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FILTER REGULAR SEQUENCES AND LOCAL
COHOMOLOGY MODULES

J. AZAMI∗

Abstract. Let R be a commutative Noetherian ring. In this
paper we consider some relations between filter regular sequence,
regular sequence and system of parameters over R-modules. Also
we obtain some new results about cofinitness and cominimaxness
of local cohomology modules.

1. Introduction

Throughout this paper, let R denote a commutative Noetherian ring
(with identity) and I an ideal of R. For an R-module M , the ith local
cohomology module of M with respect to I is defined as

H i
I(M) = lim−→

n≥1

ExtiR(R/In,M).

We refer the reader to [5] or [3] for more details about local cohomology.
The concept of filter regular sequence plays an important role in this
paper. We say that a sequence x1, . . . , xn of elements of I, is an I-filter
regular sequence on M , if

SuppR

((x1, . . . , xi−1)M :M xi

(x1, . . . , xi−1)M

)
⊆ V (I),

for all i = 1, . . . , n. Also, we say that an element x ∈ I is an I- filter
regular sequence on M if SuppR(0 :M x) ⊆ V (I). The concept of an I-
filter regular sequence on M is a generalization of the concept of a filter
MSC(2010): Primary: 13D45, 14B15; Secondary: 13E05.
Keywords: Filter regular sequence, regular sequence, system of parameters, local coho-
mology module.
Received: 26 September 2018, Accepted: 19 May 2019.
∗Corresponding author.

281



282 A’ZAMI

regular sequence which has been studied in [18]. Both concepts coin-
cide if I is an m-primary ideal of a local ring with maximal ideal m. In
1969, A. Grothendieck conjectured that if I is an ideal of R and M is a
finitely generated R-module, then the R-modules HomR(R/I,H i

I(M))
are finitely generated for all i ≥ 0. R. Hartshorne has provided a coun-
terexample to this conjecture in [6]. Also he defined a module T to be
I-cofinite if SuppT ⊆ V (I) and ExtiR(R/I, T ) is finitely generated for
each i ≥ 0 and he asked the following question.

For which rings R and ideals I are the modules H i
I(M) I-cofinite for

all i and all finitely generated modules M?

Hartshorne proved that if I is an ideal of the complete regular local
ring R and M a finitely generated R-module, then H i

I(M) is I-cofinite
in two following cases:
(i) I is principal ideal, (see [6], Corollary 6.3),
(ii) I is prime ideal with dim R/I = 1, (see [6], Corollary 7.7).
This subject was studied by several authors afterwards, (see [4], [11],
[9], [19], [1] and [10]).

Some important results of this paper are as follows:

Theorem 1.1. Let (R,m) be a Noetherian local ring and M ̸= 0 be a
finitely generated R-module of dimension d ≥ 1. Let x1, . . . , xd ∈ m be
an m-filter regular sequence for M . Then the following statements are
holds:

(1) x1, . . . , xd is a system of parameters for M .
(2) For each 1 ≤ i ≤ d, the R-module H i

m(M) is (x1, . . . , xi)-
cofinite.

Theorem 1.2. Let (R,m) be a Noetherian local ring and I be an ideal
of R. Then for every finitely generated R-module M ̸= 0 of dimension
d, the following statements are equivalent:

(1) Hd
m(M) is I-cofinite.

(2) Hd
m(M) ∼= Hd

I (M).

Theorem 1.3. Let R be a Noetherian ring, I an ideal of R and M ̸=
0 be a finitely generated R-module such that dim

M

IM
≤ 1. If t ≥

1 and x1, . . . , xt ∈ I is an I-filter regular sequence for M , then for
each 0 ≤ i ≤ t − 1, the R-module H i

I(M) is (x1, . . . , xt)-cofinite and
HomR

( R

(x1, . . . , xt)
, H t

I(M)
)

is finitely generated.
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For each R-module L, we denote by AsshRL the set {p ∈ AssR L :
dimR/p = dimL}. Also, for any ideal b of R, the radical of b, denoted
by Rad(b), is defined to be the set {x ∈ R : xn ∈ b for some n ∈ N}
and we denote {p ∈ Spec(R) : p ⊇ b} by V (b). Finally, for each R-
module L, we denote by mAssRL, the minimal elements of AssR L. For
any unexplained notation and terminology we refer the reader to [3]
and [12].

2. Main results

Theorem 2.1. Let (R,m) be a Noetherian local ring and M ̸= 0 be a
finitely generated R-module of dimension d ≥ 1. Let x1, . . . , xd ∈ m be
an m-filter regular sequence for M . Then

(1) x1, . . . , xd is a system of parameters for M .
(2) For each 1 ≤ i ≤ d, the R-module H i

m(M) is (x1, . . . , xi)-
cofinite.

Proof. (1). By definition xi ̸∈ ∪
P∈Ass

(
R

(x1,...,xi−1)

)
\{m}P for each 1 ≤ i ≤

d, and so xi ̸∈ ∪
P∈AsshR

(
R

(x1,...,xi−1)

)P . Therefore x1, . . . , xd is a system
of parameters for M .
(2). By [8, Proposition 1.2], Hj

(x1,...,xi)
(M) ∼= Hj

m(M) for each 0 ≤
j ≤ i− 1 and dimSuppHj

(x1,...,xi)
(M) ≤ 0. Hence by [1, Theorem 2.6],

the R-module Hj
(x1,...,xi)

(M) is (x1, . . . , xi)-cofinite. Also for j > i,
Hj

(x1,...,xi)
(M) = 0. Thus by [15, Proposition 3.11], the R-module

H i
(x1,...,xi)

(M) is also (x1, . . . , xi)-cofinite. Since H i−1
(x1,...,xi)

(M) is Ar-
tinian, it follows from Grothendick vanishing theorem [3, Proposition
6.1], H1

Rxi+1

(
H i−1

(x1,...,xi)
(M)

)
= 0. By [17], there exists an exact se-

quence as follows 0 → H1
Rxi+1

(
H i−1

(x1,...,xi)
(M)

)
→ H i

(x1,...,xi+1)
(M) →

H0
Rxi+1

(
H i

(x1,...,xi)
(M)

)
→ 0. Note that this exact sequence shows

H i
(x1,...,xi+1)

(M) ∼= H0
Rxi+1

(
H i

(x1,...,xi)
(M)

)
.

Also by [9], we have
H i

(x1,...,xi+1)
(M) ∼= H i

m(M).

Therefore
H i

m(M) ∼= H0
Rxi+1

(
H i

(x1,...,xi)
(M)

)
and there exists an exact sequence as 0 → H i

m(M) → H i
(x1,...,xi)

(M).

Since HomR

( R

(x1, . . . , xi)
, H i

(x1,...,xi)
(M)

)
is finitely generated (because

H i
(x1,...,xi)

(M) is (x1, . . . , xi)-cofinite), it follows that the R−module
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HomR

( R

(x1, . . . , xi)
, H i

m(M)
)

is also finitely generated. Now, by [16,

Theorem 1.6] and by Artinianess of H i
m(M), we conclude that H i

m(M)
is (x1, . . . , xi)-cofinite. □
Theorem 2.2. Let (R,m) be a complete Noetherian local ring and
M ̸= 0 be a finitely generated R-module of dimension d ≥ 1. Let
P ∈ AssM be such that dim R

P
= t ≥ 1. Then for any m-filter regular

sequence for M such as x1, . . . , xt ∈ m, Rad(P + (x1, . . . , xt)) = m. In
particular x1, . . . , xt is a system of parameters for R

P
.

Proof. By Cohen’s theorem every complete Noetherian ring is a homo-
morphic image of a Gorenstein local ring. Then by [2], we have

{q ∈ AttR H t
m(M) | dim R

q
= t} = {q ∈ AssM | dim R

q
= t}.

Since P ∈ AssM and dim
R

P
= t, it follows that P ∈ AttH t

m(M).
By the previous Theorem, the R-module H t

m(M) is (x1, . . . , xt)-cofinite
and so by [16, Theorem 1.6], Rad(P + (x1, . . . , xt)) = m. □
Theorem 2.3. Let (R,m) be a Noetherian local ring and I be an ideal
of R. Then for every finitely generated R-module M ̸= 0 of dimension
d, the following statements are equivalent.

(1) Hd
m(M) is I-cofinite.

(2) Hd
m(M) ∼= Hd

I (M).
Proof. 1 → 2 Let Hd

m(M) be I-cofinite module. Then Hd
m(M) ⊗R

R̂ is also IR̂-cofinite. Hence by [16, Theorem 1.6], for each P ∈

AttR̂
(
Hd

mR̂
(M̂)

)
= AsshR̂(M̂), Rad(IR̂ + P ) = mR̂ and so Hd

IR̂
(
R̂

P
) ̸=

0. Therefore Hd
IR̂
(R̂) ⊗R̂

R̂

P
̸= 0 and P ∈ AttR Hd

IR̂
(R̂). Consequently

AttR̂ Hd
mR̂

(R̂) ⊆ AttR̂ Hd
IR̂
(R̂) ⊆ AttHd

mR̂
(R̂) and so AttR̂

(
Hd

mR̂
(R̂)

)
=

AttR̂
(
Hd

IR̂
(R̂)

)
. Now by [7], Hd

mR̂
(R̂) ∼= Hd

IR̂
(R̂). Hence we have the

following:
Hd

m(R) ∼= Hd
mR̂

(R̂) ∼= Hd
IR̂
(R̂) ∼= Hd

I (R)

(2 → 1). By [15], Hd
I (M) is I-cofinite. Since Hd

I (M) ∼= Hd
m(M), it

follows that Hd
m(M) is I-cofinite. □

Corollary 2.4. Let (R,m) be a Noetherian local ring of dimension d
and I be an ideal of R such that Hd

m(R) is I-cofinite. Then ara(I) = d.
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Proof. The module Hd
m(R) is I-cofinite, hence Hd

I (R) ∼= Hd
m(R) ̸= 0

and so ara(I) ≥ cd(I, R) = d. On the other hand by [14, Corollary
2.8], ara(I) ≤ d. □

Definition 2.5. Let I be an ideal of R. The arithmetic rank of I,
denoted by ara(I), is the least number of elements of R required to
generate an ideal which has the same radical as I.

Corollary 2.6. Let (R,m) be a Noetherian local ring of dimension
d ≥ 0 and x1, . . . , xd−1 ∈ m be such that I = (x1, . . . , xd−1). Then
HomR

(R
I
,Hd

m(R)
)

is not finitely generated.

Proof. By [16, Theorem 1.6], the R-module HomR(
R

I
,Hd

m(R)) is finitely
generated if and only if Hd

m(R) is I-cofinite. But in this case ara(I) = d.
On the other hand ara(I) ≤ d− 1 which is a contradiction. □

Proposition 2.7. Let (R,m) be a complete Noetherian local ring and
M ̸= 0 be a finitely generated R-module. Let N be submodule of M
such that dimN = t ≥ 1. Then any m-filter regular sequence for M
such as x1, . . . , xt ∈ m is a system of parameters for N .

Proof. Let mAssR N = {P1, . . . , Pn}, where mAssR N denotes the
minimal elements of AssR N . Then for each 1 ≤ i ≤ n, dim

R

Pi

≤

dimN = t and clearly dim
R

Pi

≥ 1 . Let j = dim
R

Pi

. Then j ≤ t

and by Theorem 2.2, Rad(Pi + (x1, . . . , xj)) = m. Since (x1, . . . , xj) ⊆
(x1, . . . , xt), it follows that Rad(Pi + (x1, . . . , xt)) = m. We claim that
Rad(∩n

i=1Pi + (x1, . . . , xt)) = m. For this, let Q be a minimal prime of
∩n

i=1Pi + (x1, . . . , xt). Hence there exists 1 ≤ j ≤ n such that Pj ⊆ Q
and so pj + (x1, . . . , xn) ⊆ Q. Therefore m = Rad(Pj + (x1, . . . , xt) ⊆
Rad(Q) = Q ⊆ m and consequently Q = m. But ∩n

i=1Pi = Rad(AnnN)
shows that

Rad(AnnN + (x1, . . . , xt)) = m and so dimR
N

(x1, . . . , xt)N
= 0.

This completes the proof that x1, . . . , xt is a system of parameters for
N . □

Corollary 2.8. Let (R,m) be a complete Noetherian local ring, M be
a finitely generated R-module and N be a submodule of M which is
a Cohen-Macaulay with dimN = t. If x1, . . . , xt ∈ m is an m-filter
regular sequence for M , then x1, . . . , xt is a N-regular sequence.
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Proof. By Proposition 2.7, x1, . . . , xt is a system of parameters for N .
But N is a Maximal Cohen-Macaulay as an R

AnnN
-module. Also x1+

AnnN, . . . , xt + AnnN is a system of parameters for R

AnnN
. On the

other hand every maximal Cohen-Macaulay as an R

AnnN
-module is a

balaneced big Cohen-Macaulay as an R-module. Set yi = xi + AnnN
for each 1 ≤ i ≤ t, then y1, . . . , yt is an N -regualar sequence and this
follows that x1, . . . , xt is an N -regular sequence. □

Theorem 2.9. Let R be a Noetherian ring, I an ideal of R and M ̸=
0 be a finitely generated R-module such that dim

M

IM
≤ 1. If t ≥

1 and x1, . . . , xt ∈ I is an I-filter regular sequence for M , then for
each 0 ≤ i ≤ t − 1, the R-module H i

I(M) is (x1, . . . , xt)-cofinite and
HomR

( R

(x1, . . . , xt)
, H t

I(M)
)

is finitely generated.

Proof. For each 0 ≤ i ≤ t− 1, we have H i
(x1,...,xt)

(M) ∼= H i
I(M). Then

SuppH i
(x1,...,xt)(M) = SuppH i

I(M) ⊆ Supp
M

IM

and for each 0 ≤ i ≤ t− 1, dimSuppH i
(x1,...,xt)

(M) ≤ 1. By [1], clearly
the R-module H i

(x1,...,xt−1)
is (x1, . . . , xt)-cofinite. Since H i

(x1,...,xt)
(M) =

0 for all i ≥ t + 1, it follows from [15], that H t
(x1,...,xt)

(M) is also
(x1, . . . , xt)-cofinite. Consequently for each i ≥ 0, the R-module
H i

(x1,...,xt)
(M) is (x1, . . . , xt)-Cofinite. Now, let xt+1 ∈ I be such that

x1, . . . , xt+1 is I-filter regular sequence. Since xt+1 ∈ I and
H t−1

(x1,...,xt)
(M) ∼= H t−1

I (M) is I-torsion, then H1
Rxt+1

(
H t−1

(x1,...,xt)
(M)

)
= 0.

On the other hand by [17], the following exact sequence is hold: 0 →
H1

Rxt+1

(
H t−1

(x1,...,xt)
(M)

)
→ H t

(x1,...,xt+1)
(M) → H0

Rxt+1

(
H t

(x1,...,xt)
(M)

)
→

0. But, H t
(x1,...,xt)

(M) ∼= H t
I(M) and so by the above exact sequence,

H t
I(M) ∼= H0

Rxt+1

(
H t

(x1,...,xt)
(M)

)
. Since Rxt+1 ⊆ I, it follows that

H0
I

(
H t

(x1,...,xt)(M)
)
⊆ H0

Rxt

(
H t

(x1,...,xt)(M)
)
.

Also, H0
Rxt+1

(
H t

(x1,...,xt)
(M)

) ∼= H t
I(M) is I-torsion and hence

H0
Rxt+1

(
H t

(x1,...,xt)(M)
)
⊆ H0

I

(
H t

(x1,...,xt)(M)
)
.

Then

H t
I(M) ∼= ΓRxt+1

(
H t

(x1,...,xt)(M)
)
= ΓI

(
H t

(x1,...,xt)(M)
)
.
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Finally from the exact sequence
0 → H t

I(M) ∼= H0
I

(
H t

(x1,...,xt)(M)
)
→ H t

(x1,...,xt)(M)

and (x1, . . . , xt)-cofinitness of H t
(x1,...,xt)

(M), we conclude that

HomR

( R

(x1, . . . , xt)
, H t

I(M)
)

is finitely generated. □

Lemma 2.10. Let M be an R-module and I be an ideal of R such
that SuppM ⊆ V (I). Let x ∈ I be such that 0 :M x and M/xM are
I-cominimax. Then so is M .

Proof. The proof is similar to the proof of [15, Corollary 3.4]. □
Theorem 2.11. With the assumption of Theorem 2.9, the R-module
H t

I(M) is (x1, . . . , xt)-cominimax.

Proof. We prove by induction on t. If t = 1, then we set N =
M

ΓI(M)
and so x1 is an N -regular element and H1

I (N) ∼= H1
I (M).

Consider the exact sequence

0 N N
N

x1N
0

x1

which implies that the following exact sequence

. . . H0
I (

N

x1N
) H1

I (N) H1
I (N) H1

I (
N

x1N
)

x1

Clearly the R-module 0 :H1
I (N) x1 is finitely generated, and Rx1-cominimax.

Set
T = {P ∈ SuppH1

I (N) | dim R

P
= 1}.

Then
(
H1

I (N)
)
P

for all P ∈ T is Artinian and Rx1-cofinite. Also T ⊆

Assh
M

IM
and so is finite. By argument in [1, Theorem 2.6], H1

I (N)

x1H1
I (N)

is minimax. Also H1
I (N)

x1H1
I (N)

and 0 :H1
I (N) x1 are Rx1-cominimax and

hence H1
I (N) is also Rx1-cominimax.

Now, let t ≥ 2. Clearly x1, . . . , xt is I-filter regular sequence over the
R-module M

ΓI(M)
. Now H t

I(M) ∼= H t
I

( M

ΓI(M)

)
and M

ΓI(M)
is a finitely

generated I-torsion free R-module. We therefore assume in addition
that ΓI(M) = 0. Since x1 ̸∈ ∪P∈AssM\V (I)P = ∪P∈Ass(M)P , it follows
that (x1, . . . , xt) ⊈ ∪P∈AssMP .
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Set T := {P ∈ SuppH t−1
I (M) ∪ SuppH t

I(M) | dim R

P
= 1}. Hence

T ⊆ AsshR
M

IM
, and so T is a finite set. Let T = {P1, . . . , Pn}. Then

for each i ≥ 0, SuppH i
IRPk

(MPk
) ⊆ {PkRPk

}, where k = 1, 2, . . . , n.
By [1], for each t − 1 ≤ k ≤ t, H i

IRPk
(MPk

) is RPk
-Artinian and

(x1, . . . , xt)RPk
-cofinite. Also

V
(
(x1, . . . , xt)RPk

)
∩ AttRPk

H i
IRPk

(MPk
) ⊆ V (PkRPk

).

Set
U := ∪t

i=t−1 ∪n
k=1

{
q ∈ Spec(R) | qRPk

∈ AttRPk

(
H i

IRPk
(MPk

)
)}

.

Therefore U ∩V (x1, . . . , xt) ⊆ T . Since (x1, . . . , xt) ⊈ (∪q∈U\V (I)q)∪
(∪P∈AssMP ), it follows that there exists an element z1 ∈ (x1, . . . , xt)
such that x1 + z1 ̸∈ (∪q∈U\V (I)q) ∪ (∪P∈AssMP ).

Assume that y1 = x1 + z1, then (x1, . . . , xt) = (y1, x2, . . . , xt) and
y1 ∈ I is an I-filter regular sequence.

Now if (x1, . . . , xt) = (y1, x2, . . . , xt) ⊆ ∪
P∈

(
Ass R

y1R

)
\V (I)

P , then there

exists P ∈ (Ass
R

y1R
)\V (I) such that (x1, . . . , xt) ⊆ P .

Since I ⊈ P , it follows that x1

1
, . . . ,

xt

1
∈ PRP is a RP -reguler

sequence and so grade
(
(
x1

1
, . . . ,

xt

1
, RP )

)
= t. On the other hand

PRP ∈ Ass
R

y1R
and (y1, x2, . . . , xt)RP ⊆ PRP .

Then grade
(
(y1, x2, . . . , xt)RP , RP

)
= 1 if t ≥ 2, and so

(y1, x2, . . . , xt) ⊈ ∪P∈Ass R
y1R

P . Hence there exists an element z2 ∈
(y1, x2, . . . , xt) such that x2+z2 ̸∈ ∪P∈Ass R

y1R
P . Again, we put y2 = x2+

z2, then (y1, x2, . . . , xt) = (y1, y2, x3, . . . , xt). By the similer argument
in the above, we see that there exist elements y1, . . . , yt ∈ I such that
(x1, . . . , xt) = (y1, . . . , yt) and y1, . . . , yt is an I-filter regular sequene
for M .

The exact sequence

0 M M
M

y1M
0

y1

induces a short exact sequence of local cohomology modules

0
H t−1

I (M)

y1H
t−1
I (M)

H t−1
I (

M

y1M
) 0 :Ht

I(M) y1 0



FILTER REGULAR SEQUENCES OF MODULES 289

By a similar proof in [1], we see that H t−1
I (M)

y1H
t−1
I (M)

is a minimax R-

module.
Now, by induction hypothesis and since y2, . . . , yt is an I-filter reg-

ular sequence for M

y1M
, we conclude that the R-module H t−1

I (
M

y1M
) is

(y2, . . . , yt)-cominimax. Also, we note that (y2, . . . , yt) ⊆ (y1, . . . , yt)

and also SuppH t−1
I (

M

y1M
) ⊆ V (y1, . . . , yt). Therefore H t−1

I

( M

y1M

)
is (y1, . . . , yt)-cominimax. Consequently by the above exact sequence
0 :Ht

I(M) y1 is also (y1, . . . , yt)-cominimax. On the other hand by ar-

gument in [1, Theorem 2.6], the R-module H t
I(M)

y1H t
I(M)

is minimax and

hence is (y1, . . . , yt)-cominimax.
Finally, y1 ∈ (y1, . . . , yt) = (x1, . . . , xt) and the R-modules 0 :Ht

I(M)

y1 and H t
I(M)

y1H t
I(M)

are both (x1, . . . , xt)-cominimax. Thus by lemma 2.9,

the R-module H t
I(M) is also (x1, . . . , xt)-cominimax. □
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موضعی کوهومولوژی مدول های و منظم صافی رشته های

اعظمی جعفر
ایران اردبیل، اردبیلی، محقق دانشگاه علوم، دانشکده

روابط برخی مقاله این در باشد. ناصفر همانی عنصر با نوتری و جابجایی حلقه یک R کنید فرض
می کنیم. بررسی R-مدول ها روی را پارامتری دستگاه و منظم رشته های منظم، صافی رشته های بین
کوهومولوژی مدول های بودن هم می نیماکس و بودن هم متناهی با ارتباط در را جدیدی نتایج همچنین

می آوریم. به دست موضعی

موضعی. کوهومولوژی مدول پارامتری، دستگاه منظم، رشته های منظم، صافی رشته های کلیدی: کلمات


	1. Introduction
	2. Main results
	References



