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How to write a translator to Dedukti

Previous talks. How to define theories and write
proofs in Dedukti (eg. the theory U).

This talk. How to write an automatic translator
from a proof assistant to Dedukti:

• General principles on writing such a translator
• Specific case of the Agda2Dedukti translator
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How to translate from a proof
assistant to Dedukti

Step 0. Find/define a system O corresponding to
the proof assistant’s logic (not easy!)

Step 1. Define a Dedukti theory D[O] = (Σ,R)
representing the object logic in Dedukti.

Step 2. Define a translation J−K : ΛO → ΛDK.
The pair (D[O], J−K) is an encoding of
O.

Step 3. Implement the translating function,
making use of the APIs and other tools
offered by the proof assistant.
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Not all encodings are created equal
• An encoding is sound if:

⊢O M : A implies ⊢D[O] JMK : El JAK
• An encoding is conservative if:

⊢D[O] M : El JAK implies ∃N, ⊢O N : A
• An encoding is adequate if for each type A:J−K is a compositional bijection between A and El JAK

Adequate

Sound


Sound and Conservative
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Nor are all proof assistants equal
The difficulty of encoding (the core language of) a
proof assistant depends on its features:

Dependent types are in Coq, Agda, Lean, …
Inductive types are in most proof assistants.1
Universe polymorphism is in Coq, Agda, Lean, …
Impredicativity is in all proof assistants, except

Agda and Epigram.
Eta-equality & irrelevance are present in different

shapes in different proof assistants.

1Most type-theoretic proof assistants also support inductive families.
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Neither are their implementations
The difficulty of writing a translator also depends on
the implementation of the proof assistant:

• In systems based on Curry-Howard
(Coq/Agda/Matita), proof terms are already in
the internal syntax, so are easier to translate.

• In LCF-like assistants (Isabelle/HOL), there are
no proof terms, so we need to reconstruct
them from proof derivations.

• In other systems (PVS), proofs derivations are
not even internally available.2

• …
2See Gabriel’s talk for a solution.
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What is Agda?

Agda is a dependently typed programming language
and proof assistant based on Martin-Löf type theory.

It has indexed datatypes, dependent pattern
matching, and explicit universe polymorphism.

Its type checker identifies terms up to β-equality
and η-equality for functions and records, and
supports definitional proof irrelevance.
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Data types in Agda

data _⊎_ (A B : Set) : Set where
left : A → A ⊎ B
right : B → A ⊎ B

data _≤_ : N → N → Set where
≤-zero : ∀ {n} → zero ≤ n
≤-suc : ∀ {m n} → m ≤ n → suc m ≤ suc n
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Pattern matching in Agda

_<_ : N → N → Set
m < n = m ≤ suc n

compare : (m n : N) → (m ≤ n) ⊎ (n < m)
compare zero n = left ≤-zero
compare (suc m) zero = right ≤-zero
compare (suc m) (suc n) with compare m n
... | left m≤n = left (≤-suc m≤n)
... | right n<m = right (≤-suc n<m)
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Agda as a PTS

At its core, Agda is a pure type system with sorts
Set ` where ` is a universe level.

U : (` : Level) → Set (lsuc `)
U ` = Set `

prod : (`1 `2 : Level)
(A : Set `1) (B : A → Set `2)

→ Set (`1 ⊔ `2)
prod _ _ A B = (x : A) → B x
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Encoding Agda terms in Dedukti

Variable JxK =

x

Def. symbol JfK =

f

Constructor JD.cK =

D__c

Lambda Jλx → uK =

x ⇒ JuK

Application Ju vK =

JuK JvK

Pi type J(x : A) → BK =

???

Universe JSet `K =

???
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Tarski- vs. Russell-style universes3

Agda uses Russell-style universes: Elements are
types themselves.

A : Setl
A type

In Dedukti, if A : Set, we cannot have a : A.
Thus, Dedukti uses a form of Tarski-style universes:
Elements are codes that can be interpreted as types.

c : U (set l)
El (set l) c type

3https://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf
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Encoding Agda’s PTS in Dedukti

Sort : Type.
set : Lvl -> Sort.

U : (s : Sort) -> Type.
def El : (s : Sort) -> (a : U s) -> Type.

def axiom : Sort -> Sort.
[i] axiom (set i) --> set (s i).

def rule : Sort -> Sort -> Sort.
[i, j] rule (set i) (set j) --> set (max i j).

(We postpone the definition of Lvl until later,
for now you can assume lvl = N.)
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Encoding pi types

• Add a constant prod for encoding the pi type:

A : U sA B : El sA A → U sB
prod sA sB A B : U (rule sA sB)

• Identify elements of prod with the
metatheoretic arrow type:

El _ (prod sA sB A B)
= (x : El sA A) → El sB (B x)
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Encoding pi types in Dedukti

prod : (s_A : Sort) ->
(s_B : Sort) ->
(A : U s_A) ->
(B : (El s_A A -> U s_B)) ->
U (rule s_A s_B).

[s_A, s_B, A, B]
El _ (prod s_A s_B A B)

--> (x : El s_A A) -> El s_B (B x).
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Reconstructing sorts

For translating pi types, we need access to the sort
of the domain and codomain.

Luckily, Agda’s type checker already annotates each
type A with its sort s(A).

Examples. s(N) = Set, s(Set) = Set1,
s(Set1 → Set) = Set2
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Encoding Agda terms in Dedukti

Variable JxK = x
Def. symbol JfK = f
Constructor JD.cK = D__c
Lambda Jλx → uK = x ⇒ JuK
Application Ju vK = JuK JvK
Pi type J(x : A) → BK = ???

prod |s(A)| |s(B)|JAK (x ⇒ JBK)
where |Set `| = set J`K

Universe JSet `K = ???

(We will see how to translate levels later.)

19 / 53



Encoding Agda terms in Dedukti

Variable JxK = x
Def. symbol JfK = f
Constructor JD.cK = D__c
Lambda Jλx → uK = x ⇒ JuK
Application Ju vK = JuK JvK
Pi type J(x : A) → BK = prod |s(A)| |s(B)|JAK (x ⇒ JBK)

where |Set `| = set J`K
Universe JSet `K = ???

(We will see how to translate levels later.)

19 / 53



Encoding universe types
• Add a constant u for encoding the Set type:

s : Sort
u s : U (axiom s)

• Identify elements of u s with the ones of U s:

El _ (u s) = U s

In Dedukti:
u : (s : Sort) -> U (axiom s).
[i] El _ (u s) --> U s.
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Encoding Agda definitions in Dedukti

Data types (no parameters or indices)s
data D : U where

c : A

{
=

D : El |s(U)| JUK .
D__c : El |U| JAK .

Function definitions (no pattern matching)s
f : A
f x = v

{
=

def f : El |s(A)| JAK .
[x] f x --> JvK .
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Implementation of Agda2Dedukti

Agda2Dedukti is implemented as an Agda backend.

This allows us to reuse parts of Agda’s
implementation:

• Internal syntax representation
• Type checking monad TCM
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Structure of the Agda typechecker
.agda file

lexer & parser ⇓
Concrete syntax

scope checker ⇓
Abstract syntax

type checker ⇓
Internal syntax

Agda2Dk
====⇒ .dk file

optimizer ⇓
Treeless syntax

MAlonzo ⇓
.hs file GHC

=====⇒ Binary
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Agda’s internal syntax4

data Term
= Var Int Elims -- x u v ..
| Lam ArgInfo (Abs Term) -- λ x → v
| Lit Literal -- 42, 'a', ...
| Def QName Elims -- f u v ..
| Con ConHead ConInfo Elims -- c u v ..
| Pi (Dom Type) (Abs Type) -- (x : A) → B
| Sort Sort -- Set, Set1, Prop, ...
| Level Level -- lzero, ...
| MetaV MetaId Elims -- _X_235
| DontCare Term
| Dummy String Elims

4Code from Agda.Syntax.Internal
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Agda’s TCM monad

Agda’s typechecker uses a type-checking monad
TCM:
type TCM a
getConstInfo :: QName -> TCM Definition
getBuiltin :: String -> TCM Term
getContext :: TCM Context
addContext :: (Name, Dom Type) -> TCM a -> TCM a
checkInternal :: Term -> Type -> TCM ()
reconstructParameters :: Type -> Term -> TCM Term
...
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Putting it all together
example : (1 ≤ 2) ⊎ (2 < 1)
example = left (≤-suc ≤-zero)

{|!_⊎___left|}
({|!_≤_|}

(Nat__suc Nat__zero)
(Nat__suc (Nat__suc Nat__zero)))

({|!_<_|}
(Nat__suc (Nat__suc Nat__zero))
(Nat__suc Nat__zero))

({|!_≤___≤-suc|}
Nat__zero
(Nat__suc Nat__zero)
({|!_≤___≤-zero|} (Nat__suc Nat__zero)))
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Translating datatypes and
constructors to constants

Data types and their constructors do not reduce,
so we translate them to constants in Dedukti.

Example. _≤_ is translated to:
{|!_≤_|} : El (set (s 0)) (prod (set 0) (set (s 0))

Nat (_0 => (prod (set 0) (set (s 0))
Nat (_0 => (u (set 0)))))).

{|!_≤___≤-zero|} : El (set 0) (prod (set 0) (set 0)
Nat (n => ({|!_≤_|} Nat__zero n))).

{|!_≤___≤-suc|} : El (set 0) (prod (set 0) (set 0) Nat
(m => (prod (set 0) (set 0)

Nat (n => (prod (set 0) (set 0)
({|!_≤_|} m n)
(_0 => ({|!_≤_|} (Nat__suc m) (Nat__suc n)))))))).
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Reconstruction of data parameters

Constructors in Agda do not store their parameters.

Reconstructing parameters requires a type-directed
traversal of the syntax.

We can reuse Agda’s reconstructParameters,
which does exactly this!
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Filling implicit arguments &
reconstructing parameters

Agda’s type checker infers implicit arguments during
type checking.

Agda2Dk makes all implicit arguments explicit and
reconstructs constructor parameters.

left (≤-suc ≤-zero) : (1 ≤ 2) ⊎ (2 < 1)

⇓
left (≤-suc {m = 0} {n = 1} (≤-zero {n = 1}))

⇓
left (1 ≤ 2) (2 < 1) (≤-suc 0 1 (≤-zero 1))
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Translating clauses to rewrite rules
Functions in Agda are defined by a set of clauses,
so we translate them to a constant + a set of
rewrite rules.

Example. compare is translated to:
def compare : El (set 0) (prod (set 0) (set 0)

Nat (m => (prod (set 0) (set 0)
Nat (n => ({|!_⊎_|} ({|!_≤_|} m n) ({|!_<_|} n m)))))).

[n] compare Nat__zero n -->
{|!_⊎___left|} ({|!_≤_|} Nat__zero n)

({|!_<_|} n Nat__zero) ({|!_≤___≤-zero|} n).
[m] compare (Nat__suc m) Nat__zero -->

{|!_⊎___right|} ({|!_≤_|} (Nat__suc m) Nat__zero)
({|!_<_|} Nat__zero (Nat__suc m))
({|!_≤___≤-zero|} (Nat__suc (Nat__suc m))).

[m, n] compare (Nat__suc m) (Nat__suc n) -->
{|!with-66|} m n (compare m n).

(where {|!with-66|} is a helper function generated by Agda.)
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Drawbacks of generating rewrite rules

Generating a new rewrite rule for each clause means
that we are extending the theory with each
definition.

Moreover, checking correctness (completeness &
termination) of rewrite rules is very hard.

Ongoing work: Instead, we can translate
definitions by pattern matching to eliminators.5
def compare := Nat__ind...

5Ask Thiago for details!
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Universe polymorphism
Sometimes one wishes to use a definition at
multiple universes (e.g. List Nat but also List Set0).

Bad solution. Define a new Listi for each level i

.

Universe polymorphism allows definitions that
can be used at multiple universe levels:

data List {i} (A : Set i) : Set i where
[] : List A
_::_ : A → List A → List A

map : {i j : Level} → {A : Set i} → {B : Set j}
→ (f : A → B) → List A → List B

map f [] = []
map f (x :: l) = f x :: map f l
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Other forms of universe
polymorphism

Universe polymorphism in Agda is very different
from universe polymorphism in Coq:

Coq Agda
Typical ambiguity

Yes No

Cumulativity (Seti ⊆ Seti+1)

Yes No

Definitions carry constraints

Yes No

In this talk we only see the encoding of Agda’s
universe polymorphism.

For Coq’s version, see Gaspard Ferey’s PhD thesis.
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Universe polymorphism in Dedukti
Idea. Generalize the encoding of the arrow type:
setOmega : Sort.

forall : (l : (Lvl -> Sort)) ->
((i : Lvl) -> U (l i)) -> U setOmega.

[l, t] El _ (forall l t) -->
(i : Lvl) -> El (l i) (t i).

We extend the translation function with:
Level quantification J(i : Level) → AK = forall (i ⇒ Js(A)K)

(i ⇒ JAK)
Level application JM lK = JMK JlK
Level abstraction Jλi.MK = i ⇒ JMK
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Back to List

Now the constant List can be given the type:
El setOmega

(forall (i => set (suc i))
(i => prod (set (suc i))

(set (suc i))
(u (set i))
(_ => u (set i))))

Which, as expected, computes to:
(i : Lvl) -> U (set i) -> U (set i)
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Universe levels
Levels are given by the syntax:

l, l1, l2 ::= i | lzero | lsuc l | l1 ⊔ l2 .

Levels are not freely generated, they satisfy:
Idempotence: a ⊔ a = a
Associativity: (a ⊔ b) ⊔ c = a ⊔ (b ⊔ c)
Commutativity: a ⊔ b = b ⊔ a
Distributivity: lsuc (a ⊔ b) = lsuc a ⊔ lsuc b
Neutrality: a ⊔ lzero = a
Subsumption: a ⊔ lsucn a = lsucn a
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The challenge of representing
universe polymorphism

To establish the encoding’s soundness,

l1 ≡ l2 should imply Jl1K ≡ Jl2K
Possible solutions:

1. Representing levels as naturals? Closed terms
do not satisfy all equalities (e.g. i ⊔ j ̸≡ j ⊔ i).

2. Representing levels as a set of variables with
natural increments? (current solution)
Works well, but there is a catch (next slide).

3. Decision procedure integrated in Dedukti?
We leave this to the future generations.
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Current solution: levels as sets
Idea. Every level l admits a unique canonical form

l = max{n, i1 + m1, ..., ik + mk}
where i1, .., ik ∈ FV(l), n,m1, ..,mk ∈ N and mj ≤ n.

A rewrite system can calculate such forms by using
rewriting modulo associativity-commutativity.

But idempotence and subsumption require a
non-linear rule:

max{i + n, i + m} = i +max{n,m}
This breaks confluence of pre-terms, and prevents
proving conservativity.
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From Agda to Dedukti
1. Principles on translating from a proof assistant to Dedukti

2. What is Agda?

3. Encoding Agda in Dedukti

4. Implementation of Agda2Dedukti

5. Inductive types and dependent pattern matching

6. Universe polymorphism

7. Eta equality & irrelevance

8. Conclusion
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Eta equality in Agda

Agda supports two kinds of eta-equality:
1. Eta for functions:

f : (x : A) → B
f = (λx → f x) : (x : A) → B

2. Eta for records:6

u : Σ A B
u = (proj1 u, proj2 u) : Σ A B

6Also known as surjective pairing for Σ.
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Definitional singleton types
Agda supports eta for all record types, not just Σ!
In particular, it has eta for the unit type:

record ⊤ : Set where -- no fields
constructor tt

eta-unit : (x y : ⊤) → x ≡ y
eta-unit x y = refl

Two distinct variables might be equal!

⇒ To check if two terms are convertible, it does not
suffice to compare their normal forms.
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Encoding eta in Dedukti
1. Eta-expand everything when translating?

This is not stable under substitution:

(λa : A.a){N → N/A}

is not in eta-long form, but λa : A.a and
N → N are.

2. Eta-reduce everything when translating?
This is not stable under substitution and β:

(λx.y x x){(λ_.z)/y} ↪−→β λx.z x ↪−→η z

but λx.y x x ̸↪−→η and λ_.z ̸↪−→η.
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Encoding eta in Dedukti
3. Add eta-equality to the metatheory?

This only handles eta for the arrow type.

4. Use eta-reduction for record types?
This does not work for unit type, and needs
non-linearity for the others:
mk_pair (pi_1 p) (pi_2 p) --> p

5. Annotate terms with their types to be able to
match them to eta expand? e.g.
eta (arrow nat nat) f --> x => f x
We get bigger terms, and the other rules make
the system non-confluent on pre-terms.
Moreover, variables not translated as variables.
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Encoding eta in Dedukti

The next idea. Extend Dedukti with
typed-directed rewrite rules.

Take inspiration from already existing works:
• Agda’s implementation of eta7

• Andromeda 2’s extensionality rules8

Or maybe there are still other unexplored options?

7https://agda.readthedocs.io/en/v2.6.2.2/language/
record-types.html

8A. Bauer, A. Petković, An extensible equality checking algorithm for
dependent type theories
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Definitional irrelevance
Agda also supports definitional proof irrelevance9 for
irrelevant functions and elements of Prop:

postulate
P : Prop
f : P → N

P-irrelevant : (x y : P) → f x ≡ f y
P-irrelevant x y = refl

This causes very similar problems to eta for ⊤,
that also requires type-directed conversion to solve.

9In the encoding of PVS we have a simpler form of proof irrelevance,
which can be encoded in Dedukti.
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Summary
Many features of a dependently typed language can be
encoded in Dedukti directly:

• Defined symbols are mapped to constants.

• Clauses are mapped to rewrite rules.

Other features require some more work:

• Erased constructor parameters need to be reconstructed.

• Universe levels require an equational theory.

Finally, other features we don’t yet know how to encode:

• Eta-equality for record types?

• Definitional proof irrelevance?
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Future work
Like most translators, Agda2Dedukti is still a work
in progress.

In the future, we would like to have:
• Compilation of clauses to elimination principles,
• A conservative encoding of universe

polymorphism,
• An adequate and computational encoding of

Agda,10

• An encoding of eta-equality and irrelevance
(probably requires extending Dedukti).

10For details, see Thiago’s talk about Adequate and Computational
Encodings in Dedukti, at FSCD 2022
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