Logic Gate Lecture 7

(For Higher Secondary Second Year)

Manoj Kr. Das
Associate Professor
Physics Department
J N College, Boko

Logic Gate:

A logic gate is an idealized model of computation or physical electronic device implementing a Boolean function, a logical operation performed in one or more binary inputs that produces a single binary output. The basic logic gates are OR, AND and NOT gates.

OR gate:

An OR gate has two or more inputs but a single output. The output of the OR gate is in the state 1 if one or more inputs assume the state 1 . Where A and B are the two inputs and Y is the output of the OR gate.

Fig 1

Input A	Input B	Output y
0	0	0
0	1	1
1	0	1
1	1	1

Table 1. Truth Table of OR Gate

The Table 1 gives the truth table representing of two input OR gate, the 0 and 1 in the truth table represent the low or 0 volt and high or 5 volt

Fig 2
Fig 3

AND Gate:

An AND gate possesses two or more inputs and a single output. The output of an AND gate is in 1 if and only if all the inputs assume the state 1 . Consequently an AND gate is also referred to as a coincidence circuit. The operation of an AND can be given in Table 2 . Here 0 volt and 5 volt represent the states 0 and 1 respectively

Fig 4

Input \mathbf{A}	Input B	Output \mathbf{Y}
0	0	0
0	1	0
1	0	0
1	1	1

Table 2: Truth Table of AND Gate

A diode logic configuration of two input AND gate for positive logic circuit. Here A and B are two inputs and y the output of AND gate.

Fig 5

Fig 6

NOT Gate:

The NOT circuit has single input and single output. The output of the NOT circuit is in the state 1 if and only if the input does not assume the state 1. The output of the circuit is therefore high when the input is low and vice versa. As the NOT circuit inverts the sense of the output with respect to the input it is also referred to as an inverter. The NOT operation is also known as negation.

Fig 7

INPUT	OUTPUT
A	NOT A
0	1
1	0

Table 3: Truth Table of NOT Gate

A transistor circuit implementing an inverter as shown in figure. When the input voltage is low the transistor is cut off and the output voltage is $v_{0}=V_{c c}$. Thus output is high. However if the input voltage is high the transistor saturates and the output voltage becomes low.

Fig 8

NOR Gate:

The logic circuit where a NOT gate follows an OR gate is termed as NOT-OR or NOR gate. NOT circuit can be constructed with transistor where OR gate can be constructed with diodes or transistors. Therefore NOR gate can be realised by diode-transistor logic

Input A	Input B	Output Y
0	0	1
0	1	0
1	0	0
1	1	0

Table 4: Truth Table of NOR Gate

The NOR gate is the basic gate in the resistor-transistor logic family produced by IC technology. It consist of only resistors and transistors.

Fig 10

NAND Gate:

The logic circuit in which a NOT gate follows an AND gate is referred to as a NOT-AND or NAND gate. The Boolean expression characterising the NAND gate $Y=\overline{A . B}$. The NOT gates can be built with transistors and AND gates can be constructed with diode or transistors. Consequently NAND gates can be built with diode-transistor logic.

Input A	Input B	Output Y
0	0	1
0	1	1
1	0	1
1	1	0

Fig 5: Truth Table of NAND Gate

The NAND gate is the basic gate in DTL or the TTL family by IC. A positive logic DTL NAND gate consists of the diode AND gate followed by a transistor NOT gate with some modifications. The output of the AND gate is coupled to the base of the transistor of the NOT circuit through two diodes in series.

Fig 12

De Morgan's Theorem:

First Theorem: $\quad \overline{A+B}=\bar{A} \cdot \bar{B}$

Second Theorem: $\overline{A . B}=\bar{A}+\bar{B}$

Some Useful Laws:

(A)Communitive Law

$$
\begin{aligned}
A+B & =B+A \\
A . B & =B . A
\end{aligned}
$$

(B)Associative Laws

$$
\begin{aligned}
A+(B+C) & =(A+B)+C \\
A \cdot(B \cdot C) & =(A \cdot B) \cdot C
\end{aligned}
$$

(C)Distributive Laws

$$
A \cdot(B+C)=A \cdot B+A \cdot C
$$

The basic OR relation are

$$
\begin{aligned}
& A+0=A \\
& A+1=1 \\
& A+A=A \\
& A+\bar{A}=1
\end{aligned}
$$

The basic AND relations are

$$
\begin{aligned}
& A \cdot 0=0 \\
& A \cdot 1=A \\
& A \cdot A=A \\
& A \cdot \bar{A}=0
\end{aligned}
$$

(D)Absorptive Laws:

$$
\begin{gathered}
A+A \cdot B=A \\
A \cdot(A+B)=A
\end{gathered}
$$

The Boolean Inequalities are

$$
\begin{aligned}
& A(\bar{A}+B)=A \cdot B \\
& A+\bar{A} \cdot B=A+B
\end{aligned}
$$

$$
\begin{gathered}
A+B \cdot C=(A+B) \cdot(A+C) \\
(\bar{A}+B) \cdot(A+C)=\bar{A} \cdot C+A \cdot B \\
(A+B) \cdot(B+C) \cdot(C+A)=A \cdot B+B \cdot C+C \cdot A \\
\bar{A} \cdot B \cdot \bar{C}+\bar{A} \cdot B \cdot C+A \cdot B \cdot \bar{C}=B \cdot(\bar{A}+\bar{C})
\end{gathered}
$$

