

Quadruplets - Test-tube Baby

Decidua

Definition: Endometrium after implantation.

Decidua Reaction

- > the tissue thickens and becomes more highly vascularized
- > uterine glands and arteries become coiled
- ▷ stroma cells accumulate glycogen and lipids → decidual cells

Cotents

- Maturation of germ cells and Fertilization
- Cleavage, Blastocystformation and Implantation
- The formation of embryonic disc
- The differentiation of trilaminar germ disc and Embryonic folding
- Fetal membrane and Placenta

1. Bilaminar Germ Disc

(1) Formation of <u>epiblast layer</u> and <u>hypoblast layer</u>

(2) Formation of <u>amniotic cavity</u> and <u>yolk sac</u>

(3) Bilaminar Germ Disc :

* <u>By the end of the 2nd week</u>, epiblast layer and hypoblast layer forms a flat disc.

- Second week, blastocyst implantation
- ➤ Inner cell mass proliferate and differentiate into a flat disc → germinal disc (consists of 2 germinal layers) →
 Bilaminar Germ Disc

The 8th day-Differentiation of 2 germinal layers

Germ Disc
Germ Disc

 A set of tall columnar cells

 hypoblast layer: a layer of cuboidal cells

➤ a small cavity between epiblast and trophoblasts→Amniotic cavity Amnioblast

- > Amnioblasts: Epiblast cells adjacent to the cytotrophoblast.
- ➢ Yolk Sac: Flattened hypoblast cells form a membrane → This membrane together with hypoblast forms the lining of yolk sac.
- **>** Bilaminar Germ Disc \rightarrow primordium of human body

Formation of Bilaminar Germ Disc

2. Trilaminar Germ Disc

- **Formation of <u>primitive streak</u>**
- **>** in the early of the 3rd week
- > cells of epiblast proliferate
- Form a longitudinal arranged cell cord

The 15th-day germ disc

- Primitive node The cephalic end of streak
- Primitive pit The pit in the center of primitive node
- Primitive groove A narrow groove in the midline of primitive streak

* Significance of primitive streak

(1) Determination of head and tail of germ disc

Formation of Mesoderm

- Originate from primitive streak
- Some cells at the bottom of primitive groove come to lie between epiblast and hypoblast to form <u>mesoderm</u>

Formation of trilaminar germ disc

- Other cells from primitive groove displace hypoblast, creating the embryonic <u>endoderm</u>
- Cells remaining in epiblast then form <u>ectoderm</u>
- By the end of the 3rd week, trilaminar germ disc forms

Formation of the Notochord

Some cells of primitive pit proliferate and migrate cephalad to form notochord. **Buccopharyngeal membrane** Notochord **Primitive streak Cloacal membrane** The 21th-day germ disc

Formation of the Notochord

Formation of the Notochord

Buccopharyngeal membrane and Cloacal membrane

- **Buccopharyngeal membrane** is formed at the head end of notochord
- **Cloacal membrane is formed at the caudal end of** primitive streak.
- **Both without mesoderm**

Fetus

Fine com. cm

Cotents

- Maturation of germ cells and Fertilization
- Cleavage, Blastocystformation and Implantation
- The formation of embryonic disc
- The differentiation of trilaminar germ disc and

Embryonic folding

Fetal membrane and Placenta

1. Differentiation of trilaminar germ disc

4th-8th weeks

Ectoderm, mesoderm and endoderm, give rise to a number of specific tissues and organs.

Neural Plate

- Appearance of notochord induces the overlying ectoderm to thicken and form <u>neural plate</u>.
- Cells of the plate make up <u>neuroectoderm</u>.

- blue region <u>neural plate</u>
- white and black midline strip -<u>primitive streak</u> ending in <u>primitive node</u>
- white <u>ectoderm</u> forming the epithelium of the skin
- upper circular region –
 <u>buccopharyngeal membrane</u>
- lower circular region cloacal membrane

Neural Groove - The depressed midregion of the neural plate forms <u>neural groove</u>.

Neural Fold - The lateral edges of the neural plate become more elevated to form <u>neural folds</u>.

** Neural Tube

> Neural folds approach each other in the midline where they fuse.

This fusion begins from middle and proceeds cephalad and caudadal.

** Neural Tube

Until fusion is complete, the cephalic and caudal ends of neural tube communicate with amniotic cavity by way of the <u>cranial</u> and <u>caudal</u> <u>neuropores</u>, respectively.

* <u>Primordium of CNS</u>

Differentiate into brain and spinal cord, ect.

Common Malformations of Nervous System

Anencephaly

Spina bifida

(1) Differentiation of Ectoderm

Neural crest

****** Neural crest

- As neural folds elevate and fuse, cells at the lateral border of the neuroectoderm begin to dissociate from their neighbors.
- > This cell population neural crest
- ➤ Two lines of cell cords→ganglions

* <u>Primordium of PNS</u>

Differentiate into ganglion, peripheral nerve and adrenal medulla , ect.

Surface ectoderm

- The sensory epithelium of the ear, nose, and eye
- The epidermis, including the hair and nails
- Subcutaneous glands, the mammary glands, the pituitary gland, and enamel of the teeth.

Organs and structures that maintain contact with the outside world:

- Neuroectoderm
- Neural tube The central nervous system
- Neural crest The peripheral nervous system
- Surface ectoderm
- > The sensory epithelium of the ear, nose, and eye
- > The epidermis, including the hair and nails
- Subcutaneous glands, the mammary glands, the pituitary gland, and enamel of the teeth.

(2) Differentiation of Mesoderm

Mesoderm divides to

Paraxial mesoderm Intermediate mesoderm Lateral mesoderm Mesenchyme

Mesoderm - Paraxial mesoderm

Somite

- ➢ Sclerotome → bone, cartilage
- ➢ dermatome → dermis and hypodermis
- \succ myotome \rightarrow skeletal muscle

Mesoderm - Intermediate mesoderm

- * Primordium of urogenital system
- kidneys, associated ducts, as well as the main organs in male and female reproductive system.

Mesoderm - Lateral mesoderm

- ➢ Somatic / parietal mesoderm → skeleton body wall, CT, parietal pleura, peritoneum and pericardium
- Splanchnic / visceral mesoderm → heart, blood vessel, connective tissue and smooth muscle of viscera, the visceral pleura, pericardium and peritoneum, the mesenteries and so on.

Mesoderm - Mesenchyme

- > CT
- Blood vessels
- Muscle tissue

* Form <u>primitive gut</u>: \rightarrow <u>Epithelium of digestive</u>, respiratory and urinary system \rightarrow <u>Epithelium of middle ear</u>, thyroid, parathyroid, thymus, bladder, ect.

(3) Differentiation of Endoderm

2. Embryonic folding

Reason: Differential growth of different portions of the embryo.

Formation of Embryoid Body

>middle axle grows faster than edge

>ectoderm grows faster than endoderm

cephalic region grows faster than caudal region

>cephalocaudal and lateral folding

Embryonic folding

- > ectoderm covers the entire surface of embryo
- ➤ amnion encloses the connecting stalk and yolk sac neck in a sheath of amniotic membrane → umbilical cord
- cylindrical embryoid body forms

Formation of Embryoid Body

Limbs develop by limb bud form.

Home work

- 1. Describe the component of trilaminar germ disc and its differentiated organs and tissues.
- 2. Describe the component and formation of blastocyst.
- 3.The main differentiated organs and tissues of trilaminar germ disc.