/J'V'/J'V -'/J,V,V'/J -,V'/J'/J'V + IVI/JIVI/J) 

= -~ [2g/Jvl/Jlv - (1/J)2(,v)2 - 2<T/J)2<Tv)2 + 2g/Jvlvl/J - (Iv)2(,/J)2] 

= -~ [2g/Jv('/Jlv + IVI/J) - 4(lv)2(,/J)2] 

= -~ [4(g/Jv)2 11 - 4gvvg/J/J11] 

= {ogVVg /J/J 11 for J1. =f. v 
for J1. = v. In this case a-/JV = 0 

Similarly the conjecture is proven for the other matrices (5.1). 

b) To each 1'n except 1'8 there exists at least one corresponding 1'm with 

1'n1'm = _1'm1'n . (5.3) 
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This is easily proved explicitly, e.g. 

AV AV AV AV AV . 
rl-' : rl-' r v = -rv rl-' 1f J/ =F I-' 

since this corresponds to the commutation relation (3.11) 
AT AT AV AV AT 
rl-'v: rl-'vrl-' = -rl-' rl-'v , 

because for each 1-', v we have 

i i 
ul-'v'Yl-' = 2("11-'''11'' -'Yv'Yl-'hl-' = 2(-'YJl'YJl'Yv+ 2'Yl-'gJlv+'YJl'Yv'YJl- 2'YJlgJlv) 

i 
= -2'YJl('YJl'Yv - 'Yv'YJl) = -'YJlUJlV 

This shows that the t~'s correspond to the tJv in the sense of relation (5.3), and vice 
versa, etc. For the other r" matrices one proves the relation (5.3) in a similar way. From 
(5.3) and (5.2) in particular, 

±t" = _tmt"tm =+t"(tm)2 

and therefore calculating the trace yields [making use of tr(AB) = tr(BA)] 

± tr(t") = -tr(t"(tm)2) = +tr(t"(tm)2) = 0 . (5.4) 

Here we have a remarkable result: All t" matrices except t s have a vanishing trace; 

c) For given t a and t b (a =F b) there exists a t" =F t s with 

t a t b = f::bt" , (5.5) 

so defining f~ as a complex number. We check this property with some examples: For 
I-' =F J/ we have 

rAVrAv 'YJl'Yv - "11""11-' 'A 'rAT 
Jl v = "11-'''11'' = 2 = - 1UI-'V = -1 1-'1" 

In this case the f factor is -i. As a second example we take a look at 

etc .. It can easily be shown that (5.5) holds in each case. 

for I-' = T , 

for I-' = U , 

for I-' =F T =F U , 

Now we show that the t"'s of (5.1) are linearly independent. For this purpose we 
suppose the existence of the relation 

(5.6) 

" 
and by multiplication with t m =F t s we get 
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0= Enan tr(fn Fm) = am tr(fm)2) + En =I man tr(f~mfv) [cf. (5.5)] 

= am tr (fm)2) + En =I manf~m tr(tV ) 

~ "-v-' 
=±n [cf.(S.2)] =0 [cf.(S.4)] 

= ±4am . 

Thus am = 0 for all m =I S, and in the case of fm = fS 

(5.7a) 

i.e. as = 0 also. Therefore all coefficients an of (5.6) must vanish and the linear in
dependence of the fn,s is proved. Hence every 4 x 4 matrix can be expressed by the 
fn's. 

We now turn to the behaviour of the bilinear expressions 

~(x)ft/J(x) (5.8) 

under Lorentz transformations. For this purpose we need 

, 11 ,5 + ISlIl = 0 , (5.9) 

which may be easily verified and leads immediately to 

[/5, allvL = & bs {fll IV -,VIIl) - ('IlIV -,vlllhs) = 0 (5.10) 

According to the proper Lorentz transformations (3.52) the spinors are transformed by the 
operator 

S(a) = exp ( -~allvw:!v) = exp ( -~wallv(inrv) 
Together with (5.10) we get direct1y 

[S(a), ,sL = 0 . 

(5.11) 

(5.12) 

According to (4.9) the space inversion (improper Lorentz transformation) of the spinors 
is accomplished by the operator 

P = ei4>,O . (5.13) 

For this operator, by virtue of (5.9), 

P,S = -,SP or 

[p, 15]+ = 0 

Now we consider bilinear quantities in ~ and t/J and can easily calculate that, e.g. 

~' (x')t/J' (x') = t/J,t (x'h°t/J' (x') = t/J t (x )st ,0 St/J(x) 

= t/J t (X)/O S-1 St/J(x) = t/J t (xh°t/J(x) = ~(x)t/J(x) 

(5.14a) 

(5. 14b) 

(5.15) 
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Thus the bilinear expression ~(x)'IjJ(x) has the same value in every Lorentz frame. We 
therefore eall 

(5.16) 

a scalar under Lorentz transformations (or simply Lorentz scalar) and ~(x)'IjJ(x) the scalar 
density. Similarly, in the following Exercise 5.1 we prove that 

~'(x'hs'IjJ'(x') = ~(x)S-I,sS'IjJ(x) = det(a)~(xhs'IjJ(x) (5.17a) 

is a pseudoscalar, 

(5.17b) 

a vector, 

~' (x'hs,V 'IjJ' (x') = det(a)aV Il ~(x hnll'IjJ(x) 

a pseudovector, and 

(5.17e) 

~' (x')a IlV 'IjJ' (x') = all OtaV ß~(x )aOtß 'IjJ(x) (5.17d) 

a tensor 0/ second rank. The prefix "pseudo" in pseudosealar indieates that this quantity 
transforms as a Lorentz sealar but reverses its sign under improper Lorentz transformations. 
The same holds for the pseudovector (5.17e). 

EXERCISE .................................................................. .. 

5.1 Transformation Properties of Some Bilinear 
Expressions of Dirac Spinors 

Problem. Investigate the transformation properties of the 
following bilinear expressions consisting of Dirae spinors: 

2) ~,s'IjJ , 3) ~'Il'IjJ , 

5) ~aIlV'IjJ . 

Solution. 'IjJ changes to S'IjJ under Lorentz transformations 
and ~ to ~S-1 (since st,o = ,OS-I). It holds that 
S-I,P,S = allv,v and S,s = ,sSdetlal. The latter re
lation is a useful summary of (5.12) and (5.14). Thus, 

I) ~'IjJ ~ Ii~S-l1i S'IjJ 

= ~'IjJ (sealar) , 
- _A 1 A 

2) 'IjJ,s'IjJ~'ljJS- ,sS'IjJ 
- A lA = 'ljJdetlaIS- S,s'IjJ 

= detlal~,s'IjJ (pseudoscalar) 

3) ~,Il'IjJ ~ ~S-I,p, S'IjJ 

= all v~,v'IjJ (veetor) , 
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4) ~,nll'IjJ ~ ~S-I,np, S'IjJ 

= detlal~,sS-I,1l S'IjJ 

= detlalall v~/nv 'IjJ (pseudovector) , 

5) ~aIlV'IjJ ~ ~S-laIlV S'IjJ 

= ~~S-1 (,Il SS-I,v _,v SS-I,Il)S'IjJ 

= ~~ (alle,e aV T,T - aV T,T ap,e,e) 'IjJ 

= all eav T ~aeT 'IjJ (second rank tensor) 

EXERCISE ........................... . 

5.2 Majorana Representation of the Dirac Equation 

Problem. Show that there exist four 4 x 4 matrices i'1l 
such that 

Re(i'Il)Otß = 0 , 

i'1li'v + i'vi'1l = 29llv , 

(ilii'p,oll - moc)'IjJ = 0 , 



Le., the Dirac equation is real in this representation. Here 
op, = olox /J" 

Solution. From the common l' p, matrices we know that 
they fulfill 

1'0 = (~ 1'i = ( ~ 
-O'i 

with 

A (0 0'1 = 1 A (0 0'2 = i 

A (1 0'3 = 0 

and 

1'p,1'1/ + 1'1/1'p, = 2gp,1/ , 1'J = 1'0 , 1'1 = -1'i 

We define 

1'0 = 1'01'2 = ( ? 0'2 ~2 ) 

1'1 · . (0 = 11'01'1 = 1 A 

0'1 ~1 ) 

1'2 · .(ll = 11'0 = 1 0 -~) 
1'3 · . (0 = 11'01'3 = 1 A 

0'3 ~) 
and recognize immediately that these 1'p, are purely imag
inary matrices. On complex conjugation 

A* * * nA ro = 1'01'2 = -1'01'2 = - 0 , 
A* . * *. rA r 1 = -11'01'1 = -11'01'1 = - 1 

1'5 = -i1'O = -1'2 , 

1'5 = -ho1'3 = -1'3 

since only 1'2 is imaginary. Now we check the anticom
mutation relations: 

gOO = 1 = (1'0 f = 1'01'21'01'2 

= -(1'0)2<1'2)2 = 1 

2g01 = 2glO = 0 = -i(1'21'1 + 1'11'2) 

= -i [(1'0)21'21'1 + (1'0)21'11'2 ] 

= i( 1'01'21'01'1 + 1'01'11'01'2) 

= 1'01'1 + 1'11'0 , 

2g02 = 2no = 0 = i<1'2 - 1'2) = i( 1'01'01'2 + 1'01'21'0) 

= 1'21'0 + 1'01'2 , 

2g03 = 2gJO = 0 = 1'01'3 + 1'3i'o as for gOI 

gll = -1 = (1'0)2<1'1)2 = -1'01'11'01'1 

= (i1'01'1)2 = (1'tf 
as for no , 

2g13 = 2g31 = 0 = 1'11'3 + 1'31'1 as for glO , 
. 2 A )2 

n2 = -1 = (11'0) = (r2 , 

2n3 = 2g32 = 0 = 1'21'3 + 1'31'2 , as for no , 

g33 = -1 = (1'3)2 , as for gll 

Thus we have proved all of the necessary properties of the 
1'p, matrices. This 1'p, representation of the Dirac algebra 
is called the Majorana representation. 

BIOGRAPHICALNOTES ............................................................ .. 
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faeulty (own desire) and in 1929 Ph.D. in theoretical physies at Fermi's. 
Tille of the thesis: ''Quantum Theory of Radioaetive Atomie Nuelei". In 

the subsequent years free-lance collaborator at the Institute of Physies in 
Rome. In 1933 he went to Germany (Leipzig) for some years and worked 
with Heisenberg. TIris resulted in a publieation on nuelear theory (Z. Phys. 
82,137 (1933». In 1937 he published "The Symmetrie Theory ofElectron 
and Positron" and four years after his disappearence the "Significanee of 
Statistical Laws for Physics and Social Seienees" was published. 
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6. Another Way of Constructing SoIutions 
of the Free Dirac Equation: 
Construction by Lorentz Transformations 

Our eonsiderations of the last ehapters showed that the free Dirae equation exhibits an 
of the properties of eovarianee. Moreover positive-energy solutions possess the eorrect 
behaviour in the nonrelativistie limit. We eonsider now the solutions of the free Dirae 
equation with a new approach better suited to the eovariant formulation and, later on, for 
the field-theoretieal applieations. Let us return to the solutions (2.71) of the free eleetron 
in its rest frame. We denote them in a more eompaet form: 

where 

er = {+1 
-1 

for r = 1, 2 

for r = 3, 4 

(6.1) 

(6.2) 

The x dependenee of the spinors 1jJr in (6.1) reduees to a simple time dependenee. There 
is no spaee dependenee beeause the wavefunetion is smeared out homogeneously in the 
whole of spaee. We also have 

The first and the seeond solutions 1jJl(x) and 1jJ2(x) have positive energy and eorrespond 
to the spin degrees of freedom of the Sehrödinger-Pauli eleetron. For the solutions 1jJ3(x) 
and 1jJ4(x) with negative energy we must still find a reasonable interpretation. All of the 
1jJr(x) of (6.1) are also eigenfunetions of 

~) (6.4) 

[cf. (3.57)] with the eigenvalues ± 1: 

E31jJr(X) = (± 1)1jJr(x) , (6.5) 

where the eigenvalues 

+1 are valid for r = 1, 3 and - 1 are valid for r = 2,4 . 

Earlier [cf. (2.34)] we direetly obtained the free solutions for finite momentum (finite ve
locity) by solving the free Dirae equation. Now we follow a different path: By transforming 
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Fig. 6.1. In the z't' system the elec
tron moves with the velocity +v. In 
the zt system the four-momentum 
is pI'; in the z't' system it is p'I' 

pO lightcone 

Fig. 6.2. The four-momentum of a 
free partic1e always lies within the 
lightcone in momentum space 

to a coordinate system which moves with the velocity -v relative to the rest system, thefree 
wave functions 0/ the electron with velocity +v are constructed from the wave functions 
(6.1) o/the electron at rest (see Fig.6.1). For this purpose we write first the exponent of 
the rest solution (6.1) in invariant fonn: 

(6.6) 

t' 

-v rest system 
• 

'--------x' ... -----__ x 

\ electron at rest 

where 

X' Jl = aJl v xv p' Jl = aJl vpv = a Jl opo = aJl OmOc , 

pI' = {moc, O} = { m~c2 , 0 } (6.7) 

The primed quantities are valid in the moving reference system, the unprimed in the rest 
system of the electron. The zero-component of the four-momentum is always given by 

(6.8) 

Next we remark that the solutions for positive and negative energy transfonn separately 
under proper Lorentz transfonnations and also under space inversion. This means that the 
solutions for positive and negative energy are not mixed under these transfonnations. One 
recognizes this from (6.6): The four-momentum of the free particle pJlPJl = m6c2 > 0 is 
always timelike. Therefore, for free particles pli lies within the light cone in momentum 
space (Fig.6.2). Under proper Lorentz transfonnation and also under space inversion (but 
not under time inversion), the future and past cones (i.e. the vectors with po > 0 and 
pO< 0, respectively), and with them the solutions for positive and negative energy, remain 
strictly separated from each other. 

We transfonn the spinors wr according to (3.61) with the operator 

(6.9) 

if, for convenience, we choose the velocity parallel to the x axis. According to (3.50a), 

Vz 
- =tanhw 
c 

Since in our case Vz should be negative (the moving inertial system has the velocity 
v = -vze! in the rest system), this relation is now 
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Vz 
-- = tanhw 

c 
(6.lOa) 



or 

h- l ( v:r) -1 (v:r) w = tan -~ = -tanh ~ (6.lOb) 

Therefore (3.49b) and (3.51) now read as 

xO' =coshw(xO -tanhwx l)= h(xO+ v:r x l ) 
1- ß2 c 

xl' = coshw(x l - tanhwxO) = h (Xl + v:r xo) 
1- ß2 c 

(6.11) 

and the operator (6.9), with 0-01 = !(-YO-Yl --yl"Yo) = i')'O-Yl = _i-y°-yl = -i-y°-y°al = -ia}. 
becomes 

S = e-i(w!2)o-Ol = e-(w/2)ii} 

n(1 (-w/2)al (-w/2)2(al)2 (-w/2)\al)3 ) 
= + 1! + 2! + 3! + ... 

_ (1 (w/2)2 (w/2)4 ) n (W/2 (w/2)3 ) ~ 
- +-2-'-+-4-'-+ ... - -, +-3-'-+ ... (}:l .. 1.. 

n hw ~ . h W 
= cos 2' - (}:l sm 2' . (6.12) 

Here we used &7 = 1, according to (2.8). Now the spinor transformation (3.53) can be 
applied direct1y to the wr(O) from (6.1) to obtain 

wr(P:r) = e- i(w!2)o-Olwr(O) = (COShI - al sinhI )wr(O) 

w (b ~ -ta~h~ -t~h~ ) r 
= cosh2' 0 -tanh~ 1 0 w (0) 

-tanh~ 0 0 1 

(6.13) 

Because the wr(O) have the simple form (6.3), the rth column of this transformation 
matrix (6.13) is identical to the spinor wr(p). More precisely, 

wl(p:r) = coshI ( ~ w) , w2(P:r) = COShI (-l'f) 
-tanh,! 0 

w'(Pz} = CO'hI ( -t'f) , w4(pz} = coshI CT'f) (6.14) 

To return to physical quantities, we convert the rotation angle w with the aid of (6.10), 

cosh x sinh 2x = ~ sinh 2x , 

coshxcoshx =~(cosh2x+l) , 

sinhxsinhx =i(cosh2x-l) , (6.15) 
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and therefore 

h sinh2x 
tan x=-.,.....-:--

cosh2x + 1 

Since 

tanh2x 
1 + l/cosh2x 

sinh x = tanh x = vcosh2x - 1 
coshx coshx 

1 
, then cosh x = --;::.==~ 

Vl-tanh 2x 

and hence (6.16) becomes 

h tanh2x 
tan x = ---;===;;;== 

1 + VI - tanh22x 

With (6.10) we may now calculated 

and 

1 + VI - (vxlc)2 

= -V71=+=2==";~;::1 =-=(=vx=/~c)~2 =+=:=(=1 =-=( v=x=lc==)2~)=_=( v=xl=c~)2 

= 1 + VI - (vxlc)2 _ [(l/";'-I---(v-x-Ic-=)2) + l]moc2 

ViVI - (vx/c)2 + VI - (vxc)2 - ViVI + [l/Vl - (vxlc)2]moc2 

E+mo~ 
= = 

V moc2 + E v2moc2 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

Hence by (6.18) and (6.19), the transformation (6.13) can be expressed completely by 
physical observables (E, Px, moc2) and reads 

'( ) -JE + moC' 
w pz - 2moc2 

1 0 0 
pzc 

E+moc2 
0 1 

pzc 
0 

x E+moc2 wr(O) (6.20) pzc 
0 

E+moc2 
1 0 

pzc 
0 0 1 
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6.1 Plane Waves in Arbitrary Directions 

The result (6.20) can be generalized to plane waves with velocity v in arbitrary directions. 
We write 

v = vn = v{ COS a, COS ß, cos ,} ; (6.21) 

thus n is the unit vector which specifies the direction of motion of the moving inertial 
system with respect to the rest system of the electron. Then according to (3.44) the "rotation 

angles" are 

( 
0 

V A V -cos a 
Llw It = Llw{In) It = Llw _ cos ß 

-cos I 

-cos a 
o 
o 
o 

-cos ß 
o 
o 
o 

and with that, according to (3.45), the infinitesimal Lorentz transformation reads 

or, is expanded form, 

x'o = xO - Llw cos ax i - Llw cos ßx2 - Llw cos ,x3 

x,I = -Llw cos axo + xl 

x,2 = -Llw cos ßxO + x 2 , 

x,3 = - Llw cos I XO + x 3 

(6.22) 

(6.23) 

(6.24) 

Since z' = 0 = {x' I, x,2, x,3} characterizes the origin of the moving inertial system, it 
follows immediately that it moves with 

(6.25) 

relative to the rest coordinate-system. From (6.24) easily follows the former special case 
of motion along the x axis if we set cos a = 1, cos ß = 0, cos ,=0. Just as simply, one 
obtains the movements along the y and z axes for cos a = 0, cos ß = 1, cos I = 0 and 
cos a = 0, cos ß = 0, cos ,= 1, respectively, both of which are also contained in (6.24). 
Thus from (6.22) follows the coefficient-matrlx belonging to the direction of motion n. 

(i )v = (- c~s a 
n It -cos ß 

-cos, 

-cos a 
o 
o 
o 

-cos ß 
o 
o 
o 

Setting Llw = w/ N we get, in complete analogy to (3.52), 

V;' (x') = S(&)V;(x) = Nl~ 00 ( n - ~ ~ 0-Itv(1n)ltv )N V;(x) 

= exp( - iwo-ltv(1n) ltv/4)v;(x) ; 

(6.26) 

(6.27a) 
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thus, 

S(ii) = exp ( - iwo-/.",(in)Il V /4) 
The expression in the exponent reads 

0-Il v (in)IlV = 2 (0-01 (in)Ol + 0-02(in)02 + 0-03 (in)03 ) 

which can be converted by use of (6.26) and gll = g22 = g33 = -1 into 

o-ll v (in)IlV = 2(0-01 cos a + 0-02 cos ß + 0-03 cos 'Y) = -2i&· ~ 
v 

Here we have made use of 

v - = {cos a, cos ß, cos 'Y} 
v 

along with v = I v I and 

o-Oi = ~ bo, 'YiL = ~('YO'Yi - 'Yi'Yo) = hO'Yi 

=il'Yigjj = -i'Y°'Yi = -hOlaj = -iaj 

(6.27b) 

(6.28) 

(6.29) 

With this the spinor transformation (6.27b) for Lorentz transformations to inertial systems 
with direction of velocity v/v now becomes 

S( -v) = S ( _ ~) = e-(w!2)&' vIv 

1 o 

= 
E+moc2 

2moc2 

o 1 

pzC p_c 

E+moc2 E+moc2 
P+C -pzC 

E+moc2 E+moc2 
= [w1(p), w2(p), w3(p), w4(p)] 

pzC 

E+moc2 
1 

o 

p_c 

E+moc2 
-PzC 

E+moc2 

o 

1 

(6.30) 

Here we have set P± = Pa: ± ipv' and the last line indicates that the individual column 
vectors of the S(-v) matrix are identical with wr(P). We will calculate the final step of 
(6.30) in the following Exercise 6.1. 

EXERCISE ................................................................ .. 

6.1 Calculation of the Spinor Transformation Solution. We expand S in aseries 
Operator in Matrix Form 

Problem. Calculate explicitly the spinor transformation op

A 1 2 
A WCl:'V W A 2 
S(-v) = 1 -"2 -v- + 2 4v2 (Cl: ·v) 

erator 
S(-v) = e-(w/2)& • vIv lw3 (A )3 - 6 8v3 Cl:' v + ... (1) 

in matrix form. and use 
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(&. V)2 = &icxjViVj = ,·,p''',/'l,jViVj = _,i,jViVj 

= -~ ( ,i,j ViVj + ,j ,iVjVi ) = _~ (2g ij llViVj ) 

= +v2 ll (2) 

This yields 

S( -v) = { 1 + ~ :2 (; y + 2~ ~: (; y + .. -} . II 

_ &. v {:::. +! W 3 (~)2 + } 
V 2 6 8 V ••• 

w &·V. w 
= llcosh- - --smh-

2 V 2 

The matrix & • v/v has the fonn 

&·v 
v 

A V~ A v y A Vz 
= cx~ • - + cxy • - + CXz • -

v v v 

P~ 
= 

P 

ipy 
+-

P 

+ pz 
p 

1 
= 

p 

[ 
[ 
[1 

[;, 
p+ 

1 

-1 

-1 

p
-Pz 

1 

1 

1 

where P± = p~ ± ipy. 

(3) 

(4) 

With the help of (6.19) for cosh(w!2), we obtain from 
(3) that 

S(-v) 

= 
[

1: 
E+moc2 1 

2moc2 1 

E + moc2 tanhw/2 

2moc2 p p
-Pz 

pz 

P+ -pz P-j 

E+moc2 
= 

2moc2 
pzc p_c 

1 0 

0 1 

E+moc2 
p+c 

E+moc2 
-pzc 

x pzc 

E+moc2 
p_c 

E+moc2 

E+moe2 
1 

E+moc2 
o 

p+c -pzC 

E+moc2 E+moc2 
o 1 

(5) 

According to (6.18), 

-tanh:::' = pc 
2 E+moc2 

(6) 

taking into account that in (6.18) p was substituted by p~, 
because there we only considered motion in the x direc
tion. Hence the matrices in (5) can be summarized by the 
expression (6.30). 

EXERCISE ______________ _ 

6.2. Calculation of the Spinor u(p + q) by Means 
of a Lorentz Transformation from the 
Spinor u(P) of a Free Particle 

Problem. Given a free-particle spinor u(p), express u(p+q) 
by u(P) for qJ.l -+ 0, pq -+ 0 by means of a Lorentz trans
fonnation. 

Solution. The solution of the Dirac equation for a free 
particle with momentum p reads as 

'Ij;(x) = u(p)e-ip.~ (1) 

If we transfonn into a system x', which moves with the 
velocity u = -q/m in the system chosen in (1), the particle 
(in system x') has the momentum p + q, and 

'Ij;' (x') = u(p + q) e -i(p+q) • ~' 

Because of the invariance of the scalar product p • x, 

e-ip • ~ = e-i(p+q). ~' 

(2) 

(3) 

From (3.52) we obtain the transfonnation of 'Ij;(x) into the 
moving system 

'Ij;/(X' ) = exp ( -~wo-J.ll/j::1/ )'Ij;(X) 
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By inserting (1) and (2) ioto (4) we get the general result 

u(p+q)=exP(-~w&llvj:!V)U(P) . (5) 

For qll - 0 the exponential function can be expanded; 

Therefore one obtains 

(6) 

If we choose the coordinate system in (1) with q pointing 
in the x direction and with pq s:' 0, (6) can be simplified 
as 

iw 
11- -0"01 

2 
(7) (9) 

where the connection between w and q = (0, qx, 0, 0) is 

tanhw = ~ =_.!l!:... 
c mc 

~ w . (8) 

6.2 The General Form of the Free Solutions and Their Properties 

From OUT previous considerations (6.1), (6.6) and (6.30), the general free solution must 
have the form 

(6.31) 

In the above, due to (6.3) and (6.30), the spinor wr(p) is identical to the row r of the 
matrix (6.30), because 

(6.32) 

However, we must take note of the fact that this result holds for the special representation 
of the I matrices (3.13) only. The spinoTS wr(P) satisfy 

(6.33a) 

(6.33b) 

which are very usefullater on. The first one is obvious and direct1y follows with (6.1) 
from (3.9) and the covariance of the Dirac equation. It represents the Dirae equation 0/ a 
free particle in momentum spaee. We have er = + 1 for r = 1, 2 and therefore (6.33a) reads 
<p - mOc)wr(P) = O. These are the solutions with positive energy. As already mentioned 
w 1(p) and w2(p) are given by the two first rows of (6.30). Furthermore, we see direct1y 
that in the nonrelativistic limit of the representation of (6.30) the lower components of 
w 1(p) and w2(p) become small; in the limit of the electron being at rest they finally change 
to the first two solutions (6.3). Similar considerations apply for the solutions of negative 
energy (er = -1, r = 3, 4). According to (6.30) and (6.3) we have to exchange the large 
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components with the small ones in this case. Equation (6.33b) follows from (6.33a) by 
Hennitian conjugation, 

(p - crmOc)wr(p)t = 0 = wrt(p)(P - crmoC)t 

= wrt(p) (pt - crmOc) 

= wrt(p) (PJJ-yJJt - crmoC) 

= wrt(p) (PO-y° - Pk-yk - crmOc) 

Note that the PJJ are good complex numbers (pt = PJJ)' and in the last line (3.12a) was 
used, Le. -y0t = -y0 and -ykt = _-yk. Multiplication with -yo from the right yields 

wrt(p)(PJJ-yJJt - crmOc) = 0 = wrt(p}'l(PO-Y° + Pk'Yk - crmoC) 

= wr(P) (PJJ-yJJ - crmOc) 

= w(P)(P - crmoc) . 

We name (6.33b) the adjoint wave equation because it is valid for the adjoint spinor 
wr(P) = wrt(p)-yo. With the help of the explicit representation of the wr(P) in (6.30) we 
can now compute the nonnalization condition (see Exercise 6.3), 

-r r'(p) l: 
W (P)w = urr'cr . (6.34) 

Then, in Exercise (6.4), we will prove the validity of 

rt r' E c w (crP)w (cr'P) = -,Urr' 
moc-

(6.35) 

EXERCISE .................................................................. .. 

6.3 Normalization of the Spinor wr(P) 

Problem. Prove explicitly the nonnalization condition 

wr(p)wr' (P) = Drr,cr 

for the spinors given in (6.30). 

Solution. From these equations we get 

E+moc2 

[ ~ l~ 2 p_c E+moCl 
w (p) = E + moCl 2moCl 

-pzc 

E+moCl 

E+moCl 
2moCl 

Now we take, say, the product w1t(p)w1(p). Note, that 

Pt =p , + -. 
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( 1) o 
E+ mot? pzC 

x 2moc2 E + moc2 
P+C 

1 1 = __ {E2 + 2Emoc2 + m2 c4 _ p 2 c2} 
2moc2 E + moc2 0 

= 2 c2( 1 c2 {2Emoc2 + 2m5c4 } mo E+mo ) 

_ 2(E + mot?) mot? _ 1 - D 
- 2moc2(E + moc2) - - 11 cl 

Next we calculate 

w2(p)W3(p) 

_ E+mot? 
- 2moc2 P 

X (0, 1, P+c, ,+ PZC,) (;;;~) 
E+moc- E+moc- r 

E + mot? {p+C p+C} 
= 2moc2 E + moc2 - E + moc2 
= 0 = D23C2 • 

The third example we give is 

w4(p)w4(p) 

E+mot? 
= ---=:-

2moc2 

( P+c -pzC 
E+moc2 ' E+moc2 ,0, 

p_c 

E+moc2 
-pzc 

E+moc2 
o 
1 

_ 1 {( 2 2 2) 2 
- 2moc2(E + moc2) Px + Py + pz c 

- (E + moC2)2 } 
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Allother combinations can be calculated in the same way. 
However, there is a more elegant procedure available: 
wr(p)wr' (P) is a Lorentz scalar (cf. Exercise 5.1), and 
hence 

, , t 0' 
wr(p)wr (P) = wr(O)wr (0) = wr (0)')' wr (0) = Drr'cr , 

which we see at once because of (6.3). But note: The prob
ability density wrt(p)wr(P) is not Lorentz-invariant. This 
quantity is only the fourth component of the four-vector. 
EXERCISE ______________ _ 

6.4 Proof of the Relation 
Wrt(crP)Wr' (cr'P) = Drr,(Elm oc2) 

Problem. Show with the help of (6.30) that the following 
relation holds: 

r t ( )wr'( c E w crP cr'P) = 0rr'---" 
moc-

Solution. Again we calculate some examples 

«(a: '0= 1. ::~ 1: p_c) E + mot? ( p~c ) 

, 'E + moc2 ' E + moc2 2moc2 E +;:::oc2 

E+moc2 
= E+ mot?{l+ (p;+p~+p;)t?} 

2moc2 (E + moc2)2 
_ E + mot? (E + moc2)2 + p2t?) 

- 2moc2 (E + moc2)2 
2E2 + 2mot? E E 

= 2moc2(E + moc2) = moc2 D11 

(b) r = 2, r' = 3: 

( P+C 
0, 1, + 2 ' 

E+moc 

E+mot? 
X 

2moc2 E+moc2 
1 
o 



E + rnoc? { p+c p+C} 0 
= 2moc2 - E + moc2 + E + moc2 = 

(e) r = 4, r' = 4 

( _ P+C pzC 0 1) 
E + moc2 ,+ E + moc2' , 

E+ rnoc? 
x--~-

2moc2 

The faetor 

p_c 1 E+moc2 
+ pzC 

E+moc2 
o 
1 

E moc? 1 1 
rnoc2 = VI - ß2 moc2 = VI - ß2 

= E + rnoc? { (pi + P~ + p~)c? + I} 
2moc2 (E + moc2)2 

= c2 1 2 {p2C2 + E 2 + 2Emoc2 + m5c4 } 
2rno (E + mOc ) 

E 
= rnoc2 6'44 

The other remaining combinations can be calculated simi
larly. 

appearing in (6.35) just eaneels the Lorentz contraetion of the volume element in the 
direetion of motion 

.1V' = .1x' .1y' .1z' = .1xH.1Y.1z =.1V Jl - ß2 . 

Consequently the probability in the volume .1 V' becomes invariant, i.e. 

wr't(p)wr' (p).1V' = wrt(O)wr(O).1V = 1 4.1V = 1 • .1V . (6.36) ~VI-P-

We expeet this property to hold for a proper normalization. Let us clearly point out the 
difference between the orthogonalization relations (6.34) and (6.35): In (6.34) the spinor 
wr' (P) is orthogonal to the adjoint spinor w(P) with the same momentum argument. On 
the other hand, for instanee in (6.35), the spinor w r' (er'p) with positive energy (r' = 1, 2) 
is orthogonal to the Hermitian eonjugate spinor wrt(erP)(r = 3, 4) belonging to negative 
energy and the reverse momentum argument. When considering the latter property we have 
to bear in mind that the sign of the momentum dependent term in the plane wave faetor 
is also reversed for the negative energy solutions. Therefore two plane Dirae waves with 
the same spatial momentum p but opposite energy are orthogonal. This follows simply 
from the definition of the plane Dirae waves given in (6.6), (6.13) and (6.33) [eompare 
also with (6.31)], 

t/;;(x) = wr(P) e-ierPl<xl</1i. = wr(p) e-ierPoxo/1i. e+ierp • z/Ii. , 

PO = +Jp2 + möc2 >0 . 

Accordingly, we have, for a wave with r = 1, 2, the energy E = +Jp2 + möc2 = poc and 
momentum +p, 

(6.37a) 
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and for one with r = 3,4, the energy E = _Jp2 + möc2 = -POc and momentum +p 

(6.37b) 

Clearly we leam that both waves have the same momentum p (the same factor eip • z/1i.) 
but the opposite energy (e-ipoxO/1i. and e+iPoxo/lL, respectively). Hence the spinors w1,2(p) 
belong to positive energy and momentum +p, whereas w3,4(_p) correspond to negative 
energy and the same momentum +p. These spinors are orthogonal according to (6.35), 
and thus (6.37) holds. In fact, the relation (6.35) is required to ensure that any two plane 
waves tP;:(x) and tP;(x) are orthogonal in the sense of the following scalar product: 

Inserting the plane wave spinors of (6.31) we obtain 

(tP;' ItP;> = J d3 xwr't(p')wr (p)exp [ - i (€rPJJxJJ/n - €r,p~xJJ/n)] 

= wr't(p/)wr(p)exp [ - i(€r'POxO/n - €rPOXOxO/n»)] 

X (2rr)3h3(€r,p'/n - €rp/n) 

(6.38) 

(6.39) 

The integration over the spatial coordinates has led to adelta function containing the 
momentum vectors p and p'. Thus the scalar product vanishes unless p' = +p (if the 
energies have equal sign) or unless p' = -p (for opposite signs of the energy, €r' =/: - €r). 
This is just the condition for which the orthogonality relation of the unit spinors w r (6.35) 
applies! Thus we obtain for any two plane waves 

( r' Ir> E 3 ,,3 (' ) tPp ' tPp = --2 (2rr) u (p - p)/n hrr, 
moc 

(6.40) 

Up to a normalization factor this is just the orthogonality property one would expect for 
plane wave states. 

The closure relation is important too: 

4 

E €rW~(P)Wß(P) = hO/ß (6.41) 
r=l 

Here the sum extends over all four spinors, taking from the first one only the component 
a and from the second adjoint one solely the component ß. Therefore, the closure relation 
(6.39) expresses a kind 01 row orthonormality 01 the matrx (6.30). Due to (6.13), in the 
rest frame (p = 0) of the electron clearly 

4 

E €rW~(O)Wß(O) = hO/ß (6.42) 
r=l 

is valid. For this reason (6.41) can be traced back to (6.42). Indeed with the help of (6.32) 
and we can calculate it direcdy: 
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4 

E erW~(P)Wß(P) 
r=1 

(6.43) 

where in the first line we have used the relation 

(6.44) 

from (3.63). This is again the reason why the adjoint spinor wr = w rt ,0 appears in the 
closure relation (6.41), but not the Hermitian conjugate w rt . It is in accordance with the 
fact that the Lorentz transformation of the spinors is not unitary as expressed in (6.44). 

EXERCISE .................................................................. .. 

6.5 Independence of the Closure Relation from 
the Representation of the Dirac Spinors 

Problem. Show that the relation (6.41) 

4 

E erw~(P)Wß(p) = DOtß 
r=1 

is independent of the special representation from the Dirac 
spinors. 

Solution. Let another representation 1/1 = U '/1U- 1 of the 
Dirac algebra (U t = U-1) be given, and let vr(O) denote 
the spinors of the free particles at rest, constructed accord
ingly. We will prove that from (6.41) it follows that 

(1) 
r 

As seen previously [see (6.43)], one can show that (1) is 
equivalent to 

E erV~(O)Vß(O) = DOtß ' (2) 
r 

and therefore we prove (2). 
With the change of the representation 1/1 = U '/1 U -1, 

the spinors become vr(O) = Uwr(O). Hence we have 

EerV~Vß = Eer(Uwr)Ot(Uwr)ß 
r r 

= EerUOtI'W~(U.,nt10)ß 
r.1' 

~ UA r( rtUA_1-) = ~ er Otl'wl' w ,0 ß 
r,1' 

~ A r (r t ) A 1 = ~ eUOtI'WI' w ,0 6(U- )6ß 
r.I',6 

= E erW~W6UOtI'(U-1)6ß 
r.I'.6 

= EDI'6UOtI'(U- 1)6ß 
1',6 

= EUOtß(U- 1)6ß = DOtß ' 
6 

which is the form required. 

EXERCISE ............................ . 

6.6 Proof of Another Closure Relation 
for Dirac Spinors 

Problem. Prove directly the closure relation 
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Solution. We use the equation 

WT(erP) = s( _ e: )wr(O) , 

insert the expression for S given by 

Wer&'· p. W = llcosh- - --smh-
2 Ipl 2 

W " aiPi. hW = llcosh"2 - L:--er-psm "2 
I 

and use this to transfonn (1) into 

A == Lw~(erP)Wi;t(erP) 
r 

= .~, [(COSh(I) 0., 

- ~ er(a~a-YPi sinhI ) W~(O)] 

(2) 

(3) 

[ rt(O)( h.(W)C "er (at)8ßpi . hW)] X w8 cos"2 u8ß - L:-- P sm "2 
1 

(4) 
The matrices ai are Hennitian [at = ai] and by explicit 
multiplication we get 

A = COSh2 1 LW~(O)Wßt(O) 
r 

_ h~· h~ ,,[(ai)a-YPi r(o) rt(O) cos 2 sm 2 ~ P erw-y wß 
r,t,"'f,6 

+ erW~(O)w~t (0) (ai);ßPi] + sinh2 I 

x L w~(O)w~t(ol$j (ai)a-y(aj)8ß (5) 
r,i,j,-y,8 

In the last tenn we have used that 

[-er &.. p] [-er &. • p] = L P~;j (ai)a1'(aj)8ß (6) 
P a-y r 8ß i,j JT 

For the wr(O) 

(7a) 

{:} L('YO)O'TW~(O) = erW;(O) (7) 
T 
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is valid; hence, 

Wrt(O) = wr(Oho = erwr(O) 

Therefore (5) turns out to be 

COSh21 LerW~(O)Wß(O) - sinh1 coshI 
r 

(8) 

X L [(a i )a1'Pi w~(O)wß(O) + w~(0)W6(0) (ai )8ßPi] 
r,i,1',8 P P 

~--------------~v~--------------~ =B 

. h2W " r(o)""""(o)PiPj(~) (~) (9) +sm '2 .L:-- erw-y W8 7 G:i a1' G:j 8ß . 
r,I,),1',8 

Because of the c10sure relation (6.41) one can sum over r 
in the first and the last sum to obtain 

A = cosh2 (I ) Saß - Sinh(I )COSh( I)B 
+ sinh2 (I) .~ P$j (ai)a1'(aj)1'ß (10) 

1,),1' 

According to Exercise 6.1, (2) one has 

L PiPj(ai)a1'(aj)1'ß = L(PiPjaiaj)aß = p2Saß ' 
i,j,-y i,j 

and consequently (10) changes to 

A = cosh2 (I ) Saß + sinh2 ( I ) Saß 

B sinh(I )cosh(1) 

= Saß (2 cosh2 (1) - 1) -B sinh (I) cosh (1) 

= Saß ( 2 E2:~~ - 1) -B sinh ( I ) cosh (I) 

= Saß n!c2 - BSinh( I ) cosh ( I) (11) 

To finish the proof, we need to show that B vanishes. With 
the help of (7a) and (9) this tenn reads 

B = L [(ai)a-YPi w~(O)Wß(O) + w~(O)W6(O) (ai )8ßPi] 
r,i,1',8 P P 

= L [(ai)a-Y('YO)-YO'Pi erW; (0)z;Jß (0) 

r,i,1',8 P 



+ crW~(O)W~(O) (1'0)T6~i)6ßPi ] 

= ~ ~ [( ano )aß + (I'oai )aß] 
I 

(12) 

6.3 Polarized Electrons in Relativistic Theory 

where again we have used (6.41). But now it holds that 
ano = -I'Oai and consequently (12) vanishes. Hence we 
have in fact: 

Electrons at rest are described by the spinors (6.3) and (6.13). These electrons are polarized 
in the z direction. For example, the spinor 

describes an electron at rest with spin projection -1i/2 on the z direction. If the rotation 
operator [(3.56), (3.57)] 

(6.45) 

where s is the unit vector along the rotation axis, acts on the states (6.3), one will obtain 
states which are - according to s - polarized in any arbitrary direction. Astate (spinor) 
w, which is polarized in the direction s is an eigenstate of the spin operator S· s in this 
direction: 

A Ii 
S·sw =-w 

2 

or, with S = liiJ/2, 

iJ·sw=w. (6.46) 

Our next task is to turn this equation into a covariant fonn. This means we are searching 
for the generalization of a (three-) spin vector into a (four-) spin vector. First we note: 

A (0-E= o ~) 
contains the Pauli matrices 0- in the main diagonal; thus the form of the 4-spinor equation 
(6.46) will be similar to the 2-component Pauli theory. In the relativistic theory one 
commonly uses a different notation. The spinor of a (free) solution of the Dirac equation 
with positive energy, momentum pi' and spin vector sll is denoted by 

u(p,s) . 

Hence u(p, s) satisfies the equation 

(6.47) 
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Now we have to c1arify the meaning of a jour-spin vector sI'. To do this we start with 
the polarization veetor s in the rest system, which is a unit veetor (s • s = 1), and write 

(6.48) 

In an arbitrary inertial system we ean get the four-spinor sI' by a Lorentz transformation 
of (SI')R.S. from the rest system: 

(6.49) 

The al' 1/ are the eoefficients of the Lorentz transformation from the moving system to the 

rest system. Henee it also holds, e.g. for the momentum, that 

(6.50) 

(Pl/)R.S. = (moc, 0, 0, 0) . (6.51) 

Beeause of the Lorentz invariance of the four-dimensional scalar product it now follows 
immediately that 

and 

In the rest system u satisfies (6.46), and hence 

iJ . su( (P)R.S., (S)R.S.) = u( (P)R.S., (S)R.S.) 

(6.52) 

(6.53) 

(6.54) 

In the moving system we obtain u(p, s) from U(P)R.S., (S)R.S.) by the Lorentz transfor
mation S(a) for spinors. Let us consider a solution v(p, s) of the free Dirae equation for 
negative energy. Beeause of (6.33a) it satisfies 

(]I + moc)v(p, s) = 0 . (6.55) 

We require that the solution v(p, s) has the polarization -s in the rest system, i.e. in the 
rest system 

iJ . sv (P)R.S., (S)R.S.) = -v (P)R.S., (sks.) (6.56) 

is valid. The minus sign on the rhs, which on first sight seems to be paradoxieal, is 
remarkable. Later we will interpret this within the hole theory. The spinors wr(P), which 
arise from the rest spinors (6.13) obviously fulfill the demands (6.54) and (6.56), if we 
define s = ez and use the following relations: 

u(p, u z ) = w1 (P) , 

u(p, - uz ) = w2(p) , 

v(p, uz ) = w4(p) , 

v(p, - u z ) = w3(p) (6.57) 

There u~ is that four-veetor in the moving system which arises from the Lorentz-transfor-

142 



mation of the unit vector U z in the z direction, which is defined in the rest system by 

(U~)R.S. = (0, u z ) = (0, 0, 0, 1) . (6.58) 

One may wonder why the spin projection (6.56) for electrons with negative energy is 
defined with the opposite sign. The reason for this becomes obvious later when we interpret 
an electron with negative energy, momentum -p and spin direction minus = 1 as a 
positron with positive energy, momentum +p and spin direction plus = i. Then the 
relations given in (6.56) and (6.57) can be understood in the positron language! The 
spinor V(P)R.S., (S)R.S.) describes a positron with the opposite spin to that which might 
first seem to be the case (in the "electron language"). We note that, according to this, 
an arbitrary spinor is characterized by its momentum PI-" the sign of the energy and the 
polarization (SI')R.S. in the rest system. [See the last part of Chap.7 and also Chap.12 
(Hole Theory)]. 
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7. Projection Operators for Energy and Spin 

In practical calculations of quantum electrodynamic (QED) processes we will become ac
quainted with a technique of calculation which allows the simple treatment of complicated 
expressions; especially the calculation of traces of products of many I matrices. It is based 
on a projection procedure, i.e. a method to project a spinor with a given sign of energy 
and fixed polarization out of a general wave function or a wave packet. The appropriate 
operators which achieve this are called projection operators. In the nonrelativistic case, 
say, 

P±=l±o-z 
2 

(7.1) 

is a projection operator Jor spin up (+) or down (-). Acting on an arbitrary state P ± 
just takes out the corresponding parts. Now we want to generalize this concept to the 
relativistic case and to search Jor Jour operators which project those Jour independent 
parts be/onging to positive or negative energy with spin up or spin down, and with the 
same momentum p, out of an arbitrary free solution of the Dirac equation (i.e. out of a 
plane wave with momentum p). Those four projection operators are denoted by Pr (p). 
They should, of course, be in covariant fonn so that they can be given in any Lorentz 
system (by transfonnation) in an easy way. We denote those four projectors explicitly as 

Pr(p) == P(PJ.l' uZ , c) . 

They should obey the conditions 

(7.2) 

(7.3) 

Both equations show the projection properties of Pr(p) very clearly. If we now recall 
(6.33a), i.e. 

(7.4) 

we at once find the projection operator Jor eigenstates with positive or negative energy: 

A(P) = crP+ moc 
2moc 

Indeed, with the help of (7.4) we find 

(7.5) 

(7.6) 
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and furthermore because of 

..L.I. ..fl v 1 ( )..fl v IJ v 2 E 2 2 ", = 'YIJ'YV1' P = 2' 'YIJ'Yv + 'Yv'YIJ l' P = gIJvP P = P = -;;r - P 

mfic4 + ~p2 2 2 2 
= Cl - p = mOc 

then 

_ mfi~(1 + erer') + mocJKer + er') 
- 4mfiCl 

_ mfi~(1 + erer') + mocJkr(1 + erer') 
- 4mfiCl 

_ (1 + erer') (mOc + erl> _ (1 + er er' ) 1 ( ) 
- 2 moc 2mfiCl - 2 r P 

(7.7) 

Obviously all the operators (7.5) decompose into only two types, namely those with 
er = +1 "(which we call -4) and the ones with er = -1 (which we call 1_): 

1±(P) = ±;+ moc 
2moc 

(7.8) 

Notice that ; is written here, and not j. Hence the momentum (with real numbers as 
components) and not the momentum operator occurs in the projector (7.8). We may present 
the relations (7.7) more transparently by writing explicitly 

a) (-4)2 =1+ , 

b) (1_)2 =1_ , 
c) 1+1_ =0 , and also 

d) 1++1_ =1 (7.9) 

These are the typical properties an energy projection operator must have. Besides, the 
expression (7.5) is also covariant, so that all required conditions are fulfilled. 

Now we consider the spin projection operator. Again we consider the rest frame, 
where the spin can be easily described. We already know from (7.1) that in this case the 
projection operator for "spin up" or "spin down" is given in the nonrelativistic limit by 

P± = 1 ±o-3 
2 

If we define the spin-projection operator with respect to an arbitrary axis given by the unit 
vector u (u· u = 1) in a nonrelativistic theory, then (7.1) is generalized to 

146 

P(u) = 1 + U ·u 
2 

(7.10) 



It is obvious that with Uz = (0,0, + 1), the special case (7.1) is contained within the 
general expression (7.10). But this is still nonrelativistic. In the Dirac theory we need the 
relativistic covariant generalization of the operators (7.1) or (7.10). For that purpose we 
make use of the four-component vector 

(7.11) 

which is given in the rest system of the electron by 

(U~)R.S. = (0, 0, 0, 1) = (0, u z ) (7.12) 

[cf. (6.58)]. Thus, by Lorentz transformation into arbitary inertial systems it follows that 

(7.13) 

With (7.12) we can write the spin-projection operator in the rest system, which is now 
extended to the fourth dimension and labelIed by E(u z ). This generalization is achieved 
by first denoting E(u~) where u~ is the third component of U z of (7.12): 

E(u3) = 1 +E3 = 1 +1'51'3(u~k.s.1'o = 1 +1'5( ,tzk.s.1'o 
z 2 2 2 

This is because ('!iz)R.S. = (U~1'v)R.S. = (U~)R.S.1'3 and therefore 

1'5'Y3 (u; k.s. 1'0 = 1'51'31'0 = i1'°1' l l1'31'31'0 

= _i-y01'11'2 1'31'31'0 = +i-y01'11'21'0 
'-v-' 

-B 

(7.14) 

(7.15) 

and! aiaj = iCijkak +6ij. Now the question arises how to generalize (7.14) to a covariant 
form. The factor 1'0 is disturbing, while 1'5?Jz is a covariant expression. In the rest frame 
the effect of 1'0 on the rest spinors wr(O) is given solely by the factor ± 1. For the spinors 
w l ,2(0) we can therefore easily omit 1'0 in (7.14). If we do the same for the spinors w 3,4(0), 
the effect in the rest frame is 

A 3 3 4 1 + 1'5 ( ?J~ '\ S 3 1 + 1'5 ( ~ '\ S 1'01'0 3 
E(uJw' (0) = 2 JR. 'W ,4(0)= 2JR · . w,\O) 

= 1 - 1'5(~k.s.1'0 w3,4(0) = 1 - E3 w3,4(0) 
2 2 

= {o.w\O) 
1. w4(0) 

(7.16) 

This would be exact1y opposite to what we may naively expect. Analogously, one easily 
verifies that 

! See Vo!.l of this series, Quantum Mechanics - An Introduction (Springer, Berlin, Heidelberg 1989), 
Exercise 13.2. 
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E( _ U3)W3.4(0) = { l ow\O) 
z Oow4(0) 

(7.17) 

Now we see that the covariant spin-projection operator 

E(u z ) = 1 + ,5?iz 
2 

(7.18) 

satisfies the following relations in the rest system [denoting E(Uz)R.S.) == E(uz)(O)]: 

E(uz)(0)w1(0) = w1(0) 

E(uz)(0)w2(0) = 0 , 

E(uz)(O)w\O) = 0 , 

E(uz)(0)w4 (0) = w4(0) 

A 1 
, E( -uz)(O)w (0) = 0 , 

E( -uz)(0)w2(0) = w2(0) , 

E( -u z )(O)w\O) = w\O) , 
A 4 

, E(-uz)(O)w (0) = 0 , 

which we can rewrite with the help of the definitions (6.57): 

E(uz)(O)u(O, uz) = u(O, uz) , E(-uz)(O)u(O, uz) = 0 , 

E(uz)(O)u(O, - uz) = 0, E(-uz)(O)u(O, - uz) = u(O, - uz) , 

E(uz)(O)v(O, - uz) = 0, E(-uz)(O)v(O, - uz) = v(O, - uz) 

E(uz)(O)v(O, uz) = v(O, uz) , E(-uz)(O)v(O, uz) = 0 . 

(7.19a) 

(7. 19b) 

Notice, the operator E(uz) should not be confused with the operator E! Because (7.18) 
is covariant, these relations are also valid in a moving system in which the spinors are 
given by u(p, uz) ... : 

E(uz)u(P, uz) = u(p, uz) , 

E(uz)v(P, uz) = v(p, uz) , 

E(-uz)u(P, uz) = E(-uz)v(p, uz) = 0 (7.20) 

The covariant generalization (7.18) of the nonrelativistic spin-projection operator (7.14) 
corresponds naturally to the convention, given by (6.56) and (6.57). Therein the spin 
projections of negative-energy states are contragredient (i.e. opposite) to those of normal 
"states" of positive energy [see (6.54) and (6.56)]. The positron interpretation of the hole 
theory, which we have already preliminary considered in (6.57), comes up here in a natural 
way through the covariant spin-projection operator. Furthermore, we generalize the spin
projection operator (7.18) for an arbitrary spin vector sJ.l with sJ.lPJ.l = 0 [see (6.52) and 
(5.53)]: 

E(s) = n +2,51 . (7.21) 

Because of the covariance, it follows that as a generalization of (7.20) the u(p, s) and 
v(p, s) obey the relations [see (6.48)-(6.57)] 

E(s)u(P, s) = u(p, s) , 

E(s)v(P, s) = v(p, s) 

E(-s)u(p, s) = E(-s)v(p, s) =0 (7.22) 
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7.1 Simultaneous Projections of Energy and Spin 

With the projection operators A±(P) for the energy and E(s) for the spin we can easily 
construct projectors for energy and spin. As we already know, the motion of a free particle 
is completely determined by 

the four momentum PI-' ' 

the sign of the energy e , 

and the polarization sI-', 

with sl-'pl' = O. Therefore the energy spin projectors 

PI (p) = E+(P)E(u z) , 

P3(P) = A_ (p)E( -uz) , 

P2(P) = k(P)E(-uz) , 

P4(P) = A_(P)E(uz) , (7.23) 

which are composed of (7.8) and (7.18), determine the free Dirac waves, these being 
projected out of superposed wave functions (wave packets). The order of the energy and 
spin projection in (7.23) does not matter because 

(7.24) 

as sl-'pl-' = 0 is valid. This is easy to verify, because the commutator (7.24) is equivalent 
to the commutator 

[;, 1'5$1- = 0 , (7.25) 

which we immediately prove: 

Tr5J = 1'l-'pl'i1'°1'11'21'31'v Sv = -i1'°1'11'21'31'I-'1'v SVPI' = -1'5(2gI-'V - 1'v1'I-')SVPI' 

= 1'5Jp . 

Here gl-'V SVPI-' = sl-'Pp = s • p = 0 according to (6.53). Because of (7.2), (7.6) and (7.20) 
or (7.19a), we easily confirm that the defining equations (7.2), Le. 

Pr (P)w r' (P) = 8rr lwrl (p) 

are fulfilled! 

(7.26) 

In the following2 we will appreciate the usefulness of these projection operators, 
which at first seem to be a little artificial. With their help we will often perform practical 
calculations, without explicit use of l' matrices and free spinors. Indeed, we will see that 
an explicit calculation, component by component, can be replaced by a rather elegant one 
through the use of the projectors. 

According to (6.31) the general free solution was given by 

'ljJr(x) = wr(p)e-ierPJJzJJ/1t 

For r = 1,2 these are free waves of positive energy (erPO = po) and momentum 
Pi'ljJI,2(x) = Pi'ljJI,2(x). For r = 3,4 these waves have negative energy (erPO = -po) 

2 See in particular VoI.4 of !his series, Quantum Electrodynamics (Springer Berlin, Heidelberg, in prepara
tion). 
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and the eigenvalues of the momentum operators are 

Pi'ljJ3,4(x) = e3.4Pi'ljJ3,\x) = -Pi'ljJ3.4(x) , 

that is, they are negative (-Pi). We call 'ljJ3.4(x) "spinors with negative energy". They 
describe antiparticles of positive energy and positive momentum Pi. This striking redefini
tion of plane waves with negative energy has already occured for the spin [see discussion 
following (6.57)]. To this end the eigenvalues of the momentum and spin operators agree 
with the momentum or spin direction of the waves of positive energy. For waves with 
negative energy we define it the other way round. In other words: a particle with nega
tive energy and momentum eigenvalue -Pi has momenturn +Pi, and a particle with spin 
eigenvalue -U z has the spin +uz . This seemingly strange definition has a deeper reason: 
in the framework of the hole theory, which will follow soon, we interpret an electron 
with negative energy, momentum -Pi and spin -Uz as a positron (i.e. the antiparticie 0/ 
the electron) with positive energy, momentum +Pi and spin Uz. This occurs as a natural 
result. Thus we hold on to our definition. Accordingly 'ljJ3.4(x) is an electron wave function 
with negative energy, negative momentum and negative spin-projection [see (7.19a)] or
and this is the physically correct description - a positron with positive energy, positive 
momentum and positive spin-projection. For the latter property the redefinition (6.57) is 
necessary, which means the change of r = 3,4 {:> r = 4, 3. 
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8. Wave Packets of Plane Dirac Waves 

Already in Sect. 2.3 we dealt with the single partic1e aspects of Dirac waves. In order 
to gain a deeper understanding and a possible interpretation of the free solutions, we 
study wave packets. These are superpositions of plane waves which yield localized wave 
functions in space time. Since the Dirac equation is a linear wave equation, the wave 
packets are also solutions of the free Dirac equation, which is just the superposition 
principle. A wave packet of plane waves with positive energy has the form 

"p(+)(~, t) = J d3p 3 JmoCl Lb(p, s)u(P, s)e- iPl' z l'/1i • 

v27rn E ±s 
(8.1) 

The amplitudes b(p, s) determine the admixture of the plane waves u(p, s)· e-iPl'z l'/1i to 
the wave packet. The "(+)" indicates that a superposition of only positive-energy plane 
waves is taken. Normalizing to unity implies 

J "p(+>t(~, t)"p(+)(~, t)d3x 1:: 1 1:: J d3p J d3p L L 
±s ±S' 

xJm~c2 Jm;~\t(p, s)b(P', s')ut(p, s)u(p', s')e-i(po-P6)ZO 

J ei(p-p/) • z/1i. 
x d3x 

V27rn3 V27rn3 , " v 

C(P_p') 

= J d3 P L L m~d2 b t (p, s )b(p, s') ~ t (p, s )u(p, s'~ 
±S±S' ... 

8 •• 1 (E/moc2) because of (6.35) 

= J d3p L bt(p, s)b(P, s) 
±s 

= J d3p L Ib(p, s)12 1:: 1 
±s 

The factor 

1 '0 1 ,x ( . ) (. 0) exp -"h,<Po - Po)x = exp -"i,(E - E )~ 

is equal to 1 because of 

(8.2) 
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E = cJr + moc2 = CJpI2 + moc2 = E' 

utilizing the property of (8(P - p'). The next step is to find the current of such a packet, 
given the velocity operator ca; thus we obtain 

(8.3) 

In the calculation of this expression (shown in Examples 8.1 and 8.2), we willlearn a new 
and elegant mathematical technique, i.e. the Gordon decomposition. The result is 

(8.4) 

Because of the normalization (8.2), in the second step we have written Jt) as an 
expectation value with respect to the wave packet of positive energy and labelIed this 
( ) +. In this way the mean current of an arbitrary wave packet of plane waves of positive 
energy is equal to the expectation value of the classical group velocity Vgr = c2p/ E. 
This corresponds to the Ehrenfest theorem of the Schrödinger theory and agrees with our 
earlier considerations (2.62) and (2.67), where we restricted ourselves to the even part of 
the velocity operator to get the same result. Obviously the restriction 10 the even part of 
an operator is equivalent to the restriction to those wave packets which are constructed 
from one sort of solution (of positive or negative energy) only. 

EXERCISE ................................................................ .. 

8.1 The Gordon Decomposition 

'l/J1 and 'l/J2 are considered to be two arbitrary solutions of 
the free Dirac equation, that is 

~1(-1-moc) =0, (~ - moc) 'l/J1 = 0, 

(~- moc)'l/J2 = 0, and - ( 7 ) (1) 'l/J2 -, - moc = O. 

The second set of equations holds for the adjoint spinors, 
as will be proven below. Then 

C~21iJ'l/Jl = 2~0 [~2ß11'I/J1 - (ßiJ;J2)'l/J1] 

i A ("::i: A iJII ) - -2 Pli '1'2(1 'l/J1 mO 

is valid. We prove this with the help of the relation 

rill = ,iJaiJ'"'(bll = aiJ bll ,iJ,lI 

= aiJbll { ~ ~ + ,~(,iJ,1I _,II,iJ~} 
2gIJ.V v 

-io-/UI 

152 

(2) 

(3) 

which is valid for two arbitrary four-vectors aiJ and biJ . 
Furthermore, we introduce the definition 

(4) 

which means that the momentum operator acts to the left 
onto the function ~(x). Because of (1) we obtain 

o = ~2 ( - 1 - moc) ri'I/Jl + ~2d (1 - moc) 'l/J1 (5) 

This happens because the terms on the rhs are zero [ac
cording to (1)]. In particular the first term on the rhs can 
be rewritten as 

( - ßiJ;J2IiJ - moc;J2)d'I/J1 

That it vanishes is obvious from the fourth equation (1). 
Let us deduce tbis from the second equation (1). It follows 
by multiplication with ,0 and Hermitian conjugation, that 

('0(ß _ moc)'l/J2) t 

= 0 = 'l/Jl( , iJt1 i - moc),Ot 



= +ßt~hJtt,Ot - moc~hOt 

= -ßJt~hJtt,Ot - moc~hOt (6) 

Because of ,it = _,i, ,Ot = ,0, we can write 

,0 ,lIt ,0 = ,11 or ,O,IIt = ,11,0 or 

,lIt ,0 = ,0,11 (7) 

and for (6) we achieve 

-ßJt~hO,Jt - moc~hO 

= 0 = -ßJt~21Jt - mOc~2 = ~2 ( - 1 - m5c) (8) 

Thus we have proven (5), from which we can furthermore 
conclude that 

o = -2moc~2d~1 + ~2 [d 1 -1 d] ~1 
= -2mOC~2d~1 + ~2 [aJtpJt - iaJtpllo-JtIl 

(9) 

Because aJt was arbitrary the coefficient of aJt must vanish, 
that is 

c"1j;21Jt~l = 2~o ["1j;2ptt~1 - (ßJt"1j;2)~1] 
i All (-::i: A Jt ) - --p 'f/2a ~1 2mo 11 (2) 

This is just the statement of (2). This splitting of the ma
trix ~21Jt~l is called Gordon decomposition.! Its physical 
meaning is that the Dirac current density C~21Jt~l can be 
split up into a convection current density 

(10) 

and spin-current density 

(11) 

! SUIprisingly, this procedure was derived by Walter Gordon in 
Z. Phys. SO, 630 (1928). 

EXERCISE ______________ _ 

8.2 Calculation of the Expectation Value 
of a Velocity Operator 

Problem. Calculate the expectation value of the velocity 
operator of a wave packet consisting of plane waves with 
positive energy, using the Gordon decomposition. 

Solution. A wave packet of Dirac plane waves of positive 
energy is given by 

(+) - 1 d3p Jmo c2 
~ (:c, t) - (27r1i)3/2 E 

XL b(p, s)u(p, s)e-iPl'xl"n 
±s 

(1) 

This gives the expectation value of the velocity operator 
(do not confuse the given symbol for wave packets of 
positive energy (+) with that for Hermitian conjugation 
t): 

J i (+) = 1 ~(+)t C&.i~(+) d3 x 

= 1 ~(+)t,Oqi~(+)d3x = c 1-:V;<+>,i~(+)d3x 

1 3 jrr d3pd3p' Jmoc2 Jmoc2 
= d x J (27r1i)3/2(27r1i)3/2 ~ -W 

x L b*(pl,S')b(p, s)e(i!n)(pll'-pl')XI' 

±S,±SI 

x U(p', s')qiu(p, s) (2) 

Using the Gordon decomposition [Example 8.1, (2)] of the 
spinor matrix element this becomes 

2 
J i (+) = 11 d3pd3p' moc L b*(p', s')b(P, s) 

JEE' ±S,±SI 

1 e(i!n)(pII'_pl')XI' 3 1 - I ') 

x (27r1i)3 d X· 2mo u(p ,s 

X [(pli + pi) _ i( _p' 11 + pll)o-ill ] u(p, s) 

Because of the identity 

1 (" )(Pl - ) 0 e -(i!n)(pl' -p')x, 3 
ein opax dx 

J(2'TrIi)3 J(27r1i)3 

( 'i i) [i (EI E) 0] = 8 p - p exp h ~ - ~ x 
, " v 

=1 
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this evaluates to be 
2 . 

i(+) J 3 mOc 2p' " * , J = d p~ 2m L..J b (p, s )b(P, s) 
o ±s,±s' As we can see, the spin-dependent part of the current van

ishes. X ü(p, s')u(p, s) -----=6 •• , [from (6.34)] 

Let us resume OUT earlier discussion [see (2.61) to (2.70)] on the velocity operator for 
one partic1e in relativistic theory: In Schrödinger's theory the velocity operator v = Nm 
was proportional to momentum, but this is no longer the case in Dirac's relativistic theory. 
The velocity operator for free partic1es ca is no longer atemporal constant, because of 

dca C[A A Ti = ili G, HeL:/:O . (8.5) 

From (8.4) we can even conc1ude that one needs the solutions of negative energy to 

construct eigenfunctions of ca. Further, wave packets consisting of plane waves with 
only positive energy have the expectation value of the velocity l(c&i)1 '" 1(~Pi/E)1 <c, 
whereas the eigenvalues of c&i are exact1y ± c. This motivates us to consider wave paekets 
made up 0/ the eomplete set 0/ plane Dirae waves, Le. plane waves with both positive and 
negative energy. Instead of (8.1) we now write 

~(z, t) = J d3p .jmoc2 
J(27r1i)3 E 

xE [b(P, s)u(P, s)e-ippJCI'/A + d*(P, s)v(P, s)e+iPI'XI'/A] 
±s 

(8.6) 

The coefficients b(p, s) are the probability amplitudes for waves with positive energy, 
whereas d*(p, s) are those for negative energy. The probability of finding a partic1e any
where must be one (see Exercise 8.3): 

J d3x~t(z, t)~(z, t) = J d3p E [Ib(p, s)1 2 + Id(p, s)12] = 1 
±s 

(8.7) 

From this we calculate the current of the wave packet (see Exercise 8.4): 

Jk = J d3x~t(z, t)C&k~(Z, t) 
= J d3p{ E (lb(p, s)12 + Id(p, s)12) p; 

±s 

+ic E b*(-p, s')d*(p, s)e2ixopo/Aü(_p, s')8-kOv(p, s) 
±s,±s' 

- ic E d(-p, s')b(p, s)e-2ixopo/Av(_p, s')8-kOu(p, S)} 
±s,±s 

(8.8) 

Here u( - p, s) means u ( v' y + moc2, - p, s). This abbreviation is not particularly ob-
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vious, but it is absolutely clear what is meant. In the following we use this notation for 
the coefficients b, d* and for v( -p, s) too. 

If we compare (8.8) with (8.4) we see that additional terms appear in (8.8). The first 
term in (8.8) represents the time-independent group velocity that also appears in (8.4). The 
second and third terms are interferences of solutions with positive and negative energy, 
which oscillate time-dependently because of the factors exp(± 2iPOxoln). The frequency 
of this Zitterbewegung 2 is 

2POc > 2mo~ ~ 2.1021 sec-1 , 
nc nc (8.9) 2 This narne sterns from E. 

and its strength is proportional to the amplitudes d(p, s) of the waves with negative energy 
in the wave packet. See Exercise 8.5! 

Schrödinger: Sitzungsber. Preuß. 
Akad. Wiss., Phys.-Math. 24, 418 
(1930) and in German means lit
erally "trembling motion". 

EXERCISE ................................................................ .. 

8.3 Calculation of the Norm of a Wave Packet 

Problem. Calculate the norm of the general wave packet 
built out of plane Dirac waves of positive and negative 
energies 

J d3p Jmoc2 
t/J(~, t) = (27rn)3/2 -y 

x L [b(p, s)u(p, s)e-iPl'zI'/r.. 
±s 

+d*(p, s)v(P, s)e+iPl'zI'/r..] 

Solution. The current is defined as 

p' = c i d3 x~(~, thl-'t/J(~, t) , 

and the wave packet reads (see above) 

J d3p Jmoc2 
t/J(~, t) = (27rn)3/2 -y 

xL [b(p, s)u(p, s)r-ip.z/r.. 
±s 

+d*(p, s)v(p, s)e+ip.Z/r..] 

(1) 

(2) 

The zero component of the current (probability) is then 
evaluated as 

W == !JO 
c 

i rri d3xd3pd3p' mo~ 
= d3 xt/J t (~, t)t/J(~, t) = J J (27r n)3 ..j EE' 

x L [b*(P',s')b(P, s)ut(p',s')u(p, s)e-i(p-p').z/r.. 

± s,s' 

+ b*(p', s')d*(p, s)u t (p', s')v(p, s) ei(P+P') • z/r.. 

+d(p',s')b(p, s)vt(p',s')u(p, s)e-i(p+p').z/r.. 

+ d(p', s')d*(p, s)v t (p', s')v(P, s) ei(P-p'). z/r..]. (3) 

Integrating over d3 x/(27rn)3 leads to 8 functions 8(3)(p' ±p). 

Because PO = E = Jmöc4 + p 2c2, the energies PO = 
Po(E = E') are identical if the momenta Ipl and Ip'l are 
the same. Then we can also integrate over d3 p' and obtain 

I}= J d3pm~~ L {b*(p,s')b(p, s)ut(p,s')u(p, s) 
±s,s' 

+ d(p, s')d*(p, s)vt(p, s')v(P, s) 

+ b*( -p, s')d*(p, s)u t( -p, s')v(p, s) e2ipozo/r.. 

+d(-p,s')b(p, s)vt(-p,s')u(p, s)e-2ipozo/r..} . (4) 

From (6.35) we have 

ut(p,s')u(p, s) = vt(p,s')v(p, s) = ~8ss' , 
moc 

u t( -p, s')v(P, s) = v t( -p, s')u(p, s) = 0 

and therefore 

W = J d3p L: {Ib(p, s)1 2 + Id(p, s)12 } = 1 
±s 

(5) 

(6) 

(7) 

In the very last step we were careful to normalize the total 
probability W to one. 
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EXERCISE ______________ _ 

8.4 Calculation of the Current for a Wave Packet 

Problem. Calculate the current 

Jk = J 'lj;t(z, t)Otk'lj;(Z, t)d3x = c J~(z, t),,/'Ij;(z, t)d3x 

for the general wave packet of Exercise 8.3. 

Solution. The space components are calculated in exactly 
the same manner as in the last Exercise (8.3): 

Jk = c J d3x~(z, t),,/'Ij;(z, t) 

= 2~o J d3 x {~ßk'lj; - (ßk~)'Ij; - ißv(~a-kv 'Ij;)}, (1) 

where we used the Gordon decomposition (Example 8.1). 
Inserting (2) of Exercise 8.3 yields 

±s,s' 
x u(p, s)pk e-i(P-p')' z/1I. 

- b*(P', s')d*(P, s)u(P', s')v(p, s)pk ei(P+p')' z/Ii 

+ d(p', s')b(P, s )v(p', s')u(P, s)pk e -i(P+p') • z/Ii 

- d(p', s')d*(P, s)v(p', s')v(p, s)pk ei(p-p')' z/Ii 

+ b*(p', s')b(P, s)u(P', s')u(P, s)p,k e -i(p-p')' z/Ii 

+ b*(p', s')d*(p, s)ü(p', s')v(p, s)p,k e+i(P+P')' z/Ii 

- d(p', s')b(P, s )v(P', s')u(P, s )p' k ei(P+P') • z/Ii 

_ d(p' ')d*(P )-(P' ') ( ),k ei(p-p')' z/Ii , S , sv, s v p, s p 

- ib* (p', s')b(P, s )ü(p', s')a-kv u(p, s )(Pv - p~) 
x e -i(P-p') • z/Ii 

+ ib*(p', s')d*(P, s)ü(p', s')a-kv 

x v(p, s )(Pv + p~) ei(p+p') • z/Ii 

- id(p', s')b(p, s )v(p', s')a-kv 

x u(p, s)(Pv + p~)e-i(p+p')' z/Ii 

+ id(p', s')d*(P, s )v(p', s')a-kv 

x v(p, s )(Pv - p~) ei(P+P') • z/Ii } (2) 

Integrating again over d3x/(27r1i)3 we get 8 functions 
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8(3)(p' ±p). The integration over d3p' then yields 

k 1 Jd3 moc2 

J = 2mo P---e-
x L: {2pk [b*(p, s')b(p, s)ü(p, s')u(p, s) 

±s,s' 
- d(p, s')d*(P, s)v(P, s')v(p, s)] 

+ 2pk [d( -p, s')b(P, s)v( -p, s')u(P, s) e-2ipOzo/1i 

- b*( -p, s')d*(p, s)ü( -p, s')v(P, s) e2ipOzo/li] 

2iE[b*( ')d*(P )-( ')~kO + - -p, S , S U -p, S (7 

C 

x v(p, s) e2ipOzo/1I. 

- d( - p, s')d(P, s )v( -p, s')a-kO 

x u(p, s)e-2iPOZO/Ii]} . (3) 

From the orthogonality relation (6.34) we get 

ü(p, s')u(p, s) = 8ss' = -v(p, s')v(P, s) , 

ü( -p, s')v(p, s) = 0 = v( -p, s')u(P, s) 

Therefore, from (3) only 

Jk = J d3p{ L: [lb(p, s)12 + Id(p, s)1 2] P; 
±s 

+ic E [b*(-p,s')d*(p, s)u(-p,s')akO 

±s,±s' 
x v(p, s) e2ipOzo/1I. 

- d( -p, s')b(p, s)v( -p, s')a-kO 

x u(p, s)e-2ipozo/li] 

remains. This is the earlier used result (8.8). 

(4) 

(5) 

EXERCISE ______________ _ 

8.5 Temporal Development of a Wave Packet 
with Gaussian Density Distribution 

Problem. At time t = 0 the following wave packet with 
Gaussian density distribution is defined as 

./,1(z 0 s) = 1 e-(1"'12/d2)2 w 1(O) 
0/ " (7rd2)3/4 

(1) 

Determine the wave packet at time t developing from (1). 



Consider the intensity of the negative energy solutions in 
the wave packet. What does one leam in general about the 
applicability of the one-particle interpretation of the Dirac 
equation? 

Solution. Equation (1) is a boundary condition for the gen
eral wave packet 

s'=±s 
+ d*(P, s')v(P, s') ei(Et-p 0 Z)/Ii] 

The requirement 

7jJ(2!,0) = 7jJ'(2!,O,s) 

(2) 

(3) 

leads to equations that determine the coefficients b(p, s') 
and d*(p, s'). In particular, it follows from 

J d3p Jmoc2 ~ d*(p s')v(P s')e-ipoz/Ii 
(27r1i)3!2 E L.J ' , 

s'=±s 

= J d3p Jmoc2 ~ d*(p' s')v( , s')eipoz/Ii 
(27r1i)3!2 E,L.J ' p, 

S =±s (4) 

(where we have inserted p = -p' and PO = -po) that 

J J m~c2 I: [b(p, s')u(P, s') + d* (p', s')v(P', s')] 
s'=±s 

eip 0 z/Ii d3 P = 1 e -(I:" 12 / ([2)2 W 1 (0) 
(2 7r/i, )3!2 ( 7r J2 )3/4 . 

(5) 

The rhs of (5) is just the Fourier transform of the braced 
expression on the left. Therefore the inverse transformation 
reads: 

(6) 

On the rhs of (6) we have the Fourier transform of a Gaus
sian distribution. With the identity 

we rewrite (6) as 

J m~c2 I: [b(p, s')u(P, s') + d*(P', s')v(p', s'] 
s'=±s 

= g(lpj)w 1(0) . 

Expanding the sum and using the definitions 

u(p, s' = +s) = w1(p) 

v(p',+s)=w4(p') , 

we get 

u(p, -s) = w2(p) , 

v(p', -s) = w3(p') , 

J~c2 [b(p, s)w1(p) + b(p, -s)w2(p) 

+ d*(P', s)w4(p') + d*(p', -s)w\p')] 

= g(lpj)w 1(0) . 

(7) 

(8) 

(9) 

(10) 

Now we multiply (10), in turn, by [w 1(p)]t, [w2 (p)]t, 

[w3(_p)]t and [w4(-p)Jf. With [see (6.30)] 

[w 1(p)]t = E+moc2 (1 0 pzC p_c) 
2moc2 "E + moe2' E + moe2 

[w2(p)]t E+moc2 (1 0 P+c -pzc) 
2moc2 " E+moc2' E+moe2 

[w\_p)]t E+moc2 (-pzc -p_c 1 0) 
2moc2 E+moc2' E+moc2' , 

[w4(_p)]t = E+moc2 (-P+C pzC 0 1) 
2moc2 E+moc2' E+moc2' , 

(11) 

the following relations are valid: 

= [wj(_p)]twi(p) = 0 

for i = 1, 2 and j = 3, 4 

-~8·· - moc2 tJ 

for i, j = 1, 2 
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[wi(_p)]twi(_p) = ~Öi· for i, j = 3,4 moc2 ) 

Hence, we get the four equations: 

Jm~c2 b(p, s) m!c2 = g(lpl) [w 1 (p)]twl (0) 

. /E+ moc2 
=:;. b(p, s) = V 2E g(lpl) 0 1 , 

JmoEc2 b(p, -s)~ = g(lpl) [w2(p)]tw 1 (0) 
mOc 

=:;. b(p - s) = 0 , 

Jm~c2 d*(P', -s) m!c2 = g(lpl) [w\_p)]twl(O) 

d*(p' _ ) = I E + moc2 (I I) (-pz)c 
=:;. ,s V 2E 9 P E + m oc2 ' 

JmoEc2 d*(p, s) E 2 = g(lpl) [w\_p)]twl(O) 
mOc 

=:;. d*(P', s) = . /r-"E-+-m-oc2""-g(lpl) (-p+)c . (12) 
V 2E E+moc2 

We now insert these equations, as weH as (9) and (4), 
into (2), which yields: 

'IjJ(z t) = J d3p iPo z/r..Jmoc2 
, (27rh)3!2 e E 

,..----

. / E + moc2 E + moc2 
x V 2E g(lpl) 2moc2 

1 
o 

pzc 
x 

E+moc2 

x eiEt/r.. + 

(p; + p~)c2 
(E+ moc2)2 

-pzp+c2 

(E + moc2)2 
o 

-p+c 

E+moc2 

158 

(E+moc2)2 
-pzc 

E+moc2 
o 

E + mo~ -iEt/r.. p2~ iEt/ho --.::....-e + e 

x 

2E 2E(E + m oc2) 
o 

pzc (e-iEt/ho _ eiEt/ho ) 
2E 
P+c (e-iEt/ho _ eiEt/r..) 
2E 

-1 d3p ipoz/r..(II) 
- (27rh)3!2 e 9 p 

E + mo~ -iEt/ho E - mo~ iEt/ho 
2E e + 2E e 

o 
x Pz c2 . . Et 

- 2E I smT 
p+c . . Et 

--I sm-
E h 

= 1 d3p eipoZ/hog(lpl) 
(27rh)3!2 

[ ( Et . moc2 . Et) 1 
x eosT -1~smT w (0) 

.pzC . (Et) 3(0 x -IE sm T w ) 

·P+c . (Et) 4(0)] -I-sm - w 
E h 

(13) 

At an arbitrary time t f 0, 'IjJ(z, t) is thus composed of the 
foHowing three parts: 

'IjJ(z, t) = CI(Z, t)w1(0) 

+ C3(Z, t)w\O) + C4(Z, t)w4(0) 

The funetions CI(Z), C3(Z), C4(Z) can be calculated 
only by use of numerieal methods: 

CI(Z t):= J d3p eiPoZ/r.._l_(!!.)3!2 e-(lpI2cP/~)2 
, (27rh)3!2 7r3/4 h 

( Jmöc4+p2c2 . m ~ 
x eos h t-l 0 

Jmöc4 + p2c2 

. Jmö~ + p2c2 ) 
x sm h t, 



q(:z: t):= J d3p eip ·'ZI1i._1_ (!!.)3/2 e-(lpl\PIIf)2 
, (21rn)3/2 7r3/4 n 

,-----
. . /m2c4 + p 2c2 

x Py - Ip:z: sin V 0 t . (14) J mac4 + p2c2 n 

This result ean be understood in the following way: To ob
tain the wave-paeket of (1) a superposition of plane waves 
of positive as weH as of negative energy is neeessary. Here 
the eoefficients occur in such a way that for t = 0 the 
w3(O)- and w4(O)-parts of the partial waves of positive en
ergies and those of negative energies eaneel eaeh other. 
This ean be clearly seen for t = 0 in (13): The third and 
fourth components of the sum of the three spinors vanish. 
Since the partial waves of positive and negative energy 
behave differently in time [exp( -iEt/n) and exp(iEt/n), 
respectively] this is no longer valid for times t =I O. This 
implies that (1) obviously eannot be regarded as a local
ized electron of spin +8, as it would have been in the 
framework of a single-particle interpretation of the Dirae 
equation. One may wonder why a spin-up electron in time 
gets admixtures of components of negative energy with 
spin down. The reason for that comes from the fact, that 

[11j, (7' L = 2& x p :F 0 while [ Hf, p . 0-L = 0 . 

Hence spin is not eonserved; only the projection of spin 
along the momentum p is a conserved quantity. 

Let us briefly return to (12), from which we get the 
relative intensities of the partial waves of positive and neg
ative energy: 

1 
- p'2c2/(E + moc2)2 + 1 

1 
- (E - m oc2)/(E + m oc2) + 1 

n+l n+l E 
=n-l+n+l=~ with n=--

moc2 

Rd = Id*(p', 8)12 + Id*(P', _8)1 2 + Ib(p, 8)12 

n+l n-l 
=1--=--

2n 2n 
(15) 

Beeause of the Gaussian distribution g(lpl) [see (7)] only 
partial waves with Ipl S Md eontribute noticeably, so that 

EO v(mo(?-)2 + c2r 
n = -- = -'------''----;;--~ 

moc2 moc2 

=/1+ .::" =/1+(~)2 (16) 

where we have set p = Md and dc = h/mOc. In the figure 
below we recognize that only for d S dc = Mmoc, Le. only 
if the width of the wave packet is compressed to a size of 
about a Compton wavelength of the electron, do the partial 
waves of negative energies have an appreciable effeet. 

I 
I Rb 
I 

0.5 - + - - - - - - - - - - - - - - - -
I 
I Rd 
I 

3 4 5 E 
n= moc2 

Relative intensities of partial waves of positive (Rb) and negative (Rd) 
energy is a Gaussian wave packet of width d 
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9. Dirac Particles in External Fields: Examples and Problems 

EXAMPLE .............................................................. .. 

9.1 Eigenvalue Spectrum of a Dirac Particle in a 
One-Dimensional Square-Weil Potential 

We ealeulate the spectrum of eigenvalues for Dirac parti
cles in a square-weIl potential of depth Vo ~ 0 and width 
a. 

For that purpose we deeompose the real axis into three 
domains I, 11, III: 

I: z ~ - a/2 ; 11: - a/2 ~ z ~ a/2 ; III z ~ a/2 . 

The Dirae equation within these domains reads (see 
Fig.9.1) 

1 
-a/2 

V 

11 +a/2 III 

Vo 
I,III: 

(& ·pc+ ßmoc2)1/; = E1/; , 

11: 

x 

(&. pc + ßmoc2)1/; = (E - Vo)1/; 

(Vo <0) . (1) 

As the relevant eoordinate we ehoose z. Thc,lefore !he 
spinor 1/; is only a funetion of z, e.g. 1/; = 1/;(z). 

While the wave funetions in I and III are just the 
free solutions of the Dirae equation, the solutions in 11 
are obtained from the free solution by the substitution 
E -+ E - Vo. Sinee no spin-flip oceurs at the border of 
the weIl, we ean restriet our diseussion to solutions with 
spin up. The energies of the solutions ean take all allowed 
values from - 00 up to + 00, so that we ean deseribe par
tieles as weIl as antiparticles. 

The solution of the Dirae equation (1) are thus given 

2 E 2 2 
PI = -;J: - moc 

11: 

a 
z< --- 2 ' 

( 1) o 
P2C 

+ B' e-ipZz/1i. ( -~c ) 
E - Vo+moc2 

o 
2 (E - VO)2 2 

P2 = c2 - moc , 
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(2) 

(3) 

(4) 



2 E 2 2 2 a 
PI = - - mOc z > -

c2 - 2 

At the borders of the weH the wave function must be con
tinuous (because of the current conservation oJ.ljJ.l = 0). 
Therefore we get the condition at the boundaries 

z = -!: 

Z _+a. 
- '2"', 

This means in particular: 

z= -!: 
A e -ipl a/21i + A' eiPI a/21i = Be -iP2a/21i + B' eina/21i , (5) 

(A e -iPl a/21i _ A' eiPl a/2li.) Pt c 
E+moe2 

= (Be-ina/21i. _ B' eina/21i.) P2 (6) 
E - Vomoc2 

z =+!: 

Beina/21i. + B' e-ina/21i. = CeiPla/21i + C/e-iPla/21i., (7) 

(Beina/21i. _ B' e-ina/21i.) P2C 
E - Vo+moc2 

= (C eip1 a/21i _ C' e -ipl a/21i.) PI c. (8) 
E+moc2 

If we define 'Y to be 

_ PIC E - Vo + mo~ 
'Y - E + moc2 P2C 

(E - moc2) (E - Vo + moc2) 
= (E + moc2) (E - Vo - moc2) , (9) 
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we can write (5-8) in the foHowing matrix fonn: 

1 ~ 1 ei(Pl +p2)a/21i ) 

.1±!.ei(n -PI)a/21i. 
-y 

and by inserting (11) into (10) we get in summary 

(10) 

(11) 

Thus we have two equations with four unknown coeffi
cients A, A', C, C'. The nonnalization condition is a third 
equation: 

J 1jJ t 1jJdz = 1 (13) 

Therefore one of the four coefficients A, A', C, C' can, in 
general, be arbitrarily chosen. 

Now we can discuss the solutions to different ener
gies. Let us look at Figs. 9.1, 2 where typical behaviour of 
the large component of the wave function is plotted for 
different energies. In Fig.9.1 we have assumed Wol to be 
smaller than 2mo~; therefore we have to consider four 
energy domains: 

(1) E > moc2: Free electrons are moving from left 10 
right and are scattered by the (attractive) potential. If in 
domain 11 the width of the potential is an integer multi
ple of the wavelength, there exists a potential resonance, 
i.e. one gets an especially large probability for finding the 
electron in the weH. 

(2) moc2+ Vo < E < mo~: Here we find bound states 
with an exponentially decreasing probability for finding an 
electron in domains I and 1lI. 

(3) -mo~ + Vo < E < - m5~: Incoming positrons 



mo~+Vo 
- moC2---------

-moc~+Vo 

Fig.9.1. The !arge component of some wave functions for different en
ergies. In this case the depth is I Va I < 2moc2 

(continuum states of negative energy) "feei" a repulsive 
potential (because of their opposite charge - these wave 
functions actually describe positrons, as we shall see in 
Chap. 12 on hole theory) and will be scattered at this po
tential. Since the probability of finding an electron in do
main H decreases exponentially, a large proportion of the 

E 

® 

Fig.9.2. The large component of some wave functions for different en
ergies. In this case the depth is I Va I > 2moc2 

positrons will be reflected at the repulsive potential. (The 
transmission decreases with a and increases with lEI.) 

(4) E< moc? + Vo: The positrons are scattered at the 
repulsive potential; again, there can exist potential reso
nances if a is an integer multiple of the wavelength in the 
domain H. 

On the other hand in Fig. 9.2 the potential is assumed 
to be Wo I > 2moc? In this case an additional energy do
main appears, showing a new behaviour of the wave func
tion: moc2 + Vo < E < - moc? . In this domain, bound elec
tronic states are possible; however their wave functions do 
not decrease exponentially, in the domains I, III, but they 
join a continuum wave of the same energy E < - moc2. 

Therefore the probability of finding the particle far away 
from the weIl is not equal to zero. We interpret this ob
servation using hole theory (see Chap. 12). It means that 
a hole in that state will travel away (as a positron) from 
the weIl to infinity, and if astate is unoccupied, it will be 
slowly occupied by an electron of the filled Dirac sea. Thus 
a spontaneous creation of an electron-positron pair is possi
ble. An empty bound state will spontaneously be occupied 
by an electron from the negative continuum, whereas the 
positron will move away to infinity. (Because of the spin 
degeneracy of the state there will even be two positrons: 
one with spin up and one with spin down.) One usually 
says that in this case the potential weil is overcritical with 
respect to spontaneous e- - e+ pair creation. While bound 

Fig.9.3. The graphical solution of (19) 
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states in the energy domain -moc? < E< moc2 can re
main empty without causing any instability to the system, 
it is impossible to keep bound states that "dive" into the 
negative continuum empty for a long time. They will be 
spontaneously filled up, i.e. the hole in this state has a finite 
decay width. We will see that, in fact, no sharp energy lev
els of bound states exist in the domain moc2 + Vo < E < -
mOc? (as was the case for -mOc2 < E < mOc2), but these 
wave functions will have a reasonating structure that peaks 
around the expected binding energy of the bound state. 

Following these qualitative considerations, we shall 
now show how these statements result from the solutions 
(10)-(12) and we distinguish the two cases: 

a) lEI> moc2 Le. PI is real . 

b) lEI< moc2 Le. PI is imaginary 

Solutions for a) are in general called scattertng ltates, so
lutions for b) are bound states. 

First we consider case b). Here (12) are significantly 
simplified since A and C' have to vanish, so that .,pI and 
.,pIII do not increase exponentially and are therefore nor
malizable; thus the first of (12) has the form: 

0=_1 eipla/A C(1 + 1ie-ip2a/A 
4')' 

- (1 - ')')2 eina/A) (14) 

Since C =1:0 (otherwise the whole wave function will be 
zero), we obtain 

1 + ')' eina/A = 1 - ')' eip2a/A . (15) 
1- ')' 1 +')' 

As long as P2 is real (in Fig. 9.1 for moc2+ Vo < E < moc?, 
in Fig. 9.2 in the whole domain -moc2 < E < moc?), ')' is 
imaginary (since PI is imaginary). Thus (15) means that 

[ 1 + ')' e-ina/A] * = 1 + ')' e-ip2a/A 
1 - ')' 1 - ')' 

whereby "*" denotes complex conjugation, or 

Im ( 1 + ')' e -ina/A) = 0 . 
1-')' 

With ')' = ir (r E IR) follows 

2r (a) 
1- r2 =tan P2i 
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(16) 

(17) 

(18) 

Inserting r from (9), we finally have 

CP2 cot (P2 *) = !(P2) with 

EVo 
!<n) = -- - KC , 

CK 
(19) 

whereby PI = k This is the equation to determine the 
energy eigenvalues of the bound states, which will be dis
cussed immediately. Before this, one should briefly men
tion that (15) has no solution, if in Fig.9.1 

-moc2 < E < moc2 + Vo , 

Le. if P2 is imaginary: 

(1 + ')')2 e2K,2a/A =I: 1 <n = iK2) 
(1 - ')')2 

(20) 

because (1 + ')')2 > 1, (1 - ')')2< 1, e2K,2a/A > 1, which 
is the reason why the wave functions in this domain van
ish identically. The condition (19) can be approximately 
solved graphically (take a look at Fig.9.3); this is suffi
cient to get a qualitative overview about the behaviour of 
bound states. Let us do this first; afterwards we shall obtain 
the exact energy spectrum for bound states by numerical 
solution of (19). 

First we note that 

( a) nc (a) (a) nc y := CP2 cot P2- = - P2- cot P2- ----4-n a n n n --+0 a 

moc2Vo 
!<n) ----4 

n--+ o J-2moc2VO - V~ 

!<n) ) + 00 

cn --+ JVt-2moc2Vo 

(corresponding to E --+ + moc2) (21) 

In the case of Vo <2moc?, !(P2 --+0) becomes imaginary. 
This looks, if graphically presented, somewhat like Fig. 9.3. 
We note immediately, that abound state always exists, in
dependent of the depth and width of the potential weIl. 
This is in accordance with the corresponding nonrelativis
tic problem, but is opposite to the corresponding three
dimensional problem. Because of the angular momentum 
barrier occuring in the laUer case, not every three-dimen
sional potential weIl has abound state, but only those be
low a certain depth Vo. 



° 

-1 " , " , , " , , " , , 
" ' " ' " ' " ' , , 

',:: 
-2~--~--~----~---L----~_ ° -1 - 2 Va/mo? 
Fig. 9.4. Eigenvalue spectrurn of bound electrons in a one·dimensional 
potential weIl of width a = 1O~ •. The energies of the dived states cor
responding to resonances are depicted by dashed lines, as they can be 
extracted from the maxima of the transmission coefficients (see Fig. 9.5) 

One can solve (19) numerically and thus detennine 
the energy spectrum of the bound solutions for several 
sets of parameters Va, a. This is depicted in Fig.9.4 for 
the case of a = lOXe. We note that, with increasing Va, 
more and more states appear. For Vo ~ - 2.04mo~ the 
weH becomes supercritical, the lowest bound states enter 
the lower continuum and can there be realized as a reso
nance in the transmission coefficient (s. b). 

Now we want to consider the scattering states. Again 
there are several domains: 

1. 

2. 

P2 and , are real. This is the case for E> moc? and 
for E< - moc2 + Vo. In the overcritical case there 
is an additional domain moc2 + Vo < E < - moc2. 
P2 and , are imaginary. Obviously this is the case 
for Vo - moc? < E< Vo + moc?· 

We will discuss both cases successively. First we make use 
of the possibility that we can choose one of the coefficients 
A, A', C, C' freely. We assurne that from the rhs no wave 
enters the potential; thus C' = 0 and C is interpretable as 
that part resulting from a wave with amplitude A which 
arrives from the left, travelling through the potential pocket 
or weH. The tenn proportional to A' sterns from the wave 
reflected at the potential. Now we can define a transmission 
coefficient T and a phase shift h by 

C -,JT -i8 - - e 
A ' 

(22) 

i.e. the amplitude of the outcoming wave is reduced by 
a factor v'T and shifted by the phase h compared to the 
wave impacting fram the lefl. Fram (12) we obtain for real 
P2: 

T = 1~12 = [cos2(P2*) + C;,Yf sin2 (P2*)]-I 

= [1 + C ;,,2f sin2(P2*f] -1 ~ 1 (23) 

The phase foHows from [see (12)] 

_1_ =ei8e-(i!1i)P1a =cos(P2~) _i 1+ y sin(P2~) v'T Ii 2, Ii 

and 
(24) 

1 [. . (c PI a) (c PI a)] v'T 1 sm U - T + cos U - T 

( P2a) .1+,2. ( P2a) 
=cos T -l~SlO T (25) 

The separation of real and imaginary parts and the elimi
nation of v'T yields 

(26) 

8 = (p~a) _ arctanC ;,/\an(~a)) (27) 

If, however, P2 is imaginary, then instead of (23) we get 
from (12) the transmission coefficient 

T = [1 + C ;;2)2 sinh2 ( ~~a) ] -1 ~ 1 (28) 

(whereby , = ir and P2 = i~2 as before), and instead of 
(27) the phase shift reads 

h = (p~ a) -arctan C ~rY tanh ( ~~a ) ) (29) 

In Fig.9.5 the transmission coefficient for a potential 
of the depth Vo = -3moc2 and the width a = 300li/moc is 
depicted. Now we choose an overcritical potential, since 
the undercritical case differs only by the omission of the 
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Fig. 9.5. The transmission coefficient for scattered states of a one-dimensional 
square-well potential of depth ViI = -3moc2 and width a = 1O~ •. The 
energies of the bound states are depicted by dashed lines 

domain moe2 + Vo < E < - mo~. We have significant 
structures of resonance in the electron continuum for E > 
moe2 and in the positron continuum for positron energies 
above the potential barrier lEI> Wo - mo~l; (E< -
moe2 + Vo). Positrons with lower kinetic energy (-mo~ + 
Vo < E < moe2+ Vo) only penetrate the barrier with a prob
ability which decreases exponentially with the width a of 
the barrier. Hence T is about zero in our case. In the do
main moe2+Vo < E < -mo~, however, there is the possi
bility that the incoming wave meets an overcritical, quasi
bound state, and thus penetrates the potential domain more 
or less unhindered. At the point where by extrapolation of 
the spectrum of the bound states in Fig. 9.4 one would 
expect the quasi-bound state. T is equal to 1. The dived 
bound state in this way becomes perceptible as a resonance 
in the scattering spectrum below E = -mo~. These res
onances do not exist for subcritical potentials; their inter
pretation as a signature for spontaneous pair creation has 
already been discussed in the qualitative discussion above1• 

Finally we look at the scattering phase in Fig.9.6. As 
can already be seen from (23), (27), (28), (29), one gets 
T = 1 for 8 - PI (alh) = O(mod 71-), and T becomes minimal 
for 8 - PI (alh) = ~ (mo<! "Ir). If T is minimal the reftection 
coefficient becomes maximal. Hence this statement is in 
agreement with the well-known statement from scattering 

1 For greater detail see W. Greiner, B. Müller, 1. Rafelski: Quan
tum Electrodynamics 0/ Strong Fields (Springer, Berlin, Heidelberg, New 
York 1985). 
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Fig. 9.6. The phase shifts of scattering states of a one-dimensionai well 
of depth ViI = -3moc2 and with width a = 10~. as a function of energy 
E. The energy E is given in units of mo c2 

theory that the scattering cross-section becomes maximal 
if the scattering phase passes through ~. ("Scauering" in 
the one-dimensional case is identified with reftection at the 
potential weIl). 

Thus in the domain moe2 + Vo < E < - mo~ we 
can determine the energies of the dived states, where (8 -
PI alh) = 0 (mod"lr). These energies lie exact1y where one 
would expect them by extrapolation of the bound spectrum 
(see Fig.9.4). 

EXERCISE ______________ _ 

9.2 Eigenvalues of the Dirac Equation 
in a One-Dimensional Square Potential 
Weil with Scalar CoupIing 

Problem. Investigate the eigenvalues of the Dirac equation 
in a one-dimensional square-weIl potential, with depth Vo 
and width a, if this potential is not coupled as a time-like 
component of a four-vector, but like a scalar. 

Solution. As in Example 9.1 we define three domains 
I(z < a/2), II( -al2 ~ z ~ a/2) and III(z > a/2). In these cases 
the Dirac equation takes the following respective forms: 

I, III: (&:. pe + ßmoe2)1jJ = E1jJ , 

11 : (&: • pe + ß(moe2 + Vo»)1jJ = E1jJ (Vo < 0) . (1) 

In contrast to the vector coupling, which in domain 11 leads 
to the replacement E - E - Vo, we now must replace moe2 

by moe2 + Vo in 11. While vector coupling acts differently 
on electron and positron states, respectively (if electrons 
in the square-weIl are attracted, positrons are repeIled, and 



vice versa) and thus the eigenvalue spectrum is not sym
metric (bound states exist for only one of the two kinds of 
particles), scalar coupling acts equally on particles and an
tiparticles. Alternatively, one can say: For vector coupling 
the potential couples to the charge (which is different for 
particles and antiparticles); for scalar coupling the potential 
couples 10 the mass (which is equal for both particles and 
antiparticles). In the lauer case we thus expect a symmetri
cal energy eigenvalue spectrum, i.e. for both electrons and 
positrons there will exist bound states. Hence we expect a 
supercritical behaviour even for Vo :::; - moc? In this case, 
in principle electron and positrons states can cross. What 
happens then will be discussed in detail a little later. Now, 
though, let us proceed analogously to the case of vector 
coupling. Again the momentum in the regions I, 11 is given 
by 

2 E 2 2 2 
PI = - - moc 

c2 

In domain 11, however, we get 

E2 ( Vi)2 P~ = --;? - moc + cO . 

(2) 

(3) 

Again we can write down the conditions for conti
nuity of the wave functions at z = -a/2 and z = afl. 
Analogously to the case of vector coupling, we define 

PI c E + moc2 + Vo 
"( == E+moe2 P2c 

(E - moc2)(E + moc2 + Vo) 
(E + moe2)(E - moc2 - Vo) (4) 

One should note that "( --t 11"( if E --t - E. U sing the 
same notation as in the case of vector coupling, we can 
work with (12) from Exercise 9.1, if we observe that "( is 
now given by (4): 

[ ( A) _ 1 (1 + "()2 e i(PI-P2)a/1i. - (1 _ "()2 e i(Pl+P2)a/1i. 

A' - 4"( -(1 - "(2) (e-ip2a/1i. _ eip2a/li.) 

We divide the further discussion into several steps: 

1) lEI< moc?: bound states 
2) lEI> moc2: scattering states in the bound electron or 

positron continuum. 

Let us first consider the bound states. For these the follow-

ing eigenvalue equation holds: 

1 + "( e -iP2a/1I. = 1 - "( eiP2a/1i. 

1-"( 1+"( 
(6) 

This equation only has solutions if P2 is real, i.e. lEI> 1+ 
moc2+Vol [E> moc?+Vo forelectrons, E< -(moc?+Vo) 
for positrons]. Thus, it again follows from (6) that 

(7) 

"( = ir (r E 1R) and 

cP2 cot (P2 *) = - ( m~~:vo + "1 c) =: !(P2) , (8) 

whereby PI = i"I. Of course this equation is symmetric in 
± E, too. Furthermore the following relations hold: 

f<P2) + 00 

IEI- moc2 

for lvol < moc2 
for lvol > moc2 
for Va -+ - 2moc2 

( corresponding 10 P2 -+ J -2mo Va - YeN<?) 

(9) 

(10) 

(11) 

Since Vo < moc2, the graphical solution of (9) looks simi
lar to the case of vector coupling (see Fig.9.7), except that 

(5) 

one has to imagine Fig. 9.3 in Example 9.1 to be continued 
to negative energies in a symmetric way. 

If now Wol increases, the intersection point of !(P2) 
with the ordinate in Fig.9.7 is shifted upwards. Corre-
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k].(E) 

-' -' 

Fig. 9.7. Graphical solution of (8) 

spondingly the lowest eigenvalue decreases to sm aller val
ues of P2. In case of 

(moc2Vo + Vi) nc ---;========= > -J-2moClVo -l~l a 

the lowest eigenvalue vanishes, namely at P2 = 0 or lEI = 
Imoc2 + Vol > O. Consequently the deepest bound state 
never reaches the energy E = 0 and the corresponding 
electron and positron states never overlap. This does how
ever not mean that the eigenstate does not exist any Ion ger 
for larger values of Wol. Rather, now there exists a so
lution of (6) with imaginary momentum P2 = i1l:2, 11:2 = 
v(moc+ VOlc)2 + E2/c. The transcendental eigenvalue 
equation analogous to (8) reads in this case 

A graphical construction similar to the one in Fig. 9.1 re
veals that there is always exactly one solution for 

moc2VQ + V02 nc 
--;:.===::::::::= > -
J-2moc2VO - Vi a 
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For Vo -+ 00 it monotonically decreasingly approaches the 
value 11:2 -+ - mOc - VoIc corresponding to E -+ ± O. 

If we further increase Wol, the ordinate cut of !(n) 
still moves upwards and the higher states approach the 
eigenvalues P2 = n7rh/a with the eigenenergies E2 = 
(n7r/a)2(nc)2 + (mo~ + VO)2. For I Vo 1-+ 2mo~, the quan
tity !<n = 0) diverges and the eigenenergies come close to 
the value E2 = (n7r/a)2(nc)2 + möc4 > mÖc4. That means 
no more bound states exist for I Vo I -+ 2mo~; with in
creasing potential depth an bound states vanish, one after 
another. This behaviour is illustrated in Fig. 9.8, which was 
obtained by solving (8) numerically. The energy diagram 
shown is characteristic for the square-weH potential. [One 
can also consider the same problem in three dimensions 
with a Coulomb-like potential of the form -o/Ir (see Ex
ample 9.8); then, all states in the diagram are conserved 
for arbitrary high coupling strength 0'.', too. However, their 
binding energies approach the value lEI = 0 only asymp
totically (cf. Fig.9.9) and also in this case electron and 
positron states do not cross.] 

Elmod-

o~----------------~~-----------

-1 -2 

Fig. 9.8. Spectrum of eigenvalues of the Dirae equation with a one
dimensional square-weIl potential of width a = 10~e as a function of 
the potential strength Va (scalar coupling) 

Therefore we find, in contrast to vector coupling, that 
in the case of scalar coupling spontaneous e+ - e- pair 
creation never occurs, no matter how strong the potential 
chosen. This qualitatively different behaviour of the bound 
states in case of the 0/ Ir potential is easily understood in 
the foHowing way: Oue to the scalar potential the elec
trons obtain an effective mass meff~ = mo~ + Vo. Figure 
9.10 schematicaHy shows this effective mass as a function 
of r for the 0/ Ir potential, together with some bound states. 



+mo~~~~~~==~---------r--~~~/;.~,----
I [ "( TiCC")] ~'P+ß moc2 - -r- I/J=EI/J 

1. 

energy region lEI> moc2. For Vo< - 2mo~ the elec
trons feel a potential barrier if they lie in the energy inter
val moc2 < E < Imoc2 + Vol (similar statements hold for 
positrons). While for Wol < 2moc2 resonances occur in 
both continua (in complete analogy to Fig.9.5 in Example 
9.1), in the region E > moc2 one obtains for Wol < 2moc2 

o 2 3 4 

1. 

an additional energy region, where electrons and positrons 
01/ feel a potential barrier, and the transmission coeffcient be

comes very small (corresponding to the behaviour in the 
energy interval -mo~ + Vo < E < moc2 + Vo in Fig.9.5). 

-mo~~~~==~=--------------------------
Fig. 9.9. Eigenvalue speetrum of the three-dimensional Dirae equation 
with 0/ Ir-potential (scalar eoupling) 

___ V = _ OIoke 
,. 

OIlke 
- - - - V = ----(Oll >010) 

r 

Fig.9.10. Square of the effective mass (merrc2)2 = [moc2 + V(r)]2 as a 
funetion of the radius r 

One sees that a region with meff< mo always ex
ists, so that bound states are always possible (Le. for all 
values of the coupling strength ci). With increasing pa
rameter a' the wave functions are shifted to larger values 
of r. Simultaneously the potential bag is broadened and 
hence the energy eigenvalues lEI decrease and become 
zero in the limit a' -t 00. Since meff ~ 0 always holds, 
then lEI> 0 is always valid, too, and electron and positron 
states can never cross. The energy gap between electrons 
and positrons becomes sm aller and smaller, but never zero; 
therefore, e+ - e- pair creation without energy (Le. spon
taneous pair creation) can never occur (see Figs.9.8 and 
9.9). 

Finally we give a brief qualitative discussion of the 
scattering states lEI > mo~. Again we consider the case 
C' = 0 and study the transmission coefficient T = IC/AI2• 

Of course, the relation I EI> moc2 + Vo also holds in the 

EXAMPLE ............................ . 

9.3 Separation of the Variables 
for the Dirac Equation with Central Potential 
(minimally coupled) 

The Dirac-Hamiltonian in this case reads 

A A 2 
HD = ca .p+ ßmOC + Ver) , (1) 

where Ver) = eAo(r). Because of the spherical symme
try of the field2, the angular-momentum operator j and 
the parity operator P = ei'Pß(z-t - z) = ei'P")"opo [see 
(4.9)] with respect to the origin of the coordinate system 
commute with the Hamiltonian. Hence states with definite 
energy, angular momentum and parity occur. The corre
sponding wave functions are denoted by 

'l/Jjm = ( 'Pjlm(Z, t) ) 
Xjl'm(Z, t) 

(2) 

Here 'Pjlm and Xjl'm are two-spinors which are to be de
termined. Since 'l/Jjm must have good parity and the parity 
operator reads P = ei'PßPo (Po changes Z into -z), we 
have 

(3b) 

2 See Vol. 2 of this series, Quantum M echanics - Symmetries (Springer, 
Berlin, Heidelberg 1989). 
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where IA I = 1 [in (3b) we have replaced ;v' by ;v). One 
should clearly recognize the content of (3a): the demand 
for "good parity" of the wave function means that the wave 
function is an eigenfunction of the parity operator P [see 
(4.9)]. Eqmition (3b) shows that the parity of the two-spinor 
epjlm mustbe equal to the negative parity of Xjl/m' We 
can also understand this statement in the following way: 
Starting with the stationary Dirac equation HD'IjJ = E'IjJ, 
we get with 

A=(O u) 
a U 0 

that 

c(u • p)x + mo?ep + Vep = Eep , 

c(u· p)ep - moc2x + Vx = EX , 

or 

(E - moc2 - V)ep = c(u. p)X , 

(E + moc2 - V)x = c(u· p)ep 

(4) 

(5) 

Since the operator u . p changes parity, these equations 
show that the two spinors ep and X must have opposite 
parity. 

Eigenfunctions of the angular momentum and the par
ity operator are the well-known spherical spinors. To avoid 
confusion with the complete wave function .p, we shall de
note the spherical spinors here by iljlm - They are defined 
by 

(6) 

Here the two-spinors X! are eigenfunctions of the spin 
2 m • 

operators 82 = r,,2a.2/4 and 53 = r"a3!2; they read explic
itly: 

The parity of iljlm is given by 11m: 
A I 

Poiljlm = (-1) iljlm . (7) 

We make the following ansatz 

epjlm = ig(r)iljlm (;) 
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Xjl/m = -ij(r)iljl'm (;) 

with 

(8) 

I' = 2j - 1 =: { 2(1+~) -1=1+1 

2(1-~) -1=1-1 

for j = 1 + ~ 

for j = 1- ~ 

(9) 

Let us repeat this once more: Because of (6) either j = I+! 
or j = 1 - !. If j = 1+ !' the orbital angular momentum I' 
of Xjl/m is [' = [ + 1. This is the only way to realize the 
opposite parity of X compared to ep. The value [' = [ - 1 
must be excluded, because no total angular momentum 
j = [+ ~ can be constructed by [' = 1 - 1 and S = !. The 
arguments follow a similar pattern for the second case of 
(9). One has 

u . pepjlm = U . p(ig(r)) iljlm (;) 

= (u. pig(r))iljlm +ig(r)u· piljlm 

t:.dg(r)(A r)n . ()A An 
="~ lT' -;: Hjlm + 19 r lT . PJ&jlm 

(10) 

With respect to (6) the spherical spinors are eigenfunctions 

of the operators i}, j2 and 82 = (! u)2 with eigenvalues 

['(I' + 1)r,,2, j(j+ 1)r,,2 and ir,,2 respectively_ To be complete 
we once more give the explicit form of the iljlm for the 

useful cases j = I + ! and j = I -! (j ~ !) : 

(ffP·+ m 
) --.-Y. 1 2) I,m-i 

il 1 = 
l+i,l,m N 
~ )-m . --Y. 1 

J 2j I,m+i 

(lla) 

( -~v,.m-l) il 1 = 1- 2 ,I,m . 1 
~ ) +~+ Y. 1 

J 2) + 2 I,m+i 

(llb) 

The root factors (11) are the Clebsch-Gordon-coefficients 
in explicit form. Now we make use of the following rela
tion between the spherical spinors 



( iT. !) {l·1 = -{l·11 r J m J m , (12) 

which is easily proven, because (iT·r/r) is a scalar operator 
of negative parity [see (10.54) and the following]. With 
(12) we get 

-(iT . p){ljlm = (iT . p) (iT . ;) {ljl'm . 

Now we take the already familiar relation 

(iT . A)(iT· B) = A· B + iiT· (A x B) 

to change (13) into 

-(iT . p){ljlm = (p.; + iiT . (p x ;)) {ljl'm 

(13) 

(14) 

(15) 

With P = -ihV and t = r x p, Eq. (15) can further be 
transformed into 

(p. r+iiT· (p x r»)!{ljllm 
r 

= ( - ih(V· r) - ihr· V - iiT· (r x P»)~{ljllm 

( .,,3 ." ( 1) .iT.t)n = -1,,- - 1"r -- - 1-- H ·I'm r r 2 r J 

. (2h 1 LA A) n = -1 -;:- + ;: . (T Hjl'm . (16) 

From 

j2= (t+~iTJ =t2+(~iT)2 +hiT.t (17) 

follows 

ht. iT{ljllm = (j2 _ t2(~iT )2) {ljllm 

= {j(j + 1) -I'(l' + 1) - i }h2{ljllm. (18) 

Now and in the following it is convenient to define a quan
tum number "- by 

"- = =f (j +~) 
= {~(l+ 1) for j = 1 + ~ 

forj=I-~ 
(19a) 

Obviously there is always 

1"-1 = j + ~ or j = 1"-1 - i (19b) 

With this and taking I' = 2j -1 into account one can rewrite 
the expectation value on the rhs of (18). For j = 1 + ~ one 
gets: 

(1+,) (1+,+1) 

- [2(/+,) -I] [2(/+,) -1+1] 

= z2 + il + 1 + i l + ! + i - (I + 1)(1 + 2) - i 
= z2 + 21 - z2 - 21 - 1 - 2 = -(I + 2) = "- - 1 . (20a) 

Similarly for j = 1 - i: 
(/-~) (I+~) 
- [2 (I - i) - I] [2 (I - ~) - 1 + 1] 
= 12 - i - (l - 1)1 - i = I - 1 = "- - 1 (20b) 

Now (16) can be written as 

(2h + t . iT){ljl'm = (1 + ,,-)hOjllm (21) 

If in (18) we had started with {ljlm we would have ob

tained (2h + t . iT){ljlm = (1 - ,,-)h{ljlm by the same 
procedure. In the literature3 the following notation is often 
used for (21): One writes 

Xx:,m == {ljlm , X-x:,m == {ljllm 

and defines the operator 

K=h+t·iT , 

so that due to (21) the eigenvalue equation 

holds, where 

"-= {-(/+l)=-(j+~) 
I=+(j+i) 

and 1"-1 = j + ~ . 

for j = 1+ i 
for j = 1- ~ 

(21a) 

(21b) 

(21c) 

3 See, for example, M.E. Rose: Relativistic Electron Theory (Wiley, 
New York, Landon). 
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Consequently, the spherieal spinors of (8) ean also be de
noted by XK,m = ilj/m and X-K,m = ilj/lm and we ean 
therefore write for the four-spinor in a eentral field 

_ (I.Pj/m(~, t») _ ( ig(r)iljlm (f) ) 
'l/Jjm - Xj/lm(~' t) - - f(r)iljl' m (f) 

_ ( ig(r)xK,m ) _ +i ( g(r)XK,m ) 
- - f(r)x-K,m - if(r)x-K,m 

Sometimes we shall use this alternative notation. With this 
and (15) and (12), equation (10) finally takes the form 

fF. PI.Pj/m = -ilj/lm (n ~~ + K,; 1 ng(r») (22) 

Analogously one derives an expression for (fF . p)x, 
namely 

(fF . P)xj/lm = -iilj /m (n d~~) - K, ~ 1 nf(r») . (23) 

Now the expressions (22) and (23) are inserted into (5). 
The angular funetions from both sides of the equation ean 
be eliminated. So we obtain the differential equations for 
the radial funetions f and g: 

nc dgd(r) + (1 + K,)ncg(r) - [E + moc2 - V(r)] f(r) = 0 , 
r r 

nc df(r) + (1 _ I<.)nc f (r) 
dr r 

+[E - moc2 - V(r)]g(r) = 0 

With the substitution 

G = rg and F = r f with 

dG dg(r) 
-=g+r--
dr dr 

one finally gets 

and dF = f + r df(r) 
dr dr 

(24) 

(25) 

nc dG(r) + nc!!:.G(r) - [E + moc2 - V(r)] F(r) = 0 , 
dr r 

nc dF(r) - nc!!:.F(r) + [E - moc2 - V(r)] G(r) = 0 
dr r (26) 

These are the frequently used eoupled differential equa
tions for the radial wave funetions F and G of the Dirae 
equation in the ease of a spherieally symmetrie potential 
V(r). In the literature one oceasionally sets G = Ul and 
F=U2. 
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EXERCISE ______________ _ 

9.4 Commutation of the Total Angular Momentum 
Operator with the Hamiltonian in a Spherically 

Symmetrie Potential 

Problem. Show that the operator of the total angular mo
mentum j eommutes with the Hamiltonian of a Dirae par
ticle in a spherieally symmetrie potential. 

Solution. In analogy to the Pauli theory for electrons with 
spin we define the total angular momentum as the sum 
of the orbital angular momentum Land the spin angular 
momentum ! niJ with 

A (fF E= 0 ~) (1) 

AAl A A A 

J = L + '1nE == L + S (2) 

The one-particle Dirae Hamiltonian for a spherieally 
symmetrie potential Ao(r) which is minimally eoupled as 
the fourth eomponent of a four-potential reads 

A A 2 e 
Hn = ca· P+ ßmoc + -Ao(r) . 

c 
(3) 

First we investigate the eommutator [L, Hn L. Sinee L 
eommutes with ß and the spherieal symmetrie potential 
Ao(r), it only remains to ealculate [L, &. P L. We restriet 

ourselves to the ealculation of the eommutator for the Lx 
eomponent and get: 

[Lx, a· pL = Lx (&xPx + &ypy + &zpz) 
(4) 

Lx = YPz - Zpy . (5) 

Sinee Lx eommutes with Px, it follows from (4) that 

[Lx, a· pL = &y [Lx, pyL + &z [Lx, pzL 
= &y(ypzpy - Zpypy - pyypz + pyZpy) 
+ &z (ypzpz - zPYPz - pzypz + pzZpy) 

= &y (ypzpy - pyypz) 
+ &z(PzZPy - Zpypz) 

= &y (ypzpy - (pyy)pz - ypypz) 
+ &z (ßzz)py + Zpzpy - Zpypz) 

= &y( -pyy)pz + &z(pzz)py . (6) 



With Pi = in{)!8xi we then have 

[.t:z;, &. pL = in(aypz - azpy) , 

and generally 

[Li' &. pL = in (ajPk - akPj) 

(7) 

By cyclical permutations of the indices the final result is 

[1,,&·pL=in(&xp):fO . (8) 

Equation (8) states that the orbital angular momen
turn 1, does not commute with the Hamiltonian and hence 
it is not a constant of motion. Now we investigate the 
commutator of spin angular momentum with the Hamilto
nian: [nE/2, HDL. In this case we restrict ourselves to 

the component [nE:z;/2L, too. It is convenient to intro

duce the 4 x 4 matrix 'Y5: 

1 ( 0 'Y5 -11 
. h ,2 11 

wlt 'Y 5 = (9) 

The following relations hold: 

-'Y5& = (~ g) ( ~ ~ ) = ( ~ 0) A fT = E, (10) 

A 1 (0 -fT) ( 0 -110 ) -a'Y5 = -fT 0 -11 

=(~ ~)=E , (11) 

~) = &, (12) 

(13) 

A A (11 ßE-- 0 0) (fT 0) (fT 0) 
-11 0 fT = 0 -fT ' (14) 

and therefore 

[,8, E] - = 0 , 

['Y5' &L = 0 and 

(16a) 

(16b) 

(16c) 

Thus there remains only the calculation of the following 
commutator: 

1", 1 [A A A] - '!"'Y5 O:::z;, a . p -
'-v--' 

due to (16b) 

= -in'Y5( a:z; {a:z;p:z; + aypy + azpz} 
- {a:z;p:z; + aypy + azpz }a:z;) 

= -in'Y5{ a:z;aypy + a:z;azpz 
- aypya:z; - azpza:z;} 

= -in'Y5{ (a:z;a y - aya:z;)py 
(17) 

Because of the commutation relations of the 0:: matrices, 

(18) 

and it follows that 

in [E:z;, &·pL =n'Y5{aya:z;py+aza:z;pz} 
1 { 1 A ( 1 A )A = 'Y5 n - 'Y5 Ey - 'Y5 E :z; Py 

I A
( I A

)} - 'Y5 Ez - 'Y5 E:z; pz 
- 'Ysn{ EyE:z;py + EzE:z;pz) (19) 

'-v--' 
due to (16c) 

Now the commutation relations of the Pauli matrices are 

a:z;ay = -aya:z; = iaz , 
ayaz = -azay = ia:z; , 

aza:z; = -a:z;az = iay 

Hence one gets 

in[E:z;, &. pL = n'Y5( - iEzpy +iEypz) 
= in(azpy - aypz) . 

(20) 

(21) 

Comparing (21) with (7) we recognize that the com
ponent j:z; of total angular momentum indeed commutes 
with the Hamiltonian. Cyclical permutation of the indices 
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results in 

[J, HoL = [J, &. pL = 0 (22) 

We knoWl that J2 and any component of J, for example 
i z , can be simultaneously diagonalised with H. The fact 
that J, but not t and S, provide good quantum numbers 
in the Dirac theory (i.e. that J commutes with Ho) is due 
to the spin-orbit coupling I"V t . S contained in Ho (see 
Chap. 11, the Foldy-Wouthuysen transformation). It causes 
a coupling between spin and orbital angular momentum, 
and hence only the total angular momentum is a constant 
of motion. 

EXERCISE ______________ _ 

9.5 A Dirac Particle in a Spherical Potential Box 

Problem. Establish the solutions of the Dirac equation 

in a spherical square-weH potential 

for r~R 

for r>R 

(1) 

(2) 

Solution. First we write the operator iT·p of kinetic energy 
in spherical polar coordinates. This is achieved by using 
the identity 

V = er . (er· V) - er X (er X V) 
{) i er A 

=er · - - -- xL 
{)r Ii r 

with t = -ili(r X V). It follows that 

A A ."A {) 1 A ( LA) a . p = -lnar- - -a· er X 
{)r r 

Making use of 

(&. A)(&· B) = A· B+iiJ· (A X B) , 

we obtain (with A = er, B = L) 

ar·(&·t) =er·t+iiJ.(erxt) 

= iiJ . (er X t) 

(3) 

(4) 

(5) 

(6) 

4 This is covered in detail in Vols. 1 and 2 of this series: Quantum 
Mechanics - An Introduction and Symmetries (Springer, Berlin, Heidel
berg 1989). 
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Multiplying by 

75 = (~ g) 
from the right results in 

ar· (iJ. t) = i&· (er X t) 

Therefore (4) reads 

A A • " A {) • ar (i-o LA) a·p =-lnar-+l-~· 
{)r r 

. A (0 Ii ß RA,") = -lar or + -;: - -;: 

where we have introduced 

(7) 

(8) 

(9) 

We obtain the eigensolutions of (1) by a separation ansatz, 
i.e. 

'IjJ(r) = (. g(r)xK."AiJ,rp) ) 
If(r)x -K.,IJ(iJ, rp) 

(10) 

where the X K.,IJ are the eigenfunctions of the angular de
pendent part: 

(iT.t+Ii)xK.'1J =-Ii"'XK.,1J ' 

(iT.L+Ii)X-K.,1J =1i"'X-K.,1J ' 

i z XK.,IJ = IiJ1XK.,1J ' 
'" = (-1,1, - 2,2, - 3,3, ... ), (11) 

[see Example 9.3, Eqs. (21) and also Chap. 10, (10.3~ 
37)]. 

With the help of the results of Example 9.3, two cou
pled differential equations for g(r) and f(r) foHow from 
(1), namely 

[E-V(r)-moc2]g(r) =IiC[-(! +~) +;']f(r) , 

[E - V(r) + moc2] f(r) = lic [! + ~ + ;.] g(r) . (12) 

Often it is more convenient to use 

Ul (r) = rg(r) , u2(r) = r f(r) (13) 

for which the differential equations read: 



d (Ul(r») 
dr u2(r) 

= [- ic(E - :~C2 - V(r») 

x (:~~~~) 

ic (E + m~~ - v(r»)] 

(14) 

For constant values of Vo, Eq. (14) has the following 
solutions: 

i) If 

It-k2c2 == (E + VO)2 - m5c4 > 0 

Ul(r) = r(adll«kr) + a2Y11«kr») , 

'" lickr u2(r)=-11 c2(adl (kr)+a2YI (kr») '" E + Vo + mo -I< -I< 

(15) 
with 

{", for '" >0 
lK = 

for '" <0 -'" -1 

{ -'" for -",>0 
(16) l_K = 

for -",<0 ",-1 

ii) If 

It- K 2c2 == m5c4 - (E + Vo)2 > 0 

Ul(r) = rJ2!r (blKII<+l/2(Kr) + ~III<+l/2(Kr») , 

) licKr J2Kr 
u2(r = E + Vo + moc2 --;:-

X ( - blKLI<+l/2(Kr) + ~ILI<+l/2(Kr») . (17) 

The jl and YI are the spherical Bessel functions of the first 
and second kindS and the KI+l/2 are the modified spherical 
Bessel functions. Their asymptotic behaviour is: 

. 1 n 
)n(z) -+ (2 1)" Z , 

z~O n+ .. 

Yn(z) -+ -(2n - 1)!!z-n-l , 
z--+O 

[7r 1 n 
V 2;In+l/2(Z) z-=O (2n + I)!! Z , 

[7r K n+1/2(z) -+ '" (2n - l)!!z-n-l , V 2; z~O 

(18) 

(19) 

(20) 

Before continuing, we want to give the representation 
of the XK,J.I(iJ, ep) in (11) [see Example 9.3 and Chap. 10, 
Eq. (10.32)]: 

XK,J.I(iJ, ep) 

= L (lKhl/-L - m, m)YiI<'J.I-m(iJ,ep)X!,m(21) 
m=-l/2,l/2 

with 

X!,!=(~) ,X!,_!=(~) (22) 

Let us now find the bound states6 • For these, E > Vo+moc2 
and -mo~ < E < mo~. In the inner region of the poten
tial field we must therefore take the solutions (15) and set 
a2 = 0, in order that the wave functions remain normaliz
able at the origin. On the other hand in the outer region 
we must set ~ = 0 in (17), so that the wave functions are 
normalizable at infinity. Both solutions must be joined at 
r = ll{). One can eliminate the normalizing constants ab 

bl by adjustment of the ratio Ul/U2 at r = ll{). This gives 

(23) 

and 

jll«kll{) '" k K11<+!(Kll{) E + mo~ 
~"":""",,,..::.:..-.=--- (24) 
jLI«kll{) 1"'1 K K L I<+!(Kll{)E+Vo+moc2 

with 

lick = J(E + Vo)2 - m5c4 , 

licK = Jm5c4 - E2 . (25) 

S The irregular solutions y/ are also noted in the literature as spherical 
Neumann functions n/. 

6 W. Pieper, W. Greiner: Z. Phys. 218, 327 (1969). 
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For 111:1 = 1 one can further simplify the equations analyti
cally, and for s states (11: = -1, lK, = 0, LK, = 1) this results 
in 

kIi{) sin kIi{) 
sin kIi{) - kIi{) cos kIi{) 

k e-J(!l{j E+moc'l 
= + K e-J(!l{j (1 + l/KIi{) E + Vo + moc2 (26) 

After some transformations one gets 

E+ Vo+moc2 
E+ Vo -moc2 

{ hc [1 1] r---moc2 - E} 
Ii{) E + Vo + moc2 - E + moc2 - moc2 + E 

= 1 (27) 

Analogously one obtains for Pl!2 states (11: = 1, lK, = 
1, LK, = 0): 

kIi{) sin kIi{) 
sin kIi{) - kIi{) cos kIi{) 

K 1 E + Vo + moc'l 
= - - ---- ----"--....,::--

k 1 + l/KIi{) E + moc2 
(28) 

and 

tan [Ro J(E + VO)2 _ m2c4] E + Vo - moc2 
hc 0 E + Vo + m oc2 

{ hc [1 1] moc2 + E } 
Ii{) E + Vo - moc2 + moc2 - E + moc2 - E 

= 1 (29) 

Table 9.1. Energy eigenvalues for 81/l and PI/l states in a small potential 
box 

E 

o 

-moc'l 

VO(II: = -1) 

h mr 2 
----- 3moc 
mOc Ii{) 

h mr 2 
---- -mOc 
moc Ro 

h mr 2 
----+moc 
mOc Ii{) 

n = I, 2, 3, ... (mocRo/h) ~ 1 

h mr 2 
---- -mOc 
mOc Ii{) 

h mr 2 
----+moc 
mOc Ro 

h mr 2 
-- -- + 3moc 
mOc Ii{) 
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Another form for (26) is (defining a = kIi{) 

(moc'l/hc)il{jjl - (E2/m5c4) + 1 
a cot a - 1 = _____ L-_---,,_....::.... __ 

1 +E/moc2 

and for (28) one can write: 

(moc'l/hc)il{jjl - (E2/m5c4) + 1 
1-acota= / ' 1 - E moc-

(30) 

(31) 

From (27) and (29) we can now calculate the energy eigen
values of s! and P! states. If we assume il{j to be small 

2 2 
(mocRo/h ~ 1), we may solve (27) and (29) approximately 
by expanding in terms of mocIi{)/h. A short calculation 
(which is left as an exercise for the reader) leads to the fol
lowing Table 9.1, where n = 1, 2, 3, ... labels the states. 
Similarly, one can find approximate solutions for (30) and 
(31) for the opposite limiting case of a very large potential 
box (mocIi{)/h ~ 1), and this is shown in Table 9.2. One 
sees that the p! states are energetically higher than the s 

2 
states, which can be understood intuitively because of the 
orbital angular momentum 1 = 1 for the p states. But even 
for the s states (with 1 = 0), for a given Ii{) a minimal 
potential depth Vo is required in order to get at least one 
bound state, in contrast to the one-dimensional problem, 
where at least one bound state always exists. This is due 
to the fact that for the s state of a Dirac particle in a three-

Table 9.2. Energy eigenvalues for 811l and PIIl states in a large potential 
box 

E VO(K,=-I) 

o 

-mo~ 

n = I, 2, 3, ... (mocRoIh) ~ I 



dimensional potential weIl there is an angular momentum 
barrier due to the spin. Indeed, this can be easily seen by 
decoupling (14), differentiating again with constant Vo and 
reinserting: 

11 { 1 [(E Tl: )2 2 4] 1\:(1\: + I)} - 0 9 - -- + yo - moc - 9 - , 
(li.c)2 r 2 

f" + { (1i.~)2 [(E + VO)2 - möc4] - 1\:(l\:r; 1) } f = O. (32) 

On the one hand, for 8 states (I\: = -1) the angular mo
mentum barrier is zero for the large components. On the 
other, the equation for f contains an angular momentum 
term, which increases the energy in the three-dimensional 
case even for 8 states. 
In Fig. 9.11 the eigenvalues7 [found numerically from (27)] 
for the 18 state in potential wells with different values of 
Il{) have been plotted. One sees that for (mocIl{)/Ii.) ~ 1 as 
weIl as for (moc1l{)/li.) ~ 1 the energy eigenvalue E(Vo) 
grows almost linearly with Vo. As in the one-dimensional 
case, we can determine the scattering phase shifts of the 
continuum. For the 8 waves this can be done with little 
effort, whereas for the waves with higher angular momen
turn the matching condition at r = Il{) cannot be evaluated 
easily. Let us therefore look at the scattering phase shifts 
of the 8 waves. First we have to match solutions of the 
interior region, 

u\ (r) = al sin kir , 

E + Vo - moc2 (sin ki r k ) --- -cos 'r 
E + Vo + m oc2 kir I 

(33) 

7 From J. Rafelski, L. Fulcher, A. Klein: Phys. Rep. 38,227 (1978). 

at r = Il{) to the solution (( ncko)2 = E 2 - möc4) of the 

outside region: 

uY(r) = bl sin kor - ~ cos kor 

u~(r) = E - moc2 [b (Sin kor l. ) 1 --- - COS "Or 
E+moe2 kor 

J.._ (COS kor . k )] 
- Vi. k + sm or 

or 

Introducing 

'Y= 
(E + Vo - moc2) (E + moe2) 
(E + Vo + moc2) (E - m oc2) 

(34) 

(35) 

and making use of the fact that the wave function is con
tinuous at r = Il{), we conclude with 

.1i = kjIl{) , .10 = koIl{) 

that 

[ 
sin .1i 

bl = al -'Y~ cos .10 + 'Y cos .10 cos .1i 

• A COS .10 . A • 1\] + sm Lli ~ + sm Lli sm <->0 

J.._ [Sin.1i . 1\ . 1\ A 
Vi. = al -'Y~ sm <->0 + 'Y sm <->0 cos Lli 

• A sin .1o . A A] + sm Lli ~ - sm Lli cos LlO (36) 

From the asymptotic behaviour of the outside solution one 
can derive a phase shift 6: 

R = lOn!c 0.8 R= ,,~c 0.8 R = 0.0207 n!c 

0.4 0.4 

~ Vo[m~l 

i- 0 2.0 0 2.0 
'" 
-0.4 -0.4 

-0.8 
-0.8 

Fig.9.11. ls eigenvaiues as a function of the potential strength for a 
spherical potential weil. Olle example of the results for the 28 level are 
also shown 

Vo[m~l 
0.4 

4.0 
0 

152 

-004 

-0.8 
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u~(r) --+ Aal sin(kor + 6) , 
r-oo 

o JE-mo'" u2 --+ A, al cos(ko + 6) 
r-oo E+ moc-

(37) 

Inserting (36) into (34) and comparing this with (37), one 
derives the equations 

bl 
cos 6 =--

Aal 
sin6=-~ 

Aal 

and after some algebraic rearrangements the result 

6 = - .10 + arccot (l - ~j + 'Y cot .1j) 

= -koRo 

[
he 

+ arccot 'Y cot ( kj Ro) + Ro 
E+moc2 
E - moCl 

x (E+~oc2 - E+ vo
1
+moc2 ) 1 

(38) 

(39) 

As in the one-dimensional case the term koRo is the same 
for all states and therefore this term is usally absorbed into 
the definition of the phase shift: 

6~=_1 = 6 + koRo 

(
he E+moCl 

= arccot 'Ycot(kjRo) + Ro 
E - m oc2 

x (E+ ~Cl - E+ Vo
1
+moc2 ) ) (40) 

5in2 O~=_I 
\ ./ 1.0 f' ('i n r 

0.5 

~/ I J I 

-5 -4 -2 -I 

In Fig.9.12 the phase shift of the s states for a poten
tial of depth Vo = 3moc2 and radius Ro = lOAe has 
been depicted. Once again the zeros of 6~=_1 and sin2 6' 
correspond to resonances; also resonances in the range 
moc2 - Vo < E < - moc2 of "dived" s states in a su
percritical potential appear. A comparison with Fig.9.11 
shows that the positions of the resonances are just where 
one would expect them to be by extrapolating the curve 
E(Vo) of the binding energies. 

EXERCISE ______________ _ 

9.6 Solution of the Radial Equations for a 
Dirac Particle in a Coulomb Potential 

Problem. Solve the coupled radial equations for a Dirac 
particle in a Coulomb potential and determine the energy 
values for the bound states. 

Solution. The Coulomb interaction energy of a point nu
cleus and a particle of charge - e is V = - Z e2 Ir, so that 
the radial equations (cf. Example 9.3) for a Dirac particle 
read 

dG = -~G + [E + m oc2 + za] F(r) 
dr r hc r 

dF = ~F _ [E - moc2 + za] G(r) , 
dr r hc r 

(1) 

where a = e21hc ~ 1/137 is the fine structure constant. 
First we shall examine the solution of the equations (1) 
for sm all r, Le. near the origin (r '" 0). In this case the 
terms with E ± mo~ can be omitted and one gets 

dG K Za 
- + -G - -F(r) = 0 , 
dr r r 

dF K Za 
---F+-G(r)=O 
dr r r 

(2) 

U sing apower series expansion as an ansatz for the so
lution of (2), the first term of this series dominates in the 
region near the origin. This motivates the ansatz G = ar "Y 

and F = br"Y. Using this it follows that 

a'Yr"Y-I + Kar"Y- I - Zabr"Y- 1 = 0 , 

b"{r"Y- I - Kbr"Y- 1 + Zaar"Y- 1 = 0 (3) 
Fig. 9.12. Phase shift sin2 6~=_1 (for s-waves) of a spherical potential 
box as a function of energy or 
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a(-y+II:)-bZa=O , aZa+b(,-II:)=O. (4) 

The determinant of the coefficients must vanish, yielding 

,2 = 11:2 _ (Za)2 , 

, = ± J 11:2 - (Za)2 = ± J (j + i t -Z2a2 (5) 

Since the wave function has to be normalizable we must 
choose the positive sign for ,. For the negative solution 

, = -1,1 it follows that F 2+G2 rv r-2 h,1 near r = 0, which 
would yield a divergent integral for the norm if 111 :S!. 
However, we should mention that for 11:2 = land Z aV3/2 
or Z,<: 118, regular solutions with negative, seem possi-

ble. Indeed, to have F 2+G2 rv r-2"II-(Za)2 still integrable 

for r --+ 0, the inequality 2 J 1 - (Z a)2 < 1 should be ful
filled, which leads to (Za)2 > l In Exercise 9.12 we shall 
show that these "solutions" do, in fact, not exist. Here we 
only give a plausibility argument: these solutions must be 
discarded because of the following postulates: Not only 
the normalization integral J tP t HDtPd3r must exist, but 
also the expectation value of each partial operator within 
HD, especially the expectation value of the Coulomb en
ergy: 

J tP t ( - Z ;2) tPd3 x = J (F2 + G2) ( _ Z ;2 ) dr . 

Note that the usual factor r2 from the volume element, 
according to (25) of Example 9.3, is aIready contained 
in (F2 + G2). The integrand behaves like (r+2'Y)/r dr = 
r +2"'1- 1 dr in the limit r --+ 0, yielding a finite contribu
tion only if 2, - 1> - 1, i.e. , > O. This, on the other 
hand, means that only the positive root in (5) is physically 
meaningful. Furthermore one can conclude from relation 
(5) that for states with j + ! = 1 only solutions up to 

Z = a- 1 rv 137 can be constructed. For larger values of Z 
the root becomes imaginary and the wave functions are no 
longer normalizable. For (Za)2 > 11:2 , in general the real 
part of the wave function shows an oscillatory behaviour 
of the form Re(F, G) rv cos(I,l1n r) for sm all r. We shall 
deal with this strange situation later when we treat elec
trons in the fields of extended nuclei and discuss the su
percritical vacuum. In order to solve Eq. (1) we make the 
following substitutions: 

(m2c4 _ E 2)1f2 
e = 2Ar with A = ....:....--"-0_:----'-_ 

hc 
(6) 

With de/dr = 2A and d/dr = 2Adlde and dividing by 2, it 
follows that 

dG(e) = _ II:G(e) + [E + mo~ + za] F(e) , 
de e 2Ahc e 

dF(e) _ [E - mo~ za] G() 11: F( ) 
d;- - - 2Ahc + e e +"1 e (7) 

Using this form of the equations one can get the behaviour 
of F(e) and G(e) for e --+ 00, since neglecting the terms 
proportional to 1/ e the differential equations (7) read 

dG(e) = E + mo~ F( ) 
de 2hd e, 

dF(e) = _ E - mo~ G(e) 
de 2hcA 

Combined with (6) it follows immediately that 

d2G(e) (E2 - m5c4) 1 
~ = - (2hd)2 G(e) = 4G(e) 

One gets two possible solutions with G(e) rv e± e/2, but 
only the exponentially decreasing one can be used since 
only this one is normalizable. A similar result holds for 
F(e). This motivates the ansatz 

G(e) = (moc2+Eif2e-ef2(4>I(e)+(!>2(e») , 

F(e) = (moc2 - E/f2 e-e/2 (4)I(e) - h(e») , (8) 

which we insert into (7) to give: 

2 1/2 f2 [ 1 d4>1 d4>2] 
(moc + E) e-e - 2(4)1 + 4>2) + de + de 

-11: 2 1/2 f2 
= -(moc +E) e-e (4)1 +4>2) 

e 

[ E + moc2 Za] ( 2 E)If2 -ef2(,,1. "I. ) + + - mOc - e 'f'1 - 'f'2 , 
2hcA e 

moc - E e e - -(4)1 - 4>2) + - --( 2 )1/2 - /2 [ 1 d4>1 d4>2 ] 
2 de de 

[ E - moc2 za] ( 2 E)I/2 -n/2(,,1. ,,1.) = - + - mOc + e" 'f'1 + 'f'2 
2hcA e 

11: ( 2 )1/2 - /2 + - mOc - E e e (4)1 - 4>2) . 
e 

(9) 

Dividing by e-e/2 and furthermore the first equation by 
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(moc2 + Eif2 and the second one by (mo~ - E)lf2 yields 
the result 

1 drPl drP2 
-'2(rPl + rP2) + d!] + d!] 

I'\, 

= --(rPl + rP2) 
!] 

+ [E+moc2 +za](mo~-E)lf2(rPl_h) , 
2nc>. !] (moc2 + E)lf2 

On the other hand we have 

(mo~ - E)lf2 _ moc2 - E 

(moc2 + E)lf2 - nc>. 

and 

and therefore 

180 

(11) 

(12) 

21'\, Za (mo~ - E) 
= --rP2 + rPl + - (rPl - rP2) 

!] !] nc>. 

Za (mo~ + E) e A.) (13) - e nc>. '1-'1 + '1-'2 , 

whereas by subtracting them we get 

Summarizing all this yields 

drPl = (1- ZaE)rPl _ (~+ zamO~)rP2 
d!] nc>.p !] nc>.p 

drP2 = (_~ + zamo~)rPl + ZaE)rP2. (15) 
d!] !] nc>.p nc>.p 

In order to find the solutions for rPl and h we make 
the ansatz of apower series expansion. Separating out a 
factor !]"'(, which describes the behaviour of the solution 
for !]-+ 0, we write 

Inserting this into (15) yields 

E(m + I)am!]m+"'(-l 

_ '" m+"'( ZaE", m+"'(-l 
- LJam!] - nc>. LJam!] 

( zamo~) "'ß m+",(-l 
- I'\, + nc>. ~ m!] , 

L: ßm(m + I)!]m+"'(-l 

( Z amoc2) '" m+",(-l = - I'\, + nc>. ~am!] 

Z aE '" ß m+"'(-l + nc>. LJ m!] . 

Comparing the coefficients we conclude that 

(16) 

(17) 

ZaE (zamoc2) am(m + I) = am-l - nc>. am - I'\, + nc>. ßm, 



ßm(m + ,) = (- I\, + zomo~)om + ZoE ßm 
nc>. nc>. 

. (18) 

From the second equation of (18) it follows that 

ßm -I\, + Zomo~;nc).. I\, - Zomoc2/nc>. - = ----=-''-=::--7"" 
Om m +, -ZoE/nc>. n' - m 

(19) 

with 

I ZoE 
n =---, 

nc>. 
(20) 

For m = 0 one gets 

I\, - Zomoc2/nc>. I\, - (n' + ,)mo~/E 
- = = -----':----"---

n' n' 

ßo 
(21) 

00 

Inserting the result (19) into the first equation of (18) yields 

[ 
ZoE 

Om m+,+ nc).. 

( Zomoc2) (I\, - zomo~;nc>.)] _ + I\, + ,,\ I - 0m-t 
"CA n - m 

(22) 

(23) 

We calculate both brackets on the lhs of (23): 

( m+,+ZOE) (ZOE -,-m) 
nc>. nc>. 

2 2 (ZOE)2 = -2m, - m -, + nc>. ' (24) 

with ,2 = 1\,2 - (Zo)2 and it follows that 

om [ - m(2, + m) + (Zo)2 + (~:~f -(Z~~t2Y] 
= Om-t(n' - m) , (25) 

which can be further summarized as 

(n' - m) 
= - m(2, + m) °m-t 

(_1)m(n' - 1) .. . (n' - m) 

= m!(2, + 1) ... (2, + m) 00 

(1 - n')(2 - n') . .. (m - n' ) 

= m!(2, + 1) ... (2, + m) 00 
(26) 

According to (19) ßm is found to be 

(I\, - Zomoc2/nc>.) (-I)m(n' - 1) .. . (n' - m) 
ßm = I 1(2 1) (2 ) 00· n - m m. ,+ . .. , + m 

(27) 
Using (21) this yields 

ßm = (_1)m n'(n' - 1) .. . (n' - m + 1) ßo 
m!(2, + 1) ... (2, + m) 

(28) 

This power series turns out to be the confluent hypergeo
metrical function 

a a(a + 1) x2 
F(a, c; x) = 1 + ~x + c(c + 1) 2! + ... 

We thus find that 

<Pt = oOg"Y F(1 - n', 2, + 1; g) , 

<P2 = ßog"YF(-n', 2,+ 1; g) 

_ (I\, - zomo~/nc>.) "YF( , 2 1') 
- I oOg -n" + ,g . 

n 

(29) 

(30) 

In order that the wave functions remain normalizable we 
must require that the series for <Pt and <P2 terminate; thus 
the hypergeometrie functions have to be simple polyno
mials. This can only be achieved if n' is a non-negative 
integer, i.e. n' = 0, 1, 2, .... 

We define a principal quantum number 

n = n' + 11\,1 = n' + j + ~ , n = 1, 2, 3, ... (31) 

With this we can calculate the energy eigenvalue from (20) 
of this example and obtain 

ZoE I . 1 
(möc4 _ E2i f2 = n +, = n - J - 2 +, (32) 

and consequently 

(33) 



n = 1, 2, 3, ... , 

11: = ± (j + l) = ± 1, ± 2, ± 3, ... (34) 

The negative sign in (34) must be excluded because neg
ative energies E do not fulfill the original equation (32), 
since its rhs is positive. We therefore write the negative 
sign in (34) in parenthesis, and we thus obtain the Som
mer/eid fine structure formula for the energy eigenvalues 
of electrons in atoms with a Coulomb potential and point 
nuclei. 

Finally we want to quote the complete expression for 
the radial wave functions. Here the wave functions are 
normalized according to the prescription J 1jJ t 1jJdV = 1, 
which explicitly implies for f(r) and g(r) that 

00 

J(f2 + i)r2 dr = 1 
o 

(35) 

This leads 10 the final expressions for the normalized radial 
wave functions 8: 

g(r)} = ± (2.\)3/2 

f(r) r(2, + 1) 

(moc2 ± E)r(2, + n' + 1) 
x 

4 ' (n' + ,)mo~ (nI + ,)mo~ ) I 
moc- - 11: n' E E . 

x (2.\rp'-1 e-Ar { (nI + ~mo~ _ 11:) 

x F(-n' , 2,+ 1; 2.\r) 

=f n' F(1 - n' , 2, + 1; 2.\r) } (36) 

8 The integral of normalization can be derived by a lengthy but 
c1early stated calculation. We refer to Vol. I of this series: Quantum 
Mechanics - An lntroduction (SIX"inger, Berlin, Heidelberg 1989). See 
Chap.7 (Exercise 7.1). 
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EXERCISE _______________ _ 

9.7 Discuss the Sommerfeld Fine Structure Formula 
and the Classification of the Electron Levels 
in the Dirac Theory 

Solution. In the preceding problem, for the electron eigen
values in a Coulomb potential we derived 

2 [ (Za)2 ]-1/2 
E = +moc 1 + 2 

[n - j -l + VU + l)2 - (Za)2] 

n' = n - j - l = n - 111: 1 

n = 1, 2,3, ... 
. 1 3 5 

J =!' !' ! ... (1) 

The energy eigenvalues thus only depend on the principal 
quantum number n, on 111:1 and on Z. For a vanishing p0-

tential (Z = 0) the energy eigenvalue is +moc2 . The bound 
electron states thus adjoin the continuum of positive en
ergy beginning at +moc2 . This is plausible because, due to 
a "switching on of the potential", that is, due to a contin
uous increase of the coupling strength Z a from Z a = 0, 
electron states from the positive energy continuum can be 
"pulIed" into the energy gap between mo~ and -mo~, 
thus becoming bound states. The limit of ionization of an 
electronic atom is obviously mo~, and the ionization en
ergy of an electron in the state nj therefore reads 

Eioniz 

2{ [ (Za)2 ]-1/2} = moc 1 - 1 + -;--_'-':"'r=~==~ 
[n - 111:1 + J 11:2 - (Za)2f 

~ moc2(Za)2{_I- + (Za)2 (_1 _~)} 
2n2 2n3 111:1 4n 

(2) 

which is equal to the negative binding energy, i.e. Ebind = 
-Eioniz. We draw attention to the existence of bound states 
even for negative nuclear charge Za < 0 with energies cor
responding to the negative of the solutions for Z a > O. 
This seemingly paradoxical result will be explained later 
in connection with charge conjugation in Chap. 12. 

For states with j = 112, energy values can be calcu
lated up to Za::; 1, i.e. up to Z I"V 137; for j = 112, n = 1 
we have 



Zn = 1 yields E = ° or Ebind = E - moc2 = -mo~. With 
increasing Z the absolute value of the binding energy also 
increases, as it should do. The "slope" dE/dZ approaches 
infinity for this 181/2 state (n = 1,1 = 0, j = 1/2) at Zn = 1, 

while for Zn> j + 1/2 the energy becomes imaginary. Thus 
it seems that there exist no bound n81/2 or npl/2 states for 
point nuclei with charge greater than Z = 1/n = 137. This 
strange result can be understood in connection with the 
supercritical phenomena as a collapse 0/ the vacuwn; a 
new, fundamental process. 

To calculate actual numbers, we replace mo~ by the 
electron's rest mass mo~ = 0.5110041 MeV. For n' = ° 
the confluent series terminates only for '" < 0. For '" > ° 
they diverge even for n' = 0. It thus follows that 

, {o, 1,2, ... 
n = 

1,2,3, ... 
for '" <0 

for '" >0 

For Zn «: 1 the energy formula can be expanded: 

E - mo~ = _(Zn)2{_I_ + (Zn)2 (_1 __ ~)} (3) 
moc2 2n2 2n3 j + ~ 4n 

The degeneracy of levels with equal 1"'1 but different 1, al
ready stated previously, remains unaffected. The first term 
in (3) represents the Bohr formula for the energy levels 
of the atom calculated according to the Schrödinger equa
tion. Accordingly, relativistic corrections for the energy 
levels in a Coulomb field are of the order (Zn)2. These 
corrections are only significant for small principal quan-

[;; 
bO bound 

turn numbers and in heavy nuclei. Furthermore we note 
that the relativistic wave functions f(r) and g(r) show for 
1"'1 = 1 a weak (but quadratically integrable) divergence at 
the origin r = 0, in contrast to the nonrelativistic case. The 
states are classified in complete accordance to the levels of 
the hydrogen atom (Z = 1), as summarized in detail in the 
following Table 9.3. Table 9.4 shows the binding energy 
for the 181/2 electron as a function of Z. The situation is 
illustrated in Fig.9.13. 

Table 9.3. The c1assification of bound states of Üle electron according to 
Üle Dirae equation for Z = 1 (hydrogen atom) 

Notation n j n' Ii E bind [eVj 

181/2 1 0 1/2 0 -1 -13.606 
281/2 2 0 1/2 1 -1 -3.402 
2pI/2 2 1 1/2 1 1 -3.402 
2[13/2 2 1 3/2 0 -2 -3.401 
381/2 3 0 1/2 2 -1 -1.512 
3p1l2 3 1 1/2 2 1 -1.512 
3[13/2 3 1 3/2 1 -2 -1.512 
3d3/2 3 2 3/2 1 2 -1.512 
3ds/2 3 2 5/2 0 -3 -1.512 
481/2 4 0 1/2 3 -1 -0.850 
4p1l2 4 1 1/2 3 1 -0.850 
4P3/2 4 1 3/2 2 -2 -0.850 
4d3/2 4 2 3/2 2 2 -0.850 
4ds/2 4 2 5/2 1 -3 -0.850 
4/s/2 4 3 5/2 1 3 -0.850 
4h/2 4 3 7/2 0 -4 -0.850 

~ o~~~~~~~~~~~~~~~~~--~--~---~---
:g 0 50 100 
co states 

moc2 = _500~~n.L:V-'o.L'-L~ 

~ ___ {},~::::::ne:g:at:iv:e:e:n:er:g:y:e:on:t:in:u:um::::::::: 

-1000 

Fig.9.13. 
The solutions of Üle Dirae equation for 
an electron in a Coulomb eentral poten
tial: ... for point nuelei (for 81/2 and PI/2 
existing onIy up to Z = 137), - for ex
tended nuclei (see Example 9.9). The su
pereritical case Z > Zait ~ 172 will be 
discussed later in detail 
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Table 9.4. Table of binding energies for 18112 electrons as a function of 
Z according to the Sommerfeld fine structure fonnula 

Z Ebind [eV] Z 

10 -1362 
20 -5472 
30 -12396 
40 -22254 
50 -35229 
60 -51585 
70 -71699 

80 
90 

100 
110 
120 
130 
137 

Ebind [eV] 

-96117 
-125657 
-161615 
-206256 
-264246 
-349368 
-499288 

EXAMPLE ............................ .. 

9.8 Solution of the Dirac Equation 
for a Coulomb and a Scalar Potential 

We shall solve the Dirac equation for a mixed potential 
consisting of a scalar potential and Coulomb potential. 
Both cases differ in the manner of coupling into the Dirac 
equation. In the case of the Coulomb potential minimal 
coupling is used as usual, whereas the scalar potential is 
added to the mass term of the Dirac equation. Therefore it 
can be interpreted as an effective, position-dependent mass. 
In the same way that the Coulomb potential is derived from 
the exchange of massless photons between the nucleus and 
the leptons orbiting around it, the scalar potential of the 
form V2 = -a' Ir is created by the exchange of massless 
scalar mesons.9 The a meson frequently quoted in the liter
ature has a very high mass and therefore the corresponding 
potential has a very short range. Our investigations con
cerning the potential V2 and its influence on the energy 
eigenvalues can therefore be regarded as a model study. 
The scalar potential can be interpreted as a Newtonian po
tential of the form V2 = VN = GMomolr = - fieu'lr. 

For a mixed scalar and electrostatic potential, the 
Dirac equation thus reads 

(1) 

With the assumption of spherical symmetric potentials, we 
can again derive the coupled radial differential equations 
in the usual way: 

dG '" I 2 ] - = --G + - [E + moe + V2 - VI F(r) 
dr r fie 

dF '" 1 [ 2 ] - = +-F - - E - moe - V2 - VI G(r) 
dr r fie 

(2) 

9 For a more detailed discussion, see Vol. 4 of this series: Quantum 
Electrodynamics (Springer, Berlin, Heidelberg), to be published. 
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Defining 

a 
VI = -fie

l' 

a' and V2 = -fie
l' 

(3) 

with a and a' being the electrostatic and the scalar cou
pling constants, respectively, we get 

dG '" [E+moe2 1 ,] - = --G + + -(a - a) F(r) 
dr l' fie l' 

dF '" [E - mo~ 1 I ] - = -F - + -(a + a) G(r) 
dr r fic l' 

(4) 

In the subsequent calculations we follow a very similar 
procedure to that used for finding the solutions of the 
Coulomb potential, so that it is not necessary to repeat 
every single step in detail (see Exercises 9.6 and 9.7). We 
first consider the region l' '" 0, where the constant terms 
proportional to mass and energy can be neglected: 

dG = -~G + (a - a /) F(r) , 
dr r l' 

dF = ~F- (a+a/)G(r) 
dr l' l' 

The ansatz 

G = ar'Y , F = br'Y , 

yields 

a,r'Y- 1 + ",ar'Y- 1 - (a - a /)br'Y- 1 = 0 , 

b,r'Y- 1 - ",br'Y- 1 + (a + a' )ar'Y- 1 = 0 

or 

a(, + "') - b(a - a /) = 0 , 

a(a + a /) + b{f - "') = 0 

(5) 

(6) 

(7) 

(8) 

These are two linear homogeneous equations for a and b, 
and the coefficient determinant yields 

2 2 2 12 ,=",-a+a 

or 

,= ± J ",2 - a 2 + a /2 (9) 

To allow for the normalization of the wave functions, we 
again choose the positive sign for , and introduce the sub
stitution 



(m2e4 _ E2)lfl 
{! = 2>.r with >. = 0 lie . 

The differential equations thus have the fonn 

dG=_!5.G+[E+mo~ +(a-a')]F 
d{! {! lie2>' {! , 

dF = _ [E - mo~ + (a + a')] G + !5.F 
d{! 1ic2>' {! {!' 

which with the choice of 

G = (moe2 + E/fl e-Ufl(4)1 + 4>2) , 

F=(moe2-E)lfle-Ufl(4>I-4>2) , 

lead to: 

1 d4>1 d4>2 '" 
-2(4)1 + 4>2) + d{! + d{! = --g(4)1 + 4>2) 

+ [E + moe2 (a - a')] mo~ - E(-i. _ -i. ) 
21ie>. + {! lic>. 'I' 1 '1'2 , 

-!(4)1 - (1)2) + d4>1 _ d4>2 
2 d{! d{! 

= _ [E - moe2 (a + a')] moe2 + E(-i. -i.) 
21ie>. + {! lic>. 'I' 1 + '1'2 

'" + -(4)1 - 4>2) . 
{! 

Adding and subtracting the equations yields 

-<1>1 + 2d4>1 
d{! 

2", (a - a') moe2 - E 
= --4>2 + 4>1 + (4)1 - 4>2) 

{! {! lie>. 

_ (a + a') mo~ + E (4)1 + 4>2) 
{! lie>. 

and 

-4>2 + 2d4>2 
d{! 

2", (a - a') mo~ - E 
= --4>1 - 4>2 + (4)1 - 4>2) 

{! {! lic>. 

(a + a') moe2 + E(-i. -i.) 
+ {! lic>. '1'1 + '1'2 

respectively. We now collect tenns and obtain: 

(10) 

(11) 

(12) 

For 4>1 and 4>2 we make the power series ansatz: 

00 

4>1 = {!'Y :E am{!m , 
m=O 

00 

4>2 = {!'Y :E ßm{!m 
m=O 

A comparison of coefficient yields 

and from the second equation we get 
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(13) 

(14) 

(15) 

(16) 



ßm -'" + amoc2lhc).. + 0.' Elhe).. 
= m +, -aElhc).. - a'moc2lhc).. 

'" - amoc2lhe).. - 0.' Elhe).. 
= 

n' -m 

, aE a'mOc2 
n=he)..+ he).. -, 

with (17) 

As in the case of a pure Coulomb potential, this is the 
equation for determining the energy eigenvalues. Only for 
n' = 0, 1, 2, ... do the resulting confluent hypergeometric 
functions for the wave functions degenerate to polynomi
als, and we get standing waves. 

Defining 

n = n' + j + ! = 1, 2, 3, ... , 

we get 

aE+a'mo~ . 1 
(möc4 - E2)1/2 =n-J-'2+' , (18) 

which leads to 

[ 0.2 + (n - j - ~ + , t] E2 + 20.0.' moc2 E 

2 4 ( . 1 )2 ,2 2 4 = moc n - J - ~ + , - 0. moc 

or 

2 2aa'mo~ E 
E + 2 

0.2 + (n- j -!+,) 
,2 ( . 1 )2 

0. - n-J-'1+' 
+m2c4 =0 . 

o 0.,2 + (n _ j _ ! + ,)2 (19) 

Finally we obtain the energy eigenvalue 

(20) 
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Let us now consider several special cases: 

1) 

0. = 0 , , = J ",2 + 0.,2, 

Obviously there exist two branches of solutions in the 
bound region: the solutions for positive and negative ener
gies exhibit identical behaviour, which reflects the fact that 
the scalar interaction does not distinguish between positive 
and negative charges. The order of the levels is striking: 
ls1/2, 2P3/2, 2s1/2 and 2Pl/2, 3S1/2, and so on. For 0.' - 00, 

E approaches the value E = 0 (see Fig.9.9 in Exercise 
9.2). 

States with negative energies correspond to anti-parti
cles. The particle and anti-particle states approach each 
other with increasing coupling constant, without touching. 
Critical behaviour, as in the case of the Coulomb potential, 
does not occur; the Dirac vacuum remains stable in the case 
of scalar potentials (see Exercise 9.2). 

2) 
0.' = 0 , , = J ",2 - 0.2 , 

E = "'Oe' [1+ (n-j~~+7)' f' 
We have here to choose the positive square root, because 
in the case of very weak fields the electron states dive 
from the upper continuum into the region of bound states. 
Furthermore the negative square root yields a contradiction 
to (18). The obtained result is, of course, identical with 
Sommerfeld's fine-structure formula (see Exercises 9.6 and 
9.7). 

3)0.=0.'. 

This yields , = 1"'1 and n - j - ! +, = n. 

2{ _0.2 
E = moc 2 2 ± 

0. +n 

2{ _0.2 
= moc 2 2 ± 

0. +n 



The negative sign would seem to yield a solution E2 = 
-mac?, and the large and the small component in the po
tential tenn of the Hamiltonian decouple. However, this is 
an invalid solution, because E = -moc? contradicts (18). 
For the positive sign, it follows that 

2{ 20:2 } E = moe 1 - 2 2 
0: + n 

For 0: _ 00, E approaches the value -moc? asymptoti
cally, but the state never dives into the negative energy 
continuum. For n = 1 and 0: = 1 the energy becomes zero. 

EXAMPLE ............................ . 

9.9 Stationary Continuum States of a Dirac Particle 
in a Coulomb Field 

Again we start with the coupled radial differential equa
tions for F and G: 

dG=_!5:. G +[E+moc? +ZO:]F , 
dr r lie r 

dF,,; [E - moe2 zo:] G -=-F+ +-, 
dr r lie r 

(1) 

and peIfonn the substitution x = 2ipr, where 

[E2 _ (moe2)2]1!2 . 
p = = 1..\ . 

lie 
(2) 

With dx/dr = 2ip followed by the division by 2ip, one gets 

dG = _!5:.G + [E ~ moc? + zo:] F, 
dx x 21plie x 

dF =+!5:.F- [E-moe2 +ZO:]G 
dx x 2iplie x 

For Fand G we make the following ansatz: 

a) for positive energies E > moc?: 

G = JE + m oc?(1)1 + 1>2) , 

F = iV E - m0c2(1)1 -1>2) , 

and b) for negative energies E< - moe2: 

(3) 

(4) 

G = V -E - moe2(1)1 + 1>2) , 

F = -iV -E + m0c2(1)1 -1>2) (5) 

Inserting (4) into (3) and dividing by JE + moe2 and 
iJE - moe2, respectively, yields 

d1>1 d1>2 -+-
dx dx 

,,; 
= --(1)1 + 1>2) 

x 

+ [E ~ moe2 + zo:] iJE - moe2 (1)1 -1>2) , 
21plie x JE + m oc2 

dx dx 
,,; 

= -(1)1 - 1>2) 
x 

_ [E ~ moc? + zo:] JE + moe2 (1)1 + 1>2) . (6) 
21plie x i V E - moe2 

Analogously, inserting equation (5) into (3) and divid
ing by J -E - moc2 and -iJ -E + moc2, respectively, 
yields 

d1>1 d1>2 -+-
dx dx 

,,; 
= --(1)1 + 1>2) 

x 

+ [E~moe2 + zo:] (-i)J-E+moC2 (1)1 -1>2) 
21plie x J - E - m oc2 

Let us now consider the factors on the rhs of Eqs (6): 

[E + moe2 + zo:] i(E - moc?) 
2iplie x liep 

i(lie)2p2 Zo: iE iZo:moc? 
= + - - - --:--=--

2ir(lie)2 x liep xliep 
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_[E-mo~ +za] (E+mo?) 
2iplie x iliep 

_(lie)2p2 Za E Zamo? 
= --------=~ 

2i2p2(lie)2 x iliep iliep 
(8) 

Adding the Eqs. (6) and division by 2 yields 

d<Pl KA..I A.. iZaE A.. iZamo~ A.. - = --'1'2+-'1'1 +--'1'1 + '1'2 
dx x 2 liepx xliep 

(9a) 

Similarly, by subtracting Eqs. (6) from each other and di
viding by 2 we get 

d<P2 _ ", A.. 1 A.. iZamoe2 iZaE A.. 
- - --'1'1 - -'1'2 - <PI - --'1'2 , (9b) 
dx x 2 liepx liepx 

or together: 

d<Pl (1 iZaE) (", iZamo~) - = - + -- <PI + - - + <P2 
dx 2 liepx x xliep 

d<P2 _ ( ", iZamoe2) 
dx - - -; - liepx <PI 

+ (-& - i~::)<P2 . 

The factors on the rhs of Eqs. (7) yields 

[E+moe2 + za] (-ih/E2-m5e4 

2iplie x -E - mocZ 
1 Za( -i)liep = - + ---,--'----'---'~ 
2 -(E + moe2)x 

[E - mo~ za] JE2 - mfic4 
2iplie + -;- i( - E + mocZ) 

1 Zaliep = - + --..,...---=---::-:-
2 x(-i)(E - mocZ) 

(10) 

(11) 

Addition of Eqs. (7) followed by division by 2 leads to 

#1 ", 1 
dx = --;<P2 + 2<Pl 

1 [ iZaliep Zaliep ] 
+2 (E + mocZ) x + x(-i)(E-mocZ) <PI 

1 [ -Za(-i)liep Zaliep ] 
+ 2 -(E + moc2)x + x(-i)(E - moe2) <P2 
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", 1 
= --<P2 + -<PI 

x 2 

1 [Zaliep(E - mo?) + Zaliep(E + mo~)] 
+ - <PI 

2 (-i)x(E2 - mfie4) 

1 [-Zaliep(E - moe2) + Zaliep(E + moe2)] 
+ 2 -ix(E2 _ mfic4) <P2 

", 1 iZaE iZamoe2 
= --<P2 + -<PI + --<PI + <P2 

x 2 xliep xliep 
(12) 

and analogously, the difference of Eqs. (7) yields 

d<P2 _ ", A.. 1 A.. iZamoe2 A.. iZaE 
- - --'1'1 - -'1'2 - '1'1 - --<P2 
dx x 2 liepx liepx 

. (13) 

Comparison of (12) and (13) with the system (10) shows 
that both systems of differential equations are identical, and 
that for positive and negative energies we have to solve the 
same system of differential equations. 

Now we consider the complex conjugate of the Eqs. 
(10) (x is purely imaginary): 

d<Pi = _(~ + iZaE)<p* _ (~+ iZamoe2)<p* 
dx 2 liepx 1 x xliep 2 

d<P2 = _ (~ _ iZamoe2) <p* + (~+ iZaE) <p*. (14) 
dx x liepx 1 2 liepx 2 

Equations (14) are identical to (10) if we set 

(15) 

This is the necessary condition for G and F to be real
valued functions and thus to describe standing waves at 
infinity. We now eliminate <P2 from the system of Eqs. 
(10) to give: 

<P2 = (_ ~ + iZamo~)-1 d<Pl 
x xliep dx 

_ (~+ iZaE)<pl (_ ~ + iZamo~)-1 
2 liepx x xliep 

liepx d<Pl = -----'=----...,.. 
-",liep + iZamoe2 dx (16) 

( 1 iZaE) liepx A.. 
- -+-- '1'1 

2 liepx -",liep + iZamocZ 

liepx d<Pl = -----,;---
iZ amoe2 - ",liep dx 

1 liepx A.. iZaE 
- - '1'1 - <PI 

2 iZamocZ - Kliep iZamoe2 - Kliep 



and calculate its derivative 

d<P2 
dx 

ncp d<PI ncpx d2<pI = -+ --
iZ amoc2 - Kncp dx iZ amoc2 - Kncp dx2 

_ ~ ncp <PI 
2 iZamoc2 - Kncp 
1 ncpx d<PI 

- "2 iZamoc2 - Kncp dx 

iZaE d<PI 
·z 2 n -d [see Eq. (13)] 
1 amoc - 11, cp x 

= _(KncP+izamo~)<pI _ (~+ iZaE) 
ncpx 2 ncpx 

x ( ncpx (d<PI - ~<PI) 
iZ amoc2 - Kncp dx 2 

_ iZaE <PI) 
iZamoc2 - Kncp 

(17) 

This yields 

ncpx d2<pI ncp - iZaE d<PI ---=------ -- + -
iZamoc2 - Kncp dx2 iZamoc2 - Kncp dx 

iZaE #1 
+ -

iZ amoc2 - K,ncp dx 

1 ncp A.. K, A.. iZamoc2 A.. 
-- '1'1 + -'1'1 + '1'1 

2 iZamoc2 - Kncp x ncpx 

iZaE <P 
2(iZamoc2 - K,ncp) 1 

iZaE <P 
2(iZamoc2 - Kncp) 1 

(ZaE)2 A.. 
+ '1'1 

ncpx (iZ amoc2 - K,ncp) 

-~ ncpx <PI = 0 (18) 
4 iZamoc2 - K,ncp 

To summarize: 

d2<pI 1 d<PI 1 K,(iZamo? - Kncp) 
-- + - - - -<PI + <PI 
dx2 x dx 2x x ncpx 

iZamo~(iZamo~ - K,ncp) iZaE A.. 
+ <PI - --'1'1 

(ncpx'j 2ncpx 

- iZaE <PI + (ZaE)2 <PI - ~<PI = 0 (19) 
2ncpx (ncpx)2 4 

or 

d2<pI + ~ d<PI _ ~<PI + iZamoc2K <PI _ K,2 <PI 
dx2 x dx 2x x ncpx2 x2 

1 (iZamo~i iZamo~K,ncp A.. 

-4'<PI + (ncpx'j - (ncpx)2 '1'1 

iZaE A.. (ZaE)2 A.. - 0 
---'1'1 + '1'1-

ncpx (ncpx)2 ' 
(20) 

and finally 

d2 <PI 1 d<PI 1 1 K,2 
dx2 +:; dx - 4"<PI - 2x <PI - x2 <PI 

(Za)2 A.. iZaE A.. - 0 +--'1'1 - --'1'1 -
x2 ncpx 

(21) 

Rewriting (21) leads to 

d2~1 + ~ d<PI _ [~+ (~+ iZaE) ~ + ~] <PI = 0 , 
dx x dx 4 2 ncp x x (22) 

where , .. ? = 11,2 - (Z a)2. It is sufficient to know <PI (x); then 
<P2(X) results from (15). To solve the differential equation 
(22) we substitute 

W = XI12 <PI , (23) 

and a second-order differential equation for <PI results: 

~ [x- I12dW _ ~x-312W] + ~ [x- I12dW _ ~x-312W] 
dx dx 2 x dx 2 

_ [~+ (~+ iZaE) ~ + , .. ?] x-l12W = 0 
4 2 ncp x x2 

Therefore, 

_~x-312dW +x_112d2W +!x-512W _ ~x-312dW 
2 dx dx2 4 2 dx 

-312 dW 1 -512W +x - --x 
dx 2 

_[~+(~+izaE)~+ '''?]x l12W=O , 
4 2 ncp x x2 

so that the final results reads 

d2W _ [~+ (~ + iZaE) 2. + .-.? - 1/4] W(x) = 0 (24) 
dx2 4 2 ncp x x2 

The regular solution (at x = 0) of the second-order differ
ential equation, in which there appears now no first order 
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derivative, is the Wittaker function lO 

w -(iy+l/2),"Y(X) = x "Y+1/2 e-x/2 F(, + 1 + iy, 2, + 1; x) , 

with 
(25) 

ZaE 
y = -- (26) 

liep 

Thus, [and with (23) and (2)], c/>1 becomes 

c/>1 = N(-y + iy)eil)(2pr)"Y e-ipr F(, + 1 + iy, 2, + 1; 2ipr) 

== N(-y+iy)eil)(2p)"Yc/>(r) , (27) 

where we have introduced the phase "I, which has to be 
adjusted to make h = c/>i valid. Now we rewrite the first 
equation of the system (10): With x = 2ipr and d/dr = 
2ipdldx then 

dc/>1 (. iZaE)"" ( K, iZamo~)"" - = Ip + -- '1'1 + - - + '1'2 . 
dr liepr r liepr 

(28) 

Inserting c/>1 of (27) into (28) yields 

N(, + iy) ei'1(2p)"Y d!~) 

= (iP + i:e:~)N(,+iy)eil)(2p)"Yc/>(r) 

( ·Z 2) K, 1 amoe . i * + --+ N(,-ly)e-'1(2p)"Yc/> (r) 
r liepr 

(29) 

Solving the equation with respect to eil) produces 

= ,+iy (_!5. + iZamoe2)-1 ~ dc/> 
, - iy r liepr c/>* dx 

, + iy (ip + iZ aE/liepr) c/> 

- , - iy (-K,/r + iZamoc2/liepr) c/>* 

,+ iy [ -rliep 1 dc/> 
= - , - iy - K,liep + iZ amoc2 c/>* dr 

iliep2r + iZaE c/> ] 
+ -

- K,liep + iZ amoc2 c/>* 
(30) 

Also 

10 See. e.g. M. Abramowitz, I.A. Stegun: Handbook 0/ Mathematical 
Functions (Dover, New York). 
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iliep2r + iZ aE 

-K,licp + iZamoc2 
liep(ipr + iZaE/liep) 

= -liep(K - iZamoc2/liep) 

-ip(r + ZaE)/licp2 
= 

= 

K - iZamoe2/liep 

-ipr(1 + ZaE/liep2r ) 

K, - iZamoe2/liep 

holds. Thus it follows that 

e-2i'1 = _ ,+iy r 
, - iy K - iymoe2/ E 

x [~ dc/> _ ip (1 + JL).t.] 
c/>* dr pr c/>* 

and in accordance with (27) we have 

c/>(r) = r"Y e-ipr F(, + 1 + iy, 2, + 1; 2ipr) 

(31) 

(32) 

(33) 

Hence we may apply the following relations for the con
fluent hypergeometrie function: 

d a 
-F(a, e; x) = -F(a+ 1, e+ 1; x) 
dx e 

a-e = --F(a, e + 1; x) + F(a, e; x) ,(34) 
e 

e-x/2 F(-y + 1 + iy, 2, + 1; x) 

= ex/2 F{f - iy, 2, + 1; - x) , (35) 

xF(a+ 1, e+ 1; x) = e[F(a, +1. c; x) - F(a, e; x)] (36) 

and obtain 

c/>* = r"Y eipr F(-y + 1 - iy, 2, + 1; - 2ipr) 

= r"Y e -ipr F(-y + iy, 2, + 1; 2ipr) (37) 

and 

~~ = r"Y e-ipr d~ F(, + 1 + iy, 2, + 1; 2ipr) 

+ F(, + 1 + iy, 2, + 1; 2ipr) e-ipr (Jr"Y- 1 - ipr"Y) 

_ "Y -ipr [, + 1 + iy - 2, - 1 
- r e 2, + 1 

x 2ipF(-y + 1 + iy, 2, + 2; 2ipr) 

+2ipF(, + 1 +iy, 2,+ 1; 2ipr)] 

+ F(, + 1 + iy, 2, + 1; 2ipr) e-ipr (,r "Y- 1 - ipr "Y) 



= -2,+iy r"Y2ipe-iprF(,+ 1 +iy, 2,+2; 2ipr) 
,+1 

+ F(, + 1 + iy, 2, + 1; 2ipr) 
x (ipr'Ye-ipr+,r"Y-Ie-ipr) 

= -,+iYr'Y- I e-ipr(2,+ 1) 
2,+ 1 

x [F(, + 1 + iy, 2, + 1; 2ipr) 

- F(, + iy, 2, + 1; 2ipr)] 

+F{f+ 1 +iy, 2,+ 1; 2ipr) 

x [ipr'Y e-ipr + ,r'Y- I e-ipr] 

= iyr'Y- I e-ipr F(, + 1 + iy, 2, + 1; 2ipr) 

- (-, +iy)r'Y- I e-ipr F{f + iy, 2, + 1; 2ipr) 

+ ipr'Y e-ipr F(, + 1 + iy, 2, + 1; 2ipr) 

= e-iprr"Y-I [(iy + ipr)F(, + 1 +iy, 2" + 1; 2ipr) 

- (-,+iy)F{f+iy, 2,,+ 1; 2ipr)] (38) 

Now we state that 

_r_ [dcjJ/dr - ip(1 + y/pr)cjJ] = 1 
,- iy cjJ* 

or 

[r~~ -ipr<t>-iycjJ] =cjJ*{f-iy) , 

which can indeed easily be proved: 

(iy + ipr)F(, + 1 + iy, 2" + 1; 2ipr) 

-( -, + iy)F{f + iy, 2" + 1; 2ipr) 

-(ipr + iy)F(" + 1 + iy, 2, + 1; 2ipr) 

(39) 

(40) 

=(,,-iy)F(,+iy,2,+1;2ipr) ,qed, (41) 

From the statement (39), the phase (32) follows as 

K, - iymoCl/E 
,,+iy 

(42) 

For the radial functions of equations (4) and (5) we may 
write 

G = CI N(2pr)'Y {(, + iy) -ipr+i1] 

x F(, + 1 + iy, 2, + 1; 2ipr) + c.c.} , 

F = iC2N(2pr)'Y {(, + iy)e-ipr+i1] 

x F(" + 1 + iy, 2, + 1; 2ipr) - c.c.} , (43) 

taking (27) and (15) into account, (by c.c. we mean here 
the complex conjugate) where 

for E>moc2 
(44) 

for E< - moc2 

for E>moc2 
(45) 

for E< - moCl 

Let us now determine the normalization factor N. We nor
malize the continuum wave functions with respect to the 
energy axis, i.e. to delta functions of energy: 

Furthermore, we assume that for r -+ 00 

G = ACI cos(pr + 8) , 

F = -AC2 sin(pr + 8) 

(46) 

(47) 

holds. We will discuss the proof of (47) later on. According 
to (4) and (15), for cjJI this means that 

cjJI = !Aexp[i(pr + 8)] 

Now we show that for 

1 
A=-

FP 

(48) 

(49) 

the normalization condition (46) is fulfilled. Indeed, for 
E > moCl it follows that 

x . / E' + moc2-1- [ei(Plr+6 /) + e-i(p1r+6/)] 

V 2# 
_ . / E - moc2-1- [ei(pr+6) _ e-i(Pr+6)] 

V 2..,ftP 

x J E' - moc2_ 1- [e i(Plr+61
) - e- i(p'r+61)]} 

2# 
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1 00 { 1 1 
= '2 J dr JE + moc2J E' + moc2 411" (Ppl)lf2 

-00 

x [ei(P+P')r+6+6' + e -i(p-p')r+6-6' 

+ ei(p' -p)r+6' -6 + e-i(P+P')r-6-6'] 

- JE - moc2 J E' - m oc2 4111" (p;)lf2 

x [ei(P+P')r+6+6' _ ei(p-p')r+6-6' 

_ ei(p' -p)r-6+6' + e -i(p+p')r-6-6'] } 

= 4 [ JE + moc2 J E' + moc24 (P;)1f2 

x [8(p - p') + 8(p - pI)] 

+ JE - mOc2 J E' - moc2~ (p;)lf2 [6(p - p') 

+ 8(p - pI)]] 

= ! [(E + mo~) 8(p _ p') + (E - mo~) 8(p _ pI)] 
2 p p 

= E 8(p _ ') = E 8(E - E') = E 8(E - E') 
p p p dp/dE p E/p 

= 6(E - E') , (50) 

where we have set 

p= JE2 -moc2 (51) 

The derivation of relation (50) is only valid in a strict 
sense if the phase 8 does not depend on r. Moreover, the 
following relations for the 8 function were used: 

00 

2~ J eikz dk = 8(x) , (52) 
-00 

8(-x) = 8(x) , (53) 

f(x)8(x - a) = f(a)8(x - a) , (54) 

[ I ] 1 I 
8 <p(x ) - <p(x) = Id<p(x)/dxI8(x - x) , (55) 
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8(x) = 0 for x > O. The result (50) is also valid for E< -
moc2. In order to describe the asymptotics of the functions 
(43), we apply the asymptotic behaviour of the conftuent 
hypergeometrie functions for r --+ 00: 

) r(c) a-c r 
F(a, c; r --+ F(a) r e . 

Thereby from (43) we obtain for r --+ 00 that 

G = C1N(2pr)"Y F(2, + 1) 

x [(' + iy) eiP~+if) (2ipr )iy-"Y + e.e.] 
F(,+1+1Y) 

F = iC2N(2pr)"Y F(2, + 1) 

[ (, + iy) eipr+if) (2' )iy-"Y ] 
xI') Ipr - c.c. r(, + +ly 

Now we perform some transformations: 

i-"Y=ez :::} z=-,ln(i) . 

(56) 

(57) 

For z = x + iy = r eiO , In z = In r + iB :::} In i = i ~ and it 
follows that 

Analogously one gets 

(2ipr)iY=e z =;. z =iyln(2ipr)=iy(lni+ln(2pr») 

= iyi~ + iy In(2pr) , 

i.e. 

(2ipr)iy = e-7ryf2 eiyln(2pr) . 

Furthermore, with r(z + 1) = zr(z) one calculates 

,+ iy 1 1 
r(, + 1 + iy) = F(, + iy) = IF(, + iy)leiargF(",(+iy) 

e-iarg r("Y+iy) 
= 

Ir{f+iy)1 

(58) 

(59) 

(60) 

With that the radial functions from (57) have the asymp
totie form (47). In doing so, one gets 

1 2N e-7ry/2 r(2, + 1) 
A = -- = ---:-~--,---,---'-Fr> Ir(, + iy)1 

(61) 

The normalization constant N is fixed by this equation. 
For a phase 8 we obtain 



c5=yln(2pr)-argF(,+iy)- 7r, +", 
2 

(62) 

This is the Coulomb phase, which is already known to us 
from the nonrelativistic problem. Thus, the final results for 
the wave function are 

G", = Cl(2pr)'Ye1l'Y/2IF{f+iy)1 
2 (7rp) 1/2 F(2, + I) 

X {e-ipr+i7)(, + iy)F(, + I +iy, 2,+ 1; 2ipr)+c.c.} 

F", = iC2(2pr)'Y e1l'y/2IF{f + iy)1 
2(7rp)1/2 F(2, + 1) 

x {e-ipr+i7)(f + iy)F{f + 1 + iy, 2, + 1; 2ipr) - c.c.} 

(63) 

We see that the ca1culation of the continuum wave function 
is a difficult task. Besides the partial waves we have dis
cussed here, one can also construct travelling wavesll . Let 
us merely remark that for the ca1culation of all scattering 
processes with heavier nuclei, and also for the calculation 
of quantum electrodynamic processes, the here-determined 
continuum waves represent the necessary and appropriate 
technical 1OOls. For the study of "new" quantum electrody
namic processes in the strong fields of heavy ion collisions, 
the continuum waves have even to be calculated for ex
tended nuclei. 

EXAMPLE ............................ .. 

9.10 Muonic Atoms 
A muon is a particle which has the same properties as the 
electron in almost every attribute, except that it is about 
207 times heavier than the electron, i.e. 

m" = 207 me 

(mec? = 0.511004 MeV, m"c? = 105.655 MeV). 

Since it also has spin ~ and negative charge (the anti
particle of the p,- is the p,+, which has positive charge), 
it also obeys the Dirac equation. Some effects, which play 
only a minor role for the electron in usual atoms, become 
important for the p,- when it "circles" around the nucleus 
forming a muonic atom. These effects are linked to the 
large mass of the muon, which implies that the Bohr radius 

11 For a detailed discussion of this calculation, see M.E. Rose: Rela
tivistic Electron Theory (Wiley, New York, London) 

of the p, - is sm aller than that of the electron by a factor 
of 
me 1 

(1) -=-m" 207 

Thereby all the effects which are connected with the exten
sion of the nucleus (modified Coulomb potential at sm aller 
distances, quadrupole interaction, etc.) are more important 
in the case of the muon than for the electron. Some of 
these effects we will briefly explain in the following. Be
fore that, though, a brief abstract of the formation and the 
most important physical processes involved in the creation 
of muonic atoms seems appropriate. 

Production 0/ Muonic Atoms. Muons are created by 
performing inelastic scattering experiments of high-energy 
protons with protons (hydrogen). There, pions are pro
duced according to the reactions: 

{ -P+P+7r- +7r+ ... 
p+p +' 

-p+n+7r + ... 
(2) 

The pions are separated from the beam with magnetic 
fields. They decay into muons within about 10-8 s due 
to the weak interaction: 

7r- - p,- + v" (3) 

The p, - produced in this way are now decelerated; then, 
the slow p,- are bombarded onto ordinary electronic atoms, 
e.g. Pb. Through the interaction of the p,- with the elec
trons, some electrons will be knocked out of the atom, 
the p, - will be further decelerated and finally captured 
by the nucleus. The "capture orbit" of a muon is one of 
the outer orbits with principal quantum number n ~ 14. 
Such a muonic atom (with one muon and still many elec
trons) is then in a highly excited state. In the first step, the 
de-excitation takes place via transitions within the outer 
shells in which the muon transfers energy to further elec
trons, which are consequently emitted (Auger emission). 
The transitions between inner muonic atom shells result 
in, emission, which can be observed and measured (see 
Fig.9.14). 
We now discuss a few remarkable differences between 
muonic atoms and electronic atoms. 

a) Recoil Effects. Since, in comparison to the muon, 
the nucleus does not have infinitely high mass, both parti
cles move around a common centre of mass, which is not 
in the centre of the nucleus. For the Schrödinger equation 
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Fig. 9.14. lllustration of the inner J.l orbits around an atomic nucleus. The 
infiuence of the electrons, which are positioned far out, is schematically 
indicated by a cloud 

the eentre-of-mass motion ean, as in classical meehanics, 
easily be separated. Then the relative motion is simply de
seribed by a one-particle equation with the redueed mass 

/-LJ.l' 

mJ.l • Mnucleus 
/-LI' = 

mJ.l + Mnucleus 
(4) 

Here mJ.' is the mass of the muon. In the ease of the Dirac 
equation, this separation does not work, because: 

1) A satisfying two-body Dirae equation12 does not exist. 
2) The eentre-of-mass system ean no longer be defined 
geometrieally (as in classical mechanics), but only dynam
ically; namely as a Lorentz system, in whieh the sum of 
the momenta of all the involved particles vanishes, i.e. 
E;!,1 Pv = O. In an approximation one ean manage the 
problem by assigning the above-mentioned reduced mass 
/-LI' to the muon in the Dirae equation. The binding en
ergies of the muons are eonsiderably inftueneed by the 
thus (approximately) eonsidered recoil effect. In view of 
the experimental precision of LlE/E ~ 10-4 _10-5, there 
appears no diffieulty in verifying these effects. 

b) Retardation Effects. If one eonsiders the interae
tion between the nucleus and the muon in the form of a 
statie Coulomb potential in the Dirae equation, one thereby 

12 Recently a relativistic many-body mechanics has been p-oposed by 
F. Rohrlich [see Annals of Physics 117, 292 (1979)]. It remains, though, 
to be seen if this theory can be quantized in a satisfactory way. We refer 
also to the Bethe-Salpeter equation, which is discussed in Vol. 4 of this 
series: Quantum ElectrodyNJmics (Springer, Berlin, Heidelberg), to be 
published. 
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performs an external field approximation. The interaetion 
within this approximation takes place without time delay; 
the effects of retardation which are due to the recoil motion 
are neglected. If the velocity of the muon in the inner shells 
of heavy nuclei becomes eomparable to velocity of light c, 
the retardational effects should become large and then also 
the previously mentioned "redueed mass approximation" 
turns out to be insufficient. In this ease it is necessary to 
eonsider a two-body equation derived from the quantized 
theory (field theory), the so-eal1ed Bethe-Salpeter equation. 
Sinee these effeets are just near to the edge of the maximal 
precision of present experiments, we will not diseuss them 
in this eontext any further. 

e) Screening by Electrons. Though the Bohr radius of 
the many electrons in the atom is mueh larger than the 
one of the muon, the tails of the electrons' wave functions 
reach into the inner region (see Fig.9.15). 

Fig.9.15. Qualitative picture of the charge distribution of a nucleus ep(r) 
with half-value radius c and surface thickness t. The charge distributions 
of the muOll el' and the electrons ee are multiplied by r2• It can be 
recognized that the muon stays partly in the interior of the nucleus and 
the electrons stay partly within the muonic orbit. Note the logarithmic r 
scale! 

Thereby the electrons cause a screening potential for 
the muons which is not negligible. For symmetrie charge 
distributions ee(r) it can easily be calculated that 

"screening (r ) 

{
Ir <Xl } = 47l'e2 ;: f ee(r')r,2 dr' + [ ee(r')r' dr' (5) 

Here 

N 

ee(r) = L: 1fJi'l/Jj(r) (6) 
;=1 

is the charge density of the N electrons still bound within 
the atom, 1fJi being their wave function. For more precise 



calculations one even has to determine the wave function 
of the muon and those of the electrons self-consistently. 
As a typical case for the screening of the muon by the 
electrons, we consider the 5g - 4f transition in muonic 
lead, whose transition energy amounts to LlE '" 400 ke V. 
Due to the electron screening, the single muon levels will 
be less bound by an energy of about 17keV. Calculating 
the transition energy, the effect of screening then reduces 
to a few eV, because both levels are shifted in the same 
direction (to weaker binding). 

d) Vacuum Polarisation, Self-energy anti Anomalous 
Magnetic Moment. In Chap. 1213 we wiIllearn about field
theoretical effects, which cause small, but measurable, de
viations from the Coulomb interaction of the electrons or 
muons with the nucleus. One has to consider the effect 
of vacuum polarization, the self-energy and the anomalous 
magnetic moment. The vacuum polarization describes the 
creation virtual electron-positron pairs in a strong electro
magnetic fields. The virtual electron-positron pairs form a 
cloud of dipoles, leading to a modification of the Coulomb 
potential (see Fig.9.16). 

.. 

Fig.9.16. llIustration of the vacuum polarization as a "dipole cloud" in 
the electric field of the nucleus 

The properties of the vacuum are similar to a dielec
tric medium. The dominant part of the vacuum polarization 
potential is the so-called Uehling potential given by 

00 

2 40: Ae J ' Vvp(r) = - e 3""2 g(r) 
o 

x [Zl(lr-r'I)-Zl(r+r')]dr' , (7) 

where the structure function is 

13 In particular this is discussed (with more precise calculations) in 
Vol. 4 of this series: Quantum Electrodynmnics (Springer, Berlin, Heidel
berg), to be published. 

Z,(r) = f ex+ ~/~} 
( 1) (e - 1)1/2 1 

X 1 + 2e e2 Zde, (8) 

with Ae = 386.1592fm being the Compton wavelength of 
the electron. For r > Ae, Le. in the region where mainly 
atomic electrons are present, the vacuum polarization po
tential falls off exponentially. Therefore very heavy parti
cles, like the muons (and pions), whose probability is large 
in the region Rnucleus < r < Ae, are particularly suitable for 
examining the vacuum polarization potential. Nowadays 
the precision of experiments with muonic atoms is so ac
curate that processes of higher order than those in (7) and 
(8) also have to be considered. The self-energy describes 
the interaction of one particle with itself by emission and 
reabsorbtion of a photon (see Fig.9.17). There is a sim
ilar cause for the so-called anomalous magnetic moment, 
whose contribution to the energy is illustrated by the graph 
in Fig. 9.17. Here we only note that the self-energy and the 
anomalous magnetic moment are of the order 11m. There
fore they are more important in the case of electrons than 
for muons. In view of the present experimental accuracy 
the latter only playa minor role . 

(a) 

Fig.9.17. (a) Self-energy diagrarn, (b) anomalous magnetic moment 

e) Nuclear Deformation. Until now we have assumed that 
nuclei have a spherical symmetric charge distribution, which 
may be weIl described by means of a two-parameter charge 
distribution with half-density radius c and surface thickness 
t as parameters. The most common one is the so-caIled 
Fermi-distribution, which is given by 

L>o 
g = 1 + e(r-c)/t (9) 

The half-density radius c and the surface thickness t 
are free parameters, which are determined from fits to ex-
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perimental cross-sections of fast electrons. Another method 
for their determination is the following: When measuring 
the transition energies of various 'Y transitions in a muonic 
atom, accurate values for c and t can be determined by 
means of so-called c - t diagrams. In other words: The 
transition energies of the muonic atom depend on the pa
rameters c and t of the nuclear charge distribution (9). 
However, many nuclei show deviations from the spherical 
shape. For this reason one has to expand the nuclear charge 
distribution into multipole moments: 

e(r) = eo(r) + L: elm(r)Yim(8, v:;) 
Im 

(10) 

In most cases nuclei are axially symmetrie, but de
formed in a cigar-like manner, i.e. they exhibit a prolate 
deformation. Then (10) reduces to 

(11) 

where e2 == e20. The second term describes the quadrupole 
deformation. Accordingly, the quadrupole moment of the 
nucleus is defined as 

Qo = J e(r)r2Y20 dV = 2f!f.7 f>2(r)r4 dr. (12) 
o 

Not only the absolute values, but also signs of these 
quadrupole moments can be determined from the pro
nounced hyperfine structure of the muonic atoms. Hyper
fine structure means observable level shifts, additional to 
the I . 8 splitting (fine structure). 

In order to reproduce transition energies, e.g., in a 
muonic uranium atom one introduces even four-parametric 
charge distributions, like 

e(r, c, t, ß, 'Y) 

[ ( r - c(1 + ßY20)]-1 
= eo 1 + exp 4 In 3 t(1 + ß'Y Y20 (13) 

In comparison to (9) the half-value radius and the 
surface thickness are now treated as angular-dependent 
quantities, impIying that the density of the "atmosphere" 
at the tip of the "nuclear cigar" is different from that on its 
short axis. A typical spectrum of a heavy muonic atom is 
sketched for uranium in Fig. 9.18. Furthermore it illustrates 
the difference between the solutions for point-like and ex
tended nuclei, and the different effects discussed above are 
indicated as far as their order of magnitude allow. 

196 

E [MeV] 

0 ~ 

--'-3d3f2 _'_3d3/2 

-5 __ ZP3f2 
--ZPIf2 --ZP3f2 

--ZPIf2 

-10 

rrz:r:II1I. I s 1f2 

(a) (b) 

Fig. 9.18a, b. Binding energies of muons in a uranium atom. (a) The more 
realistic spectrum with extended nucleus. The hyperfine splitting due to 
the quadrupole moments of the uranium nucleus is indicated for the 18 
level. (b) The same spectrum for a point-like U nucleus. The 181f2 state 
lies at -Z7.35 MeV, i.e. outside the diagram 

f) Nuclear Polarization. Until now the nucleus has 
been assumed to be static. This implies that the nucleus will 
not be inftuenced by the presence of the muon. However, 
the nucleus behaves like a dielectric medium and thus it is 
polarizable. It can be excited by the muon and its charge 
distribution can be slightly changed. We write the total 
Hamiltonian 

A A , A A, (14) H = Hnucleus(r ) + Hmeson(r) + Hint(r, r) , 

where flint = -ZeZ/lr - r'l describes the electromagnetic 
interaction between nucleus and meson. One performs a 
multipole expansion 

flint = - ~ [;r::] :~l Yim(fl')lI:n(flmeson) (15) 

and treats flint in higher-order perturbation theory.14 
Let us note a typical value for the contribution of nu

clear polarization effects. In muonic Pb the transition from 
2Pl(2 to 181(2 has a transition energy of LlE", 10 MeV, 
whereas the contribution due to nuclear polarization LlEnp 
is of the order of 10keV. 

14 We refer 10 the literature: See, e.g., I.M. Eisenberg, W. Greiner: 
Nuclear Theory, VoI.lI: Excitation Mechanisms 0/ the Nucleus (North 
Holland, Amsterdam, third edition 1988). 



g) Isomerie Shift. The ground and excited states of a 
nucleus do not need to have equal charge radii. If a nu
cleus has been excited, then usually the average quadratic 
nuclear radius changes by L1r2• Such an isomeric shift 
gives raise to a level shift in muonic atoms and can be 
deduced (measured) from studying the level structure. For 
the first excited nuclear state one finds typical changes of 
the radius of the order of 

L1(r2 ) '" 10-4 10 2 x 10-3 
(r2) 

Such an excited state may be formed during the cas
cade of a muon within the atom. The mesonic transition 
energy is not always emitted by radiation of a real photon, 
but can also be absorbed directly in the nucleus. Accord
ingly, the nucleus will be excited into higher states. Dur
ing the subsequent transitions the meson feels a different 
charge radius.1s 

h) Polarization 0/ Muons and Pions. In our previous 
considerations the muon and pion have been considered as 
structureless particles, disregarding their internal degrees 
of freedom. However, one knows that the pion has acharge 
radius of rpion S:' 0.8 fm. Moreover, considering that a 
pion consists of two quarks, it becomes obvious that also 
the pion can be polarized in the presence of the strong field 
of a nucleus. However, the corresponding energy shifts turn 
out to be just too small for an experimental verification at 
the present time. Concerning the muon, which belongs 10 

the lepton family, an "extension" (a substructure) is still 
unknown, and up to now leptons (electrons, muons, tauons) 
also seem to be point-like particles. 

EXERCISE ______________ _ 

9.11 Dirac Equation for the Interaction Between 
a Nuclear and an External Field Taking 
Acount of the Anomalous Magnetic Moment 

The Dirac equation for a nucleon interacting with an ex
ternal electromagnetic field contains an additional term de
scribing the interaction between the anomalous magnetic 
moment of the nucleon with the electromagnetic field: 

IS See: JM. Eisenberg, W. Greiner: Nuclear Theory, Vol./: Nuclear 
Models (North Holland, Amsterdam, third edition 1987) p.73. 

where j = p and ep = lei for the proton and j = n and 
en = 0 for the neutron, respectively. 

Problem. a) Show that the additional term does not violate 
the relativistic invariance of the Dirac equation. 

b) Show that this term satisfies the hermiticity condi-
tion 

( en A FP.V)t K en A Fp.v 
1'0 Kj 4Mjc Up.v 1'0 = 4Mjc Up.v . 

Remembering that when turning from the matrlces a, 
13 to the gamma matrlces in the Dirac equation, a term 1'0 
has been factorized out; see (3.8). 

c) Show that the choice Kp = 1.79 and Kn = -1.91 
corresponds to the experlmentally observed magnetic mo
ment. 

Solution. a) Relativistic invariance of the term a p.vFp.v 
as a contraction of two Lorentz tensors (covariants) is ob
viously manifest. 

b) Since ap.vFp.v represents a product of an operator 
ap'v with a real tensor Fp.v = (FP.V)* [see (1.15)], i.e. 

A Fp.v "" A Fp.v U p.v = L...J U p.v , 
p.,v 

with the field strength tensor Fp.v, it is sufficient 10 show 
that 

1'0aiv1'0 = ap'v 

holds. For this purpose we use the relation 1'6 = 1'0 and 

-yt = --y, and in shorthand notation we have 1't = 1'01'p.1'0. 
We explicitly derive 

1'0a iv 1'0 = 1'0 [& h p.1'v - 1'v1' p.) ] \0 

= -&1'0hht -1't1'iho 

i (2 2) = - '21'0 1'0 1'v 1'0 l' p.1'0 - 1'01' p.1'0 1'v1'0 1'0 

= -~(1'V1'p. -1'p.1'v) = ap'v , 

where 1'5 = TI has been used. 

c) First we rewrite the interaction term: 
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i J.lV i J.lV 
aJ.lvFJ.lv = 2'YJ.I'Yv F - 2'Yv'YJ.l F 

= ~'YJ.I'YvFJ.lV - ~'YJ.I'YvFVJ.I = i'YJ.I'YvFJ.lV 

where we have renamed the dummy indices, and the rela
tion FJ.lv = - FVJ.I has been used. By considering that 

Ei = pOi and B = (F23 , F 31, F 12 ) 

and 'Ykli = iEj, with 

as weH as 'Yk'YO = ak, the sum reads explicitly: 

·k k"..Jlk 
L 'YJ.I'YvFJ.lV = L 'Yjlk FJ + L 'Yk'YjF J - 'YO'Ykl'-
J.lV j < k k <j 

- 'YklOFkO + 'YO'YOpOO . 

In view of the relation pOO = 0, 'Yjlk = -'Yklj and Fjk = 

- Fkj, the sum becomes 

We obtain 

12 A 23 A 

'Y1'Y2 F = iL'3 B3 ,'Y2'Y3F = iL'I B l 
31 A 13 

'Y3'YI F = iL'2B2 = 'Y1'Y3 F , 

and thus 

L 'Yjlk Fjk = iE . B and L 'YjloFjO = -&. . E , 
j<k j 

which yields 

LaJ.lvFJ.lV = 2i{iE. B+ &.. E} 
J.I,V 

Instead of the original Dirac equation we obtain 

(inc, - e~ A- Mj c2) 'l/J(x) 

= Kj~{iJ. B - i&.· E}'l/J(x) 
2Mjc 

(1) 

The Ihs exclusively describes the coupling with the elec
tromagnetic field. We know that this part of the equation 
leads to a nonvanishing magnetic moment if ej:#O (i.e. 
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only for a proton), namely 

en 
J.l.p = J.l.B = -- and J.l.n = 0 

2Mpc 

In the nonrelativistic limit the rhs of (1) takes the form 

K en {A B . V A E} "-- U· -l-U· , 
J2M·c c J 

since 

A (0-E= o ~) and 
A VA 
a'" -U 

c 

We can neglect the second term, because in the non
relativistic case v/c = ~ 1 it is small compared with the 
first term, which just corresponds to the interaction of the 
magnetic moment with the magnetic field. Thus, we obtain 
the total magnetic moment 

eh 
J.l.p = (1 + Kp) 2Mpc 

for the proton, i.e. J.l.p = 2.79 J.l.B, with K p = 1.79 and 

en 
"J.l.n = Kn-- = -1.91 J.l.B 

2Mnc 

for the neutron. 

EXERCISE ______________ _ 

9.12 The Impossibility of Additional Solutions 
for the Dirac-Coulomb Problem Beyond Z = 118 

Motivation: For an electron coupled to a point particle with 
charge Z we can rewrite the Dirac equation into the two 
coupled equations 

G' + KG _ (E+mo~ + za) F=O 
r nc r 

F' _ KF + (E - moc2 + za) G = 0 . 
r nc r 

(1) 

To study the asymptotic behavior of the solutions for r -+ 0 
we have to take into account only the derivative terms and 
the terms containing a factor l/r, whereas we can neglect 
the terms proportional to m and E. The resulting equations 
can be solved with the ansatz F(r) = For)', G(r) = Gor)', 
yielding 



(1),+,)Go-ZaFo=O, 
ZaGo - (I>, - ,)Fo = 0 

This leads to the condition 

Fo Za 1>,+, 
Go = I>, - , = Za 

which requires 

(2) 

(3) 

(4) 

One of the two independent solutions is regular at the ori

gin, while the other diverges like r-hl If the charge Z 
is small, this divergence is so strong that the wave func
tion cannot be nonnalized and thus is to be rejected as 
a physical solution. However, for a sufficiently weak di
vergence the nonnalization integral f d3r(F2 + G2 ) is fi
nite. This happens in the case ,> - i, which means that 

Z a > J 1>,2 - ~. For s 1 and P 1 states (I>, = ± 1) the charge 
2 2 

has to exceed Z> Vi x 137 ~ 118. Under this condition 
it might appear that both types of solution of the Dirac 
equation are admissible since they both are nonnalizable. 
This would have drastic consequences because the rejec
tion of the irregular solution is essential for obtaining dis
crete energy eigenvalues. If both solutions were accept
able then there would exist a continuum of solutions for 
the following reason. For any given energy one can find a 
solution which is weIl behaved for r -t 00. For r -t 0, on 
the other hand, this solution contains admixtures behaving 
like r+l-yl and r-h,1 as weIl. For 1,1< 1: this cannot be 
accepted since the solution is no longer nonnalizable. Only 

for certain values of the energy does the component r-h'l 
vanish. These are the energy eigenvalues. For 111> i, on 

the other hand, any linear combination of r± bl leads to a 
solution nonnalizable at r -t O. For any given solution one 
only has 10 make sure that the wave function is nonnaliz
able also at r -t 00, which can be done for every energy. 

Are these solutions physically relevant? A static point 
charge represents a very singular object which we actually 
do not find in nature, since any particle of finite mass can
not be localized at a single point. Furthennore, only nu
clei (in fact superheavy nucleP6 have charges of the order 

Za ~ Vi, and these are clearly extended objects. Even 
if such a singular point source of such a high charge does 
not exist, it is still interesting to study the problem of an 

extended source in the limit that its extension gets smaller 
and smaller, either by shrinking the nuclear radius arti
ficially or by studying a hypothetical elementary particle 
of that charge in the limit that its mass goes to infinity 
and the particle is localized more and more. The following 
exercise gives some insight into the problem. 

Exercise: Study I>, = -1 states of Dirac electrons in the 

potential of a hollow sphere of charge Z a > Vi and ra
dius R and show that in the limit R -t 0 only the solution 

behaving like r+V1 -(Za)2 is recoveredY 

Solution: We proceed in the usual way. We solve the wave 
function for the inside and outside regions separately and 
then try to match the ratio F/G. In the outside region 
the differential equation contains the ordinary Coulomb 
potential. In the inside of a charged spherical shell the 
potential takes on the constant value Za/R, so that the 
differential equation becomes (I>, = -1): 

G' _ G _ (E+moc? + za) F=O , 
r nc R 

F' _ F + (E-moc2 + za) G=O 
r nc R 

(5) 

This is just the free Dirac equation for a particle with 
energy c: = E + ncZa/R. The general solution is given by 

F = k cos(kr + 8) - iSin(kr + 8) 

G = (~; + c:) sin(kr + 8) (6) 

with nck = Vc:2 - (moc2)2. Taking 8 = 0 this is the solu
tion found in (33), Exercise 9.5. The validity of the gen
eralization to 8:F 0 is easily checked by insertion into the 
differential equation. However, even without perfonning 
this calculation explicitly it is clear that the constant phase 
shift 8 can have no influence on the neutral cancellation of 
the sine or cosine tenns. 

In contrast to the Coulomb problem with Z> 118 tbe 
constant potential admits only one nonnalizable solution, 

16 See JM. Eisenberg, W. Greiner: Nuclear Theory, Vol. m: Micro
scopic theory of the nucJeus (North Holland, Amsterdam, third edition 
1990). 

17 This exercise has been worked out by M. Grabiak. 

199 



namely 8 = O. Thus we get 

~ I r=R,inside = mo~ + c (~ - k cot(k R) ) (7) 

Now we are interested in the limit R ~ O. In this limit m 
and E can be neglected against Z a/ R, so that we can set 
eine = k = Z a/ R, and (7) becomes 

F -1 
G -- Za +cot(Za) (8) 

Now we have to study the behaviour of the wave function 
in the outside region. For a given energy the wave func
tion will in general have admixtures behaving both like 
r+l-rl and r-I-rl for r ~ 0, but the latter will dominate its 
asymptotic behaviour. In this limit we can also neglect the 
mass as weIl as the energy. According to (3) the F/R ratio 
then reads 

1 + VI - (Za)2 

Za 
(9) 

in the limit R ~ O. Comparing (7) and (9), we see that the 
matching condition becomes 

1 + V(1 - (Za)2 1 
---'!'-';"'Z-a~~:"" = -Z-a - cot(Za) (10) 

in this limit. It is impossible to solve this equation, since 
for a< 1 the lhs is greater than l/Za, whereas the rhs is 
sm aller. We conclude that we cannot find a solution in the 
limit R ~ 0, i.e. if the potential approaches the potential 

of a point charge, if the component r-I-rl dominates the 
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behaviour of the wave function for small r. Only in the 
special-case limit where this component vanishes does (9) 
no longer hold and is it possible to get a solution. But this 
happens only if the energy approaches an energy eigen
value. Thus one retrieves the usual energy eigenvalues of 
the Dirac equation, whereas no new solutions are found 

The same result is found for a homogeneously charged 
sphere. The potential in the inside region is too small 10 

produce an F/G which could fulfil the matching condition. 
We can convince ourselves of this in the following way: 
we can ask which value of the potential is needed on the 
inside in order to fulfil the matching condition, assuming 
that there is a constant potential Vo on the inside which is 
not equal to Z a/ R. The ratio F/G in the outside region is at 
most 1, and matching is only possible if the potential in the 
inside is larger than 2.04/R (the solution for F/G = 1).18 

The fact that one can find solutions if the potential in 
the inside region is large enough is not surprising. Even 
without the l/r part on the outside one can get arbitrarily 
deeply bound states if only the strength of the potential is 
big enough. On the other hand, if one decreases the po
tential in the inside region, the energy of these solutions 
increases until they are finally turned into ordinary solu
tions of the l/r potential. Thus no new type of solution 
is found for the limiting case of a well-behaved potential 
approaching l/r variation. 

18 This solution also detennines the energy eigenvalues for the MIT 
bag - see Volumes 5 and 6 of this series. 



10. The Two-Centre Dirac Equation 

The description of one or more electrons in the field of two nuclei is one of the funda
mental problems in quantum mechanics. Among other things it contains the theoretical 
understanding of the phenomenon of chemical binding and thus it connects physics and 
chemistry. In 1927 W. Heitler and F. London1 showed for the first time the possibility of 
the existence of the H2 molecule. They used an approximation procedure and were able 
to calculate its physical properties (binding energy, binding length). 

Soon afterwards E. TellerZ (1930) and E.A. Hylleraas3 (1931) gave, independently 
of each other, methods for a mathematically exact solution of the nonrelativistic single
electron two-centre problem. Later, G. Jaff64 (1934) came up with a third solution. But 
the numerical evaluation of these procedures is very costly, so that the energies of the 
higher states can be calculated only with computers. Good nonrelativistic calculations in 
recent times - also including some deviations from the Coulomb potential - came from 
K. Helfrich and H. HartmannS (1968). 

Calculations for many-electron systems, similar to the Hartree-Fock model only be
came available in theearly 1970s, e.g. those by F.P. Larkins6 (1972). Here one uses a finite 
set of basis functions (one-, two-, or even three-centre functions), which are combined with 
the intention of finding the lowest total energy. In view of these difficulties, and the fact 
that experiments up to now were possible only in a small energy range (some eV up to a 
few keV), an extensive study of the corresponding relativistic equations did not take place. 
Solely S.K. Luke et al.7 have treated the relativistic corrections of the single-electron prob
lem in first-order perturbation theory in Za. However, especially from the experimental 
point of view, one urgently needs a solution of the two-centre Coulomb problem which is 
exact in all orders of Za. Heavy-ion accelerators allow highly charged nuclei to approach 
for a short time so closely that even the innermost electron shells belong to both nuclei fe-
and form molecular orbitals (cf. Fig.1O.1). .......-9-, ............... , 
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1 W. Heitler, F. London: Z. Phys. 44, 455 (1927). 

2 E. Teller: Z. Phys. 61, 458 (1930). 

3 F.A. Hylleraas: Z. Phys. 71, 739 (1931). 

4 G. JafI~: Z. Phys. 87, 535 (1934). 

5 K. Helfrich, H. Hartmarm: Theor. Chim. Acta 10, 406 (1968). 

6 F. Larldns: J. Phys. OS, 571 (1972). 

7 S.K. Luke et al.: J. Chern. Phys. SO, 1644 (1969). 

Fig.l0.1. Quasimolecular orbitals: The projectile ion rnoves along a 
curved trajectory. The individual atomic orbitals reappear when the col
liding iOTlS are separated enough (upper right). During the collision elec

trons (so-called 6 electrOTlS - marked by re - ) and X rays .".. are ernitted. 
The emission is caused by the varying rnolecular orbitals, which adjust 
themselves with respect to the varied intemuclear separation 
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Now we consider collisions of heavy ions with kinetic energies near the Coulomb 
barrier, so that both nuclei can just touch. An overlap of the involved nuclei and the related 
inelastic processes shall be excluded here. If both nuclei are very heavy, it is possible 10 

generate for a short period (r f'.; 10-17 s) superheavy quasirrwlecules with total charge 
Z = ZI + Z2, which are far above the end of the periodic system: 107 < ZI + Z2 ~ 190. 
For these systems the velocity of the heavy ions is about 1/10 the velocity of light, while 
the "velocity" of the electrons in the inner most states is near the velocity of light. This 
becomes obvious if we remember that for Zer f'.; 1 the binding energy of the 18 electrons 
becomes comparable with their rest mass. This means that the electrons of the inner shells 
during a heavy-ion collision have time enough 10 adjust with respect to the varying distance 
R between the two Coulomb centres. Thus the properties of the quasimolecular electronic 
orbitals are determined by the sum of the projectile charge Zp and the target charge Zt. 

If the distance R between both colliding ions becomes less than the radius of the 
K shell, we call the system a superheavy quasiawm. For a Pb-Pb collision this situation 
arises for R ~ 500 fm. Indueed by the varying Coulomb field during the eollision, the 
possibility is given that inner-shell ionization occurs by excitation of electrons into vacant 
higher bound states or by direct excitation into the continuum. The highly energetic parts 
of these final-state continuum electrons are called "delta rays" or "delta electrons", a 
term originating from when these radioactive rays were discovered: At that time, one 
bombarded different targets with protons and discovered a highly energetie component of 
radiation whieh could not be explained by the c1assical laws of eollisions. Therefore it 
was assumed that beside the known alpha, beta, and gamma rays, a new kind of radiation 
had been discovered; hence "delta rays". Nowadays it is well-known that the high-energy 
component of the momentum distribution of the bound electrons allows very mueh higher 
energy transfers that can be expected in accordance with the classical laws of collisions. 
Clearly, the mentioned momentum distribution of the quasimolecularly bound electrons 
depends on the distance between the colliding ions. 

These facts suggest the use of the measurement of delta electrons for the spectroscopy 
of electronic states in these superheavy quasimolecules. Further possibilities are given by 
the measurement of the decay of the electron-hole pair which has been created during 
the collision. Indeed, during the collision the so-called quasimolecular 'Y radiation will be 
emitted or - as long as the hole is filled a long time after the collision - the ordinary 
characteristic radiation of the single atoms can be measured. Some of these processes are 
illustrated in Fig. 10.1. Such spectroscopy allows the extension of the periodie system by 
a factor two with respect to the atomic number Z, at least as far as interior electronic 
shell structure is concerned. Furthermore, the search for the vacuum decay in supercritical 
fields (see, e.g. Exercises 9.5-9.7 and Chap. 12) necessitates the precise knowledge of 
the electronie structure in the course of a heavy-ion collision.8 Fundamental to all such 
investigations is the solution of the Dirac equation for two eharged eentres. Therefore 
the energies and the wave funetions of the electrons need to be determined for the given 
distanee R between the nuclei. 

In 1973, the two eentre Dirae equation was solved for the first time by Müller and 
Greiner.9 The solution was given in terms of prolate elliptic (spheroidal) coordinates e, 1], 

8 See Vol. 4 of this series W. Greiner, J. Reinhardt: Quantum Electrodynamics (Springer, Berlin, Heidelberg) 
to be published and especially W. Greiner, B. Müller, J. Rafelski: Quantum Electrodynamics of Strong Fields 
(Springer, Berlin, Heidelberg 1985). 

9 B. Müller, W. Greiner: Phys. Leu. 47B, 5 (1973); Z. Naturf. 318, 1 (1976). 
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4> with 

x = RJ(e -1)(1 -772) cos cp , 

y = RJ(e -1)(1 -772) sin cp , 

z = Re77 

defined in the domain 

(10.1) 

The problem is rotationally symmetrie round the z axis; thus the component J z of angular 
momentum is a good quantum number and the eigenfunction in the cp variable is easily 
separated. It is given by exp(imcp). However, the resulting differential equations in the 
variables e and 77 do not decouple. The differential equations were diagonalized in the 
so-called Hylleraas basis, which is essentially composed of Laguerre polynomials in e and 
Legendre polynomials in 77. 

Meanwhile two centre Hartree-Fock solutions were also obtained, by Fricke et al. IO 

(1975). Here, however, we restriet ourselves to the study of a very successful procedure 
by Müller et al. for the solution of the two-centre Dirac equation, which is essentially 
based on a multipole expansion of the two-centre potential. 

For that purpose let us consider again the general form of the Dirac equation in polar 
coordinates. Using the relation 

a x (b x c) = b(a . c) - c(a . b) 

we obtain 

(10.2) 

where er denotes the unit vector in the r direction. Using this, the V operator may be 
written as 

o i (er A) = er or - h. -; x L (10.3) 

where t = -in(r x V) is the orbital angular momentum operator. Hence it follows for 
the operator of the kinetic energy 

A A .1: A 0 1 A ( LA) ca· p = -l"Car - - -ca· er X 
8r r 

with or = & . er. Now we use 

(o. . A)(o. . B) = A . B + il; . (A X B) = (l; . A)(l; . B) 

and insert A = er and B = t, which gives 

10 B. Fricke, K. Rashid, P. Benoneini, A.C. Wahl: Phys. Rev. Len. 34, 243 (1975). 

(10.4) 

(10.5) 
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because 

er· L =0 , 

since er is orthogonal to L = r x p. We multiply by -1'5 from the left, where 

I ( 0 -llO) (10.7) 1'5 = -ll 

and remember that 

1; = -1'5& = -&1'5 ' & = -1'51; = -1;1'5 . 

Hence it results that 

i&.(er xL)=ar(1;·L) , 

and for the operator of kinetic energy 

A A ." A 8 . ar (~ LA) ca· p = -l"car - +lC- ~. 
8r r 

Now it is convenient to introduce the operator k, defined as 

and one obtains the stationary Dirac equation in polar coordinates: 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

(10.12) 

Let us analyze the properties of the spin-orbit operator k in more detail. First we show 
that it commutes with ß: 

because 

( 0- 0) (n 0) (0-o 0- 0 -ll = 0 and 

(no) (0- 0) (0-o -ll 0 0- = 0 

Furthennore we have 

and also 

[ß(1; . L), & . pL = ß(1; . L)(& . p) - (& . p)ß(1; . L) 

= ß(1; . L)(& . p) + ß(& . p)(1; . L) 
=ß[1;·L,&.p]+ . 
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(10.13) 

(10.14) 

(10.15) 



Now 

[E. t, &.. p1 = -/5 [t. p + p. t + iE· (t x p+ p x t)] 
t . p = (r x p) . p = 0 , 

p.t=O , 

and we calculate further that 

pz py pz 
= ez(Lypz - Lzpy) - ey(Lzpz - Lzpz) + ez(Lzpy - Lypz) , 

e z ey e z 
p x t = pz py pz 

Lz Ly Lz 

= ez(pyLz - pzLy) - ey(pzLz - pzLz) +ez(pzLy - pyLz) 

Summing, we obtain 

txp+pxt 
= ez(Lypz - pzLy - Lzpy + pyLz) - ey(Lzpz - pzLz - Lzpz + pzLz) 

(10.16) 

(10.17) 

+ ez (Lzpy - pyLz - Lypz + pzLy) . (10.18) 

Now we look at the first commutat~r of the ez component: 

[Ly, pzL = (r x p)ypz - p;(r x p)y 

By use of 

= -xpzpz + zpzpz + pzxpz - Pzzpz 
= zpzpz - Pzzpz . 

[Xi, PkL = i1ic5ik ' 

it follows that 

[Ly, pz L = zpzpz + i1i.Pz - zpzpz = i1i.Pz 

(10.19) 

In an analogous way the second commutator of the e z component is obtained: 

-[Lz, pyL = -{(r x p)zpy - py(r x p)z} 
= -Xpypy + ypzpy + pyXpy - pyypz 
= ypzpy - pyypz = ypzpy + i1i.Pz - ypypz = i1i.Pz 

In vector notation we can generally sum up and get 

t x p + p x t = 2i1i.p . 

Finally, for the commutator of k with the kinetic energy we obtain 

(10.20) 
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[K, c&· pL = 2licß(&· p) + ß(-iS)iE. (2ilicp) 
= lic(2ß(& . p) + 2ßiS(E . ß)) 
= lic(2ß(&· p) - 2ß(&· p)) = 0 , (10.21) 

i.e. K commutes with the Hamiltonian for free partic1es. The commutator of K and 3 can 
be obtained in a similar way, namely 

First we investigate the second commutator, obtaining 

[E . L, EL = (E . L)E - E(E . L) 
= (ExLx + EyLy + EzLz) (Ex, Ey, Ez) 
- (Ex, Ey, Ez)(ExLx + EyLy + EzLz) 

Now we use the assertion 

(10.22) 

(10.23) 

verifying this for the x component. (The proof for the other components proceeds analo
gously). Thus 

(EyLy + EzLz)Ex - Ex (EyLy + EzLz) = -iEzLy + iEyL - iEzLy +iEyLz 

On the other hand 

(10.24) 

holds, where we have used the following relations for the f; matrices: 

EyEx = -iEz , EzEx = iEy . 

Hence the relation (10.23) stated above results, and, furthermore, we suspect the validity 
of 

[E. L, LL = -ili(E x L) . 

By use of the commutation relations of angular momentum 

LyLx - LxLy = -iliLz , LzLx - LxLz = iliLy , 

the x component of the commutator is found to satisfy 

EyLyLx + EzLzLx - LxEyLy - LxEzLz = -iliEyLz + iliEzLy 

The x component of the vector product yields 

-ili(E x L)x = -ili(EyEz - EzLy) , 

so that in total we have 
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and finally we obtain 

[k, JL = 0 . (10.27) 

For k 2 it follows that 

k 2 = (E· t + lii = t 2 + iE· (E x t) + 21i,E· t + 1f 
A2 A A L2 

=L +1i,E·L+,. . (10.28) 

Now we denote the Dirac equation for the Coulomb potential of two centres of charge, 
Z 1 e and Z2 e, separated by the distance R, as 

(10.29) 

The magnetic quantum number J-L is the eigenvalue of the projection of the total angular 
momentum onto the axis connecting the two nuclei (z axis). The nuclei are assumed to 
be point-like, and at this stage a multipole expansion of the wave function suggests itself: 

4> (r) = '" 4> (r) = '" (. 9K.(r)xK../J ) 
/J ~ K../J ~ If (r)x-K. K. K. K../J 

where fK.(r) and 9K.(r) are the radial wave functions; '" was defined by 

{
I 

"'- -I- 1 

c . 1 1 lor J = - l 

for j = 1 +! 
and the spinor spherical harmonics are given by 

XK../J = L (/hlJ-L - m, m) Yi./J-m(t?, CP)xm 

m=±! 
Now we have the unity spinors Xm 

and the Clebsch-Gordan coefficients, which explicitly read 

j/m ! -! 
(/hlJ-L - m, m) = 1 +! JI;f~! JI;~~! 

1- ! -JI;~~! JI;f~! 
Next we apply various operators to the two spinors XK./J and get 

(10.30) 

(10.31) 

(10.32) 

(10.33) 
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er2 Xm 

JzXK..11 
A2 
J XK..11 
A2 
S XK..11 
A2 
L XK..11 

2t· SXK..11 

=3Xm , 

= nJ.lXK..11 ' 

= Jt j(j + I)XK..11 ' 

= Jt s(s + I)XK..11 = iJtXK..11 ' 

= Jt 1(1 + l)XK..11 ' 

= c:p - t 2 - S2)XK..11 

= Jt[j(j + 1) - 1(1 + 1) - S(S + 1)]XK.,11 

With ner . t = 2t . S, it follows that 

(er . t + n)XK..11 = n[j(j + 1) - 1(1 + 1) - S(S + 1) + 1 ]XK..11 

This relation can be evaluated in both cases of (10.31): 
a): 

I=j+i ' 

and b): 

I' . 1 =J - '1. ' 

with the result 

a): 

K = -I' - 1 = -j + i-I 

= - (j + i) = -I K I , 

j(j+l)-I(l+l)-s(s+I)+l = (I-i) (l+i) -I(l+1)-i+ 1 

= 12 - 1- - 12 - 1 + 1- = -I = -K , 

and b): 

j(j+l)-l'(l'+l)-s(s+I)+l = (I'+~) (I'+~) -1'(1'+1)+1-

= 21' - l' + i + 1- = l' + 1 = - K , 

so that generally 

(er . t + n)XK..11 = -nKXK..11 

(10.34) 

(10.35) 

(10.36) 

(10.37) 

holds. We now move on to investigate the multipole decomposition of the two-centre 
potential. It is generally known that 

1 1 --...,. = ---;:====== 
Ir - r'l Jr2 + r,2 - 2rr' cos , 

where , is the angle between r and r' and 

1 1 .,.---...,.=---;==========;: 
Ir - r'l ( )2 

r> 1 - 2~ cos , + ~ 
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1 1 
Ir +r'l 

with 

r< = min(lrl, Ir'!) , r> = max(lrl, Ir'!) 

Expansion of the root yields 

1 00 r ' I - 'I = L 1~1 P,(COS ,) 
r r 1=0 r> 

and correspondingly 

1 00 r ' I 'I = L( _1)' 1~1 P,(COS ,) 
r + r 1=0 r> 

with the Legendre polynomials 

Po(x) = 1 , 

Pl(X)=X, 

~(x) = i(3x2 - 1) , 

etc. 

In general, the recursion relation 

(1 + 1)P'+l (x) - (21 + 1)P,(X) + lP,_l (x) = 0 

holds. For point-like nuclei the two-centre Coulomb potential reads 

which, after expansion into multipoles, yields 

for r<lJ ' 

(10.38) 

(10.39) 

(10.40) 

(lO.41) 

(10.42) 

The monopole part for point nuclei of the two-centre Coulomb-potential can easily 
be derived from the multipole expansions, and is given by the 1 = 0 term of (10.42), i.e. 
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for r < ~ 
(10.43) 

for r~ ~ 

Remark on multipole expansions o/potentials: We write generally 

00 00 

V(r, R) = L Vj(r, R)PI(eos t?) = L Vj(r, R)PI(x) , with (10.44) 
1=0 1=0 

x=eost? , 

and use the following nonnalization eondition: 

1 2 J PI,(x)PI(x)dx = 21 + 181'1 • (10.45) 

-1 

Here t? is the polar angle of r = {r sin t? eos <p, r sin t? sin <p, r eos t?}. Multiplying by p/(x) 
and integrating over x from -1 to + I yields 

+1 2 J V(r, R)PI(x)dx = Vj(r, R)21 + 1 
-1 

1 
21+ 1 J Vt(r, R) = -2- V(r, R)PI(x)dx 

-1 

or 

(10.46) 

Now we will show that the operator K has the eigenvalue -IiK: 

K<pK.,IJ(r) = ß(iJ. L + 1i)<pK.,/J(r) 

= (n 0) (O-'L+1i ~) (gK.(r)XK.,/J(t?,<p») 
o -n 0 o-·L+1i i!K.(r)x_K.,/J(t?,<p) 

= (O-'L+1i OA) (gK.(r)xK.,IJ(t?,<p») 
o -(0-. L + Ii) i!K.(r)X-K.,/J(t?, <p) 

= Ii ( -~gK.(r)XK.'/J(t?, <p) ) = (-IiK.)<pK. /J(r) . (10.47) 
-K.l!K.(r)X-K.,IJ(t?,<p) , 

In order to obtain the differential equations for the radial wave funetions we write 
down the stationary two-eentre Dirae equation (10.29) onee more, though in greater detail: 

(10.48) 
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where the two-centre potential in the form (10.44) has been inserted Equation (10.48) can 
be further transformed into 

l"C - + - +-[." (0 -ar) (8 1 '" (n -ar 0 8r r r 0 

0) moc2 - E] t (. g"(r)x,,.JJ ) = 0 
-ll ,,=± 1 l!"(r)X-,,.JJ 

Later on we shall prove the relation 

from which 

±oo [d f '" E - nC-d !"X".JJ - nc....!!.X".JJ + nc-!"X".JJ 
,,=±1 r r r 

+ f VjPI9"X".JJ + {moc2 - E)9"Xtc.JJ ] = 0 
1=0 

±oo [d 9 '" E -nc-d gtcX-tc.JJ -nc....!!.X-tc.JJ -nc-g"X-tc.JJ 
tc=±l r r r 

-f VjPt!tcX-tc.JJ + (mo~ + E)!"X-tc.JJ ] = 0 
1=0 

folIows. 

(10.49) 

(10.50) 

(10.51) 

According to (10.32) the spinors Xtc.JJ are orthonormal. Using this property and mul
tiplying the first differential equation of the two-centre Dirac equation by - < Xit.JJ I and 
the second one by - < "'-it.JJI, we obtain 

This - in principle infinite - system of coupled radial first-order differential equations 
must be solved numerically in order to determine the energy E. 
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As a special ease we examine these differential equations for a spherieally symmetrie 
monopole potential Ver) = Vo(r) for a special 1\:; therefore 

nc.!!.- f + ncl-nc~ f - (mo~ - E)g - VOg = 0 , 
dr r f 
d 9 I\: 2 

nc-g + nc- + nc-g - (moc + E)f + Vof = 0 . 
dr r r 

(10.53) 

These are the already known radial differential equations for spherieally symmetrie po
tentials (cf. Example 9.3). The matrix elements (Xit.I'IPt!xlI':.l') ean be obtained easily by 
the usual angular momentum algebra, though we will not pursue that here any further. 

However, to eonclude our formal derivations we will prove the relation 

3 

arxlI':.1' = -X-II':,I' with rar = LXiaj , 
i=l 

(10.54) 

where ar is a sealar operator, so ar xlI':,l' has the same eigenvalues j and J.L as XII':.w First 
we note some properties of the parity of astate. Parity is determined by the transformation 
properties of the spherieal harmonies. For the transformation (19, cp) -+ (71" - 19, cp + 71"), 

Yi,m(7I" - 19, cp + 71") = (-I)IYi.m(19, cp) (10.55) 

follows. Henee the parity of astate is determined by the orbital angular momentum, and 
is thus given by (-1/. Therefore we ean make the ansatz 

(10.56) 

As arehanges its sign under parity transformations, b must be zero; thus we ean write 

71"1 = (_1)1 = (_1)(j+l/2S,,) , 

too, with SII': = 1\:/11\:1 and 

{I for j = 1- ~ 
1\:-

for j = 1 + ~ -1-1 
or 

1- {I\: 
for I\: >0 

-1\:-1 for 1\:<0 

Furthennore we define the I realted to - 1\:: 

I = I\: - 1 for I\: > 0 , I = -I\: for I\: < 0 , and 

1 - I = 1 = SII': for I\: > 0 , 

l-l=-I=SII': for 1\:<0 , 

holds. Henee we ean write the total angular momentum as 

j = 1- ~SII': , 

which we have used already in 00.57). 
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Changing parity yields, for constant j, a change of the orbital angular momentum by 
one unit. Rence the sign of K changes under the parity transformation, too. 

With 

(0-. A)(o-· B) = A . B + io-(A x B) 

and therefore 

a2 = 1 . 

(10.59) 

Consequently, the phase of a remains to be determined. For that purpose we choose 
er along the z axis and set 19 = 0 in the spherical harmonics. With 

Yt,m(_O,I/') = 21 + 1 (I - m)! n ( _0) im<p 
'v T ~ (l+m)! I"l,m cos v e 

and 

we obtain for 19 = 0 

[2l+T 
Yt,m("J = 0) = V ~8mO 

Moreover, we have 

A A (1 
(J'r = (J'z = 0 with 

Thereby we obtain for fixed J.L: 

XIt,I1 = J2~: 1 (/hIOJ.L) XI1 

If we use 2J.L as the eigenvalue of U z, we arrive at the defining equation for a: 

a"hi + 1 (lhIOJ.L) = 2J.LJ2T+1 (/hIOJ.L) 

It is useful to investigate the four cases j = 1 ±! and J.L = ±! separately: 

l)j=I+!, J.L=!: 

1 = 1 - SIt = 1 + 1 

hence it follows that j = 1 - !' and 
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r.:;-: /1 ~ (T+l 
aV21 + 1(-l)Y 2l+1 = v21 + ly 2i+1 

From this we get a = -1. 

2) j = 1 +!, I' = -!: 
aVl = -v'1+l , a =-1 

3) j = 1 -!, I' = !: 
7 = 1 - SIt = 1 - 1 

From this foHows j = 7 + ! and 

a.jf:;'l = -Vi , a = -1 

4) j = I-!, I' = -!: 
a.jf:;'l = V-T , a = -1 

(10.60) 

(10.61) 

(10.62) 

(10.63) 

This proves the assertion of (10.54). By numericaHy solving the coupled differential 
equations (10.52) one finally obtains the R-dependent wave functions 4>i(r, R) and the 
energies Ei(R). The latter are usually represented by a so-called correlation diagram, 
where the energies of the states of the separated systems (Z1' Z2) are connected to those 
of the combined system (Z 1 + Z2). The molecular states are classified according to the good 
quantum numbers jz, with the eigenvalues 11'1 = !' ~, ~, ... , which are also specified by 
0', 'Ir, Ö, •••. In most cases one assigns to the molecular state, in addition, the quantum 
numbers of the appertaining state in the combined system R = 0, so that altogether we 
obtain the designation 

181/20' , 2p1/20' ,2P3/20' ,2P3/2'1r... . 

In the case of identical partners in the molecule, there exists a further constant of 
motion. Indeed the parity operator commutes with the Hamiltonian and with 3z, so that 
additionally one can distinguish between even (positive parity) and odd (negative parity 
with respect to the centre of mass of both nuclei) states. 

As an example of a relativistic correlation diagram we show the calculated binding 
energies of some bound states in the Pb-Pb system (Figs. 10.2-10.4). In order to emphasize 
the various dependences of the energy eigenvalues on the two-centre distance R we have 
chosen different representations of the Pb-Pb correlation diagram. First we have displayed 
in a double logarithmic scale the 21 lowest U (fuHlines) and 'Ir states (dashed lines) in the 
range between R = 15 fm and R = 3000 fm (see Fig. 10.2). The relativistic fine structure 
splitting between the states 2P3/2u and 2P1/2U at R = 15 fm with the magnitude of about 
316.6keV is especially noteworthy. The finite extension of the Pb nuclei was considered 
in these calculations, too; however the interaction between the electrons was not regarded. 
Furthermore the delayed crossings between the 3P1/2U and the 2P3/2u state at R = 18 fm 
and between the 4P1/2U and the 3P3/2u state at R = 15.5 fm are interesting. The energy 
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C = 2p 112 0" , f = 381120", i = 31'3127r, 1= 3ds120" , 0= 4P1120" , r = 4d3120" , U = 4dSI27r, 

Fig.l0.2. Correlation diagram for the (symmetrie) Pb-Pb system with double logarithmie 
scale. The abscissa shows the two-centre distanee R, the ordinate shows the binding energy 
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Fig. 10.3. Correlation diagram for the lowest levels in the Pb-Pb system in a linear scale 
illustrates the strong inerease of the binding energies for small distances (R --+ 0) 

non-crossing of levels with at least one 
different quantum number is elearly no-
tieeable 

levels in the squares I and 11 between 300fm and lOOOfm are displayed separately with 
a linear scale (Fig. 10.3) for greater clarity. The rapid change in the energy of the most 
strongly bound electrons in the range of small two-centre distances is most impressive if 
one chooses a linear scale for the representation of E as a function of R (see Fig. 10.4). 
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Here the left column (ordinate) represents the binding energies in the combined atom 
with Z = 164. In the range 15 fm ~ R ~ 100 fm we find the following energy changes: 
330keV for the IsO" state, 208 keV for the 2Plj20" state and 91 keV for the 2sO" state. For 
comparison, we mention that the Is binding energy in the element Fermium (Z = 1(0) 
"only" amounts to 141 keV while it is elose to 900keV for Z = 164. The rapid increase of 
the binding energies of the interior electron shells with decreasing two-centre distance R 
reftects the fast approach of overcriticality in the limit R -+ 0 of these superheavy systems. 
This is most important with the "decay of the vacuum" in supercritical fields. 
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11. The Foldy-Wouthuysen Representation 
for Free Particles 

As discussed in the previous chapters, the spinors in the Dirac theory consist of four 
components. In the nonrelativistic limit, for spinors belonging 10 positive (negative) energy 
states, the upper (lower) two components become large compared to the lower (upper) two 
components [cf. Chap.2, Eqs. (2.44), (2.72)]. The question arises, whether there exists a 
representation that reflects this property as a general feature, i.e. also for large veloeities 
of the particles. 

Thus, we will search for a unitary transformation that, when applied to the wave 
function of a free spin-t particle, yields for fixed sign of the energy a wave function com
pletely determined by only two of the four components. However, as mentioned before, in 
the Dirac representation the wave function is generally determined by four components. 
In the following we will first discuss two different possibilities of such a unitary trans
formation and subsequently we will illustrate the transformation of some operators into 
the new representation, called the Foldy-Wouthuysen representation or, alternatively, iJ! 
representation. 

The change from the original Dirac representation to the iJ! representation can be 
achieved by a unitary transformation 

U= ßfIf+Ep 

J2Ep (moCl + Ep ) 

(11.1) 

where fIf = ca . p + ßmoc? denotes the Hamiltonian of a free particle, as before. If we 
use &1 = &ko ßt = ß and take into account that p is a Hermitian operator, we can prove 
that U is indeed a unitary operator: 
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Sometimes U is specified in a slightly modified fonn, which we quote here for 
completeness: 

1 moc2 A A P /1 ( moe2) = 21 + Ep +ßa· pV2 1- Ep (11.3) 

where p = Ipl. 
The wave functions in the ~ representation are related to the original representation 

(11.4) 

Simultaneously, all operators need to be transfonned according to 

~ = u..iut . (11.5) 

Since the operator of momentum p commutes with U, it remains invariant under the 
transfonnation, i.e. 

p~=p . (11.6) 

With respect to (11.5) we transfonn the Hamiltonian fIf into ~ representation: 

A ß(cO:. P + ßmoc'2) + Ep (A A A 2) (cO:. p + ßmoc'2)ß + Ep 
H~ = ca . p + ßmoc 

J2Ep(moc2 + Ep) J2Ep(moc2 + Ep) (11.7) 

It is useful to evaluate fIr first. Using the relation ß&k = -&kß, we find 

fIr = (cO:. p + ßmoc2)(cO:. p + ßmoc2) 
= c2p2 + c(o: . p)ßmoc2 + ßmoc2co: . p + m5c4 = c2p2 + m5c4 

A2 2 == Ep = Ep , 

where the last equality is justified if the operator fIr acts on plane waves. Furthennore 
we evaluate 

ßfIfß = ß(cO:. p+ ßmoc2)ß = -cO:· p + ßmoc2 = 2moc2ß - fIf , 

and hence, we finally have 
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1 (2 2 A A 3 = 2 (cl ) Ep2moc ß + 2ßEp ) Ep mo +Ep 

2 A( 2 = 2Ep ß moc +Ep ) = E ß 
2Ep (mocl + Ep ) p 

(11.8) 

The Dirac equation 

Hft/J = €t/J (11.9) 

now reads 

(11.10) 

This concept has already been illustrated in Chap. 1 for the Klein-Gordon equation 
(c.f. the Feshbach-Villars representation). Now we want to introduce a different method to 
find the Hamiltonian in the ~ representation, originally proposed by Foldy and Wouthuy
sen. Again the idea is to search for a unitary transformation (; which will remove from the 
Dirac equation all operators of the type & that couple the large to the small components. 
We will term any such operator an odd operator, e.g. &, 7i' 75, whereas an operator that 
does not couple large and small components, such as n, ß, iJ, is called an even operator. 

We write 

</> =j (;t/J = eiSt/J , 

(;tt; = e-iS eiS = 11 
" 

where 

and S is' a yet unknown Hermitian operator. From 

A a</> 
H~</> = ih at ' 

it follows that 

HA iS ./. ." iS at/J "as iS ./. iS HA ./. "as iS ./. 
~ e 'f' = 1" e - - ,,-e 'f' = e 'f' - ,,- e 'f' at at at 

Multiplication by e -iS from the rhs results in 

HA _ iS HA -iS " as 
<p - e e - "7ft 

(11.11) 

(11.12) 

(11.13) 

(11.14) 

(11.15) 

H S is explicitly known, this relation enables us 10 determine the Hamiltonian in 
~ representation H~ from the original Hamiltonian H. In the following we will restriet 
ourselves to time-independent transformations S, i.e. we presume aSIat = O. For S we 
try the following ansatz (note that the field-free case, as considered here, implies that one 
simply may move over to the momentum space respresentation, where i> = p): 

S=_(_i )ß&.pw(L) 
2mOc moc 

(11.16) 

where the function w(P/moc) will be specified later. It is obvious that S is Hermitian. For 
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the Hamiltonian of free Dirac particles in the ~ representation it holds that 

fI~ = eiS (c& . p + ßmoc2) e-iS = eiS ß(cß& . p + moc2) e-iS 

=eiSße-iSß(c&,p+ßmo~) , 

since S commutes with ßp· &. Using the relation 

ß(ß&. p)n = (-l)n(ß&· p)nß , 

we can write 

ße-iS = ß f (~)n(ß&' p)n wn 
n::::() 2moc n! 

= f(_I_)n(ß&"p)n wnß=eiSß , 
n::::() 2moc n. 

where we have expanded e-iS in apower series. Hence (11.17) becomes 

fI~ = e2iS (c& . p + ßmoc2) 

N d 2iS . ext, we expan e , l.e. 

=exp(ß&'Pw(L)) = f(_1 )n(ß&.p)n wn 
moc moc n::::() moc n! 

(11.17) 

(11.18) 

(11.19) 

(11.20) 

-1 ß&· P (ß&' p)2 w2 (ß&' p)3 w3 (ß&' p)4 w4 
- +--w+ -- -+ -- -+ -- -+ .... 

moc moc 2! moc 3! moc 4! 
(11.21) 

With regard to the expansions 

cos (Lw) = 1 _ (plmoc)2w2 + (P/moc)4w4 
moc 2! 4! 

ß&· P sin(Lw) = ß&· p [Lw - [(plmoc)w]3 + ... ] 
p moc p moc 3! 

(11.22) 

and (ß& . p)2 = _p2, we see immediately that fI~ can also be written as follows: 

(11.23) 

We will have reached our aim to remove all odd operators, if we can specify w such 
that the bracket '" & . plp is eliminated. Rearranging this expression yields 
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[pc eos(~cw) - moc2 sin(~cw)] 
= pc eos(-p-w) [1 - _mo_c_si_n;..:[(p/,-m_o,;....c.:....)w...;] 1 

moc p eos [(P/moc)w] 

= pc eos (~c w ) [1 - ~c tan (~c w ) ] (11.24) 

H we now ehoose 

w = moc aretan(L) , 
p moc 

(11.25) 

it follows that 

pe eos ( ~c w ) [1 - m;c tan ( aretan ( ~c) ) ] 

= pc eos ( ~c w ) [1 - 1] = 0 , 

i.e. with OUT ehoice of w the odd part of fI~ vanishes and we get 

fI~ = ß [moc2 eos (~c w ) + cp sin ( ~c w) ] (11.26) 

Using the trigonometrie relation 

. x 1 
arctan x = areslO r:;-:---;; = areeos ~ , 

vI + x2 vI +x· 

which holds for x > 0, then 

H~ = ß moc + cP---r========= A A [2 1 p/moc ] 
VI + p-1mÖc2 VI + p-1mÖc2 

ß[ ~ moc p] 
= mo V P- + möc2 + r + möc2 

= ßcVP2 + möc2 = ßEp • (11.27) 

Obviously this result is the same as in OUT previous ealeulations [see (11.8)]. 
Next we ealeulate the sign operator A in the ~ representation. A was defined as [see 

(2.48)]: 

A fIf cO: . p + ßmo~ 
A = -- = -"t======-

Jiij cJr + mac2 
(11.28) 

or in the momentum representation: 

A cO:· p+ ßmo~ 
A = ---=--=,_..:.....-

Ep 
(11.29) 
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By use of iI~ we get 

~=OAOt=ß (11.30) 

For the following calculations it is necessary to know the ~ representation for the operator 
&. Therefore we calculate 

A UA A UA t ß& . pe + moc? + Ep A (A ßA 2 E) 
o~ = 0 = (' ) 0 O· pe + moe + p 

2Ep moc- +Ep 

~(&. p)&(&. p) eß(&· p)& + &(&. p)eß &(mo~ + Ep) = + + -00.---=--=----0":" 

2Ep (moCl + E p) 2Ep 2Ep 

and replace 

~p2 = E~ - m5e4 = (Ep + moe2)(Ep - moe2) 

By use of the commutation relation 

akal + alak = 28kl , 

follows 

e2(& . p)&(& . p) 
--=-.,..~-:-=---=-;.. = 
2Ep(moCl + Ep) 

. and 

eß(& . p)& + &(& . p)eß eß(& . p)& + 2eßp - eß(& . p)& eßp = =-
2Ep 2Ep E p 

Next we collect terms: 

(E; -m5e4)&+&(m5e4+E;+2Epmo~) &(2E;+2Epmo~) A 

-'--''---''--''-:-::::::-;....:........:;;-----:-f-----'--~ = = 0 
2Ep(moCl + Ep) 2Ep(moCl + E p) , 

and finally get 

A ~p(& . p) eßp 
o~=o- +-

Ep (Ep + moCl) Ep 
(11.31) 

By a similar calculation it can be shown that the even part of the position operator 
is given in the ~ representation by 

[r] = O[r]Ut = r _ 1i~(.E x p) 
~ 2Ep(Ep + moCl ) , 

(11.32) 

where 

1 A A ilieA A ili~p 
[r] = -er + ArA) = r + --0 - --

2 2E 2E2' p p 
(11.33) 

while the odd part reads 
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(11.34) 

with 

{r} = !(r - ArA) 

For calculation of r<p the relation 

r<p = OrOt = r + iIiO(V pot) r = iliVp (11.35) 

is quite useful (see Exercise 1.18). 
Finally we want to transform explicitly the Dirac plane waves into the ~ representa

tion. The projection operators iI~ and iI -<p, which project out frorn an arbitrary Dirac 
wave the states with positive or negative energy respectively, read in the ~ representation: 

A 1 A A 1 A 

II~ = 2(1 + ß) , II_<p = 2(1 - ß) , (11.36) 

where !(1 ± ß) has the explicit form 

I+ß: e 0 0 

D l-ß - e 0 0 

D 
1 0 0 0 

2 0 0 0 2 - 0 0 1 
0 0 0 0 0 0 

(11.37) 

With these relations we rnay show that in the ~ representation the wave function for a given 
sign of energy is cornpletely described by two cornponents. In the usual representation 
the orthonormalized wave functions for states with a given rnornenturn in the z direction, 
given sign A(= +1 or -1) of energy and given spin projection 0- . P = ! or -!, follows 
frorn (2.34): 

Transforming according to <p = O'lj;, we need 

0) (0 0-) ( 0 -ß 0- 0 = -0-

then it follows that 

AA 0 ( 
0 

ßDlz = -~ 

o 
o 
o 
1 

1 
o 
o 
o 

C = AEp , p.o-=p , 

, p. 0- =-p (11.38) 

~) 
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(11.39) 

(11.40) 

The states with negative energy read 

, p-u=p and 

, p-u=-p 

From 4> = (;tJ! we calculate 

_ (11.41) 

The first element of this column matrix is zero, the third element results in - 2cpEp/ (Ep -

moc2) and we get 

JEp - moc2 _ Ep - moc2 = Ep - moc2 _ Ep - moc2 
JEp+moc2 - JEp+moc2JEp-moc2 JE~-(moc2l- cp 
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This yields 

( 
~) eipz/ A 

cPp,-l,l!2 = _~ (27rn)3!2 u·p=p , 

and, similarly, 

o eipz/A ( 0) 
cPp,-l,-l!2 = _ ~ (27rn)3!2 u·p= -p 

Now, ~ can always be written as 

_ _ (W(p») 
~-~++~-- v(P) 

and using the projection operators one obtains 

~+ = (h~)~ = (W~») , ~_ = (h_~)~ = (v~») 
where w(p) and v(P) can, in fact, be written as two-component functions 

w(P) = (:~) and v(p) = (~~) 

11.1 The Foldy-Wouthuysen Representation in the Presence 
of External Fields 

(11.42) 

(11.43) 

(11.44) 

(11.45a) 

(l1.45b) 

If external fields are coupled to a Hamiltonian fj, then fj always contains parts coupling 
together the free positive and negative energy solutions. In the case of weak fields the role 
of the odd parts of this operator can be neglected. The Foldy-Wouthuysen transformation, 
as an approximation of the exact solution, is therefore only applicable to weak fields, 
where it systematically improves the approach. In performing the transformation we are 
guided by the example of the case of free fields. Again, we split up the Hamiltonian into 

fj = ßTn{)C2 + € + 6 , (11.46) 

where € corresponds to the remaining even part of fj (€ {:} even) and () to the odd part 
(() {:} odd). Inclusion of external electromagnetic fields yields 

()=C&(P-~A) and +€=eV(r) , (11.47) 

where Ver) is the Coulomb potential. In analogy to the case of free fields (11.16) we 
introduce a transformation of the following kind: 

(11.48) 
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with the intention of minimizing the odd parts of the Hamiltonian fI f , or even to make 
them vanish. In analogy to (11.16) we choose 

A i A A 

S = - 2moc2ßO , (11.49) 

i.e. S shall not explicitly depend on time. If the fields occuring in (11.47) depend explicitly 
on time (and thus also the Hamiltonian) the transformation S must generally also be time 
dependent. Then it is usually not possible to construct S in a way that all odd parts of fI f 

disappear in any order. Therefore, we restrict ourselves to a nonrelativistic expansion of 
the Hamiltonian fI f into an exponential series of l/modl. More precisely, we taken into 
account only terms of order 

( kinetiC energy)3 and (kinetic energy)· (field energy) 

moc2 mijcf 

We expand the exponential function into apower series 

( iS i2S2 ) A ( (-i)S (_1)2S2 ) Hf = 1 + l! + Tl + ... H 1 + ~ + 2! + ... 
·2 

= H +i[S, HL + ;! [S,[S, HLL + ... 
'n 

+ ~[S, [S, ... , [S, fIL ... LL + .... 
n. 

(11.50) 

To verify this we write down the second-order terms of S separately, 

( ')2 '2SA 2 
H~S2 + _1 -H +iSH(-i)S 

2! 2! 
·2 '2 

= ~ [S, [S, fILL = ~ [S, sfI - fISL 
·2 

= ~ (S2fI - sfIs - sfIs+fIS2) . (11.51) 

We can check the validity of this general commutator expansion (11.52) by considering 
the operator function 

Pp.) = eUS H e-i>'S = f: >.: (d" ~) 
n=O n. d>' >'=0 

and by verifying 

dP . >.05 A A • >.05 -(>.) = el i[S H] e- I d>' ,-, 

as weIl as 

d" P _ i>'S'n [A A A A ] -i>'S d>.n - eiS, [S, ... , [S, HLL ... _ e 

Thus the validity of (11.50) easily follows for >. = 1. 
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In the following we make use of the relations 

ßO = -Oß and ßt = tß . (11.52) 

Expanding the Hamiltonian iI' into powers of l/modl, we restriet ourselves to tenns up 
to order l/mÖc6. Then we can write iI' as 

iI' = iI + i[S, iIL - ! [5, [5, iILL - ! [5, [5, [5, iILLL 
1 [A A A A A 2 ] + 2A S, [S, [S, [S, ßmoc ]-L]- _ + .... 

Up to tenns of order "one", iI' is given by 

iI' = ßmoc2 + t + 0 + i[S, ßLmoc2 . 

Now we calculate the various commutators of 5 and iI: 

(11.53) 

(11.54) 

i[S, iIL = i( ( - 2m~c2ßO ) (ßmo c2 + 0 + €) - (ßmoc2 + 0 + €) (2~oc2ßO ) ) 
=i -O---ßO ---ßO€+-O+--ßO +--€ßO ( i A i A A2 i A A i A i A A2 i A A) 

2 2moc2 2moc2 2 2moc2 2moc2 
A A2 A 

A ßO ß A A 
= -0 + -, + -,[0,1:] , (11.55) 

moc- 2moc-

2 AA2 A 
i [A A A] i { ( i A A) ( A ßO ß A ) '2 S, [S, HL - = '2 - 2moc2 ßO - 0 + moc2 + 2moc2 [0,21-

( A ß02 ß A ) ( i A A) } - -O+--+--[O,€] ---ßO 
moc2 2moc2 2moc2 

i ( i A A2 i A3 i A A A 
= '2 2moc2 ßO + 2mÖc4 0 + 4möc4 0[0, I:L 

i A A2 i A3 i A A A) 
+ ---,ßO + ---r40 - --r:dO, 1:1-0 

2moc- 2moc 4moc' 
1 A A2 1 A3 1 [A A A ] 

= --2 ,ßO - --r;l0 - 8 2.d. 0,[0,1:1- -' 
mOc- 2moc-' moc-' 

(11.56) 

·3 ;! [5, [5, [5, iI1-1-L 

= ~ ( -;.d. 03 + i3 ,-ß04 + \c;6 [0,[0, €LL 
3 4moc-' 4moc- 16mo 

--h03 + 4 i3 ,}04 - 16 i 3c;6 [0, [0, €LLßO) 
4moc moC'" mo 

= +,03 - +,ß04 - 48 13 6Mo, [0, [0, €]-LL 
6moc 6moc mOc 

(11.57) 

We take into account only tenns of the order of l/möc6; thus we get 
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·4 1 
4
1 

, [S, [S, [S, [S HLLLL ~ 24 3 6/304 . 
. moc 

(11.58) 

Next we collect the tenns of (11.54-11.58), which yields 

H' = /3moc2 + f + 0 - 0 + --.!,./3[0, fL + ~/302 - --.!,./302 
2moc- moc- 2moc-

1 A AAl A3 1 A3 1 A A4 
- --n [0, [0, f]-L - -n0 + -n0 - ---:r6ßO 

8mOc 2mOc-' 6mOc-' 6mOc 

+ 13 6/304 - 13 613[0, [0, [0, fLLL 
24mOc 48mOc 

A ( 2 1 A 2 1 A 4) A 1 [ A A A ] = ß mOc + -2 ? ° ----:r60 + f - --n 0, [0, fL _ 
moc- 8mOc 8mOc 

+ 2 1,/3[0, fL - 12403 - \ 6/3[0, [0, [0, fLLL 
mOc- 3mOc' 48mOc 

== /3moc2 + €' + 0' . (11.59) 

At this step we might simply argue: Let us omit all odd tenns of H', Le. the last 
tenn of (11.59) with the odd powers of O. But we mayaIso fonnally reduce the odd part 
of H' by further Foldy-Wouthuysen transfonnations. At this point we perfonn a second 
transfonnation 

S' = __ i -/30' = __ i -/3(_1_/3[0 f] _ _ 1_03) 
2moCl 2moCl 2moCl ,- 3m5c4 

(11.60) 

and obtain 

H" = eiS' H' e-iS' = /3moc2 + f' + _1_/3[0' E'] _ _ 1_0,3 (11.61) 
2moCl ,- 3m5c4 

The tenn proportional to 0,3 contains large powers of l/mo~ and therefore it can be 
neglected; thus H" is given by 

H" = /3moc2 + f' + --.!,. /3[ 0', t] _ = /3moc2 + f' + O" 
2mOc-

0" is of the order of l/m5c4. To eliminate 0" we apply a third transfonnation 

A 111 iS" A" -iS" H =e H e with 

All i AAII 

S = -2moClßO 

By neglecting the odd tenns proportional to l/mijc6 this yields 

Hili ~ /3moc2 + €' 
A ( 2 1 A 2 1 A 4) A 1 A A A =ß moc +-2 ,0 ----:r60 +f---n[O,[O,fLL 

moc- 8moc 8moc 

== H~ . 
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(11.62) 

(11.63) 

(11.64) 

(11.65) 



To illustrate this procedure we now calculate the various tenns of iI~ explicitly. Here we 
make use of the following, already known relations for two arbitrary vectors A and B: 

(& . A)(& . B) = A . B + iE . (A x B) , (11.66) 

with which we obtain 

= _1 (a. (p _ !:.A))2 
2moc2 c 

=_1 (P_!:.A)2 +_i iJ. (P-!:.A) x (P-!:.A) 
2mo c 2mo c c 

= _1_ (p _ !:. A)2 _ ~ iJ . (p x A + A x p) . 
2mO c 2moc 

Here P = -ihV and curl(f A) = f curl A + (grad!) x A. This expression can be further 
simplified as 

1 A 2 1 (A e)2 eh A --0 =- p--A ---E·(VxA) 
2moc2 2mo c 2moc 

= _1_ (p _ !:.A)2 _ ~iJ . B 
2mo c 2moc 

(11.67) 

Next we look at the commutator [0, fL 

_1_ [0, fL = _1_ (ca. (p - !:. A) e V - e V ca . (p _!:. A)) 
8m5c4 8m5c4 c c 

1 . I: A ~V ieh A E = - 8m2c4 1e"ca . v = 8m2c4 ca· , 
o 0 

(11.68) 

and, according to (11.65), at the commutator [0, a . EL 

[ 

A ieh ] 0, ----r;rca. E 
8moc -

{ A (A e) ieh A ieh A E( A (A eA ))} = ca· p--A --ca·E---ca· ca· p--
c 8m5c4 8m5c4 c 

[ A A iehc2 A E] = a .p, --2-a· 
8moc4 _ 

= ~ ( - ih(V . E) - ihE . V + ihE· V + iiJ . <p x E) - iiJ . (E x p») 
8m5c2 

= ie; 2 ( - ih(V . E) + hiJ . (V x E) - iiJ . (E x p) - iiJ . (E x p») 
8moC 

eh2c2 . ieh2c2 A eh A A 
= 8m2c4 div E + 8m2c4 E . curl E + 4m2c2 E . (E x p) (11.69) 
000 

Adding the various contributions, we have 
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E 

Fig. 11.1. Qualitative scherne of the 
energy levels of the hydrogen atom 

381/2= 

fI~ = fIlII 

A ( 2 1 (A e)2 1 A4) =ß moc +- p--A --p 
2mo c 8m5c6 

1 A A ieh2~ A 
+ eV - --ßeh(E· B) - --E· (curiE) 

2moc 8mÖc4 
eh A eh2c2 

- 4m2c2 E . (E X p) - 8m2c4 div E 
o 0 

(11.70) 

Now it seems advisable to discuss the individual terms of (11.70). The terms in the 

first parenthesis result from the expansion of [<p - e/cA)2 + mot'2 and describe the 
relativistic mass increase. Subsequently follow terms describing the electrostatic energy 
and the magnetic dipole energy. The next two terms, which actually are Hermitian only 
if taken together, contain the spin-orbit interaction. This can be seen particularly clearly 
under the assumption of a spherically symmetrie potential with cUTI E = 0, when 

A 1 8V A 1 8V A A 
E· (E x p) = -- -E· (r x p) = -- -(E· L) 

r 8r r 8r 

Thus we have 
A eh 1 8V A A 

Hspin-orbit = -4 2 2 - -8 (E· L) 
moc r r 

(11.71) 

(11.72) 

This spin-orbit interaction is responsible for the splitting of states with the same orbital 
angular momentum 1, but with different total angular momentum j. This interaction also is 
very important in nuclear physics for the classification of single-particle states of nucleons, 
but there the spin-orbit interaction is not of electromagnetic orgin. The last term of (11.70) 
is the so called Darwin term. It results from the Zitterbewegung of the electron over a 
region of a magnitude comparable to the Compton wavelength (2.61). For point-like nuclei 
we Can write 

div E = -L1</> = 47rllc = 47re8(r) . 

Considering now that for nonrelativistic wave functions only the s state do not vanish 

3d5/2= 

3d3/2= 

at the origin, and thus only Wns(O) =/:0, one immediately realizes 
that for light atoms the Darwin term mainly results in an energy 
shift of the s levels. 

2P3/2=} 
__ Lamb~hift fine structure 

281/2--------~ 
2pI/2---

Finally we look qualitatively at the level scheme of the 
hydrogen atom (see Fig.ll.1). The fine structure splitting due 
to spin-orbit coupling is quantitatively the largest contribution of 
the relativistic theory compared to the nonrelativistic Schrödinger 
description of the hydrogen atom. The previously discussed con
tributions of the Hamiltonian yield good agreement between the 

181/2= hyper-fine splitting 
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theory and experimental data up to the year 1947, when as an 
additional effect the hyperfine-splitting had to be taken into ac
count. This splitting is due to the interaction of the magnetic 
moment of the proton with the magnetic moment of the elec
tron and results in the splitting of the two normally degenerated 



spin levels. In 1947 Lamb and Retherford discovered a further shift of the 2s1/2. level 
against the 2Pl/2 level (indicated in the figure), which should be degenerated if exact 
solutions of the Dirac equation are considered (refer to Exercise 9.6 and 9.7). The physical 
origin of this quantum electrodynamical effect is the interaction of the electrons with the 
fluctuations of the quantized radiation field (self-energy and vacuum polarization), the 
so-called Lamb shift. 1 

1 This will be discussed in more detail in Vol. 4 of this series: Quantum Electrody1liJ1Tlics (Springer, Berlin, 
Heidelberg), to be published. 
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12. The Hole Theory 

Until now the solutions of the Dirac equation with negative energy have been a puzzle. 
Attempts similar to those we performed with the solutions of the Klein-Gordon equation, 
where the energy turned out to be positive (by the Lagrange formalism) for solutions + 
with positive and negative time evolution factors, proved unsuccessful (cf. Exercise 2.3). 
Solutions with negative energy appear almost everyhwere when we are concerned with 
processes of high energy or with strongly localized wave packets (see Exercises 8.4, 8.5). 
At this point we have to confront this dilemma and find a proper solution! 

The existence of solutions with negative energy in the previous interpretation, as 

E 

,ft, positive 
11 energy continuum 

bound 
states 

single particle states of the electron, obviously leads to trouble and physical non sense. ~~~~~~~;:-__ 
Let us consider the electrons in an atom, the spectrum of which is once more given - 11 negative 

qualitatively in Fig. 12.1. 'lJ' energy continuum 

The bound states direcdy below the positive energy continuum, with E < moc?, are 
in general in very good agreement with experiments. It is beyond any doubt that these are 
the bound states of the (one-electron) atom. 

An electron in the lowest atomic state (1s) could lose more and more energy by 
continuous radiative transitions. Thus an atom would be unstable and, because of the 
continuous emission of light, a radiation catastrophe would occur. However, such effects 
have never been observed! If this decay could happen, our world could not exist. Hence 
we have both a principle to uphold as weH as a practical problem to solve to avoid 
electrons falling of into the states of negative energy. Neglecting the radiation field, the 
bound state electrons would be stationary. By switching on the field (of course it is always 
"switched on"), and the use of radiation theory and of the wave functions found in Exercise 
9.6, an infinite transition probability is obtained particularly if one takes into account the 
infinitely large number of final states in the lower continuum (see Exercise 12.1). But this 
is of course sheer nonsense! We must find a new physical idea to remove this dilemma, 
and, in its orgignal form, this was provided by Dirac l . He assumed all states of negative 
energy to be occupied with electrons (see Fig. 12.2). 

The vacuum state is defined by the absence of real electrons (electrons in states 
of positive energy), and aH the states of negative energy are fiHed with electrons. The 
vacuum state is the energetically deepest stable state, which can be realized under certain 
conditions (constraints such as, e.g., external fields). In the absence of the field the vacuum 
represents the lower (negative) continuum (it is also called the "Dirac sea"), whose states 
are completely occupied with electrons. This physical assumption of the negative energy 
continuum fiHed with electrons has very important consequences. We perceive at once that 

I P.A.M. Dirae: Proc. R. Soc. (London), A 126,360 (1930); see also J.R. Oppenheimer: Phys. Rev. 35, 939 
(1930). 
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Fig.12.1. llIustration of the radia
tion catastrophe of a radiating elec
tron in an atom. It falls deeper and 
deeper by continued radiative tran
sitions 

E 

o 

~I states of 
11 positive energy 

11 states of 
vnegative energy 

Fig. 12.2. In the hole theory the 
states ofnegative energy are occu
pied with electrons (X). Aecording 
to the Pauli principle, each state 
can contain two electrons, nantely 
one with spin up and one with spin 
down 



E 

---1-'--electron 

,,-quantum 
energy nw 

hole 
(positron) 

Fig. 12.3. A photon of energy 
1i.w > 2mocZ creates an electron
electron hole state. The hole is in
terpreted as a positron; hence the 
process is just e - - e+ pair cre
ation 

the radiation catastrophe mentioned above is now avoided because of the Pauli principle, 
which forbids transitions of real electrons into occupied lower states. On the other hand 
an electron of negative energy can absorb radiation. If the energy 1i.w of the absorbed 
photon is greater than the energy gap (1i.w > 2mo~), an electron of negative energy can 
be excited into astate of positive energy (see Fig. 12.3). 

In that case we get a real electron and a hole. The hole behaves like a particle with 
charge +14 because it can be annihilated by an electron (e-) with charge -lei; thus the 
hole is the antiparticle 0/ the electron and is named positron (e+). Obviously the creation 
of an electron and electron hole by photons is to be identified with electron-positron pair 
creation, with a threshold energy of 

1i.w = 2moc2 (12.1) 

Altematively, we call the process where an electron drops into a hole, thereby emitting 
an appropriate photon, pair annihilation (or matter-antimatter annihilation, or e+e- anni
hilation). The energy balance of the pair creation is 

1i.w = Eelectron with pos. energy - Eelectron with neg. energy 

= ( + cJ p2 + möc2) - ( - cJ p,2 + möc2 ) 
== Eelectron + Epositron , 

and we can associate the electron with the positive energy 

Eelectron = +cJy + möc2 

(12.2) 

(12.3) 

So far this is nothing new. What is new, however, is that according to (12.2) we have to 
give the positron (electron of negative energy) a positive energy, namely 

Epositron = +cJ p,2 + möc2 (12.4) 

In the special case of vanishing positron momentum p', it follows that the positron has 
the rest mass 

(12.5) 

Therefore positrons (electron holes) have the same rest mass as electrons but opposite 
charge (as we have shown above). Similarly we obtain the following momentum balance: 
the photon has momentum 1i.k, which is distributed to electrons and positrons. We conclude 
that initial total momentum = final total momentum, i.e. 

1i.k + (p')electron with neg. energy = (p )electron with pos. energy 

1i.k = (P)electron with pos. energy - (p')electron with neg. energy 

and write 

1i.k = (p )electron + (P')positron 

or (12.6) 

(12.7) 

(12.8) 

Hence, the positron has the opposite momentum to the electron, and negative energy. 
Indeed, a missing electron (negative energy) with momentum p' should behave like a 
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positively charged particle with the same mass and opposite momentum. In this way we 
can easily explain the previous paradoxical fact that the mean particle velocity of electrons 
with negative energy equals 

C2(p)electton with neg. energy 

Ep 

[see (2.62) ff.], since we are now dealing with the positron velocity, Le. 

-~(P)electton with neg. energy _ +~(P)positron 
Ep - Ep 

(12.9) 

(12.10) 

The most important result of the hole theory is that it is the first theory which introduces 
a model for the vacuwn, i.e. for particle-free space, in a naive sense. The vacuum is here 
represented by the Dirac sea, which consists of the states of negative energy occupied by 
electrons. This vacuum should have zero energy (mass) and no charge. However, it is clear 
that the model in this simple form does not have these properties. The states occupied with 
electrons of negative energy together have infinitely large negative energy and infinitely 
large negative charge. Both have to be renormalized to zero, Le. the zero point of energy 
and charge is chosen in such a way that the Dirac sea has no mass and no charge. This 
renormalization procedure is not very satisfactory (aesthetically) but it is feasible (though 
soon we will discuss a better model, see Sect. 12.4). At this stage we find the qualitatively 
important fact that the vacuum can be modified, for instance, by the inftuence of extemal 
fields: these can deform the wave functions of the states of negative energy occupied with 
electrons. Hence they produce a measurable vacuwn polarization with respect to the state 
without extemal fields. 

Let us stress the point that the hole theory is a many-body theory, describing particles 
with positive and negative charge. Indeed, infinitely many electrons are needed to consti
tute the Dirnc sea. The simple probability interpretation of the wave functions acclaimed 
in a single-particle theory cannot be true any longer, because the creation and annihilation 
of electron-positron pairs must be taken into account in the wave functions. 

Reswne. In early relativistic quantum mechanics, the Klein-Gordon theory was dis
missed because it did not seem to allow a proper probability interpretation, and also, the 
appearence of states of negative energy was problematic. Hence Dirac formulated the 
Dirnc equation with the intention of establishing a true relativistic single-particle theory. 
As we now know, the difficulties with the negative energy states of the Dirac equation 
almost of necessity demand a many-body theory (hole theory), and therefore the question 
arises whether it should also be dropped. On the other hand, though, we have been very 
successfully applying the Dirac equation to many problems (e.g. prediction of spin, of 
spin-orbit coupling, of the 9 factor, of atomic line structure). Additionally, by extending 
the single-particle Dirac theory to the hole theory, it has new, impressive success: 

The prediction of the positron as the antiparticle of the electron was experimentally con
firmed in all points, including the correct threshold (12.1). EqualIy, the vacuum polarization 
mentioned above, as weIl as many other effects, were confirmed by experiments. The pre
viously discussed Zitterbewegung does not vanish in the hole theory, though because of 
the filled Dirac sea one might naively suppose that the states of negative energy are not 
available due to the Pauli principle; however, there still exists an exchange interaction and 
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a related scattering. Accordingly, virtual electron-positron pairs are continuously created 
in the vacuum. The original electron (in abound or free state) can fill up the virtual hole 
in the Dirac sea, and the other electron takes its place, this exchange interaction causing 
the Zitterbewegung. In its physical content the Dirac theory (extended by the hole theory) 
is the basis of quantum electrodynamics, wbich currently is the best-established theory of 
physics. 

Dirac originally formulated bis equation with a particular set of motives. The relativis
tic theory for spin-! particles developed in this way had to be reinterpreted (hole theory) 
to get rid of its contradictions and became even more successful. Althoug the original 
motivation was not plausible from OUf present point of view, nevertheless it apparently 
showed the right direction. Often in the history of physics, a great success is achieved 
after aseries of more or less erroneous investigations, which finally lead to new concepts 
and insights. In the following, we retain the Dirac equation and its reinterpretation by hole 
theory and extend it, also improving on the accuracy; however we drop the one-particle 
probability interpretation (except for illustrative purposes). 

EXAMPLE .................................................................. .. 

12.1 Radiative Transition Probability from the 
Hydrogen Ground State to the States 
of Negative Energy 

Problem. Estimate the transition probability for a radiative 
transition from the hydrogen ground state into an electron 
state of the empty negative continuum with -moc2 > E > -
2moc2. 

Solution. This problem is to show the idea that the elec
tron states with negative energy have 10 be considered as 
occupied. The Dirac theory yields for the electromagnetic 
interaction (n = c = 1): 

Hint = -e~(xh~(x) . A(x) 

= -e;j}(x)&(fi(x) . A(x) (1) 

We quantize the electromagnetic field in a box of volume 
L3 and insert the expansion 

A = L V L;' • k, .• .(e-I" '. "k'., + aL, ,Ik' ,.) 
k',rT' W k' (2) 

Here o'krT and o'krT are the creation and annihilation opera
tors for photons of momentum n/'i, and polarization u. The 
initial and the final states are of the following form: 

(1 photon with k, ul· Nr! = (fl (3) 

and 

li) = ItPi) Iphoton vaccum) (4) 
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With this it follows that 

(fIHindi) 

= - J L;:. e J d' ·.pl (x )a"l( x) . • k,. ,"" (5) 

We use the dipole approximation exp(ik . z) ~ 1 and the 
relation 

& = i[H, :1:]_ 

which follows from the Dirac equation. Hence 

(fIHlnili) = e{E; - E;lV L;:, 
x (/ d3x tP!(x)Zt/Ji(x») . €k,rT 

Then Fermi' s golden rule yields 

( tran.sitions ) 
urne 

= 211"[E E ] Ee2 (Ei - Ed ;11" I 
p r=3,4 k,rT L Wk 

x Id3x tP;t(X)ZtPi(X). €k,rT( 8(Wk - Ei + Er) 

(summed over all p with mo~ < E(p) < 2mo~). 

(6) 

(7) 

(8) 

The first bracket of (8) contains the summation over all 
permitted final states of the electron: r = 3,4 characterizes 



·~--~----------------~ 
€k,l k 

Sketch of the polarization 

the two spin directions of the final negative energy states. 
Now we can chose the polarization vectors €k,u in such a 
way that at least one of the polarization vectors, say €k,lo 
is orthogonal to k (see figure). With 

(9) 

one obtains 

( tran.sitiOns) 1 [ ] /// 2 
Urne = 27r ~ dwk d{) dcpwk 

. () 2( )2 1 xsm e Ei-Ef--
Wk 

xl/ d3x~;t(X):C~i(Xf/€k'2/2x 
x sin2 ()8(wj - Ei + Ef) (10) 

The diagram is useful for a better understanding of (10). 
With 

f d~ sin' ~ = [} cos' ~ - cos { = 3 
Bq. (10) turns out to be 

( tran~itions ) 
urne 

(11) 

and we also normalize the final electron states in a box 
with volume L ,3 (E = Er): 

~f = J ~o wr(p,s)e-ip.z . 
L' E 

(12) 

These wave functions are normalized to 1: 

/
3 r r' mO/d3Ec c d X~f (x)~f (x) = -3- x-orr, = 0rr' 

L' E mo 
L~ L~ 

(13) 

similarly to the wave function for the hydrogen ground 
state (we choose the case with spin up): 

1+, 'Y 1 
2r(1 +,) (2mo:r) -

i(1 -,~ () 1 --'- cos 

i(1 _0:,) . () i<p 
--'---'- sm e 

0: 

, =Vl-0:2 , e2 =47r0: (14) 

0: is the fine structure constant, Le. 0: = e2/ne :::::: 1/137. 
With [cf. Bq. (6.30)] 

" JE + "'<J ( pz p- ) W (p, s) = 2 -2' E ' 1,0 
mo mo +mO 

4t( ) - JE + "'<J (p+ -pz 0 1) W p,s - " , 
2mo E+mo E+mo 

one obtains, with the approximations 

1 - , 1 - (1 - 0:2 f2 ) 0: 
--:::::: =-~1 

0: 0: 2 

and the abbreviation 

(2mo:)3/2 
a(r') = --y'4;--::4=7r=-- 1 +, (2mo:r)'Y-1 e-mar 

2r(1 +,) 

1 / 
3 rt 1

2 1 mo L d x~f (X):C~i(X) :::::: 2 (E ) -3-
r mO +mo L' E 

x {I /// r2 dr d{) dcp sin ():ca(r) 

xei/pl/z/ cas {) r (p; + /p+/2) } 

- p2 {I r r r r 2 dr d{) d 
- 2E(E + mo)L,3 JJJ cp 

x sin () r cos ()a(r) eipr cos {) r 
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(15) 

, (16) 



+/111 r 2 dr dt9 d<p sin t9 r 

x sin t9 sin <pa( r ) eipr cos 11 /2 

+/ 111 r 2 dr dt9 d<p sin t9 r 

x sin t9 cos <pa(r) eipr cos 11 r 
Perfonning the <p integration yields 

~ /1 d3X1/J;t(X)Z1/Ji(X)r 

24 2 /00 'Ir 
= P 7r 31drldt9r3a(r) 

2E(E + mo)L' 0 0 

x sin t9 cos t9 eipr cos 11 r ' 
and with 'Y ~ 1 it follows that 

3 ( ) (2mOo:)3/2 3 -mar 
rar JT""Mre 

V 47r v2 

Insertion of (11) results in 

( tran.SitiOns) 
urne 

8e27rmöo:3 p2(Ei + E)3 

= 3 ~ L,3 E(E + mo) 

x 1 dr 1 dt9 r3 e -mar sin t9 cos t9 eipr cos 11 

(17) 

/
00 'Ir /2 

o 0 (18) 

with e2 = 47rO:, and now the t9 integration is perfonned: 

'Ir . 1 . I 'Ir 
1 dt9 cos t9 sin t9 e1pr cos 11 = -. - cos t9 e1pr cos 11 

"'-v-'" ~ Ipr 0 
o u v' 

1 'Ir . 
- -. - 1 dt9 sin t9 e1pr cos 11 

Ipr 
o 

= _. _ (e1pr + e-1pr ) ___ e1pr cos v 1. . 1..Q /'Ir 
Ipr rr2 0 

1· . 1· . = -. - (e1pr + e-1pr) + -- (e1pr _ e-1pr ) (19) 
Ipr rr2 
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With 

00 I I rne-ar dr = ~ 
an+1 ' 

o 

it follows that 

(20) 

In (18) we replace L:p l/L,3 by J d3pl/(27r)3, which yields 

( tran~itions ) 
urne 

The hydrogen ground-state energy is approxirnately Ei = 
mO - o:2mo/2. The integral (21) is weIl defined and yields 
a finite value, for which we want to estirnate the lower 
bound: 



= ~ 0.51 MeV ~ 109~ 
1376 6.5·1O-22 MeVs s 

(22) 

If the lower (negative) continuum were empty, then the hy
drogen atom would decay in a very short time (T < 10-9 s). 
In order to ensure the stability of the hydrogen atom (and 
of allother atoms) one has to regard the negative energy 
continuum as fully occupied with electrons, so that the 
Pauli principle blocks those states from being available 
for radiative transitions. 

12.1 Charge Conjugation 

The hole theory leads us also to a new, fundamental symmetry: For the electrons there 
exist antiparticles, the positrons. In general it is true that for every particle in nature there 
exists an antiparticle. Now we have to formulate this symmetry mathematically in rigorous 
way. Thereby we shall see how the wave functions for the positrons follow from the wave 
functions of the electrons with negative energy, and vice versa. 

According to the hole theory a positron is a hole in the filled "sea of electrons with 
negative energy". According to (12.4-12.7) this positron has the same mass as the electron, 
positive energy (Epositron = - Eelectron of neg. energy), and opposite momentum and charge 
as the electron with negative energy. There exists a one-to-one relation between solutions 
of the Dirac equation for electrons with negative energy, 

(12.11) 

and the positron eigenfunctions. 
The positron wave function '!/Je has to fulfill the equation 

(ilit+ ~ $ - moc) '!/Je = 0 , (12.12) 

because positrons should have all the properties of positively charged electrons. Note that 
the positron wave function '!/Je should be a solution of (12.12) with positive energy! 

Remark. It is of no consequences which one of (12.11) or (12.12) is labelled as the first 
(particle). Historically (12.11) was the starting point for electrons, but (12.12) could be 
considered as the particle equation, as weIl. The sign of the charge e of the particles 
described in the initial equation does not matter either: If we had chosen (12.12) to start 
with, we would have obtained a spectrum of solutions for the free positrons like that 
known for electrons from (12.11) (see Fig. 12.4). The negative energy states would then 
have been filled with positrons (e) in the framework of the hole theory, while electrons 
would then have been positron holes with wave functions given by the negative energy 
solutions of (12.12). It is now our aim 10 find an operator which connects the solutions 
'!/Je of (12.12) with '!/J of (12.11). This operator must change the relative sign of ilitand 
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..() states of 
11 positive energy 
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Fig.12.4. The vaeuum of the hole 
theory based on positrons as intial 
partieles. Here a positron hole is 
an electron. As marked by the full 
eirc1es ( • ) the states of negative 
energy are oceupied with positrons 



(e/c)A This is simply done by complex conjugation: 

(in~)* = -in~ A* - A 8xl' 8xl" I' - I' . (12.13) 

The electromagnetic four-potential AI' is always real; thus we take the complex conjugate 
of (12.11) and after the conversion of all signs we arrive at 

[(in 8~1' + ~AI' )')'1'* + moc] t/l* = 0 . (12.14) 

Now we wish to find a non-singular matrix U == C,),o in such a way that 

UA I'*UA -1 _ I' ')' - -')' (12.15) 

holds. Before doing so, however, let us first proceed as if U is already known. After 
multiplication with U (12.14) transforms into 

[ (in 8~1' + ; AI' ) U ')'1'* U-1 + moc] U t/l* = 0 

or, with equation (12.15), 

[(in 8~1' + ~AI' )')'1' - moc] Ut/l* = 0 or 

[in,+ ~A- moc] Ut/l* = 0 . 

For the positron wave function a comparison of (12.16) with (12.12) yields 

t/lc = Ut/l* == C')'°t/l* = C;jjT . 

The superscript "T" indicates "transposition" and means 

(12.16) 

(12.17) 

because of ')'OT = ')'0 and t/lt = t/l*T. To determine U explicitly we rewrite (12.15) as 

C,),o,),I'*(Cl)-1 = cl,),I'*')'0c-1 = -')'1' . (12.18) 

Now, according to our explicit representation [Chap.3, (3.13)] for the ')' matrices, Le. 

the identity 

')'0 ')'1'* ')'0 = ')'I'T 

can easily be derived. Thus for (12.18) we get 

(C-1)T')'1' = (C)T = _')'I'T , 
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(12.19) 

(12.20) 

(12.21) 



and, because of 

,IT = _,I , ,2T = ,2 , ,3T = _,3 , ,OT = ,0 , (12.22) 

(C)T must commute with ,I and , ... ? and anticommute with y and ,0. Therefore 

C = i,2,0 (12.23) 

is a useful choice for the operator C, and it holds that 

A • 2 ° A -1 At AT 
C = 1" = -C = -C = -C . (12.24) 

This clearly illustrates the non-singularity of C (the inverse matrix is explicitly con
structed). Of course (12.23) is valid in the special representation (12.19), but C can easily 
be given in every other representation via a unitary transformation. The phase of the op
erator C is rather arbitrarily fixed by the factor i in (12.24). Indeed, the choice of the 
phase does not inftuence at all our current investigations. Thus the charge-conjugate state 
of 'ljJ(x) is given by 

(12.25) 

where k is the operator of complex conjugation. According to (12.12) the wave equation 
for 'ljJe(x) differs from the wave equation for 'ljJ(x) (12.11) just by the sign of the charge. 
Thus it follows: 11 'ljJ(x) describes the motion 01 a Dirac particle with mass mo and charge 
ein a potential AIl(x), then 'ljJe(x) represents the motion 01 a Dirac particle with the same 
mass mo and opposite charge (-e) in the same potential AIl(x). The spinors 'ljJ and 'ljJe 
are charge conjugate 10 each other. With the relations (12.20), (12.25) and yT = ,2, it 
holds that 

('ljJe) = (h2'ljJ*(x»)e = iY(i,2'ljJ*(x»)* = "?y*'ljJ(x) = ,2"l,2T,°'ljJ(x) 

= "?,Ol,°'ljJ(x) = _,2,2,O,°'ljJ(x) = 'ljJ(x) , (12.26) 

that is 

(12.27) 

Thus the correspondence between 'ljJ and 'ljJe is reciprocal. Besides, we draw the following 
interesting conclusion about the expectation values of operators. Let 

(12.28) 

be the expectation value of an operator Q in the state 'ljJ. Then the expectation value of 
the same operator Q in the charge-conjugate stae 'ljJe is given by 

(Q)e = ('ljJeIQI'ljJe = J 'ljJjQ'ljJc d3x = J(i,2'ljJ*)tQi,2'ljJ* d3x = J 'ljJ*t,2t Q,2'ljJ* d3x 

= J 'ljJ*t,O,2,OQ,2'ljJ* d3x = - J 'ljJ*t,2,O,OQl'ljJ* d3x 

= - J 'ljJ*t,2Q,2'ljJ* d3x = - (J 'ljJt(lQ,2)* 'ljJ d3x) * 

= -NI,2*Q*l*I'ljJ)* = _('ljJ1,2Q*ll'ljJ)* . (12.29) 
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In this manner one easily proves the following relations (cf. Exercise 12.2): 

(a) (ß)e = -(13) , 
(b) (:e)e = (:e) , 

(c) (ai)e = (,),O,),i)e = (ai) , 
(d) (P)e = -(p) , 

(e) "pj"pe = "pt"p , 

(f) "pja"pe = "pta"p , 
(g) (E}e = -(E) , 

(h) (L)e = -(L) , L=rxp , 

(i) (J}e = -(J) , J=rxp+~E (12.30) 

Because the Hamiltonians of both Dirac equations (12.14) and (12.12) are given by 

A Ai(A e) A 2 H(e) == ca Pi + -;:;Ai + eAo + ßmoc 

A (A e A ) ßA 2 = ca· p - -;:; + eAo + mOc (12.31a) 

or 

A .( e) A 2 H(-e) == ca' Pi - -;:;Ai - eAo + ßmoc 

= ca· (p + ~A ) - eAo + ßmoc2 , (12.31b) 

one also deduces with the help of (12.29) the relation (cf. Example 12.3): 

(H( -e»e = -(H(e)) . (12.32) 

The results of (12.30) and (12.31) are quite interesting. Accordingly the charge-conjugate 
solutions "pe have the same probability density and probability current density in all space
time points (12.30e,f). Therefore the electric charge density and the electric current density 
for "p and "pe are contragredient. Equations (12.30) and (12.32) express the important result 
that a charge-conjugated state "pe has the opposite momentum and energy to the state "p. 
The relations of the hole theory expressed in (12.4) and (12.7) read in their most precise 
form: charge conjugation changes the sign 01 the momentum and energy. 

EXERCISE .................................................................. .. 

12.2 Expectation Values of Some Operators 
in Charge-Conjugate States 

Problem. Prove the relations (12.30). 

Solution. According to (12.9) the expectation value of an 
operator Q with regard to a charge-conjugate state "pe is 
given by 
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(Q)e = ("peIQI"pe) 

= - [J "pt(x)-y2Q*')'2"p(x)d3 x r 
= -("pllQ*ll"p)* . 

From this we conclude in particular: 
a) Q = ß = ')'0: 

(1) 



(ß)e = -(?jJI-l1'°1'21?jJ)* = (?jJI1'21'21'°I?jJ)* 

= -(?jJI1'°I?jJ)* = -NI1'°I?jJ) , 

and therefore 

(ß)e = -(ß) 

b) Q = aj = 1'01'i: first case (i = 2): 

(a2)e = -( ?jJll1'°( -1'2h 21?jJ) * 

= NI1'°1'21?jJ) = (a2) 

Second case (i = I, 3): 

(ai) e = - (?jJ 11'21'0( +,ih21?jJ) * = - (?jJ 11'0 1'21'21' i 1?jJ) * 

= _(?jJI1'i1'°I?jJ)* = +NI1'°1'i l?jJ) 
= (ai) , 

and therefore 

(ai)e = (ai) i = I, 2, 3 . 

c) Q =i:: 

(i:)e = - [J ?jJt(:z:)l(i:h2?jJ(:z:)d3x r 
= [J ?jJt(:z:):z:?jJ(:z:)d3x r 
= (?jJIi:I?jJ)* = (?jJIi:I?jJ) 

and therefore 

(2) 

(3) 

(i:)e = (i:) . (4) 

d) Q = p = (h/i)V: 

(P)e = - [J ?jJ t(:z:)l ( -~V )1'2?jJ(:Z:)d3X r 
= - [J ?jJ t(:Z:)~V?jJ(:Z:)d3x r 
= -Nlpl?jJ)* = -Nlpl?jJ) , 

and therefore 

(P)e = -(p) . (5) 

e) Because ?jJ t?jJ is areal number, the following holds: 

?jJd?jJe = (?jJ*t ,2t (-i) )<il?jJ*) = _?jJ*t ll?jJ* = ?jJ*t?jJ* 

= ?jJT?jJ* = (?jJ*T?jJ)T = (?jJt?jJ)T = ?jJt?jJ . 

From this we conclude that 

f) If we apply the identity 

?jJdai?jJe = ?jJ*t1'2tai1'2?jJ* = _?jJT1'21'01'i l?jJ* 

to the cases i = 2 

lfll=-lf=fl=~=-~ 
and i = I, 3 

1'21'01'i1'2 = 1'21'21'01'i = -ai = -a; , 

we get the relation 

?jJdaj?jJe = ?jJTa;(?jJt)T = (?jJtai?jJ)T = ?jJ*ai?jJ 

(6) 

because the expression in parentheses is an ordinary num
ber; hence (compare with b): 

?jJd &?jJe = ?jJ t &?jJ (7) 

g) Q = 17 = (~ ~): 

(Ej)e = -(?jJll Eh21?jJ)* , 

~) 

We get for i = 2 

and i = I, 3 

and therefore 

(Ei) = - ( ?jJ I (ur u~T) 1?jJ ) * 

= -NIE!I?jJ)* = -(?jJIEil?jJ) , 
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i.e. 

(Ei)c = -(Ei) (8) 

h) Q = L = ~ x p = ~ x MV: 

(L)c = - [1 tPt(z)"}'2 (~ x ~v)* ,2tP(z)d3x r 
=-[1 tPt(Z)(z x ~V)tP(Z)d3Xr 
= -(tPILltP)* = -(tPILltP) , 

i.e. 

(L)c = -(L) (9) 

i) Q = J: 
A A lA A lA 

(J)c = (J)c + l(.E)c = -(L) - l(.E) , 

i.e. 

(10) 
EXERCISE ______________ _ 

12.3 Proof of (H(-e»c = -(H(e» 

Problem. Prove the relation (H(-e»c = -(H(e» and 
interpret the result. 

Solution. From (12.31a) and (12.31b) we have 

H(e) = c&· (p -~A ) + eAo + ßmoc2 , (1) 

A (e ) A 2 H(-e)=c&· p+~A -eAo+ßmoc . (2) 

Using the relations derived in Exercise 12.2 we find 

(& . p)c = [1 tP t(z)( - ,2&*,2) ( -~v ) tP(Z)d3x] 

In Exercise (12.2b) we derived the relation _~&2,2 = 
"Y t ,Ot = & t. Therefore 

(&. P)c = -NI&t . pltP) = -Nlp· &tltP) 

= -(tPl&' pltP) , 

i.e. 
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(&. p)c = -(&. p) 

In addition, 

(e& . A)c = (e& . A) , 

(eAo)c = (eAo) . 

From (1) to (6) follows 

(H(-e»c = - c(& . P) + e(&· A) 

- (eAo) - (ßmoc2) = -(H(e» 

i.e. 

(H(-e»c = -(H(e» 

(3) 

(4) 

(5) 

(6) 

This result means that the negative energy solutions of the 
Dirac equation correspond to the charge-conjugate solu
tions of positive energy (and vice versa). In Exercise 12.2 
we derived that these solutions have opposite spin and 
momentum, properties which allow us to interpret the so
lutions of negative energy (charge e, spin 8, momentum p) 
as wave functions of particles with positive energy (charge 
-e, spin -s and momentum -p). Compare this with the 
discussion following somewhat later on charge conjugation 
of bound states! 
EXERCISE ______________ _ 

12.4 Effect of Charge Conjugation on an Electron 
with Negative Energy 

Problem. Examine in detail the inftuence of the transfor
mation 

A-T 2 * tPc = CtP = h tP 

on the eigenfunctions of an electron at rest with negative 
energy. 

Solution. A (free) electron at rest is described by the wave 
function (6.1). For an electron with negative energy and 
spin down U) we have 

tP4 = 1 (~) e+i(moc:2/n)t . 
y'27rh3 0 

1 

(1) 



The corresponding solution with positive energy and spin 
up reads 

( .1.4)c . 2.1.4* . ( ~ 
'f' = I, 'f' = 1 0 

-i 

o 
o 
i 
o 

o 

o 
o 

x ( I e+i(mocZ/ll)t)* 

v'27rli3 

= I (~) e-iCmocZ/ll)t=V;1 
v'27rli3 0 o 

(2) 

Similarly, for an electron with negative energy and spin 
up (j) 

V;3 = _1_ (~) e+iCmocZ/ll)t , (3) 
v'27rli3 I 

o 
we get the positron wavefunction for positive energy and 
spin down (1) 

(~3), =iN' =i (j : ; -D (D 
x ( I e+iCmocZ/ll)t)* 

v'27rli3 

= (-1) (~) 1 e-i(moJ/Il)t 

~ v'27rli3 
(4) 

Here an inessential phase factor (-1) appears. This ex
ample demonstrates explicitly the inftuence of charge con
jugation: The absence of an electron at rest with nega
tive energy and spin i (1) is equivalent to the presence 
of a positron at rest with positive energy and spin 1 (j). 
If there are no fields present, there is no difference be
tween electron and positron: From (2) and (4) one sees 
that the transformation of charge conjugation leads back 
to other electron solutions in the field-free case. This ex
ample makes the rather strange re-definition of the spinors 
w3 and w4 [see (6.56)] conceivable: An electron of nega
tive energy with spin i (1) corresponds to a positron with 
spin 1 (j). The v(x, s) spinors of (6.56) describe positrons 
with spin projection s. 

EXERCISE ______________ _ 

12.5 Representation of Operators for 
Charge Conjugation and Time Reversal 

Let ,I-' and ,1-" be two representations of the , matrices 
connected by a unitary transformation 

Problem. a) Show that 

C' = 0-IC(OT)-1 

(1) 

(2) 

where C and C' are the respective matrices for the trans
formation of charge conjugation. 

b) Are the relations 

A A -1 At AT. 2 ° C = -c = -c = -C = I, , 
also valid for C' ? 

c) Analogously free 

1'0 = i(I,3 

from the common representation of , matrices. 

Solution. a) If V; solves the Dirac equation 

(ili,1-'81-' - ~,I-' AI-' - moc) V; = 0 , 

the charge conjugated equation is 

(ili,1-' 81-' + ;,1-' AI-' - moc) v;c = 0 

(3) 

(4) 

(5a) 

(5b) 

Inserting the transformation (1) into (5a), one deduces the 
transformation for the wave functions as (,1-" = 0-1,1-'0) 

(6) 

and analogously 

V;6 = 0-1v;c . (7) 

The charge conjugated wave function follows from 

A-T 
V;c = Cv; . (8) 

With (7), (8) and the relation ,0* = ,0 = ,OT 

~T = (v;t,O)T = ,OTV;* = ,ov;* (9) 
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we obtain 

t/l~ = O-l(}~T = O-lC'"'(°t/l* 

Because of 

t/l'* = (O-l)*t/l* and tP* = O*t/l'* 

it is valid that 

t/l~ = 0-IC'"'(00*tP'* 

Further we obtain 

'"'(0'* = (0-1)*'"'(°*0* = (0-1)*'"'(°0* 

(10) 

(11) 

= OTl(O-I)T = (O-I'"'(OO)T = l'T (12) 

Now we use the unitarity of the transformation 0 

0-1 = ot == (OT)* , (13) 

so that (11) leads to 

t/l~ = 0-lclO*t/l'* 
= 0-IC(0*0*-lhoO*t/l'* 
= 0-ICO*(0*-1'"'(00*)t/l'* 
= 0-lcO*l'Tt/l'* 
= 0-ICO*(tPd'"'(O')T = 0-ICO*-;f,T 

Comparing this equation with the definition of C' 

(14) 

t/l~ = C'-;f,T (15) 

we immediately get 

C' = 0-IC(OT)-1 (16) 

b) We analyse the various relations (3) one after another 

C,T = [O-lC(OT)-I]T = O-lCT(O-l)T 

= _O-IC(UT )-1 = -C' . (17) 

This relation is thus conserved. For arbitrary unitary ma
trices 0, with 0 = 0*, we have on the other hand: 

c,t = [O-IC(OT)-I]t = [(OT)-I]tCt (O-I)t 

= OT CtO = _OT cO:/: C' , 

Cf* = OT C*O = OT cO:/: C' (C is real) , 

(18) 

(19) 

(20) 

(21) 

Remark. For real matrices 0(0 = 0*) all relations are still 
conserved. 

c) The operator of time inversion is defined by the 
equation 

t/lT(t') = Tot/l*(t) , (22) 

where tPT(t') is the time inverse transformed spinor with 
t' = -t. We will proceed analogously to a) and obtain 

t/lr(t') = 0-It/lT(t') = 0- ITot/l*(t) 
= 0-IToO*t/l'*(t) = Tot/l'*(t) , (23) 

Le. 

(24) 

12.2 Charge Conjugation of Eigenstates with Arbitrary Spin 
and Momentum 

Let tP(x) be an arbitrary plane wave with momentum p. We know how by use of the 
projection operators [see (7.8), (7.21)] to construct from t/l(x) plane waves of the four
momentum pi-' = {fpO, p} with pO = +cJ p'2 + moc2 and spin sll = {sO, s}, namely 

tPfpS(X) = (f]S2:;:c) C \'"'(sJ)tP(X) . (12.33) 
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These plane waves have positive or negative energy for f = ± 1, respectively and spin in 
the s direction. Because of 

and 

,J = (i"l,,2,,2,,3)T 

= i"3TlT"lT,,OT 

= i(_"3)(l)(_,,lho = i"0,,ll,,3 ="S 
= i,,0,,3 *"0,,0,,2*,,0,,0,, 1 *,,0,,0,,0*,,0 

[using (12.20)] 

= hO ,,3* "2*,,h ,,0*,,0 = -h3* ,,2* ,,1* ,,0* 

1· 0* h 2* 3* * 
= -" " " " = "S ' 

after charge conjugation (12.33) yields the state 

A-T A ° * ( 1/J EpS)C = C 1/J EpS = c" 1/J EpS 

= C"O (f'P+ moc)* (1 + "sJ)* 1/J* 
2moc 2 

= c"o(fp+moc)*(1 +"sJ)*(c"O)-l c ,,01/J* 
2moc 2 

From (12.18) we get 

C"O"I-'*(C"O)-l = -,,1-' , 
and, further, 

pI-'* = +pI-' , 

(12.34) 

(12.35) 

(12.36) 

(12.37) 

because only the momentum (a real number), not the operator of the momentum, appears 
in the projector [see (7.8)]. Therefore from (12.36), with the aid of (3.1) and with ,,0,,5/'0 = 
-"s, we get 

= (-fP+moC) (1 +,,sJ)c,,01/J* 
2moc 2 

=(-fP + moC)(I+"sJ)1/Jc . 
2moc 2 

(12.38) 

The charge conjugated solution 0/ 1/JEPS (12.33) thus has the same polarization 81-' but 
opposite energy and momentum (-fpl-') as the original solution. The latter fact is expressed 
by -fP = -f{pO, p}. The inversion of momentum and energy was expected, but (naively) 
so was the inversion of the polarization 81-'" To understand why the polarization is not 
changed under charge conjugation, let us remember (6.56), where the spin projection 
(polarization) of electrons with negative energy is indeed defined with inverted sign. The 
same is also expressed in (7.19) and (7.20). 
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12.3 Charge Conjugation of Bound States 

We now consider an electron in an attractive Coulomb potential: 

Ze2 
eAQ(r) = --

r 
(12.39) 

An electron state of negative energy corresponds via charge conjugation to astate of 
positive energy of a particle with the same mass mo but opposite charge (i.e. a positron) in 
the same potential or - which amounts to the same - astate of an electron in a repulsive 
potential. Oue to this correspondence the energy changes its sign, and, because of the ,2 
matrix in the operator e,O = i,2, the large (upper) and small (lower) components are 
exchanged under charge conjugation, but the densities and current densities remain the 
same. The spectrum of an electron in a repulsive potential is 

+mo.,z------------ --------
shown in Fig. 12.5c. It shows aseries of bound states (the 
same number as for an electron in an attractive potential -
case b) which lie near the lower continuum. Switching on 
the repulsive potential adiabatically, these bound positron 
states emergejrom the lower continuum; analogously to the 
bound electron states, which are pu11ed down from the up
per continuum while switching on the attractive potential 
(Fig. 12.5b). The positive energy continuum in the repul
sive potential corresponds exact1y to the negative energy 
continuum in the attractive potential. This has important 

-mo.,z---.--------.--------i 
(a) 

Fig.U.S. Energy spectrum of a 
Dirae electron in an attraetive 
Coulomb potential, a) free electron 
without potential, b) electron in 
an attraetive potential -Ze2/r, e) 
electron in a repulsive potential 
+Ze2/r 

(b) (c) 

consequences for the construction of the vacuum2 in the 
hole and field theory. Having defined earlier the vacuum state as a Dirac sea of negative 
energy states fi11ed up with electrons, we can now, because of the equality of electrons 
and positrons (charge conjugation symmetry), consider the vacuum as a "symmetrized sea 
0/ electrons and positrons" (see Fig. 12.6a below). A one-electron state is visualized in 
Fig. 12.6b. In this example the electron occupies the second strongest bound level. It is 
not distinguishable from a corresponding positron hole in its second strongest bound level 
(emerged out of the positron sea of negative energy into the gap -moc?:::; E:::; moc?). 
Both configurations exist equally beside each other. If they were distinguishable, then no 
particle-antiparticle symmetry (charge conjugation symmetry) would exist. The existence 
of this symmetry allows for the suppression of one half of the figures (usually the positron 
side) in Figs. 12.6a and b). 

We note that the vacuum state defined in this symmetrized form obviously has total 
charge zero, but infinitely large energy. The latter must be renormaHzed to zero, a subject 
that is tackled in Quantum electrodvnamics. 

From earlier studies (Exercises and Examples 9.6 to 9.9), we know that in this case . 
the spectrum consists of the positive energy continuum moc? < E< 00, of a number (more 
precisely an infinite number) of discrete bound energy levels with -moc2 < E < moc?, 
and of the negative energy continuum -00 < E < - moc? The bound states constitute 
the discrete energy levels in the energy gap between -moc2 and +moc? (see Fig. 12.5)~ 
The states of negative energy can be obtained from the states of positive energy by charge 
conjugation, and vice versa. One should realize one point very clearly: 

2 Refer also 10 Vol.4 of Ülis series: W. Greiner, J. Reinhardt: Quantum ElectrodYTUlmics (Springer, Berlin, 
Heidelberg), 10 be published. 
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Historical comment. It is amusing to read papers on the quantum theory of radiation3 • 

Trials were made, e.g., to identify the electron hole as a proton. A number of arguments 
were given to justify that the mass of a hole should be greater than the mass of the electron, 
even though they were predicted by the hole-theory to be equal. On the other hand, it 
should be possible, due to the hole-theory, that an electron and a hole annihilate, with 
the emission of two photons. This probability was calculated by R. Oppenheimer, P.A.M. 
Dirac and I. Tamm4 with the result that matter and antimatter annihilate each other in a 
very short time. However, when the positron was discovered, that which had previously 
meant the most serious difficulties became the greatest triumph of the theory. Indeed, the 
prediction of the existence of the antiparticle must be considered as one of the greatest 
successes of theoretical physics. 

12.4 Time Reversal and peT Symmetry 

In this section we want to investigate the time reversal transformation Ci' transformation) 
and show its connection with parity transformation and charge conjugation. Similarly to 
space reflection (parity transformation), time reflection is an improper Lorentz transforma
tion. Yet another symmetry is the gauge-invariance of the Dirac field "p, which interacts 
with the electromagnetic fields A~, and which is - as we know - ensured by the minimal 
coupling ß~ - (e/c)A~. However, we do not want to elaborate further on this point, be
cause for the present discussion it will be irrelevant. Later on, however (when considering 
the problems of renormalization in quantum electrodynamics) the gauge invariance will 
be very important. 

From (4.9) we already know the parity transformation or spatial reflection, which is 
represented by 

(12.40) 

with 

~' =-~ 

Tbe spinor "p/(~/, t) is usually referred to as spatial reflected spinor or spatially reflected 
wave function. In the case of plane waves the momentum, but not the spin is reversed 
under spatial reflection; exactly as one would expect for classical quantities. Tbe parity 
transformation has the following effect on the various operators: 

p~p-l = ~' =_~ (12.41a) 

(12.41b) 

PA ApA_1 AI A 
P = P = -p , (12.41c) 

3 For example, we recommend Fenni's paper: Rev. Mod. Phys. 4, 87 (1932), which was written bctween 
the formulation of the Dirac equation in 1928 and C.D. Anderson's discovery of the positron in 1933. 

4 I.R. Oppenheimer: Phys. Rev. 35, 939 (1930); P.A.M. Dirac: Proc. Cambr. Phi!. Soc. 26, 361 (1930); 
I. Tamm: Zeitschr. für Physik 62, 7 (1930). 
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Fig. 12.6. (a) Illustration of the 
"symmetrized" vacuum state, con
sisting of states of negative energy 
filled with electrons (x) and posi
trons (e). (b) Illustration of astate 
with an electron in the second 
strongest bound level, which is 
indistinguishable from a positron 
hole in the second strongest bound 
positron level 



(12.41d) 

P Ao(z, t)p-l = AQ(Z/, t) = Ao(z, t) , (12.41e) 

PA(Z,t)p-l = AI(Z/,t) = -A(z,t) , (12.41f) 

where 

Zl =-z 

The first four relations are immediately understandable, while the last two (12.41e,f) denote 
the sealar and vectorial nature of the potential Ao(z, t) and vector potential A(z, t), 
respectively. Applying the same arguments leading to (3.30), but now with the special 
parity transformation (12.40) yields 

(; - ; $. - moc) t/J(z, t) = 0 

( 0 . e 0 e . )A 11 I Po, + pi/I - ;Ao, - ;Ai(Z, t}fl - moc P- t/J (z ,t) = 0 

and after multiplying with P from the left 

A( 0 . e 0 e . )A 11 I P Po, + pi/I - ; Ao, -; Ai(Z, t}f' - mOc P- t/J (z ,t) = 0 

(Po'o + (+Pi)( _,i) - ;Ao,o - ; ( + Ai(Z, t»)( _,i) - moc) t/J/(Z/, t) = 0 

( AI 0 AI i e A' ( I ) 0 e A' ( I ) i ) .t'/( I ) 0 Po, + Pi/ -; 0 z ,t, -; i z ,t, - moc 0/ z, t = 

[pt - ; $./(Z/, t) - moc] t/J/(Z/, t) = 0 . (12.42) 

Sinee under the parity-transformation (4.1,4.2) 

AI A t ' = t , Po=PO , 

AI A I 
Pi = -Pi , z =-z 

Ao(:z:, t) = AQ(z/, t ' ) , A(:z:, t) = -A'(Z/, t ' ) 

one finally arrives at 

(t - ~ $.' - moc) t/J' (x', t /) = 0 

This means: The parity-transformed wave funetion tP/(Z/,t) = PtP(z,t) = tP/(-z,t) [see 
(12.40)] obeys the same Dirac equation as the original wave funetion tP(z, t). We say: The 
parity transformation Pleaves the Dirac equation anti all physical observables unchanged. 
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How does the parity invariance express itself physically? One can express this most 
simply by a sequence of observations of astate described by a wave function w(:c, t): 
These observations are registered on a film, but the pietures are taken via a mirror. In 
other words: The camera films the observation of astate w(:c, t) in aplane mirror (see 
Fig. 12.7). We then call the dynamies described by astate w(:c, t) parity invariant, if the 
events registered on the film as reflected images can also be possible direct observations 
of the state !li(:c, t); i.e. observations of the state without the mirror. From the observation 
of the events in the mirror image of the film, we must not be able to say whether we are 
looking at the picture of the mirror image. Both must be equally possible in parity-invariant 
dynamies. 

We remark that a mirror image is not identical with full spatial reflection, since -
as Fig.12.7b clearly shows - in the mirror only the z axis is reversed (i.e. the axis 
1- to the mirror plane). Around the lauer a rotation of 7r must be performed to obtain 
a full spatial reflection. However, such a rotation is a proper Lorentz transformation. 
The reflection described is thus a spatial inversion plus a proper Lorentz transformation 
(rotation). Since the theory (dynamics) is invariant under proper Lorentz transformations, 
the "mirror movie" yields exactly the information about parity invariance that we require. 

We now move on to discuss time rejlection and time-rejlection invariance. The phys
ical sense is also explainable with the film example. This time the film registers the 
observations of the state !li(:c, t) just in its time sequence: we do not need the mirror, 
instead we run the film backwards. One calls the dynamics time-reversa/ invariant, if 
the observations on the movie running backward, could have happened the same way on 
the forward running movie. It must not be possible 10 determine by watehing the filmed 
events, whether the movie is running forwards or backwards. In other words: Both the 
observations on the forward and backward running movie must be realizable in the state 
!li(:c, t). 

In our case of the Dirac theory the dynamics will be time-reversal invariant if, by 
performing the transformation 

t' = -t , :c' =:c , (12.43) 

the form of the Dirae equation remains unehanged; the interpretation must not be ehanged, 
either (cf. Exercise 12.6). Then, the transformed wave function 

(12.44) 

describes a Dirac particle which propagates backwards in time. This is physically possible 
if tP~(:c, t') also satisfies the Dirac equation. Equation (12.44) is a special case of the 
general definition (3.27) and the time inversion (12.43) is a special improper Lorentz 
transformation. T is an operator which acts on the spinor components, but not on space 
and time coordinates, a fact that should also be made evident in connection with the 
general scheme (3.27). 

Let us now construct the time-inversion transformation explicitly. Therefore we 
rewrite the Dirac equation in Schrödinger form: 

.~JNn(:C, t) HA ( ).1. ( ) }" &t = :c, t If/n :C, t 

= [ca. ( -ihV - ;A) + ,ßmoc2 + eAo(:I:, t)] tPn (:I: , t) , (12.45) 
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Fig.12.7. Illustration ofparity: The 
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cause of reftection) reversed. H the 
camera stood direclly beside (in 
front of or under) the state, one 
would get the pieture shown in b), 
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where n characterizes the spinor's quantum nombers. The time inversion of (12.45) is 
achieved by multiplying from the left by T: 

(12.46) 

The notation TiliT- 1 includes the possibility that the T operator may also contain complex 
conjugation. Since the time inversion as a special Lorentz transformation causes 

t' = -t , 

it folIows, together with (12.44), that 

A. A_l a, , A A A_l, , 
-TlliT ot' tPn(z, t ) = T H(z, t)T tPn(z, t ) (12.47) 

For tP~(z, t) = TtPn(z, t) the same Schrödinger-like Dirac equation should hold as for 
tPn(z, t) in (12.45); hence 

. a, , A , ./.' ( ') 

lli at' tPn(z, t ) = H(z, t )'f/n Z, t . (12.48) 

In case oftime-inversion symmetry one obviously has to demand that H(z, t') = H(z, -t) = 
H(z, t), and in this case an observer can, in principle, not distinguish between a forward 
and a backward running "movie". 

Now the comparison of (12.47) with (12.48) yields apriori two possibilities of pro
cedure: either we demand 

TiT- 1 = i and T H(z, t)T- 1 == H(z, -t) = -H(z, t) (12.49) 

or 

Ti'i'-l = -i and T H(z, t)T- 1 == H(z, t') = H(z, -t) J, H(z, t) (12.50) 

The latterpossibility is the only possible one, because the operatorequation T H(z, t)T-l = 
H(z, t) can be included into the general scheme (3.27) of symmetry transformations. In 
addition, the condition (12.49) T H(z, t)T- 1 = -H(z, t) would alter the spectrum of H 
by the time inversion in the special case of time-independent Hamiltonians, which can 
physically not be accepted. We also notice this fact if we look at the explicit form of 
H(z, t): 

H(z, t) = ca· (-iliV - ~A(z, t») + ßmoc2 + e.4o(z, t) . (12.51) 

The conditions (12.49) cannot be satisfied: The vector potential A(z, t) is created by 
electric currents j(z, t), which change sign under the transformation t -+ - t; therefore it 
holds that 

T A(z, t)T- 1 = A(z, -t) = -A(z, t) . (12.52) 

On the contrary the Coulomb potential is created by the electric charge density g(z, t), 
which remains unchanged under time inversion, and hence 

AAl 
T .4o(z, t)T- = Ao(z, -t) = Ao(z, t) . (12.53) 
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Furthennore we have 

1'V1'-1 = V and 1'z1'-1 = z , (12.54) 

because the application of l' does not effect the space coordinates. Therefore we see that, 
for example, the choice (12.49) would yield 

1'&1'-1 = & 

due to the tenn & . A(z, t). On the other hand the sign-change of the tenn & . iV would 
imply 

1'&1'-1 = -& . 

Obviously both conditions are contradictory and, as a consequence, only (12.50) remains 
as a valid choice: It can be satisfied consistently, because with 1'i1'-1 = -i it follows that 

1'H(z, t)1'-1 = 1'c&1'-1 . [(1'(-ili)1'- 1)1'V1'-1 - ~1'A(z, t)1'-1] 

+ moc21'ß1'-1 + e1' Ao(z, t)1'-1 

AAl [ e ] 2 AAA 1 = -Tc&T- . -iliV - ~A(z,+t) +moc TßT- +eAo(z,-t) 

= +H(z, +t) (12.55) 

[due to (12.50), (12.52) and (12.53], if 

1'&1'-1 = -& , 1'ß1'-1 = +ß (12.56) 

holds. Because of 1'i1'-1 = -i the operator l' must contain the complex conjugation 1<, 
and therefore we set 

(12.57) 

where the matrix 1'0 must still be determined. If we insert (12.57) into (12.56), then 

1'0&1'0-1 = -& or 1'o·i*1'o- 1 = -",./ 
1'oß1'o- 1 = ß or 1'0,°1'01 = ,0 . (12.58) 

Since only the matrix a2 is purely imaginary, allother matrices being real [see (2.13)], 
these conditions explicitly read 

AAl 

Toa3TO = -a3 , 
1'oß1'ol = ß . 

With the help of the commutation relations (2.8) it can be shown that 

1'0 = -ial a3 , 1'0-1 = ia3al 

(12.59) 

(12.60) 

satisfies these conditions, the factor i guaranteeing the unitarity of T. With ,0 = ß and 
,i = ßai [see (3.8)] the complete time-inversion operator can then be written as 
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(12.61) 

In addition, we mention that the time-inverted Dirac equation (12.48) is fonn invariant, 
too. This was our intention. Indeed it was fonnulated in that way, and the comparison of 
(12.48) with (12.45) shows this immediately. 

Next we want to prove that the time inversion transfonnation l' accords 10 the classical 
concept of time inversion. To that end we apply l' 10 a free-particle solution (a plane 
Dirac wave) with positive energy. We know how aplane wave with four-momentum 
pP = {epO, p} [pO is given by pO = +c (p2 + mö~ )1/2] and spin sJJ = {sO, 8} can be 
constructed (projected) from an arbitrary plane wave tPo:(x), with the help of the projection 
operators, namely [see (12.33)] 

tPEPS = ( e; ;:::c) (1 \,'15$) tPo:(z, t) . (12.62) 

For particles with positive energy one has to set f = 1, and the l' operator can act on this 
equation. With 1'tPo:(z, t) = tP~(z, t') = 1'OtP~(z, t) we get 

1'tPEPS = 1'( f;2~~c) C \,5$)1'-11'tPO:(Z,t) 

= 1'0 ( f;;:;OC) (1 + ;5$ *) 1'o-ltP~(z, t') 
= 1'0 (f;;:;OC )1'0- 11'0 C + ;5J*)1'o-ltP~(Z' t') 

= C;~::Oc) C +;5$')tP~(Z,t') (12.63) 

(because ,5 is real). In the last step, equation (12.58) was used and the four-vectors 

p' = {pO, _ p} and s' = {sO, - 8} (12.64) 

were introduced. These projectors yield a free solution with opposite direction of the 
spatial momentum p and the spin 8, if applied to the time-inverted plane wave tP~(z, t'). 
This is the so-called Wigner time inversion. It was introduced for the first time by Eugene 
Wigner in 19325• 

Now we want to see how the electron and the positron wave functions can easily be 
connected with the help of the time-inversion transfonnation. From our earlier consider
ations we know that the charge conjugate state tPc, which is obtained from the state tP 
by 

(12.65) 

(C = i,2,O), describes a particle with the same mass mo and the same spin direction 
(polarization), but with opposite charge, opposite sign of energy and opposite momentum 
[see, for example, (12.38)]. If tP(z, t) describes an electron with momentum p and negative 
energy, then tPc(z, t) describes a positron with momentum -p and positive energy, and 
both particles propagate forward in time. 

5 E.P. Wigner: Göttinger Nachrichten 31, 546 (1932) 
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Now we combine the parity operation l' [see (12.40)], the charge conjugation e [see 
(12.25)] and the time inversion l' (12.61) and construct the wave function 

?jJPCT(X/) = ptt?jJ(x) = pe"'l(t?jJ(~, t»)* 

= pe"l(i,l,3 k?jJ(~, -t' »)* = pe,O(i,l,3?jJ*(~, -t' »)* 

= _ipe,O,l,3?jJ(~, -t') = _iPh2,O,O,l,3?jJ(~, -t') 

= eil;' ,O,2,l,3?jJ( _~/, -t') = i eil;' i,O,li,3?jJ( _~/, -t') 

= i eil;' ,5?jJ( -x') (12.66) 

(here ,5 = i,O,l,2,3 was used). If ?jJ(~, t) is an eIectron wave function of negative 
energy, then ?jJ PCT is a positron wave function of positive energy, and this is effected 
by the charge conjugation e. Therefore, we can also read (12.66) as ?jJPCT(~, t) being a 
positron wave function with positive energy moving forward in time and space (positive 
t, positive ~). It is - up to a factor i eil;' ,5 - identical with an electron wave function 
of negative energy, moving backwards in time and space [negative t] and negative z in 
the argument of ?jJ( -z, -t) on the rhs in (12.66)]. For aplane wave with definite spin sI' 

and momentum pI' one can deduce this result explicitly. The plane electron wave with 
negative energy, momentum -p and spin -s is given by 

( -p+moc) (1-,5J)?jJ(_Z,_t) 2moc 2 
and moves backwards in space and time. If we apply the pet transformation (12.66), 
we obtain 

?jJ PCT(Z, t) = i ei l;"5 ( -~::oc) (1 -2,5J)?jJ( -z, -t) 
= (p ;:;~c) C + 2,5J} eil;' ,5?jJ( +z, +t) . (12.67) 

This is evidently a positron wave function (because of the charge conjugation) with positive 
energy po, positive momentum p and positive spin s, moving forward in space and time. 

EXERCISE .................................................................. .. 

12.6 Behaviour of the Current with Time Reversal 
and Charge Conjugation 

If the time inversion T is a given symmetry operation of 
the Dirac theory, then the roles for the interpretation of the 
wave function 

?jJ~(z, t ' ) = T?jJ(A~, t) , t' = -t (1) 

must remain the same for ?jJ~(z, t' ). This means that ob
servables consisting of bilinear forms of ?jJ~(z, t' ) and 
?jJ/~(Z, t ' ) must be interpreted (i.e. physically explained) 
in the same way as those with ?jJo:(z, t) and ?jJ~(z, t). Nat
urally this is valid only up to the expected behaviour under 

time revers al of the special observable. The following ex
amples will illustrate this. 

Problem. a) Prove that the following relation is valid for 
the current: 

'1 ( IV) _ 'I'( 1/) )1' X -) x . (2) 

Note: The indices on the Ihs are Iower indices (covariant 
indices) and on the rhs upper ones (contravariant indices). 
SimilarIy, show that 

(r)' = (r) , (p)' = -(p) (3) 
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b) Show also the behaviour of these observables under 
charge conjugation (;. Demonstrate especially that 

tj;c(xhll'IjJc(x) = +tj;(xhll'IjJ(x) 

and interpret this result. 

Solution. a) The operation of time reversal transforms a 
spinor 'IjJ(t) into a spinor 

'ljJT(t') = To'IjJ*(t) t' = -t (4) 

or 

(5) 

where the upper index "T' means transposition. In the 
usual representation of the '"'{ matrices [see (12.60,12.61)] 
one finds that 

(6) 

Since 

(7) 

is valid, it may easily be seen that 

TJ = _i .. ?t'"'{1 t = _i'"'{0'"'{3'"'{1'"'{0 = _i,",{0,",{0,",{3,",{1 

. 1 3 A = -1(-'"'{ '"'{ ) = To , (8) 

where we have used the commutation relations of the '"'{ 
matrices and 

1'0.1'0 = i'"'{1'"'{3i'"'{1'"'{3 = _'"'{1'"'{3'"'{1'"'{3 

= '"'{1 '"'{3 '"'{3 '"'{1 = 11 , (9) 

i.e. 1'0 is unitary and Hermitian. From (6) it follows that 

A 1 A 1 h 
To'"'{ To = -'"'{ = -'"'{ , 
To'"'{2To = '"'{2 = _'"'{2* , 

A 3 A 3 3* To'"'{ To = -'"'{ = -'"'{ , 
To'"'{oTo = l = '"'{o* , (10) 

because '"'{1, '"'{3, '"'{O are real and '"'{2 is purely imaginary, 
and we can simply write these four equations as 

T'"'{IIT = '"'{; . (11) 

Our task is 10 investigate for the current j~(x') the expres
sion 

256 

j!f.(x') = tj;T(t'hll'IjJT(t') , 

so we obtain from (4), (5) and (11): 

j!f.(t') = ('IjJ t (t')'"'{o )T,",{II'ljJT(t') 

= 'IjJ t (thoTo'"'{IITo'IjJ*<t) 

= 'ljJT(th°,",{;'IjJ*(t) = 'ljJa(t) [,",{o'"'{;Jaß'IjJ,ß(t) 

= 'IjJ,ß(t)['"'{o'"'{;J~a'IjJa(t) = 'ljJT*(t)'"'{!*'"'{°'IjJ(t) 

= 'ljJt(tht'"'{°'IjJ(t) = 'ljJt(tho'"'{lIl'"'{°'IjJ(t) 

= tj;(thll'IjJ(t) = jll(t) 

(12) 

(13) 

[in the last but one transformation we used (7)]. The time 
argument alone was noted in 'IjJ(z, t), 'IjJ(z', t'), because the 
position vector (z = z') remains unchanged under time in
version. The operators rand p commute with 1'0' because 
they do not carry spinor indices (they are proportional 10 

the unit matrix). For the position operator it holds, in par
ticular, that 

'IjJ~(t')r'IjJT(t') = 'ljJT (t)ToTor'IjJ*(t) 

= r'IjJT (t)'IjJ*(t) = r'IjJT*(t)'IjJ(t) 

= 'IjJ t (t)r'IjJ(t) (14) 

['ljJT(t)'IjJ*(t) is purely real], wherefrom (r)' = (r) follows 
immediately by integration. In the case of the momentum 
operator p = -iliV, we must explicitly write down the 
expectation value as an integral, in order to express c1early 
that p is Hermitian. Because of TopTo = p, one gets 

(p)' = J 'IjJ~(z, t')P'IjJT(Z, t')d3x 

= J 'ljJT(z,t)p'IjJ*(z,t)d3x 

= J ( - ihV'ljJt(x»)'IjJ(x)d3x 

= - J 'ljJt(x)(-ihV)'IjJ(x)d3x 

- ih J 'ljJt(x)'IjJ(x)dF 

surface of volume V 

= - J 'ljJt(x)p'IjJ(x)d3x +0 = -(p) (15) 

In the last but one line a partial integration has been per
formed, the surface term vanishing due to the general prop
erties of wave functions at infinity. 



b) For 6 = ir/'o, then, in analogy to (10) and (11): 

6'l6 = /,0 = /,0* , 

6,z6 =,z = -, .. ?* , 
6/,16 = _/,1 = _/,h 

6/,36 = _/,3 = _/,3* , 

6/,J1.6 = /'; , (16) 

which may be easily checked, so that 

'ljJc(x) = C/'°'IjJ*(x) , 

'ljJJ(x) = 'ljJT(xhOCt , 

and, further, 

ct = -C , C2 = -1 

Now we can write 

-:;j;c/'J1.'ljJc = 'ljJh°/'J1.'ljJc 

= 'ljJT/,°Ct/'O/,J1.C/,°'IjJ* 

= 'ljJT/,°C/,°CC/,J1.C/,°'IjJ* 

= 'ljJT/,O/,O/';/'O'IjJ* = 'ljJT/,;/,0'IjJ* 

= 'ljJ0: ( /'; /,0)0:0:' 'IjJ;, = 'IjJ T* /,0 /' t 'IjJ 

= -:;j;/, t'IjJ = -:;j;/,J1. 'IjJ , 

(17) 

(18) 

(19) 

which shows everything that is required. In the penultimate 
line care is needed since we have to interchange the order 
of 'IjJ* and 'IjJ. This is possible if one regards 'IjJ as the 
wave junetion of an electron or positron; however, if 'IjJ is 
regarded as a quantizedjield operator ~, then an additional 
minus sign appears, due to the fact that ~ and ~* are 
fermion operators, so that the charge conjugated eurrent 
operator reads 

. *,. ",J1..7. .= _ . *'.",J1..7. . • 'l'c I 'l'C· . 'I' I '1". , (20) 

where : ... : implies normal ordering>. We now have 10 
interpret the result (19) in the hole picture. If 'IjJ is the 
wave function of astate with positive energy, then 'ljJc is 
astate of negative energy which is already occupied in 
the vacuum, so that the corresponding current must not be 
counted, since the current density of the vacuum is defined 
to be zero. On the other hand, if we create a positron in 
that state, then this state will be empty and the current 
-:;j;c/'J1.'ljJc is missing, so that we have to ascribe the current 
density --:;j;c/'J1.'ljJc to the positron, which has the opposite 
sign as the corresponding charge density of the electron. 
From that we can conclude that electrons and positrons 
have opposite charges. 

6 See Vo1.4 of this series: W. Greiner. J. Reinhardt: Quantum Elec
trodynamics (Springer. Berlin, Heidelberg). to be published. 

The correctness of the interpretation given at the end of Exercise 12.6 can be explic
itly verified for the Dirac equation involving electromagnetic interaction. To do this we 
write the Dirae eigenvalue equation tor states with negative energy in the presence of the 
electromagnetic four-potential AJ1. = (Ao, A) as 

[& . (-iIiV - ~A ) + ßmo~ + eAo(x)] 'IjJ(x) = -E'IjJ(x) (12.68) 

and operate with the PCT transformation (12.66). Since under space-time inversion [x~ = 
-xJ1.' see (12.52) and (12.40)] 

PTAJ1.(x)(PT)-1 = A~(x') = +AJ1.(x) (12.69) 

is valid, then (12.68) transforms under PCT into 

PtT [&. (-iliV - ~A(z, t») + ßmo~ + eAo(z, t)] (PtT)-I(PtT)'IjJ(z, t) 
= -E(PtT)'IjJ(z, t) . (12.70) 
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This results in 

'IjJ PGT(X') = 'IjJ PGT( -:1:, -t) 

= PtT'IjJ(:I:, t) , 

PtTOiPtT)-1 = PtToiT-IC-l p-l 
= -Pto.~1 p-l 

I 

= -PoiP-l 
= Oi , (12.71) 

PtTV(PtT)-1 = -V == V' , (12.72) 

PtTß(PtT)-1 = -ß , (12.73) 

and therefore (12.70) becomes 

[&. ( - iliV' + eA'(x'») + ßmoc2 - eAÖ(x')]'ljJPGT(X') = E'ljJPGT(X') , (12.74) 

with x' = -x. 
If (12.68) was the Dirac equation for particles with charge e, rest mass mo and 

negative energy (-E) moving forward in space and time (:1:, t), then (12.74) is the Dirac 
equation for particles with charge -e, rest mass mo and positive energy (+E) moving 
backwards in space and time [in the argument of 'ljJPGT(X'), x' = -x = -{ct,-:l:}]. 
We can therefore interpret positrons as electrons of negative energy moving backwards in 
space and time. This important result serves as one of the fundamental concepts of positron 
theory,7 which was founded by Stückelberg and Feynman. In quantum-electrodynamical 
perturbation theory, which is based on it, we shall extensively both make use of, and 
recognize the great advantages of, this formulation8• 

Remark. The form of the interaction between the electron-positron field and the electro
magnetic field has been assumed to be 

(12.75) 

This followed as the simplest interaction which is gauge invariant, and it is equivalent to 

the interaction between electrons and the electromagnetic field which we know from the 
nonrelativistic limiting case. This interaction is G, P and T invariant (see Exercise 12.6). 
Whether or not these symmetries are realized depends on the actual interaction. As we 
know, an additional interaction with the magnetic moment of the form 

~a-l'v'IjJ(x )FI'V (x) (12.76) 

for spin-! particles with anomalous magnetic moment (g factor #:2 as for example for 
protons and neutrons), is in general necessary. This additional interaction also shows all 

7 E.C.G. Stückelberg: Helv. Phys. Acta 14.32L, 588 (1941); R.P. Feynm3lUl: Phys. Rev. 76, 749 (1949); 
ibid.769. 

8 See Vol. 4 of this series: Quantum Electrodynamics (Springer, Berlin, Heidelberg), to be published. 
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the symmetries mentioned above, as ean be easily verified. Extending the Dirae theory to 
other spin-! particles, for example p, mesons, and to other kinds of interaetions (e.g. the 
weak interaetion), the assumption that the C, p, and T symmetries are also valid suggests 
itself. 

This is an assumption whieh has to be verified by experiment, i.e. sueeess or failure of 
phenomena predieted by it. Lee and Yang showed9 that the symmetry of parity is no Ion ger 
valid in the weak interaetion; however, the mueh weaker assumption of Lorentz invarianee 
and the eonnection between spin and statisties (spin-! partieIes obey fermi statisties, spin
o partieIes obey Bose statistics)lO always guarantees the invariance of the interaction 
under the produet pCT. This is the famous PCT theorem, whieh was derived by R. 
Lüdersll • 

9 T D. Lee, C.N. Yang: Phys. Rev. lOS, 167 (1957). 
This will be extensively discussed in Vol. 5 of this series: Gauge Theory of Weak Interaetions (Springer, Berlin, 
Heidelberg), to be published. 

10 This will be discussed in Vol.4 of this series: Quantum E/ectrodynamics (Springer, Berlin, Heidelberg), 
to be published. 

11 R. Lüders: Kgl. DansIe Vid. Sels. Mat.-Fys. Medd 28, nO.5 (1954). 
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13. Klein's Paradox 

In the following we want to eoneem ourselves with the seattering of an eleetron with 
energy E and momentum p = pz at an infinitely extended potential step (Fig. 13.1). First 
we shall study this problem from the point of view of the one-particle interpretation of 
the Dirae equation and then, in Example 13.1, we shall look at the same problem using 
the framework of hole theory, understanding better the resulting situation, whieh looks 
paradoxical at first sight.1 

For the free electron we have (E/c)2 = ~ + m5~' whereas in the presenee of the 
eonstant potential, 

( E - VO)2 -2 2 2 
= P +moc 

c 
(13.1) 

is valid, where p denotes the momentum of the electron inside the potential. The Dirae 
equation and its adjoint then read 

{ E-eV A} ~ 81/J 
- ßmoc 1/J + ili L.J ak -8 = 0 , 

c k=l Xk 

3 -
-;j;{ E - eV _ ßmoc} +ili L 881/J ak = 0 

c k=1 Xk 

We now assume that 

eV= Vo 

eV =0 

for Z >0 , 

for z<O , 

and that the ineoming wave is given by 

1/Jj = Uj exp{ k(PZ - Et)} , 
so that, inserting (13.3) into (13.2a) and using a = a3, it follows that 

{ ~ - ap - ßmoc }Uj = 0 . 

Sinee we require Uj '" 0, then because of aß + ßa = 0 we eonclude that 

1 O. Klein: Z. Phys. 53, 157 (1929). 

(13.2a) 

(13.2b) 

(13.3) 

(13.4) 

261 

V(z) 

Vo 
I 

z 

Fig. 13.1. An electron wave prop
agates along the z axis and hilS a 
potential Step of strength Vo 



(13.5) 

and, moreover, due to our interest in the incoming electrons we choose E > O. The mo
mentum of the reftected wave must be -p, whereas the momentum P of the transmitted 
wave is given by (13.1). For sm all Vo, P is positive, so that in the first instance we can 
set 

tPr = urexp{ *(-pz - Et)} , tPt = Utexp{ *<Pz - Et)} 
and therefore, due to (13.2a) 

(13.6) 

{ ! + &p - ,877l{)C }ur = 0 and {E ~ Va - &p - ,8moc }Ut = O. (13.7) 

The total wave function must be continuous at the boundary, i.e. for z = 0 

Uj + Ur = Ut 

must be valid. From (13.4) and (13.8) therefore follows 

(! -,877l{)C) (Ut + ur) = +&P(Uj - ur) , 

and with (13.7) and (13.8) we get 

(! -,877l{)C)(Uj+ur) = (:0 +&P)(Uj+ur) 

Thus we have 

(~o + a p) (Uj + ur) = +ap(uj - ur) 

or 

{ :0 + &(p + p) } Ur = _ { :0 - &(p - p) } Uj . 

(13.8) 

(13.9) 

(13.10) 

(13.11) 

(13.12) 

We multiply both sides by Vo/c - &(p + p), which, because of &2 = 1 and with (13.1) and 
(13.5) leads to 

(2Vole)( -Eie + &p) 
Ur = Vilcl _ (p + p)2 Uj == rUj (13.13) 

Analogously we find for the adjoint amplitude 

U! = rut ' (13.14) 

i.e. 

t _ ( 2VoIc )2 t ( E ~)2 
urur- 2.' . 2 Uj --+ap Uj , 

Vo/c- - (p+p) C 
(13.15) 

so that using the identity 
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t PC2 
cu· aUl· = - U~ Ul· 

1 E 1 
(13.16) 

(which can be easily derived from the equations of motion for ut and Uj) it follows from 
(13.15) that 

t ( 2VoIc )2{(E2 2) t 2Ep t~ } urur = 2-' 2 -, + P Uj Uj - --Uj eWj 
Vo/c--(P+P) c- c 

_ ( 2VOmo )2 t . _ t. 
- 2' 2 u j u1 = RUj u1 • 

l-ij/c- - (p+P) 
(13.17) 

Thus the quantity R is the fraction of electrons which are reftected: For Vo = 0, R = 0, 
whereas for Vo = E - moc2 [Le. p = 0, from (13.1)], R = 1, and all electrons are reftected. 
If Vo increases still further WO> E - mo~), then p becomes imaginary. Then we set 

"pt = Utexp{ -p,z - i~ t} , (13.18) 

where p, is now areal quantity. p, must be greater than zero, since otherwise the dens~ty 
on the rhs of the barrier would be infinitely large for z -+ 00. On the other hand, because 
of (13.6), p = +i1ip" Le. for (13.13) we get 

(2VoIc)(E/c - ap) 
---:-~---...;...".u· 
Vo2/Cl _ (P + inp,)2 1 , 

Ur = (2VoIc)(E/c - ap) t 
--;:;:-";:-----=--'::-u· 
VJ/Cl - (P - inp,)2 1 

(13.19) 

and therefore 

t (2Vo/c)2(E2/~ - p2) t 
Ur Ur = [(VoIc + p)2 + p,2Ji2][WO/c _ p)2 + p,2Ji2] Uj Uj 

(13.20) 

Using (13.1) and (13.5) we conclude that 

-2 2 Vo(2E - VO) 
p =p -

c2 
(13.21) 

Le. since p2 = - p,2 tl-, 

(~ ± p y + p,2 tl- = 2 ~o ( ~ ± p) (13.22) 

and therefore ut Ur = ut Uj • 

This means that the reftected current is equal to the incoming one. Behind the bound
ary there is an exponentially decreasing solution for the wave. Due to (13.20) the condition 
for that case is p2 < Vo(2E - Vo)/~, and for increasing Vo this condition is fulfilled as 
soon as Vo exceeds the value E - c(E2/~ - p2)112 = E - mo~. If Vo increases further, 
then, due to (13.21), p, first increases, reaches its maximal value for E = Vo and then again 
decreases, becoming zero for Vo = E + mo~. For still greater values Vo > E + moc2, p 
again assurnes real values, so that (13.13) and (13.17) are again solutions of the problem. 
However, in this region the kinetic energy E - Vo is negative, so that this is a classically 
forbidden situation. The group velocity, which due to (13.16) and (13.1) is given by 
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Vgr = E - VO P , (13.23) 

therefore has the opposite direction as the momentum P in this region if we choose p > O. 
Since the group velocity is the velocity of the moving wave packet, it looks as if the 
transmitted wave packet came in from z = +00; on the other hand this contradicts the 
condition which only allows an incoming wave packet from z = -00. We thus have to 
choose p< 0 [Le. the negative sign of the root in (13.1)]. However, this condition is not 
inc1uded in the Dirac equation, but is forced upon us by the physical boundary conditions2• 

In the discussion given by Bjorken and DreIP this has not been taken into account, the 
reflection coefficient reading 

R = (1- r)2 
(1 + r)2 

with 

p E+ moc'l 
r = - ----=--__;:" 

pE - Vo+moc2 

(13.24) 

(13.25) 

For Vo > E + moe2 the fraction indeed becomes negative, but r always remains greater 
than zero, because we have to choose p < 0 due to the boundary conditions. Hence for 
the reflection coefficient we always have R ~ 1 and not, as given by Bjorken and Drell, 
R>1. 

We thus have seen that for 1'0 > E + moc'l a fraction of the electrons can traverse 
the potential barrier by transforming the original positive value of the kinetic energy to a 
negative one. The group velocity of the tunneling electrons is, due to (13.1), given by 

c'l - V (m0c2)2 
Vo - E Ipl = e 1 - Vo - E ' (13.26) 

which for Vo = E + moc'l is just zero and for 1'0 -+ 00 approaches the velocity of light. 
When Vo = E+moc'l, the reflection coefficient from (13.17) is just R = 1 (total reflection); 
it decreases for increasing Vo down to the value 

. (Eie - p) 
a = Rmin = hm R(Vo) = (EI) (13.27) 

Vo-oo e+ p 

for Vo -+ 00. The corresponding fraction of electrons travelling through the boundary 
surface is thus 

ß= 2p , 
E/c+p 

(13.28) 

where ß is called the transmission coefficient and a + ß = I! For p = moe (Le. electrons 
with a velocity 80% that of light) we get with (13.5): ß ~ 2/(21(1 + 1) I'V 0.83, Le. 83% of 
the incoming electrons penetrate the potential barrier. This large transmission coefficient 
also remains for Vo not approaching infinity but only several rest masses. Calculations 
by F. Sauter4 using a smoothed potential edge have shown that this large transmission 

2 H.G. Dosch, I.H.D. lensen, V.L. Mueller: Phys. Norv. S, 151 (1971). 

3 1.0. Bjorken, S.o. Drell: Relativistic Quantum Mechanics, ed. by L. Schiff, International Series in Pure 
and Applied Physics (McGraw-Hill, New York 1964). 

4 F. Sauter: Z. Physik 73, 547 (1931). 
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coefficient, which is classically not understandable at all, does not occur if the width of 
the increase from V = 0 to V = Vo is of the order of the Compton wavelength, i.e. 

Ii. 
d~

moc 
(13.29) 

This unexpected largeness of the transmission coefficient is known as Klein' s paradox, 
and its interpretation given here is completely that of a single particle. In the framework 
of this representation it is not necessary at all to consider pair production (as has already 
been done by Bjorken and Drell at this level), though we shall see in connection with the 
hole theory that the boundary conditions change (no wave coming in from z = +00), that 
is we do not have to demand p< 0 any longer (see the following Example 13.1). 

EXAMPLE ................................................................ .. 

13.1 Klein 's Paradox and the Hole Theory 

The hole theory becomes important if one wants to de
scribe the behaviour of a particle wave striking a potential 
barrier with Vo > moc? + E. 

The Dirac equation for aplane wave moving in the z 
direction with spin up is: 

a) for region I (see figure below) 

v 

Electron wave and potential barrier 

(ca3Pz + ßmoc2 )t/J = Et/J 

b) for region II 

(ca3Pz + ßmoc2 )t/J = (E - Vo)t/J , 

with solutions 

® 

z 

(1) 

(2) 

(3) 

(4) 

Decisive for the explanation is the fact that for Vo > E + 
moc2 the momentum P2 becomes real again, allowing for 
free plane waves to propagate in region II. This can only be 
understood by the existence of a second energy continuum 
corresponding to the solutions of the Dirac equation with 
negative energy (see below). From the impacting wave (3) 
one part is reftected (maintaining energy and momentum 
conservation): 

t/Jf = C ( -glc ) e-iplZ/1i (5) 
E+moc2 

o 
and the other part propagates further (4). We must require 
at z = 0 that the wave functions be equal inside and outside 
the potential (this does not mean continuity!): 

t/JI(Z = 0) + tPf(z = 0) = t/Jn(z = 0). (6) 

From this the equations determining the various coeffi
cients follow: 

A+C=B and (7) 

A - C = _B P2 E+moc2 

PI Vo - E - moe2 
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=-B 
(Vo - E + Tn{)c2) (E + moc2) 

-;'-"'-------'--:::-i--;---_+__ =' - B"{ 
(Vo - E - Tn{)c2)(E - m oc2)' . 

(8) 

Thus we have 

(7) + (8) => A = ~(1 - "{)} => c = 1 + "{ (9) 

(7) - (8) => C = ~(1 + "{) A 1 - "{ 

and 

B 2 
-=--
A 1- "{ 

With the expression for the particle current 

i(x) = ctP t(x)&tP(x) 

and 

tPl eil = A* (0, E :~oc2 ' 0, 1 )e-iP1ZIA 

./.t A = A* (P1 C 0 1 0)e-iP1ZIA 
'f/I Q 3 E ?'" , +mOc-

follows 

. AA* 2P1 Cl 
JI= E+moc2ez 

Correspondingly 

,.. * 2P1 Cl 
JI = -cc E + Tn{)c2 e z , 

. * 2P2Cl 
Jn = -BB Vo _ (E + moc2) ez 

Thus the ratios of the currents h in (9) is real] are 

IJ11 (1 + ,)2 
liII = (1 - "{)2 

linl 4 4"{ 
liII = (1 - "{)2 1 - "{I = (1 - "{)2 

It can be seen from (8) that "{ > 1, leading to 
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(10) 

(11) 

(12) 

(14) 

(15) 

(16) 

(17) 

(18) 

lifl > liII . (19) 

This result corresponds to the fact that the ftow of in is 
in the (-z) direction, i.e. electrons leave region II, but 
according to our assumptions up to now, there are no elec
trons in there anyway. Areinterpretation is thus necessary, 
and in doing this the solutions of negative energy formally 
derived previously are treated seriously; thus there exist 
two electron continua: 

To prevent the transition of all electrons 10 states 
of negative energy one has to require that all electron 
states with E< - moCl are occupied with electrons (see 
Chap. 12). This hypothesis permits the following explana
tion: The potential Vo > moc2+ E raises the electron energy 
in region II sufficiently for there to be an overlap between 
the negative continuum for z > 0 and the positive contin
uum for z < O. In the case of Vo > Tn{)Cl + E the electrons 
striking the potential barrier from the left are able to knock 
additional electrons out of the vacuum on the right, lead
ing to positron current ftowing from left to right in the 
potential region. 

From this notion it is understandable that there occur 
free plane wave solutions in region II given by (4) (see 
following figure), called positron waves. Furthermore, ac
cording to the hole theory, the negative continuum states 
are occupied, so that it is now possible to understand the 
sign of in in (17) by assuming that the electrons entering 
region I are coming from the negative continuum: Corre
spondingly the relation 

• 'r • (1 ICI2) . -4"{. (20) JI + JI = JI - IAI 2 = JI (1 _ "{)2 = Jn 

holds. Since the holes remaining in region II are interpreted 

v 

Energy levels of the free Dirac equation 



v 

t-r---t--r--r--r--Vo - mod1 

moc2 E 

as positrons, it is possible to describe this effect in an al
ternative manneT: The phenomena described above can be 
understood as electron-positron pair creation at the poten
tial barrleT (as shown in the figure below) and is related to 

the decay of the vacuum in the presence of supercritical 
fields.s 

S This is discussed by ]. Reinhardt, W. Greiner: Rep. Prog. Phys. 40, 
no.3, 219 (1977); and is covered in more detail in W. Greiner, B. Müller, 
J. Rafelsld: Quantum Electrodyruunics 0/ Strong Fields (Springer, Berlin, 

Energy continua of the Dirae equation at a potential barrier Heidelberg 1985) 
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14. The Weyl Equation - The Neutrino 

In 1930 W. Pauli postulated the existence of the neutrino in order to guarantee the energy 
and momentum conservation for the weak interaction, which at that time seemed to be 
violated in the ß-decay experiments. Since the energy of the neutrino could not be deter
mined even in the most sensitive measurements of the ß decay of nuclei, the interaction 
of this postulated particle with matter must be extremely small. For example, it must not 
have electric charge, and accordingly, mass and magnetic moment must be assumed to be 
nearly vanishing, or even zero. The particle was named "neutrino" and abbreviated by "v". 
Because of the relativistic mass-energy relation, a particle with rest mass m/l = 0 moves 
with the velocity of light. The experimental upper bound for the rest mass of the electronic 
neutrino is about a few electron volts and thus less than a thousandth of the electron' s rest 
mass. Therefore the assumption m/l = 0 seems to be reasonable. Further experimental ob
servations of the angular momentum balance during ß decay showed that the neutrino has 
spin i. Consequently the Dirac equation for mo = 0 should be the fundamental equation 
of motion for the neutrino. 

Neutrino and photon can be regarded as equal as far as charge, magnetic moment, 
mass and velocity are concemed, the main difference between the particles being, respec
tively, the half-integer and integer half-integer spin. There is also a difference between 
the neutrino v that occurs in ß+ decays and the antineutrino v that is emitted during the 
ß- decay. Historically the existence of the neutrino can be experimentally proved as an 
outcome of the ß decay (ß- decay) through the recoil of the atomic nuc1eus in the reaction 

n-+p+e- +v . 

Further, the inverse ß decay (ß+ -decay) can be initiated by the neutrino and observed in 
experiments: 

p+v-+n+e+ 

Another empirical property which has been found by accurate studies of the inverse ß 
decay is that the antineutrino always has the same distinct spin orientation compared to its 
momentum direction. Assuming in the calculations that the spin of the antineutrino can be 
oriented parallel as weIl as antiparallel to its momentum results in theoretical cross-sections 
half as large as the experimental values. Precise experimental analyses have shown that 
the spin of the neutrino is antiparallel and the spin of the antineutrino is parallel to its 
momentum direction (see Fig.14.1). This is the basic phenomenon of parity violation: If 
parity was conserved, neutrinos as weIl as antineutrinos must exist in nature with both spin 
directions. Finally, in this short introduction we mention that there are different kinds of 
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neutrinos, which can be related to electrons, muons and tauons by their specific behaviour 
in weak-interaction processes'. 

In 1929 Hermann Weyl proposed a two-component equation to describe massless 
spin-! particles2 , but the Weyl equation violates parity invariance and therefore it was 
at first rejected. Then, after parity violation of the weak interaction was experimentally 
proved, in 1957 Landau, Salam as weH as Lee and Yang took this proposal3 and regarded 
the Weyl equation as the basic equation of motion of the neutrino. 

We first consider the Dirac equation of a particle with mass mo = 0: 

n a: = ca . ptJi(x) , (14.1) 

and this equation no longer contains the /J matrix. The anticommutation relations for the 
three matrices 0:1, 0:2 and 0:3, 

(14.2) 

can be satisfied by the 2 x 2 Pauli matrices Uä. Merely the necessity of constructing 
/J as the fourth anticommuting matrix requires the introduction of 4 x 4 matrices, and 
the necessity of describing particles with spin-! by two spinors is obviously connected 
with the particles' masses; therefore this reason disappears if the mass is zero: The wave 
equation of such a particle can be set up with only one spinor. 

The wave equation for the two-component amplitude cp(+)(x) describing the neutrino 
reads 

ßp(+) 
in-- = cu . pcp(+)(x) 

8t 

or, after dividing by in, 

ßp(+) 
fit" = -cu· VCP(+)(x) , 

(14.3) 

(14.4) 

where Ui are the 2 x 2 Pauli matrices. The plane-wave solutions of the Weyl equation are 
given by 

with 

cp(+)(x) = I e-ip.zlh u(+)(p) 
J2E(27r)3 

p = {po, p} = { ~, p} x = {XO' :c} and 

p . x = POxo - P . :c 

(14.5) 

(14.6) 

Following the plane-wave solutions for electrons, the neutrino wave functions are normal
ized in such a way that the norm remains invariant under Lorentz transformations (see 

, The theory of weak interactions is extensively discussed in Vol. 5 of this series: Gauge Theory 0/ Weak 
Interactions (Springer, Berlin, HeideU>erg), to be published. 

2 H. Weyl: Z. Physik 56, 330 (1929). 
3 L. Landau: Nucl. Phys. 3, 127 (1957); T.D. Lee, C.N. Yang: Phys. Rev. lOS, 1671 (1957); A. Salam: 

Nuovo Cimento 5, 299 (1957). 
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Chap.6). u(+)(p) is a two-component spinor which satisfies the equation 

POu(+) = iT . pu(+) (14.7) 

This relation is of special interest, since we note that due to (14.7) the solution for a given 
sign of energy PO corresponds to a certain orientation of the spin lT with respect to the 
direction of motion p. By applying the helicity operator iT . pllpl to both sides of the 
equation and using the relation 

(iT . A)(iT . B) = A . B + iiT . (A x B) , 

we get (iT . p)2, and therefore 

(p5 - p 2)u(+) = 0 , 

so that only non-vanishing solutions for u exist if 

PO = ± Ipl 

(14.8) 

(14.9) 

is valid. This is naturally the relativistic energy of massless particles, and here it again 
follows that neutrinos move with the velocity of light. But, of course, this result was 
already implied in our initial demand that the massless particle has non-zero energy. In 
the common representation of the Pauli matrices, with the z axis in the p direction, the 
solution of (14.7) reads 

(14.10) 

This solution describes right-handed massless particles with spin in the direction of motion. 
By this we mean 

iT . p (+) _ A ( 1) _ ( 1 ) Ipl u - O'z 0 - + 0 (14.11) 

or, literally: The helicity operator has a positive eigenvalue, the spin is directed parallel to 
p, which corresponds to a right-handed screw if we look in the direction of motion (i.e. 
in the direction of pIlpI), and which is illustrated in Fig. 14.2. 

For states with positive energy <PO = +Ipl) the wave equation (14.3) only has waves 
of positive helicity as solutions. With (14.7) and the aid of (14.9) we see immediately 
that we have the reverse result for states with negative energy (po = -Ipl); there, the 
wave equation (14.3) only contains waves of negative helicity as solutions. This remains 
valid even in the hole theory, where a wave function with negative energy, negative 
momentum, and negative spin direction is interpreted as an antiparticle with positive 
energy, positive momentum, and positive spin direction. This assignment of ±po {:} 
particles, antiparticles to the helicity is contrary to the requirement of the experiments 
dealing with weak interactions (see Fig.14.1). 

To describe left-handed massless particles, we must obviously start with the equation 

a~(-) 
in-- = -ciT· ~(-)(x) 

at 
(14.12) 

Replacing iT by -iT also yields a realization of the commutation relation (14.2), so that 
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Fig.14.2. The spin of the mass
less particle described by the wave 
equations (14.3) or (14.7) points in 
the direction of p. corresponding 
to a right-handed screw. By con
vention the helicity of the particle 
fT • P/IPI = +1. A neutrino can
not be such a particle. because i t is 
known from experiments that the 
neutrino has helicity -1 



(14.12) is then a possible Dirac equation for massless spin-~ particles, in the same way 
as (14.3). With the ansatz 

(14.13) 

we find 

POu(-) = -Er· pu(-) , with (14.14) 

(14.15) 

In (14.14), PO = EIe can again be either positive or negative. We call solution (14.13) 
a neutrino state, because, as already mentioned repeatedly, the experiments show that 
neutrinos appear only as left-handed particles (with negative helicity). In this state the 
spin is antiparallel to p and can be represented by a left-handed screw (see Fig.14.1). 
For the antineutrino state <PO < 0) we have the opposite case, the particle is right-handed. 
Results achieved in ß-decay experiments show that the neutrino always moves antiparallel 
to its spin direction. This means that the helicity or longitudinal polarization of a neutrino 
with positive energy is negative, while the helicity of a neutrino with negative energy is 
positive. The solution with PO = -Ipl yields a spin parallel to p and can be represented 
by a right-handed screw. 

On the other hand the helicity of a particle with positive energy, described by (14.4), 
is also positive. Therefore, this particle of (14.4) may be identified with the antineutrino of 
(14.12). As already mentioned, according to the interpretation of the negative energy states 
within the hole theory, the antineutrino has a momentum which is opposite to the empty 
negative energy state, and also the spin flips. Therefore, the relation between spin direction 
and momentum of the antineutrino is represented by a right-handed screw according 10 

(14.14). The massless antiparticle which belongs to (14.3) or (14.7), respectively, has 
negative helicity; it obviously behaves exact1y like the neutrino described by (14.14). 
Nevertheless, it should be mentioned that stating that the neutrino (antineutrino) is always 
left-handed (right-handed), only makes sense if the rest-mass is exact1y zero. Otherwise a 
Lorentz transformation, which transforms a left-handed particle into a right-handed one, 
can always be found. 

To derive the neutrino current we rewrite (14.12) as 

1 ~(-) 
- -- - Er . V~( -) = 0 
e ßt 

(14.16) 

Combining the unit matrix and Er to form a four-vector uJ.I = {n, + Er}, we can write the 
Weyl equation in a more compact way: 

(14.17) 

and the Hermitian conjugate equation reads 

(14.18) 

We multiply the first equation from the left by (~(-»)t, the latter one from the right by 
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~( -) and then add both equations. As usual this yields 

Vl-'(~(-»)tal-'~(-) =0 , 

which is a continuity equation with the four-current 

jp = (~(-»)tap~(-) . 

Its space and time components are 

j = _(~(-»)tu~(-) , 

(! = (~(-»)t~(-) . 

(14.19) 

(14.20) 

(14.21) 

(14.22) 

The normalization constant of the neutrino wave function can be derived from the integral 
with positive definite density (!, if we require that 

(14.23) 

By considering various types of interactions, neutrinos can appear together with other spin
! particles which have a finite mass and therefore are described by four-component wave 
functions. To have a unified description in such cases, it is appropriate to also introduce 
a bispinor wave function for the neutrino. To provide the connection between the two
component solutions of the Weyl equation with the already known four-component electron 
spinors, we go back to the Dirae equation for a particle with rest mass mo. However we 
choose a different representation of the Dirae matrices Q and 13, namely 

A (ai 
O!i = 0 -~J (14.24) 

A ( 0 ß= -n -~) (14.25) 

One proves immediately the anticommutator relations of the Dirac matrices: 

( a. 
- I - 0 

0) (a. 
-aj + ci 
o ) A A A A = 215i· , er.er.+er.er. J 

I J J I 

(14.26) 

-n) ( 0 o + -n -n) (ai 0) o 0 -ai 

= (~ 
eri 

~i)=O . (14.27) 

This representation has the disadvantage that the four-eomponents of the bispinor do 
not split up into small and large eomponents in the non-relativistie limit. However, as 
neutrinos have at least approximately zero rest mass and are therefore relativistic particles, 
this dis advantage is in practice insignificant In this representation, with the help of the 
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two-eomponent notation 

(
4)(+) ) 

rp= 4>(-) 

the Dirae equation ean be split up into 

()q;(+) 
i1i.-- = -i1i.cu· '\14>(+) - moc24>(-) 

8t 

i1i. ()q;(-) = i1i.cu· '\1q;(-) - moc2q;(+) 
at 

= -cu· Pq;(-) - mo~q;(+) . 

(14.28) 

(14.29) 

(14.30) 

Note that the upper and the lower eomponents of rp are coupled by the mass term. In the 
limiting ease mO -+ 0 two d.ecoupled two-component equations are obtained, eorresponding 
to the respective Weyl equations. Then q;(+) describes right-handed and q;(-) left-handed 
massless particles. Because of the fact that in nature neutrinos or antineutrinos appear only 
with adefinite helicity, we must require that in the four-component description two of the 
eomponents vanish. This is aehieved by applying the projection operators 

(14.31) 

to the spinor rp of (14.28). In the representation used here (14.24) and (14.25) 1'5 is 
diagonal, and with 1'5 = i.,,01'11'21'3 = 1'5 it follows that 

1'5 = (g ~n) 
Thus we get 

rp(-) = ~(n -1'5)rp = (4)~-) ) 

Also, by applieation of rs = n, one evidently gets 

1'5rp(-) = -rp(-) , 

(14.32) 

(14.33) 

(14.34) 

(14.35) 

(14.36) 

Equations (14.33) and (14.34) are in agreement with the Dirac equation only in the ease 
that the particle mass is exaetly zero, i.e. only then are rp(+) and rp(-) solutions of the 
Dirae equation. Indeed y antieommutes with all l' matriees and it obviously eommutes 
with the mass term. Henee, for vanishing rest mass mo, rp(+) and rp(-) are eigenfunetions 
of the Hamiltonian, the helieity operator and of 1'5. 
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The two-eomponent Weyl theory is thus equivalent to a four-component Dirae rep
resentation. However, in the framework of the Weyl equation, the distinetion between 
particles and antiparticles is superftuous. The two possible states of the neutrino are only 
eharaeterized by parallel and antiparallel orientation of the spin with respect to its mo
mentum. 

Now, we want to analyse the non-invarianee of the two-component theory under 
parity transformations. Let us have a look at the two-component equations (14.3) and 
(14.7). By performing aspace inversion (p -+ - p, :I: -+ -:I:, fT -+ fT) astate with the 
energy PO = Ipl, momentum p and helicity fT . p/lpl = 1 will be transformed into astate 
with PO = Ipl, momentum -p and helieity -1. Such astate, though, does not exist in this 
two-eomponent theory of massless spin-~ particles. 

There is another way to reeognize the non-invarianee of a two-eomponent theory for 
spaee inversion. p is apolar vector, fT is an axial vector and thus fT . p is a pseudosealar 
under inversion. This is also obvious from (14.35) and (14.36) whieh give rise to 

(14.37) 

As the left-hand side is a pseudosealar density while the right-hand side is a sealar density. 
Thus helicity eigenstates are no parity eigenstates. The wave equations (14.29) and (14.30), 
which contain the mass mo, are symmetrie with respect to reftection. In the description 
of a particle by only one spinor this symmetry gets lost. This symmetry, though, is not 
essential, beeause the refteetion symmetry need not be a universal property of nature. Re
ftection symmetry only exists if the particle is replaced by the antiparticle simultaneously. 
Equations (14.29) and (14.30) are in fact invariant under:l: +-+ -:I: and !p.(+) +-+ !li'(-). The 
situation might be further elarified by observing that the mass term in the Dirae equation 
mixes the two helicity states while the kinetie terms eonserve it 

!P(~ - e $. - moc) 1 ~ ,5 !p(±) 

= !pt,o [1 i ,5 ~ _ e $.) _ 1 ~ ,5 moc] !p(±) 

= [ (1 ~ '5) !p] t ,o(~ _ e $.)!P(±) _ [1 i ,5 !p] t ,0 mo c!p(±) (14.38) 

Left- and right handed fermions are thus strongly eoupled if they have non-vanishing 
mass. 

Finally we eonsider the angular-momentum representation of the Weyl equation. With 

4i(+) = <jJ(+) e-iEtlA , (14.39) 

then from (14.4) we get 

lifT . V<jJ(+) = iPO<jJ(+) (14.40) 

The operators )2 and}z eommute with fT· V, while 12 does not. Aeeordingly, the angular 
momentum representation of the neutrino and antineutrino wave funetion, respectively, 
contain spherieal spinors x± "',po As we have already learned from the diseussion of 
eleetron wave functions including the coupling to external fields (see Chap.9), the spin
orbit operator fT . 1 also does not commute with fT . V. The same holds far the parity 
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operator multiplied by any arbitrary 2 x 2 matrix. Furthermore, there exists no 2 x 2 
matrix which anticommutes with iT. As a consequence of these commutation properties 
the solutions will not have adefinite parity and thus they will become a linear combination 
of both spherical spinors X± K,W We try the ansatz (see also Exercise 14.3) 

(14.41) 

and then proceed to make use of the following relations, which have been derived in the 
context of the two-centre Dirac equation [see (1O.2)ff., (10.37), (l0.54)ff.]: 

~ 'r7 ~ (ß 1~ L~) 
(T • v = Ur ßr - 1i.r (T • (14.42) 

(14.43) 

(14.44) 

This finally leads to the differential equations for the radial functions g(r) and f(r): 

dg =PO f _ K+l g 
dr 1i. r ' 

(14.45) 

df K-l PO 
-=-f--g 
dr r 1i. 

(14.46) 

These are the same differential equations as those we derived previously for the case of 
electrons in the presence of a constant, spherical-symmetric potential Vo, assuming that 
we set mo = 0 and Vo = O. The solutions which are regular at r = 0 can be directly taken 
from Exercise 9.5, yielding the results: 

g(r)=jl(~r) (14.47) 

f(r) = ~jl (POr) IKI 1i. 
(14.48) 

Note that the wave functions with K = IKI and K = -IKI are not linearly independent. 
Instead, one has 

",(+) = i "'(+) 
'I'-K,J.1 'l'K,J.1 (14.49) 

As a consequence of the unique helicity of the massless, two-component particle there 
exist only half as many states as in a four-component description. If we start with (14.11) 
for left-handed neutrinos, the angular momentum representation reads (see Exercise 14.3): 

<p~-:2 = g(r)xK,J.1 - if(r)X.,-K,J.1 (14.50) 
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EXERCISE .......................................................................... .. 

14.1 Dirac Equation for Neutrinos 

Problem. Solve the Dirac equation for neutrinos and de
termine the eigenvalues of the helicity operator and those 
of ,s for both energy solutions. Make use of the standard 
representation of the Dirac matrices 

A (n ß= 0 A (0 fT) ,a= fT 0 

Solution. Consider the Dirac equation for massless parti
cles: 

in BiJ! = -inco: . ViJ!(x) = HiJ!(x) . (1) 
Bt 

By means of the usual ansatz for the time evolution 

iJ! = 'ljJ e -iEt/1i (2) 

we obtain 

E'ljJ = -inco: . V'ljJ (3) 

The solution of this equation can be represented in terms 
of plane waves. Accordingly, the ansatz 

'ljJ = eipoz/Ii u(P) 

yields 

Eu(P) = cO: . pu(P) , 

where 

E = ± Ep = ± Iplc 

(4) 

(5) 

(6) 

Using the standard representation of the Dirac matrices, 
one has ,S = ,0,1,2,3, 
,S = (~ g) (7) 

and obviously 

A (0 ,sE= n n) (fT 0)=(0 fT)=A o OfT fTO a (8) 

holds. Thus, the Hamiltonian in (1) can also be written as 

(9) 

The eigenfunctions of the Hamiltonian H are simultane-

ously eigenfunctions of the helicity operator i;. p/lpl and 
's. The solutions of the eigenvalue equation can be direct1y 
taken from the plane-wave solutions of the free Dirac equa
tion (see Chap. 2). We set mo = 0 and obtain four linearly 
independent solutions for the spinor u. Hereby the z axis 
is chosen as the direction of the momentum p. For u it 
follows that: 

helicity: 

+1 -1 +1 -1 

m CD (-D (D 
, 'V I' ..... J 

positive energy negative energy 

whereby normalization factors have been supressed. The 
eigenvalues of ,s are found to be 

E Helicity Eigenvalue of 's 
+1 +1 
-1 -1 
+1 -1 
-1 +1 

Obviously ,s and the helicity operator have equal eigen val
ues in the case of positive energy solutions. Opposite signs 
result for solutions with negative energy, and the eigenval
ues of ,s are just the negative of the helicity eigenvalues. 

EXERCISE ........................... . 

14.2 CP as a Symmetry for the Dirac Neutrino 

Problem. Show that the product of charge conjugation and 
parity transformation represents a symmetry transforma
tion of the Dirac neutrino. 

Solution. In the standard representation of the Dirac ma
trices ,G the charge-conjugated spinor is found via 

(1) 

Hereby the charge conjugation operator C satisfies the con
dition 

(2) 
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together with 

C = iy-'Y° = -C- I = -ct = _CT (3) 

By means of a unitary transfonnation 0, which transfonns 
the standard representation of the 'Y matrices into the one 
we have used for describing the neutrinos [see (14.24) and 
(14.25)], the corresponding representation of the charge 
conjugation operator can be found. The unitary operator 0 
reads 

A 1 ( 0 5 
U = .Ji 11 + 'YS'YS) (4) 

Using 

'Y~'Y§ = (g _~) (~ g) = (_~ g) (5) 

it follows that 

u--A 1 ( 11 
- V2 -11 ~) (6) 

Indeed, we obtain 

(7) 

O'Y~O-I 
= ~ (-! ~) (~ -~) (! -!) 
= ~ (-~ ~) (-~ -11) -11 

= (-~ -11) _ 0 o - 'Y . (8) 

Now we transfonn the charge conjugation operator C into 
the new representation: 

C = OCSO-1 • 

Accordingly, from 

CA .20.(0 
S = I'YS 'YS = 1 A -(72 

(9) 
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. ( 0 =1 -0-2 -;2) (10) 

we derive 

C =-A i ( II 
2 -ll ~) (-~2 -;2) (~ -~) 
i ( II 

=:2 -ll 
11) (-~2 11 -(72 ~0-2) (72 

. (-0-2 
=1 0 ~2) (11) 

Perfonning a parity transfonnation of the Dirac spinors we 
obtain 

?jJ p(x') = eicp 'Y~?jJ( -z, t) . (12) 

In the following considerations the phase factor eicp does 
not play any role and will be omitted. Combining charge 
conjugation and parity transfonnation it clearly follows 
that 

?jJcp(z, t) = c'Yh~?jJ*( -z, t) = C?jJ*( -z, t) 

= i (-;2 ~2) ?jJ*( -z, t) . (13) 

Finally we check whether the spinor ?jJcp fuHills the Dirac 
equation. For this purpose we use the relation 

~2) = (~ -~J (-;2 ~2) 
= - (-;2 ~2) (~ -~i) 
= - (-;2 ~2) &* . (14) 

With z, = -z we derive 

(ili ! + ili& . V z ) ?jJcp(z, t) 

= (ili! + ili& . V z } (-;2 ~2 ) ?jJ*( -z, t) 

= i (-;2 22) (ili! - ili&* . V z ) ?jJ*( -z, t) 

= i (-;2 ~2) (ili! + ili&* . V~ ) ?jJ*(z', t) 

= -i (-;2 ~2) [(ili! + ili& . V~ )?jJ(Z" t)] * 

= 0 . (15) 



In (15) the factor in brackets vanishes; thus the combi
nation of charge conjugation and parity transformation is 
indeed a symmetry transformation. 

EXERCISE ______________ _ 

14.3 Solutions of the Weyl Equation 
with Good Angular Momentum 

Problem. Derive once more the angular momentum rep
resentation of the solutions of the Weyl equation (14.41) 
and (14.50). 

Solution. We start from the Dirac spinor in standard rep
resentation: 

_ ( g(r) 
4>It,/J - if(r) 

XIt,/J ) 
X-It,/J 

(1) 

The transformation 10 the new representation is achieved 
by the unitary matrix 

~) (2) 

Furthermore, the neutrino states are generated from rp = 
tP e - iEt/r& by 

t/JL = !(11 - 'YS)tP = !(ll- 'Ys)UtPlt,/J ' 
1 1 A 

tPR = 2"(11 + 'Ys)tP = 2"(11 + 'YS)U tPlt,/J (3) 

In view of 

A 1 (0 
(11 - 'YS)U =.,fi 0 

one obtains 

1 ( 0 
=.,fi -2 

~) 

t/JL = ~ (-~ ~) (if~;) :~:'/J) 
= ~( - g(r)xlt,/J +if(r)x-It,/J) , 

and correspondingly it holds that 

~) 

and thus 

tPR = ~ (~ ~) Cf~;) XX::'/J ) 

= ~ (g(r )xlt,/J + if(r)x -It,/J) . 

(4) 

(5) 

(6) 

(7) 

Since the factors .,fi and global signs can be absorbed 
within normalization or phase factors, they can be omitted. 
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15. Wave Equations for Particles with Arbitrary Spins 

15.1 Particles with Finite Mass 

Here we want to outline briefly how to construct wave functions which describe particles 
with spin 8 = 1, ~, ... out of solutions of the Dirne equation and also to study by what kind 
of wave equation they are generated. As already seen in Chap. 6, the lower components of 
free solutions of the Dirac equation with positive energy vanish in the case mo =F 0 in the 
rest system of the particles [cf. (6.13)]. Thus, for Ep = moc2 (which means Pi = 0 when 

we are in the rest system) the spinor components are given by w~\O) = bra and thus 

w~) = 0 , a = 3, 4 . 

The superscript (+) denotes r = 1, 2, which characterizes solutions of positive energy. The 
tensor product 

w~J ... r =: w~)(O)w~+)(O) ... w~+)(O) (15.1) 
, " 

'" 28 

has 28 indices which are, at first, independent of each other. But considering the total 
symmetrie part 0/ this multispinor 

w(+) =:" d+) (0) = d+) (0) 
aß ... r ~ aß ... r {aß .. , r} 

p 
(15.2) 

(the summation index P denotes permutations of the indices), we find the following linearly 
independent combinations in the rest system: 

w(+) (0, i = 0) 
aß ... r 

w(+) (0, i = 1) 
aß ... r 

= balbßl ... bvlbrl 

= ba 2bßlb-yl .•. bv lbr1 

+ ba lbß2b-Yl ..• bv lbr1 

+ba lbßlb-y2 ••• bvl brl + ... , 

(15.3) 

The ith multispinor has i indices equal to 2 and 28 - i indices equal to 1. Each of these 
multispinors represents an eigenvector of the operator of total spin, which in the rest 
system is defined by 
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11tE3 -' :z aa' ßß' ... VV'TT' -. 

where 

o 0 
-1 0 
o 1 
o 0 

j) 
is the well-known four-dimensional Pauli matrix. Indeed. it is easily proven that 

!1tE3w(+)(0, i) = 1t(8 - i)w(+)(O, i) . 

(15.4) 

(15.5) 

This is demonstrated in detail in Exercise 15.1. Since, apparently, i = 0, ... , 28 is valid, 
the number of eigenvectors is just 28+ 1, and aceording to (15.5) the eigenvalues of (1t/2E3 

are S, 8 - 1, ... , - 8 + 1, - 8. This directly demonstrates that the symmetrie multispinor 
(15.2) may indeed be interpreted as the wave funetion of a particle with spin 8, where the 
z eomponent ean obviously assume 28 + 1 different values. An analogous eonsideration 
allows the eonstruetion of solutions of negative energy. In this ease the upper instead of 
the lower eomponents have to vanish in the rest system. This means that we only have to 
replaee the indices 1,2 in the Kronecker deltas in (15.3) by 3,4 and the superseript (+) 
by (-), and this will be verified in Exercise 15.3. 

EXERCISE .................................................................. ... 

15.1 Eigenvalue Equation for Multispinors 

Problem. Verify that the multispinors w(+)(O, i) fulfill the 
eigenvalue equation 

!1tE3w(+)(0, i) = 1;,(s - i)w(+)(O, i) 

i = 0, 1, ... , 2s 

Solution. Using 

C 
0 0 

J) A 0 -1 0 
(E3)aa' = ~ 0 1 

0 0 

C 
1 0 

J) A 0 -1 0 
(E3)ßßI = ~ 0 1 

0 0 

and (15.4) we get 
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ete. 

(~1tE3W<+)(0, i = 0») 
aß···r 

1t A 3 (+) . 
= '2 EaalßßI ... vvITTlwaIßI ... vITI (0, Z = 0) 

1t A3 
= '2 Eaa,ba/l bßl ... bvl bTl 

1t A3 
+ baI '2 Eßßlbß/l b'"'(l ... bvl bTl 

1t A3 
+ balbßl'" bVl'2ETT,bT/l 

= ~2S(balbßl'" bTl) = 1tSW~J ... T(O, i = 0) (1) 

and analogously 



IiA3 IiA3 
+ ... + Do:2 Dßl ... '2 ErrlDr/l + '2 Eo:o:,Do:/IDß2'" DTl 

Ii A3 
+ DO:l'2 EßßIDßI2 ... DTl + ... 

Ii A3 
+DO:IDß2'" '2ErrlDr/l + ... 

= ~ [ - Du2Dßl ... Drl 

28-1 
A 

+ 8O:2Dßl ... DTl + ... + Do:2Dßl ... Dr l' 

+ DO:I Dß2 ... Drl - Do:IDß2 ... Drl + .. . 

+ Do:I Dß2··· DTl + ... ] 

= 1i(8 - 1) [DO:2bßl ... bTl + bo:l bß2'" bTl + ... ] 

= 1i(8 - l)w(+) (0, i = 1) , 
o:ß···r 

(~.t3W(+)(0' i = 28») 
o:ß···r 

IiA3 IiA3 
= '2Eo:o:'bO:I2Dß2'" Dr2 + DO:2'2 EßßIDßI2'" br2 

Ii A 3 
+ ... Do:2bß2 ... '2 ErrlDr'2 

= -1i8j+) (0, i = 28) . 
o:ß···r 

(2) 

(3) 

Hence the action of (.t3 )o:o:l ... rr l on the multispinors w(+) 
(0, i) is clarified, and the validity of the eigenvalue equa
tion (15.5) is proven. 

EXERCISE _______________ _ 

15.2 Multispinor w(+) as Eigenvector of i;2 

Problem. Show by using the example of the multispinor 
w(+)(O, i = 0) that it is an eigenvector of (1i2/4)i;~o:l ßßI ... rr' 

with the eigenvalue 1i28(8 + 1). 

Solution. The vector operator i; is defined in a similar 
manner to .t3 in (15.4); then, we have 

• lA A l A A lA2 
+ 4"Err l . Eo:o:, + 4" Err, . EßßI + ... + 4"Errl. (1) 

Here, the notation has been simplified by omitting the delta 
functions with respect to the not explicitly listed indices 
in each term of the sum [cf. (15.4)]. On the rhs of (1) we 
see 28 rows with 28 factors in each individual term. The 
quadratic terms can be easily calculated, e.g. 

(2) 

A similar expression is valid for every pair of indices 
ß ß', ,,', ... , TT'. Since each row of (1) contains just one 
of these quadratic terms, the first contribution to the ex
pectation value of (1) is given by (3/4)28 = (3/2)8. Just 
(28 - 1) mixed terms of the form 

(3) 

remain in each of the 28 rows, where i; and i;' act 
onto different indices because of the total symmetry of 
w~J ... r(O, i) in a, ß, ... , T. By considering the example 

w(+)(O, i = 0) it is most easily demonstrated that 

! i; . i;' w(+) (0, i = 0) = !w(+)(O, i = 0) . (4) 

Inserting w(+) (0, i = 0) from the first equation of (15.3) 
and remembering that 

A (0-E = 0 ~) 
it follows in the representation of the Pauli matrices [see 
(1.65)] that 

In (1), each term of the form (3) yields the contribution 
1/4 to the eigenvalue, and altogether, we obtain 

(! j;2)w<+)(0, i = 0) = [~8 + !(28 - 1)28] w<+)(0, i = 0) 

= 8(8 + l)w(+)(O, i = 0) (6) 
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Multiplication by h2 yields the desired result. Similar, 
but more involved, is the recalculation that the remaining 
w(+)(O, i) of (15.3) satisfy the same eigenvalue equation. 
Together with (15.5), this proves that the 2s+ 1 multispinors 
w(+)(O, i) of (15.3) describe particles with spin s. 

EXERCISE ______________ _ 

w(-) (0, i = 28) 
aß···r 

Since 

C 
0 

A3 0 -1 
Eaa, = ~ 0 

0 

= tJa4tJ ß4 ... tJr4 (1) 

0 

J) 0 
1 
0 

15.3 Multispinor of Negative Energy 

Problem. Construct - analogously to (15.3) - the multi
spinor of negative energy in the rest system and, based on 
this, the eigenvalue equation analogous to (15.5). 

the action of f;3 on w~1. .. r<O, i) is the same as the action 

of f;3 on w~J ... r(O, i). For i = 0 this means that 

1 A 3 . 
'1hEaß ... r(O, z = 0) 

Solution. It follows immediately from (6.3) that, analo
gously to (15.3), 

1 [A3 A3 
'1 h Eaa,tJa'3tJß3··· tJr3 + tJu3Eßß,tJß'3· .. tJr3 

A 3 ] + ... + tJa3tJß3 ... Err,tJr '3 

j-) (0, i = 0) 
aß···r 

w(-) (O,i=O) 
aß.··r 

= tJa3tJß3··· tJr3 , = hstJa3Sß3 ... Sr3 = hsw~1...r(O, i = 0) . 

= tJa4tJß3··· tJr3 + tJa3tJß4 tJ-y3 ... tJr3 

+ ... + tJa3tJß3 ... tJr4 , 
The further calculation is analogous to that presented in 
Exercise 15.1. 

Now we can trans form these multispinors into an arbitrary frame of reference, bearing 
in mind the work of Chap. 6, particularly (6.30) and Exercise 6.1. By "boosting" all factors 
of (15.2) at the same time, Le. applying the operator S(P) 

(15.6) 

we get 

w(+)(p,i) = S(;)w(+)(O, i), w(-)(p,i) = S(;)w(-)(O, i) . (15.7) 

(In Exercise 15.4 these spinors w(+)(p, i) will be explicitly calculated). Now every wave 
function may be written as a superposition of plane waves: 

tJti~~. r(x; p, i) = w~! .. r(P' i)e -ip·z/A , 

tJtt.~ r(x; p, i) = w~~!. r(P' i)e+ip.z/A 

and thus 

tJtaß ... r(x) = 2;J c(+)(p, i)tJt~~ ... r(x; p, i)d3p 
2 

+ 2;1 c(-)(p,i)tJt~/l .. r(x;p,i)d3p 
2 

(15.8) 

(15.9) 

Hence these multispinors fulfill in coordinate space the following Dirac equation for each 
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index, separately:1 

(ili."Y·8-moc)aal!lia'ß ... r(x) =0 , 

(15.10) 

They are named the "Bargmann-Wigner equations", after their inventors1• Of course each 
component is, in accordance with the properties of solutions of the Dirac equation, also a 
solution of the Klein-Gordon equation 

(15.11) 

The quantities !li aß ... r(x) can obviously be regarded as the components of the wave 
function of a particle with mass mo and spin s, that is composed of elementary identical 
spin-~ fields, since there exist exactly (2s + 1) linearly independent components, each of 
which obeys (15.10) and (15.11). According to (15.5), each of these components is an --:-1---

A 3 V. Bargmann, E. Wigner: Proc. 
eigenstate of E . Nat. Sei. (USA) 34, 211 (1948). 

EXERCISE .................................................................. .. 

15.4 Construction of the Spinor W~J ... T(P, i) 

Problem. Determine from (15.6) and the results of Exer

eise 6.1 the spinor w~J ... r(P' i), using the operator 

Saa' ßßI ... rrl(P); 

hence deduce the result 

(p - moC)aaIW~~ ... r(p, i) 

= (p- moc)ßßlw~J/ ... r(P,i) 

(1) 

Solution. In the standard representation (3.13) we obtain 
according to (6.32) the four-component Dirac spinors of 
momentum P by using the Lorentz transformation 

where, according to Exereise 6.1, 

E+moc2 
2moc2 

(2) 

1 0 PzC p_C 

E+mo c2 E+moc2 

0 1 
p+C -pzC 

E+moc2 E+moc2 
PzC p_c 

1 0 
E+mo c2 E+moc2 

P+C -pzC 
0 1 

E+ moc2 E+moc2 
(3) 

Hence the two solutions of positive energy with spin 
up and down are the first two columns of matrix (3). How
ever, in contrast to (15.1) it holds that 

w~J ... r(P' i) =f. 0 for 0', ß, ... , T = 3, 4 

Using (15.6), (15.7) and (15.1) we obtain 

j+) (p, i = 0) 
aß···T 

= s( -~)al s( -~)ßl ... s( -~)Tl 
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+ ... 

+S(-p) S(-p) ... S(-p) , 
E a1 E ß1 E r2 

w(+) (p, i = 28) S ( p) S ( p) 
aß .. ·r = - E a2'" - E r2 . 

(5) 

Each of the indices a, ß, ... , T "scans" the columns of 
matrix (3), which are composed of the solutions wr(P) of 
(6.33a), i.e. 

(P-moC)wr(p)=o r=1,2 . 

Hence (1) holds. 

(6) 

EXERCISE ______________ _ 

15.5 The Bargmann-Wigner Equations 

Problem. Show that the spinors (15.9) obey the Dirac 
equation in the form (15.10). 

Solution. We use the Dirac equation (6.33a) in the mo
mentum representation for the four-component spinors 
wr(P), that is 

(p- crmoc)wr(P) = 0 for r = 1, 2, 3,4 

and the "plane waves" (6.31) 

tfJ;(x) = wT(p)e-ierp·:r/A . 

(1) 

(2) 

Now the Dirac equation in coordinate representation 
reads 

(ili,JloJl - moc)1fJ;(x) 

= (crlJlP' - moc)wr(p)e-ierp·:r/A = 0 (3) 

Each linear combination of these solutions 

-~ J d'p V"",,?- , 
w(x) - '7 (27r1i)3/2 E p cr (p)1fJp (x) (4) 

with arbitrary functions cr(P) obeys the Dirac equation, 
too: 

(ili'l-'0Jl - moc)w(x) 

= ~ J (2:~~3/2Cr(p)(ililJlOJl - moc)1fJ;(x) 

J d3 
_ ~ P () ( ..JJ ) r( ) -ierp·:rlh. - '7 (27r1i)3/2 Cr P CrlJl}F - moc w p e 

= 0 . (5) 
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For an arbitrary Bargmann-Wigner multi spinor 

tJt. ß (x) = ~ J d3 P [w(+) (p i) e -ip·:rjh. c(+)(p i) 
a ... r ~ (27r1i)3/2 aß ... r ' , 

• 
+ w( -) (p, i) eip·:rlh. c( - )(p, i)] (6) 

aß .. ·r 

we obtain 

-ip·:rlh. (+)( ') xe c p, z 

( ..JJ ) (-) (p') ip·:rlh. (-)(p ')] (7) - IJl}F + moc aa,wa'ß ... r ,z e c ,z, 

etc. for all the other indices. However according to the 
construction of w~J. .. r<p, i) (cf. Exercises 15.2 and 15.3), 
it holds that 

(,JlP' - moc)aa,w~~ ... r(P' i) 

_ (J. ) SA ( p) (+) . 
- ,,- moc aa' a'a"ßß'···rr' E wa"ß' ... r'(O,z) 

= 0 . (8) 

Taking into consideration the relation 

wr(crP) = s( -c~)wr(o) (9) 

[cf. (2) of Exercise 6.6] one gets, furthermore, that 

( Jl ) ( - ) (p') IJlP + moc aa,wa'ß ... r ,z 

= (p - moc)aa,Sa'a"ßß' ... rr' (~ )w~~:ß, ... r'(O, i) 

= 0 . (10) 

Of course, we obtain analogous results for the other indices 
ß, ... , T, and hence we obtain 

(ili,JloJl - moc)aa'Wa'ß-y ... r(x) = 0 (11) 

and, analogously, also 

(ili,JloJl - moc)ßß'Waß'-y ... r(x) = 0 , 

(ili,JloJl - moc)rr'Waß-y ... r'(x) '= 0 (12) 

These are the so-called Bargmann-Wigner equations. 



15.2 Massless Particles 

We have to modify the derivation of the Bargmann-Wigner equations for massless particles, 
because we cannot find a rest system for mo = O. However, we can choose the z axis 
colinear to the direction of momentum: 

pi-' = (pO,O,O,p) . (15.12) 

The Bargmann-Wigner equations (i.e. for each index the Dirac equations) in momentum 
representation read 

p(± -y0 - -Y\)(a,w~7~ ... r(P) = 0 , 

p(± -y0 - -y3)TT'W~±j ... r'(P) '= 0 , (15.13) 

where ± again denotes the sign of the energy. Multiplying these equations by -y0 yields 

( ° 3) (±) (P) _ A3 (±) (P) _ (±) () 
-y -y aa,wa'ß ... r = aaa,wa'ß ... r - ±waß ... r p , 

(15.14) 

because -yO-yO = 11. Neither in the standard representation (3.13) nor in the Majorana 
representation (cf. Exercise 5.2) of the Clifford algebra is the matrix -y0-y3 diagonal. But, 
using a unitary transformation, we can find a new basis so that 

-y0=(_~ -~) -yi=(_~i ~i) . 0' (&. &' =: -y -y' = 0 
(15.15) 

This representation is called the chiralor Weyl representation, because the chirality
operator y is diagonal in this particular representation (which will be shown in the next 
exercise). The name "chirality" will be justified in the following. 

EXERCISE .................................................................... ... 

15.6 -y-Matrices in Weyl-Representation 

Problem. Show that the -y matrices in the Weyl represen
tation obey the common commutation relations. 

Solution. In standard representation [cf. (3.13)] 

-yg = (g ~) -y~ = i-y°-yl-y2-y3 = (~ g) ,(1) 

where the upper index S stands for "standard representa
tion"; Eq. (5.9) yields 

-Y~ -y~ + -y~ -Y~ = 0 

and (3.11) gives 

(2) 

(3) 

In the Weyl representation the matrices -Yi remain un
changed, only -Y5 and -YO are exchanged: 

-yi' = -yf ' -Y6' = --y~ , -yr' = -yg (4) 

Because of (2) and (3) the anticommutation relations (3.11) 
are not changed by this transformation. The transformation 
is explicitly given by 

-yV:=S-y~st , 

with 

s=~(~ -~) 

(5) 
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In the Weyl representation the operator on the lhs of the Bargmann-Wigner equations 
becomes diagonal so that the eigenfunctions may be determined conveniently. Before pro
ceeding to do so, we want to emphasize a remarkable property or the zero-mass Dirac 
equation. Due to the absence of the mass term an additional symmetry arises: for any solu
tion w(p) there is always the spinor ')'5w(p) simultaneously eigenfunction of the equation, 
since the matrix ')'5 commutes with the operator &3 = ')'Oy appearing in the equation of 
motion (15.14) and two commuting operators can simultaneously be diagonalized. There
fore the solutions of the Bargmann-Wigner equations may be classified by the quantum 
numbers of ')'5 (chirality): it is convenient to employ the chiral representation, where 

. (ll ')'5 = 1')'0')'1,),2"Y3 = 0 (15.16) 

Obviously the chirality operator is already in diagonal form (which explains the name 
of the representation). With respect to a chosen inertial system, we define the chirality 0/ 
the solution to be positive if the eigenfunctions satisfy 

(15.17) 

where the subscript "+" designates positive chirality. With this notation, the solution 
w~+)(p), for example, refers to astate with positive energy [superscript (+)] and positive 
chirality (subscript +). Hence, the spinor w~±)(p) must have the form 

(wit)(P») 
(±) 

wi±)(p) = W+g (P) 

and, on the other hand, solutions with negative chirality must satisfy 

,),5W~±)(P) = (-I)w~±)(p) , 

i.e. they will be of the form 

The functions 

( wit») u(±) =: (±) 

w+2 

v(±) =: 

(15.18) 

(15.19) 

(15.20) 

(15.21) 

just defined are now two-component spinors. Consequently, the Dirac equation (15.14) 
splits into two two-component equations, namely 

0.3 v(±) = 1= v(±) . (15.22) 

Since there exist only two eigenfunctions of 0-3, we conclude that v(±)(p) = u(=F)(p), 
an identification that implies significant consequences, as we shall see. However, the 
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eigenfunctions of 

&3=(~ _~) 
correspond to the eigenvalues ± 1, Le. for positive (negative) sign of the energy only 
the upper (lower) components of the two-spinor u(±) do not vanish. That means, in this 
case the spin orientation must be parallel (antiparallel) to the direction of momentum. In 
contrast, the spinor v(±) has exactly the opposite property: for positive (negative) energy 
only the lower (upper) component is non-vanishing and the spin orientation is antiparallel 
(parallel) to the momentum, which, by definition, is assumed to point along the z axis 
[see (15.12)]. In other words: zero-mass fermions (e.g. neutrinos) with definite chirality 
have the property that the helicity iT . p/ipl of the particle depends on the sign of its 
energy. In the case (15.17), zero-mass particles with positive energy have positive helicity, 
whereas zero-mass particles with negative energy carry negative helicity, and this partly 
explains the name chirality ("screw sense"). If we interpret the properties just explained 
in terms of the hole theory (cf. Chap. 12), where a wave function of negative energy and 
momentum -p corresponds to an anti-fermion with positive energy and momentum +p, 
one observes that zero-mass fermions anti anti-zero-mass fermions with positive chirality 
both also have positive helicity (they are "right-handed"). Similarly, fermions and anti
fermions with negative chirality both carry negative helicity (they are "left-handed"). With 
this insight, the term "chirality" now becomes evident: chira/ity Jor zero-mass particles is 
equivalent to their he/icity. 

In analogy to the wave functions for particles with finite mass, one may now proceed 
to construct a zero-mass, symmetric Bargmann-Wigner multispinor from the zero-mass 
Dirac solution in the chiral representation [cf. (15.1-15.3)]. However, since we employed 
a unitary transformation to pass to the chiral representation, now all the components with 
indices 1 and 4 in (15.3) contribute to wave functions with positive energy, which is 
also reflected by (15.22). Due to the chiral symmetry of the particular components, we 
can now search for eigenfunctions of the Bargmann-Wigner equations for each compo
nent that is simultaneously an eigenfunction of 1'5, Le. with waß ... r(P) being a solution, 

1';aIWal ß ... r(P), ~ßlwaß' ... r(P)' etc. are solutions too. Taking into consideration the 
symmetry of the Bargmann-Wigner multispinors, it follows that the number of possible 
solutions reduces from 28 + 1 to only two, since for positive energy and positive chirality 
there are merely 

wi~ß ... r(P) '" DalDßI ... Drl 

Similarly, for positive energy and negative chirality, 

W~~ß ... r(p) '" Da4Dß4 ••. Dr4 , 

(15.23a) 

(15.23b) 

and, as before, the subscripts "+", "-" designate the chirality, and the superscript (+) 
denotes the positive energy. 

These are the two eigenfunctions of the operator far the total helicity that correspond 
to the two extreme eigenvalues ± 8. For negative energy solutions the conclusions are 
completely analogous. Hence, the wave functions may be transformed to any Lorentz 
frame and subsequently be re-expressed in terms of plane waves to construct arbitrary 
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wave paekets in eonfiguration spaee as linear eombinations whieh satisfy the Bargmann
Wigner equations in eonfigurations space. 

Unfortunately, the outlined procedure for eonstrueting the Bargmann-Wigner fields 
for partieles with arbitrary masses does not allow us to find a Lagrange formulation, whieh 
is of fundamental importanee for the quantization of the theory. To infer a Lagrangian 
density, one needs to transform the general Bargmann-Wigner equations for each partieular 
spin orientation separately in a skillful way. In the following we will illustrate this eoneept 
for the ease of spin-l fields. 

15.3 Spin-l Fields ror Particles with Finite Mass; Proca Equations 

In this ease the Bargmann-Wigner field is labelIed by two indices. The two Dirae equations 
for the symmetrie matrix tltCl!ß(x) may be written as folIows: 

(15.24) 

or, in detail 

(ili.ol'-Y~CI!' - moc8C1!CI!' )tltCl!'ß(x) = 0 , (15.25a) 

+-

tltCl!ß'(X) (ili.-Yßß' 01' -moc8ßß')=O . (15.25b) 

Sinee the 4 x 4 spinor is symmetrie, it may be expanded in terms of a eomplete set of 
symmetrieal elements of the Clifford algebra standard representation, the latter eonsisting 
of ten symmetrieal matriees 

(15.26) 

where C = h 2-y0 is the eharge eonjugation matrix that was defined in (12.23) and satisfies 
(12.24). The remaining six matriees 

are anti-symmetrie; thus it holds on the one hand that 

(-yI'C)T = CT-yI'T = _C(-Y0-yl'-y0)* 

= -hhl'*-y° = 1'l'hho = -yI'C , 

and on the other hand, we have 

(hSC)T = cThI = -h21'°(+i1's) = -hsC 

Therefore, we define 

moc A 1 A 

tlt(x) = T1'I'C<pI'(x) + Zo-I'VCGl'v(x) , 

(15.27) 

(15.28a) 

(15.28b) 

(15.29) 

where the eoefficients cpl'(x) and GI'V(x) are generally eomplex and transform under 
Lorentz transformations like a vector and an anti-symmetrieal tensor, respectively. The 
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Bargmann-Wigner equations (15.24) now become 

(i/i.'')'' 8 - mOc) (kmOCf'JJt.pJJ(X) + ~UJJvGJJV(X»)C = 0 , 

(kmOCf'JJt.pJJ(X) + ~UJJvGJJV(X»)C(in,T. ä - moc) = 0 (15.30a) 

With regard to all indices, we explicitly rewrite the first of the above equations, 
which, for example, reads 

(in, . 8 - moc)O'O'I (kmoc( 'JJC)O'I ß t.pJJ (x) + ~(U JJvC)O'I ßGJJV(X») = 0 , 

(in, . 8 - moc)ßß' (kmOC{fJJC)O'ß,t.pJJ(X) + ~(UJJVC)O'ßIGJJV(X») = 0 . (15.30b) 

It now becomes obvious that the coefficients t.pJJ(x) and GJJV(x) do not take part in 
the matrix multiplication, and therefore they may equally be placed between the matrices 
"}'JJ and C or between uJJv and C, as has been done in (15.30a,b). 

Now, in the above representation of C it holds that C,J = -'JJC, Thus, we can 
factorize C out of the equations: 

(imoc8O't.pJJ(xhO',JJ - mÖc2'JJt.pJJ(x) + !in"}'O'uJJvaaGJJv(x) 

-!mocuJJvGJJv(x»)C = 0 , 

(imoc8JJt.pJJ(xhO',JJ + möc2'JJcpJJ(x) + !iIWJJV,O'aaGJJv(x) 

+!mocaJJvGJJv(x»)C = 0 . 

Using the relation (cf. Exercise 3.2) 

[,0', uJJV] = 2i (gO'JJ ,v _ gO'v,JJ) , 

it follows for the difference of the two equations (15.31) that 

moc(QO't.pJJ - 8JJ t.pO' - GO'JJ)uO'JJC - 2'JJC ( n8O'GO'JJ + m~~ t.pJJ) = 0 

(15.31) 

(15.32) 

(15.33) 

The coefficients of the linearly independent matrices CUO'ß and ,JJC must vanish 
separately. Hence, for mo =FO, this implies that 

(15.34) 

m 2c2 
8 GJJv = __ 0 _t.pv 

JJ 1i,2 
(15.35) 

These are the so-called Proca equations2• Expressed in terms of the vector field t.pJJ they 
have the form 

2 A. Proca: Le Joumal de Physique et le Radium 7, 347 (1936). 
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m2dJ-
o c.pl' - 01' (Ovc.pV) + :2 0l'c.pl' = 0 

from which the subsidiary condition 

m 2 dJ-
-O-Ollc.pl' = 0 

li,2 r 

follows direcdy. Thereby we then obtain 

(15.36) 

(15.37) 

(15.37a) 

(15.37b) 

Just as in (15.34) and (15.35), these are again the Proca equations, but now solely obtained 
using the potentials c.pl'. The appertaining Lagrangian density is 

_ 1 G* Itv 1 G* (!lU V !lV 1') 
CProca - 2 I'VG - 2 I'V U" c.p - v c.p 

1 (* *1') I'V mijdJ- * I' - 2 0l'c.pv - Ovc.p G + ~c.pl'c.p , (15.38) 

and we shall further comment on this in Exercise 15.10. 
Note that from (15.34) an identity follows in form of the homogeneous equation 

oOGI'V + ßl'Gvo + OVG01' = 0 , (15.39) 

which can be formulated by means of the "dual" tensor 

I c-I-'V(}fTG -,: '-' (}fT, (15.40) 

also as 

(15.41) 

15.4 Kemmer Equation 

The Proca equations can also be cast in another linearized form. For that purpose we 
introduce the ten-dimensional "spinor" 

x = (~l ) 
XlO 

(15.42) 

Its components are connected with the Proca fields as follows: 

Xl = __ i_cDl , X2 = __ i_ cD2 , 
Jmoc Jmoc 
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i .......03 
X3 = ---li-

Jmoc 
1 

X5 = __ G13 , 
Jmoc 

JmOC 1 
X7 = --li-r.p , 

JmOC 3 
X9 = --li-r.p , 

1 23 ,X4=---G , 
Jmoc 

1 12 
X6=---G , 

Jmoc 

JmOc 2 
X8 = --li-r.p , 

.JmoC 0 
XlO = -l-li-r.p . 

Then the equations of the Proca theory (15.34) and (15.35) can be written as 

(i1iß1'81' - moc)x(x) = 0 , 

where the 10 x 10 matrices can be chosen as follows: 

0 -n 0 0 

(15.43) 

(15.44) 

ß"~ ( : ~) ißk~ ( : 
i~t) 0 0 -t 0 Sk 0 ~ ,(15.45) 0 0 -t , _Sk 0 -n 0 

0 0 0 0 iKk 0 0 

with k = 1, 2, 3. The relation (15.44) represents a set of 10 differential equations, which 
are known as the Kemmer equations3 • The elements of the 10 x 10 matrices ßI' are given 
by the matrices 

0:(g 0 n n=G 
0 

D 0 1 
0 0 

Sl:i (g 0 -D S2: i ( ~ 0 

D S3: i G -1 n 0 0 0 
1 -1 0 0 

K l = (1 0 0) , K 2 = (0 1 0) , K 3 = (0 0 1) , 

0=(000) (15.46) 

We convince ourselves of the equivalence of (15.44) with (15.34) and (15.35) by showing 
that the 10 equations do indeed coincide. For example, the first line of (15.44) yields 

iJmoc(aOr.pl - 81r.p0 - cfJl) = 0 , 

i.e. just the J1, = 0, v = 1 component of the Proca equation (15.34). As a second example 
we consider the tenth line of (15.44): 

im5~ 0 
ili(81 GOI + (hG02 + 8.3G03) + -li-r.p = 0 . 

Because of the antisymmetry of GI'I/ it can be also written as 

3 N. Kenuner: Proc. Roy. Soc. A 177, 9 (1939). Sometimes the name Duffin-Kenuner equation or Duffin
Kenuner-Petiau equation is used in the literature. As is often the case in the history of physics, several researehers 
almost simuItaneousIy studied the same topic, here the spin-l fields. 
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m 2Cl 
8 G10 + J:LG20 + J:LG30 + _o_cpo = 0 1 V,l Vj li2 ' 

which is just the v = 0 component of the inhomogeneous Proca equation (15.35). The 
remaining components of (15.34) and (15.35) can be verified in an analogous manner. 
Now the above defined ß matrices fulfill the "commutation relations" 

(15.47) 

(as can be shown easily by calculation, cf. Exercise 15.7), and these define the so-called 
Kemmer algebra. If one passes to another representation ß' = Sßst of the ß matrices 
by a unitary transformation S, then of course, formally neither the commutation relations 
(15.47) nor the equation of motion (15.44) for the field X' = Sx (calIed the free Kemmer 
equation) change. Obviously it is fully equivalent to the Proca equation, and this is also the 
case with regard to the coupling of spin-l mesons to the electromagnetic field.4 Therefore 
in the chosen standard representation (15.46) the reverse transformation of the Kemmer 
theory into the Proca form can be constructed. If we define with 

UJ.I : - - (ßl)2(ß2)2(ß3)2(ßJ.I ßO _ gJ.lO), 

UJ.lV: _ UJ.lßv = _UVJ.I (15.48) 

ten additional 10 x 10 matrices, and with 

(15.49) 

a lO-component spinor, we obtain 

·Ii 
cpV(x) = __ l_EtUVX(x) , 

Jmo c 
(15.50a) 

GJ.lV(x) = JmocEtUJ.lVx(x) . (15.50b) 

If we pass over to another representation ß' = Sßst, then 

U~ = sUvst , U~v = SUJ.lvSt , E' = SE (15.51) 

holds accordingly. In other words: the Kemmer equations cannot only be represented in the 
form (15.44), (15.46) but also in many other equivalent representations. (In the following 
we shall follow these ideas further.) Also in the Kemmer form the spin-l fields possess a 
Lagrangian density of the form 

..... 
.cKemmer = !iliXßJ.I 8J.1 X - mOcxx , (15.52) 

where one defines with Tl = 2ß5 - 11 

4 This was shown by Max Riedel in bis diplorna thesis (Frankfurt University, 1979) as weIl as discussing 
other spin-l theories and their relations to the Proca/Kemmer theory. Tragically, he died soon after its completion. 
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(15.53a) 

and 

(15.53b) 

15.5 The Maxwell Equations 

If the mass of the Bargmann-Wigner particles vanishes, we have to take into eonsideration 
the ehiral symmetry if we want to deduee a theory which is analogous to the Proca 
equation; therefore we have to decompose the fields into eigensolutions of the ehirality 
operator 1'5 for eaeh index (remember the explanations in Seet. 15.2). This ean be realized 
formally by requiring that for the eorresponding symmetrie 4 x 4 matrix rJ! it holds that 

in1' . 8(0: + ß1'5)rJ!(X) = 0 , 

rJ!(x)(o: + ß1'5)in1'T. ä = 0 , (15.54) 

and that for arbitrary numbers 0: and ß, if rJ!(x) is additionally an eigenfunetion to 1'5 with 
the eigenvalues ± 1, then (0: + ß1'5) reduees to the number (0: ± ß) and (15.54) reduees 
to the Bargmann-Wigner equations with vanishing mass (15.14). Now the ansatz for the 
solution, in eontrast to (15.29), ean only read 

(15.55) 

sinee yo-I-WC is eertainly symmetrie, though not so, however, 1'51'J.lC. From both equa
tions for rJ! it then follows that 

-!in1'a(O: + ß1'5)o-J.lv ßCl:'GJ.lV(x)C = 0 , 

-!ilio-J.lv(O: + ß1'5hafPGJ.lV(x)C = 0 

Beeause of 

1'5o-J.lV = iie:J.lvO"l!o-O"l! 

(see Exercise 15.20) and (15.40), this ean be written as 

1 . ., A J.lV ( !:l6 Giß !:l6 0" l! G ) CA 21"1'60" O:u J.lV + 2 u e: J.lV O"l! 

= ~in1'6o-J.lV(0:86GJ.lv +ißaEJäJ.lv)C = 0 

Analogously the transposed equation reads 

-!ino-J.lV1'6 (o:aEJGJ.lV +ißaEJäJ.lv)C = 0 , 

and the differenee reduees to 

(15.56) 

(15.57) 

(15.58a) 

(15.58b) 

(15.59) 
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The coefficients of the linearly independent matrices "{Ile must all vanish, in this case, 
additionally, for arbitrary numbers a, ß. If we set a = 1, ß = 0 or a = 0, ß = 1, eight 
Maxwell equations result: 

The homogeneous Maxwell equation (15.60b), which according to (15.39) reads 

O(!GIlV + ollGV(! + oVG(!1l = 0 

can be fulfilled identically with the ansatz 

(15.60a) 

(15.60b) 

(15.61) 

(15.62) 

however, we find no way to fulfill the auxiliary condition (15.37b) as we did for the Proca 
field. The field <pll has been introduced here just as a supplementary quantity and has 
no physical meaning, this supplementary character being emphasized by the fact that its 
choice is not unique. The so called re-gau ging 

(15.63) 

with an arbitrary scalar field A(x) leaves the physical field GIlV unchanged, as long as the 
very general condition 

(OIlOV - ovoll)A(x) = 0 

holds. The variety of fields <pll(x) can be reduced if we define additional conditions like 
(15.37b), which seleet a specific gauge. Equation (15.37b), which plays an important role 
in eleetrodynamics, is called the Loremz-gauge. But using this gauge; the field <pll(x) is 
still not uniquely characterized, because we can define a new field <p'll such that 

(15.64) 

for the case 0 A = O! A different choice of gauge would be to demand <pO = 0 in addition 
to (15.37b) (radiation gauge), but obviously this gauge does not lead to a unique choice 
of the veetor field <pll, either. 

In the following exercise and examples we will further deepen OUf understanding 
concerning the various ideas presented here. 

EXERCISE .................................................................. ... 

15.7 Commutation Relations of Kemmer Matrices 

Problem. Verify the commutation relation (15.47) for the 
Kemmer matrices (15.45). 

Solution. We present the solution for three examples: 

a) All indices areequal (Jl = v = .x = 0). 
b) Two indices are equal (Jl = v = 1, .x = 2). 
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c) All indices are different (Jl = 0, v = 2, .x = 3). 

a) (Jl = v = .x = 0): First we calculate 

ßOßO = (ßO)2 

= ( : 

0 -TI W) (-~ 
0 -TI ~) 0 0 Öt 0 0 Öt 

-TI 0 0 Öt 0 0 Öt 
Ö Ö Ö 0 0 0 0 



= (~ 
0 0 
0 0 
0 11 
0 0 

and then 

ßO(ßO)2 

= ( : 
0 
0 

-11 0 
0 0 

= ( : 
0 
0 

-11 0 
0 0 

Thus we get 

ot) ot 
-t o 
o 

-11 Öl) (i 0 -t 0 
0 ot 
0 0 

-11 Öl) 0 -t 
~I = I' . 0 

0 

(1) 

0 0 ~) 0 0 ot 
0 11 ot 
0 0 0 

(2) 

ßO ßO ßO + ßO ßO ßO = ßO + ßO = goo ~ + goo ßO (3) 

b) (f-L = v = 1, A = 2): Onee again we begin with the 
produet 

=(12 
0 0 

K21) 
ß2ßI 0 -iS2 ot 

iS2 0 ot 
0 0 0 

C 
0 0 ~I) 0 0 -iSI 

X 0 iSI 0 -t 0 
J(l 0 0 0 

Cl0KI 

0 0 ~ ) = 0 -iS2iSI 0 ot 
0 0 -iS2iSI -t 
0 0 0 J(~J(lt 

(4) 

Here produets of the matriees Si from (15.4.6) oceur, es-
pecially 

=p 0 

D G 
0 

-D iS2iSl 0 0 
-1 0 1 

=G 
1 

D 0 
0 

== M(12) == J(lt 0 J(2 , (5) 

where "0" denotes the tensor produet of the vectors J(lt 
and J(2. With the thus defined 3 x 3 matriees M(ij), we 
now have 

ßI(ß2ßI) 

C 
0 0 KII) 

0 0 -iSI -t 0 
= 0 iSI 0 ot 

J(l 0 0 0 

cr 0 0 ~) _M(12) 0 ot 
x 

0 _M(12) ot 
0 0 0 

0 0 
_ 0 ( i 0 iSI M(12) ot Öl) 

,(6) 

- J(l !(21) 
-iSI M(12) 0 ot 

0 0 0 

and henee 

K I M(2I) = (1 0 0) G 0 

D=ö 0 (7) 
0 

and 

;Sl M(2) = -G 0 -D G 
1 

n=i 0 0 . (8) 
1 0 

The rhs of (6) eontains the 10 x 10 zero matrix 0lOxlO; 

henee the final results reads 

ßIß2ßI+ßIß2ßI=OlOxlO=gI2ßI+gI2ßI. (9) 

c) f-L = 0, v = 2, A = 3: Evaluating the produet of the ß 
matrices 

-t ot) 
~ (10) 

the produets of the 3 x 3 matriees 

(11) 
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occur. Because 

=G 
0 

D G 
-1 

D iS2iS3 0 0 
0 0 

=(g 
0 

D 0 
1 

== M(32) == K 3t 0 K 2 = M(23)t 

holds, we obtain 

ßOß3ß2 + ß2ß3ßO 

= ( : 
0 -ll Öl) 0 0 Öt 

-ll 0 0 Öt 
Ö Ö Ö 0 

er 0 0 ~) _M(23) 0 Öt 
x 

0 _M(23) Öt 
Ö Ö 0 

Cml 
0 0 ~) + 0 

_M(32) 0 Öt 
0 0 _M(32) Öt 
Ö Ö Ö 0 

x ( : 

0 -ll ~) 0 0 Öt 
-ll 0 0 Öt 

Ö Ö Ö 0 

( i 
0 M(23) 

~) _ 0 0 0 Öt 
- _~(32) 0 0 ot 

Ö Ö 0 

+ ( M~2l 
0 _M(23) 

~) 0 0 Öt 
0 0 Öt 
Ö Ö 0 

= 0lOx 10 = g03 ß2 + g20 ß3 
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(12) 

(13) 

EXERCISE ______________ _ 

15.8 Properties of the Kemmer Equation 
under Lorentz Transformations 

Problem. Discuss the properties of the Kemmer equation 
under Lorentz transformations. 

Solution. From our discussion in Chap.3, we know that 
there has to be an explicit prescription which allows for 
an ob server A to recalculate a wave function X(x) of the 
Kemmer field into a wave function x'(x') which is the 
wave function observed by B, who is at rest in another 
inertial frame. Following the relativity principle, X'(x') is 
the solution of an equation, which is of the form 

(iliß~a'1J - moc)x'(x') = 0 (1) 

in the system of observer B, if X(x) is a solution of the 
Kemmer equation (15.44). Because the Kemmer matrices 
ß~ must also obey the commutation relations (15.47), from 
which they are defined up to a unitary transformation, we 
can write without 10ss of generality: 

(2) 

Covariance of the Kemmer equation means that simultane
ously (1) and (15.44) hold, where primed quantities refer 
to the inertial system of ob server B, which is connected 
to the inertial system of A via the Lorentz transformation 

(3) 

[see (3.1), (3.3)] where a/AV is an orthogonal matrix [see 
(3.4)]. As an ansatz for connecting X with X' we write 

x'(x') = S(a)X(x) , (4) 

and vice versa [see (3.27-28)]: 

X(x) = S-I(a)x'(x') . (5) 

Inserting (5) into (15.44) and after multiplication with S(ez) 
one gets 

(6) 

and then, because of (3), for the primed system B it holds 
that 

(iliS(ez)ßIJS- 1(ez)a lJ va'v - moc)x'(x') = 0 (7) 

In order that (7) is identical with (1), 



(8) 

must hold, and from this equation S(li) can be detennined. 
To reach that goal we start, similarly to the procedure de
scribed for the Dirac field in (3.36-3.68), with the infinites
imal proper Lorentz transfonnation 

(9) 

where 

6.wllV ~ 1 

Because of the orthogonality (3.36a) of the Lorentz trans
fonnation, 

(10) 

holds. Expanding S(li) up to first order in 6.wllv gives 

(lla) 

or 
~ 1 ~ 1 1 ~ 
S- (li) = S(li- ) = TI + 46.wllv I llv (llb) 

with the unknown 10 x 10 matriees i llv (TI is the 10 x 10 
unit matrix). As in the ease of the Dirae field a fonnally 
similar ealeulation yields 

(12) 

An additional detennining equation for the generators i IlV 
follows from the relation 

(13) 

which states that S(li) is a representation of the Lorentz 
group on the veetor spaee spanned by the Kemmer algebra. 
For infinitesimal Lorentz transfonnations it follows that 

[iIlV , iaßL = 2i(gva illß _ gvß illa 

(14) 

The relations (12) and (14) are fulfilled by the antisym
metrie matrices 

(15) 

which can be easily verified by use of the commutation re
lations (15.47). This result occurs in direct analogy to the 
matrix ul'V in the Dirac theory [see (3.42)]. The factor "2" 

in (15) gives raise to the fact that the Kemmer field trans
fonns to itself under a spatial rotation of 2 7r, and not 47r, as 
is the case for the Dirae field (e.f. Chap.3). The problem 
being solved for infinitesimal proper Lorentz transfonna
tions, we now look for the finite transfonnations which can 
be construeted by repeated applieation of the infinitesimal 
Lorentz transfonnations. With 6.wl'V = wl'V / N it follows 
that 

X'(x') = NI~ 00 ( n - ~ w;; il'v)' X(x) 

= exp ( _~wI'V i llv ) X(x) = S(li)x(x) (16) 

With this the transforamtion properties of the Kemmer field 
X(x) under proper Lorentz transfonnations al'v are known. 
Now we eoneentrate upon the improper Lorentz transfor
mations äl'V, which can always be written as the produet 

(17) 

where the matrix lf'v deseribes either spaee or time inver
sion, or both, i.e. 

b=p , t , pt (18) 

In this eonneetion 

~v' G 
0 0 

J) -1 0 = gl'V 
0 -1 
0 0 

(19) 

[cf. (4.2)] and 

C 
0 0 D,-r tl' = 0 1 0 

v 0 0 1 
0 0 0 

(20) 

Sinee the spinors X(x) He within the representation 
spaee of the Lorentz group, then 

(21) 

must hold again, Le. it is sufficient for us to find S(ß) 
and S(t). All other transfonnations are then calculable as 
products. Since p and f are discrete transfonnations, they 
cannot be obtained from infinitesimal transfonnations and 
we must directly start with (8): 

S-l(ß)ßI'S(ß) = p/ ßv = 2:. gl'V ßV (22) 
v 
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By means of the Kemmer algebra (15.47) and TJ de
fined in (15.53a), one verifies that 

(23) 

is true and with that we obtain the parity operator of the 
Kemmer theory: 

(24) 

with arbitrary cp E 1R. 
In the case of time-inversion (cf. Chap. 12) we must 

start with the Kemmer equation with minimal coupling, 
thus with 

[ilißI' (01' + i~AI' ) - moc] X(x) = 0 . (25) 

We designate the time-inverted wave function XT(X') and 
require it to obey (25) in the transformed coordinate sys
tem; thus 

[ilißI' (0'1' + i ~ A~ ) - moc] XT(X') = 0 . (26) 

In this connection, because of (20) and (12.4la) and 
(12.52,53), 

(27) 

(28) 

The additional sign in (28) can be cancelled by complex 
conjugation. Thus (25) implies that 

[-ili( ~ + i; A~ )tl'V ß~ - moc] X*(x) = 0 (29) 

If we define the matrix T by 

XT(X') = TX*(x) , (30) 

this implies that 

[ - ili(~ +ieA~)tI'VTß~T-l - moC]xT(X') = 0 ,(31) 

which coincides with (26) if 

Tß*T- 1 = -t I'ß v v I' (32) 

is true [in complete analogy to (12.56)] for the Dirac ma
trices. Now in the representation (15.47) 
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(33) 

holds, which can easily be checked, i.e. we can choose 

(34) 

with arbitrary cp' E 1R. The time-reversed wave function 
of the Kemmer theory is thus (up to an arbitrary phase) 
given by 

XT(X') = x*(x) (35) 

EXERCISE _____________ _ 

15.9 Verification of the Kemmer Algebra 

Problem. Show that the Kemmer algebra (15.47) can be 
realized by the (16 x 16) matrices 

(1) 

Solution. Instead of (1) one often writes in an oftband 
manner 

ßI' = ~(-yl' + I~) , 

where besides 

bl"'v} =291'v = b~,/~} 
also 

bl1,/~L = 0 

(2) 

(3) 

must be required, too. [Strictly speaking 11' = 11' 0 11 and 
I~ = 11' 0 n, where 11 is the unit matrix of the Clifford 
algebra (3) in four dimensions.] Now, because of (2), we 
have 

~~~=i~~~+n~~+n~~+n~~ 
, "'" ")(4) +~~~+~~~+~~~+~~~. 

Adding ßvßI'ß>. to this product results in 

ß>.ßI'ßv + ßvßI'ß>. 

l( , " '" =~n~~+~~n+~~~+~~~ 

+n{~,~}+~{~,~}+~{n,~} 

+,vb~, I~} +/~b>., IV} +'I'b~, I~}) , 

and since 

(5) 



1>.IJ.lIV = hA' 'J.lhv -'J.lhA, IV} 

+ hJ.l' IV hA - IVIJ.lIA (6) 

is valid, as weIl as the corresponding tenns for the product 
I~ '~'~' too, we obtain [because of (3)] 

ßAßJ.lßV + ßVßJ.lßA 

= !(gAJ.lIV + 4gJ.lVIA + 4gAJ.lI~ + 4gl'vl~) 
= gAI'ßV + gJ.lVßA , 

and thus (15.47). 

(7) 

EXERCISE ______________ _ 

15.10 Verification of the Proca Equations 
from the Lagrange Density 

Problem. Show that the Lagrange density eProca from 
(15.38) leads to the Proca equations (15.34) and (15.35) 
and their complex conjugates. 

Solution. In this notation of the Lagrange density the fields 
GJ.lV, Gl'v*, cpJ.l and cpl'* are conceived as independent. A 
variation with respect to G~v yields then because of the 
definition (15.34) of GJ.lV 

~ = !GI'V - !ol'cpv - oVcpl' = 0 
oG~v 2 2 

Variation with respect to cp~ results in 

oe _ 0 oe 
ocp~ V o(ovcp~) 

m 22- 1 
= _o_{/OJ.l + -0 (GJ.lV - GVI') = 0 ft. l' 2 v , 

i.e. the equation of motion (12.35). The complex-conjugate 
equations are obtained analogously by variation with re
spect to G I'V and cp w 
EXERCISE ______________ _ 

15.11 Conserved Current of Vector Fields 

Problem. Detennine the conserved current for the vector 
fields. 

Solutions. The Proca equation (15.35) holds for the field 
G J.lV' the corresponding complex conjugate equation 

2 2 
oJ.lG* = _ mOc * 

I'V ft. <p V (1) 

holding for the field G~v. If we multiply (15.35) by cp~ 
and (1) by CPv, then the result is 

2 2 
(!')* 0 GI'V = _ moc (!')* {!')V 
TV J.l ft. 1'1'1' , 

(2a) 

I' * _ mö2- v * 
CPvo G I'V - ---,;:-cp CPv (2b) 

Subtracting (2a) from (2b), we obviously get 

-Cp~0J.lGI'V + cpv ol'G;v = 0 . 

This can be written in the fonn 

where the conserved current is given by 

J vG* G v * I' = cp I'V - I' CPv . 

The reason is that the tenns in braces in 

(3) 

(4) 

(5) 

equal zero because of the antisymmetry of G I'V and G~v' 
which follows from the definition (15.34), i.e. 

ol'cpVG;V - GI'VoJ.lcpv* 

= ! [(ol'cpv - oVcpl')G;v - GJ.lv(ol'cpv* - OVcpl'*)] 

= ! [GI'V G;v - G J.lvGl'v*] = 0 (6) 

EXERCISE _______________ _ 

15.12 Lorentz Covariance of Vector Field Theory 

Problem. Investigate the Lorentz covariance of the vector 
field theory. 

Solution. In order for the Proca equations to transfonn co
variantly under Lorentz transfonnations, the field CPI' must 
transform like a vector, Le. under the infinitesimal Lorentz 
transfonnation [cf. (3.1) and (3.35)] 

(1) 

it follows that 

(2) 
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must hold, too. On the other hand the Lorentz transfor
mation of a field can generally be written [in analogy to 
(3.27) of (3.39)] in the infinitesimal case as 

A~(X') = [gl'V + i (f/'rß Llwaß] Av(x) . (3) 

Each of the matrices il'v must be antisymmetric, because 
the Llwl'V are antisymmetric, too [cf. (3.36)]. The compar
ison of (2) and (3) yields at once that 

(iI'V)aß = + (gI' agV ß - gl' ßgv a) . (4) 

For pure rotations, for instance, one obtains 

( 0 
+1 

D A12 1 2 1 2 0 (l )kl=+(g kg I-g /g k)= -b 
0 

C 
0 -D n3 _ 23 23_ 0 (l )k/ - - (g kg / - g /g k) - ~ 

+1 

(1")" = -(g'.9', - g',9',) = ( ~ 0 -D . (5) 
+1 0 

The indices k and 1 here take only the values 1,2,3, and 
these matrices can be conceived as the spin-l analogues 
of the Pauli matrices [see (1.65)]. 

EXAMPLE ............................ .. 

15.13 Maxwell-Similar Form of the Vector Fields 

The additional condition (15.37) of the Proca theory im
plies that the four-components of 'PI' are not independent 
dynamic variables. To isolate the independent quantities, 
we introduce the three-dimensional fields: 

B i - 1 ",ijk C 
- -"1" jk i,j,k= 1,2,3 (la) 

(lb) 

so that we can write 

(2) 

In this notation the Proce equations (15.34) read: 
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. l"k B' = -!C'J Cjk 

= -icijk(Oj'Pk - Ok'Pj) = ('\7 x ep)i , (3a) 

Ei = _COi = -rfJ'Pi + oi'P0 = _ (~ ! ep + '\7'PO)i. (3b) 

Using the inversion of (la), 

-cjk/B/ = icjklC/mncmn = i(gj mln - gkmgjn)cmn 

= i(Gjk - C kj ) = Cjk , (4) 

one gets the following relations: 

Oidj = Oicijk Bk = -cjikoiBk = ('\7 x B)j , 

......0. 1 a . &Jli-J = -- -EJ . 
c at 

(5a) 

(5b) 

Therefore the spatial part of (15.35), with v = j, is given 
by 

1 a m 2c2 
'\7 x B - - -E= __ O_ep (6) 

cat ft. 
The temporal part, however, (v = 0) reads as 

m2~ 
a·ciO = '\7. E = __ °_11,0 , ft. T 

(7) 

Equations (3b) and (6) are the true equations of motion, 
because they contain the time derivations &>ep and &>E, 
whereas (3a) and (7) can be seen as definitions of the 
fields B and 'Po, respectively, expressed by the indepen
dent fields ep and E. Substituting the dependent fields into 
the equations of motion by their definitions, one obtains 
from (3b) and (6) that 

1 a tt-
- -ep = -E+ --'\7('\7. E) 
c at m5c2 

In the last conversion we used the relation 

['\7 x ('\7 x ep)]i 

= CijkajCklma/'Pm = (8li8mj - 8/j 8mi)aja/'Pm 

= aiam'Pm - a/a/'Pi = ['\7('\7 . ep) - V 2r.p]i . 

(8a) 

(8b) 

(9) 



EXERCISE ______________ _ 

15.14 Plane Waves for the Proca Equation 

Problem. Find the solution of the Proca equation (15.36), 
with the additional conditions (15.35) and (15.37) of the 
form 

I/lP(X) = N eP e-ipoz/r.. 
Tp Pp' (1) 

(i.e. plane waves) where Np is a nonnalizing factor. 

Solution. First of alt, from (15.36) and (15.37) it follows 
that 

(2) 

This means the functions e~ can only be different from 
zero if 

° 1 p = ± - Ep , (3a) 
c 

Ep = +c-J p2 + mäc2 

Additionally, condition (15.35) implies that 

ppe~ = 0 . 

(3b) 

(4) 

Now for every three-vector p and each sign of pO, a set 
of three linearly independent four-vectors e;A (A = 1,2,3) 
can be constructed which fulfil (4). Let E A (A = 1,2,3) be 
an arbitrary "tripod" with 

(5) 

which, in the rest system, is obviously valid. Now we 
Lorentz transfonn to a system which moves with the ve
locity -pIpa = -v/co Then the three-vectors E A convert 10 

the vectors e;A with the components 

1 v p. E A 
e~A = VI _ v2/c2 ~ . €A = mOc ' 

VI - v2/c2 - 1 (v ) v 
=€A+ -'EA -

v2/c2 c c 

(p. €A)P 
= E A + _"'::""""",:':""::"--:-

moc(p° + moc) 

These of course obey the covariance condition 

p . epA = Ppe;A = 0 , 

(6) 

(7) 

because the latter does not depend on the reference system 
and in the rest system p = 0 and e~,A = O. Furthennore 
the following orthogonality is valid: 

because the bracket yields 

pO + moc - 2moc - pO + moc = 0 
pO+ moc 

Equation (8) is evident in the rest system, and, due to the 
invariance of the four-scalar-product under Lorentz trans
fonnation, the explicit calculation of (8) was not actually 
necessary. Together with the time-like vector pP, the three 
space-like vectors e;>. constitute an orthononnal quadru
pod in Minkowski space. 

EXERCISE _______________ _ 

15.15 Transformation from the Kemmer 
to the Proca Representation 

Problem. Verify the reverse transfonnation (15.50) from 
the Kemmer to the Proca representation. 

Solution. The matrices UP and Upv in our representation 
are given by 10 x 10 matrices: 

o 
o 
o 
ö 

o 
o 
o 
ö 

Ö
t
) 

-t o 
Öt 
-1 
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o 
o 
o 
ö 

o 
o 
o 
Ö 

Ö
t
) 

-t o 
Öt 
o 

Now, for example, we have 

ili t ° ili ° ---E U X = +--XIO = r.p , 
Jmoc Jmoc 

(lb) 

(1c) 

(1d) 

(2) 

because the spinor Et of (15.49) picks out exacdy the 
lowest component of UoX [using (15.42) and (15.43) in 
the process]. In the same way 

-~Etulx = __ Ii_ X7 = r.p~ 
Jmoc Jmoc 

(3) 

etc. are valid. On the other hand, for example, 

JmocEtUlOx = iJmOCXl = cDl (4) 

or 

(5) 

holds, because 

K'S'=i(O 1 0) G -~ D =i(1 OO)=iK', (6) 

etc. Now it is clear that the transformation (15.50) does 
give exacdy the components (15.43), so that, indeed, (15.50) 
is the reverse transformation. 
EXERCISE ______________ _ 

15.16 Lagrange Density ror Kemmer Theory 

Problem. Convince yourself of the correctness of the La
grange density (15.52) of the Kemmer theory. 
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Solution. It has to be verified that the Euler-Lagrange 
equations 

8C 8C 
Ox - 81J 8WlJ x) = 0 (1) 

are equivalent to the Kemmer equations (15.44). Now with 

8C = ~iliß 81J X - mocx Ox 2 IJ 

and 

8C l' Iiß 8WIJV = -2"1 IJX , 

it follows immediately from (1) that 

(i1iß1J81J - moc)x = 0 , 

Le. (15.44). Alternatively we may write: 

8C 8C 
o = 8x - 81J 8WIJ X) 

- 1.1i- ß --8" 8 1.1i- ß = -mocx - 2"1 X I-' r- - I-' t X I-' 

= -x( moc + ilißI-' 81-') = 0 , 

the equation for the adjoint spinor X. 

(2) 

(3) 

(4) 

EXAMPLE .............................. . 

15.17 The Weinberg-Shay-Good Equations 
There is yet another six-dimensional spinor-representation 
of the Proca theory, first given by Weinberg in 1964 and 
later investigated further by Shay and Good5• To substan
tiate it one can proceed in a completely analogous way to 
that of the derivation of the Kemmer equation. In order to 
do this we define the six-dimensional "spinor" 

x=(J:) 
which is connected to the Proca field by: 

Xl=_I_(G23 _icDl ) , 
4moc 

(1) 

5 D. Shay, R.H. Good: Phys. Rev. 179, 141 (1969) and S. Weinberg: 
Phys. Rev. 133, B1318 (1964). 



X2 = --4 1 (G13 + ia<>2) , 
moc 

X3 = -4 1 (G I2 - iG03) , 
moc 

X4 = __ I_(G23 +ia<>I) , 
4moc 

X5 = -4 1 (G13 - ia<>2) , 
moc 

X6 = --4 1 (G I2 + ia<>3) . 
moc 

(2) 

With the notation (cf. Exercise 15.13) of the field strengths 

Ei = GiO , 

Bi = eijkGjk 

equation (2) reads 

Xl = _1_(BI - iEOI ) , 
4moc 

X2 = _1_(B2 - iE2) , 
4moc 

X3 = _1_(B3 - iE3) 
4moc 

(3) 

1 ( I .EI ) X4=---B +1 , 
4moc 

X5 = --4 1 (B2 +iE2) , 
moc 

X6 = __ I_(B3 + iE3) (4) 
4mOc 

(cf. also Exercise 2.1, where the components X4, X5, X6 
are unnecessary because the Maxwell field is real). The 
field equations are given by 

[,J'V(ili.0J')(ili.ov) - (ili.oJ')(ili.oJ') + 2mijc2] X(x) 

= [ili.oJ'(-yJ'v - gJ'V)ili.ov + 2mijc2] X = 0 , (5) 

where the 6 x 6 matrices are given by 

. . ( 0 bij 11 + M(0ij) + M(ji) ) ,13 = bij 11 + M(ij) + M(ji) 

= ,ji , 

The definitions of the 3 x 3 matrices Si, M(ij), 0 and 
1 can be taken from Exercise 15.7 (commutation relation 
of the Kemmer matrices) and (15.46). That the Weinberg
Shay-Good equations are equivalent to the Proca equations 
cannot been shown as easily as in the case of the Kemmer 
equations, because first one has to give a suitable linear 
combination of the six Shay-Good equations, which then 

lead to the Proca form. This algebraic problem can be most 
easily presented by first finding the inverse transformation, 
which is then used to reconstruct the Proca field GJ'v from 
the spinor X. 

Here we proceed in elose analogy to the Kemmer 
theory. In the same manner as in (15.48) and (15.49), the 
antisymmetrie 6 x 6 matrix UJ'v is defined by 

U ij = !eij k Bk 

UOj = !iAj , (7) 

where 

i (0 0) A M(31) M(3i) 

. (0 0) BI = M(3i) _ M(3i) (8) 

are 6 x 6 matrices, too. The six-component spinor E is 
defined as 

(9) 

Hence, analogously to (15.50), the following relation holds: 

GJ'V(x) = _1_EtUJ'vx(x) . (10) 
2moc 

Applying this matrix from the left to the Weinberg-Shay
Good equation (5) one has to take note of the fact that 

UJ'v,cxß = gCXß UJ'v _ (gcxJ'Ußv _ gcxvUßJ' + gßJ'Ucxv 

- gßvUcxJ') (11) 

holds. Consequently we find that 

_EtUJ'v [ili.ocx(-ycxß - gcxß)ili.0ß + 2mijc2] X = 0 , (12) 

or 

_1_Et [ili.ocx(gcxJ'Ußv _ gcxvUßJ' + gßJ'Ucxv 
2moc 

-gßvucxJ')ili.0ß] X = 2m5c2GJ'v 

The ·lhs of this equation reads as 

ili.oJ'ili.oßGßv - ili.ovili.0ßGßJ' + ili.ßJ'ili.8ßGßv 

-iIi.OVili.oßGßJ' = 2m5c2(oJ'<pv - OV<pJ') , 
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(13a) 

(13b) 



defining the field r.p11 by 

1t-
r.p11 = - m2Cl 8ßGßI1 

o 
(14) 

Equations (13) and (14) agree with both of the Proca equa
tions (15.33) and (15.34). The Lagrangian of the Weinberg
Shay-Good theory is written as 

.cWSG = 1t-(8,,,"X)( -yI1V - gI1V)8I1 X + 2moc2xx (15) 

where 

X =: Xt-yOO , (16) 

and this is examined in more detail in Exercise 15.18. 
Besides the representation used here there is another 

interesting representation, in which the spinor X has a sim
ple form. Defining the unitary matrix 

S=~(~ _~) (17) 

we get 

,_ S _ /2 (iE) 
X - X - 4mOc B (18) 

This spinor satisfies (5) if one inserts the transformed ma-
trices 

(19) 

In (10), naturally UI1V and E have to be substituted by 
UI1V' and E': 

UI1V' = SUI1V st , E' = SE . 

EXERCISE ______________ _ 

15.18 Lagrangian Density 
ror the Weinberg-Shay-Good Theory 

Problem. Prove that the Lagrangian of the Weinberg-Shay
Good theory [Exercise 15.17, (15)] yields the proper equa
tion of motion. 

Solution. With the help of the Euler-Lagrange equation 
we obtain 

8.c 8.c 
o = äx - 811 8(811 X) 

= 2moc2x -1t-811 (-yl1v - g11V)8vX (1) 
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[cf. Exercise 15.17, (5)]. The adjoint equation is obtained 
accordingly as 

8.c 8.c 
o = 8x - 811 8(811 X) 

= 2mo~x -1t-811 8vx(-yI1V - gl1V) (2) 

EXAMPLE ______________ .. 

15.19 Coupling of Charged Vector Mesons to the 
Electromagnetic Field 

The complex spin-l fields appearing in the Proca, Kem
mer, Weinberg-Shay-Good equations describe charged vec
tor mesons. To let the equations-of-motion remain invari
ant, if we apply a local gauge transformation to the fields, 
the derivation 811 must be substituted by the "gauge invari
ant derviation" 

where e is the charge of the vector space [cf. (1.132-136)]. 
Therefore the field equations of the three different theories 
read: 

(inDI1ßI1 - moc)x(x) = 0 , Kemmer 

[1t- D I1 (-yl1v - gl1V)Dv - 2m5c2] X(x) 

= 0 . Weinberg-Shay-Good 

(1a) 

(lb) 

(2) 

(3) 

Since observable massive charged mesons are not elemen
tary particles, but composed of quarks - as are the nucle
ons -, we expect an anomalous coupling (in the case of 
the proton (cf. Exercise 9.11). In the simplest cases it can 
appear in form of a dipole or quadrupole coupling like 

.cdipole f'V lf'v Fl1v , .cquadrupole f'V c>'JJv 8>.Fl1v . (4) 

The tensors lf'v and c>'I1V are bilinear forms in the vector 
fields formed with matrices of the algebra of the corre
sponding theory. 

In the case of free vector mesons we saw that the 
Kemmer, as weH as the Weinberg-Shay-Good equations 



can be brought into Proca fonn. In doing this with mini
mal and anomalous couplings, the algebra becomes more 
involved. In these calculations one finds that the anoma
lous couplings in the Proca equations transfonn into the 
corresponding anomalous tenns of the Kemmer equations 
and that the minimal coupling of the Proca theory is equiv
alent to that of the Kemmer theory. The Weinberg-Shay
Good theory exhibits different behaviour: after transfor
mation into the Proca fonn the minimal coupling in CWSG 

creates an anomalous dipole moment. However, since the 
Proca theory cannot exclude an anomalous dipole moment, 
a measurable difference of the three theories cannot be 
found (at least in the first order of the coupling constant 
a = e2/lic2). 

EXERCISE ______________ _ 

15.20 A Useful Relation 

Problem. Prove the relation 

'" aA f.JV - 1 i",f.JvO'l! a-,5 - "! ~ O'l!' 

Solution. To prove this relation we take the standard rep
resentation, for which it holds [cf. (2.13) as weIl as (3.57)] 
that 

15.6 Spin-J Fields 

"(5 = (~ g) 
a-0i =i (2i ~i) 

a-ij i' (a- k 
=t:\ 0 a-°k ) 

Ei = (~i 2i) = tt:ijka-jk 

Hence we write 

0) i iJ'kA i Oi"kA , = -t: a'k = -t: J a 'k 
a-' 2 J 2 J 

i 0' __ '" If.JVaA 
- 2" f.JV 

Since the transition to other representations does not 
change anything, the relation is thus proven in general. 

For simplicity we restrict ourselves to fields with finite mass. For s = i the Bargmann
Wigner multispinor has three indices, and it is totally symmetric with respect to these. 
The equations of motion (15.10) read as 

(15.65a) 

(15.65b) 

(15.65c) 

We now try to expand the field in totally symmetric matrices similar to (15.29). Because 
of the total symmetry in the first two indices we make the ansatz [cf. (15.29)] 

moc A f.J 1 A CA .1. f.JII ( 
t[lcxß"'(x) = T<'Yf.JC)cxß1jJ "'(x) + 2(al'lI )cxßo/"'( x) . (15.66) 

Here 1jJ1' ",(x) is a "vector spinor" (J.t = 0, 1,2, 3 is a Lorentz index, whereas "( = 1, 2, 3, 4 
is a spinor index), 1jJI'V "'(x) transforms like the product of a covariant antisymmetric tensor 
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and a spinor. Symmetries in the indices ß and 'Y, and consequently also the symmetry 
with respect to a, ß, and 'Y, is guaranteed if the coefficients (15.26) of the expansion of 
the matrix (Wa)ß'Y in the basis of a Clifford algebra also vanish, as was the case in the 
expansion of (W'Y)aß' One gets these coefficients by contracting (15.66), with respect to 

the indices ß and 'Y, with the matrices Ci;, (C-1i'Y5)ß'Y and (C-1'Y5'YI-')ß'Y' which yields, 
for example, 

~ 1 moc ~ ~ 1 1 ~ ~ 1 
Waß'YCi'Y = T('YI-'C)aßC/i'Y 'lj;1-' 'Y(x) + '2(o-l-'vC)aß C/i'Y 'lj;l-'v'Y(x) 

_ moc I-' 1 A I-'V_ 
- T<'YI-')a'Y'lj; i x) + '2(G'l-'v)a'Y'lj; 'Y(x) - 0 

In this way one gets the three constraint equations 

~c 'Y1-''lj;1-' (x) + ~o-l-'v'lj;I-'V(x) = 0 , (15.67a) 

(15.67b) 

(15.67c) 

where we have not written out the spinor indices explicitly any more. Multiplying (15.67b) 
bY'Y5 and adding and subtracting (15.67a), respectively, leads to two equivalent conditions: 

(15.68a) 

(15.68b) 

Furthermore we multiply (15.67c) by 'Y5 on the lhs and make use of the commutation 
relations (3.11) and the relation (15.32), which yields 

- m~c (291-'>' - 'Y>. 'Y1-')'lj;I-'(x) + ~'Y>'o-I-'v'lj;I-'V(x) 

-i(gl-'>.'Yv - gv>.'YI-')'lj;I-'V(x) = 0 . (15.69) 

Because of (15.68) and the antisymmetry of 'lj;I-'V(x), Eq. (15.69) reduces to 

~c 'lj;>.(x) - i"'t1-''lj;1-'>'(x) = 0 . (15.70) 

Since the condition (15.68b) follows from (15.70) and (15.68a), namely 

moc >. • >. i >. 
T'Y>''lj; (x) -1'Y>''YI-''lj;1-' (x) = 0 - '2<'Y>.'Y1-' - 'Y1-''Y>.)'lj;1-' (x) 

= 0-1-'>' 'lj;1-'>' (x ) = 0 , 

we are left with the two independent conditions: 

(15.71a) 
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(15.71b) 

This eorresponds to 4 + 16 = 20 linear conditions between the 16 + 24 = 40 eomponents 
of t/J~ and t/J~v, so that the number of independent eonditions reduees to 20, whieh is the 
eorrect number of eomponents of a totally symmetrie tensor of the third rank in a four
dimensional vector space. From the Bargmann-Wigner equations (15.65a) and (15.65b) 
then folIows: 

moc A 

T(in'Y. 0 - moc)aot'hI'C)a'ßt/J1' ix) 

+~(in'Y. 0 - moc)aa,(al'v6)a'ßt/Jl'v'"'(x) = 0 , (15.72a) 

mo C A 

T'YI'Caß,(in'Y. 0 - moc)ßß,t/J1' ix) 

+~(al'v6)aß'(in'Y. 0 - mOc)ßß,t/JI'Vix) = 0 (15.72b) 

In (15.72b), again the produets 'YI'C'YJ and ul'vC'YI appear, ef. Eq. (15.30). Using the 
properties of C we rewrite (15.72) in the form 

mo C [ A] T (in'Yvov - mochl'C aßt/J1' i x ) 

+~ [(in'Y'xo'x - moc)aI'VC]aßtP"vix) = 0 , 

moc [ J:lV A] I' T 'Y1'(in'Yvu - moc)C aßt/J i x ) 

+~ [a I'v(in'Y'x o'x + moc)C] aß t/JI'V I'(x) = 0 

The differenee of (15.73a) and (15.73b) yields 

2 22 
A A V mOc A 

2moc(uvI'C)aßO t/JI' I'(x) - -n-('YI' C)aß t/JI' I'(x) 

-moc(al'vC)aßt/JI'V I'(x) + ~in(b'x' al'v]C] aßo'xt/JI'V I'(x) = 0 

Beeause of (15.32), this corresponds to the equation 

": (aVI'C)aß [ovt/JI' ix) - ol't/Jvix) + t/JI'Vix )] 

(15.73a) 

(15.73b) 

(15.74) 

The eoefficients of the linear basis matriees a I'V C and 1'1' C must vanish. For mo:f:. 0 this 
yields similar relations as were found in (15.34) and (15.35) for the Proca fields: 

(15.75a) 
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(15.75b) 

Because of the antisymmetty of tjJPoII(X), then from (15.75b) it again follows that 

8Po tjJPo -y(x) = 0 , 

and therefore also that 

m 2c2 
DtjJPo -y(x) + ~ tjJPo -y(x) = 0 

(15.76) 

(15.77) 

Thus eaeh spinor eomponent of tjJPo(x) fulfils the Proca equation, and the tensor field 
tjJPoII(X) is uniquely determined by tjJPo. Correspondingly the third Bargmann-Wigner equa
tion yields 

moc A [ ] T("(PoC)aß (i1i."(· 8 - moc)tjJPo(x) -y 

+~(aPoIIC)aß [(i1i."(. 8 - moC)tjJPoII(X)]-y = 0 (15.78) 

However, this is automatieally fulfilled sinee [beeause of (15.71a)], (15.71b) and (15.75a) 
eombine to form 

moctjJPo = 1i.i"()"tjJ)"Po = 1i.i"()"(8),,tjJPo - 8 Po tjJ),,) = i1i."(· 8tjJPo , 

which is just the Dirae equation for eaeh Lorentz eomponent of tjJPo(x). Furthermore from 
(15.75) it also follows that 

(15.79) 

so that the validity of (15.78) has been proven. Thus the equations of motion for the spin-~ 
field reduee to the Dirac equation for the independent vector-spinor field 

(i1i."( . 8 - moc)tjJPo(x) = 0 , (15.80a) 

together with the 4 eonstraints 

(15.80b) 

The "gauge" eondition (15.76) ean be derived by multiplying (15.80a) with "(Po to give 

o = (i1i."(Po"(18" - mOC"(Po)tjJPo(x) = 2i1i.(gPoII - ! "(11 "(Po ) 8" tjJPo(x) 

= 2i1i.8Po tjJPo(x) , 

so that this is not an independent relation. The equations (15.80) are known as the Rarita
Schwinger equations6 • They ean also be eombined into one single equation, namely 

[(i1i.,,(. 8 - moc)gPo)" -li1i.("(Po8)" + 8Po ,,(),,) + l"(Po(i1i.,,(. 8 + moch),,] tjJ),,(x) = 0 , 

sinee multiplying this equation by "(Po yields (15.81) 

6 W. Rarita, J. Schwinger: Phys. Rev. 60, 61 (1941). 
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(jinoA+imoc'YA)tjI'\X)=O , 

whereas the application of 01' results in 

['Y . o(iinOA + imOCf'A) - mooA] tjlA(X) = 0 

Inserting (15.82a) into (15.82b), then because of mO:;:O, it follows that 

OAtjlA(X)=O , 

and thus (15.76), and (15.82a) are equivalent to (15.71a), i.e. 

'YA tjlA(X) = 0 . 

(15.82a) 

(15.82b) 

With these two conditions (15.81) immediately reduces to (15.80a). Combining the four 
four-spinors tjlA(X) into a 16 component spinor 

x = (~~) 
one can write (15.81) as 

(15.83) 

where the 16 x 16 matrices and 0:1' have a Lorentz index as weIl as a spinor index: 

(15.84a) 

(15.84b) 

Each element of these matrices with the indices 1-', A is a 4 x 4 matrix in the spinor indices. 
Now one has the equation 

ßI'A (g\ - 'YA'Y/I) = (gI' A - 'YI''YA) ßA/I = gl'/I , 

from which it follows that the matrix ß has an inverse, 

(ß-l)I'A = gl'/I - 'YI''Y/I 

Using 

(r/l)WT = (ß-10:/I)I'U = (ß-1)I'A(O:/I)A u 

= (gl'A - 'YI''YA) ['Y/lg\ - i'Y\g/lu - 'Y/I'Yu) - t'Yug\] 

_ 1 ( ) 1 - 'Y/lgp.u - J'Yp. g/lu - 'Y/I'Yu - 'J'Yugp./I 

- 'Yp.'Yu'Y/I + ~'Yp.(g/lu - 'Y/I'Yu) + t'Yp.'Y/I'Yu 

= 'Y/lgp.u + 'Yp.g/lu - 'Yp.{ 'Y/I' 'Yu} - t'Yugp./I + 1'Y1''Y/I'Yu 

= 'Y/lgp.u - 'Yl'g/lu - t'Yug/l1' + t'YI''Y/I'Yu , 

(15.85) 

(15.86) 

(15.87) 

311 



Eq. (15.83) takes the so-called Fierz-Pauli-Gupta fonn 

(ilir,J)/J - moc)X(x) (15.88) 

Here the matrices a /J obey the commutation relations 

E(r/Jr" - 9/J,,)r>.re = 0 
(P) 

(15.89) 

where L:(P) implies a sum over all possible pennutations of J.l-, V,.A and (!. 
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Y. Takahashi: Introduction to Field Quantization (pergamon Press, Oxford 1969) 
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Lecture Notes in Physics, Vol. 73 (Springer, Berlin, Heidelberg 1978) 
D. Lurie: Particles anti Fields (Interscience, New York 1968) 
M. Riedei: Relativistische WeliengleichungenfÜT Spin-I-Teilchen, Diploma thesis,lnstitut für Theoretische Physik 

der Johann Wolfgang Goethe-Universität, Frankfurt am Main (1979) 
G. Labonte: Nuovo Cimento SO, 77 (1984) 
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16. Lorentz Invariance and 
Relativistic Symmetry Principles 

16.1 Orthogonal Transformations in Four Dimensions 

We consider the four-dimensional space with coordinates x I' (p. = 0, 1, 2, 3), which -
assuming the most general case - may be complex numbers. The absolute value of the 
position vector is given by (summation convention) 

(16.1) 

and the length S can also take complex values. Examining an orthogonal transformation 
alJv, which relates each point with coordinates xl' to new ones X'I': 

(16.2) 

the absolute value should remain unchanged by this transformation (this is the fundamental, 
defining condition for orthogonal transformations), i.e. 

S' = jx~xllJ = JXlJxlJ = s (16.3) 

From this relation XiI' X'I' = a lJ O'aT IJXO'XT = xO' XO' it directly follows that 

alJ a T = fJT (a, T = 0, I, 2, 3) , 
0' I' 0' 

(16.4) 

implying that the alJV generate a linear orthogonal transformation. Equivalently to (16.2) 
and (16.3), Eq. (16.4) can be envisaged as a defining equation for orthogonal transforma
tions: Sequential application of two transformations gives 

(16.5) 

where .the transformation ßV 0' again represents an orthogonal transformation, since 

(16.6) 

Thus the orthogonal transformations aV I' form a group. The unit element of this group is 

given by a/ = fJl' v (the identity transformation) and the existence of the inverse elements 
follows from (16.4) (a . a-1 = ll). Accordingly all conditions characterizing the group 
structure are fulfilled (the associative law is also valid because the transformations aV I' 

are linear and orthogonal). 
This group of homogeneous, linear transformations that keep the distance between 

two points invariant is called a group of the four-dimensional, complex, orthogonal trans
formations. In analogy to the three-dimensional group 0(3) we use the compact notation 
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0(4) [more precisely, 0(4, C) because this group is defined over the field C ofthe complex 
numbers]. 

At first al-'V has sixteen components; however, due to the ten orthogonality relations 
(16.1) only six independent (complex) parameters remain. Additional restrietions for the 
al-'V yield the subgroup of 0(4, C): Let us assurne all xI-' to be real, then the same must 
hold for all al-'v' We are led to the real Jour-dimensional group 0(4, R), whose group 
properties follow from those of 0(4, C). 

Furthermore, we may consider the case that the coordinates entering the scalar product 
of two vectors may occur with different sign, ego 

ds2 = dt2 - dz2 = -dz2 + dt2 • 

The orthogonal group keeping this line element invariant is called 0(3, 1). (In general the 
O( ) I b'li & 2 2 2 2 2 . . ) group p, q eaves a 1 near 10rm -Xl - X2 - ••• - Xp + Xp+l + ... + Xp+q mvanant. 

This non-symmetrie expression for the line element can also Oe treated in the framework 
of 0(4,C), if one does choose the coordinates XltX2,X3 as real and the coordinate xo = it 
as purely imaginary - the corresponding space being called Minkowski space. In that case 
the transformed coordinates x' I-' must also have the same properties, which yields for the 
elements al-'v: 

aik (i,k=I,2,3)} real , 
aoo 

aOi, am (i = 1,2,3) imaginary . (16.7) 

The group, whose elements are restricted by the conditions (16.7), is called the homoge
neous Lorentz group L of the Minkowski space, and the elements are given by the Lorentz 
transformations. 

Further subgroups already known to us can be obtained by the restrietions am = aoi = 
o and aoo = 1. The group with these properties represents the complex, three-dimensional 
group 0(3, C) [0(3) and 0(4) always means 0(3, C) and 0(4, C), respectively]. For real 
X I-' we are led to the real, three-dimensional group 0(3, R). In the following we shall 
discuss the groups 0(4) and L in more detail. 

16.2 Infinitesimal Transformations and the Proper Subgroup of 0(4) 

First we write down an infinitesimal element of 0(4): 

a/ = 61-'v + c/ (Ic/I ~ 1). (16.8) 

The transformation of XV then reads 

(XV)' = al-'vxl-' = (61-'V + CVI-') xl-' , (16.9) 

from which, according to the orthogonality relations for a~, it follows that 

al-'v a l-'(1' =6v(1'= (61-' V +Cl-'v) (6JJ(1'+cl-'(1') 

= 6 V 61-' + 6 V cl-' + c v 6JJ + 0(c2) I-' (1' I-' (1' I-' (1' 

= 6v(1' +cv(1' +C(1'v +0(c2) . 
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In order to satisfy the orthogonality relations at least up to terms of the order O(ch, 

(16.10) 

must be valid. Since 

we also obtain [in view of (16.3)] el!CT = -eCTl!' i.e. the infinitesimal quantities ejJv have 
to be antisymmetric. In accordance with our resuIt obtained previously, this implies that 
there exist six independent parameters of an infinitesimal transformation. In the case of 
0(4) the e jJV are arbitrary complex numbers, while they are all real for 0(4, R). As already 
mentioned before, the group parameters of Leik (i, k = 1,2,3) are real and eiQ = eOi are 
imaginary. 

In order to construct generators of 0(4) group transformations we rewrite (16.9) as 

(16.11) 

where as denote the parameters of the transformation. In order to understand the meaning 
of the (i)"~) let us have a look at the transformation of a vector with components A CT: 

(Al!)' = Dl!CT(ai)ACT 

Dl! CT stands for the transformation matrix dependent on the parameter ai. Expansion of 
the matrix elements for small ai yields 

(Al!)' = (hl!CT + ~ (8!:CT ) a=O aj + 0(a2») A CT (16.12) 

and comparison with (16.11) shows that 

A v(s) _ (8D V jJ) (I) jJ - --
8as a=O 

(16.13) 

is valid. Such a Taylor expansion about the identity transformation (aj = 0) is only possible 
if the D V jJ are continuously differential functions of the parameters aj; however, this is 
the essential condition for a group to be a Lie group, and since all groups considered 
in the following are Lie groups [Loren tz group, 0(4),0(4, R), .. . ], the improper Lorentz 
transformations will be excluded from this discussion. In our case the parameters as, stand 
for the infinitesimal quantities el! CT' which means that s is the short-hand notation for two 
indices (s t-t (Ja). Accordingly the infinitesimal operators (generators) (l)v jJ have to be 
characterized not only by s, but by two indices (J, a. In order to avoid confusion and to 
distinguish between four-dimensional matrix indices and generator indices, we write the 
latter in brackets1 and rewrite (16.11) as 

(16.14) 

1 Note, this notation appears somewhat different from the one used in Chap.3 [e.g. (3.44)ff). It is assumed 
that the reader will be able to establish the connection without major problems. 
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Since we sum over (2 and 0', each term is counted twice. For this reason we have to multiply 

( ~ )(U{!) 
the sum by the factor 1/2. In view of the antisymmetry of C{!U' we also choose [v", 

to be antisymmetrie with respect to the indices (2, 0'. Parts symmetrie in (2, 0' would not 
contribute when contracting with the anti symmetrie C{!u' Thus we obtain six infinitesimal 

( ~ )(U{!) 
operators [v", ' the generators 0/ the orthogonal group 0(4). Comparing (16.14) 

with (16.9) we are led to a defining equation for Iv",: 

(16.15) 

First we lower the tensor index v: 

or 

respectively. Since the sum over (2 and 0' only contributes for (2 = /J and 0' = T, then 
it must terminate. Accordingly an ansatz for a solution of (16.15) must look similar to 
(i",v)({!u) = gU ",g{!v . Taking into account the antisymmetry with respect to /J.V, it follows 
that 

(1 )(U{!) = gU g{! _ gU g{! = ( _ 1 )(U{!) 
"'v '" v v '" v'" ' 

and the antisymmetry with respect to 0', (2 also becomes obvious: 

(l",vfue) = -(i",vfeu) 

(16.16) 

(16.17) 

With the aid of the relation g'" {! = g"'V g{!V = S'" {! we can direct1y denote the matrix 
representation 0/ the generators, e.g. 

and for mixed tensors 

U".f'"l =gPT(iT.flOl = ( - ~ 
-1 

0 
0 
0 

Furthermore, 

(i".f13l = /"9'. - /.9'" = 0 0 
0 
0 
1 
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0 

D 
0 
0 
0 

0 

-D 0 
0 
0 

1 
o 
o 
o 

o 
o 
o 
o 



c 
0 0 

D 
A (21) 2 1 2 1 0 0 1 

(IJJv) = 9 JJg v - 9 vg JJ = ~ -1 0 
0 0 

C 
0 0 

D 
A (32) 3 2 3 2 0 0 0 

(IJJv ) =gJJgv-gvgv= ~ 0 0 
0 -1 

(i"vYW) = .'"gOv - g'vgO" = ( -! 0 1 

D 
0 0 
0 0 
0 0 

(i"VPO) = "'"lv - g'vl" = ( ~ 
0 0 

ü 0 0 
0 0 

-1 0 0 

Now the commutation relations of (IJJv)(Uf}) can be easily verified: for example 

[(iJJv PI), (iJJV P2)L 

=0 
o 0 0) 

0 
0 

010 0 
- 1 0 0 0 
000 0 

XO 
o 0 0) 010 

-1 o 0 
0 o 0 

C 0 
0 

D-G 
0 0 

o 0 0 0 0 
= 0 0 0 0 0 

o 0 0 1 0 
_ (i P3) - - JJV . 

Analogously we get 

[(iJJv)(32) , (iJJv )(13)L = _(iJJv)(21) , 

[ (i JJV )(13) , (i JJV l21) L = - (i JJV )(32) , 

[(ipv)(lO) , (ipv l20)L = - (ipv l21) , 

[(iPV)(20) , (ipvPO)L = _(ipv )(32) , 

[(ipvPO) , (ipv)(I°)L = _(ipvP3) 

0 0) c 0 
0 

D 
0 o 0 0 0 
0 1 - 0 0 0 

-1 o 0 0 -1 

D=G 
0 0 

D 
0 0 
0 0 

-1 0 

(16.18) 

(16.19) 
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(There are nine further commutators left, but they appear rather seldom in applications.) 
All fifteen commutation relations can be summarized within a single one (for the sake of 
more clarity we omit the tensor indices J-L and v and note only the parameter indices (J' 

and /1; we also drop the brackets ( ) on the parameter indices) 

[iaß, p 6L = _öa'Y iß6 + öa6 iß'Y + öß'Y i a6 _ öß6 ia'Y (16.20a) 

or, if the parameter indices are lowered, 

[iaß' i'Y6L = -ga'Y i ß6 + ga6 i ß'Y + gß'Yia6 - 9ß6ia'Y (16.20b) 

These equations represent the Lie algebra of the group 0(4). 1t is convenient to introduce 
six linearly independent combinations instead of iue (k, 1= 1,2,3) 

ji(+) = Hikl + jiO) , 

ii(-) = Hikl - jiO) (16.21) 

where i, k, I are cyclic permutations of 1,2,3. From (16.20a) the commutation relations of 
ii(+), ii(-) are derived as 

[ii(+), ik(+)L = -il(+) , 

[ii(-), ik(-)L = -il(-) , 

[ii(+), ik(-)L = 0 , 

i, k, I = 1,2,3 cyclic 

Since ii(+) and ii(-) are not hermitian, we introduce the hermitian operators 

ji(+) = -iii(+) , ji(-) = _iii(-) 

Then, it follows from (16.22) that 

[ii(+), jk(+)L = ii/(+) , 

[ji(-), ik(-)L = ij/(-) , 

[ii(+), jk(-)L = 0 , 

(16.22) 

(16.23) 

i, k, I = 1,2,3 cyc1ic (16.24) 

By introducing ii(±) we have constructed two 3 x 3 matrices from the 4 x 4 matrlces 
iue. Consequently we have left four-dimensional space and moved to a three-dimensional 
subspace, where ii(±) are the infinitesimal generators. Therefore, each four-dimensional 
transformation can be performed by combining appropriate transformations on the sub
spaces. Because of (16.21), one has 

i kl = ii(+) + ii(-) and iiO = ii(+) _ ii(-) 

i, k, 1 = 1,2,3 cyc1ic , (16.25) 

and the ji(±) are the generators 0/ the three-dimensional subgroup 0/0(4). As (16.24) 
shows, they obey the same commutation relations as the angular momentum components 
L:I:' Ly and Lz ; hence they are generators of an 0(3) subgroup. Since we have selected 
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two three-dimensional subspaces of the four-dimensional space with the operators ji(+) 

and ji(-), the reduction from 0(4) to 0(3) yields six operators ji(±) (i = 1,2,3), instead 
of three. This point williater on be studied more rigorously in connection with the spin, 
but for the moment we want to get a more intuitive understanding of the meaning of 
the parameters c"l' in the case of the real rotation group 0(4, R). To do this we choose 

cI2 = -c2l = c and allother c"l' = O. The components of the transformation (16.9) then 
read: 

(xo), = xo , 
(xl)' = xl +cx2 , 
(x2)' = x 2 _ cx l 

(x3 )' = x3 (16.26) 

In fact this describes a rotation about the infinitesimal angle c within the (x l _x2) plane, i.e. 
c12 represents a rotation angle; hence (1"1')<12) is the operator which effects infinitesimal 

rotations in the (xl - x2) plane. Therefore we can say, in general: CI''' is the rotation angle 
about two axes2 X u and xe which are perpendicular to the I.LV plane and, in addition, the 
J-LV plane remains unchanged by this rotation. All infinitesimal rotations of the group 0(4) 
are rotations in the six planes: 

The situation is different for the Lorentz group L of the Minkowski space (xo = ict). Here 
C12, C23 and C3l are real and have the same meaning as in the case of 0(4, R); but CIO 
and COI are imaginary (clO = -cOl = ic): if allother CI''' vanish, we have 

(xO)' 

(xl)' 

(x2)' 

(x3)' 

= -icxl + xO , 

= xl +icxO , 

- x2 - , 
= x3 (16.27) 

This is no rotation, but an infinitesimal special Lorentz transformation along the xl axis, 
which becomes clear if we look at this Lorentz transformation in more detail: 

(xl)' =I'(x l +i~XO) 
(x2)' = x 2 , 

(x3)' = x3 

(xO)' = 1'( -i~xl + xo) 

where 

I' = (1 _ ~) -1/2 

2 This is just a manner of speaIdng analogous to that describing rotations of a plane in R 3• Mathematically 
it is correct only that t: 11011 causes a rotation of the plane which is spanned by the I' and the " axes into itself. 
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In the case of the two coordinate systems v/c = c ~ 1 this yields the result (16.27); hence 
ClO represents the ratio of the relative velocity and the light velocity, and (ivp.)<lO) is the 

operator which effects a special Lorentz transformation along the xl axis (Lorentz boost). 
The parameters c2Q and c30 and the operators (ivp.)<20) and (ivp.PO) have analogous 
meanings. 

By multiple application of the infinitesimal rotation we can perform a rotation about 
the finite angle C12: 

(16.28) 

i.e. in the case c12"'0 and allother cp.v = 0, we have 

(16.29) 

Here we should note that there exist transformations in 0(4) which cannot be achieved 
by infinitesimal transformations (i.e., the space and time inversions). Such examples will 
be discussed later on. 

Remark. If all group elements can be created from the unit element by infinitesimal 
continuous variation of the parameters, then the group is called connected [0(4) is not 
connected!]. 

16.3 Classification of the Subgroups of 0(4) 

Now we want to study the properties of the group 0(4) more rigorously. To that end we 
consider an arbitrary transformation 0. = [aP. v ]. The orthogonality relations read 

or, in abbreviated notation, 

~a= TI • 

Therefore, for the determinants it holds that 

det(~a) = det a . det 0. = (det 0.)2 = 1 , 

which implies 

deta. = ± 1 

(16.30) 

(16.31) 

(16.32) 

Transformations with determinants ± 1 are called unimodular: the group 0(4) and its sub
groups are therefore unimodular. By classifying the elements into those with det a. = + 1 
and deta = -I, respectively, 0(4) is divided into two parts. First we consider the group 
0(4, R): The part with det 0. = +1 is denoted by SO( 4, R) (SO for special orthogonal 
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transformations). Besides the identity transfonnation, it contains all infinitesimal transfor
mations (det(h'v p + C;V p) = + 1), i.e. all finite transfonnations which can be assembled by 
these infinitesimal transfonnations belong to the group SO(4, R) (proper four-dimensional 
rotations). A typical member of the other part of 0(4, R) with det a = -1 is the coordinate 
inversion 

Since 

o 
-1 

o 
o 

o 
o 

-1 
o 

(16.33) 

J) 
this transfonnation belongs to the group 0(4, R) (all aV parereal) and it cannot be de
composed into infinitesimal transfonnations. Furthennore this second part of 0(4, R) is 
no group, because it does not contain the identity transfonnation; but, together with the 
SO(4, R), it does make up the whole group 0(4, R)! [These statements are also valid for 
the 0(3, R).] To study the properties of the Lorentz group L in more detail, the situation 
is more complicated because, in addition to det a = ± I, we find with the orthogonality 
relations that 

apoaPo = akOakO + aoOaOO = 1 

Since ako is imaginary, it holds that akOako = -la212 and consequently 

(aoOf =1+lakoI2~1 
i.e. 

Thus the Lorentz group can be split up into four parts, namely: 

Part I or LI : deta = +1, aoo ~ 1 (orthochronous LT) , 

Part II or L~ : deta = -I, aoo ~ 1 (orthochronous LT) , 

Part III or L: : deta = -I, aoo:s - 1 (antichronous LT) , 

Part VI or Li : deta = + I, ao 0 :s - 1 (antichronous LT) 

(16.34) 

(16.35) 

Part I is named the group of proper Lorentz transformations. It includes the unit transfor
mation, infinitesimal transfonnations and their iterations, i.e. all spatial rotations and the 
special Lorentz transfonnations of the Minkowski space. 

ln the foHowing we shall denote Part I by Lp (p = proper). Lp is a subgroup of L. On 

the contrary Part II or L~ is no group, and a typical representative member is again space 
inversion. [Thus everything mentioned in connection with 0(4, R) is valid.] Together with 

Lp, L ~ fonns the so-called jUlI Lorentz group 4, which is a subgroup of L. It includes 
the unit transfonnation, space rotations, special Lorentz transfonnations, space inversion 
as weH as any combination of all members. 
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The basic element of Part III is time reversal 

(Xi)' = xi (i = 1, ,2, 3) , 

(xo)' = _xo , 

that is 

-c~ 
0 0 

D aV 
1 0 

I-' - 0 0 1 
0 0 0 

detaV =-1 
I-' 

aOo = -1 

(16.36) 

However, L~ does not form a group because this part does not include the unit transfor
mation. The same is true for Part IV, one example being the total inversion of Minkowski 
space: 

(xl-')' = -xl-' (J.L = 0, 1,2, 3) (16.37) 

Li is not a group, either. 
Together with Lr, Li form the so-called extended Lorentz group. Because Lr (full 

Lorentz group) does not change the sign of the zero component of a time-like vector, it 
is frequently denoted orthochronous Lorentz group. 

16.4 The Inhomogeneous Lorentz Group 

The inhomogeneous Lorentz group L keeps the distance between two points of the 
Minkowski space invariant, and the transformation of points xl-' of the Minkowski space 
by L has been given by (XV)' = aV I-'xl-'. We now drop the requirement of homogeneity 
and use the transformation 

(16.38) 

It can be seen that the term ßV cancels in the expression for the distance between two 
points, i.e. (16.38) also keeps the distance between two points invariant, whereby the 
orthogonality relation a/ al-' (1' = 6(1'v holds once more. [Of course, the transformations 
(16.38) do not keep the length of xl-' invariant.] Furthermore {fJ has to be imaginary and the 
ßi (i = 1, 2, 3) have to be real and obviously the ßV characterize space-time translations. 
The transformations (16.38) form a group, the so-called inhomogeneous Lorentz group or 
Poincare group P. 

Like the homogeneous Lorentz group, P also disintegrates into four parts, e.g. the 
proper inhomogeneous Lorentz group [the group theoretical expression: SO(4) corresponds 
to ISO(4); I for "inhomogeneous"]. 

P has ten parameters (six independent aV I-' and the four components of ßV). The 
subgroups of P are the homogeneous Lorentz group L and the Jour-dimensional group oJ 
translations S, whose elements are given by (XV)' = XII + ßII. Because the transformations 
do not commute with the homogeneous Lorentz transformations, the group P is not the 
direct product of L and S, Le. 
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(16.39) 

We now consider the translational group and first look for the infinitesimal generators 
ofthe transformation Pu (g = 0, 1,2, 3). The infinitesimal transformation is analogous to 
(11): 

'IjJ - 'IjJ' = (TI + *cU PU) 'IjJ . (16.40) 

The cU are the infinitesimal transformations, i.e. (x U)' = xU+cu (lcUI ~ 1), though because 
of (16.12) we have 

'IjJ(x P)') = 'IjJ(xU + cU) = 'IjJ(xU) + cU o'IjJ (16.41) 
oxu 

Comparison of (16.40) and (16.41) yields 

A • 0 
Pn = -ln-

" oxu ' 
(16.42) 

which are the generators of the infinitesimal translations. As in the case of nonrelativistic 
quantum mechanics, the momentum operator is connected with space (time) translations. 
Each finite translation can be generated by iterative application of (16.42), i.e. according 
to (16.28) and (16.29) the unitary operator 

(16.43) 

is the relativistic translation operator. 
The translational group S is an abelian group, because 

(16.44) 

However, Pu does not commute with the generators (11/ /.J(U(1') (16.13) of the homogeneous 

Lorentz group and therefore does not commute with the invariants constructed with ji(+) 

and ji(-), though it is possible to show that the operators 

A2 A AAl A ;( ) 
P = P pJJ and W, = - '"' C' pJJ 1'I/U 

JJ JJ " 2 L..J "JJI/U (16.45) 

commute with all 1<u(1') and Pu' i.e. pi; anti WA are the invariants (Casimir operators) of 

the Poincare group. For a free particle we have pJJ PJJ = m~~, the particle's mass, and the 
operators WA are connected with the spin of the particle, as will be seen later. Obviously 
the Casimir operators provide all quantities (mass, spin) necessary for the description of 
the free particle, which is the reason for the great importance of this group in modern 
elementary particle physics. 

16.5 The Conformal Group 

In the preceding seetion we have seen that the generators of the physically important 
Poincare group are given by the six generators of the homogeneous Lorentz group (1I/JJ)<U(1') 

and the four generators PJJ of the space-time translations. The Poincare group can be 
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extended to the 15-parametric conformal group of the four-dimensional Minkowski space, 
by considering transformations that keep the light-like line element ds2 = (dxO)2 - (dx 1 )2_ 

(dx2)2 - (dx3)2 = 0 invariant. That is, the conformal transformations include changes of 
length, but keep the angle between two vectors invariant (hence "conformal mapping"); 
thus we have to add five more generators to the ten generators of the Poincare group. The 
first operator is that of sc ale transformations or dilatation b and it yields the transformation 

(xl-')' = f!xl-' (f! > 0) . (16.46) 

The four remaining generators KI-' create the so-called proper (special) conformaltrans
formations, which change the length scale point by point, thus forming position-dependent 
dilatations. These transformations can be written as a product of an inversion 11: 

k2 
(xl-')' = xl-' 

(XlIXlI) 

a translation T: 

and a further inversion 12: 

All together, this yields the special conformal transformation K = ]2T]I: 

(xl-')' = xl-' - al-'x2 

a(x) 
with 

For the conformal group we get a total of fifteen infinitesimal generators: 

(]1I1-' fuu) : six generators of the Lorentz group 

PI-' : four generators of the translational group 

b : one generator of dilatations 

} 
generators of the 

Poincare group 

KI-' : four generators of special conformal transformations 

It is possible to give an explicit representation of b and KI-" by 

b 
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• 11 0 
=1X -

oxll 

'(2 11 0 2 0 ) =1 xl-'x ---x--
oxll oxl-' 

(16.47) 

(16.48) 

(16.49) 



Furthennore, one may calculate the commutators of b and KIJ with the remaining gen
erators of the confonnal group by help of the explicit representations (16.16), (16.20), 
(16.42) and (16.49): We find 

[PIJ' b] 
[PIJ,Kv ] 

[b, (ilJv iUU )] 

[b, KIJ] 
[KIJ,Kv ] 

[Ku, (iIJViUA)] 

=0 , 

= iKIJ ' 
= 0 , 

(16.50) 

The importance of the confonnal group is based on the fact that, e.g., the Maxwell equa
tions without sources are not only Lorentz invariant but also confonnal invariant! However 
problems do occur in the discussion of the Maxwell equations with source tenns or of 
equations of motion for massive partic1es: Because of möt? = PlJplJ and 

(16.51) 

the rest mass is not invariant with respect to dilatations, i.e. equations of motion like the 
Dirac equation inc1uding a mass tenn are not confonnal invariant An exact symmetry of 
dilatation is thus only possible for a continuous mass spectrum or vanishing mass. 

EXERCISE ................................................................ .. 

16.1 Transformation Relations of the Rest Mass 
under DiIatations 

Problem. Show the validity of (16.51) with the help of 
(16.50)! 

Solution. Use [PIJ,b] = iPw For any given A and B the 
Campbell-Hausdorff relation holds: 

e-A B eA = B + 11! [B, A] + ;! [[B, A], A] + ... 0) 

In our case we have A = -iob and B = PIJPIJ, so that 

[B, A] = -iO[PIJPIJ, b] 

= -iO{ [PIJ' b] PIJ + PIJ [PIJ, bJ} 

= -iO{ iFJ.lFJ.l + iFJ.lFJ.l} = 20FJ.lFIJ = 20B , 
(2) 

i.e. the multiple commutators in (1) always reduce to [B, A] 
= 20 iJ. Thus it is possible to write down the series in a 
closed fonn and perfonn the summation 
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16.6 Representations of the Four-Dimensional Orthogonal Group 
and Its Subgroups 

In this section we consider only the homogeneous proper groups. 

16.6.1 Tensor Representation of the Proper Groups 

We consider a linear space of dimension 4 n. One element or "vector" of this space has 
4n components, which is denoted by tPl'hl'2 • •.. ,Jln with indices /-Lv equal to 0,1,2,3. In 
the case of the group SO(4, R) all components are real; however for Lp all components 
including an odd number of indices "0" are imaginary, all the others being real. [This will 
become dear at once by taking into account the law of transformation (16.52).] First we 
look at a proper transformation XV --+ (XV)' = aV I'xl' of SO(4, R) or Lp. Here tP should 
trans form like 

.1. --+ .1,1 = a 111 a "2 a Vn .1. 
'l"1'1 .•. l'n 'I" 1'1 · .. I'n 1'1 1'2 '" I'n '1"111 .•. Vn (16.52) 

and the identity transformation reads 

.1,1 _ c 111 c "2 C Vn .1. 
'l"1'1 ... l'n -°1'1 °1'2 "'°l'n 'l"1I1 ... Vn (16.53) 

Because of the orthogonality relations for a/ the transformations (16.52) form a linear 
transformation group in 4n dimensions; thus we have found a connection between the 
group SO(4, R) (of Lp) and the linear transformation group in 4n dimensions (mathemat
ically: an isomorphisrn). 

Hence one says: The transformations (16.52) form a 4n -dimensional representation 
of the group SO(4, R) (or Lp). The elements of the 4n -dimensional representation space 
we shall name tensors 0/ rank n, and the tensor transformation has the form 

.1. --+ ,I.' = a {!a <F a "'.1. 'l"I'V ... e 'I" I'V ... e I' v ••• e 'I"{!<F ... '" (16.54) 

A tensor of rank 2 accordingly transforms like 

.1.' _ (! <F.I. 
'l"I'V - al' a v 'I"{!<F (16.55) 

The most simple representation is the one without indices, the scalar representation, where 
the transformation obeys 

tP --+ tP' = tP • (16.56) 

The next possibility is for n = 1, i.e in 4 dimensions: 

3 

tPl' --+ tP~ = L a/ tPv • (16.57) 
v=O 

This is the vector representation. Since the group SO(4, R) is four dimensional, the tPl' are 
just the self-representation of the group: we denote the quantities tPl' as/our-vectors. The 
next representation is the tensor representation of rank 2, which is 42 = 16 dimensional. 
The behaviour of this transformation follows 

(16.58) 
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We can also interpret this as follows: The tensors 'l/J1'1/ can be written as a 16-component 
vector in representation space, using the transformation law (16.58), as 

(16.59) 

whereby the 16 x 16 matrix AN M is buHt up of the corresponding al'//' Symbolically we 
can write this as A = a 0 a. The components of a tensor of rank 2 thus transform like 
the product of two vector components. In general, tensors of rank n transform with the 
4n x 4n matrix: 

A = il 0 ®il 0 il 0 ... 0 il 
... I v 

n factors 

Le. the components transform like the product of n vector components. Hence we conclude: 
All tensor representations 0/ the group SO(4, R) anti Lp can be reduced 10 the vec

tor representation (they are reducible). Only the scalar anti the vector representation are 
irreducible. 

16.6.2 Spinor Representations 

First we consider the representations of the group SU(2, C), i.e. the group of two-dimensional 
unitary, unimodular transformations: 

(16.60) 

Because of unimodularity 

A la detM = c ~1=ad-bc=1 , (16.61) 

and because of unitarity 

c:) = M-1 = ( d 
d -c 

(16.62) 

must hold; therefore d = a* and c = -b*, i.e. 

( u~ ) _ ( ab) ( U 1 ) 
U~ - - b* a* U2 

(16.63) 

and (16.61) becomes 

aa* + bb* = lal2 + Ibl2 = 1 (16.64) 

The group elements are the unitary, unimodular matrices 

A (a 
M= * -b 

(16.65) 

and the group has three real parameters: the complex numbers a and b minus the condition 
(16.64). These are called the Cayley-Klein parameters. 
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The elements of the eomplex linear space which have the transfonnation behaviour 
(16.63) are ealled elementary (or two eomponent) spinars of the three-dimensional spaee 
[SU(2) is an isomorph to SO(3, R)]. 

We eonsider the linear spaee of monamials (a monomial of degree v is an expression 
of the fonn: xayb ... zC, where a + b + ... c = v) of degree v: 

(16.66) 

(e.g. Po = uy, PI = ul-1u2, ete.), where v and k are integers and 0 ~ k ~ v. For a given 
v there are v + 1 monomials of the fonn (16.66), Le. the space is (v + 1) dimensional. It 
is also the desired representation spaee of the group SU(2). Applying the transfonnation 
M on Pk, one notes the following: 

1. Beeause of the linearity of the transfonnations, applieation of the M results onee 
more in Pk' s, or linear eombinations of Pk' s. 

2. The produet of two SU(2) transfonnations has the same effect on Pk as the single 
transfonnations applied to Pk one after another. 

3. The identity transfonnation of M with a = 1 and b = 0 eorresponds to the identity 
transfonnation Pk -t Pk in representation spaee. To the matrix M eorresponds a 
(v + 1) x (v + 1) matrix in representation spaee. To find this matrix, we apply M on 
Pk: 

P~ = (aul + bU2t-k ( - b*UI + a*u2l 

Obviously it transfonns aeeording to 

v v 

l{ = L DkluI-Iu~ = L Dk/P/ 
1=0 1=0 

(16.67) 

(16.68) 

after ordering aeeording to monamials of Pk in (16.67). The matrix elements Dkl of the 
matrix b [a (v + 1) x (v + 1) matrix] depend on the parameters a and b of the transfonnation 
in SU(2). 

It is advantagous to introduee the abbreviation j = v/2, whereby j = 0, 1/2, 1, ... 
ean assume all integer or half-integer values. We denote the representation whieh we have 
eonstrueted this way by Di, where Di = { ... Di(M) ... } is the set of (2j + 1) x (2j + 1)
dimensional matriees whieh depend on the parameters of the SU(2) transfonnations M. 
The eorresponding elements of the (2j + 1)-dimensional representation spaee are ealIed 
spinars 0/ order 2j of the three-dimensional real spaee. 

The most simple representation is DO: All elements M of SU(2) have as their image 
the number 1, and the representation D1{2 is SU(2) itself: PI = UI, P2 = U2 are the two 
eomponents of the elements of representation spaee, higher representations being obtained 
analogously. 

EXERCISE _________________________________ _ 

16.2 D1 Representation of SU(2) 

Problem. What does the D 1 M) representation of SU(2) 
look like? Give the matrix D1(M) in the ease of 
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A ( a 
M= -b* 

Solution. D 1 operates on three-dimensional spaee since 



there are three eomponents of representation spaee: P2 = D20UI + D21 ul u2 + D22U~ 

Po = UI ' PI = U I u2 , P2 = U~ , 
- (b* *)2 b*2 2 2 * b* *2 2 - - uI+ au2 = ul- a ulu2+ a u2 

and, additionally, V = 2j = 2. With (16.67) and (16.68), it 
follows that 

i.e. 

2 
pIe = L- DklPI = (aUI + bU2t-k ( - b*UI + a*U2)k , 

1=0 

Po = DOOur + DOl ul u2 + D02U~ 

Comparison of eoefficients with 

CO) (00 DOI D02) (~) Pl = DlO Du D12 yields 
P2 D20 D21 D22 

( a
2 2ab b') iJI(lvf} = - ab* (aa* - bb*) a*b 

b*2 -2a*b* a*2 

= (aUI + bU2)2 = a2uI + 2abul u2 + b2U~ , One ean now show in a lengthy algebraic proof that the 
representations Dj: 

a) are irreducible, i.e. there is no representation Dil whieh 
eould be built up from Dil, with i2 < iI; and ' 

b) the Dil represent all possible representations of U(2). 

16.7 Representation of SL(2,C) 

The group SL(2, C) is the group of the linear eomplex 2 x 2 matriees with the determinant 
+ 1. We eonsider now the four-dimensional unimodular group SL(2, C). The transforma
tions are, analogously to SU(2), given by 

(16.69a) 

The only restrietion now is the unimodularity 

A la detM = c ~1=ad-bc=l (16.69b) 

[The unitarity drops in the ease of SL(2, C).] 
Sinee SL(2, C) is isomorphie to Lp, we denote the elements U = (UbU2) of SL(2, C) 

as two eomponent spinors 0/ Minkowski space. 
The eomplex eonjugate transformation to (16.69a) reads 

./ * . d*' u2 = C UI + U2 , (16.70a) 

with 

A 1 a* detM = c* b* 1_ *d* b* * - 1 d* -a - c - . (16.70b) 

The dot on the eomponents (e.g. ilI, U2 ete.) denotes eomplex conjugation. Because of 
the independenee of a and a* ete., the elements u = (u}. U2) behave differently under 
transformations to the elements u, i.e. the group has six real parameters [between the four 
eomplex eoefficients a, b, c, d there exists only the one eomplex relation (16.69b)]. Thus 
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the representations split into two groups: The spinors U,}o which belong all matrices M, 
and the dotted spinors Ü, to which belong the matrices M. Correspondingly we construct 
the monomials analogous to Pk in the spinors of degree v and in the dotted spinors of 
degree v' as 

P v-k.v'-k' k.k' 
kk' = u 1 u1 u2 u2 (16.71) 

Altogether the monomial (16.71) has the degree v + v', e.g. one has 

and since k, k' are integers, then 0 ~ k ~ v and 0 ~ k' ~ v'. For fixed v and v' there are alto
gether (v+ I)(v' + I) monomials, i.e. the representation space has the dimension (v+ I)(v' + 1) 
and the monomials (16.71) span this representation space. Now we again introduce j = v/2 
and j = v' /2 and denote the representations by D;;', where j, j' = 0, 1/2, I, 3/2, 2. .. . 
The representation has the dimension (2j + 1)(2j' + I) and its elements are called spinors 
ofrank (2j + 1)(2j' + I) ofMinkowski space. Of course, the representations are not unitary . 

•• , •• , A ~ 

Now we consider the matrix form of the representation DJJ = { ... DJJ (M, M) ... }, 
whose most simple representation is D OO, which is one-dimensional and yields the image 

I for every element. The next representation is D~o, which is the self-representation of 
SL(2, C) by the spinors Ul and U2. The four-dimensional representation is based on the 
elements 

Poo = UI Ü l 

With the aid of the unimodularity relation (16.69b) one obtains analogously, for example 
for SU(2), the image of the transformation M of SL(2, C): 

(

aa* 
.... 11 A ~ ac* 
D22(M,M) = * 

ca 
cc* 

ab* 
ad* 
cb* 
cd* 

ba* bb*) 
bc* bd* 
da* db* 
dc* dd* 

(16.72) 

The Dii' represent all irreducible spinor representations of SL(2, C) and thus also of Lp 
[because of the isomorphism of SL(2, C) and Lp]. 

16.8 Representations of SO(3, R) 

The three-dimensional rotation group SO(3, R) is isomorphous to the group SU(2). We 
have seen that all irreducible representations of SU (2) are spinor representations, and there
fore this holds for SO(3, R), too. We have already constructed the tensor representation to 

SO(3, R): we now show that the tensor representations are included in the representations 
D;, starting with D 1. Therefore we transform the basis in representation space (Po, PI, P2) 
with the help of the matrix 

(
-1 

T= -~ 
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into 

=-PO+~ 

= -iPo - iP2. 

- 2Pl 

(16.73) 

Because of p' = b1(lVt)p [we have calculated b1(M) in Exercise 16.2], it holds that 

1/;' = 1'b1(Myi'-11/; , 

where 

i(a*2 + b*2 _ a2 _ b2) 

a2 + b2 + a*2 + b*2 
2i(a* b - ab*) 

-2(ab+a*b*) ) 
-2i(ab - a*b*) 
2(aa* - bb*) 

Because of aa* + bb* = 1, one direct1y obtains 

1/;i1/;i = 1/;i1/;i = invariant . 

Furthennore det<T b 1 1'-1) = det b 1 = + 1 and all matrix elements are real. The transfor
mation is therefore identical to the vector transfonnation 1/;i ---t 1/;i = a/1/;k. Hence it 
follows that D1 is identical to the vector representation. So one can show that (we don't 
want to give the proof here): 

All representations Di, where j is integer, are tensor representations, while all represen
tations with half-integer j are proper spinor representations. 

Now we turn to the Lorentz group. 

16.9 Representations of the Lorentz Group Lp 

The proper Lorentz group Lp is ismorphic to the group SL(2, C); therefore the spinor 

representations Dii' are all the irreducible representations of Lp. First we consider the 
1 1 

representation D'H, which is based on: Poo = Ul'Illo POl = Ul'Il2 and PlI = U2U2, these 
.... 11 ,.. ~ 

transfonning with the matrix DH (M, M). Because of ad - bc = 1 and a*d* - b*c* = 1, 
it follows that 

-POOP{l +P01P{o = -ProPlI +POIPIO . 

With the coordinate transfonnation 1/; = l/V21' P or P = V21'- l 1/;, where 

1 

o 
o 

1 
-i 
o 
o -D 

we now introduce new axes in P space. This transfonnation reads explicitly: 

(16.74) 

(16.75) 
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1/;1 = H PlO + POt) • or 

1/;2 = i(PlO - POl) • 

1/;3 = Hpoo - P11 ) • 

1/;4 = -i (Poo + P11) • 

and one obtains 

Poo = 1/;3 - i1/;4 • 

PlO = 1/;1 + i1/;2 • 

P11 = -1/;3 - i1/;4 , 

1/;' = ~'i'pl = ~'i'i>HUJM)P = 'i'i>HUJM)'i'-l1/; 

(16.76) 

(16.77) 

If we insert the Pik (i, k = 0,1) from (16.76) in (16.74), we see that the transformation 
(16.77) keeps 

1/;~ 1/;~ = 1/;1-' 1/;1-' 

invariant. 
Because the dot in Poo = U1'lil etc. denotes complex conjugation, one recognizes 

from (16.77) that 1/;1, 1/;2, 1/;3 are real and 1/;4 is complex. Furthermore 

det( 'i'i>H'i'-l) = deti>H = detM x detM = +1 and 

~AIIA 1 
because of unimodularity. The transformation TDHT- transforms the 1/;1-' in a manner 

1 1 
similar to a four-vector in a proper Lorentz transformation, i.e. the representation D'2 '2 is 
just the vector representation. The representation of the vector 1/;1-' by the spinor components 
P is given in (16.76). 

We now show a relation between M from SL(2, C) and an element of!.p, taking as 
an example a rotation around the z axis: 

xl = Xl COS <p + x2 sin <p , 

X~ = -xl sin <p + X2 COS <p , 
1 

x3 = x3 , 
1 Xo = xO 

or, equivalently, 

1 • 1 • 
x3 - txO = X3 - txO , 

xl - ix~ = ei<p(Xl - iX2) 

Xl +ix~ =e-i<P(xl +iX2) 
1 • 1 • 

-X3 - txo = -X3 - txo . 

If we compare this with (16.76), it follows for the spinor components that 

Pro = Poo • 
POl = e-i<p POl • 

332 

Pfo = ei<p PlO • 

P{l = P11 

(16.78) 

(16.79) 

(16.80) 



Comparing this with the general transformation (16.72) we find: 

aa*=l, ad*=eirp , da*=e- irp , dd*=1 

bb* = 0 , cc* = 0 , etc. 

The solution of these equations is 

a=±eirp(2, b=O, c=O, d=±e-irp(2 . 

The rotation around the z axis by the angle 'P corresponds in SL(2, C) or in V!O to the 
transformation 

~ ~ 1 ° ~ ....:... ( eirp(2 M = D'2 (M, M) = ± 0 (16.81a) 

....:... ~ 01 ~ ....:... (e-irp(2 
M=D '2(M,M)=± 0 (16.81b) 

respectively, for the dotted spinors. 
In analogy to this one can show, e.g., that the transformation 

M = fAouVr, iI) = ± (6 S.,J 
corresponds to a special Lorentz transformation of the z axis, where 

2 ~-ß v 'Y = -- and ß=-
1 + ß c 

is valid. Therefore the representations V!o and VO! are not tensor representations, but .. , 
proper spinor representations. In general one finds for IJ33 that 

(j + j') integer :::} Vii' is a tensor representation 
(j + j') half integer :::} vii' is a proper spinor representation. 

16.10 Spin and the Rotation Group 

We consider a field .,po:(xl') whose components should have a distinct property of trans

formation, Le . .,po: (x 1') is a member of a representation space Vii' of the proper Lorentz 
group Lp. If we perform an infinitesimal Lorentz transformation, then the change in .,pa(xl') 

is given with the help of the generators (iVI')(O'O) of the transformation (16.16) and the 
infinitesimal transformation cO'o by 

I I 1 (~ß )(0'0) 
ö.,po:(xr ) = .,po:(xr ) - .,po:(xr ) = 1.cO'o I 0: .,pß(xr ) (16.82) 

or, in matrix form, 
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(16.83) 

On the other hand we can only consider the local variation of t/J, not of x; then, we have 

Ö*t/J = t/J'(x) - t/J(x) . 

The quantities öt/J and ö*t/J are not independent, because (x')T = xT +C;T uxu and therefore 

(16.84) 

Mow we evaluate this expression in a Taylor series and neglect tenns of 2nd order, which 
yields 

ö*t/J = t/J'(X')T) - t/J(xT) - C;T uXU8Tt/J 

= öt/J - c; T uXu 8Tt/J 

and therefore 

ö*t/J = ~C;U(!jC(T(!)t/J - C;V p.xP.8vt/J 

As we sum over (1, (! we relabel the indices: 

ö*t/J = O·C;p.vjCP.V) - C;V p.xP.8v)t/J 

Rewriting the second tenn: 

C;V p.xP.8vt/J = ~c;v p. [(xP.8v + xv8P.) + (xP.8v - xv8P.)] t/J 

= ~c;v P. (xp. 8v - xvßl-') t/J , 

then, because of the antisymmetry of C;V w it results that 

ö*t/J = H -C;V P. (xp. 8v - xv8P.) + C;p.vjCP.V)] t/J . 

Hence, for the space-like components (i, k = 1,2,3) one gets 

ö*t/J = H -c;\( xi8k - Xk 8i ) +C;ikj<ik)]t/J . 

(16.85) 

(16.86) 

(16.87) 

(16.88) 

(16.89) 

Up to the factor i/Ii the first expression in brackets is just the angular momentum operator 

i,ik = i (xi8k - Xk8i) (16.90) 

The second tenn, Le. (i/Ii)jCik), is independent of the coordinates and therefore also of the 
coordinate system; thus it is straight-forward to interpret this tenn as an "inner" angular 
momentum, i.e. as aspin. With the help of the generators we see that [see (16.21-16.23)] 

fit = ~j(32) = 1i(j1C+) + j1C-») , 
1 

52 = ~j(13) = 1i(j2(+} + j2(-») , 
1 

53 = ~j(21) = 1i(j3(+} + j3C-») 
1 

(16.91) 
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Now, the commutation relations of the Si are a direct consequence of the commutation 
relations of the ji(±) and thus of the generators of the infinitesimal Lorentz transformation, 
i.e. 

(16.92) 

and cyclic commutations therefrom. 
Consequently the operators Si have all the properties of an angular momentum 

operator: thus for a given integer or half-integer s, S3 has the (2s + 1) eigenvalues 
(-s, - s + 1, "', s - 1, s). Furthermore there exists a Casimir operator !;2 = EiS; 
with the eigenvalues li,2 s(s + 1). 

Using these considerations, we define the operator of the total angular momentum to 
be 

(16.93) 

and hence we get from (16.89) that 

(16.94) 

Thus the coefficient of the local variation of the field defines the operator of the total 
angular momentum, and we conc1ude: To determine the spin of the field 'Ij;(x) we must 
find infinitesimal operators generating space-like rotations in the representation space Dii' 
which is determined by the transformation properties of 'Ij;. Let us now only consider the 
subgroup of the Lorentz group Lp wh ich characterizes the space-like rotations. Furthermore 

we can then conc1ude: In this case also, the matrices M from SL(2, C), which belong to 
space-like rotations, are unitary [not only unimodular, and thus they do not belong to 
SU(2»). To understand the consequences we define the direct product of two matrices A 
and B as 

or, in matrix notation, 

Caß."Y8 = Aa"YBß8 

This definition becomes c1earer in the following example: 

A0B =(all a12 a21 (bll a22) 0 bzl 
b12 ) 
bz2 

Cllhl all bl2 al2bll 
a12b12 ) _ all b21 allb22 a12b21 a12 b22 

- a21 bll a21 b12 a22bll a22b12 

a2l b21 a21 b22 a22 b21 a22 b22 

= ( all~ 
a21 B 

a12~) 
a22B 

Of course this operation is not commutative, i.e. 

(16.95) 

(16.96) 

(16.97) 
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With the help of the definition (16.97), one can easily derive the following properties: 

1. The direct product of two diagonal matrices is diagonal 
2. (A + B) 0 6 = (A 0 6) + (B ~~)(:7) 
3. If A, A' are n x n matrices and B, B' m x m matrices, then it holds that 

(A 0 B)(A' 0 B') = AA' 0 BB' 
4. If A and B are unitary, then A 0 B is also unitary 
5. tr(A 0 B) = tr A . B 
With the help of these definitions we are now able to rewrite the representation (16.72) as 

ab* 
ad* 
cb* 
cd* 

ba* 
bc* 
da* 
dc* 

:~:)~(a 
db* c 
dd* 

b) (a* d 0 c* 
b* ) d* . (16.98) 

From this example one can conclude that this representation can be described as a direct 
product, Le. for the matrices we have 

A • '/ .... ~ A' A A ., ..::..-

DJJ (M, M) = DJ (M) 0 DJ (M) . (16.99) 
A.,. A" ~ 

The matrices DJ (M) and DJ (M) are not identical with the matrices of the representation 
Dj, Di' of the SU(2)! Of course this is only the case if the matrix M is unitary. But 
this is just the case for space-like rotations. Thus for the total representation space we can 
write: 

(16.100) 

i.e. for space-like rotations the representation Dii' of the Lorentz group Lp splits up 

into a direct product of the representations Dj and Di' of the three-dimensional rotation 
group, each Dj representing a different spin. Therefore, in general a covariant Lorentz 
field tPa(xiJ) does not possess unique spin representations, but splits up into different. spin . ./ 

representations DJ, DJ . 
First we consider the representation vi. As we have seen it is (2j + 1) dimensional. 

In this space the infinitesimal operators which determine the spin are (2j + 1) x (2j + 1) 
matrices and consequently have (2j + 1) eigenvalues. Degeneracy does not appear, because 
the quantities spanning up the representation space are linearly independent. But we have 
seen that these are the 28 + 1 eigenvalues of the spin, Le. the spin is given by the index 
j 01 the representation vi. For example, j = 0 belongs to the scalar representation DO 
describing spinless fields. For the vector representation D 1 the spin has the value 1. This 
becomes clear with help of the infinitesimal operators: For space-like rotations we have: 
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EXERCISE .................................................................. .. 

16.3 Vector Representation and Spin 

Problem. Show that spin 1 belongs to the vector represen
tation D 1• 

Solution. The vector representation D 1 is just the self
representation of the space of three-dimensional rotations, 
Le. the spin values are given by the eigenvalues of the 
corresponding generators of the Lorentz group. For three
dimensional rotations this is 

1 

~3 _ ;(21) _ ( 0 1 
I -1' - -1 0 

o 0 

The characteristic equation reads 

det(f3 - '\ll) = 0 Le. 

- ,\ 1 
- 1 -,\ 

o 0 

o 
o =0=_,\(1+,\2) 

-,\ 

hence'\ = 0, ± L Because s = (M)'\, one gets s = (-1, 0, 1)1i.. 

For the representation Di, one finds analogously, s = 1iJ2, etc. Without prove we 
note that (16.100) can be written as a sum with the help of a generalized Clebsch-Gordan 
theorem: 

(16.101) 

Therefore we have, for example, 

101\ 1 0 1 
Di =Di 0D =D'i 

because 

1 (e-i 'P{2 
Di = ± 0 

1 
Di is the self-representation of SU(2) (Le. of all unitary, unimodular matrices), and 

indeed, DO~ is a matrix of SU(2) (Dh. 
From (16.101) it follows that: the spin which belongs to the representation Dii' is 

half integer, if j + j' is half-integer 

integer, if j + j' is integer . 

However, this means: the tensor representation belongs to the integer spins, the spinar 
representation to the haI/-integer spins. 

The described representation is not unique, which is illustrated in the following ex
ample: One has 

111\ 1 1 1 0 
DH = Di 0 Di = D EB D . (16.102) 

1 1 
According to our roles DH describes spin-! fields. However, we see that (16.102) also 
contains scalar parts, which do not lead to spin values s = 1. To get a unique representation 
one has to introduce auxiliary fields, which just eliminate this scalar part (nD). Such 
auxiliary conditions play an important role in the quantum theory of the Maxwell field. 
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BIOGRAPHICAL NOTES ______________________________ _ 

POINCARE, Henri Jules, French mathematieian and pbilosopher, 
*29.4.1854 Naney, tI7.7.1912 Paris, was a cousin of Raymond Poincar~ 
President of the French Republie during World War I. Between 1879 and 
1881 at the University of Caen, and from 1881 at the University of Paris, 
P. worked in the field of pure mathematics (automorpheous functions), 
made important contributions to the theory of equilibrium properties of 
rotating fluids and achieved - independently of Einstein - a number of 
results of the special theory of relativity in bis famous paper on the dy
namics of the electron, published in 1906. 

CAYLEY, Arthur, British mathematieian, • 16.08.1821 Richmond, 
t 26.01.1895 Cambridge. C. was first a lawyer in London and from 1863 
a professor at Cambridge. With JJ. Sylvester he founded the "Iheory 
of invariants" and algebraie geometry. By using complex coordinates C. 
showed that metrie geometry is contained in projective geometry: with bis 
projective measure (1859) he gave a new foundation to geometry wbieh 
allowed the treatment of euelidian and noneuelidian geometry from a 

338 

eommon point of view. He invented matrix caltulus and was the first 
to fonnulate group theory (the representation of finite groups by mul
tiplication tables or permutations) in an abstract way. C. also worked 
on conformal mappings, elliptie and hyperelliptie funetions, the theory 
of differential equations, theoretical mechanies, the motion of the moon, 
and spherieal astronomy. [BR] 

KLEIN, Felix, Gennan mathematieian, • 25.04.1849 Düsseldorf, 
t22.06.1925 Göttingen. K. studied from 1865 to 1870 in Bonn. During 
an educational stay 1870 in Paris he eame into eontaet with the rapidly 
developing group theory. From 1871 K. taught at Göttingen and became 
professor at Erlangen in 1872, at München in 1875, at Leipzig in 1880 
and at Göttingen in 1886. He made fundamental contributions to fune
tion theory, geometry, and algebra. He was especially interested in group 
theory and its applications. In 1872 K. published the Erlanger program. 
When he was older he occupied hirnself more intensely with pedagogical 
and bistorical problems. 
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