Journal of Algebraic Systems Vol. 7, No. 2, (2020), pp 281-290

FILTER REGULAR SEQUENCES AND LOCAL COHOMOLOGY MODULES

$J. \, AZAMI^*$

ABSTRACT. Let R be a commutative Noetherian ring. In this paper we consider some relations between filter regular sequence, regular sequence and system of parameters over R-modules. Also we obtain some new results about cofinitness and cominimaxness of local cohomology modules.

1. INTRODUCTION

Throughout this paper, let R denote a commutative Noetherian ring (with identity) and I an ideal of R. For an R-module M, the i^{th} local cohomology module of M with respect to I is defined as

$$H_I^i(M) = \lim_{n \ge 1} \operatorname{Ext}_R^i(R/I^n, M).$$

We refer the reader to [5] or [3] for more details about local cohomology. The concept of filter regular sequence plays an important role in this paper. We say that a sequence x_1, \ldots, x_n of elements of I, is an I-filter regular sequence on M, if

$$\operatorname{Supp}_{R}\left(\frac{(x_{1},\ldots,x_{i-1})M:_{M}x_{i}}{(x_{1},\ldots,x_{i-1})M}\right) \subseteq V(I).$$

for all i = 1, ..., n. Also, we say that an element $x \in I$ is an I- filter regular sequence on M if $\operatorname{Supp}_R(0:_M x) \subseteq V(I)$. The concept of an Ifilter regular sequence on M is a generalization of the concept of a filter

MSC(2010): Primary: 13D45, 14B15; Secondary: 13E05.

Keywords: Filter regular sequence, regular sequence, system of parameters, local cohomology module.

Received: 26 September 2018, Accepted: 19 May 2019.

^{*}Corresponding author.

regular sequence which has been studied in [18]. Both concepts coincide if I is an \mathfrak{m} -primary ideal of a local ring with maximal ideal \mathfrak{m} . In 1969, A. Grothendieck conjectured that if I is an ideal of R and M is a finitely generated R-module, then the R-modules $\operatorname{Hom}_R(R/I, H_I^i(M))$ are finitely generated for all $i \geq 0$. R. Hartshorne has provided a counterexample to this conjecture in [6]. Also he defined a module T to be *I*-cofinite if Supp $T \subseteq V(I)$ and $\operatorname{Ext}^{i}_{R}(R/I,T)$ is finitely generated for each $i \ge 0$ and he asked the following question.

For which rings R and ideals I are the modules $H_{I}^{i}(M)$ I-cofinite for all i and all finitely generated modules M?

Hartshorne proved that if I is an ideal of the complete regular local ring R and M a finitely generated R-module, then $H_I^i(M)$ is I-cofinite in two following cases:

(i) I is principal ideal, (see [6], Corollary 6.3),

(ii) I is prime ideal with dim R/I = 1, (see [6], Corollary 7.7). This subject was studied by several authors afterwards, (see [4], [11], [9], [19], [1] and [10]).

Some important results of this paper are as follows:

Theorem 1.1. Let (R, \mathfrak{m}) be a Noetherian local ring and $M \neq 0$ be a finitely generated R-module of dimension $d \geq 1$. Let $x_1, \ldots, x_d \in \mathfrak{m}$ be an \mathfrak{m} -filter regular sequence for M. Then the following statements are holds:

- (1) x_1, \ldots, x_d is a system of parameters for M.
- (2) For each $1 \leq i \leq d$, the *R*-module $H^i_{\mathfrak{m}}(M)$ is (x_1, \ldots, x_i) cofinite.

Theorem 1.2. Let (R, \mathfrak{m}) be a Noetherian local ring and I be an ideal of R. Then for every finitely generated R-module $M \neq 0$ of dimension d, the following statements are equivalent:

- (1) $H^d_{\mathfrak{m}}(M)$ is *I*-cofinite. (2) $H^d_{\mathfrak{m}}(M) \cong H^d_I(M).$

Theorem 1.3. Let R be a Noetherian ring, I an ideal of R and $M \neq$ 0 be a finitely generated R-module such that $\dim \frac{M}{IM} \leq 1$. If $t \geq 1$ 1 and $x_1, \ldots, x_t \in I$ is an I-filter regular sequence for M, then for each $0 \leq i \leq t-1$, the *R*-module $H_I^i(M)$ is (x_1, \ldots, x_t) -cofinite and $\operatorname{Hom}_R\left(\frac{R}{(x_1, \ldots, x_t)}, H_I^t(M)\right)$ is finitely generated. For each *R*-module *L*, we denote by $\operatorname{Assh}_R L$ the set $\{\mathfrak{p} \in \operatorname{Ass}_R L : \dim R/\mathfrak{p} = \dim L\}$. Also, for any ideal \mathfrak{b} of *R*, the radical of \mathfrak{b} , denoted by $\operatorname{Rad}(\mathfrak{b})$, is defined to be the set $\{x \in R : x^n \in \mathfrak{b} \text{ for some } n \in \mathbb{N}\}$ and we denote $\{\mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{p} \supseteq \mathfrak{b}\}$ by $V(\mathfrak{b})$. Finally, for each *R*-module *L*, we denote by $\operatorname{Mass}_R L$, the minimal elements of $\operatorname{Ass}_R L$. For any unexplained notation and terminology we refer the reader to [3] and [12].

2. Main results

Theorem 2.1. Let (R, \mathfrak{m}) be a Noetherian local ring and $M \neq 0$ be a finitely generated R-module of dimension $d \geq 1$. Let $x_1, \ldots, x_d \in \mathfrak{m}$ be an \mathfrak{m} -filter regular sequence for M. Then

- (1) x_1, \ldots, x_d is a system of parameters for M.
- (2) For each $1 \leq i \leq d$, the *R*-module $H^i_{\mathfrak{m}}(M)$ is (x_1, \ldots, x_i) -cofinite.

Proof. (1). By definition $x_i \notin \bigcup_{P \in \operatorname{Ass}\left(\frac{R}{(x_1, \dots, x_{i-1})}\right) \setminus \{\mathfrak{m}\}} P$ for each $1 \leq i \leq d$, and so $x_i \notin \bigcup_{P \in \operatorname{Assh}_R\left(\frac{R}{(x_1, \dots, x_{i-1})}\right)} P$. Therefore x_1, \dots, x_d is a system of parameters for M.

(2). By [8, Proposition 1.2], $H_{(x_1,...,x_i)}^j(M) \cong H_{\mathfrak{m}}^j(M)$ for each $0 \leq j \leq i-1$ and dim Supp $H_{(x_1,...,x_i)}^j(M) \leq 0$. Hence by [1, Theorem 2.6], the *R*-module $H_{(x_1,...,x_i)}^j(M)$ is $(x_1,...,x_i)$ -cofinite. Also for j > i, $H_{(x_1,...,x_i)}^j(M) = 0$. Thus by [15, Proposition 3.11], the *R*-module $H_{(x_1,...,x_i)}^i(M)$ is also $(x_1,...,x_i)$ -cofinite. Since $H_{(x_1,...,x_i)}^{i-1}(M)$ is Ar-tinian, it follows from Grothendick vanishing theorem [3, Proposition 6.1], $H_{Rx_{i+1}}^1(H_{(x_1,...,x_i)}^{i-1}(M)) = 0$. By [17], there exists an exact sequence as follows $0 \to H_{Rx_{i+1}}^1(H_{(x_1,...,x_i)}^{i-1}(M)) \to H_{(x_1,...,x_{i+1})}^i(M) \to H_{Rx_{i+1}}^0(H_{(x_1,...,x_i)}^i(M)) \to 0$. Note that this exact sequence shows

$$H^{i}_{(x_{1},...,x_{i+1})}(M) \cong H^{0}_{Rx_{i+1}}(H^{i}_{(x_{1},...,x_{i})}(M)).$$

Also by [9], we have

$$H^i_{(x_1,\dots,x_{i+1})}(M) \cong H^i_{\mathfrak{m}}(M).$$

Therefore

$$H^i_{\mathfrak{m}}(M) \cong H^0_{Rx_{i+1}}\left(H^i_{(x_1,\dots,x_i)}(M)\right)$$

and there exists an exact sequence as $0 \to H^i_{\mathfrak{m}}(M) \to H^i_{(x_1,\dots,x_i)}(M)$. Since $\operatorname{Hom}_R\left(\frac{R}{(x_1,\dots,x_i)}, H^i_{(x_1,\dots,x_i)}(M)\right)$ is finitely generated (because $H^i_{(x_1,\dots,x_i)}(M)$ is (x_1,\dots,x_i) -cofinite), it follows that the R-module

 $\operatorname{Hom}_{R}\left(\frac{R}{(x_{1},\ldots,x_{i})},H_{\mathfrak{m}}^{i}(M)\right)$ is also finitely generated. Now, by [16, Theorem 1.6] and by Artinianess of $H^i_{\mathfrak{m}}(M)$, we conclude that $H^i_{\mathfrak{m}}(M)$ is (x_1, \ldots, x_i) -cofinite.

Theorem 2.2. Let (R, \mathfrak{m}) be a complete Noetherian local ring and $M \neq 0$ be a finitely generated R-module of dimension $d \geq 1$. Let $P \in \operatorname{Ass} M$ be such that $\dim \frac{R}{P} = t \ge 1$. Then for any \mathfrak{m} -filter regular sequence for M such as $x_1, \ldots, x_t \in \mathfrak{m}$, $\operatorname{Rad}(P + (x_1, \ldots, x_t)) = \mathfrak{m}$. In particular x_1, \ldots, x_t is a system of parameters for $\frac{R}{D}$.

Proof. By Cohen's theorem every complete Noetherian ring is a homomorphic image of a Gorenstein local ring. Then by [2], we have

$$\{q \in \operatorname{Att}_{R} H^{t}_{\mathfrak{m}}(M) \mid \dim \frac{R}{q} = t\} = \{q \in \operatorname{Ass} M \mid \dim \frac{R}{q} = t\}.$$

Since $P \in \operatorname{Ass} M$ and $\dim \frac{R}{P} = t$, it follows that $P \in \operatorname{Att} H^t_{\mathfrak{m}}(M)$. By the previous Theorem, the *R*-module $H^t_{\mathfrak{m}}(M)$ is (x_1, \ldots, x_t) -cofinite and so by [16, Theorem 1.6], $Rad(P + (x_1, ..., x_t)) = \mathfrak{m}$.

Theorem 2.3. Let (R, \mathfrak{m}) be a Noetherian local ring and I be an ideal of R. Then for every finitely generated R-module $M \neq 0$ of dimension d, the following statements are equivalent.

- (1) $H^d_{\mathfrak{m}}(M)$ is *I*-cofinite. (2) $H^d_{\mathfrak{m}}(M) \cong H^d_I(M)$.

Proof. 1 \rightarrow 2 Let $H^d_{\mathfrak{m}}(M)$ be *I*-cofinite module. Then $H^d_{\mathfrak{m}}(M) \otimes_R$ \hat{R} is also $I\hat{R}$ -cofinite. Hence by [16, Theorem 1.6], for each $P \in$ $\operatorname{Att}_{\hat{R}}\left(H^{d}_{\mathfrak{m}\hat{R}}(\hat{M})\right) = \operatorname{Assh}_{\hat{R}}(\hat{M}), \operatorname{Rad}(I\hat{R}+P) = \mathfrak{m}\hat{R} \text{ and so } H^{d}_{I\hat{R}}(\frac{R}{P}) \neq$ 0. Therefore $H^{d}_{I\hat{R}}(\hat{R}) \otimes_{\hat{R}} \frac{R}{P} \neq 0$ and $P \in \operatorname{Att}_{R} H^{d}_{I\hat{R}}(\hat{R})$. Consequently $\operatorname{Att}_{\hat{R}} H^{d}_{\mathfrak{m}\hat{R}}(\hat{R}) \subseteq \operatorname{Att}_{\hat{R}} H^{d}_{I\hat{R}}(\hat{R}) \subseteq \operatorname{Att} H^{d}_{\mathfrak{m}\hat{R}}(\hat{R}) \text{ and so } \operatorname{Att}_{\hat{R}} \left(H^{d}_{\mathfrak{m}\hat{R}}(\hat{R}) \right) = \operatorname{Att}_{\hat{R}} \left(H^{d}_{I\hat{R}}(\hat{R}) \right).$ Now by [7], $H^{d}_{\mathfrak{m}\hat{R}}(\hat{R}) \cong H^{d}_{I\hat{R}}(\hat{R})$. Hence we have the

following:

$$H^d_{\mathfrak{m}}(R) \cong H^d_{\mathfrak{m}\hat{R}}(\hat{R}) \cong H^d_{I\hat{R}}(\hat{R}) \cong H^d_I(R)$$

 $(2 \to 1)$. By [15], $H^d_I(M)$ is *I*-cofinite. Since $H^d_I(M) \cong H^d_{\mathfrak{m}}(M)$, it follows that $H^d_{\mathfrak{m}}(M)$ is *I*-cofinite. \Box

Corollary 2.4. Let (R, \mathfrak{m}) be a Noetherian local ring of dimension d and I be an ideal of R such that $H^d_{\mathfrak{m}}(R)$ is I-cofinite. Then $\operatorname{ara}(I) = d$. *Proof.* The module $H^d_{\mathfrak{m}}(R)$ is *I*-cofinite, hence $H^d_I(R) \cong H^d_{\mathfrak{m}}(R) \neq 0$ and so $\operatorname{ara}(I) \geq \operatorname{cd}(I, R) = d$. On the other hand by [14, Corollary 2.8], $\operatorname{ara}(I) \leq d$.

Definition 2.5. Let I be an ideal of R. The arithmetic rank of I, denoted by $\operatorname{ara}(I)$, is the least number of elements of R required to generate an ideal which has the same radical as I.

Corollary 2.6. Let (R, \mathfrak{m}) be a Noetherian local ring of dimension $d \geq 0$ and $x_1, \ldots, x_{d-1} \in \mathfrak{m}$ be such that $I = (x_1, \ldots, x_{d-1})$. Then $\operatorname{Hom}_R\left(\frac{R}{I}, H^d_{\mathfrak{m}}(R)\right)$ is not finitely generated.

Proof. By [16, Theorem 1.6], the *R*-module $\operatorname{Hom}_R(\frac{R}{I}, H^d_{\mathfrak{m}}(R))$ is finitely generated if and only if $H^d_{\mathfrak{m}}(R)$ is *I*-cofinite. But in this case $\operatorname{ara}(I) = d$. On the other hand $\operatorname{ara}(I) \leq d-1$ which is a contradiction. \Box

Proposition 2.7. Let (R, \mathfrak{m}) be a complete Noetherian local ring and $M \neq 0$ be a finitely generated R-module. Let N be submodule of M such that dim $N = t \geq 1$. Then any \mathfrak{m} -filter regular sequence for M such as $x_1, \ldots, x_t \in \mathfrak{m}$ is a system of parameters for N.

Proof. Let $m \operatorname{Ass}_R N = \{P_1, \ldots, P_n\}$, where $m \operatorname{Ass}_R N$ denotes the minimal elements of $\operatorname{Ass}_R N$. Then for each $1 \leq i \leq n$, $\dim \frac{R}{P_i} \leq \dim N = t$ and clearly $\dim \frac{R}{P_i} \geq 1$. Let $j = \dim \frac{R}{P_i}$. Then $j \leq t$ and by Theorem 2.2, $\operatorname{Rad}(P_i + (x_1, \ldots, x_j)) = \mathfrak{m}$. Since $(x_1, \ldots, x_j) \subseteq (x_1, \ldots, x_t)$, it follows that $\operatorname{Rad}(P_i + (x_1, \ldots, x_t)) = \mathfrak{m}$. We claim that $\operatorname{Rad}(\bigcap_{i=1}^n P_i + (x_1, \ldots, x_t)) = \mathfrak{m}$. For this, let Q be a minimal prime of $\bigcap_{i=1}^n P_i + (x_1, \ldots, x_t)$. Hence there exists $1 \leq j \leq n$ such that $P_j \subseteq Q$ and so $p_j + (x_1, \ldots, x_n) \subseteq Q$. Therefore $\mathfrak{m} = \operatorname{Rad}(P_j + (x_1, \ldots, x_t) \subseteq \operatorname{Rad}(Q) = Q \subseteq \mathfrak{m}$ and consequently $Q = \mathfrak{m}$. But $\bigcap_{i=1}^n P_i = \operatorname{Rad}(\operatorname{Ann} N)$ shows that

Rad(Ann $N + (x_1, ..., x_t)$) = \mathfrak{m} and so $\dim_R \frac{N}{(x_1, ..., x_t)N} = 0$. This completes the proof that $x_1, ..., x_t$ is a system of parameters for N.

Corollary 2.8. Let (R, \mathfrak{m}) be a complete Noetherian local ring, M be a finitely generated R-module and N be a submodule of M which is a Cohen-Macaulay with dim N = t. If $x_1, \ldots, x_t \in \mathfrak{m}$ is an \mathfrak{m} -filter regular sequence for M, then x_1, \ldots, x_t is a N-regular sequence.

Proof. By Proposition 2.7, x_1, \ldots, x_t is a system of parameters for N. But N is a Maximal Cohen-Macaulay as an $\frac{R}{\operatorname{Ann} N}$ -module. Also $x_1 + \operatorname{Ann} N, \ldots, x_t + \operatorname{Ann} N$ is a system of parameters for $\frac{R}{\operatorname{Ann} N}$. On the other hand every maximal Cohen-Macaulay as an $\frac{R}{\operatorname{Ann} N}$ -module is a balaneced big Cohen-Macaulay as an R-module. Set $y_i = x_i + \operatorname{Ann} N$ for each $1 \leq i \leq t$, then y_1, \ldots, y_t is an N-regular sequence and this follows that x_1, \ldots, x_t is an N-regular sequence.

Theorem 2.9. Let R be a Noetherian ring, I an ideal of R and $M \neq 0$ be a finitely generated R-module such that $\dim \frac{M}{IM} \leq 1$. If $t \geq 1$ and $x_1, \ldots, x_t \in I$ is an I-filter regular sequence for M, then for each $0 \leq i \leq t - 1$, the R-module $H_I^i(M)$ is (x_1, \ldots, x_t) -cofinite and $\operatorname{Hom}_R\left(\frac{R}{(x_1, \ldots, x_t)}, H_I^t(M)\right)$ is finitely generated.

Proof. For each $0 \leq i \leq t-1$, we have $H^i_{(x_1,\ldots,x_t)}(M) \cong H^i_I(M)$. Then

$$\operatorname{Supp} H^{i}_{(x_1,\dots,x_t)}(M) = \operatorname{Supp} H^{i}_{I}(M) \subseteq \operatorname{Supp} \frac{M}{IM}$$

and for each $0 \leq i \leq t-1$, dim Supp $H^i_{(x_1,\dots,x_t)}(M) \leq 1$. By [1], clearly the *R*-module $H^i_{(x_1,\dots,x_{t-1})}$ is (x_1,\dots,x_t) -cofinite. Since $H^i_{(x_1,\dots,x_t)}(M) =$ 0 for all $i \geq t+1$, it follows from [15], that $H^t_{(x_1,\dots,x_t)}(M)$ is also (x_1,\dots,x_t) -cofinite. Consequently for each $i \geq 0$, the *R*-module $H^i_{(x_1,\dots,x_t)}(M)$ is (x_1,\dots,x_t) -Cofinite. Now, let $x_{t+1} \in I$ be such that x_1,\dots,x_{t+1} is *I*-filter regular sequence. Since $x_{t+1} \in I$ and $H^{t-1}_{(x_1,\dots,x_t)}(M) \cong H^{t-1}_I(M)$ is *I*-torsion, then $H^1_{Rx_{t+1}}(H^{t-1}_{(x_1,\dots,x_t)}(M)) = 0$. On the other hand by [17], the following exact sequence is hold: $0 \rightarrow$ $H^1_{Rx_{t+1}}(H^{t-1}_{(x_1,\dots,x_t)}(M)) \to H^t_{(x_1,\dots,x_{t+1})}(M) \to H^0_{Rx_{t+1}}(H^t_{(x_1,\dots,x_t)}(M)) \rightarrow$ 0. But, $H^t_{(x_1,\dots,x_t)}(M) \cong H^t_I(M)$ and so by the above exact sequence, $H^t_I(M) \cong H^0_{Rx_{t+1}}(H^t_{(x_1,\dots,x_t)}(M))$. Since $Rx_{t+1} \subseteq I$, it follows that

$$H^0_I(H^t_{(x_1,...,x_t)}(M)) \subseteq H^0_{Rx_t}(H^t_{(x_1,...,x_t)}(M)).$$

Also, $H^0_{Rx_{t+1}}(H^t_{(x_1,\dots,x_t)}(M)) \cong H^t_I(M)$ is *I*-torsion and hence

$$H^{0}_{Rx_{t+1}}(H^{t}_{(x_{1},...,x_{t})}(M)) \subseteq H^{0}_{I}(H^{t}_{(x_{1},...,x_{t})}(M)).$$

Then

$$H_{I}^{t}(M) \cong \Gamma_{Rx_{t+1}}(H_{(x_{1},...,x_{t})}^{t}(M)) = \Gamma_{I}(H_{(x_{1},...,x_{t})}^{t}(M)).$$

286

Finally from the exact sequence

$$0 \to H^t_I(M) \cong H^0_I(H^t_{(x_1,\dots,x_t)}(M)) \to H^t_{(x_1,\dots,x_t)}(M)$$

and (x_1, \ldots, x_t) -cofinitness of $H^t_{(x_1, \ldots, x_t)}(M)$, we conclude that Hom_R $\left(\frac{R}{(x_1, \ldots, x_t)}, H^t_I(M)\right)$ is finitely generated.

Lemma 2.10. Let M be an R-module and I be an ideal of R such that $\operatorname{Supp} M \subseteq V(I)$. Let $x \in I$ be such that $0 :_M x$ and M/xM are I-cominimax. Then so is M.

Proof. The proof is similar to the proof of [15, Corollary 3.4].

Theorem 2.11. With the assumption of Theorem 2.9, the *R*-module $H_I^t(M)$ is (x_1, \ldots, x_t) -cominimax.

Proof. We prove by induction on t. If t = 1, then we set $N = \frac{M}{\Gamma_I(M)}$ and so x_1 is an N-regular element and $H_I^1(N) \cong H_I^1(M)$.

Consider the exact sequence

$$0 \longrightarrow N \xrightarrow{x_1} N \longrightarrow \frac{N}{x_1 N} \longrightarrow 0$$

which implies that the following exact sequence

$$\dots \longrightarrow H^0_I(\frac{N}{x_1N}) \longrightarrow H^1_I(N) \xrightarrow{x_1} H^1_I(N) \longrightarrow H^1_I(\frac{N}{x_1N})$$

Clearly the *R*-module $0 :_{H_I^1(N)} x_1$ is finitely generated, and *Rx*₁-cominimax. Set

$$T = \{P \in \operatorname{Supp} H_I^1(N) \mid \dim \frac{R}{P} = 1\}.$$

Then $(H_I^1(N))_P$ for all $P \in T$ is Artinian and Rx_1 -cofinite. Also $T \subseteq$ Assh $\frac{M}{IM}$ and so is finite. By argument in [1, Theorem 2.6], $\frac{H_I^1(N)}{x_1H_I^1(N)}$ is minimax. Also $\frac{H_I^1(N)}{x_1H_I^1(N)}$ and $0:_{H_I^1(N)} x_1$ are Rx_1 -cominimax and hence $H_I^1(N)$ is also Rx_1 -cominimax.

Now, let $t \ge 2$. Clearly x_1, \ldots, x_t is *I*-filter regular sequence over the R-module $\frac{M}{\Gamma_I(M)}$. Now $H_I^t(M) \cong H_I^t(\frac{M}{\Gamma_I(M)})$ and $\frac{M}{\Gamma_I(M)}$ is a finitely generated *I*-torsion free *R*-module. We therefore assume in addition that $\Gamma_I(M) = 0$. Since $x_1 \notin \bigcup_{P \in \text{Ass } M \setminus V(I)} P = \bigcup_{P \in \text{Ass}(M)} P$, it follows that $(x_1, \ldots, x_t) \nsubseteq \bigcup_{P \in \text{Ass } M} P$.

Set $T := \{P \in \text{Supp } H_I^{t-1}(M) \cup \text{Supp } H_I^t(M) \mid \dim \frac{R}{P} = 1\}$. Hence $T \subseteq \text{Assh}_R \frac{M}{IM}$, and so T is a finite set. Let $T = \{P_1, \ldots, P_n\}$. Then for each $i \ge 0$, $\text{Supp } H_{IR_{P_k}}^i(M_{P_k}) \subseteq \{P_k R_{P_k}\}$, where $k = 1, 2, \ldots, n$. By [1], for each $t - 1 \le k \le t$, $H_{IR_{P_k}}^i(M_{P_k})$ is R_{P_k} -Artinian and $(x_1, \ldots, x_t)R_{P_k}$ -cofinite. Also

$$V((x_1,\ldots,x_t)R_{P_k}) \cap \operatorname{Att}_{R_{P_k}} H^i_{IR_{P_k}}(M_{P_k}) \subseteq V(P_kR_{P_k}).$$

Set

$$U := \bigcup_{i=t-1}^{t} \bigcup_{k=1}^{n} \left\{ q \in \operatorname{Spec}(R) \mid qR_{P_k} \in \operatorname{Att}_{R_{P_k}} \left(H^i_{IR_{P_k}}(M_{P_k}) \right) \right\}.$$

Therefore $U \cap V(x_1, \ldots, x_t) \subseteq T$. Since $(x_1, \ldots, x_t) \nsubseteq (\cup_{q \in U \setminus V(I)} q) \cup (\cup_{P \in Ass M} P)$, it follows that there exists an element $z_1 \in (x_1, \ldots, x_t)$ such that $x_1 + z_1 \notin (\cup_{q \in U \setminus V(I)} q) \cup (\cup_{P \in Ass M} P)$.

Assume that $y_1 = x_1 + z_1$, then $(x_1, \ldots, x_t) = (y_1, x_2, \ldots, x_t)$ and $y_1 \in I$ is an *I*-filter regular sequence.

Now if $(x_1, \ldots, x_t) = (y_1, x_2, \ldots, x_t) \subseteq \bigcup_{P \in \left(\operatorname{Ass} \frac{R}{y_1 R}\right) \setminus V(I)} P$, then there exists $P \in (\operatorname{Ass} \frac{R}{y_1 R}) \setminus V(I)$ such that $(x_1, \ldots, x_t) \subseteq P$.

Since $I \not\subseteq P$, it follows that $\frac{x_1}{1}, \ldots, \frac{x_t}{1} \in PR_P$ is a R_P -regular sequence and so grade $\left(\left(\frac{x_1}{1}, \ldots, \frac{x_t}{1}, R_P\right)\right) = t$. On the other hand $PR_P \in \operatorname{Ass} \frac{R}{y_1 R}$ and $(y_1, x_2, \ldots, x_t)R_P \subseteq PR_P$.

Then grade $((y_1, x_2, \ldots, x_t)R_P, R_P) = 1$ if $t \ge 2$, and so $(y_1, x_2, \ldots, x_t) \not\subseteq \bigcup_{P \in \operatorname{Ass} \frac{R}{y_1R}} P$. Hence there exists an element $z_2 \in (y_1, x_2, \ldots, x_t)$ such that $x_2 + z_2 \not\in \bigcup_{P \in \operatorname{Ass} \frac{R}{y_1R}} P$. Again, we put $y_2 = x_2 + z_2$, then $(y_1, x_2, \ldots, x_t) = (y_1, y_2, x_3, \ldots, x_t)$. By the similer argument in the above, we see that there exist elements $y_1, \ldots, y_t \in I$ such that $(x_1, \ldots, x_t) = (y_1, \ldots, y_t)$ and y_1, \ldots, y_t is an *I*-filter regular sequene for M.

The exact sequence

$$0 \longrightarrow M \xrightarrow{y_1} M \longrightarrow \frac{M}{y_1 M} \longrightarrow 0$$

induces a short exact sequence of local cohomology modules

$$0 \longrightarrow \frac{H_I^{t-1}(M)}{y_1 H_I^{t-1}(M)} \longrightarrow H_I^{t-1}(\frac{M}{y_1 M}) \longrightarrow 0 :_{H_I^t(M)} y_1 \longrightarrow 0$$

288

By a similar proof in [1], we see that $\frac{H_I^{t-1}(M)}{y_1 H_I^{t-1}(M)}$ is a minimax *R*-module.

Now, by induction hypothesis and since y_2, \ldots, y_t is an *I*-filter regular sequence for $\frac{M}{y_1M}$, we conclude that the *R*-module $H_I^{t-1}(\frac{M}{y_1M})$ is (y_2, \ldots, y_t) -cominimax. Also, we note that $(y_2, \ldots, y_t) \subseteq (y_1, \ldots, y_t)$ and also $\operatorname{Supp} H_I^{t-1}(\frac{M}{y_1M}) \subseteq V(y_1, \ldots, y_t)$. Therefore $H_I^{t-1}(\frac{M}{y_1M})$ is (y_1, \ldots, y_t) -cominimax. Consequently by the above exact sequence $0:_{H_I^t(M)} y_1$ is also (y_1, \ldots, y_t) -cominimax. On the other hand by argument in [1, Theorem 2.6], the *R*-module $\frac{H_I^t(M)}{y_1H_I^t(M)}$ is minimax and hence is (y_1, \ldots, y_t) -cominimax.

Finally, $y_1 \in (y_1, \ldots, y_t) = (x_1, \ldots, x_t)$ and the *R*-modules $0 :_{H_I^t(M)} y_1$ and $\frac{H_I^t(M)}{y_1 H_I^t(M)}$ are both (x_1, \ldots, x_t) -cominimax. Thus by lemma 2.9, the *R*-module $H_I^t(M)$ is also (x_1, \ldots, x_t) -cominimax. \Box

Acknowledgments

The author is deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

References

- K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra, **321** (2009), 1997–2011.
- 2. J. Azami and N. Pourreeza, Attached primes and Artinian modules, submitted.
- 3. M. P. Brodmann and R. Y. Sharp, *Local cohomology; an algebraic introduction with geometric applications*, Cambridge University Press, Cambridge, 1998.
- D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra, 121 (1997), 45–52.
- A. Grothendieck, *Local cohomology*, Notes by R. Hartshorne, Lecture Notes in Math., 862, Springer, New York, 1966.
- 6. R. Hartshorne, Affine duality and cofiniteness, Invent. Math., 9 (1970), 145–164.
- M. T. Dibaei and S. Yassemi, Top local cohomology modules, *Algebra Colloq.*, 14 (2007), 209–214.
- K. Khashyarmanesh and S. Salarian, Filter regular sequence and the finitness of local cohomology modules, *Comm. Algebra*, 26 (1998), 2483–2490.
- K. Khashyarmaneshsion, On the finitness properties of extension and torsion functors of local cohomology modules, *Proc. Amer. Math. Soc.*, 135 (2007), 1319–1327.

- T. Marley, The associated primes of local cohomology modules over rings of small dimension, *Manuscripta Math.*, **104** (2001), 519–525.
- T. Marley and J. C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra, 256 (2002), 180–193.
- H. Matsumura, *Commutative ring theory*, Cambridge University Press, Cambridge, UK, 1986.
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra. Addison-Wesley, 1969.
- A. Mehrvarz, R. Naghipour and K. Bahmanpour, Arithmetic rank, cohomological dimension and filter regular sequence, J. Algebra Appl., 8(6) (2009), 855–862.
- L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra, 285 (2005), 649–668.
- L. Melkersson, Properties of cofinite modules and application to local cohomology, Math. Proc. Cambridge Philos. Soc., 125 (1999), 417–423.
- P. Schenzel, Proregular sequences, local cohomology, and completion, *Math. Scand.*, 92 (2003), 161–180.
- P. Schenzel, N. V. Trung, N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 85 (1978), 57–73.
- K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J., 147 (1997), 179–191.

Jafar A'zami

Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran. Email: jafar.azamigmail.com, azami@uma.ac.ir Journal of Algebraic Systems

FILTER REGULAR SEQUENCES AND LOCAL COHOMOLOGY MODULES

J. A'ZAMI

رشتههای صافی منظم و مدولهای کوهومولوژی موضعی

جعفر اعظمی دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

فرض کنید R یک حلقه جابجایی و نوتری با عنصر همانی ناصفر باشد. در این مقاله برخی روابط بین رشتههای صافی منظم، رشتههای منظم و دستگاه پارامتری را روی R-مدولها بررسی میکنیم. همچنین نتایج جدیدی را در ارتباط با هممتناهی بودن و هممینیماکس بودن مدولهای کوهومولوژی موضعی بهدست میآوریم.

کلمات کلیدی: رشتههای صافی منظم، رشتههای منظم، دستگاه پارامتری، مدول کوهومولوژی موضعی.