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Preface

Welcome, Bienvenue, Degemert mat to the 520 attendees of the 23rd JOBIM edition!

What a nice periodicity! Exactly twenty years after the first JOBIM edition organized in
Brittany at St Malo, and ten years after the last edition organized in Rennes, we are happy
to welcome once again the bioinformatics community in Rennes.

After two years of remote JOBIM conferences at Montpellier and Paris, the bioinformatic
community has fully taken the opportunity to meet physically in Rennes. The number of
participants exceeded expectations even before the end of early-bird registration! Accord-
ingly, the Program Committee received an impressive number of 298 submissions and selected
among them 42 oral contributions, 226 posters and 17 demos. We take this opportunity to
acknowledge and express our gratitude to all members of the Program Committee for their
crucial reviewing of all these contributions.

We sincerely thank our six keynote speakers who accepted to prepare exciting talks
for this JOBIM edition: Cédric Notredame, Pierre Peterlongo, Hélène Morlon, Anne-Laure
Boulesteix, Guillaume Bourque and Raphaël Guérois. We look forward to their presentations!

As in previous editions, half a day during JOBIM is dedicated to specialized mini-
symposiums. This year, we are welcoming 5 mini-symposiums covering a wide range of
bioinformatics topics, and we would like to take this opportunity to thank their organisers.

In the end, we are grateful to the institutional supports of the SFBI, GDR BIM, IFB
and warmly thank all the members of the Organising Committee (with a special thanks to
Clara, Edith, Fabrice, Jeanne, Marie and Stéphanie) who made it possible to hold JOBIM
in Rennes this year.

Claire Lemaitre, Emmanuelle Becker and Thomas Derrien
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RiboTaxa: Combined approaches for taxonomic resolution down to the species 

level from metagenomics data revealing novelties 
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Metagenomic classifiers are widely used for the taxonomic profiling of metagenomic data and estimation 

of taxa relative abundance. Small subunit rRNA genes are nowadays a gold standard for phylogenetic resolution 

of complex microbial communities, although the power of this marker come down to its use as full-length. We 

benchmarked the performance and accuracy of rRNA-specialized versus general-purpose read mappers, 

reference-targeted assemblers and taxonomic classifiers. We then built a pipeline called RiboTaxa to generate a 

highly sensitive and specific metataxonomic approach. Using metagenomics data, RiboTaxa gave the best results 

compared to other tools (Kraken2, Centrifuge (1), METAXA2 (2), PhyloFlash (3)) with precise taxonomic 

identification and relative abundance description giving no false positive detection. Using real datasets from 

various environments (ocean, soil, human gut) and from different approaches (metagenomics and gene capture 

by hybridization), RiboTaxa revealed microbial novelties not seen by current bioinformatics analysis opening new 

biological perspectives in human and environmental health.  

In a study focused on corals’ health involving 20 metagenomic samples (4), affiliation of prokaryotes was 

limited to the family level with Endozoicomonadaceae characterising healthy octocoral tissue. RiboTaxa 

highlighted 2 species of uncultured Endozoicomonas which were dominant in the healthy tissue. Both species 

belonged to new genus opening new research perspectives on corals’ health.  

Applied to metagenomics data from a study on human gut and extreme longevity (5), RiboTaxa detected 

the presence of an uncultured archaeon in semi-supercentenarians (aged 105 to 109 years) highlighting a new 

archaeal genus not yet described and 3 new species belonging to the Enorma genus that could be species of interest 

participating in the longevity process.  

RiboTaxa is user-friendly, rapid, allowing microbiota structure description from any environment and the 

results can be easily interpreted. This software is freely available at https://github.com/oschakoory/RiboTaxa 

under the GNU Affero General Public License 3.0. 
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In a typical shotgun metagenomics approach, after the DNA of an ecological community has been 

sequenced, it is compared to a genetic reference database of organisms with known taxonomy.  

Even though the number of DNA sequences and genomes in reference databases is constantly growing, there 
are still instances where a query sequence will not have a direct match in a reference database, but it will 

instead align to one or more distantly related reference organisms.  

To resolve this ambiguity, one method is to place the query sequence higher in the taxonomic tree at the 
common ancestor of all ambiguously matched reference sequences, using an algorithm known as lowest 

common ancestor (LCA).  

While there are many different metagenomics classifiers and taxonomic profilers currently available, there is 
still a need for a program that can perform LCA from the common SAM alignment file format.  

Here, we present sam2lca, a program to perform LCA from a SAM/BAM/CRAM file.  

Because sam2lca uses the common SAM alignment file format as input, it is easy to use in combination with 

any SAM-producing alignment program applied to a metagenomics dataset.  
Furthermore, with its command line interface, python API, and containerization thanks to bioconda, it is easy 

to integrate within already existing metagenomics processing pipelines. 
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Abstract

The history of a species is closely related to the history of its genes. Connecting the evolution of a genome
to the evolution of its genes is a way to describe this relationship. In this context, reconciliation of the genes

with  the  species  consists  into  mapping the  nodes  of  a  gene  tree  and the  associated  events  (speciation,
duplication, loss, tranfer) to the nodes of the species tree. Reconciliation can as well be used to map the

history of a parasite with the history of a host, or to map the history of a protein domain with the history of a
sequence. 

Visualisation  of  phylogenetic  reconciliations  are  proposed  by  various  programs  and  interfaces  as
NOTUNG [1], SylvX [2], Treerecs [3], Jane [4], eMPRess [5] and Capybara [6]. However at the exception

of  SylvX,  all  are  integrated  in  a  specific  reconciliation  software  and  cannot  visualise  reconciliations
produced by others. None of these software is handling recPhyloXML [7], a XML format proposed as a

standard to describe phylogenetic reconciliations, and none of them is generic to any kind of reconciliation
(for example SylvX does not allow temporary free living symbionts, as it is not allowed for genes to live

outside a genome) nor can handle multiple horizontal transfer (i.e. several genes transfered with the same
donor and recipient) and the consideration of numerous possible scenarios. DoubleRecViz [8] uses a derived

version of  recPhyloXML,  adding a  transcript  level  to  gene  and species  format  but  without  support  for
horizontal transfers.

Eventually  there  is  no  software  able  to  combine  two  nested  reconciliations  i.e.  to  get  in  a  single
representation the gene/symbiont reconciliation and the symbiont/host reconciliation.

Here we present Thirdkind [9] a very simple command-line software allowing the user to easily generate
graphical output (svg) from one or several recphyloXML files with a large choice of options (as for example

orientation, police size, branch length, multiple gene trees, multiples species trees, multiple files, redundant
transfers  handling,  etc.)  and  to  handle  the  display  of  two  nested  reconciliations  (displaying  a

gene/symbiont/host reconciliation for example).

Home page : https://github.com/simonpenel/thirdkind/wiki
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1 Introduction

Phylogenomics aims at reconstructing the evolutionary histories of organisms taking into account whole
genomes  or  large  fractions  of  genomes.  Phylogenetic  trees  reconciliation  is  a  widely  used  method  for

reconstructing the evolutionary histories of gene families and species.

Several algorithms were developed toward this goal but the most part of the tool chain is scattered among

each developer's repositories. Installing and configuring these heterogeneous programs can be a daunting
task for users. Organizing inputs and collecting outputs to run the analyses is usually a time consuming

process.  To  solve  this  issue,  we  designed  and  implemented  an  online  service  platform  dedicated  to
phylogenomic analyses.

Our  platform  provides  a  user-friendly  interface  to  help  biologists  to  define  multiple  complex
phylogenomic analyses. Its main feature is an automated workflow which takes alignments or gene trees as

inputs and which infers reconciliations of gene trees with the species tree. Keeping in mind the concepts that
led to the phylogeny.fr (Dereeper A. et al., NAR 2008) and NGphylogeny.fr (Lemoine F. et al., NAR 2019)

successes,  we  designed  it  as  simple  and  straightforward  as  possible.  We  provide  automatic  workflows
dedicated to general users. It can also be fully customized by advanced users.

2 Workflows overview

The workflows are composed with 4 possible steps : gene trees inference, species tree inference, species
tree rooting and trees reconciliation. These steps are performed in 4 different use cases (UC) :

• UC 1 : the user provides alignments and chooses the “supertree approach” to infer the species tree
• UC 2 : the user provides alignments and chooses the “supermatrix approach” to infer the species tree

• UC 3 : the user provides his gene trees to infer the species tree with the “supertree approach”
• UC 4 : the user provides his gene trees and his species tree

The user cases 1 and 3 correspond to the automatic workflows that uses default parameters, while the user

cases 2 and 4 correspond to the custom workflows.

Valid inputs for the workflows are either a collection of alignments or gene trees and species tree. The

platform will parse the input’s type and choose the workflow accordingly.

Gene trees inference step will be processed using PhyML (Guindon S. et al., Syst. Biol. 2010) or FastME

(Lefort V. et al., MBE 2015), depending on the input size or the user wish. The user may skip this step by
providing his own gene trees.

The second step is to infer the species tree either from the gene trees using the “supertree approach”, or
from the alignments  using the “supermatrix approach”.  Concerning the “supertree approach”,  we  chose

ASTRAL-PRO (Zhang C. et al., MBE 2020) as default but SuperTriplets (Ranwez V. et al., Bioinformatics
2010) and MRP (Ragan M.A., Mol. Phyl. Evol. 1992) are considered as alternatives.

Species tree rooting currently requires a user action (graphical choice of the branch on which the root has
to be placed). Automatic alternatives approaches are considered for user convenience.

Once the species tree rooted, we can proceed to the last step. Each gene tree is reconciled with the species
tree using ecceTERA (Jacox E. et al., Bioinformatics 2016) : it infers additional evolutionary events such as

gene losses, gene duplications and horizontal gene transfers. The final outputs are the reconciled trees saved
in RecPhyloXML format (Duchemin W. et al., Bioinformatics 2018). Every steps inputs and outputs can be

downloaded and visualized.
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Single-cell  RNA sequencing  revolutionizes  transcriptomic  studies  providing  gene  expression  level  at

single-cell  resolution  [1].  The  classical  pipeline  used  to  discover  cell  populations  consists  of  several

consecutive steps, namely feature selection,  dimension reduction and cell  clustering [2].  These steps are

widely used  in  the  world  of  single-cell  RNA-sequencing,  however,  three  major  problems  remain  to  be

improved. First, feature selection methods do not lead to a common consensus and most of them provide

variable results [3]. Second, the identification of marker genes leads to double dipping by creating a high

type I error rate caused by the prior identification of cell groups [4]. Finally, all the steps of the classical

pipeline depend on a number of parameters which, depending on their values, will generate a large variability

of results.

To overcome these problems, we developed SciGeneX (for Single-cell informative Gene eXplorer). An

unsupervised method offering an alternative approach that provides an initial insight into the pattern of co-

expressed genes across cells. SciGeneX automatically filters co-expressed genes across the set of cells using

a density-based-filtering algorithm and clusters them into gene patterns of expression using the Markov

Cluster  Algorithm [5].  Combinations  of  these patterns  spontaneously highlight  biologically relevant  cell

populations  associated  with  cell  types  or  states  as  well  as  the  genes  specifically  expressed  in  these

populations. Thus, SciGeneX perform feature selection and identification of co-expressed gene patterns and

provide an alternative approach for cell clustering based on these patterns, avoiding the main drawbacks of

the currently used algorithms.
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1 Introduction
The continuous increase of life science data production raises the importance of better sharing and
reusing biological digital resources (datasets, bioinformatics tools or workflows, training materials,
etc.). To that end, FAIR principles [1] have been proposed and are being adopted by large com-
munities. However, assessing how much a resource is FAIR is nowadays challenging since answering
human-oriented questionnaires is time-consuming and computational evaluations (FAIRMetrics, RDA
Maturity Indicators) often require technical expertise.

2 Approach and results
We propose an update of FAIR-Checker 1, aimed at making producers and developers of scientific
digital resources more efficient in their FAIR implementation. This tool aims at assessing FAIR
principles and providing technical recommendations to enhance the quality of the metadata found
the web resources. FAIR-Checker leverages Semantic Web standards and technologies, such as RDF,
SPARQL, SHACL, to help users in annotating their resources with high-quality metadata and to
ensure interoperability at web scale. It has two main facets: the ”Check” module, targeting any user,
allows them to execute a list of tests and get a synthetic estimation of the FAIRness of their resource, as
well as technical recommendations to improve it. The “Inspect” module, targeting metadata experts,
allows them to i) explore and verify if it conforms to community-defined standards and ii) identify
missing or non-standard metadata to improve metadata quality.
For each submitted resource, we build a knowledge graph based on embedded RDF triples (microdata,
json-ld) as well as external knowledge (public SPARQL endpoints). To evaluate metadata in ”Check”,
we use technologies such as SPARQL queries to automatically assess FAIR metrics, and provide key
recommendations in case of failed test with some references to the FAIR-Cookbook 2. Then, to evaluate
metadata quality in ”Inspect”, we check that used ontology terms are already known in reference
registries such as Linked Open Vocabularies (LOV) Ontology Lookup Service (OLS) or BioPortal.
Finally, we leverage Bioschemas, the extension of Schema.org for life sciences, to automatically generate
SCHACL constraints. Their evaluation informs users on missing metadata, required or recommended
for specific types of resources (genes, proteins, training material, computational tools, etc.).

3 Future work
A publication of this work is currently under review. As future work, we aim (i) to support content-
negotiation for web sites not embedding metadata in their web pages, (ii) to enhance the matching
between a resource type and the corresponding Bioschemas profile, and (iii) to allow the user to
annotate and complete its missing metadata. In addition, we plan to develop an API for a better
scalability and interoperability of FAIR-Checker.
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1 Introduction

In  the  Life  Sciences  landscape,  bioinformatics  core  facilities  play  a  key  role  for  many  scientific
communities, by providing software access and reference data in a computational environment tailored for
high-throughput  computing.  They  have  to  handle  huge  amounts  of  data  generated  by  scientists,  which
require ever-increasing resources.

Bioinformatics  platforms  play  a  pivotal  role  to  transform  scientific  raw  data  into  quantitative  and
integrated analysis, essential to draw conclusions and lead to publications  before being made available to the
community by deposition in international data warehouses.

In order to help scientists adopt best practices in data management1, OpenLink2 has been selected as a
“ANR Flash Données Ouvertes” project.  It   started  early 2020 at  “Institut  de génétique et  de biologie
moléculaire et cellulaire” (IGBMC) and was renewed by “Institut Français de Bioinformatique” (IFB) in
2021.  It  involves  IGBMC IT department,  imaging  center,  three  research  teams  and  IFB  collaborators.
Openlink’s aim is the creation of a web application enabling the establishment of a virtual link between data
and metadata scattered over multiple management tools, and thus facilitate the adoption of best practice in
data management.

2 OpenLink,  an interoperable network of data management tools

Openlink facilitates the transversal  identification and manipulation of data  associated with a research
project and is structured using the ISA model3 (Investigation, Study, Assay). Openlink is able to connect and
create links to any data source and publish them on a repository. The only condition is to have a “Connector”
specified in your Openlink project, which dictates how OpenLink communicates with a given data source or
repository. OpenLink allows  several people to collaborate and share common data without duplication.

From the Data Management Plan (DMP) to data publication, Openlink supports an evolving collection of
data sources, including LabGuru, an electronic lab notebook, OMERO, an image visualization, management
and data processing tool,  Galaxy,  a workflow manager,  and Zenodo,  a universal  repository for research
outcomes. The goal is to streamline the transfer of data from production to archiving, while automatically
enriching data.

3 Conclusion

OpenLink offers dashboards and automatic procedures to support researchers in data management and
guide them towards the adoption of a FAIR4 principle by becoming part of the Open Science movement. Its
development is as modular as possible to fit various universities and organization infrastructures and needs.
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Patient data now incorporates the results of numerous modalities, including imaging, next-generation 
sequencing and more recently wearable devices. Most of the time, medical acts produce imaging data, such as 
echography, radiology or histology result in the production of medical reports that describe the relevant 
findings. Thus, multimodality is induced in patient data, as imaging data is inherently linked to free-text 
reports. 

Useful tools to centralize, process and explore multimodal data are essential to drive research and improve 
diagnosis. Exploiting patients’ data is challenging as the ecosystem of tools is heavily fragmented, depending 
on the type of data (images, text, genetic sequences), the task to be performed (digitization, processing, 
exploration) and the domain of interest (clinical phenotype, histology…). To address these challenges, the 
analysis tools need to be integrated in a simple, comprehensive, and flexible platform. 

Here, we present IMPatienT [1] (Integrated digital Multimodal PATIENt daTa), a free and open-source 
web application to digitize, process and explore multimodal patient data. IMPatienT has a modular 
architecture, including four components to: (i) create a standard vocabulary for a domain, (ii) digitize and 
process free-text data by mapping it to a set of standard terms and well-established ontologies, (iii) annotate 
images and perform image segmentation, and (iv) generate an automatic visualization dashboard to provide 
insight on the data and perform automatic diagnosis suggestions. 

We showcased IMPatienT on a corpus of 89 muscle biopsy reports of congenital myopathy patients provided 
by the Institute of Myology of Paris and a hundred images of histological sections from the Muscle Atlas. We 
used the web application to: create a first draft of the muscle histology ontology, digitize the medical reports, 
and annotate the biopsy images. Exploratory graphs and automatic diagnosis suggestions for the three recurrent 
classes of congenital myopathies were then automatically generated. 

IMPatienT is a web application to digitize, process and explore patient data that can handle image and free-
text data. As it relies on user-designed standard vocabulary and well-established ontologies, it is highly flexible 
to fit any domain of research and can be used as a patient registry for exploratory data analysis (EDA). A demo 
instance of the application is available at https://impatient.lbgi.fr. 
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Plant research, particularly in genetics, often involves identifying heterogeneous and dispersed
datasets. Indeed, the study of the behaviour of plants in their environment implies having integrated
phenotyping experiment data and cross-referencing it with genetic or molecular variability data
(metabolomic, expression, etc.). These data are structured in a very heterogeneous way, according to
the specific standards of their field; for exemple MIAME for expression data, MIAPPE [1] for
phenotyping data, VCF for genetic variability. Moreover, these data are published in generalist
warehouses (Zenodo, data.inrae.fr) or in specialized warehouses (EMBL-EBI) that offer diversified
APIs and research interfaces. All this makes the discovery of integrable and interoperable datasets
complex.

To simplify this work and maximize the visibility of research data, and their reusability according
to FAIR principles, several portal solutions have been developed in recent years, such as omicsDI [2]
of the WheatIS (www.wheatis.org). FAIDARE (FAIR Data-finder for Agronomic Research
https://urgi.versailles.inrae.fr/faidare/) is a portal dedicated to plant phenomic, genetic and genomic
data, allowing to index and standardize heterogeneous metadata sources based on international
standards.

FAIDARE offers a simple interface (code in Java, Angular and TimeLeaf) based on a full text
search running on Lucene (Elasticsearch). A set of facets allows to refine the search according to the
most common criteria: species, data type, data source, ontological annotation, plant material, traits
studied, etc. This approach allows the user to easily identify the datasets of interest, to access their
description, and then to download them from their source thanks to an export system in csv format.
The data is also accessible through a series of REST web services following the Breeding API
standard [3].

In this demonstration, we will show how to identify the data needed to study different questions
such as the impact of disease on wheat yield or the links between phenology and genetic data in
grapevines. We will also see how this network of heterogeneous sources could be harvested, either in
a generalist way or by following the Breeding API, via a dedicated Extract Transform Load (ETL)
tool coded in python and orchestrated with Nextflow.
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1 Le comptage de k-mers
Les progrès des 15 dernières années en matière de séquençage d’adn et d’arn, associés à la baisse

de leurs coûts ont eu comme effet direct une production massive de données à analyser. Ce changement
d’échelle du volume de données a induit l’apparition de nouvelles méthodologies et notamment celles
basées sur le comptage des k-mers – fragments de longueur k – présents dans les séquences. Ces comp-
tages peuvent être utilisés de différentes manières. Par exemple, rechercher des marqueurs spécifiques de
certaines populations ou bien pour discriminer les erreurs de séquençage des variations biologiques. . .

Bien que le comptage de k-mers consiste à associer à une séquence de k nucléotides une valeur
entière, il existe de multiples manières de structurer cette information et de l’interroger [1] et les choix
algorithmiques et méthodologiques ont une incidence forte sur les performances et la fiabilité des mé-
thodes. De nombreux outils ont été développées pour effectuer ces comptages, tels que Jellyfish [2],
DSK [3], KMC3 [4], . . . Cependant, l’inconvénient commun à la plupart des méthodes existantes actuel-
lement est qu’elles sont limitées par les capacités matérielles de la machine sur laquelle elles sont
exécutées. Aussi pour compter les k-mers sur de très gros volumes de données, est-il nécessaire de
disposer de machines surpuissantes ou d’adapter les méthodes existantes afin de distribuer les calculs
(stratégies MapReduce [5]). Nous avons développé une méthode originale permettant de distribuer le
calcul sur plusieurs machines, repoussant de facto les limitations de ces autres outils.

2 Comptage et indexation massivement parallélisés de k-mers
Nous avons développé une librairie en C++ (intitulée libGkArrays-MPI et distribuée sous la licence

libre CeCILL-C), exploitant le parallélisme léger (multithreading) mais également le calcul distribué,
permettant de compter les k-mers des séquences décrites dans un ou plusieurs fichiers (fasta, fastq,
compressés ou non). Outre le simple comptage, cette librairie permet également de les indexer (donc
de pouvoir retrouver leurs séquences d’origine). Sur la base de cette librairie, nous avons également
développé un outil (intitulé gkampi et distribué sous licence libre CeCILL) pouvant s’exécuter sur une
simple machine comme sur un cluster de calcul.

L’outil gkampi et la librairie libGkArrays-MPI permettent également de compter/indexer des
k-mers espacés [6], proposent les même fonctionnalités que les outils standards (Jellyfish, KMC, . . . ) et
sont documentés. Leur installation est conforme aux standards des gnu autotools et le code respecte
strictement la norme iso 2011 du C++.
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Most eukaryotic genes are composed of exons and introns. At the splicing step, introns are removed from

the pre-mRNA and exons are joined together to form a mature mRNA. The precise recognition of exons and

introns by the splicing machinery is a complex process, which can be regulated, leading to the production,

from a single gene, of possibly several mRNAs with vary in their exon composition, a process known as

alternative splicing (AS).  The interest in AS has been growing in recent years as more and more studies

found this process to be widespread. Deregulation of splicing was also found to be associated to various

pathologies.

Transcriptome sequencing can be used to identify and quantify hopefully all spliceforms of all the genes

expressed in a particular condition. Comparing biological conditions (patients Vs controls, tissue 1 Vs tissue

2) then enables to identify which genes are differentially spliced. The bioinformatics analysis of RNAseq

data remains however challenging in particular when no (good) reference genome is available, or when it is

only partially annotated.

Since 2012, we are developping KisSplice (kissplice.prabi.fr),  a local de novo assembler which takes as 

input a list of RNAseq Illumina fastq files and outputs a list of variations (SNPs, indels, AS events) seen in 

the data. Each variant is quantified in each input sample. Since the first version, we have improved the 

performance of KisSplice  and we developed modules to facilitate the exploration of the results. KissDE is a 

bioconductor package enabling to assess if a variant is significantly enriched in a condition. 

KisSplice2RefGenome enables to locate and annotate the variation on a user-provided reference genome. 

The originality of our method is that its first step is not to map the reads to a reference genome. Instead, it 

locally assembles the reads, i.e. builds a de Bruijn Graph and searches for specific patterns called bubbles in 

this graph. We showed that this facilitates the discovery of non-annotated splicing events even when an 

annotated reference genome is available [2]. 

In this demo, we will present how to use KisSplice in the context of two case studies: (1) the Taybi-Linder

Syndrom (TALS), a rare multi-developmental human pathology caused by mutations in one of the minor

spliceosome component [5], where KisSplice identifies genes that are mis-spliced in patients; and (2) a non-

model  species,  the  bug  Rhodnius  prolixus which  is  an  important  vector  of  the  Chagas  disease,  where

KisSplice identifies genes whose splicing is significantly affected after feeding.

The software is now available through a docker image: https://hub.docker.com/r/dwishsan/kissplice-

pipeline, and comes with a Shiny interface which facilitates the exploration of the results. 

KisSplice runs within a few hours for datasets up to 1G reads. It requires 30Go of RAM.
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Transposable elements (TEs) are major players in the structure and evolution of eukaryote genomes. Thanks
to their ability to move around and replicate within genomes, they are probably the most important contributors
to genome plasticity. The insertion of TEs close to genes can affect gene structure, expression and function,
contributing to the genetic diversity underlying species adaptation. Many studies have shown that TEs are
generally silenced through epigenetic defense mechanisms, and that these elements play an important role in
epigenetic genome regulation. Their detection and annotation are considered essential and must be undertaken
in the frame of any genome sequencing project.

Here, we will present the new version of RepetDB [1] (Amselem et al., Mobile DNA, 2019),
(https://urgi.versailles.inrae.fr/repetdb) our TE database developed to store and retrieve detected, classified
and annotated TEs in a standardized manner. This RepetDB v2 new version was updated with 31 more species
of plants and fungi and provides TE consensi with evidences able to justify their classification.

RepetDB v2 is a customized implementation of InterMine [2,3], an open-source data warehouse framework
used here to store, search, browse, analyze and compare all the data recorded for each TE reference sequence.
InterMine provides powerful capabilities to query and visualize all biological information on TE. It allows to
make simple search on the database using the QuickSearch (‘google like search’) or make more complex
queries using the Querybuilder to display various desired information.

RepetDB v2 is designed to be a TE knowledge base populated with full de novo TE annotations of complete
(or near-complete) genome sequences. Indeed, the description and classification of TEs facilitates the
exploration of specific TE families, superfamilies or orders across a large range of species. It also makes
possible cross-species searches and comparisons of TE family content between genomes.
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1 Introduction

Repeated elements constitute a huge fraction of many genomes, with about half of the sequence
consisting of repetitive elements in humans [1]. A significant part of those sequences are transcribed
and transcription misregulation is associated with several diseases, including rare genetic diseases and
cancers. Most RNAseq analyses ignore repeated elements, but several tools have been developed to
specifically look at their transcription [2]. Here we implemented two approaches, one based on feature-
Counts [3] and one on TEtranscripts [4], into a complete analysis workflow coded with Snakemake [5]
and based on RASflow [6]. The workflow is usable by biologists with no bioinformatics background,
and is also routinely used for standard gene expression analysis.

2 Workflow description

The workflow is written in Python and uses Snakemake in a dedicated Conda environment. It was
optimized to compute efficiently the data on HPC clusters using Slurm such as IFB-core or iPOP-UP
clusters. It includes the following steps:

• Download FASTQ files from SRA (facultative)
• Quality control of the raw data
• Trimming of low quality reads, adapters and/or of a specific number of bases (facultative)
• Mapping and QC
• Counting and QC
• Differential expression analysis (genes and/or repeats)
• Html report with interactive plots

Different tools were implemented for each step and the user can configure the workflow thanks to
a simple yaml file.

Documentation: https : //parisepigenetics.github.io/bibs/edctools/workflows/rasflow edc
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1 Introduction

The rapid development of omics acquisition techniques has induced the production of a large
volume of heterogeneous and multi-level omics datasets measured on the same individuals. Complex
information of biological interest is obtained from so-called integration methods, which have been
increasingly developed in the past few years. Some of these methods are already available in R
packages (like mixOmics [1] or mixKernel [2] to which our team has contributed). However, the use of
these packages still requires to learn a programming language and to have access to sufficient statistical
knowledge to choose method parameters and interpret outputs.

2 ASTERICS

ASTERICS is a web application that aims at making complex exploratory and integration analysis
workflows easily available to biologists. Data edition, exploration and integration menus organize
the interface to perform 1/ data editionb, missing value imputation, and normalizationb, 2/ data
exploration with interactive plots, numerical summaries, PCA, tests, clustering, and self-organizing
maps, and 3/ data integration with differential analysisb, MFA, or PLS-based methods. Analyses are
adaptedb to the most standard omics datasets (RNA-seq or count data from sequencing technologies,
microarray, metabolomics, metagenomics or other compositional data).

ASTERICS is also designed to make the analysis flow understandable with a navigable workspace
that displays uploaded or obtained datasets and performed analyses in a graph. Finally, it also comes
with a documentation for beginnersb that helps interpret the results, choose proper options or the
next analysis to perform.

ASTERICS is based on Rserve, pyRserve, and flask. R package versions are controlled using renv.
Frontend is developed in Vue.js and uses the CSS framework Bulma.

A first and limited version of ASTERICS is already available online at http://asterics.miat.
inrae.fr/. This limited version does not include the features highlighted above with the mark “b”
at time of writing of this proposal. ASTERICS will also be released as a docker image. The com-
plete production version of ASTERICS is scheduled for September 2022, with intermediate versions,
including an increasing number of features, deployed online meanwhile.
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For  more  than  a  decade,  genome-wide  association  studies  (GWAS)  have  made  it  possible  to  detect

associations  between  genetic  variants  and  complex  diseases  in  population  samples.  Their  experimental
design uses mostly variants that are common in the population, and studies them according to an additive

genetic model [1,2]. It appears however that the genetic component of multifactorial diseases is not yet fully
elucidated, which could be partly due to the contribution of rare variants with recessive effects, not detected

by classic GWAS. These types of variants can be found in HBD-segments.

The  original  HBD-GWAS  strategy  [3]  points  out  different  regions  of  interest  for  the  association  with

common complex traits in different populations. It is based on the excess of homozygosity by descent (HBD)
segments  shared by  consanguineous cases  only as  in  homozygosity  mapping and thus  define candidate

regions that may contain rare recessive variants.

We propose here an extension to the HBD-GWAS approach to identify rare recessive variants. This approach

relies on an excess of homozygous-by-descent segments shared among cases compared to what is expected

among controls. We have implemented it in an R package, Fantasio. We illustrate its performance on the UK

Biobank cohort (~500,000 individuals living in the UK).  We focus on the diabetes phenotype constructed
from available fields of the biobank.

The HBD-GWAS strategy points out different regions of interest for the association with diabetes in the
different populations.  We show how the extension of the approach to include the HBD segments from the

controls allows to discriminate between these different signals.
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The FAANG (Functional Annotation of Animal Genomes) international consortium aims to produce high-
quality functional annotation of the genomes of domesticated animals [1].  Members of the community can

submit  their  epigenomics,  transcriptomics  or  genomics  data  to  the  FAANG  Data  Portal
(https://data.faang.org) coordinated  by a  Data  Coordination  Centre  at  the EMBL-EBI  [2].  FAANG data

conforms to principles of findability, accessibility, interoperability and reusability (FAIR). The FAANG Data
Portal allows users to find, select and download datasets relevant to their research using extensive sample

and experimental metadata standards.

VizFaDa aims to produce interactive data visualization through web applications intended to be integrated

to the FAANG Data Portal. In order to generate those visualizations, the raw data from the portal has to be
processed.  During  this  step,  quality  control  reports  are  created,  providing  valuable  and  previously

unavailable  insight  into  the  quality  of  the  data.  VizFaDa  focuses  on  RNA-seq,  ChIP-seq  and  DNA
methylation data.

Interactive clustered correlation heatmap are generated, allowing the user to compare experiments from a
certain assay type within a species. Experiments with similar results are clustered together. The user can use

FAANG metadata to annotate the heatmap or to filter experiments from the database for a more focused
visualization.  Stacked epigenetic profiles are created from gene expression and epigenetic data obtained

either from the same sample or from two comparable samples, notably at transcription start sites. This allow
the investigation of relationship between epigenetic marks and transcription levels. Data submitted to the

portal will be automatically processed and added to VizFaDa, ensuring the long-term relevance and accuracy
of the project.

During VizFaDa demonstration, I will be presenting features and several use-cases of the VizFaDa web
application, and discuss how the community can take advantage of our work.
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Application: https://profeatmap.pythonanywhere.com/ 

Many biological studies, particularly –omics, involve lists of proteins or related 

macromolecules. Links between a list’s components can be found by analyzing their protein-

associated biological processes by Gene Ontology terms or by comparing their sequences. While 

Gene Ontology might be able to find over-represented features in the protein list, it loses information 

of their relative location, size and organization. Alternatively, sequence examination implies complex 

analyses such as multiple alignments and requires similar proteins to be informative. An intermediate 

scale of analysis is to focus on features such as domains, amino-acid or domain repeats, post-

translational modifications, variants, secondary structures, low-complexity regions, and their 

organization along the sequence. The web interface ProFeatMap has been developed for feature 

visualization of protein datasets, as maps, in a highly customizable way, to investigate proteins on a 

more global scale. 

The main usage of ProFeatMap is the creation of maps, duh. Based on a user-defined list of 

proteins, information is collected from the Uniprot database. This data is used to find most 

represented features in the list and to choose a shape and color for each. Most commonly found 

features (domains and repeats) keep a consistent representation across maps. The protein list is then 

sorted, clustering protein with similar feature content. These default parameters are used to create 

maps within minutes and can give several types of insights: General structural and functional 

organization of features, highlighting of conserved features or feature patterns, of evolutionary link 

between proteins or potential annotation issues and current state of available structural data such as 

experimental coverage (PDBs) and secondary structure. This new knowledge and additional 

investigations can then be displayed by tinkering with various parameters. ProFeatMap gives full 

freedom for removing and adding features, changing their graphical representation and modify 

general map parameters, not requiring any prior programming knowledge. 

ProFeatMap also include more advanced tools that can be used to investigate previously 

highlighted points of interest. First of all, after data collection from Uniprot, all extracted data is 

compiled in a single file containing: A list of all features position and size, the occurrence of each 

feature, a list of all found PDB structure, the length of each protein and its sequence. The user can 

easily retrieve all sequences for a feature of interest as a fasta file, compatible with multiple 

alignments tools. This option can be used to rapidly assess potential annotation issues or to highlight 

conserved residues in the feature. Additionally, it is possible to search for features, principally motifs, 

using regular expressions, rapidly returning the list of hits, which can then be added to a map if 

wished. Finally, it is worth to notice, that ProFeatMap automatically searches for protein names if 

only Uniprot codes are inputted in the list. This will not only identify obsolete or invalid codes but 

also find corresponding organisms. 
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1. Introduction 

In the last decades, a huge number of genetic variants associated to diseases and phenotypes have been 
identified. By observing linked genetic markers, it is possible to estimate the number of generations that 
separate the current carriers from their supposed common ancestor, from whom they inherited this variant. 
These estimations are particularly relevant to understand disease spread in populations. They confirm that rare 
variants are often relatively recent. 

2. Implementation 

EstiAge [1] relies on linkage disequilibrium (LD) decay to estimate the age (in number of generations) of 
the most recent common ancestor (MRCA) carrying this variant. The idea is to measure the length of the 
haplotype containing this variant that is shared by all the current carriers. The shorter the haplotype, the older 
the variant. To do so, a set of markers (microsatellites) shared by all the carriers is used. The allelic differences 
at the individual level for these markers serve to establish the limits of the common haplotype. 

3. Improvements 

This new version of EstiAge aims to simplify user experience and is available as a webservice on 
https://lysine.univ-brest.fr/estiage where the user can provide microsatellite data for a set of samples carrying 
the variant of interest. The service will then construct an EstiAge input file and subsequently estimate the 
variant's age. EstiAge can also be downloaded as a Java Archive so as to be executed locally in order to 
preserve data privacy. 

As pointed by [2], the main drawback of EstiAge was its restriction to microsatellite data. In this version, 
we addressed this issue and EstiAge can now also be used on the SNPs/INDELs contained in a VCF file. In 
this case, as proposed in [3], homozygous variants will serve as markers during the haplotypes reconstruction. 

4. Use Case 

EstiAge was successfully used to estimate the age of the Phe508del mutation of the CFTR gene and involved 
in Cystic Fibrosis [4]. 
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Abstract
Due to advances in high-throughput sequencing technologies, generating whole genome sequencing

(WGS) data with high coverage depth (e.g. ≥ 500×) is now becoming common, especially when dealing with
non-eukaryotic genomes. Such high coverage WGS data often fulfills the expectation that most nucleotide
positions of the genome are sequenced a sufficient number of times without error. However, performing
bioinformatic analyses (e.g. sequencing error correction, whole genome de novo assembly) on such highly
redundant data requires substantial running times and memory footprint.

To reduce redundancy within a WGS dataset, randomly downsampling high-throughput sequencing reads
(HTSR) is trivial. Nevertheless, this first-in-mind strategy is not efficient as it does not minimize variation in
sequencing depth, thereby eroding the coverage depth of genome regions that are under-covered (if any). To
cope with this problem, a simple greedy algorithm, named digital normalization, was designed to efficiently
downsample HTSRs over genome regions that are over-covered [1]. Given an upper-bound threshold κ > 1, it
returns a subset of HTSRs inducing an expected coverage depth of at most εκ across the genome (where ε > 1
is a small constant). By discarding highly redundant HTSRs while retaining sufficient and homogeneous
coverage depth (≈ εκ), this algorithm strongly decreases both running times and memory required to
subsequently analyze WGS data, with often little impact on the expected results.

Interestingly, the digital normalization algorithm can be easily enhanced in several ways, so that the final
subset contains fewer but more qualitative HTSRs. ROCK (Reducing Over-Covering K-mers) was therefore
developed with the key purpose of implementing a fast, accurate and easy-to-use digital normalization
procedure. Developed in C++, ROCK enables to observe fast running times using only a unique thread. To
improve the digital normalization procedure, ROCK also implements two novel strategies: (i) downsampling
the HTSRs based on their Phred scores, and (ii) implementing a final step that filters out low-covering
HTSRs. Thanks to these improvements, ROCK [2] can be used as a preprocessing step prior to performing
fast genome de novo assembly. The source code is available under GNU Affero General Public License v3.0
at https://gitlab.pasteur.fr/vlegrand/ROCK.
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1 Introduction

The aim of the assembly is to build a given genome from sequenced reads. New technologies, which
include ONT and PacBio, provide long reads which are crucial to longer assemblies. After sequencing,
reads are merged into longer fragments, called contigs. These contigs are usually fragmented, and are
not sufficient to provide telomere to telomere assemblies. Several methods can then be used in order
to scaffold these contigs, which order and orient them.

Among them, linked reads, such are 10X Genomics, and Hi-C are the most widely used. The first
type of data make it possible to connect contigs distant by at most 100kbp. Hi-C can make longer
joins, but is more fuzzy. Dedicated tools for linked reads and Hi-C are already available. However,
each one sometimes make choices that are clearly contradicted by the other type of data. Our aim here
is to provide a unified tool, which would simultaneously leverage all types of information, including
the long reads themselves.

2 Results

Our method first place each type of information (long reads, linked reads, Hi-C) into bins of fixed
size. These bins are then stored into sparse matrices. We then proceed with 3 steps.

Parameter estimation We first possibly merge bins into larger, meta-bins, when matrices are too
sparse to be used. We estimate the length of each signal: the molecule size for long reads and linked
reads, the maximum expected contact length for Hi-C data. We also compute the decay, which is
expected number of contacts given a distance between two genomic positions. We finally compute and
discard outlier bins, which contain too much or too few counts.

Splits We detect splits, which are erroneous contig connections. These splits are found while examining
the decay function, which is unexpectly low in these positions. The splits found with one type of data
are compared with the signal found in other types. If a split is contradicted by other data, it is
dropped.

Joins Joins are detected by finding decay-like signal in the corners of the matrices involving the contigs
to be joined. For a given contig end, we compare the different possible joins. If one join is clearly
much stronger than the other ones, it is used. In case of doubt, the joins are dropped.

3 Conclusion

The tool has been developped in R/C++, and is available in https://github.com/mzytnicki/

msscaf. It can generate several figures, so that the user can visually validate the splits/joins suggested
by the method.

It is currently being compared to other methods.
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Le séquençage de troisième génération modifie radicalement la manière d’appréhender l’accès à
l’information génomique. La possibilité d’obtenir des reads longs de dizaines ou de centaines de kilo-
bases permet de discerner des structures génomiques complexes et d’appréhenderla structure globale
des génomes. Cependant, ces données présentent une grande quantité de bases erronées, y compris des
délétions et des insertions [1]. Des nouveaux outils et de nouvelles méthodes ont été spécifiquement
développés pour traiter ces erreurs et obtenir des séquences fiables à partir de ces long reads [2,3,4,5,6].
Mais, à ce jour, l’élimination complète des erreurs reste encore un problème ouvert. Dans ce tra-
vail, nous examinons si les outils traditionnels d’alignement multiple de séquences (MSA), qui ont
été conçus pour traiter des données très différentes, peuvent traiter ces données de séquençage. En
d’autres termes, dans quelle mesure les outils de MSA existants peuvent-ils s’adapter au profil d’erreur
et à la longueur des long reads ? Pour répondre a cette question, nous avons développé un benchmark
qui permet d’évaluer la performance des outils de MSA dans des conditions variables : longueur de la
région cible (de 100nt à 10000nt), profondeur de séquençage (de ×10 à ×200), taux d’erreur (de 1%
à 30%) et profil d’erreur (proportion de substitutions, insertions et délétions).

Tout d’abord, les lectures sont alignées sur la région cible avec Minimap2 et tronquées pour obtenir
des piles de reads couvrant la région. Des MSA sont ensuite construits sur cette sélection de reads avec
les différentes outils. Enfin, nous calculons une série de métriques : séquence consensus avec pourcen-
tage de matchs, d’erreurs, d’identités, de caractères ambigus (IUPAC), temps de calcul et ressources
mémoire. Ce workflow est développé avec Snakemake. Nous l’avons utilisé pour comparer les outils
de MSA les plus populaires avec des stratégies d’alignement complémentaires (POA, AbPOA, SPOA,
Muscle, Clustal Omega, T-Coffee, Mafft et Kalign) sur des reads réels issus de séquençages Nano-
pore (E.coli SRR8335315 et SRR12801740, Saccharomyces cerevisiae ERR4352154 et ERR4352155,
et Homo sapiens) ainsi que des reads simulés, pour tester différents profils d’erreurs. Grâce a ce tra-
vail, nous avons observé plusieurs comportements intéressants. Tout d’abord, il existe des variations
conséquentes en terme de temps et de ressources mémoire entre les différentes méthodes de MSA selon
les paramètres. La qualité obtenue est également très différente d’une méthode à l’autre, certaines
méthodes étant incapables de produire une précision élevée ou incapables de gérer les cas diplöıdes.
Toutes ces observations sont nécessaires pour comprendre comment gérer le taux d’erreur des long
reads et développer des nouvelles méthodes de correction ou de polissage.
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Common genomic problems such as complex genome assembly, discovery of structural variants or
phasing can be solved using long read technologies.

Implemented since 2015 at the GeT-PlaGe platform, different long read technologies have
significantly evolved in this short time, each one having its own strengths and weaknesses. Read quality is the
most important parameter for data analysis, and is often considered to be a weak point of long read
technologies. To address this issue, Oxford Nanopore Technologies (ONT) has recently developed a new
chemistry, referred to as Q20+, that promises long reads with a very low error rate. We are currently testing
and evaluating the performance of this new feature at GeT-PlaGe for project SeqOccIn.

We show in detail the library preparation with kit 12, which is used to generate Q20+ reads, and how
we have tested it on the GridION. Raw data analysis using the Guppy 6 basecaller demonstrates higher Q-
scores for simplex reads as compared to Guppy 5 raw reads, additionally showing a small percentage of duplex
reads with Qscores of around Q35. Using an in-house pipeline that combines ONT’s MinKnow software,
Duplex Tools, the Guppy 6 basecaller, and our own custom scripts, we have generated statistics on alignments
produced with minimap2. We found that the newest generation of flow cells (R10.4) and the latest version of
Guppy (version 6) improve the alignment quality. However, when comparing the read accuracy of
LSK109+R9.4.1 and LSK112+R10.4 using the same software treatment (Guppy 5), no major difference is
detected. Oxford Nanopore Technology is currently working to increase the duplex read rate, announcing that
we could soon have around 40% duplex reads, which would drastically improve the overall read accuracy.
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Abstract

Structural variants (SVs) are genomic segments of more than 50 bp that have been rearranged in
the genome. The advent of long-read sequencing technologies has increased and enhanced their study,
and a great number of SVs has already been discovered in many species. Complementary to their
discovery, the genotyping of known SVs in newly sequenced individuals is of particular interest for
several applications such as trait association and clinical diagnosis. Due to SVs’ large size range (up
to a few megabases), long-reads are more suited for their study than short-reads. As such, our team
previously released SVJedi [1], one of the first SV genotypers using long-read data. SVJedi’s method
of representing independently both SV’s allelic sequences reduced reference bias in genotyping and
showed improved genotyping performances. However, the method failed to genotype closely located
or overlapping SVs due to redundancy in representative allelic sequences.

To overcome this limitation, we present SVJedi-graph, a long-read SV genotyper based on a vari-
ation graph to represent SV alleles. The use of sequence graphs to represent SVs for genotyping is
fairly recent [2,3,4,5], but existing methods are restricted to short-read data, and SVJedi-graph is the
first graph-based SV genotyper using long-reads. In our method, we build the variation graph from a
reference genome and a given set of SVs. The genome sequence is split in fragments at each SV’s start
and end positions, and each fragment becomes a node in the graph. Edges are added between nodes
to indicate reference and alternative paths for each SV, and additional nodes are added for insertions.
Then, the long reads are mapped on the variation graph using GraphAligner [6] and the resulting
alignments are filtered on their quality and mapping localization. Finally, the most likely genotype
for each SV is predicted from the ratio between the number of reads supporting each allele.

SVJedi-graph can genotype four SV types as of now, namely deletions, insertions, inversions and
translocations. Running SVJedi-graph on simulated sets of deletions showed that the use of a variation
graph was able to restore the genotyping quality on close and overlapping SVs. For instance, with a
simulated set of deletions that had another close deletion 0 to 50 bp apart, we obtained a genotyping
rate (proportion of SVs with a predicted genotype) of 99.9% and an accuracy (proportion of accurate
genotype predicted among all predicted genotypes) of 99.0%, compared to a genotyping rate of 78.9%
and an accuracy of 97.3% with SVJedi on the same dataset. We also tested our method on the real
gold standard dataset of Genome In A Bottle (human individual HG002), and were able to obtain
a higher genotyping rate than SVJedi on the same data (97.4% against 90.2%), with a similar or
slightly better accuracy (92.9% against 92.2%). SVJedi-graph is distributed under an AGPL license
and available on GitHub at https://github.com/SandraLouise/SVJedi-graph.
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1. Introduction

Rhabdomyosarcoma  (RMS)  is  the  most  common  malignant  mesenchymal  tumor  in  children  and
adolescents. Based on clinico-pathologic features and genetic alterations, rhabdomyosarcomas are classified

into embryonal, alveolar, spindle cell/sclerosing and pleomorphic subtypes. Each subtype shows distinctive

morphology and has characteristic genetic abnormalities (variations, copy number alterations, gene fusions)
1

.

In the CHEWIE project (Characterization of molecular Event betWeen dIagnosis and rElapse), we focused

on the  molecular  alterations  between diagnostic  detection  (RNAseq and WES)  and relapse  in  pediatric
embryonal and alveolar RMS (eRMS ans aRMS respectively). We followed biomarker (CNV, SNVs and

fusions) in liquid biopsie (circulating tumor DNA) using two NGS approaches : low coverage WGS (shallow
sequencing)  and  a  dedicated  panel  targeting  the  PAX3-FOXO1  fusion  characteristic  of  aRMS and  the

alterations of the RAS family genes found in eRMS. 

Here we present the first results of the method we developed to identify the fusion breakpoints in shallow

and targeted panel for 17 RMS samples. Based on bwa alignment, we extracted and analysed spanning reads
(the two reads of the paired map in different location in the genome) and split reads (two portions of the

same read map in different location in the genome). The combination of spanning and split reads metrics
give us the precise location of breakpoint and their quantification.

Our tool is developed in python, and a git repository will be soon available allowing the identification and
annotation of fusion breakpoints from NGS DNA library.
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Abstract:  

Haphazard integration of transgene sequences is the main blocking point in the 

generalization of gene therapy methods in medical settings. Although strict annotation of 

RNAseq data and identification of gene markers for tailored therapies could better restrain 

transgene integration towards targeted cells, most existing public databases featuring gene 

markers associated to SingleCell RNAseq and Bulk RNAseq data are not intended for gene 

therapy solutions. As such, we have built an atlas of biomarkers from 34 studies unifying 

bulk and single cell RNA-seq (n = 26 & n = 78  respectively) unifying alignments, 

normalization methods, annotations and metadata across databases storing bulk and single 

cell RNA-seq (SRA, HPA, GTEX, recount). Tissue annotations across the different 

databases were manually curated to create a general set of tissues and cell-types to be 

assigned to all datasets. All counts were obtained from alignment of fastq data with unified 

approached for bulk RNAseq and SingleCell RNAseq. Bulk datasets were normalized 

following current standards (TPM, pTPM). To account for cell type abundance for Single 

Cell data, an elaborate method for weight-scaling of expression data was developed. The 

weight-based method accounts for the differences in cell proportions between the cell types 

of different Single Cell Samples. The method is applied directly to normalized expression 

data whereas state of the art methods account for the proportion at the differential 

expression step. The newly computed proportions are further corrected with an 

enchancement of outliers and disenhancement of regular expression to make-up for the 

change in values without markedly affecting previous changes. Using the unified annotation 

of tissues, Bulk and Single Cell datasets were crosslinked to raise confidence-levels linked 

to gene markers. Cell types within Single Cell data were assigned using the AI approach of 

the CellAssign package, based on markers from public databases. Four specificity scores 

(SPM, JSS, TSI , Z-Score)1 were tested and validated through data obtained from the HPA2 

database. Gene markers were obtained using the Seurat package, and then linked to 

specificity scores to construct a confidence-level beyond differential expression data. 

Combining multiple steps from raw data towards gene markers, this weight-based approach 

leads to an accurate characterization of cell-type biomarkers applied for Gene Therapy from 

single cell RNA-seq datasets. Going forward, this approach will be used to integrate other 

OMICS datasets, e.g. ATAC-seq, ChiP-seq, and most notably OMICS data related to gene 

therapy experiments.  

 

Keywords: 

Gene Markers, Single Cell, Specificity Scoring, Gene therapy, Single Cell RNAseq 
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Since the beginning of high throughput sequencing technologies, a long-living challenge for bioin-
formaticians has been keeping up with the amount of generated data. With sequencers able to generate
Terabytes of data each day for a constantly diminishing cost, the amount of data nucleotide on public
databases is exploding. Comparing thousands of datasets containing up to billions of reads remains a
scalability challenge and the focus of many methodological papers. The first step toward this direction
was to avoid time-consuming alignment steps. Kmer comparisons methods showed good time perfor-
mances while providing good similarity estimates [1]. However, to cost to represent billions kmers in
memory quickly surpass most computers’ available memory as a billion 32mer can represent a memory
cost of 8GB and a billion 64mer 16GB. A solution is to rely on external memory [2] that is available
in large amounts (commonly multiple TeraBytes). However, it dramatically slows down such analysis
as Hard drives can be hundreds or thousands of times slower than the RAM. Moreover, the high usage
of disks harms their durability. Another approach is to insert kmer in bloom filters [3] in order to
divide the amount of memory used per kmer by order of magnitude at the price of some false positive
rate. Studies showed that low false positive rates did not negatively impact downstream analysis. To
achieve greater memory cost reduction, the only known technique is to apply some sub-sampling and
select a fraction of kmer to index. Several methods were proposed to perform uniform sub-sampling
with theoretical guarantee, modimizer/modminhah [4] , scaled minhash/FracMinHash [5] and showed
their scalability on vast collections. In this work, we improve such schemes by combining them with
the concept of superkmers [6]. Superkmers are a succession of overlapping kmer sharing a common
subsequence called a minimizer. Such sequences can concisely represent dozen of kmer using less nu-
cleotide than their plain representation. Due to these properties, superkmers have been used in several
applications to reduce their memory usage. By applying sub-sampling directly on superkmers instead
of kmers, we can benefit from the memory usage reduction granted by the superkmer usage. This way,
we can either use less memory to represent the same amount of sub-sampled kmers or use comparable
memory while indexing order of magnitude more kmers, thus improving the estimation accuracy at no
cost. Moreover, superkmer usage can improve cache coherence and result in faster analysis. We apply
our approach to several genomes and meta-genomes and show an order of magnitude improvement
over state-of-the-art.
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Single-stranded nucleic acids (ssNAs) are interesting molecules from both a biological and a biotechnological 

point of view. Indeed, they play important structural, functional and regulatory roles within the cell and, thanks 

to their ability in adopting specific conformations, they can bind to a large variety of molecular targets with 

high specificity and dissociation constants in the nano- to picomolar range. This makes both RNA and DNA 

oligonucleotides exploitable as therapeutic or diagnostic tools or as biosensors [1]. Therefore, since ssNAs 

function depends on their secondary and tertiary structures, the comparison of these two levels of arrangement 

can help to understand ssNAs roles and their interactions with other molecules, and to design ssNAs binding 

to a target of interest.  

Here we focused on the first ssNAs level of organization, namely the secondary structure. So far, many 

algorithms aimed to compare ssNAs secondary structures have been developed [2]. However, to our 

knowledge, none of them allows at the same time an easy implementation, a straightforward results 

interpretation, and the ability of distinguishing between highly close structures. Therefore, we developed a 

matrix-based algorithm, called AptaMat, for the comparison and quantification of differences between 

structures of single stranded oligonucleotides of the same length (L). The algorithm takes as input two ssNAs 

secondary structures in the dot-bracket notation and creates for each of them a square matrix of 𝐿 × 𝐿, where 

each (𝑖, 𝑗)𝑡ℎ matrix entry is equal to either 1 or 0 if the nucleotides in positions 𝑖 and 𝑗 are paired or unpaired, 

respectively. The Manhattan distance is then used to find for each base pair of each structure the closest base 

pair in the other structure in a symmetric fashion. The distances between the closest pairs are summed up and 

normalized by the total number of base pairs in both structures. 

We tested AptaMat on 10 ssNAs with known secondary structures: 5 taken from the work by Ivry et al. [3] 

work and 5 taken from the PDB database [4]. We compared AptaMat to the Hamming distance [5], 

RNAdistance [6] and to an image processing-based approach also based on matrices [3]. These implement 

algorithms belonging to 3 different class, namely character-based, tree-based and image processing-based, 

respectively, and they are commonly used for secondary structures comparisons. We showed that AptaMat 

can properly discriminate between different structures with a higher sensitivity as compared to the Hamming 

distance and RNAdistance. In addition, our method allows to more adequately rank the ssNAs structures as a 

function of their distance from a reference, which is not the case with the above-mentioned algorithms. 

Moreover, the results are easy to interpret with a reasonable threshold of 2 between close and far structures. 

Additionally, AptaMat is simple to implement and to manipulate. The python script implementing AptaMat is 

available on Github at https://github.com/GECgit/AptaMat.git. 
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Introduction In proteomics, one of the main reasons for the poor identification rate of mass spectra
when they are compared to candidate peptides (CP) is that most of them corresponds to the fragmen-
tation of peptides carrying modifications. Open Modification Search (OMS) methods accept a wide
range of mass difference within a Peptide-Spectrum Match (PSM) in order to improve the identification
of spectra carrying modifications. Methods that were developped to identify and localize modifications
in PSMs are either able to identify and localize a single modification, for instance SpecOMS [1] or
MSFragger [2], or can combine several a priori known modifications to interpret a PSM, like PTMiner
[3], or have a calculation time that is not compatible with the volume of data to process (e.g.[4]). Then,
no efficient algorithm exists to interpret a PSM containing several modifications without a priori.

SpecGlob We developed SpecGlob, an algorithm that interprets PSMs by realigning a CP to its
spectrum, even when several unknown modifications have occured. For each PSM, SpecGlob uses
dynamic programming to determine the best alignment between a spectrum and its CP, while allowing
the insertion of possibly multiple mass offsets. Given a PSM, SpecGlob outputs a sequence of amino
acids interleaved by one or several mass offset(s), thus providing information on the modifications to
apply to the CP so as to retrieve the spectrum sequence. Depending on the mass offsets values, the
degree of difficulty to infer these modifications differs, something we quantified in order to evaluate
the quality of SpecGlob. For example, if DYSIR plays the role of the experimental spectrum and
DWYIR is the CP, the ouptut of SpecGlob allows us to infer two modifications, namely deletion of
W and insertion of S. Hence we consider this PSM interpretation to be complete, because suggested
mass offsets correspond to known (combinations of) amino acids masses.

Evaluation of SpecGlob Theoretical peptides from the human proteome (Ensembl 99) were compared
to each other (self-identification excluded) using the SpecOMS software [1]. Resulting PSMs were then
processed by SpecGlob, which takes as input masses of peaks of both spectra. Altogether, SpecGlob
completely interprets many PSMs, even if they carry several scattered modifications. On the human
dataset, SpecGlob returns a complete interpretation for roughly 30% of the 455,404 PSMs provided
by SpecOMS. Our results also suggest that, even when a spectrum cannot be completely retrieved, a
substantial portion of the initial amino acids sequence can still be determined.
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Microalgae are defined as unicellular or pluricellular undifferentiated organisms, eukaryotes or 
prokaryotes living in water. In some situations, phytoplankton proliferates, causing harmful algal blooms with 
considerable economic losses for aquaculture, fishing and tourism. [1]. Epigenetics plays an important role in 
the adaptation and proliferation processes of microalgae. Thanks to MinION Oxford Nanopore technology 
(ONT), which allows the sequencing of native DNA molecules without the need for bisulfite treatment, many 
tools for methylation detection have been developed by the scientific community. However, these algorithms 
are complicated to use for researchers with a background in biology and therefore require the implementation 
of automated, standardized and user-friendly solutions. In addition, the tools used for ONT are often updated 
and require regular monitoring to use them properly. Also, there is rarely information on the resources needed 
for the tool, tutorials explaining how the tool works, examples of analyses and test data sets. Finally, these 
tools are not designed for non-model organisms, but rather for mammalians or bacteria. Finally, most of the 
methylation analysis tools are based on a reference model but this model is rarely adapted to the species of 
interest. 

 
In this context, the objective of the work is to build a reusable pipeline for the analysis of methylations in 

microalgae. For our project, we were able to design a model from Methylseq Illumina sequencing data of 
Prymnesium parvum. Between the multitude of tools are capable of identifying the positions of epigenetic 
modifications from Nanopore sequencing reads we chose two: Megalodon [2] and Deepsignal [3], [4]. Both 
tools work with a neural network and require a reference model to identify epigenetic modifications of 
sequences. We were able to compare the different results of these tools in order to select the "best" one 
according to the needs. In the future, it will be necessary to automate the data treatment processes in order to 
respect the FAIR principles (findable, accessible, interoperable and reusable).  
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The  sequencing  devices  developed  by  Oxford  Nanopore  Technologies  (ONT)  produce  long  DNA

sequence  (>  200 kb)  and full-length  RNA.  Sequencing  and primary  data  acquisition  are  driven  by  the

MinKNOW software, developed by ONT. MinKNOW stores the raw signal data as Fast5 files. Basecalling is

then performed either during or after the acquisition step. Basecalling is usually achieved by the program

Guppy,  the  official  ONT basecaller.  The  output  sequence  reads  are  stored  in  FASTQ or  Fast5  format.

MinKNOW produces a Quality Control (QC) report as a PDF file at the end of the run. However this report

only  provides  estimated  information  as  it  is  based  on  non-basecalled  and  non-demultiplexed  data.  In

addition, the metrics and scales that were provided by MinKNOW when we started RNA-seq applications in

2016 were not  appropriate (unsuitable scales  for RNA – which has  been fixed since – and no barcode

handling). It was thus necessary to develop a dedicated QC tool, flexible enough to handle both RNA and

DNA sequencing. 

The first version of ToulligQC is freely available since 2017, and used in production in our Genomics core

Facility [1]. It allows users to quickly estimate the quality and homogeneity of their samples before running

further analyses. Easy to use, this tool provides a detailed graphical output about the quality of Nanopore

runs and exploratory data analysis, in the same spirit as the well-known FastQC program for short reads [2].

We introduce ToulligQC 2, a new major version of our QC software. ToulligQC 2 produces an improved

HTML report  with stylish and interactive plots obtained with the Plotly [3] library.  The report  contains

exhaustive information about the sequencing run, basecalling and demultiplexing steps, such as: read count

and length distributions, homogeneity of the run, location of potential flow cell spatial biases, statistics about

pass and fail reads, PHRED score distribution and density distribution across read types, length/speed/quality

and number of sequences over sequencing time, length/quality and read counts for each barcode. In addition

to new graph types, all plots were qualitatively improved, and some of them provide alternative visualisation

mode (e.g., boxplot and violin plot). 

ToulligQC 2 has a reduced memory footprint and is faster (few minutes on a laptop) than the previous

version. To facilitate interpretation of the graphs, each plot displays an “info” icon directly linking to the

online help page on GitHub [4].

Because  ONT protocols  and  bioinformatics  tools  are  constantly  evolving,  ToulligQC  2  supports  all

versions  of  Guppy  and  the  latest  sequencing  protocols.  It  can  be  used  with  all  the  Oxford  Nanopore

sequencing  devices  (MinION,  GridION,  PrometION),  and  remains  compatible  with  both  1D  and  1D2

chemistries.  It  takes  as  input  the  sequencing  summary  file  generated  by  the  Guppy  basecaller  and  the

sequencing telemetry file, if available.

ToulligQC 2 is an  open source software published under GPL3 and CeCILL licences. It can be freely

downloaded  on  Github [4],  as  a  Docker  image (genomiquepariscentre/toulligqc)  [5],  and  as  a  PyPy

package [6].
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The emergence  of  personalized  medicine  requires  being  able  to  produce  and process  huge  amounts  of

biological  data  generated  from patients'  biological  samples,  quickly  and  at  a  reasonable  cost.  Modern

sequencing techniques make it possible to obtain a large amount of genetic data about a patient relatively

quickly,  but  bioinformatics  processing  of  this  data  takes  time.  One  of  the  ways  to  accelerate  these

bioinformatics analyses  would be to use the computing power  of  GPUs,  a  strategy commonly used for

applications  using  AI  methods.  However,  this  practice  is  not  uniformely  spread  throughout  all  of  the

bioinformatics  fields.  There  have been so far  few tools  dedicated to omics data analyses  accelerated on

GPUs, producing results not perfectly reproducible with those generated by the original implementations on

CPUs [1].

NVIDIA, one of the world leaders in GPU production, recently released the 3rd version of its Clara Parabrick

suite.  This  software  suite  accelerates,  by  using  GPUs,  popular  bioinformatics  tools  for  genomics  and

transcriptomics data analysis available in open source. Although the approach is interesting and welcome,

their tools have been the subject of only relatively limited studies about the promised performance gain.  A

previous publication focused on  Parabrick's ability to  process genomics data [2], but no benchmark  so far

have been done  for RNA-seq  data. Our project aims to measure the gains in computation time,  memory

footprint  and  energy  consumption between  GPU-accelerated  tools  and  original  CPU  tools  used  in

transcriptomics data analysis.  We will  also make sure to assess the level  of  reproducibility between the

results generated by the GPU-accelerated tools, compared to the original versions.
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An important step in using targeted proteomic approaches is to define the peptide sequences that allow the 
detection of all variants of a protein of interest. Sequence variability can be extremely high, especially in 
bacteria, due to their rate of evolution and ability to adapt to their environment. Another important issue in the 
choice of peptide sequences is the possibility of targeting a protein whose coding region has experienced a 
duplication event in its history. It is therefore crucial when quantifying a protein that the designed peptides are 
both specific to the protein of interest while not being found in repeated regions whose copy number may vary 
from one genome to another. 

In this context, we have developed a nextflow [1] pipeline to define a minimal list of peptide sequences that 
can be used in targeted mass spectrometry to detect any variant of a protein of interest. The first optional part 
consists in the constitution of a non-redundant protein database via CD-HIT [2] from all the protein sequences 
available on ncbi via a user-defined taxid. The second part corresponds to the selection of the set of variants 
to be retained according to their frequency (user-defined threshold) in order to be able to constitute a set of 
protein sequences necessary to establish the final list of peptide sequences. This pipeline is based on the 
sequential use of several alignment tools both local (BLASTP [3]) and global (EMBOSS [4]) as well as several 
filters focusing on best match, percentage of mismatches, insertions/deletions and coverage. The methodology 
for creating the peptide sequence list is a computer simulation of the use of in-vitro trypsin hydrolysis. The 
user has the possibility to modify this global peptide sequence list according to his own defined peptide 
characteristics. Finally, a minimum list of peptide sequences is established according to a threshold entered by 
the user corresponding to the minimum number of times that each variant must be covered. The ultimate step 
consists of validating the final peptides, notably by aligning these peptides with the initial database. 

This pipeline was used to select peptide sequences for the quantification of 44 Staphylococcus aureus 
virulence proteins in a targeted proteomics approach using high-throughput mass spectrometry. 
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1 Context

The study of metabolism is a complex but key research focus to develop a better understanding of living
systems. Over time, more and more omics data has been generated and collected, providing researchers with

large datasets.  Furthermore, because the study of life is an ever-evolving  subject, scientists are constantly
updating their  knowledge and thus metabolic networks.  As a result,  we  are left with  more massive and

complicated networks. 

Exploration of metabolic data can be done on a small  scale,  with the study of an isolated metabolic

pathway to understand the degradation or synthesis of a specific molecule. But this exploration can also be
done  on  a  larger  scale,  with  the  analysis of  several  interconnected  metabolic  pathways  for  instance  to

understand the metabolic disturbances induced by a specific condition on the whole organism, tissue or cell
for instance. In each of these situations, graph visualization is advantageous for studying and understanding

the data, by smooth navigation of relationships that links compounds concentrations through reaction chains.

We develop a tool named MetExploreViz [1], a visualization and exploration tool for metabolic networks,

that intends to provide users with a large panel of features for automatic drawing, graph style management
and multi-scale data exploration.

2 MetExploreViz

MetExploreViz is an open source  web component that  can be easily integrated into other projects or
websites. It provides features dedicated to the visualization of metabolic networks and pathways, making it a

versatile tool for analyzing omics data in a biochemical context.

The MetExploreViz view will  allow the users  to  manage the drawing and produce publication-ready

figures. For example, it is possible to manage the rendering of the network by modifying the representation
of  the  nodes,  links  and  their  positions.  This  can  be  done  manually  or  by  using  implemented  drawing

algorithms such as the popular force algorithm, a circular drawing algorithm or a hierarchical layout. 

MetExploreViz-based apps also offer to conduct further analysis on users’ datasets: it is possible to map

metabolites or reactions on the whole network or specific pathways, import and map a list of side compounds
that will be removed to lighten the drawing, extract sub-networks, and more.

Recently, new features have been developed to enhance data interpretation. It is now possible to visualize
flux modeling results through the network links. This feature includes importing flux data, mapping it to the

corresponding reactions, and finally visualizing it. It is also possible to perform comparative analysis of two
conditions and to display standard deviation values.  

Another feature that will be available soon, will allow users to reconstruct a sub-network step by step from
their data, with assistance of a recommender system [2]. This feature, the Network Explorer, will  allow to

move from a large network to a sub-network of interest in order to extract relevant information.
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Data cleaning is crucial to the knowledge discovery process. Knowledge bases such as Knomana [1]
rely on data wrangling to standardise and subsequently centralise information extracted from multiple
sources. This makes Knomana prone to anomalies, i.e. to incorrect or incomplete descriptions of plant
use, which may cause its users to draw wrong conclusions during knowledge discovery. To detect and
correct these anomalies, we propose using Attribute Exploration (AE) [2] to acquire expert knowledge
and apply it to identify anomalies and correct or complete the descriptions. It is a process of Formal
Concept Analysis, which considers data tables describing binary relationships between objects and
attributes. AE relies on the computation of the Duquenne-Guigues basis, a complete, consistent and
nonredundant set of implication rules, i.e. regularities of the form “if there is X, then there is always Y”
[3]. The expert is asked to validate the generated implications or provide a counterexample when an
invalid rule is presented. Tools like ConExp [4] implement AE. With Knomana holding 35 attributes
covering over 45,000 descriptions of plant use, the number of computed rules is in the thousands [5].
Therefore, it is consequential to have a pertinent and time-saving order of displaying these rules.

To tackle the problem at hand, this poster presents an improvement of AE. During AE, the com-
puted rules are consecutively shown to the expert in the lectic order, where set A is presented before
set B if the smallest differing element belongs to B. According to this definition, the lectic order
does not consider the nature of the data it is addressing, and consequently, the implications are not
displayed in a meaningful order, i.e. an order that regards the expert’s interest in a particular type of
data. Thereupon, we propose that experts sort the data prior to exploring the attributes. By providing
experts with the means to group attributes into categories and order them by relevance, table columns
are rearranged in conformity with the definition of the lectic order for the purpose of generating the
most relevant implications first. Applying this change to a single data table allowed to accommodate
AE to the interests of the expert. As a next step, we plan to extend this technique to relational data to
render it applicable to datasets that employ ternary relationships, as is the case in the agroecological
knowledge base Knomana.
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Un observatoire génomique marin est un dispositif d'acquisition et de bancarisation de données
hétérogènes et complexes (données génomiques, comptages d’espèces, données physico chimiques),
centré sur une zone géographique réduite et dont le principal objectif est de réaliser un suivi à long
terme du fonctionnement et de l'évolution d’un écosystème marin. Actuellement, plusieurs initiatives
de mise en place d'observatoires génomiques marins sont en cours dans les régions Bretagne - Pays de
Loire.

Le projet MyGOD (Manipulate your Genomics Observatory Data), financé par la région Bretagne
dans le cadre du réseau Biogenouest, vise à aider les équipes impliquées dans l’exploitation de
données issues de ces observatoires génomiques, à explorer et interpréter ces données. Ceci, en leur
fournissant un outil de visualisation intégré et ergonomique : MyGOD principalement développé par
la plateforme ABiMS et dont les fonctionnalités s’inspirent de celles de OBA (Ocean Barcode Atlas),
développé par le MIO dans le cadre du projet Tara Ocean , s’appuie également sur des composants de
visualisation réalisés en R par le SEBIMER dans le cadre du projet de pipeline d’analyse de données
SAMBA. A terme, MyGOD vise également à permettre à un public plus large d’accéder à des
visualisations de phénomènes remarquables (“success stories”) qui auront été composées et rendues
publiques par les experts des jeux de données. Nous avons par ailleurs travaillé sur l’automatisation de
l’intégration des données, la création d’un site Web combinant les technologies Django (Python) et
Vue.js (Javascript) et la mise en place de graphiques dynamiques en D3.js permettant la mise en
corrélation des données. La nature différente des jeux de données candidats à l'intégration dans
MyGOD a par ailleurs permis d’entamer une réflexion sur la standardisation des leurs formats ainsi
que des métadonnées qui les accompagnent.

Ce travail est le fruit d’une collaboration entre la plateforme ABiMS, les équipes locales de la station
Biologique de Roscoff, le Sebimer IFREMER et l’UBO (Brest), le LS2N (Nantes), le MIO
(Marseille) et le Genoscope (Evry).
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Abstract
The Phaeoexplorer project aims to generate annotated genome assemblies and transcriptome data for a

broad range of brown algal species to address key questions about their biology and evolutionary history.
More than 60 genomes of brown algae and closely-related sister species have been sequenced to date.

To provide the community with a collaborative hub for accessing, visualizing and analyzing the brown
algal genome and transcriptome resources, we have developed a web portal using the Django framework
(https://phaeoexplorer.sb-roscoff.fr) to house the annotated genome sequences along with a broad range of
associated resources. These resources include an integrated environment based on the Galaxy Genome
Annotation project dedicated to the management and visualization of genomic data through user-friendly
interfaces (including JBrowse genome browsers), deployed in an automated way with a set of custom Python
tools [1] (https://gitlab.sb-roscoff.fr/abims/e-infra/gga_load_data). Other resources include information about
the sequenced strains; assembly and annotation metrics; data download facilities; SequenceServer [2]
BLAST facilities, deployed with an Ansible role (https://galaxy.ansible.com/abims_sbr/sequenceserver) and
a R Shiny web application designed to explore RNAseq data of the model alga Ectocarpus
(https://rnaseqaggregator.sb-roscoff.fr/ectocarpus). Over the next few months, we plan to extend the
Phaeoexplorer database with additional resources (experimental protocols, genomes of associated bacterial
symbionts and a Genomicus-based [3] comparative genomics resource). Still partially restricted, in the long
term, the objective is for the Phaeoexplorer database to be a user-friendly public access point to brown algal
genomes for the entire phycology community, with regular genome releases.

In the future, similar databases will be implemented for red algae and fungi; and, within the context of the
European Reference Genome Atlas project and other future large genome sequencing programs, in
partnership with the BIPAA/Genouest and the SeBiMER/Ifremer bioinformatics platforms, we plan to further
automate and scale up the omics data integration pipeline.
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Les modèles pharmacocinétiques physiologiques (PBPK) sont des modèles mathématiques        
qui prédisent l'absorption, la distribution, le métabolisme et l'excrétion de substances chimiques 
chez un organisme. Celui-ci est représenté par un ensemble de compartiments liés entre eux         
par le compartiment sanguin. Ce type de modèle est utilisé pour évaluer l’exposition interne      
d’un organisme d’après son exposition externe à une substance, notamment dans le cadre               
de réglementations sanitaires. 

Ce travail porte sur les modèles PBPK développés par l’institut national de l'environnement 
industriel et des risques. L’unité toxicologie expérimentale et modélisation a publié en 2010          
un modèle PBPK de référence[1], qui suit un organisme humain durant sa vie entière. Depuis,        
de nombreuses versions ont été développées pour s’adapter aux différents comportements 
complexes des substances. Ces modèles sont codés en GNU MCSim, qui est un langage basé     
sur le langage C. L’objectif de ce travail est de rendre l’utilisation des modèles PBPK                    
plus accessible pour les chercheurs ainsi que pour les agences réglementaires. 

Le premier axe est la création d’un modèle PBPK unique et applicable à un maximum                       
de substances. Pour ce faire, les différentes versions ont été collectées, mises à jour et      
comparées entre elles. Le modèle générique réunissant les différentes versions est en cours             
de développement et sera mis à disposition sur GitLab. 

Le second axe est le développement d’une interface pour représenter graphiquement la dynamique 
des prédictions du modèle. Elle permet de prédire l’évolution temporelle des concentrations 
internes à partir de scénarios d’exposition définis par l’utilisateur. Cette interface génère             
trois outils de visualisation des résultats, de façon automatique et paramétrable : 

- Un tableau ainsi qu’un graphique des concentrations internes d’une substance dans chaque 
compartiment 

- Un schéma du corps humain où les organes changent de couleur en fonction de leur 
concentration interne 

L’interface graphique est en cours de développement et est codée en R Shiny. L’animation              
du corps humain est réalisée via un fichier R qui génère du code CSS de SVG. Cet outil,          
destiné à faciliter l’obtention et l’interprétation des résultats des modèles PBPK, aidera                        
à l’évaluation des expositions aux substances chimiques en matière de santé humaine. 

 
Mots clés 
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  Modèle pharmacocinétique physiologique (PBPK) 

  Animation SVG 
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The drastic increase in microbe descriptions, habitats, phenotypes and uses in databases, reports and papers 

presents a two-fold challenge for the access to the information. The integration of heterogeneous data requires 

a standardized representation and the normalization of textual descriptions by semantic analysis. Recent 

information extraction technologies from the text mining domain offer a powerful way to detect and structure 

textual information along ontology-based representations. 

The Omnicrobe application (https://omnicrobe.migale.inrae.fr) uses an Information Extraction workflow to 

populate its database. The workflow is designed to (1) extract microorganism taxa, their habitats, their 

phenotypes and their uses and (2) categorize the extracted information with taxa from the NCBI (National 

Center for Biotechnology Information) taxonomy [1] and concepts from the OntoBiotope ontology [2]. The 

Omnicrobe database contains around 1 million descriptions of microbe properties that are created by analyzing 

and combining six information sources, i.e. biological resource catalogues (e. g. INRAE CIRM, DSMZ 

through BacDive [3]), sequence database (GenBank) and scientific literature (PubMed abstracts). 

Omnicrobe offers powerful ways to express simple and complex ontology-based queries to support studies in 

various domains of microbiology. Omnicrobe also exposes an API (Application Programming Interface) that 

allows users to automatically integrate microbe biodiversity knowledge in external information systems. The 

use of Omnicrobe to quickly target useful strains in a food innovation application [4] illustrates how it can 

provide an easy-to-use support in the resolution of scientific questions related to the habitats, phenotypes and 

uses of microbes. 
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Résumé

Les épidémies virales représentent  un enjeu de santé publique majeur.  Un système de détection et  de

contrôle est donc mis en place notamment au sein des structures hospitalières. Certains virus respiratoires, en

particulier ceux présentant des caractéristiques telles qu’un taux de transmission élevé ou un mode de vie

saisonnier [1] en font des cibles privilégiées de surveillance. De même, dans le contexte de virus émergents

comme  le  SARS-CoV 2  (Servere  Acute  Respiratory  Syndrome  Coronavirus  2)  et  pour  le  suivi  de  la

pandémie  qu’il  a  engendré,  la  mise  à  disposition  des  données  au  plus  près  de  la  réalité  apparaît  donc

nécessaire pour apporter une réponse médicale plus efficace mais aussi pour permettre une meilleure gestion

des épidémies.

Le projet IDy-Path a vocation à fournir une interface web R-Shiny [2] exploitant la base de données de

l’hôpital et accessible via le réseau interne au personnel hospitalier. Elle permet la visualisation en temps réel

du suivi d’une dizaine d’espèces virales respiratoires. Les données disponibles recensent les prévalences

depuis  2015 afin de permettre  une analyse épidémiologique rétrospective et  qui  peuvent  servir  de base

d’apprentissage pour un module de prédiction des départs d’épidémies.

Un module  spécifique a été développé pour le virus de la rougeole dans le cadre de l’activité du CNR

ROR (Centre National  de Référence Rougeole-Oreillons-Rubéole) qui  est  porté par le CHU de Caen. Il

permet des analyses plus précises concernant l’origine physiologique et la nature des échantillons traités, les

analyses génétiques effectuées sur ces derniers ainsi que diverses représentations géographiques de leurs

provenances.

L’ensemble des représentations générées fournit un outil supplémentaire d’aide au diagnostic guidé par la

situation épidémique en temps réel.  L’anticipation de l’entrée en phase épidémique des virus saisonniers

permet  aussi  d’aider  à  la  gestion des  services  en  prévision  d’une  forte  circulation  virale  synonyme

d’augmentation de l’activité hospitalière.
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The WINTER group is a software development team focusing mainly on Web technologies for publishing and 
sharing scientific tools, analysis, data and workflows. We provide our expertise to the scientists of the Institut 

Pasteur campus, covering a broad range of services and expertise to design, develop, maintain, and publish 

software tools and databases on the Web. As part of the Hub mission, our projects cover a wide variety of 

scientific topics (Structural Bioinformatics, Transcriptomics, Statistical Genetics, etc.).  

Over the past few years, our group has created more than 15 web applications and databases, in collaboration 
with research units and other groups of the Hub, and with the support of the IT department, including for 
instance:  

• iPPI-DB: a database of modulators of protein-protein interactions [1]. The data are retrieved from the 
literature either peer reviewed scientific articles or world patents. A large variety of data is stored 
within iPPI-DB: structural, pharmacological, binding and activity profile, pharmacokinetic and 
cytotoxicity when available, as well as some data about the PPI targets themselves. 

• CRISPR-browser: a genome browser to visualize the results of CRISPR-dCas9 screens in bacteria 
[2]. You can upload your own data or navigate through published datasets. 

• Modelisation-COVID: an information website that publishes the work carried out by the 
Mathematical Modelling of Infectious Diseases Unit on COVID-19 [3].  

• ARIAweb:  a software for automated NOE assignment and NMR structure calculation [4]. This 

specialized application accesses the computing infrastructure through the Galaxy API. 

The WINTER group also acts as a transversal support to the different thematic groups of the Hub, providing a 

high level of expertise to support bioinformaticians and biostatistician with their web application development. 

In this way, having a web dedicated group in a bioinformatic team appears as a great opportunity to bring 

software development at the foreground of the bioinformatic research.  
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Abstract

Non-coding RNAs have been poorly studied until now, while representing a large part of the
human transcriptome and having an important role in cancer [1]. Among these, circular RNAs
(circRNAs) have recently been discovered for their microRNA (miRNA) sponge function [2], which
allows them to modulate the expression of miRNA target genes: they then take on the role of
competitive endogenous RNAs (ceRNAs). Their closed-loop structure gives them high stability and
their miRNA binding capacity seems much more powerful than that of any other ceRNAs, being
named “super-sponges”. Today, few ceRNA prediction computational tools have been published but
most of them do not consider ce-circRNAs [3,4]. Moreover, studies focusing on
circRNA-miRNA-mRNA networks have not proposed an automated tool to search for sponge
mechanisms involving circRNAs [5]. In this study, we present an interactive RShiny web application,
called cirscan for circular RNA sponge candidates. cirscan automates the search for sponge
mechanisms from input multi-level transcriptomic data (circRNA, miRNA, and mRNA) and
represents the networks of interest as graphs, where nodes represent the different types of RNAs and
edges the miRNA:target interactions. A major advance of the tool is that the user can query its own
transcriptomic datasets from two specific conditions and apply filters, on both RNA expression levels
and interaction scores, to prioritize the most likely sponge mechanisms. The identified mechanisms
can be further investigated and may be a potential therapeutic target in human cancer. We applied
cirscan on a previously published multi-level transcriptomic dataset from colorectal cancer (CRC). We
identified 150 miRNAs potentially subjected to a sponge mechanism involving circRNAs and we
retrieved a specific sponge mechanism previously described in the literature as involved in CRC
carcinogenesis.
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Investigating the mechanisms of cell division and especially its fascinating robustness requires
complex and time-consuming experimental approaches. It is, therefore, crucial to efficiently iden-
tify candidate genes involved in cell division. Using the asymmetric cell division of the nematode
Caenorhabditis elegans (C. elegans) zygote, we set to integrate and process known biological data to
prioritize sets of genes to be studied.
The roundworm C. elegans is a biological system in which detailed description and functional un-
derstanding require measuring multiple parameters (i.e. omics, phenotypes, interactions) at different
scales (molecule, organelle, cell, organism, population) over time. Such biological data have accumu-
lated and reached levels that are difficult to apprehend without appropriate informatics tools. While
recently published tools use limited data types, we aim to take advantage of all kinds of available data
and knowledge. Such heterogeneous multi-scale data integration is challenging in many aspects due
firstly to different data formats and information content to be represented and secondly to the lack of
standard integration tools to date.
We have identified the Semantic Web (SW) technologies as an appropriate general-purpose framework
for data and metadata integration, processing and sharing compatible with the FAIR principles [1].
SW mediated data integration generates relational graphs using the Resource Description Framework
(RDF) as a standard model for data description. RDF allows data merging even if the underlying
schemas differ [2]. Integrating of our complementary heterogeneous datasets results in a complex data
scheme (3921820 nodes and 10756313 relations). A significant part of this complexity results from
the extensive use of properties describing the relations between entities, which require to introducing
supplementary nodes to instantiate the relations. Recently, RDF-star has been proposed as a candi-
date extension of RDF that addresses this topic[3]. Therefore, we set to compare the original RDF
representation of our datasets with its RDF-star counterpart.
The work presented here is a preliminary study to evaluate the consequences of choosing RDF or
RDF-star for C. elegans data integration and processing. We take advantage of Wormbase.org, which
provides a curated biomedical data repository for C. elegans. We compare RDF and RDF-star gram-
mars for expressivity, general performance for data storage, SPARQL queries and graph topology.
We show here with the integration of 8 data types and 8 ontologies that classical RDF instantiations
of relations and RDF-star formalism do not differ consistently for storage space, data endpoint up-
load time or query processing speed. Nevertheless, triple counts are smaller in RDF-star to represent
complex data, and the graphs’ topologies are very different. RDF’s relation instantiation leads to
the creation of generic nodes used as local intermediates between genes and biological data or meta-
data. In contrast, RDF-star implementation does not present such intermediates and genes are closer
to biologically meaningful information. We still investigate whether discarding these intermediates
improves the graphs’ use by automated analysis tools as we envision using random walks and graph
neural networks on the relational graphs in our prioritization application.
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Our database iPPI-DB (inhibitors of Protein-Protein Interaction Database) [1] has historically been
a repository of manually curated protein-protein interaction modulators from peer-reviewed articles
or world patents and seminally focused on small molecules only. Hereafter, we describe a significant
extension of iPPI-DB that allows users to investigate the wealth and diversity of putative PPI targets
using a pocket-driven approach. In this revisited web application, a fully automated procedure has
been developed to fetch all heterodimer complexes deposited in the PDB (Protein Data Bank), and
map all binding pockets within the corresponding protein chains.

This new section contains the results of two different methods to detect and characterize pockets
on a selected dataset from the PDB. The first method is based on InDeep [2] that relies on 3D fully
convolutional neural networks to predict functional binding sites at the surface of proteins. These
functional binding sites can take two forms, either an epitope binding site (location of a protein-
protein interaction), or a druggable binding site (location for the binding of a future drug). The
second method used, following on from the approach described in kuenemann et al. [3], uses VolSite
[4] and RDKit [5] to detect the binding pockets and compute a set of descriptors calculated on the
negative image of the binding site.

Besides the identification of these pockets, our approach evaluates their pair-wise similarities using
a so-called Pocket Similarity Index (PSI) that relies on the pocket descriptors. This allows the inference
of protein partners (epitopes or ligands) following the hypothesis that similar binding pockets might
bind similar partners.

The web application allows to query the database from a pocket perspective (https://ippidb.
pasteur.fr/targetcentric/): users can now query the dataset using a PDB code, and, from this
query structure, access the most similar binding pockets available in the database, based on the
aforementioned pocket properties.
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Background

Protein-protein interaction (PPI) network analysis plays a major role in predicting the functionality of

proteins and gives an insight into the functional relationships and evolutionary conservation of interactions

among the proteins [1]. 

Hence, many tools have been developed to facilitate the construction and analysis of PPI networks.

However, these tools presents some limits : Most of these tools do not allow the construction of PPI networks

integrating both private and public data and do not use PPIs of degree 2. Moreover, they are often dedicated

to a small number of model species and often do not provide a network analysis service.
To solve  these  deficiencies,  we  developed  APPINetwork (Analysis  of  Protein-Protein  Interaction

Networks) a generic and user-friendly tool to build and analyse PPI network from different databases.

Methods

The  APPINetwork  package  is  an  R  package.  It  can  be  downloaded  and  installed  from GitLab
(https://forgemia.inra.fr/GNet/appinetwork).  All functions are implemented in R except for the script that

searches  all  proteins  involved in  a  biological  process  (developed in  C)  and the  scripts  that  format  the
BioGRID data file and generate the ID correspondence file (implemented in Python 3). The  package can be

deployed on Linux and macOS operating systems (OS). Deployment on Windows is possible but requires the
prior installation of Rtools and Python 3. APPINetwork has a Graphical  User  Interface that  facilitates  its

use  by  users  that  are  not  comfortable  with  terminals.  This  graphical  interface  is  based  on  the  widgets
package. Graphical windows, buttons, and scroll bars allow the user to select or enter an organism name,

select files and choose network parameters or methods dedicated to network analysis.

Results
APPINetwork allows PPI network building and analysis involving proteins from numerous biological

process of numerous species or strains. It gives the possibility to the user to choose the public (experimental

or predicted) PPI databases he/she wants to use to build the PPI network  and to add his/her own PPI data. 

It is a user-friendly package with many options that allow the building of a network adapted to the

type of analysis to carry out: a network with or without genetic or predicted interactions in order to increase

the number of PPIs which concern the studied biological process;  a network of order one containing self-

loops if the user wants to identify assembly intermediaries of a protein complex or a network of order two if

he/she  wants  to  identify  sets  of  proteins  involved  in  the  same biological  process.  Other  options  of  the

interface allow to choose between the two types of analyse and their paramaters.

APPINetwork   provides  the  PPI  network  as  a  flat  file  containing  the  list  of  PPIs  with  different

information about the interaction and the proteins in interaction (PubMed IDs, experimental methods, all

identifiers of involved proteins) that can be very useful for biologists. It provides also a text file containing all

proteins of each cluster identified by Tfit  and different files containing results of the hierarchical clustering

modeling the assembly of a complex. 

Finally, the package APPINetwork comes with a user guide and examples that facilitate its utilization.
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Pharmacogenomics (PGx) studies the impact of genetic factors on drug response phenotypes.
Atomic knowledge units in PGx have the form of ternary relationships linking one or more drugs, one
or more genetic factors, and one or more phenotypes. Such relationships state that a patient having
the specified genetic factors and being treated with the specified drugs is likely to experience the given
phenotypes. PGx knowledge is of particular interest for the development of precision medicine which
aims at tailoring drug treatments to each patient to reduce adverse effects and maximize drug efficacy.
However, PGx knowledge is scattered across many sources (e.g., reference databases, the biomedical
literature) and suffers from very heterogeneous levels of validation, i.e., some PGx relationships are
extensively studied and have been translated into clinical practice, but most are only observed on
small-size cohorts or not reproduced yet and necessitate further investigation. Consequently, there
is a strong interest in extracting and integrating knowledge units from these different sources into a
unique place to provide a consolidated view of the state-of-the-art knowledge of this domain and drive
to the validation, or moderation, of insufficiently validated knowledge units. To this aim, we created
and share with the community two resources: PGxCorpus and PGxLOD.

PGxCorpus is a manually annotated corpus, designed for the automatic extraction of PGx relation-
ships from text [1]. In specialized domains such as PGx, state-of-the-art approaches rely on supervised
models trained or fine-tuned on previously annotated texts. PGxCorpus has been built by 11 annota-
tors and consists of 945 sentences from PubMed abstracts annotated with (i) PGx entities of interest,
i.e., genetic factors (e.g., genes, variants, haplotypes), drugs, and phenotypes, and (ii) relationships
between these entities, associated with a type (e.g., causes, decreases, transports) and an attribute
(positive, hypothetical, or negative). It includes 2,875 relationships, each seen at least four times and
in total by four different annotators. PGxCorpus is available at http://pgxcorpus.loria.fr.

PGxLOD is a knowledge graph that gathers 50,435 PGx relationships extracted from expert
databases such as PharmGKB and from the literature [2]. It implements Semantic Web and FAIR best
practices. Relationships of the literature are extracted with a model trained on PGxCorpus. Besides
PGx relationships, PGxLOD includes knowledge about genetic factors, drugs, and phenotypes (i.e.,
PGx key entities) imported from ClinVar, DisGeNET, DrugBank, SIDER, etc. to compose a graph of
88 million triples. We have paid particular attention at connecting PGx relationships that come from
independent data sources but may be similar or equivalent with the development of both rule-based
and machine learning matching approaches. PGxLOD is available at https://pgxlod.loria.fr.

These resources open perspectives with applications such as predicting pharmacogenes or mining
molecular explanations of adverse drug reactions [3]. Additional analyses of PGxLOD offer the po-
tential to guide PGx research by identifying knowledge that requires additional validation. Besides
biomedical applications, PGxCorpus and PGxLOD offer challenging experimental settings to both
NLP (discontinued entities, ternary relationships) and graph mining tasks (heterogeneity and arity of
PGx relationships).
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The sense of smell is a biological process involving volatile molecules that interact with proteins called
olfactory receptors to transmit a nervous message that allows the recognition of a perceived odor. The
integration of the relationships between molecules, olfactory receptors and odors is essential for a better
understanding of their interactions. Based on 5907 odorant molecules, 98 olfactory receptors (human), 7029
odors and interactions between odorant molecules, odors and olfactory receptors, deep learning models have
been developed, notably, Convolutional Neural Network (CNN) and Graphical Neural Network (GNN) and
compared to Random Forest. The performance of such models is encouraging, with Precision/Recall Area
Under Curve (PRC-AUC) values of 0.66 for odorant-odor GCN models and 0.91 for odorant-olfactory
receptor GCN models. Such models should be able to predict the smell and olfactory receptors for a new
molecule of interest. In addition, based on the encoding of the odorant molecule’s structure, physicochemical
features related to odors and/or olfactory receptors are proposed. Finally, the structural models of this set of
olfactory receptors give us the possibility to apply a docking protocol and to suggest if a molecule can bind
or not to an olfactory receptor. Considering all these approaches together, significant insights into olfaction
are provided. We believe that our analysis is well suited to aid in the design of new odorant molecules and
assist in fragrance research, sensory neuroscience and many other fields of research.
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Cancer cells display in general high levels of endogenous replication stress (RS), a major source of 

genome instability driving forces in the development of cancer [1]. In particular, RS specifically affects hard-

to-replicate regions such as Common Fragile Site (CFSs), a type of evolutionary conserved sites that drive 

chromosome rearrangements during oncogenesis. CFSs display recurrent gaps or breaks on metaphase 

chromosomes of cells treated with aphidicolin, a DNA polymerases inhibitor that slows replisome progression 

[2]. CFSs are prevalent across late replicating regions of the genome and, importantly, frequently nest within 

large expressed genes, while all large expressed genes are not fragile [3]. Although complex, the relationships 

linking cell-type-specific transcription to fragility account for CFS tissue-specificity [4,5]. To date, since the 

detection of CFSs essentially relies on tedious cytogenetics analyses, they have been mapped mostly in human 

lymphoblasts and only a very limited number of other cell types, at a very low resolution (megabase scale). A 

simple high throughput mapping technique was therefore missing to identify CFSs instable in each type of 

cancer.  

Our previous analysis of genome-wide replication timing in human lymphoblasts has shown that 

aphidicolin induces delayed and/or under-replication of specific regions nested in late-replicating large genes 

(Significantly Delayed Regions; SDRs) [3]. Strikingly, we found that SDRs precisely co-map with CFSs 

previously mapped in these cells. Based on this finding, we have now developed a simple method and 

corresponding bioinformatic tool allowing genome-wide mapping of CFSs. In this method, newly synthesized 

DNA is classically recovered from cells pulse-labeled with BrdU. Labeled DNA from untreated cells and 

aphidicolin-treated cells is immunoprecipitated and sequenced (BrdU-seq) as previously described. 

Importantly, we demonstrated that SDRs can be identified without sorting cells at different steps of the S phase 

by detecting significantly and differentially depleted regions of the genome, which considerably simplifies the 

CFS mapping process. 

Genome-wide exploration of CFSs in different cell types may reveal uncharacterized cancer-

associated CFSs genes, providing new insights into the mechanisms underlying human diseases. Further 

elucidation of the clinical significance and biological functions of these genes may be exploited for cancer 

biomarkers and therapeutic benefits. 
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Background

Sequence comparison is one of the  fundamental tasks to study the evolutionary relationships between
organisms or groups of organisms. Methods based on pairwise or multiple alignment of molecular sequences

are traditionally used to address this problem. In recent years, the availability of large amounts of genomic
data produced by new sequencing technologies offers the opportunity to compare large sets of whole genome

sequences. In this context, alignment-based methods can fail to achieve such comparison within a reasonable
computation  time.  The  alignment-free  (AF)  methods  [1] are  good  alternatives  to  study  evolutionary

relationships between organisms. Several AF sequence approaches, including those based on the number of
words or k-mers, have been successfully employed in different studies, showing their interest in particular

for  whole-genome comparison,  taxonomy and phylogenomics  in  a  correct  computation time.  Moreover,
contrary to alignment-based approaches, AF approaches have the advantage of taking into account all the

genomic information and do not require the prior identification of alignable homologous segments from the
genomes to be compared.

   AF approaches have proven their worth in numerous comparative and analytical applications on sequences 
from a wide range of organisms, from small virus genomes to large Eukaryotic genomes or even on metage-

nomic datasets. More specifically, while AF methods have been successfully applied on taxonomic/phyloge-
nomic approaches on viruses and Prokaryotes, such applications on Eukaryotic genomes remain rarely used. 

In this context, here we present an evaluation of the interest and performances of AF methods to analyze 
genomes of ascomycetes yeasts. Our aims were to evaluate the reliability of AF methods to classify yeast 

strains from the same species, to test their ability to work directly with sequencing data and to identify the 
best suited AF tool as well as its optimal parameter values (e.g., k-mer length). 

Approach

Five tools (SANS Serif, Mash, CAFE, kSNP and AAF) implementing different k-mer based alignment-
free methods rooted on different algorithms were selected and tested on three types of data (raw sequencing

data, cleaned sequencing data and assembled genomes) from 68 strains of the yeast species  Torulaspora
delbrueckii.

To evaluate the reliability of AF methods predictions, all produced results were confronted to a reference
tree based on a classical SNP phylogenetic approach [2]. 

Results

The  alignment-free  tools  selected  in  this  study  demonstrated  variable  performances  to  classify  yeast
strains from T.delbruekii. However, some of them, with appropriate parameter values succeeded to produce

very accurate classifications in comparison to the reference tree, even when considering raw sequencing data
as input. In the present work, the different results we obtained are presented and discussed.
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Molecular phylogenetics has spread to all areas of life sciences: evolutionary biology, ecology, cell biology, 
biochemistry, microbiology since it allows observations or results to be placed in a more general framework. 
In that context, inferring reliable phylogenies of organisms is a major challenge, especially for prokaryotes [1]. 
Most reference phylogenies are inferred using sets of conserved single copy universal markers using either 
super-tree or super-matrix approaches [2]. Among them ribosomal proteins are routinely used [3], because they 
are universal, very conserved, less prone to horizontal gene transfers compared to other markers [4]. 

The recent explosion of genome sequencing projects opens up unique opportunities by providing a wealth 
of data and ever-increasing access to the genetic information. The disadvantage is that it also makes the 
assembly of the data sets more complex especially if we planned to use the most efficient reconstruction 
methods (maximum likelihood, Bayesian methods) and the most realistic evolutionary models (CAT, C60...). 
An appropriate selection of a subset of representative genomes, from all available genomes, can help overcome 
this problem. 

Most of the time, the selection of representative genomes is based on academic knowledge, such as 
taxonomy with some subjectivity. A classical approach is to select one representative strain per species. The 
main limitations of these approaches are that (i) the criteria for defining species can vary, (ii) misclassifications 
are frequent, (iii) the number of species (~16,000) is still too large and (iv) genomes may not be identified to 
a species. 

Here, we present Multiple Protein Similarity Sampling (MPS-Sampling), an automated and ex nihilo 
method of representative genome selection that do not rely on environmental, academic, historical, or cultural 
criteria. First of all, the sequences of each protein are clustered individually, leading to several divisions, one 
per protein. Then, the clusterings of each protein are harmonized together at the genome level. Finally, a 
representative genome is selected on the basis of centrality and quality criteria. 

To illustrate this method, MPS-Sampling was used to infer reference phylogenies of Bacteria and Archaea 
using ribosomal proteins contained in RiboDB [5]. RiboDB is a dedicated database gathering all ribosomal 
proteins families, involving 182,496 complete archaeal and bacterial genomes in the last release of June 2022. 
More precisely, we selected a representative subset of 3,451 Bacteria genomes (2%) in 2 hours to infer a 
reliable phylogeny representing 158,000 genomes. 
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The duplication of genetic material and the production of different transcript isoforms from the same gene
locus are two major mechanisms for generating protein diversity in multicellular eukaryotes. At the human
protein-coding genome scale, we recently identified a few thousand genes where the alternative splicing
(AS) of pre-mRNA transcripts modulates the number and composition of similar exonic regions [1]. The
corresponding proteins are involved in muscle contraction and neural intercellular communication. This
alternative usage of ''pseudo-repeats'' is evolutionary conserved and influences partner binding affinity,
specificity, and stoichiometry.

Here, we report on a method for automatically detecting alternatively spliced pseudo-repeats from an
ensemble of transcripts observed in a set of genes/species. It builds on a graph-based data structure we
introduced in [1] where the nodes, called “s-exons”, represent minimal transcripts’ building blocks defined
across several species. Formally, a s-exon is a multiple sequence alignment of sub-exons or sub-exon parts
coming from different genes/species. The present work expands on the notion of s-exon by defining
evolutionary meaningful AS-aware pseudo-repeat units (ASRUs). Each ASRU is a collection of s-exons that
share some similarity and are alternatively used in the observed transcripts. We detected 1070 evolutionary
conserved ASRUs coming from 717 genes over the whole human proteome –over one order of magnitude
more than previously reported [2]. We observed a wide spectrum of scenarios ranging from a single ASRU
comprising 2 instances, which is the case for most genes, to extreme cases like Nebulin with a single ASRU
containing over 80 instances, or Myosin heavy chain with 36 ASRUs, each comprising two instances. By
performing a contrastive analysis of ASRUs conservation across protein families in a species, as well as
across species, we can put in relation sequence conservations with the properties of interaction
specificity-determining sites. Those analyses can shed light on the balance between the repetition of
functional elements in a genome and the amount of selective pressure they are subject to.
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1. Introduction
Large-scale genome sequencing projects are producing a vast amount of new information that is

completely transforming our understanding of thousands of microbial species. However, despite the
development of powerful bioinformatics approaches, full interpretation of the content of these genomes
remains a difficult task for microbiologists.

To address this challenge, we develop the MicroScope platform, an integrated Web platform for
management, annotation, comparative analysis and visualization of microbial genomes
(https://mage.genoscope.cns.fr/microscope) [1]. The platform enables collaborative work in a rich
comparative genomic context and improves community-based curation efforts.

2. Methods
Launched in 2005, the platform has been under continuous development. MicroScope provides analyses

for complete and ongoing genome projects together with metabolic network reconstruction and
transcriptomic experiments allowing users to improve the understanding of gene functions.

Besides automatic functional annotations, several tools allow analyzing a wide range of biological
systems (antibiotic resistance, secondary metabolites, secretions systems, defense systems,...). The platform
also has extensive functionalities to explore and compare metabolic pathways. Finally, recent functionalities
allow users to perform comparative pangenomics on hundreds of genomes of the same species and to explore
their content in regions of genomic plasticity.

3. Results
MicroScope platform is widely used by microbiologists from academia and industry all around the world

for collaborative studies and expert annotation. To date, MicroScope contains data for >16,000 microbial
genomes, part of which are manually curated and maintained by microbiologists (>6,100 user accounts in
May 2022). The platform is also a useful resource for academic training.
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The molecular mechanisms of aging and life expectancy have been studied in model organisms with short 
lifespans. However, long-lived species may provide insights into successful strategies of healthy aging, 
potentially opening the door for novel therapeutic interventions in age-related diseases. Notably, naked mole-
rats, the longest-lived rodent, present attenuated aging phenotypes in comparison to mice. Their resistance 
toward oxidative stress has been proposed as one hallmark of their healthy aging, suggesting their ability to 
maintain cell homeostasis, and specifically their protein homeostasis. To identify the general principles behind 
their protein homeostasis robustness, we compared the aggregation propensity and mutation tolerance of naked 
mole-rat and mouse orthologous proteins. Our analysis showed no proteome-wide differential effects in 
aggregation propensity and mutation tolerance between these species, but several subsets of proteins with a 
significant difference in aggregation propensity. We found an enrichment of proteins with higher aggregation 
propensity in naked mole-rat involved the inflammasome complex, and in nucleic acid binding. On the other 
hand, proteins with lower aggregation propensity in naked mole-rat have a significantly higher mutation 
tolerance compared to the rest of the proteins. Among them, we identified proteins known to be associated 
with neurodegenerative and age-related diseases. These findings highlight the intriguing hypothesis about the 
capacity of the naked mole-rat proteome to delay aging through its proteomic intrinsic architecture. 
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The canonical life cycle of Saccharomyces cerevisiae consists of an alternation between mitosis (clonal 
reproduction) and meiosis events (outcrossing and intratetrad mating). In this life cycle, meiosis events and 
then recombination events are known to be rare. This raises questions because it is known that genetic 
recombination favors genetic diversity. 

However, recent studies [1] start to show that heterozygosity in yeast would be greater than previously 
thought, which implies that recombination events might be more frequent than anticipated. Indeed, these 
events are estimated at frequencies ranging from 1 per 50000 generations to 1 per 1000 generations (the 
difficulty to estimate these frequencies makes it hard to give a more accurate range). 

Using SLiM [2] and dadi [3], we investigate if we can correctly infer demographic parameters given the 
frequency of recombination events. We test multiple demographic scenarios from simple ones (exponential 
growth or bottleneck in a single population, …) to more complex ones (multiple populations with migration 
[4], …). 

For instance, we observe interesting results such as an excess of polymorphic sites at frequency 0.5 for 
simulations of populations with bottleneck demography and recombination events every 1000 generations. 
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Fungi play key roles in the nutrient cycles of boreal, temperate and tropical forests. In these biomes, many 

wood-decay fungi have a narrow host range, colonizing either coniferous or deciduous host trees. Some fungal 

species have the capacity to colonize and decompose both types, hence increasing their chances to find a 

suitable substrate and may contribute to its fitness. In species with such wide ecological niches, specializing 

and adaptation towards certain substrates might develop over time, likely dependent on the availability of host 

trees in a biome. To identify potential genomic markers associated to host specialization, we analysed a set of 

132 fungal genomes covering 14 orders in the Agaricomycetes class with a focus on the Polyporales and 

Agaricales (67 and 22 species respectively). Phylogenomic analyses identified the position of the newly 

sequenced species. Complementary annotations of genes potentially associated to wood-decay mechanisms 

(e.g. CAZymes) and interaction with the host tree (e.g. secretome and GPCR) were performed. Their 

comparisons highlighted clear differences within and among the different Agaricomycetes orders, such as the 

differences in plant degrading enzyme content between two distinct types of wood decay: the white rot and 

brown rot species. Gene families associated to niche breadth evolution such as those specifically enriched or 

depleted in coniferous and deciduous species were also identified. These results contribute in building a 

framework for understanding the genetic determinants of the evolution of fungal decay mechanisms and, 

potentially, predicting the responses of fungal communities to substrate and habitat pressures in a forest 

management and climate change context.  
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Coxiella burnetii est la bactérie responsable de la fièvre Q, une zoonose répandue et pouvant infecter un 

large spectre d’espèces hôtes. L’infection est souvent asymptomatique mais chez les humains, elle peut 

entraîner divers troubles cliniques problématiques et parfois persistants. Elle est transmise par voie 
aérienne à partir de l’environnement contaminé par les réservoirs animaux, dont les principaux sont les 

ruminants domestiques. En Europe, on observe une spécificité d’hôte, qui se traduit par l’association de 

lignées de C. burnetii avec différents ruminants domestiques [1].  
Le but de l’étude est donc d’étudier la dynamique des génomes de C. burnetii afin de contribuer aux 

connaissances sur l’émergence de lignées caractérisées par différentes spécificités d’hôtes.  
 

Nous avons effectué ces analyses à partir de souches de référence et de souches provenant de prélèvements 

dans des fermes. Nous avons réalisé i) une identification des gènes homologues et une sélection des gènes 
communs pour obtenir une phylogénie. Pour effectuer l’identification des gènes homologues, nous avons 

étudié le pangénome de C. burnetii en comparant les pipelines BPGA et Panaroo ; ii) une étude de la 

distribution des gènes et fonctions accessoires par analyse factorielle des correspondance (AC) à partir de 
la matrice de présence/absence de gènes ; iii) une étude de la dynamique de distribution de ces gènes le 

long de la phylogénie, avec l’outil CAFE3.  
 

L’identification des gènes homologues obtenue avec Panaroo nous semble la plus cohérente, l’utilisation 

de BPGA pointant un nombre important de gènes uniques en proportion très variable en fonction des 
génomes. L’arbre phylogénétique obtenu montre la présence de trois grandes lignées au sein des souches 

de C. burnetii étudiées, nommées A, B et C [1]. L’analyse de la matrice de présence absence de gènes par 

AC illustre la cohérence de la distribution des gènes dans les lignées. La distribution des gènes dans le 

groupe C est particulièrement homogène, le nombre de gènes accessoires spécifiques est limité et 
beaucoup sont présents dans la plupart des souches. La distribution des gènes semble plus hétérogène 

dans les groupes A et B. Le groupe A inclut une grande diversité de gènes dont une large proportion de 

gènes spécifiques. Les gènes accessoires du groupe B sont particulièrement différenciés par rapport à 
ceux du groupe C. Au cours de la diversification de C. burnetii, les analyses effectuées pointent différents 

évènements de perte massive de gènes, notamment au niveau des ancêtres communs de la lignée C et des 

lignées A et C.  
 

L’analyse des gènes effecteurs et de gènes de virulence identifiés par ailleurs montre que ces gènes, 
potentiellement impliqués dans l’interaction avec l’hôte, peuvent présenter un polymorphisme de 

présence/absence de l’ordre de 5% et 0,8%, respectivement. De futures études sont nécessaires pour 

identifier si ces polymorphismes sont impliqués dans les différences de spécificité d’hôte entre lignées ou 
si d’autres déterminants doivent être recherchés. 
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1. Introduction  

Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as 

well as in many traditional fermented products. In addition to its technological importance, it has also gained 
interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective 

of this study was to inventory the main health-promoting properties of S. thermophilus and to study their 

intra-species diversity at the genomic and genetic level within a collection of 79 representative strains.  

2. Methods 

FastANI software was used to compute pair-wise ANI (Average Nucleotide Identity) values to confirm 

that the 79 selected genomes belong to the same species. MicroScope Pan-genome analysis tool and eggnog- 

mapper were used to analyse core and accessory genome. Text mining was used to highlight pseudogene 

annotations. AntiSMASH and BAGEL4 were used to search bacteriocins sequences and ABRicate to search 

antibiotic resistance genes. R and Python libraries were used to create heatmaps.  

3. Results 

In this study various health-related functions were analyzed at the genome level from 79 genome 

sequences of strains isolated over a long time period from diverse products and different geographic 

locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate 

production) suggesting their central physiological and ecological role for the species, others including the 
tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive 

peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting 

properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the 
phenotypic diversity between strains for some health-related traits have also been investigated. For instance, 

substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via 

the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic 

amine production and antibiotic resistance is also a contributing factor to its safety status.  

4. Conclusions 

The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for 

innovation in the field of fermented products enriched for healthy components. A better knowledge of the 

health-promoting properties and their genomic and genetic diversity within the species may facilitate the 
selection and application of strains for specific biotechnological and human health-promoting purpose. 

Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the 

way to uncover additional health-related functions through the intra-species diversity exploration of S. 

thermophilus by comparative genomics approaches.  
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Abstract 

Rates of evolution vary between protein-coding gene families, but also within gene families and even along

the length of coding sequences, because the functional and structural roles of amino acids are different [1].

However the impact of the amino acid positions inside the sequence on the rate of molecular evolution has

not been yet investigated. We estimate average evolutionary rates for position-specific codons in primate

coding sequences,  and discovered a strong excess  of non-synonymous substitution at  sequences termini

compared to the center. This bias was also observed in plant gene families, suggesting that it is universal in

eukaryote genes. Control experiments excluded the possibility that annotation errors, alignment artifacts and

compositional bias would cause the observed profile.  We further show that the distribution of functional

domains [2] and of solvent-accessible residues in proteins [3] readily explain how functional constrains are

weaker at their termini, leading to the observed excess of amino-acid substitutions. Finally, we show that

methods inferring sites under positive selection are strongly biased towards protein termini, suggesting that

they may confound positive selection with weak negative selection. These results suggest that accounting for

positional information should improve evolutionary models. 

Acknowledgements

We thank P. Vincens and the informatics service at IBENS for support, and Alexandra Louis, Guillaume Louvel, 

François Giudicelli and Nicolas Lartillot for helpful discussions. 

References

[1] J. Echave, S. J. Spielman, C. O. Wilke, Nat Rev Genet. 17, 109–121 (2016).

[2] Y. Wang, H. Zhang, H. Zhong, Z. Xue, Computational and Structural Biotechnology Journal. 19, 1145–1153 

(2021).

[3] J. Jumper et al., Nature. 596, 583–589 (2021).

[Evolution, phylogeny and comparative genomics - poster T3.10]

61



Most of the genetic diversity of the Wolbachia infecting Culex pipiens lies in
the prophage regions

Camille MESTRE*, Alice NAMIAS*, Mathieu SICARD*, Mylène WEILL*
* ISEM, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095, Montpellier, France

Corresponding Autor: camille.mestre@umontpellier.fr

1. Introduction
Wolbachia  are  maternally-transmitted  endosymbiotic  bacteria  which  infect  up  to  60% of  insect

species [1,2]. In some of its hosts, including the mosquito  Culex pipiens,  Wolbachia  induces cytoplasmic

incompatibility (CI), a conditional sterility by which crosses between two hosts infected by so-called
incompatible  Wolbachia will be sterile. The description, based on 7 polymorphic genes, of 5 phylogenetic

groups of wPip (the Wolbachia infecting Cx. pipiens) shed light on the highly complex CI patterns described
in Cx. pipiens: crosses between mosquitoes infected by wPip of the same group are compatible, while inter-

group crosses have unpredictable outcomes [3,4].

2. Data set
We had access to the data of the 1000 Culex pipiens  genomes project led by Lindy McBride and

Yuki  Haba  which  include  genomic  material  of  mosquitos  and  their  endosymbionts.  We  thus  used

approximately 800 samples of paired-end DNA Illumina short reads from all over the world to build wPip
phylogenies, based on the full genome (1,482,455 bp), rather than 7 polymorphic genes. We also looked at

groups’ geographic distributions.

3. Results

An individual was analyzed if more than 30% of  Wolbachia  positions were covered, aligning the
reads on  wPip reference genome Pel [5]. We identified  the  Wolbachia  group infecting each individual by

identifying the PK1 allele, using BLAST command line and the assembler MEGAHIT. This gene code for
ankyrin  domain  protein  and  its  variations  was  found  to  correspond  to the  Wolbachia group  [4].  We

assembled the wPip genome present in each individual, and performed a PCA on full genomes, keeping only
biallelic SNPs. We found that individuals still cluster into the 5 expected groups (which corresponded to PK1

groups). Looking at highly contributing SNPs on the first three PCA axes, we found that all those SNPs were
located in the previously annotated prophage regions [3]. We removed these regions and found, with a new

PCA, that individuals still clustered by genetic groups. Yet, we found that highly contributing SNPs of this
PCA,  are  still  in  annotated phage genes,  located outside  of  prophage  regions.  Finally,  we  showed that

coexisting wPip from distinct groups differed more that wPip from the same group from distinct places, and
no isolation-by-distance was described within wPip groups, suggesting a recent radiation.

4. Conclusion

Using all wPip genome sequences we confirmed the recent radiation of the five wPip phylogenetic
groups. Previous studies described congruence between wPip phylogenetic trees and mitochondrial trees. We

will examine this on a much broader dataset, to identify cases of paternal or horizontal wPip transmission.
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Salmonella is one of the most common bacterial pathogen worldwide in human and animal infections, 
leading to 52,702 cases of human gastroenteritis in Europe in 2020 [1]. To provide new insights on Salmonella 
epidemic investigations, whole genome sequencing (WGS) methods have been developed, especially focusing 
on the detection of outbreaks and estimation of genetic relationships between isolates [2,3]. Salmonella 
Typhimurium and its monophasic variant are one of the most prevalent serovar [4], and represents 60% of 
Salmonella serovar detected in pig and pork in France [5]. Even if this serovar is well studied, its spreading 
has not been investigated on the scale of French pig farms, in order to understand whether adaptation 
mechanisms are linked to geography. 

Here, we characterized the genomic diversity of 188 S. Typhimurium and its monophasic variant isolated in 
France from pig herds at the slaughterhouse, using WGS methods. In order to investigate the genome, we 
detected SNPs using a pangenome-based workflow aiming at evaluating the entire genome of bacterial 
samples, including accessory genome fractions not shared by all samples. We also performed two approaches 
aiming at identifying conserved genes and mutations. While the first approach targets known genes based on 
Abricate software [6] combined with MEGARESv2, Resfinder and VFDB databases, the second approach 
refers to an in-house algorithm computing sensitivity, specificity and accuracy of accessory genes and core 
variants according to predefined groups of genomes. 

This study brought to light news insights of S. Typhimurium and its monophasic variant, which have never 
been studied at this geographic scale in France. The core and pan-genome phylogenomic analyses revealed a 
low diversity within monophasic variant of Typhimurium strains, between regions, suggesting a unique clone 
spreading within pig herds in France. Resistance determinants were found while screening at the gene level, 
including antibiotics, heavy metals and biocides that could explain the prevalence of these strains within herds. 
Screening of accessory genes and core variants through an in-house algorithm allowed the identification of 
conserved mutations to identify genetic markers supporting food safety surveillance without any a-priori. A 
comparison with monophasic variant isolates from other countries highlighted the genomic specificity of 
monophasic variants in France, with some exceptions of isolates from bordering countries. This work provides 
news insights on the dynamics of S. Typhimurium and its monophasic variant sampled in pig herds in France. 
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Isoprenoid quinones are molecules that have a major role in bioenergetics as they shuttle electrons across the

respiratory chains of most living organisms. Different types of quinones can be discriminated by their mid-point
redox  potential.  This  potential  determines  respiratory  enzymes  with  which  quinones  function,  accessible

respiratory substrates and, ultimately, the environment in which organisms can live.

In Proteobacteria, the two main quinones are menaquinone (MK), a low potential quinone (~-70 mV) and

ubiquinone (UQ), a high potential one (~+100 mV). So far, UQ has been considered to be well adapted for
aerobic  respiration,  while  MK  would  rather  be  involved  in  anaerobic  respiration  in  O2-limited  contexts.

However, our team recently discovered an O2-independent biosynthetic pathway for UQ production, while the
classical pathway depends on the presence of O2  [1]. It was shown that this O2-independent pathway is crucial

for anaerobic respiration (denitrification) in Pseudomonas aeruginosa [2]. Thus, these discoveries challenge the
respective assumed physiological roles and origins of MK and UQ pathways in Proteobacteria.

In this study, we systematically investigated quinone production potential across the Proteobacteria phylum.
In this prospect, an annotation pipeline assisted by phylogeny was designed in order to infer the presence of the

different quinones biosynthetic pathways existing in this phylum (MK, UQ and rhodoquinone (RQ)) and was
applied on a large set of over 2500 complete genomes. Particular attention was paid to the genes specific of the

UQ O2-independent pathway,  ubiT,  -U and  –V, which tend to co-localize along genomes. We addressed more
particularly the question of their genetic architecture and regulation. 

Altogether, this large-scale study gives us more insights to propose an evolutionary scenario of the quinones
pathways. It also invites us to revisit the classical view of the respective physiological roles of the respiratory

quinones found in Proteobacteria.
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Molecular chaperones maintain cellular protein homeostasis by acting at almost every step in protein
biogenesis pathways. In bacteria, the DnaK/HSP70 chaperone has been associated with almost every known
essential chaperone functions: it assists the folding of newly synthesized polypeptides, remodels native
protein complexes to control their activities, facilitates protein targeting to membranes and protein
translocation, reactivates aggregated proteins and participates to protein disaggregation and degradation in
cooperation with major disaggregases and proteases. In bacteria, these multifunctional HSP70 chaperones
are named DnaK and to act as a bona fide chaperone, they strictly rely on essential co-chaperone partners
known as the J-domain proteins (JDPs, DnaJ, Hsp40). Genome sequencing has revealed the presence of
multiple JDP/DnaK chaperone/co-chaperone pairs in a number of bacterial genomes, suggesting that certain
pairs have evolved toward more specific functions. In addition to JDP co-chaperones, most DnaK/HSP70
chaperones also require a nucleotide exchange factor (NEF), named GrpE in Escherichia coli. The JDP co-
chaperone family is defined by the presence of a compact domain of approximately 70 residues, named the J-
domain, which is essential for a functional interaction with DnaK. JDPs can be grouped into three major
classes (A, B and C) based on the conserved domains that are present in addition to the J-domain. Adjacent
to their N-terminal J-domain, class A JDP members possess a glycine/phenylalanine (G/F)-rich region that
connects the J-domain to a zinc-binding domain (ZBD) and a large C-terminal domain that is followed by a
short dimerization domain. Class B JDP members have a similar domain architecture, except that they do not
have the ZBD. In contrast, class C JDPs only have the J-domain in common with class A and B and which
can be found at the N- or at the C-terminal ends, or even in the middle of the JDP architecture.

In this study[1], we implemented a strategy for the identification, classification and phylogenetic analysis
of the different partners (JDPs, HSP70 and NEF) among complete bacterial proteomes. A representative set
of 1,709 bacterial genomes was selected to maximize the coverage of the bacterial diversity and taxonomy.
Fast and sensitive screening of full proteomes to retain the different partners candidates was performed by
using HMM of known domains. All InterPro domains of the candidates were retrieved to achieve a finer
classification into known classes of HSP70, JDP and NEF in E. coli. For HSP70 and JDPs, we designed
decision trees based on the combinations of InterPro domains and/or locally built HMMs. HSP70 proteins
were classified into DnaK, HscA and HscC. The JDPs were subclassified into class A, class B, class C-DjlA,
class C-DjlB/C, class C-HscB, class C-wDomain (harboring some other domains), and class C-woDomain
(no other known domain is detected). This confirmed the overall presence of DnaK-DnaJ-GrpE in bacterial
genomes, and the well preserved co-presence of HscA with HscB and HscC with DjlB/C. The class C-
wDomain proteins were grouped into at least 66 different associations likely representing new groups of
class C JDPs spread in different classes of bacteria. For the class C-woDomain proteins, we searched for
conserved regions not yet integrated in domain databases. To this end, we performed all against all pairwise
sequence comparisons leading to a weighted graph of similar regions. Community detection produced
clusters of similar regions. The multiple sequence alignments of these regions were manually inspected and
selected for HMM construction. Eventually, we kept 8 conserved regions and proposed them as domains
specific to new subclasses of JDPs that need further attention and investigation.
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1 Introduction  

 Non-coding regulatory sequences, such as enhancers or promoters, are essential in all living organisms 

as they monitor the expression of the genome. Evolution therefore exerts selective pressure on them, leading 

to conservation of these genomic structures across various species. While this conservation is widely 

recognized, genome-wide studies of homology relationships between regulatory elements across large panels 

of species are largely absent in the literature, leading to a gap of knowledge regarding the evolution of 
enhancers. The Actinopterygii clade (ray-finned fishes) is particularly interesting in this respect, due to 

several whole genome duplication events (i.e., Teleostea, Salmonidae, Cyprinidae). 

 We use a combination of conserved sequence and synteny criteria to identify putative regulatory 

elements and their gene targets among Actinopterygii, as well as the homology relationships between them. 

This allows us to investigate the evolution of regulatory relationships at an unprecedented level. 

2 Results 

 We identify Conserved Non-coding Elements (CNEs) at the genome scale by integrating the 

conservation of sequence as detected in multiple alignments with the conservation of synteny between CNEs 

and neighboring genes. 

 In the continuation of the work in [1] and [2] (PEGASUS method), we are focusing on the identification 

of CNEs in 46 ray-finned fish species chosen on the basis of their phylogenetic position and the quality of 

their genome assembly and annotation. Starting from a homemade multiZ alignment of the 46 genomes, we 

use a per-base conservation score based on the phylogeny [3] to identify conserved windows outside of 
annotated exons and repeats. We thus obtain CNEs shared across several species and look for genes that are 

consistently present in their neighborhood in the different species to identify the most likely target(s) 

associated to the regulatory sequence. The knowledge of the species in which a CNE is found also allows to 

retrace its age and evolutionary history. 

 Our method scans a whole multiple alignment file for CNEs in less than a day. These CNEs show 

significant overlap with zebrafish ATAC-seq peaks and predicted enhancers in [4], which is consistent with 

their putative regulatory role. We can attribute an age to each of these CNEs and therefore detect the 

emergence of particular regulations associated to specific functions along the evolution of fishes. 
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Complex cellular functions are most often encoded by a set of genes rather than individual

ones. Furthermore, the genes in such “systems” are often encoded nearby in microbial genomes.

MacSyFinder  uses  these  properties  to  model  and then accurately  annotate  cellular  functions  in

microbial genomes at the system-level rather than at the individual-gene level. We hereby present a

major  release of  MacSyFinder  [1],  MacSyFinder  version 2 (v2).  This  new version is  coded in

Python 3 (>= 3.7). The code was improved and rationalized to enable higher maintainability over

time.  Several  new  features  were  added  to  allow  more  flexible  modeling  of  the  systems.  We

introduce  a  more  intuitive  and  comprehensive  search  engine  to  identify  all  the  best  candidate

systems and sub-optimal ones that still respect the models’ constraints. We also present the novel

macsydata companion tool that enables the easy installation and broad distribution of the models

developed for MacSyFinder (macsy-models) from GitHub repositories. Finally, we have updated,

improved, and made available MacSyFinder popular models to this novel version: TXSScan and

TFF-SF,  CONJscan,  and  CasFinder.  MacSyFinder  v2  can  be  found  at  this  URL:

https://github.com/gem-pasteur/macsyfinder 
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Rice, Oryza sativa, is the staple food for half the world population. It is the first crop whose genome
has been sequenced in 2005. This model species benefits from various genomic ressources among which
genome sequences of 3000 rice varieties that were publicly released in 2014 [1]. This provides a unique
opportunity to unravel the genetic diversity of the crop with accessions from 89 countries, distributed
into 5 varietal groups – indica, japonica, aus/boro, basmati/sandri and intermediate.

Transposable elements (TE) are mobile genetic elements abundant in plant genomes. Knowledge
of their impact on the structure, function and evolution of genome, these mobile entities can provide
a more precise picture of rice genome dynamics on a shorter evolutionary scale (posterior to the
domestication) because their transposition rate is higher than base substitutions.

We have developped a pipeline, nammed TRACKPOSON, to detect all retrotransposons insertions
in the 3000 genomes dataset [2]. With these results, to understand the funtional impact of TE on
this crop, we performed a genome-wide association study (TE-GWAS, [3]) with different agronomic
traits. We found a significant association between an insertion of TE and rice grain width. If the TE
is present, the grain is larger.

For further analysis, we sequenced 2 phylogenetically related rice varieties (one thin grain and one
large grain) with Nanopore technologies. Thanks to long-read sequencing, after assembly and genomic
analysis, we validated the insertions of TE. In addition, we observed that the insertion region is part
of a larger insertion, possibly an introgression from another rice variety (appears to be an ancestral
wild rice). Analyses of introgression are underway to annotate the genes, insertions of TE insertion
and genomic comparision between the 2 cultivated rice varieties.

In parallel, genetic analysis is underway by crossing the two rice plants together and creating a
rice population for futures analysis.
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Since Susumu Ohno's hypothesis in 1970 [1], it is commonly accepted that gene duplications have an 

essential role in the evolution of organisms and that this mechanism is a key for genetic innovations. There are 
several mechanisms within genomes that generate large-scale duplications (Whole Genome Duplication, 

Segmental Duplication) or small-scale duplications (Tandem Duplication of genes). After duplication the main 

fate of duplicated genes is loss by pseudogenization and/or chromosomal remodeling, however there are other 

evolutionary scenarios that retain duplicated genes: dosage effect, cellular or tissue adaptation, sub-
functionalization and neo-functionalization. However, the mechanisms that control the fate of duplicated genes 

are still largely unknown. We are interested in this question of the evolution of duplicated genes in rosaceous 

plants, more specifically in apple and rose for which we have participated in the sequencing of a high quality 
genome [2-3]. The question we address here is: Is the selection pressure on tandemly duplicated genes the 

same regardless of the size of the gene cluster and is it the same for recent or old duplications? 

Using OrthoFinder [4], we determined all gene families within seven Rosaceae species for which a quality 
genome is available: Strawberry (Fragaria vesca – diploid-, Fragaria x ananassa – octoploid -), Bramble 

(Rubus occidentalis), Rose (Rosa chinensis), Apple (Malus x domestica), Pear (Pyrus communis), Peach 

(Prunus persica) with Arabidopsis (Arabidopsis thaliana) as an outgroup. Then, using the i-ADHoRe software 

[5], we assigned to each gene of these multigene families their duplication status: TAG (Tandemly Arrayed 

Genes), SD (Segmental Duplication), dispersed (other duplication types).  

This unbiased analysis highlighted species specificities concerning the nature of gene duplication: for 

example, apple, pear and F. ananassa have a very high number of SDs which is expected since the first two 
have undergone a recent Whole Genome Duplication (50 Mya) and F. ananassa is an octoploid (the only 

polyploid in our data set). In contrast, the rose has a very large number of TAGs. As the rose is a species of 

interest to our institute (as well as apple and pear) we decided to further explore this particularity of the rose. 

We then used PAML [6] to calculate the Ka/Ks evolutionary rates using the model YN00 [7] for all 
duplicated gene pairs and analyzed their distribution according to the size of the TAG clusters and the estimated 

age of the duplications. However, the mechanism of gene conversion introduces a bias in the estimation of Ks. 

To get rid of this confounding factor we verified our results (only in apple) for which we gave the status of 
young TAG to the clusters that exist only in one of the post-WGD syntenic fragment, those present on both are 

being considered old. 
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Xiphinema index, in the order of Dorylaimida, is a Plant Parasitic Nematode (PPN) that feeds through

root  tips.  X index is  the  vector  of  Grapevine  FanLeaf  Virus  (GFLV)  causing  major  damages  in

vineyards  worldwide.  Reproduction  is  mostly  by  meiotic  parthenogenesis  (male  and  outcrossing

events  are  very  rare).  A  single  juvenile  can  yield  a  whole  population.  The  X.  index genome  is

described as diploid with two pairs of 10 chromosomes. Flow cytometry experiments have estimated a

haploid genome size of ca. 205Mb.

High quality and long PacBio HiFi reads (N50: 13.6 kb, longest: 40.3 kb, volume: 8.4 Gb, coverage:

36X)  were  used  for  a  primary  assembly  using  HiFiasm.  This  yielded  172  contigs  with  a  total

assembly size of 260Mb and a N50 of 12.6Mb. This initial assembly was bigger than the estimated

genome size by both flow cytometry and k-mer.  Using contact maps from Hi-C data (Arima protocol,

Illumina paired reads), we obtained a final 221 Mb haploid genome. Contact maps were produced

using Juicer. Final manual scaffolding was realized using JuiceBox with the help of nematode specific

telomere motifs  identified using TIDK. Assembly quality  assessment  was performed using KAT,

BUSCO,  and Blobtools.  A 14.8 kb mitochondrial  genome was assembled using an in-house tool

mitochondriAL circulAr DNA ReconstItutioN (ALADIN). Several transfers of mitochondrial genetic

material into the nuclear genome were detected and supported by overlapping long reads, the largest

insertion being 11.4 kb long. 

It  is  the first  telomere to  telomere assembled nematode genome in the  Dorylaimida  order  and a

breakthrough for  research on vineyards  protection.  This  highly contiguous and complete  genome

opens many perspectives for comparative genomics and discovery of the key elements involved in the

evolution of plant parasitism.
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1. Introduction 

A major component of the transcribed genomes, discovered in the last decade is long non-coding RNAs 

(lncRNAs), which are defined as transcripts of more than 200 nucleotides with low potential coding 

capabilities. Such lncRNAs increase the list of regulatory elements of the gene expression. However, the role 

of most of them remains to be clarified. Exploring the lncRNA conservation between species is an approach 

to strengthen the annotation of lncRNAs by i) reinforcing the existence of these lncRNAs (most of them are 

gene prediction and are weakly expressed) and ii) making possible function inference in a species from another 

one more studied such as human or mouse as previously done for protein coding genes (PCGs). However, 

contrary to the PCGs, the primary sequences of lncRNAs are not well conserved between species; LncRNAs 

are conserved in patches of a few nucleotides (5 to 30) with an arrangement of these patches that is not 

necessarily conserved [1]. Therefore, the usual reference databases such as Ensembl BioMart, do not provide 

any information about lncRNA orthology whatever the species while e.g. for chicken 72% (12,050 among 

16,779 e!106) of the PCGs are “1 to 1” orthologous with human. A few specialized databases reported 

lncRNAs orthologs such as SyntDB [2] which focuses on the ape group or NONCODEv6 [3] which targets 12 

species from different branches. Both used whole-genome alignment approaches based on syntenic regions 

identified with liftOver, and with reduced gap penalties. In this context, we have developed a workflow 

combining different approaches which can be used for any species of interest and applied it on 8 species 

covering a broad phylogenetic scale from mammals to chicken. 

2. Results 

The workflow combines three methods: two methods based on synteny established for PCGs and a third based 
on block alignment. The method 1 uses a “PCG-lncRNA-PCG” triplet with orthologous PCGs on either side 
of the lncRNA as an "anchor". The method 2 is based on “lncRNA-PCG” pairs in which the PCG has to be 
orthologous in both species and the lncRNA PCG transcripts have to be in the same genomic orientation in 
both species. Finally, the last method considers the alignment of lncRNAs but by small patches, using the 
“Mercator-Pecan” multiple genome alignment method. 
Applied on human, mouse, pig, cow, goat, dog, horse and chicken, the three methods are complementary 
regardless of the species pair. Considering the 18,805 human lncRNAs (e!106), around 10,000 are identified 
with one orthologous neighboring PCG in chicken among them more than 1,000 lncRNA loci can be 
considered as high quality orthologs because they are detected by the three methods. Moreover, more than 
2,000 lncRNAs are detected by the first and second method. To test the relevance of these lncRNAs, different 
analyses based on the conservation of the co-expression network between species have been performed. The 
first results show interesting cases of network conservation between human and chicken, whose functional 
term enrichment is in progress. 
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Background: Metabolism is a set of biochemical reactions that take place inside an organism. The 

metabolic network represents the relationships between all these biochemical reactions and defines the 

metabolic capacity of the organism; particularly, the capacity to use compounds in the medium and/or 

to synthesize new products. The evolution of metabolic networks is subjected to the constraints exerted 

by the environment. Consequently each organism has a specific metabolic profile that illustrates its 

ability to transform chemical compounds in the relationship of the species with its environment. In order 

to better understand how the environment has shaped the evolution of the metabolic network(s), we 

investigated the evolution of the nodes (enzymes) but also the edges (shared compounds between two 

enzymes) of the metabolic networks of 175 fungal species by combining graph based analyses and 

comparison of enzyme conservation profiles. Fungi are known to have a wide variety of metabolic 

profiles thereby constitute a very good model to address this question. This integrative approach 

combined with phylogenetic information provides an opportunity to decipher the evolution of the 

metabolism from the network level to enzyme level. 

Results: With phylostratigraphy approaches, we dated the origin of the metabolic enzymes of 175 

fungal species. We showed that 708 out of 954 enzymes were already present at the origin of fungi. 

Interestingly, we show that only half of them has been conserved in all the considered species while  the 

other half is only present in specific lineages or subtrees suggesting multiple lost events in their 

evolutionary history. We then investigated the conservation level of enzymes with respect to their 

localization with topological metrics and showed that the enzymes conserved in fungi display a higher 

centrality (i.e., tend to be located at the center of the network) than those that are subtree or lineage-

specific. In addition, conserved enzymes display a higher degree, sharing more compounds with other 

enzymes than non-conserved ones. The metabolic network can be divided into pathways (series of 

enzymes that lead to usable materials). Our analysis enables the distinction between pathways common 

to all fungal species and those that are specific to subsets of species. Specific pathways (i) are mainly 

involved in accessory metabolism (ii) are generally located at the periphery of the network and (iii) have 

less connections with other pathways.Contrarily, pathways common to all fungal species (i) are 

characterized by long sequences of reactions, involving subsets of highly conserved reactions, (ii) are 

generally located at the center of the network and (iii) are highly connected to other pathways.  

Conclusions: Our analysis shows that (i) half of the metabolic enzymes are highly conserved and are 

likely to be ancient and (ii) the evolution of the metabolic network was mostly driven by many loss of 

enzymes in specific lineage or subtrees. Non-conserved enzymes (idem, specific pathways) are 

characterized by specific topological metrics (i.e., centrality measure and degree) that may explain the 

fact that they could have been lost or gained in specific lineage. 
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Fruit development is a highly complex continuous process divided in several stages to reach a ripe fruit.   

Gene expression changes during fruit development and ripening to adapt to any special needs of fruits. Tran-

scriptomics is an effective tool to study the functional reprogramming of cells. Fruits have a diversity of

types adapted to protect the seed during its development and to allow its dissemination. However, the mecha-

nisms underlying the diversity of fruit types are not well understood. 

Combining high throughput next generation sequencing applied on transcriptomic data and the addition of

quantitative spikes in the experimental design [1], we were able to determine in a quantitative manner tran-

script concentrations along nine developmental stages for seven different fruits : tomato, pepper, eggplant,

kiwifruit, cucumber, apple and strawberry. We investigated the molecular events that correlate with fruit de-

velopment using general statistics comparison and clustering analysis. The study of the functional annotation

of transcripts predominantly expressed during  the different  fruits development  stages  allowed us to deter-

mine genes involved in those stages as ripening. 

Although transcriptomics allowed us to study gene expression, protein abundance is largely affected by post-

transcriptional and post-translational regulations. In the  tomato fruit, mRNA and protein levels are poorly

correlated throughout development [2]. A mathematical model of protein translation based on an ordinary

differential equation involving synthesis and degradation rate constants have been developed to estimate the

stability of protein by combining transcriptomic and proteomic data [2]. Adding proteomic data to this tran-

scriptomic dataset on the studied fruits will allow the computation of synthesis and degradation rates for pro-

teins in those seven different fruits, hence the comparison of protein stability between fruits.
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Abstract

Generating vast amounts of realistic biological sequences is a powerful way to evaluate and validate
bioinformatic methods. Moreover, to better anticipate potential future pandemics, there is a need to
improve our knowledge of the virosphere diversity with metagenomic tools able to detect unknown
viruses based only on data from distant clades. Simulating realistic virus protein sequences can help
us developing and testing such tools.

Following the development of advanced methods for inferring substitution matrix [1,2] and complex
substitution models [3,4], several protein sequence simulation tools have been developed [5,6]. However,
simulated data usually mimic existing ones, populating a given phylogenetic tree starting from one
input root sequence or a randomly generated one, without retaining information from the original
alignment apart from those contained in the substitution model. As a result, although simulated
sequences can be considered as realistic and representative of a clade in terms of evolution parameters,
they could not be considered as belonging to the clade.

MockVirus combines existing tools completed with Python scripts for populating an existing tree
with new branches. It takes advantage of the new functionalities offered by the last IQ-TREE version
[7]. The ModelFinder tool [8] is first used to choose the best substitution matrix describing the whole
sequence evolution. Then, we transform a gamma-rate heterogeneity profile into a partition model
which in turns allows us to employ the Alisim tool [6] for simulating new sequences with real amino
acid position-specific rates. Simulations are performed on 3-leaf trees with a root sequence representing
selected node sequences from the real tree. Distances are dynamically increased along branch lengths
with a synchronous BLAST analysis. Insertions and deletions are tackled by simulating the longest
length observed in the alignment and randomly recreating gap portions from the initial alignment.

MockVirus has been tested on the Sarbecovirus spike protein, aiming at reproducing the emergence
of new branches with topological connections similar to the one of the SARS-CoV-2 sub-tree.
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Introduction  

Core genome Multilocus Sequence Typing (cgMLST) and whole genome Single Nucleotide Polymorphism 

(wgSNP)[1] typing are powerful approaches for isolated bacteria analysis during tracking and characterization 

of foodborne pathogens in order to determine strains relatedness. These analyses are performed using Next 

Generation Sequencing (NGS) data. However, several NGS technologies are available and their choice could 

have an impact on obtained results. The aim of this work was to benchmark the cgMLST and wgSNP typing 

results obtained using different sequencing platforms.           

Methods 

This study evaluated the effect of three different sequencing platforms on the cgMLST and wgSNP analysis 

for selected bacterial species. DNA samples from Salmonella enterica and Listeria monocytogenes were 

sequenced by short reads (Illumina iSeq 100 and MGI DNBSEQ-G400) and long-reads approaches (Oxford 

Nanopore MinION Mk1C). The obtained raw sequencing reads were analyzed using BioNumerics 7.6[2] 

(Applied Maths) with dedicated workflows for cgMLST and wgSNP calling. For comparison, hierarchical 

clustering was performed based on dissimilarities among allelic profiles for cgMLST and based on sequence 

composition for wgSNP.  

Results 

As expected, the raw sequencing reads obtained by the three NGS platforms showed differences in 

several metrics such as number of raw reads, quality score, reads coverage, reads length, ….      

However, similar results were observed on wgSNP (<3 SNPs between sequencing replicates) and 

cgMLST (same sequence type, >99% of similarity percentage) for each sample across the different 

NGS platforms, for the two species of interest. 

Conclusion 

The aim of the study was to evaluate the effect of different sequencing platforms on the cgMLST and 

wgSNP analysis results. This study suggests that the chosen sequencing platform does not have a significant 

impact on the analysis to determine strain relatedness for Listeria monocytogenes and Salmonella enterica 

species. Thus, the choice of the sequencing platform can rely on external factors such as sequencing cost, 

multiplexing capacities and turnaround time. 
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Transposable elements (TEs) are mobile, repetitive and mutagenic elements of DNA known to be
important component of eukaryote genomes and major actors in genome evolution. TEs can create
genetic novelty, diversity, and have been involved in evolutionary processes such as adaptation [1]. In
order to estimate their impact on genome evolution and adaptive processes, it is necessary to study
their dynamics. We need first to detect them from individual to populations. Due to their repetitive
nature, detection of TE insertions using paired-end reads revealed a high false-positive rate, up to
40%. One solution suggested is to combine the results from up to three distinct tools relying on
different approaches [2]. One of the most promising tools highlighted in such study is TEFLoN that
provides the most accurate results for all TE families, regardless of the data quality [3]. This tool
developed in python2.7 is easy to install and use, thanks to its low number of dependencies. TEFLoN
takes as input short paired-end reads, a reference genome, and its TE annotations and/or a library
of TE consensi. It is composed of four main steps to (1) detect all TE insertions, (2) filter out the
TE insertions with low quality evidences at the individual and population levels, (3) genotype each
selected TE insertions and (4) estimate the allele frequency for each TE insertions.
However, many technical limitations have been identified : Each script must be launched independently
without parallelisation that makes it time and memory consuming. Moreover, a large number of
files are created. We propose here to develop TEFLoN2 to make the TE detection and analysis in
sequencing data faster and handling large datasets, such as those of consortium resequencing efforts
[4] [5]. To do so, the codes had been updated to python3.X and a Snakemake pipeline developed [6]
to automatize and parallelize the TEFLoN steps [3]. To facilitate the TEFLon distribution, we are
now working on a Singularity containerized system [7].
A preliminary benchmark between TEFLoN and TEFLoN2 using population resequencing data from
the Anopheles gambiae 1000 genome consortium [4] [5] suggests a clear decrease in computing time
with a constant accuracy of the TE detection results.
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1 Introduction

An essential step in comparative genomics analyses is the correct creation of homologous gene
families. The increasing flow of new genomes being sequenced ever faster and more accurately across
the tree of life [1] suggests fascinating prospects for this type of analysis, especially for exploring new
functions and modes of evolution. Gene families characterization is a computationally intensive pro-
cess, subject to many more or less arbitrary choices. Often, to get around the problem of computation
time consumption, only a small subset of the available genomes is typically included in the definition
of theses families, which implies loss of information. It therefore becomes clear that this influx of
data create a challenging situation regarding scaling, requiring bioinformatics tools of adequate per-
formances. In this poster, we present an approach whose objective is, on one side, to target a set of
genomes for the initial definition of families an order of magnitude larger than currently, and, on the
other side to progressively increment the families as new genomes become available, reducing the need
for de novo reconstructions.

2 Results

We tested different similarity search and sequence alignment methods [2,3,4] to benchmark and
extrapolate their time and memory consumption. We then compared several algorithms for recreating
gene families, based both on sequence and synteny, either ex nihilo [5,6] or incremental [7]. Finally, we
combined these recent and powerful algorithms to create a hybrid and reproducible pipeline following
the FAIR principles and aiming at both (i) creating gene families ex nihilo, and (ii) extending them
incrementally – and thus rapidly – without sacrificing accuracy. We ensured the credibility of our
results by keeping the methods that maximize the number of families whose size matches the number
of genomes chosen. We present our results in terms of algorithm choice, computation time and
memory cost for the definition of gene families on catalogs of genomes of increasing sizes, allowing us
to extrapolate the performance in terms of scaling up.
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Endogenous  viral  sequences  (EVEs)  result  from the  active  (by  a  viral  enzyme)  or  passive  (by  non-
homologous recombination) integration of full or part of viral genomes into the genome of eukaryotic or

prokaryotic hosts. EVEs can represent a significant part of the host's genome. They provide access to often
ancient sequences that can be used in paleovirology approaches to study the evolution of viruses over time

steps through several million years [1,2]. However, EVEs are frequently ignored in genome annotation due
to the lack of dedicated bioinformatics tools for their detection and characterisation, which have long relied

on manual processes. In plants, most of the known EVEs belong to the family Caulimoviridae [3], the only
family of retrotranscribed plant viruses [4]. 

Here we present "Caulifinder", a bioinformatics pipeline for automatic characterisation and annotation of
Caulimoviridae EVEs in plant  genomes.  Caulifinder  consists  of  two complementary pipelines.  The first

pipeline detects Caulimoviridae EVEs and performs an automatic reconstruction of consensus sequences. To
perform this, it uses elements of the REPET suite [5,6].  It uses these consensus sequences to automatically

annotate  the  Caulimoviridae  EVE  copies  in  the  analysed  genomes.  A second  pipeline  automatically
constructs phylogenetic trees using the Caulimoviridae EVE sequences of a given plant species, allowing the

diversity of  Caulimoviridae EVEs to be assessed for each host species, regardless of the copy number of
these EVEs. 

Caulifinder is a versatile tool for either producing an annotation of Caulimoviridae EVEs in genomes and
for collecting fossil sequences that can be used to conduct evolutionary studies of  Caulimoviridae using

paleovirology  approaches.  It  is  distributed  in  a  DOCKER  image  to  make  it  easier  to  use.  Banks  are
associated with it and are available in DATAInrae.

We will  present  the design and evaluation process of Caulifinder,  carried out  on sequence data from
several plant genomes, and discuss the generic scope of our work for studying the evolution of viruses over

long time steps.
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Abstract: Two-component  systems  (TCSs)  are  central  to  the  interaction  of  prokaryotes  with  their
environment. These signal transduction pathways typically involve a sensor histidine kinase (HK) protein,
which phosphorylates a response regulator (RR) upon an external stimulus. In its phosphorylated form the
RR binds to a specific DNA motif and thereby modulates the expression of certain genes. Based on sequence
similarity, dozens of TCSs, presumably controlling the expression of distinct regulons, can be identified in a
typical bacterial genome sequence. However the input stimulus and the regulons remain unknown for a vast
majority of these systems. Engineering functional HK associating the sensor domain (and hence the input
stimulus) of one HK to the kinase domain of another HK with a well characterized RR might help to address
this knowledge gap and is very interesting in a synthetic biology perspective. To understand how artificial
HK chimeras could be built, we aim to identify natural chimeras that already exist in prokaryotic genomes.
For this purpose, we developed a computational workflow which performs all  pairwise local alignments
within a set of representative HKs. Since the origin of chimeras may be very ancient and their sequences may
have diverged significantly, we chose to use the HH-suite3 tool [1] which takes into account information on
the  conservation  of  the  secondary  structure  in  addition  to  the  conservation  of  functional  domains.
Preliminary results  obtained on a set  of 148,583 HK proteins retrieved from the P2CS database  [2]  are
currently being analyzed and will be shortly discussed.

Keywords: Two component-system, sensor histidine kinase, chimera, synthetic biology.
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Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Multiple driver
gene mutations and oncogenic pathways involved in its development have been identified, but the role
that mitochondrial DNA (mtDNA) may play in it has been less investigated. Studies on mtDNA
have been limited by small numbers of individuals or large genetic and environmental variability. To
overcome these limitations, we leveraged tumour whole-genome sequencing and RNA-seq experiments
to comprehensively characterise mitochondrial genomes in a diethylnitrosamine (DEN)-induced car-
cinogenesis model [1] across mouse strains with distinct cancer susceptibility and progression.

We devised a novel heteroplasmy detection approach that accounts for the circular nature of the
mitochondrial genome and efficiently filters out false-positive heteroplasmies caused by nuclear mi-
tochondrial read (NUMT) misalignment. Using this method on 760 tumour genomes, we performed
heteroplasmy detection, mtDNA gene content and expression analysis in four mouse strains: Mus mus-
culus C3H/HeOuJ, Mus musculus C57BL6/J, Mus musculus castaneus CAST/EiJ, and Mus caroli
CAROLI/EiJ. Despite their recent divergence, the mouse strains investigated had different mtDNA
mutation burdens, per-gene mutation rates and mtRNA expression. However, the forces shaping their
mutational signatures were similar: most mutations were the product of replication-coupled DNA
damage and there was a neutral selective pressure for missense and loss of function mutations. Fi-
nally, tumours had a lower mtDNA content than normal controls and the content was negatively
correlated with tumour stage, suggesting a role for mtDNA in tumour progression.

Our results provide insights into mitochondrial heteroplasmy and expression in tumour develop-
ment across distinct mouse genomes and its association with cancer susceptibility, transformation
timing, and driver gene choice.
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The identification of cis-regulatory elements controlling gene expression is an arduous challenge that is 
being actively explored to discover the key genetic factors responsible for traits of agronomic interest. Here, 
we have used a de novo and genome-wide approach for preferentially located motif (PLM) detection to 
investigate the proximal cis-regulatory landscape of Arabidopsis thaliana and Zea mays [1]. We report three 
groups of PLMs in each gene-proximal region and emphasize conserved PLMs in both species, particularly 
in the 3'-gene-proximal region. Comparison with resources of transcription factor and microRNA binding 
sites indicates that 79% of the identified PLMs are unassigned, although some are supported by MNase-
defined cistrome occupancy analysis [2]. Enrichment analyses further reveal that unassigned PLMs provide 
functional predictions distinct from those inferred by transcription factor and microRNA binding sites. Our 
study provides a comprehensive map of PLMs and points at their potential utility for future characterization 
of orphan genes in plants. 
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Recently, long fragment sequencing technologies have been introduced into the field of RNAseq, 
offering the possibility to directly generate reads that can cover the entire length of the transcript. This 
third-generation technology is characterized by real time sequencing of molecules enabling the 
generation of long reads that can reach several hundred kilobases. These long reads allow a better 
identification of alternatively spliced forms and new transcripts. 

We studied the impact of different ONT library preparations on the main informative quality metrics 
such as the yield, the read size distribution, the transcript coverage and 3’ bias related to the sample 
preparation, the transcript quantification and identification.  With this evolving technology, we also 
performed benchmarks of different bioinformatics tools. 

The human GM12878 cell line was used to compare three library protocols including direct RNA, 
cDNA-PCR total and cDNA-PCR polyA+. Each library was spiked with a low amount (1%) of SIRVs 
(Spike-in RNA variant) corresponding to a group of synthetic transcripts that mimic transcriptome 
complexity. We used these spike-in data to evaluate the performance of different tools (StringTie2 [1], 
Salmon [2] and FLAIR [3]) for transcripts quantification and characterization. As good performance on 
SIRV data was obtained, we decided to test them on human data to make the protocol comparison. 

Firstly, we compared the different informative quality metrics mentioned previously.  Results 
show cDNA-PCR total and poly A+ have the best throughput compared to the direct RNA. Nevertheless, 
direct RNA-seq provides the best mean read size and is less impacted by 3’ bias as expected.  

After this primary analysis, we looked at human transcripts. On the one hand, we focused our analysis 
on known human transcripts only (Ensembl annotation release 92) to understand the coverage profile 
(depth and breadth). We noticed transcript coverage variations coming from full-length reads ratio 
related to each experimental condition. The direct RNA sequencing shows a lower number of identified 
transcripts and a better coverage compared to the other cDNA-PCR total and polyA+ library protocols. 

On the other hand, we tried to directly reconstruct human transcripts from « full-length » reads. We 
tested the following tools: StringTie2 based on an assembly approach and FLAIR based on a mapping 
approach.  GffCompare tool was then used to evaluate the accuracy of identified transcripts compared 
to reference transcripts provided in the Ensembl annotation file. The comparison between these two 
strategies shows major differences regarding the number and type of detected transcripts. 

This study shows that ONT technology allows full-length coverage of transcripts. Nevertheless, the 
library preparation and sequencing will lead to biases and limitations for the analysis. 
Frequently evolving bioinformatics pipelines provide very different results that will require filtrations 
to limit the impact of transcript quantification and identification analyses.   
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In the thymus, T cell progenitors differentiate in order to generate naïve T lymphocytes which migrate 

to secondary lymphoid organs where they can encounter an antigen. Antigenic stimulation of naive T cells 

induces their proliferation and differentiation into effector and memory T cells (Eff/mem T cells). During 

thymic differentiation, genomic alterations in thymocytes can promote the development of T-cell acute 

lymphoblastic leukemia (T-ALL)[1]. One of the most potent alterations is the loss-of-function mutation of 

PTEN gene. PTEN is a tumor suppressor, which, in T-ALL, can sustain the oncogenic activation of MYC[2]. 

The well-known MYC oncogene[3] is rarely mutated in T-ALL, nevertheless, it appears to be a key factor in 

T-ALL leukemogenesis. In line with human data, inactivation of Pten gene during murine thymopoeisis 

(Ptendel mouse model) gives rise to T-ALL that systematically express high level of MYC protein[4]. 

Herein our objective was to investigate the impact of MYC inactivation on physio-pathological development 

of T cells. To do so we used mouse models in which Myc and/or Pten genes were deleted during thymopoeisis. 

Thus, we analysed four types of mice: Control; Ptendel; Mycdel; and double knock-out, MycdelPtendel. These 

mice were also crossed with eYFP reporter mice, which allow the tracking of cells that have inactivated Myc 

and/or Pten. First, we observed that MycdelPtendel mice do not develop tumors. This finding confirms that MYC 

expression is absolutely required for PTEN loss-mediated tumor transformation. Then, thymus and spleens 

from the different genotypes were analyzed by multiplexed single-cell RNA sequencing (scRNAseq) 

approaches[5]. After data pre-processing and sample demultiplexing, we assigned cell type to the 23 identified 

clusters according to various gene markers. We notably distinguished the main T cell subsets of thymus and 

spleen. Our data show that Myc deletion at the CD4+CD8+ stage does not affect terminal differentiation of 

thymocytes, while it disrupts splenic T cell homeostasis. Indeed, thanks to eYFP reporter gene, we observed a 

strong diminution of Eff/mem T cells in Mycdel and MycdelPtendel mice. Using Differential Gene Expression 

(DGE) and Gene Ontology, we found that MYC-deficient naive T cells down-regulate genes related to 

ribosomes and protein synthesis, indicating that cell proliferation is disturbed. Moreover, our scRNAseq 

analysis reveals that the number of a small T-cell subset (TCRγδ+ T-cells) increases in Myc-deficient spleen, 

such expansion appears to be a collateral effect of MYC inactivation in thymocytes. In silico analysis were 

reinforced by biological experiments. Altogether our result[6] show that in absence of MYC, naïve T cells can 

be activated by an antigen, nevertheless the proliferation and differentiation of these MYC-deficient cells into 

Eff/mem T cells are inhibited.  
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DNA sequencing technology has scaled up very rapidly in throughput but also scaled down in terms of the 
amount of DNA that is required for analysis, to the point that it is now commonplace to analyze the DNA and 
RNA content of individual cells. Single-cell approaches have triggered previously impossible applications in 
basic research and clinical science, like transcriptome analysis of rare circulating tumor cells, characterization 
of early differentiation events in human embryogenesis, investigation of cell fate choices and creation of large-
scale cell atlases such as the human cell atlas. 

However, integrated analysis of different scRNA-seq data sets, consisting of multiple transcriptomic 
subpopulations or integrating measurements produced by different technologies, remains challenging. It is 
especially difficult to distinguish between the composition of cell types in a sample and expression changes 
within a given cell type. Furthermore, sample preparation is a quite crucial step for single-cell analysis, with 
many possible options of preparation to obtain the good quality cells that correctly reflect the biological 
conditions in the original tissue. 

In this study, we used single-cell RNA-seq (scRNA-seq) to assess the expression of peripheral blood 
mononuclear cells (PBMC) from six different samples. PBMC were isolated from a healthy anonymous 
donor's whole blood specimen provided by EFS (Etablissement Français du Sang), using a Ficoll gradient. 
PBMC were then splitted into 6 different samples with different treatments. One sample was set to rest 
(resting), one sample was stimulated with LPS (incubation for 4 hours with 1µg/mL LPS in order to induce an 
inflammatory response), 2 samples were processed directly and 2 samples were first frozen (according to the 
10X Genomics protocol for frozen samples), then 8 days later were thawed and processed. 

Samples were prepared with the Chromium Next GEM Single Cell 3’ GEM v3.1 kit following the 
manufacturer recommandations (10X Genomics). Libraries were sequenced on a Novaseq 6000 sequencer 
(Illumina).  Sample demultipexing, barcode processing and unique molecular identifiers (UMI) counting were 
performed by using the 10X Genomics pipeline Cellranger v6.0.1 with default parameters. Analyses were 
performed using the software tools Seurat, Scrublet and MultiMAP.   

For this study, we used the resting versus stimulated data to perform and compare three data integration 
techniques on our dataset. Then we compared the fresh versus frozen samples to analyze the effect of 
congelation on the quality of the results. 

The resting and stimulated datasets were sequenced with a target of 8000 cells/sample. After processing with 
CellRanger, we obtained a total of 14,771 viable cells for the analysis, with 114,000 reads/cell and a sequencing 
saturation above 76%. After removing low quality cells, we performed normalization, scaling and dimension 
reduction (UMAP), where we could visualize a clear difference between resting and stimulated groups of cells. 
We then applied three different algorithms to integrate the data: canonical correlation analysis (CCA), 
reciprocal PCA (RPCA) and MultiMAP (MMAP). The three different techniques effectively perform 
integration, but we can visually see differences in the results.  

For the fresh/frozen samples, we aimed at 6000 cells/sample, obtaining after CellRanger processing a total of 
16,018 cells with a mean of 111,000 reads/cell and an average sequencing saturation of 81% per sample. After 
quality control and removal of low quality cells, we compared the number of genes per cell, the number of 
molecules per cell and the percentage of mitochondrial genes per cell. We also visualized the cells after UMAP 
dimensional reduction. We can clearly see many differences between the fresh and frozen samples, despite the 
fact that they are all technical replicates originating from the same initial pool of cells. We conclude that the 
congelation step is clearly lowering the quality of the results for PBMC single-cell RNA-seq analysis.  
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Mammalian genomes are organized into several thousands of Topologically Associating Domains 
(TADs) where intra-domain 3D interactions are strongly favored over neighboring regions. TADs 
constitute regulatory modules where interactions between enhancers and promoters occur 
preferentially inside the TAD. In contrast, the binding of the CTCF insulator protein at the boundaries 
of TADs prevents the formation of promoter-enhancer loops between neighboring domains. 

Several recent studies have reported that CTCF binding sites (CBS) are mutation hotspots in 
cancer cells. Moreover, the perturbation of CTCF binding at TAD boundaries can cause ‘enhancer 
hijacking’, whereby oncogenes are activated through the formation of loops with enhancers in 
neighboring TADs [1]. Until now, the effect of genome structural variation to oncogene activation 
within the context of reorganized CTCF binding and TAD restructuration has not been reported. 

In my project, we aim to identify mutations within CTCF binding sites, followed by the 
characterization of changes in CTCF binding, reorganization of TADs, changes in promoter-enhancer 
loops and changes in gene expression. For this purpose, I am integrating newly generated genomics 
data from two widely-used breast cancer cell lines (MCF7 and T47D) with data from a control breast 
epithelial cell line (MCF10A). 

To obtain both qualitative (absence or presence) and quantitative (increased or decreased) 
insights into changes in CTCF binding, I used an analysis strategy based on input and spike-in 
normalization of ChIP-seq data. A comparison of the breast cancer cell lines to the control cell line 
identified an unexpectedly large number of differentially bound peaks: 5% of peaks were identified 
as significantly different, with around 1/3 of peaks showing a complete gain or loss of binding. 
Among these differential peaks, many peaks were shared between cell lines.   

To assess the impact of differential CBS on TAD boundaries and loops, I analyzed high-
resolution Hi-C data, including normalization for Copy Number Variations in each cell line. 
Integration of our identified TAD boundaries with differences in CBS and gene expression (both 
newly-generated RNA-seq and ‘gold standard’ microarray data [2]) has identified large numbers of 
deregulated genes within reorganized TADs. Exploration of sequence determinants at differential 
CBS (structural variation, DNA methylation, TF binding) is currently ongoing. Importantly, CTCF 
binding is known to be methylation-sensitive [3]. Furthermore, genome and epi-genome editing 
experiments will be used to validate the impact of CBS perturbations on 3D genome organization and 
gene expression in our breast cancer cell model. 
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The  genomics core facility of the Institut de Biologie de l’École normale supérieure (IBENS) [1,2]

was created in 1999. We focus on functional genomics in eukaryotes , including classical model organisms,

as  well  as  more exotic  organisms (jellyfish,  birds,  butterflies...).  The facility  has always been a well-
balanced structure between wet-lab and bioinformatics: half of the team is involved on the wet-lab part;

the other half being involved on the data analysis part. Our goal is to assist laboratories during their  high-
throughput sequencing projects from the experimental design to data analysis for publication. We are part

of the  France Génomique consortium and have been  certified with the  ISO 9001 quality international

standard since March 2013.

Our  genomics  core  facility  offers  many services  to  the  community:  library  preparation (RNA-seq,

scRNA-seq and ChIP-seq),  sequencing (including “ready-to-load” libraries) for short (Illumina) and long

reads (Oxford Nanopore); and bioinformatics analysis (RNA-seq and scRNA-seq).

All the staff working on the facility gets a balanced schedule between the core production service and

research and development projects to propose  up-to-date and reliable experimental solutions to our

collaborators. To cope with the experimental constraints of our users among the research teams, we invest

time in testing library protocols (very low quantities, ribosome depletions...). We are also deeply involved

in software development to manage our project analyses (65% of projects are analysed on the facility). The

tools we develop are distributed on an open source basis on GitHub [3] and we now provide most of them as

Docker images [4] to ease the distribution of our work. We develop workflows to achieve reproducible and

transparent data analysis of our high throughput experiments.

Since 2016, our facility has been offering two new technologies. The first one is devoted to  single cell
RNA-seq with a Chromium system from 10X Genomics based on the Drop-seq protocol. The second one is

dedicated to long read sequencing in RNA-seq. We use Oxford Nanopore Technologies sequencers devices

in order to sequence full length transcripts for isoform abundance estimation.

Over the last few months we have released a rewritten and enhanced version of ToulligQC [5], our QC

tool for Oxford Nanopore sequencers and we are currently testing scNaUmi-seq protocol [6] to propose our

scRNA-seq service combined with long read sequencing.

All these developments allow us to be at the state of the art in functional genomics applications, so that

we can provide to our users all the tools needed to succeed in their high throughput experiments.
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Core facilities aim to give their users access to the newest technologies and scientific methods, which appear 

and evolve rapidly. Since its creation in 2010, the mission of the I2BC next-generation sequencing facility 
(PSI2BC) is to provide the scientific community, whether academic or industrial, with services and support in 

the domain of high throughput sequencing and its applications in functional genomics and transcriptomics. We 

present an overview of recent research and development (R&D) projects carried out at our core facility, and 

based on both Illumina and Oxford Nanopore Technologies (ONT).  

Firstly, we present our developing expertise in the study of DNA and RNA modifications using ONT 

sequencing: 

• detection of 5-methylcytosine (5mC) modifications of DNA, a well-characterized mark associated with 

transcriptional repression. 

• targeted ONT sequencing of specific genomic regions using a Cas9 directed approach. We have tested 
a novel ONT kit based on a technology similar to a recently published method (nCATS), which allowed 

us to strongly enrich for a specific region of the mouse genome. 

• detection of pseudo-uridine, the most widespread modification in RNA, present in all living organisms. 

We also mention other advances including: 

• generation of ultra-long ONT reads. We have tested a recently released ONT kit and have obtained a 

large proportion of reads of tens to hundreds of kilobases in length. 

• development of an improved small RNA Illumina library preparation method with less bias and better 

detection of 2’-O-Methyl RNAs [1]. Several types of RNA such as plant microRNAs (miRNAs) carry 

a 2’-O-Me modification at their 3’ terminal nucleotide. This modification complicates library 
preparation as it inhibits 3’ adapter ligation. Our protocol has less overall bias and is less affected by the 

modification than standard methods. 
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1 Introduction

Immune checkpoint inhibitors (ICI) such as anti-PD-1 act on T cells to restore their ability to
kill cancer cells. Cutaneous melanoma is a poor-prognosis skin cancer that can be treated by ICI.
Despite major advances in the field of immunotherapy, melanoma kills half of all patients within 5
years of treatment induction due to primary or acquired resistance. Over the last 10 years, our team
has identified a mechanism of resistance to immunotherapy that depends on the production of TNF, a
major inflammatory cytokine that acts as a brake on the immune response against tumours in mouse
melanoma models [1][2] and could ameliorates adverse events due to immunotherapy treatment [3].

2 Materials and method/Results

Bulk RNA-seq on tumour samples from TNF knock-out (KO) mice and wild type mice were
analysed by standard differential gene expression analysis [4] and pathway enrichment analysis [5] , as
well as by deconvolution [6] [7] of cell types and inference of transcription factor activities [8] [9]. We
showed that knocking out TNF-alpha impacts the immune response in multiple ways, for example by
up-regulating the humoral immune response or by down-regulating mitochondrial pathways. Moreover,
knocking out TNF seems to have an inconsistent impact on mice. Indeed, using single sample GSEA
(Gene Set Enrichment Analysis [10]), we discovered 2 groups of TNF KO mice: one that displays a
phenotype close to anti-PD1 treated mice, and one with a phenotype that is close to wild type mice.
These groups can be retrieved by computing differential transcription factor (TF ) activities between
TNF KO mice and WT mice with a list of up-activated and down-activated TFs. TF activities of
the first group of mice correlated positively with immune scores and infiltrated deconvolved immune
cells (CD8) and the opposite for the second one. We then classified mice samples into hot and cold
tumours, respectively.

Finally, using this TNF KO TF activity signature in human melanoma patients (pre-treatment
to anti-PD1 therapy), we distinguished the same two profiles that we had seen in mice by creating a
TF activities based score (TF score). We saw an enrichment of responders to anti-PD1 treatment for
high score patients compared to low score patients. High score patients in the pre-treatment condition
seem to exhibit a similar profile to TNF KO mice, suggesting that TNF might not be essential for hot
tumour patterns in patients who are the most susceptible to respond to immunotherapy, as observed
in mice.

3 Conclusion

Our RNA-seq data from tumour samples in mice allowed us to discover a set of TFs that become
activated in some TNF KO mice. This TF set could also be found in anti-PD1 or TNFKO+anti-PD1.
We used these TF along immune scores and deconvolution data to distinguish between hot (highly
infiltrated/high immune scores) and cold tumours (lowly infiltrated/low immune scores). Instead of
looking directly at gene expression, we used VIPER inferred TF activities to create a score based on
”TNF KO” TF score that allowed us to identify two groups of patients in public RNAseq datasets
of patients treated with anti-PD1 agents. This ”TNF KO” TF activity was applied to melanoma
patients on pre-treatment samples, where a higher score was measured for good prognosis patients.
Notably, the low activity patients could either respond or not to anti-PD1, suggesting that other
mechanisms contribute to response to immunotherapy, independently of the “TNF KO” TF activity.
We are currently better characterizing this TF activity signature in terms of pathways and exploring
how the cold tumours (samples with low TF score) can still respond to monotherapy. We also want
to test our signature on bitherapy cohorts (anti-PD1+anti-CTLA4) [11,12] and finally on our clinical
trial TICIMEL wich is based on tritherapy (anti-PD1+anti-CTLA4+anti-TNF) [13].
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The emergence of sequencing allowed the scientific community to gather a tremendous amount of cancer 
genomic data, characterizing biomarkers responsible for tumorigenesis that might indicate potential 
treatments. The use of short-read sequencing to identify cancer patient treatment is becoming a more common 
practice in hospitals [1,2]. To standardize the treatment identification some prediction frameworks have been 
developed, but they mostly focus on a single alteration type and very few have been implemented. 
 

We design a targeted DNA and RNA panel covering 639 cancer genes and 57 fusion genes to obtain a 
comprehensive patient genomic landscape. We developed a decisional algorithm which prioritizes all known 
variant-therapy associations. Several rules give a score for each association based on more than 20 variant 
features indicating the variant impact in cancer, the patient indication and similarity of patient variant with 
variant in therapeutic databases. 
 

We generated a thousand simulated tumors, each containing passenger mutations and a targetable mutation 
from the Civic database. Our method correctly classifies the targetable mutation in its top predictions (average 
rank 2.19). Furthermore, on a cohort of 12 patients, we obtain similar results as 2 clinical routine approaches 
using our fully automated protocol. We are planning to expand our validation to a pan cancer cohort of 500 
patients supported by therapeutic reports. 
We design a complete framework for multiple variant drug association identification in order to make easier 
therapeutic choices for a clinician. We succeed to integrate it into our variant calling workflow and show good 
performance of our method to prioritize targetable variants. 
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The ribosome is  well-known as  the  cellular  machinery  translating  the  messenger  RNAs  (mRNAs)  into

proteins.  It  is composed of 80 proteins and 4 ribosomal RNAs (rRNA) in humans. While it was mostly

believed that the ribosome displays always the same activity, recent studies have revealed that ribosomes

exhibit different compositions depending on the physio-pathological contexts.  At rRNAs level, variation in

the chemical modifications play a role in translational control. We contributed in demonstrating that rRNA

2’O-ribose methylation (2’Ome), corresponding to the addition of a methyl group on the nucleotide’s ribose

2’ hydroxyl, does not only regulate the intrinsic activity of the ribosomes but is also altered at some specific

rRNA sites in cancer [1,2,3].

RiboMethSeq is an innovative RNASeq-based approach that has been developed in 2015 to quantify rRNA

2’Ome at all the sites at once in yeast [4]. It is based on a partial alkaline hydrolysis. Indeed, presence of a

2’Ome prevents alkaline hydrolysis between the 2’Ome nucleotide and the following one. Since this bond is

preserved in presence of 2’Ome, reads do not end at the 2’Ome position or start at the following one. Thus,

comparing 5’ and 3’ end reads counts at each rRNA position allows to analyse rRNA 2’Ome level. 

At Centre Leon Bérard and Cancer Research Center of Lyon, a RiboMethSeq platform was created in 2018,

with a complete workflow from sample preparation to bioinformatic analyses. Usage of Illumina NovaSeq

sequencer allows the sequencing of 48 samples in a single run, thus reducing both batch effects and costs.

Sequencing data are stored on the High Performance Computing cluster of the Gilles Thomas Bioinformatic

platform, involved in clinical, translational and basic research programs and composed of diverse expertises

(biostaticians, bioinformaticians, data managers, developers…). 

Regarding RiboMethSeq, in addition to performing routine analysis of human samples from cell lines or

large collection of biopsies, we also develop novel methodological and bioinformatic tools, since dedicated

QC or analytic pipelines are missing.  With this poster, we will present an overview of the RiboMethSeq

platform as well as the bioinformatic tools we have developed.  
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The emergence of spatial RNA-seq enabled to preserve spatial information in histological sections
while profiling transcriptomes [1]. One of the first steps of a usual RNA-seq data analysis workflow
consists in quantifying gene expression by aligning the sequencing reads to a reference genome and
counting the aligned reads in its annotated regions. Downstream analysis, such as the identification of
differentially expressed genes, strongly rely on the quality of this process. Similarly to most of single-
cell RNA-seq technologies, the refinements brought by spatial RNA-seq technologies can be mitigated
by a lower sequencing depth in comparison with bulk RNA-seq.

Here, we propose to evaluate the effect of widely used Rattus norvegicus reference genomes consist-
ing of Ensembl and RefSeq annotations of the Rnor 6.0 assembly and the new mRatBN7.2 assembly
recently published by RefSeq [2] on a classical differential expression workflow. We re-analyzed pub-
lished bulk RNA-seq datasets from different hippocampal regions [3,4]. We also tested the choice
of reference genome on a newly generated spatial RNA-seq dataset (10X Visium technology on hip-
pocampus sections in a rat model for mesial temporal lobe epilepsy).

We revealed that the annotations of the new Rattus norvegicus genome assembly provide an im-
provement of read mapping statistics. Besides, using the consistency and stringency metrics introduced
by Chen et al [5], we highlighted discrepancies of at least 5% in read counts when using Ensembl and
RefSeq annotations for large sets of genes (from 33.1% to 43.1% of the expressed genes in the analyzed
datasets). Interestingly, we noted that the genes whose expression quantification differ depending on
the reference genome used for read mapping tend to have longer exons in RefSeq annotations. Such
discrepancies were also found in the sets of differentially expressed genes, subsequently impacting
their biological interpretation in a Gene Ontology term enrichment analysis. With the spatial RNA-
seq dataset, the choice of reference genome also had a significant impact on the generation of count
matrices regarding both the number of expressed genes and their counts.

Overall, these results make the RefSeq annotations of the new assembly the most complete reference
genome of Rattus norvegicus species for the analysis of RNA-seq data from hippocampus tissues. The
analysis of spatial RNA-seq data with low sequencing depth can be impacted by the choice of reference
genome at the very beginning of the analysis workflow during the count matrix generation.
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Transposon sequencing (Tn-seq) is a genome-wide screening method that identifies essential genes related to

a specific phenotype or growth condition in bacteria. It consists in random transposon mutagenesis in tens of

thousand cells in parallel followed by a phenotypic screen and high-throughput sequencing [1,2]. 

The bioinformatics analysis then typically involves several steps to identify essential genes: processing the

raw sequence reads, mapping them on a reference genome, computing the fitness of each gene (including

bias correction and normalisation). Several computational methods have already been proposed to perform

those  tasks,  such  as  TRANSIT,  ESSENTIAL,  MAGenTA  or  Tn-Seq  EXPLORER.  Those  tools  can

successfully  compare datasets  between two conditions  and from DNA samples  prepared from the same

mutant pool (i.e from the same genome). However, none of them is able to deal with large projects, involving

several organisms for multiple growth conditions.

In  this  context,  we  have  developed  a  comprehensive  pipeline,  called  TnSeek,  that  covers  all  the  tasks

mentioned above for one strain in one condition, and also supports comparisons of multiple conditions and

identification of cross-species conserved essential genes. Another distinctive feature of TnSeek is that it

includes several visualisation modules that allow to follow the analysis step by step.

This pipeline is freely-available at  https://gitlab.cristal.univ-lille.fr/bonsai/tnseek as a Docker image. It  is

written in Python and R. It offers export files in BAM, BAI, CSV, GFF. To process the execution of the

pipeline (from FASTq files to predictions) and the exploration of the results, we developed two interactive

web applications. Reports in R Markdown and HTML files are generated. These two web interfaces are

implemented using  the Shiny R package and the SQLite database.

TnSeek is currently used in the TnPhyto project, whose objective is to identify the pathogenic core genome

and strain specific genes involved in the pathogenicity of three bacterial species causing plant disease in

France, Pseudomonas syringae and the pectinolytic enterobacteria, Dickeya and Pectobacterium.
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Osteosarcoma is the most common bone cancer in adolescents and young adults[1]. It is characterized by the

formation  of  tumors  on  the  metaphysis  of  long  bones  and  by  highly  heterogenous  genomic  and  transcriptomic

profiles[2], which is complicating exploratory research on this pathology. Also, osteosarcoma is known to have a mi-

croenvironment conserved through relapse[3]. Recent research on the stratification of the osteosarcoma based on the

composition of this microenvironment[4] comfort the importance of the microenvironment in this pathology.

Osteosarcoma is a rare disease[5] with a limited number of available patient samples. Therefore, bioinformatics analy-

sis, such as classic differential expression analysis, are often inconsistent, with a low signal to noise ratio and prone to

the dimensional curse.

To remediate to the dimension problematic and to study the microenvironment of this pathology, one solution is to use

Patient Derived Xenograft. In the last years, patient-derived xenograft (PDX) models have been developed to better

mimic the biology and heterogeneity of human tumors. PDX models have been shown to closely recapitulate the ge -

netic alterations present in the tumor of origin but their transcriptomic landscape has been either rarely explored or ana-

lyzed with non-standardized methodology. Tumor grafting in mice constitutes a new microenvironment to colonize

which could, alike metastatic dissemination, alter drastically the transcriptomic program of tumors and preclude to their

preclinical significance.

Here,  we propose, PDXploR a standardized method to explore the tumoral and microenvironmental  transcriptomic

landscapes of PDX samples. We present our result obtained for a deep cohort of 8 Osteosarcoma patients from diagno -

sis to relapse and their PDX avatars.
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Liquid biopsy in  oncology emerged over  the last  years  as  an efficient  non-invasive procedure to

evaluate disease progression. Through liquid biopsy, clinicians get  access to circulating molecules

originating  from the  tumor  and,  likewise,  infer  the  tumor  state  over  therapeutic  interventions.  In

Sarcoma, quantification of blood circulating tumor DNA (ctDNA) is performed by the estimation of

specific (Somatic mutation, Translocation) or global structural alterations (Copy Number Alterations)

of the tumor genome.

There, we developed and evaluated a pipeline to automatize the analysis of blood liquid biopsies from

170 Osteosarcoma patients through time. Benchmark of available methodologies to estimate ctDNA

fractions from low coverage Whole Genome Analysis (lcWGS) allowed us to optimize and automatize

their analysis and anticipate the deployment in a clinical setup. In this study, we demonstrate that

ctDNA fraction estimated at diagnosis in Osteosarcoma is a prognosis factor to predict the disease

progression  that  improve  the  current  multivariate  model  based  until  now  on  clinical  features

(Metastasis at diagnosis, Treatment response). Finally, we propose to the community a shiny interface

to predict the progression risk with their own ctDNA fraction data.
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Inter- and intra-tumor heterogeneity (ITH) are known to be a crucial determinant of therapeutic 
resistance and treatment failure, and one of the main reasons for poor overall survival in metastatic 
patients.[1] Over the last few years, ITH has been extensively described in many types of tumors with 
single-cell transcriptomics approaches. The latter make it possible to characterize all the tumoral clones 
but also to study their evolution in order to understand and predict tumor progression, metastases and 
therapeutic responses.[2] ccRCC patients with high risk of recurrence receive an adjuvant therapy to 
limit the risk of development of metastases. Nevertheless, among the patients classified as “low-risk”, 
7% will relapse during follow-up.[3,4] In this context, we developed a project aiming at studying ccRCC 
tumor cell evolution by integrating published single-cell RNA-seq (scRNA-seq) data (Young et al, 
2018) with data generated within our laboratory. After lineage analysis, we were able to identify a patient 
with several populations of cancer cells that mark the different stages of epithelial-mesenchymal 
transition (EMT) and of tumorigenesis. These cell populations were then predicted in bulk RNA-seq 
data from 525 ccRCC patients (TCGA database https://www.cancer.gov/tcga), using a deconvolution 
approach. Our first results seem to indicate a very significant association between the proportions of 
some identified cell populations with the survival of patients. Ultimately, the objective is to improve the 
prediction of the patient’s risk of relapse and to refine “low-risk” patient stratification based on cancer 
cell population proportion in the tumor with the long-term goal of adapting patient care in a personalized 
way. 
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Heat stress is one of the main limiting performance factors in the pig industry, and its importance
is expected to grow with the consequences of warming climate. Different solutions to temper the
influence of heat stress on the performance and well-being of pigs have been studied [1], and the
genetic selection appear as a potential solution. Genetic mechanisms behind heat tolerance are still
not well understood, but some differences between breeds have been shown [2], as well as an interaction
between genetic and environment [3].

This study aims to use multi-omics and multi-tissues data to understand the genetic pathways in-
volved in heat stress adaptation. To achieve this, transcriptomic data from seven tissues, metabolomic
data from four tissues and blood parameters where obtained in an experiment involving 36 pigs from
3 breeds, slaughtered before (n=18) or after a 5-d exposure to 32°C (n=18). With the aim to iden-
tify differentially expressed genes (DEG) and differentially produced metabolites, data were analysed
with a mixed model with the effects of HS conditions, breed and sire origin. Then using a sPLSda
multi-block (with the framework DIABLO of the mixOmics R package [4]) as an integrative method,
we perform a multi-tissues and multi-omics analysis to identify the interactions involved in heat stress
adaptation at a genetic level.

We identified 12912 unique DEG in all tissues. From the enrichment analysis using the R package
gProfiler [5], querying GO and KEGG databases, we have identified recurrent enrichment terms, such
as energy metabolism and cell cycle, but also tissues specific terms. Integrating data from the different
tissues, we have identified co-expression network of genes involved in heat tolerance.

In the future, we plan to complement this study with other datasets, involving longitudinal data
and larger cohort.
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Fetal overgrowth increases the risk to develop chronic diseases like type 2 diabetes and 

cardiovascular diseases later in life, but the mechanism involved remains unclear [1]. The hematopoietic 

system plays a critical role in processes like inflammation, immunity, and cardiovascular repair 

throughout life, making its progressive alteration a candidate mechanism in the development of these 

diseases[2]. Our previous work found a global DNA hypermethylation in hematopoietic stem and 

progenitors cells (HSPCs) from Large for Gestational Age neonates (LGA), supporting an early 

epigenetic alteration of the hematopoietic system [3]. 

Here, through multimodal analysis, we investigate the influence of early programming on the 

regulatory landscape of HSPCs. We added key single cell chromatin accessibility (scATAC-seq) data on 

our previous bulk DNA methylation and single cell transcriptomic analysis of LGA compared to 

appropriately grown neonates (CTRL) HSPCs. Using both TF-targets gene co-expression and TF motif 

accessibility data, we found that the EGR1-KLF2 regulatory network, known to regulate proliferation 

and differentiation of Hematopoietic stem cells (HSCs), was specifically affected by epigenetic and 

transcriptomic alterations. Indeed, this regulatory network was enriched for open chromatin regions with 

decreased accessibility, DNA hypermethylation, as well as for downregulated genes in LGA HSCs 

supporting functional consequences on quiescence regulation. Finally, we implemented a generative 

adversarial network (GAN) framework based on variational auto-encoder and batch discriminator neural 

networks [5] to improve integration of scATAC-seq and scRNA-seq data and find key cis regulatory 

elements associated with epigenetics alterations triggering transcriptional and functional changes. 

    Taken together, our study support a model where foetal overgrowth affect HSC quiescence 

signalling through an epigenetics programming of the EGR1-KLF2 related regulatory network, and 

provide an analytical tool to decipher epigenetics mechanism associated with long-term tissue 

dysfunctions and disease susceptibility. 
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The mutation in the gene isocitrate dehydrogenase 1 (IDH1) is implicated in Acute Myeloid
Leukemia (AML), as cells with the alteration abnormally produce an oncometabolite
2-hydroxyglutarate (2-HG). 2-HG was found to cause widespread changes in DNA methylation [1].
IDH inhibitors have shown good clinical response in AML patients. However, primary or acquired
resistance to IDH inhibitor therapies represent a major problem limiting their efficacy. The
mechanisms that mediate resistance to IDH inhibition are poorly understood.

To have a complete idea of the dysregulations that happen in AML cells, we need to take into
account the widespread effects of the mutation. The blockade of the differentiation that characterizes
AML is associated with epigenomic alterations that can change both DNA methylation profiles (as is
known in IDH mutants) and chromatin’s 3D organization, involving contacts between genes and their
regulatory elements. Methylation on both enhancers and promoters can repress or activate gene
expression by blocking or enhancing the recruitment of transcription factors. Here, we present an
analysis of gene expression and DNA methylation taking into account chromatin structure networks to
explore specific gene regulation mechanisms involved in resistance to IDH inhibitors.

Exploiting published 3D blood cells epigenomes, we are able to associate each group of AML
patients harboring an IDH mutation from our cohort [4] with the chromatin structure network of the
closest blood cell type. We then use the reference chromatin contact network assigned to either
responders, non-responders and relapse samples and investigate the 3D epigenome relation between
gene expression and methylation alterations.

Furthermore, we infer gene regulatory networks from gene expression data [5] and predict TF
activities [6] to reconstruct a specific transcriptional regulatory network associated with resistance.
Finally, we combine this regulatory network with a protein - protein interactions to consider further
regulatory levels. To better understand the connection between transcriptional regulation and
metabolic alterations, we will also add a layer related to metabolic pathways activity estimated by
combining gene expression data with a full genome-scale model of metabolism [7].

These different regulatory layers will be integrated into a multiplex network (a multilayer
structure where some of the nodes are in common between layers and connections between nodes in
each layer exist [8]) to find key elements that are involved in the resistance, to ultimately propose new
targets and therapeutic approaches to improve efficacy in patients.
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 Short Tandem Repeats represent 10% of the human genome. Beyond a threshold specific to each locus, 
a progressive disease manifest which very often affects the central nervous system. Repeat expansion in the 
ATXN2 gene is known to be responsible for spinocerebellar ataxia type 2, but when the expansion is interrupted 
it can cause Parkinson’s Disease (PD) 1,2. Repeat sequence expansions in PD patients have also been found in 
the ATXN3 gene. High-throughput whole exome sequencing (WES) plays an important role in the identifica-
tion of monogenic forms of PD3 but detects mostly point mutations or small insertions/deletions.  

In this context, we analyzed WES data from our cohort of PD patients enriched in familial and early-onset 
forms (under 45 years of age), previously excluded from major PD genes, using ExpansionHunter 4,5 software. 
This software allows to estimate the size of the repeats in the target genes from alignment files.  

The putative expansions were then validated by genotyping. Our cohort consisted of 827 WES of PD patients 
performed with Rochev3 (n=213), MedExome (n=171) or Twist (n=443) enrichment kits. The mean size esti-
mates of the expansions for ATXN2 (22 CAG) and ATXN3 (19 CAG) are consistent with the Caucasian popu-
lation means repeat size6,7. Our bioinformatics analysis allowed us to identify 1 patient who had a repeat size 
within the pathological confidence range (>55 CAG repeats) in ATXN3 and 3 patients with repeat sizes within 
the pathological range (>32 CAG repeats) in ATXN2, 2 of whom belonged to the same family. No pathogenic 
repeats were found on other genes with a sufficient coverage for analysis. Sequencing analysis of the ATXN2 
repeat in 3 patients has revealed the presence of 4 CAA interruptions. 

These results demonstrate the usefulness of bioinformatic detection of expansions using ExpansionHunter in 
exome sequencing data of PD patients. They also underline the fact that ATXN2 expansions with more than 
three interruptions are not a rare cause of PD, particularly among dominant families (1%  in our cohort).  
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Gene therapy is a technique that uses a gene to treat, prevent or cure a disease. The mechanism involves 
replacing a disease-causing gene with a healthy copy of the gene. Due to their natural ability to infect cells, 
vectors of viral origin are one of the most efficient methods to deliver genetic payloads into cells. In order to 
make them safe to use, most of the viral genes are removed, and the vector is modified to deliver only 
therapeutic genes. Recombinant adeno-associated viral (rAAV) vectors are considered promising tools for gene 
therapy and are already used in clinical trials and approved drugs. While rAAV is thought to be an episomal 
vector, observations have shown that it can integrate in the cell host genome at low frequency [1]. rAAV 
integrations occur randomly and contain partial elements, deletions and rearrangements of the vector [2]. 
Rodent studies have shown that integration can occur in tumors, suggesting some link between rAAV 
integration and genotoxic events [3]. For now, there is no evidences of genotoxicity in humans, but a study 
reported the association between wild-type virus integration and insertional mutagenesis of cancer-driver genes 
in tumors [4]. 

To perform integration site analysis, popular methods based on short-read sequencing like LAM-PCR [5] 
or target enrichment sequencing [6] are available. They rely on the detection of chimeric read (vector-host) to 
identify an integration site, but they do not give any information on the structure of the vector integrants. Other 
methods based on long-read sequencing like PacBio or Nanopore can overcome this limitation but lose 
accuracy and are expensive. New methods, based on linked-read sequencing like TELL-Seq [7], may provide 
the long range information missing in short-read sequencing. TELL-Seq relies on the use of a unique barcode 
to tag every short-read generated from the same long DNA molecule. This allows to deduce that those reads 
came from the same molecule. 

This work aims at better characterize integration events with the help of the linked-read sequencing to 
overcome the biases of the standard methods. The samples used are coming from mice that received AAV 
vector-based gene therapy treatment for the correction of a metabolic liver disorder with underlying tumor 
development. We used TELL-Seq method to compare the integration profile of rAAV in tumor and non-tumor 
samples in order to determine the vector elements of the viral genome involved in these integration events. We 
identified some possible integration sites but the validation seems complicated. Nevertheless, this technique 
has some potential and further work is still ongoing to overcome the existing limitations. 
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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen that gave rise to the 

COVID-19 outbreak [1]. Originally discovered in Wuhan, China, in late December 2019,  the epidemic was 
quickly labeled a pandemic by the World Health Organization (WHO) in March 2020. The SARS-CoV-2 has  

turned out to be an extremely unstable virus [2]. Thus, since December 2020, four new variants of the SARS-
CoV-2 virus have emerged in the UK, South-Africa, Brazil, and India. Each variant was classified one after 

another as a Variant of Concern (VOC) by the WHO. In late November 2021, a fifth variant, called Omicron, 
arose and  then was  classified along with its five sub-lineages as a  VOC by the WHO. To date, the most 

infectious  sub-lineages  of  the  Omicron  variant  are  BA.1  and  BA.2  [3].  As  by  SARS-CoV virus,  the 
Angiotensin Converting Enzyme II (ACE2) is used as a host-cell receptor by SARS-CoV-2 virus [4]. Indeed, 

the entry of coronaviruses is usually mediated by their Spike  (S)  protein  that forms homotrimers. Each S 
monomer  carries  a  conserved  Receptor  Binding  Domain  (RBD)  that  interacts  directly  with  ACE2  [5]. 

Despite the design of  vaccines and monoclonal antibodies  to prevent SARS-CoV-2 Spike from interacting 
with ACE2, no treatment has been found to treat the COVID-19 disease regardless of the causing variant [6]. 

To that extent, several structural studies, including experimental and computational methods, have been used 
in  order  to  shed  light  into  the  binding  interface  of  SARS-CoV-2  Spike  RBD and  ACE2  proteins  [7]. 

Specifically, Molecular Mechanics  Generalized-Born Surface Area free-energy calculations, conducted on 
Molecular Dynamics (MD) trajectories of models of SARS-CoV and SARS-CoV-2 Spike RBD, each in 

complex with ACE2, allowed to study their conformational space, as well as to predict the free-energies 
associated with ACE2 binding.  Results showed that  SARS-CoV-2 Spike RBD binds ACE2 with a higher 

energy than SARS-CoV. Similarly, our recent computational studies showed that, in comparison to the Wild-
Type (WT) strain of SARS-CoV-2, the VOC turned out to bind ACE2 with free energies that increase with 

their  respective date  of  appearance.  To that  extent,  we  used MD  simulations  and Molecular  Mechanics 
Poisson Boltzmann Surface Area (MM-PBSA) free-energy calculations to investigate the structure [8] of the 

complexes  formed by  ACE2 and the  RBD of  BA.1  and BA.2  Omicron sub-lineages.  Altogether,  these 
computational approaches allowed to determine the molecular determinants that underlie the higher binding 

energies of each BA.1 and BA.2 variants of SARS-CoV-2 Spike RBD protein with ACE2 in comparison with 
the WT. 
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1. Introduction
A large fraction of the non-coding human genome has been shown to be transcribed [1]. These
transcripts -Enhancer RNAs, ncRNAs or transposons to name a few- have been shown to play a key
role in cell identity as well as in several diseases such as cancers. However, despite this biological and
clinical relevance, the global identification and functional characterization of these RNAs is quite
behind its coding counterpart. Most of the sequencing techniques employed to detect non-coding
transcripts directly target the non-coding RNAs, which are usually less stable and less abundant than
coding RNAs. Instead, we use an indirect approach, where we target the enzyme responsible for the
transcription, the RNA Polymerase II (Pol II), using Chromatin Immuno-Precipitation Sequencing
(ChIP-seq).

2. Results
We annotated and re-analyzed uniformly all publicly available Pol II ChIP-seq experiments (906 after
quality control), from ENCODE [2] and GEO in order to establish a catalogue of Pol II bound regions
(named Pol II consensus) of the genome. More precisely, we create a binary 2D matrix where rows
correspond to the 906 samples and columns to the Pol II consensuses. For this study, we only focus on
intergenic Pol II consensuses (excluding promoters, exons and introns).

Using an unsupervised graph clustering approach, we grouped Pol II consensuses based on their
binding patterns across experiments. We identified groups of Pol II bound regions which appear to be
highly specific to certain cell/tissues types. The biological relevance of these clusters is confirmed by
strong enrichments in biological and clinical features for each cluster, such as enrichments in causal
SNPs for tissue-related traits.

Next, we observe that in RNA-seq experiments, a majority of the intergenic signal is located at the
previously identified Pol II consensuses, which suggests that our Pol II probes are good sampling
points for studying the intergenic transcription. Using only the RNA-seq signal located at the
intergenic Pol II probes, we are able to discriminate between different biological conditions in three
different large scale RNA-seq datasets originating from TCGA [3], GTex [4] and ENCODE [2] . In
the TCGA dataset, we identified intergenic markers associated either with survival or the tumour state
of the tissue, at a per-cancer scale but also at a pan-cancer level.
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1. Introduction 

Nanopore sequencing (Oxford Nanopore Technologies) produces long-read data that have great potential 
for diagnoses of cancer [1,2,3]. Indeed, the library preparation is simple and fast (1h30) and long reads can be 
used to identify a wide range of genetic alterations (structural variants, copy number variation, variants, variant 
phasing) in addition to a direct estimation of DNA methylation levels. So far, its use in the clinical diagnosis 
remains limited by the relative low sequencing throughput and the large amount of material required to achieve 
sufficient read depths [3]. These limitations can be overcome by using adaptive sampling to achieve better 
sequencing coverage in targeted regions without additional sample preparation such as capture or PCR 
amplification [4]. Nanopore adaptive sampling relies on the ability to read a DNA sequence in real time: if the 
read does not match the sequence of interest (deducted from the 500 first bases), the DNA molecule is ejected, 
leaving the pore free for another DNA molecule in the sample. Otherwise, the sequence is recognized and the 
sequencing continues. At Institute Curie, adaptive sampling is used as a backup to improve a diagnosis when 
geneticists are facing the inherent limitations of short reads sequencing. The Clinical Bioinformatics Team 
provides NanoCliD (Nanopore Clinical Diagnosis), a toolkit designed to capture genomic alterations including 
methylation profile in nanopore adaptive sampling data. 

2. Material and Methods 

Implemented with Snakemake, the 
toolkit NanoCliD processes Nanopore 
adaptive sequencing (targeting ~500 genes 
and surrounding regions). Basecalling is 
performed with guppy leading to FastQ 
files generation. R eads are then 
mapped to reference genome using 
minimap2. Four calling analyses can be 
performed from the BAM and FastQ files 
obtained from previous steps. Structural 
variant (SV) calling step is made of four 
tools listed in figure 1 for which outputs 
are merged with SURVIVOR. VCF is then 
annotated with AnnotSV and a circos plot 
is generated based on reported SVs. 
Deeptools and R package QDNASeq are 
used to call CNVs from BAM files. These 
CNVs are then summarized as a single pan-genomic CNV profile. The three tools listed in figure 1 perform 
variant calling. Only PEPPER and NanoCaller phase the variants. VCFs are merged using an in-house 
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python script and SnpEff annotates the resulting VCF. Variants are then reviewed manually with IGV. 
Finally, methylation calling based on FastQ and BAM files is achieved with Nanopolish.  

3. Results 

NanoCliD constitutes a real help for clinical diagnosis as illustrated through the following 3 case studies.  A 
first example shows the contribution of this multimodal toolkit for a tumor of a young patient whose diagnosis 
was difficult in anatomical pathology. Moreover, no characteristic gene fusion was detected in this tumor using 
short-read RNAseq sequencing. After adaptive sequencing, NanoCliD was able to classify this tumor as an 
ependymoma with a YAP1-MAMLD1 fusion based on its methylation profile. The fusion was confirmed by the 
4 structural variant detection tools. The reads supporting the fusion were validated manually on IGV. A CNV 
could also be detected in this tumor with a deletion of chromosome 22, a well-known alteration in 
ependymomas.  

A second example is a patient suffering from thrombotic microangiopathy. The causing mutation is a 
missense variant in CFH gene and was reported using NGS short reads in three weeks. Using adaptive 
sequencing and NanoCliD, only three days were needed to report this missense variant. Besides, three other 
variants of interest detected in short reads were reported. Thanks to PEPPER and NanoCaller, the variants were 
phased showing that two variants belonged to the same haplotype. Time efficiency is crucial in diagnosis as 
treatment (and its urgency) can greatly differ depending on etiology. Here, NanoCliD drastically reduced the 
diagnosis time compared to NGS short reads. 

The last example is a duplication of exons 18 to 20 of BRCA1 reported in NGS short reads. This 
rearrangement could lead to a mammary tumor. Only long reads sequencing was able to unravel a tandem 
duplication, classified as a pathogenic mutation. Adaptive sequencing and NanoCliD detected this event which 
was then reviewed manually using IGV, highlighting a tandem duplication leading to the pathogenic 
classification of the variant and thus improving the genetic counseling for the patient and her family. 

4. Discussion 

Nanopore adaptive sampling and NanoCliD improve clinical diagnosis by providing results for 
methylation profile, variant phasing, SVs and CNVs. Currently, only cases already analysed in short reads are 
passed through NanoCliD. Although NanoCliD is a diagnostic pipeline that allows to confirm/infirm a 
hypothesis established with other methods, it eventually could be used to detect SVs and variants without prior 
knowledge. For that purpose, the priority would be to reduce the noise generated by the variant callers. By 
using samples that have been sequenced with both long reads and short reads, we expect to be able to refine 
our filters to improve the tuning of NanoCliD's tools.   

Allele phasing is also performed inside the pipeline. Fields in VCF such as PhaseSet ID can be used to 
highlight variants belonging to the same haplotype. Thus, haplotype reconstruction could be systematically 
provided in the final variant report. Another promising enhancement of NanoCliD could be promoter 
methylation analysis. Promoter methylation is involved in gene silencing in different cancer types [5]. 
Nanopolish generates the methylation levels of sufficiently covered CpG sites. This information could be used 
to investigate promoter methylation for a range of genes of interest. 
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To make the process of transcriptomics data easier, and to guarantee the reproducibility of the
analyses, we have developed AskoR, which is an R library to achieve a suite of statistical analyses
and graphical outputs from gene expression data obtained by high-throughput sequencing (RNA-seq).
From raw counts generated by mapping and counting tools, it allows to filter and normalize data,
to check the consistency of samples, to perform differential expression tests, to execute GO-term
enrichments, and to define co-expression clusters corresponding to expression patterns between ex-
perimental conditions. The edgeR package [1] was chosen for differential expression analyses, topGO
[2] for GO-term enrichments and coseq [3,4] for co-expression clusters identification. Users can de-
fine a large number of parameters (about 60) as, for example, significance thresholds for statistical
tests, algorithms for each tool or the generation of specific graphs. The tool has the advantage of
being flexible : on the one hand, novices users can apply the default parameters defined on the basis
of those commonly used, and on the other hand, experienced users can go further in the analyses
by adapting these settings. All analysis steps automatically and quickly generate a large number of
tables and figures in an output folder as summary tables for each step, expression heatmaps, volcano-
plots, Venn diagrams or Upset graphs (less than 25 minutes for 16 transcriptomes and 20,000 genes).
AskoR can be downloaded from Askomics GitHub (https://github.com/askomics/askoR) and
used in the R environment or is directly accessible via a Galaxy portal on the GenOuest platform
(https://galaxy.genouest.org). It is also planned to make it available on CRAN and allow its deploy-
ment on any Galaxy platform. Finally, AskoR produces outputs compatible with the AskOmics tool
[5] developed to integrate complex data.

This tool is currently used for many different transcriptomics analyses. As an example, recently, it
has been used for testing the transcriptomic fingerprint in Brassica napus and the pathogen responsible
for clubroot Plasmodiophora brassicae when interacting with different levels of soil microbial diversity
[6]. AskoR can therefore be used to analyze gene expression from RNA-seq experiments but can also
be extrapolated to SmallRNA-seq or metagenomics data, as well as any other experiment that leads
to the generation of a count table (excepted GO-term enrichment analysis).
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1. Introduction
ReMap[1] is a resource of transcriptional regulators binding regions available in four different
species: Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, Homo sapiens. Our work
aims to combine all publicly available ChIP-seq of transcriptional regulators (TRs) and create a
catalog of manually curated and uniformly processed datasets. By its size and complexity, the
ReMap catalogs allow a better understanding of the regulatory landscape. Currently we have
annotated, curated, and uniformly processed a total of 8,103 ChIP-seq datasets for the human
genome covering a total of 1,210 transcriptional regulators across 182 million peaks. The mouse
catalog also contains a large amount of experiments with 5,503 datasets of 648 transcriptional
regulators across 123 million of peaks.

2. Materials and Method
For the four species available in our ReMap catalog the same steps were used. The ChIP-seq
datasets were retrieved from GEO[2] and ENCODE[3]. To create this regulatory atlas, we have
manually curated and uniformly processed the ChIP-Seq datasets. Due to the heterogeneity of
datasets, the pipeline assesses the quality of the datas and filters them accordingly . The pipeline
used for the processing, filtering and control quality is available on github
(https://github.com/remap-cisreg).

The four regulatory catalogs are available at https://remap.univ-amu.fr but are also browsable as
native tracks in UCSC genome browser. Complex filtering features on targets or biotypes  can be
applied to improve visualization of ReMap peaks.

3. Conclusion
The ReMap database provides a high quality regulatory catalog in four species, by manually
curating publicly available ChIP-seq datas, uniformly processing them and applying quality filters.
Those datas are easily browseable on our website, and can also be visualized on UCSC genome
browser.
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L’identification de variations structurales (VSs) dans des données de reséquençage de génomes est un 

processus difficile. Ce type d’analyse qui s’est répandue avec l’avènement du séquençage massif et les NGS 

(New Generation Sequencing) s’est heurté à la présence de répétitions génomiques. Si on ne considère que le 

cas des SINEs (Small INterspersed repeat Elements) et LINEs (Long Interspersed Nuclear Elements), ces types 

d’éléments répétés représentent à eux seuls respectivement 13,1% et 20,4% du génome humain [1]. Que ce 

soient des duplications ou des régions de faible complexité, la fiabilité de la détection de VSs dans ces régions 

répétées est très faible, principalement en raison des faux positifs induits par les ambiguïtés d’alignement 
quand les régions répétées [2, 3] sont plus grandes que la taille des lectures de séquençage (50-300pb). L’usage 

des longues lectures (jusqu’à 1Mb) d’Oxford Nanopore Technologie (ONT) [4] permet de minimiser ce 

problème. Nous présentons ici un pipeline d’identification et d’expertise de VSs dans du reséquençage de 

génome complet dans la technologie ONT. Dans un projet de recherche de mutations responsables de maladies 

rares chez 5 patients, nous avons mis en évidence que les lectures de taille inférieure à 5kb étaient génératrices 

d’un bruit non négligeable pour l’identification de VSs dans une approche mapping [5]. Par ailleurs, cette 

approche étant contrainte par l’utilisation d’une séquence de référence, nous avons complété notre pipeline par 

une approche assemblage de novo [6] dans l’objectif de capter des VSs échappant à l’identification dans 

l’approche mapping de par leur trop grande différence avec la séquence de référence. Ces variants structuraux 

stricto sensu sont en partie des variants complexes, c’est-à-dire des compositions de variations simples que 

sont les délétions, duplications, inversion et translocations. Non seulement l’évaluation de la contiguïté des 

assemblages est très bonne (10.2Mb < N50 < 16Mb), mais en plus, l’analyse permet d’identifier des VSs 

spécifiques. Cela montre que l’utilisation de l’approche assemblage permet de progresser vers une 

identification exhaustive des VSs. Minimiser le nombre de faux négatifs est crucial, en particulier dans les 

projets de recherche de mutations responsables de maladies rares. Malheureusement, trouver de telles 

mutations n’est pas direct car de nombreux variants structuraux, principalement populationnels, existent entre 

le génome de n’importe quel individu et la séquence de référence. En dernière étape de notre pipeline, afin de 

cibler des VSs potentiellement responsables de la pathologie étudiée, nous générons des fichiers utilisateurs 

finaux dédiés à l’expertise des listes de VSs pour générer des listes de bons candidats selon différents critères.  
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Dendritic cells (DCs) are innate immune cells specialized in sensing danger signals and translating this

information for the activation and functional polarization of effector immune cells, to fight infections and
cancer. DCs are functionally plastic and this functional plasticity of DCs results from two key characteristics.

First, DCs encompass distinct cell types that are specialized in different functions. Second, each DC type is
itself plastic. It expresses a specific array of innate immune recognition receptors each able to sense different

input signals. Depending on the precise combination of input signals received, a given DC type will undergo
a particular activation state, to deliver a customized set of output signals activating effector immune cells in

the way the best suited to fight the threat faced by the organism. 

I  developed a pipeline using previously existing tools  for  better  identification of  DC types  and their

activation states upon analysis of single cell RNA sequencing (scRNA-seq) data [1]. This pipeline allowed to
efficiently  separate  type  1  conventional  DCs  (cDC1)  from type  2  conventional  DCs  (cDC2) , which  is

notoriously difficult to achieve at the single cell level when using only gene expression data [2]. It also
helped understanding the effect of  different  pathophysiological  conditions on the activation trajectory of

cDC1.

Then this pipeline was used to better understand the role of cDC1 in a mouse model of melanoma. I

focused on analyzing scRNA-seq data of tumor-associated cDC1 of WT or mutant genotypes. Coupled with
wetlab  experiments, this  computational  analysis  contributed  to  determine  how  NF-κB-dependent IRF1B-dependent  IRF1

activation in cDC1 drives their antitumor activity [3].

Using my expertise in scRNA-seq data analysis combined with literature mining, I aim at generating a

computational model of the molecular network regulating the production of type I interferon (IFN-I) by
plasmacytoid  DCs  (pDCs) during  a  viral  infection.  pDCs  are  professional  producers  of  IFN-I.  This

production is tightly regulated at single cell level (~10-15% of IFN-I-producing pDC), in space (spleen) and
time  (peak  at  36  hrs).  Failure  of  this  tight  regulation  could  lead  to  various  autoimmune/inflammatory

diseases, including Lupus erythematosus, psoriasis or Sjögren syndrome. Hence, better understanding the
mechanisms regulating pDC IFN-I production could help treat these diseases. I am constructing regulatory

networks  between the  molecules  known to  modulate  pDC activation  based  on  literature  mining.  I  will
complete them with candidate novel pathways inferred from gene regulatory network (GRN) analysis of our

pDC scRNA-seq data from mice infected with murine cytomegalovirus [4]. Finally, I will design a logical
model based on this regulatory network, using Ginsim or Bonesis, to infer the various activation states that

pDC  can  adopt  during  the  course  of  their  activation  for  IFN-I  production.  This  model  will  allow  us
predicting the outcome of define perturbation of the network, which my colleagues will test experimentally,

to enable iterative cycles of model refinement to improve data fitting.
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Long-read sequencing has recently been incorporated into single-cell RNA sequencing studies.  Compared to

the standard Illumina short-read library that primarily captures abundance information, Nanopore sequencing

has several  advantages  :  it  can produce  reads of several  kb [1],  it  provides  more precise  transcriptome

mapping/assembly and detects complex isoform variants.

In the 10xGenomics Nanopore data analysis, a key challenge is the relatively low sequencing accuracy (~

95% per base) which makes it difficult to detect the cell barcodes and UMI information in each Nanopore

read [1].  To deal  with  this  issue,  several  bioinformatics  approaches  have been developed using  hybrid

sequencing to guide the allocation of Nanopore reads using Illumina data.

We  performed  a  benchmark  analysis  of  the  available  Single-Cell  long-read  hybrid  sequencing  based

pipelines: Sicelore [2], Snuupy [3], Scnapbar [4], and Flames [5]. We first compared the performance of

each pipeline for barcode-UMI detection and assignment, the ability of the pipeline to handle a large set of

data sequenced on a PromethION, and the biological results at the gene level compared with Illumina results.

We then selected the best tools to compare biological results at the transcript level. 

Our  results  showed that  Snuupy outperforms Sicelore,  Flames  and  Scnapbar  in  terms  of  barcode-UMI

assignment. The polyA-independant algorithm of Snuupy assigns around 35% more reads than Sicelore on a

MinION dataset. This UMI count increase allows us to obtain biological results closer to Illumina results

than sicelore  at  the gene level.  Sicelore  showed good performance processing a  large set  of  data  from

PromethION where Snuupy could not achieve its process, suggesting it cannot be used without important

modifications of its code. The results produced by Flames on the assignment part were not convincing but as

it is designed for isoform detection, we are now testing its isoform detection module coupled with Sicelore

and Snuupy. 

Our  aim  is  to  select  the  best  features  in  each  pipeline  to  ultimately  develop  an  optimal,  scalable  and

reproducible pipeline to characterize transcript isoforms in single-cell data, using hybrid sequencing. We also

foresee  that  the  announced  improvement  of  Nanopore  sequencing  accuracy  may  leverage  the  need  of

Illumina sequencing.
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1. Introduction
The last few years have seen the explosion of sequencing projects, leading to a considerable increase of

genomes available in public databases. Comparative genomics approaches now use hundreds of genomes to
analyze the diversity of a species. Many studies focus on the overall gene content of a species, the
pangenome, to understand its evolution in terms of common and variable genes with regard to
epidemiological or environmental data [1]. Nevertheless, the processing of such a mass of data imposes a
paradigm shift in knowledge representation and in the algorithms used [2].

In this context, we developed PANORAMA, a bioinformatics toolbox, including new methodological
developments for the comparative study of pangenomes.

2. Methods
PANORAMA benefits from methods for the reconstruction and analysis of pangenome graphs, thanks to

the PPanGGOLiN software suite (https://github.com/labgem/PPanGGOLiN) [3], particularly for the
identification of regions of genomic plasticity (RGPs) and their segmentation in conserved modules, with the
panRGP [4] and panModule [5] methods. PANORAMA allows inter-pangenome analysis, relying on the
exploration and comparison of RGPs and modules predicted in different species. Moreover, the tool
proposes functional annotations of pangenomes families to provide an identification of functional systems, as
secretion or conjugation system.

3. Results
PANORAMA offers rapid and easy to use comparative analyses of pangenomes on several thousand

genomes of different species. PANORAMA will help to understand the adaptive potential of bacteria and,
with the exploration of functional modules in different species, provide a better understanding of the
evolutionary dynamics behind the metabolic diversity of microorganisms.
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Metabarcoding is the large-scale taxonomic identification of complex environmental samples via analysis 

of DNA reads of one marker gene (16S, ITS, 18S, COI…). 
The aim of metabarcoding analysis is to provide a table of abundance of OTUs/ASVs, as close as possible 

to the species, per sample as well as a descriptive statistical analysis of the composition of the targeted 

microbial population. The FROGS software offers such results [1, 2]. The different tools developed within 

FROGS allow users to process their data in command lines or via a user-friendly Galaxy interface and to obtain 

different graphical and descriptive outputs. 

Metagenomics analysis allows the sequencing of all the DNA contained in a sample. It gives access to the 

functional potential of the species present in the environment [3]. Unlike metagenomics, metabarcoding does 

not provide these functional profiles of a microbial population, by being restricted to one marker gene. 

However, algorithms have been developed to bypass this restriction and obtain a prediction of the functional 

potential of a sample, at low cost. For this purpose, PICRUSt2 has been commonly used these last years [4]. 

Firstly, PICRUSt2 places the marker gene sequences (16S, ITS or 18S) of interest into its reference tree, that 

is used as the basis of functional predictions. After, it predicts number of marker and function copy number in 

each OTU/ASV. Then, for each sample, it calculates functions abundances and finally, pathway abundances 

are inferred, based on functional profile. 

The plus of FROGS 4.0: additional outputs to the original PICRUSt2 tools that will guide users in the 

correct interpretation of their data and an ease of use thanks to the possibility of running these tools via Galaxy. 

Some "hidden" PICRUSt2 outputs are also exploited (reporting incongruence between taxonomic affiliations, 

NSTI threshold confidence indicator, decision support graphic to help choosing the NSTI threshold ...). In 

keeping with the FROGS philosophy, graphic outputs are also displayed to make the experience intuitive. 
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Whole DNA shotgun sequencing of environmental samples allows to study their taxonomic composition and 
their functional profiles. Recently, advances in sequencing technology and associated cost reductions allow 
the use of long high fidelity reads (HiFi) in metagenomics.  
 
We are developing a complete, scalable, easy-to-use and reproducible workflow (with nextflow and 
Singularity), metagWGS, able to process short Illumina and long HiFi PacBio reads from shotgun 
metagenomics data. It provides (i) contig assemblies, (ii) syntactic and functional annotations of genes, (iii) 
taxonomic affiliations of reads and contigs, (iv) a counting table of reads per non redundant gene and (v) 
contigs binning to obtain Metagenome-Assembled Genomes*. 
The workflow begins by preprocessing steps that clean raw data from adapters, low quality reads and the host 
reads. We control the quality of the reads with FastQC. The taxonomic classification of reads uses Kaiju in 
order to have a first overview of reads. The assembly is made by metaSPAdes or megahit for short reads and 
Hifiasm or metaFlye for long reads to generate contigs for each sample. This assembly can be realized per 
sample or as a co-assembly of several samples*. 
Resulting contigs are annotated with Prokka. ORFs are clustered with CD-HIT using a 95% sequence identity 
cutoff to remove redundancy and generate a uniq gene catalog between samples. Reads are mapped back to 
contigs and featureCounts is used to count the reads overlapping annotated genes. The raw count table gathers 
the number of reads aligned on each gene for each sample. DIAMOND is used for the taxonomic affiliation 
of contigs versus nr database. 
The binning step is being developed/implemented for both short reads and long reads assemblies. 
At the end, MultiQC produces a  report integrating all step global results. 
We used metagWGS on several type of metagenomic data, we will show some results to illustrate the type of 
figures and tables obtained. We aim to provide training and support in the use of this workflow in the near 
future.  
 
MetagWGS is available on https://forgemia.inra.fr/genotoul-bioinfo/metagwgs (GNU GPL License) with a 
complete and up to date documentation. 
 
* in development at time of writing of this abstract. 
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Abstract:  

Prokaryotes (bacteria and archaea) are a critical component of the world ocean microbiome, and are classi-
cally divided between those having a true planktonic lifestyle (‘free-living’) and those associated with or-
ganic particles (‘particle-attached’). Prokaryotes, however, thrive across all planktonic size fractions up to 
several centimetres, where they likely interact with eukaryotes in many, largely unknown ways, from para-
sitism to strict mutualism. We present here a unique global ocean metabarcoding dataset (16S rRNA gene) 

covering 1,131 water samples collected across 148 globally distributed Tara Oceans stations, 3 ocean depths,

and 5 organismal size fractions from 0.2 µm to 2 mm. We describe highly diverse communities (>1.2 million
prokaryotic ASVs) that we classified according to a newly defined plankton size index (PSI), and clustered 
them into evolutionary groups with consistent PSI using phylofactorization. We show that the prokaryotic 
communities from different size fractions have distinct patterns of diversity, evolution and environmental 
drivers. We further demonstrate that a significant proportion of the bacterioplankton, previously considered 
as ‘particle-attached’, actually represent microorganisms closely associated with eukaryotes in putative sym-
biotic relationships. This unprecedented dataset provides a first baseline description of the microbial plank-
ton diversity in the world ocean and suggests the prevalence of interactions within marine microbial commu-
nities.
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Identifying fluxes of micro-organisms between successive compartments of an agrifood chain (soil,
grass, litter, cow’s feces and rumen, cheese) is important to understand and control cheese production. A
first step to identify shared micro-organisms is to perform a taxonomical assignation at the species level.
However, the sub-species / strain resolution is very relevant for the precise analysis of the assembly process
of microbiota across habitats. In order to study strain fluxes, and take into account intra-species
polymorphism, we choose an approach based on mapping metagenomic reads using the BWA-MEM tool
[1] on a catalog of reference genomes to identify shared nucleotidic polymorphism across samples in our
various ecosystems. The use of reference genomes instead of metagenomic assembled genomes allows
capturing polymorphisms for more species than only the most abundant, and enables comparison across
multiple datasets using a common reference.

Construction of a genome reference database is a key part of our analysis framework and must be tailored
to the ecosystems under study. We will present the construction of a dedicated catalog based on the RefSeq
[2] database with the addition of relevant genomes from different origins and projects to complete our
database: metagenomic assembled genomes (MAGS) from previous experiments, and microbial genomes
isolated from from cows’ rumen and feces, and cheese. In particular, the species in the reference catalog
must be different enough to avoid ambiguous mapping of the metagenomic reads, which requires
aggregating similar genomes and choosing a representative for groups of aggregated species. Once the
metagenomic reads mapped on a common reference, we will strive to reconstruct the various strains present
in an ecosystem for the most abundant species by adapting existing methods (e.g. DESMAN [3]). Wherever
coverage is insufficient to completely resolve strain genomes, we will use shared nucleotidic polymorphism
between samples to compute similarity indices, based on Nei’s distance [4], adapted to metagenomic
samples.
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Full-length 16S rRNA gene long-read sequencing offers the promise of species identification of
bacteria. However, recent sequencing technologies such as MinION™ (Oxford Nanopore Technologies)
exhibits high error rates, preventing high quality clustering and taxonomic assignation. No consensus
methodology to analyze such data is yet established, but new nanopore-specific tools are emerging. In
this work, we aim to optimize this process by comparing a classic OTU-based with a nanopore-specific
approach for read clustering. For the purpose of assigning clusters to species-level, we also tested out
different taxonomic assignation methods and databases.

The metagenomic data used came from a laboratory experiment where full 16S rRNA genes present
in the carcass of Aedes albopictus mosquitoes were sequenced by 1D MinION™. We ran a typical OTU-
based approach using mothur [1], preceded by Canu’s [2] error-correction, that we compared to a 16S
rRNA nanopore-specific approach with NanoCLUST [3]. Species of clusters were identified by BLAST,
LCA and Näıve Bayesian Classifier, against the RefSeq and SILVA databases. For each reads, their
cluster and taxonomic assignation with the different methods were compared.

NanoCLUST was more efficient in the clustering than OTU-based analysis. Species level assig-
nation showed disagreement between classification approaches and databases, pointing out the need
for further analysis to confidently identify species. Full-length 16S rRNA gene sequencing did allow
species-level identification in some, but not all, cases. Out of the four biggest clusters, the best ap-
proach allowed to identify Wolbachia supergroup B and Serratia marcescens with accuracy, but failed
for another Wolbachia cluster, and an Asaia cluster due to lack of variation in the 16S rRNA gene.

Altogether, our study highlighted the relevance of nanopore-specific tools to cluster and infer
species assignation in long-read amplicon-based metagenomics studies, as well as the importance of
the choice of the database and taxonomic assignation method.
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1. Introduction

By collecting and comparing all the genomic sequences of a species, pangenomics studies focus on
overall genomic content to understand species diversity in terms of core and accessory parts. The core
genome is defined as the set of genes shared by all the organisms of a taxonomic unit (generally a
species) whereas the accessory part is crucial to understand the adaptive potential of prokaryotes and
contains genomic regions that can be exchanged between strains by horizontal transfers.

Pangenomic approaches can be useful to understand microbial diversity, as the genetic varieties within
a particular species can explain the phenotypic differences between groups of individuals. Indeed,
comparisons of groups of genomes from individuals can raise links between the presence or absence
of accessory genes and specific traits, which are helpful for example for diagnosis and prognosis.
Moreover, advances in the methods of microbiota analysis based on shotgun sequencing can shed
light upon these variations directly from samples comprising species that are hard to isolate.

Extending the PPanGGOLiN tool based on a pangenome graph framework, we propose to identify
gene families contrasting between specific conditions. This identification can either be achieved by
tagging the phenotypes of genomes belonging to the pangenome graph or directly by mapping reads
from groups of samples over the pangenomes.

2. Method
Pangenomes are often modeled as binary presence/absence matrices, where the rows correspond to

gene families and columns to the genome (1 in case of presence, 0 in case of absence). By specifying
groups of genomes associated with specific conditions, it is then possible to identify contrasting
families between these conditions through classical statistical approaches.

Moreover, by mapping metagenomic reads belonging to specific conditions, it is possible to infer
the occurrence of genes of the pangenome in the samples in order to obtain a binary presence/absence
matrice where the rows still correspond to families but where columns indicate the samples.
Therefore, by applying the same statistical approaches as for the genomes, it is possible to determine
the families explaining a particular contrast of phenotypes between samples.

3. Results
We first applied our approach to a dataset of genomes from antibiotic-resistant strains compared to

sensitive ones in order to identify the families associated with this resistance. We also test our
metapangenomics approach on fecal microbiota of patients with diseases compared to healthy controls
using shotgun metagenomics. Thanks to the PPanGGOLiN features, it is then possible to explore the
genomic contexts of these highlighted families through the visualization of the pangenome graph.
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Context

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with no effective

therapy to date.  They mainly occur in patients with Neurofibromatosis Type 1 (NF1), a genetic

disorder caused by loss of functions of Nf1 gene in Schwann cells. MPNSTs originate from benign

nerve sheath tumors called plexiform neurofibromas (pNFs). Progression of pNFs into malignancy

is preceded by a transient state, called dysplastic NF (dNF). While dNFs are present in about half of

NF1 patients, they rarely transform into malignancy. Presumably, the capacity of dNFs to become

malignant  is  dictated  by  the  acquisition  of  genetic  and epigenetic  alterations.  Our  team  has

developed a mouse model (Nf1-KO) that recapitulates the development of pNFs and their malignant

transformation. My project aims to apply multi-omics approach on tumors from Nf1-KO mice and

from NF1 patients to  decipher molecular events  underlying malignant transformation. Currently,

single-cell RNA sequencing (scRNA-Seq) datasets are available.

Cell type annotation at a single cell level

NFs and MPNSTs are made from a variety of cell types, whose heterogeneity reaches a maximum

during dysplastic  state.  To study the cross-talks  between these  populations,  identifying them is

crucial. To our knowledge, there is no specific signature in common public databases to identify

NF1 tumor cells. Previous results of our lab led to the identification of a few markers for several

cell types forming the tumor. Moreover, all Nf1 mutant cells in the Nf1-KO mouse model can be

easily identifies thanks to expression of the Tomato fluorescent reporter.

To strengthen the signatures associated with each tumor forming population, we used our mouse

datasets to extend our pre-existing lists of markers. We further define negative signatures as the

union  of  all  positive  markers  for  all  other  cell  populations.  On  this  basis,  we  attribute  two

expression scores to each cell and each cell type, using Seurat’s AddModuleScore [1], for positive

and  negative  markers,  respectively.  The  difference  between  these  two  scores  then  reflects  the

possibility of a cell to belong to the corresponding cell type. Hence, each cell can be annotated with

the cell type corresponding to the highest score, yet keeping track of potential overlapping profiles.

This method is performed at a single cell level,  and does not include any clustering  step.  The

annotation runs within hundred seconds, on 50 000 cells issued from Nf1-KO nerve sheath tumors.

We checked known markers expression to validate the automatic annotation of stromal cells, and

the expression level of Tomato for tumor cells. All immune cells were further annotated thanks to

the Tumor Immune Cell Atlas [2], with consistent results. The algorithm seems promising on NF1

patients datasets, although no specific markers are known to identify tumor cells to date.

Prospects

Our  next  goal  is  to  identify  tumor  subpopulations  and  assess  their  correlation  with  tumor

malignancy. This should allow to identify actionable targets involved in malignant transformation.
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Marine plankton communities are composed of microorganisms in perpetual interactions, which
play an essential role in the functioning of our biosphere as they contribute to the regulation of
major biogeochemical cycles, support half of the primary production, and form the basis of the food
chain sustaining the global marine trophic network [1]. Increasing acidification and warming of the
surface ocean have been associated with significant transformations of these plankton communities,
impacting primary production, diversity and species biogeography [2]. The RCP8.5 scenario (high
emission future without effective climate change mitigation policies) of the 2013 IPCC report [3]
predicts a temperature increase of 6°C by the end of the century with a further decrease in pH of
0.3 to 0.4 units [4]. Such climate transformations could compromise the support of environmental
functions by plankton communities, ultimately affecting the entire biosphere [5].

Predicting and characterising the nature and magnitude of future plankton ecological and func-
tional responses has motivated the development of Species Distribution Modelling (SDM), a statistical
framework that aims to model and predict the biogeography of plankton species in relation to their
environmental context. SDM usually only takes into account physico-chemical parameters, neglecting
the effects of biotic interactions between species. However, species interactions are essential factors
influencing the dynamics of plankton communities, and may respond differently to environmental
stressors than individual species [6]. The rise of meta-omics techniques provides a high-resolution
framework to measure the diversity and abundance of plankton species directly from environmental
samples, which led to the development of computational techniques aimed at detecting significant
associations between plankton species, with the general assumption they might indicate potential
interactions [7].

Here, we propose a computational framework to improve the modelling and prediction of plankton
associations biogeography from meta-omics data, with the goal to identify oceanic regions and asso-
ciated environmental parameters that will likely impact plankton community stability and resilience.
We show that our modelling framework provides better predictive power for plankton biogeography as
compared to classical SDM. Our computational framework connects ecological and climate modeling
by combining species associations niche modeling with network analyses for predicting ecosystem-scale
vulnerabilities to environmental change, with the goal to improve predictions of climate change effects
on marine plankton resilience and impacts on associated ecosystem services.
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Deciphering to what extent competition and cooperation are likely to occur in microbial communi-
ties result in non naive and time consuming steps. Modeling the metabolism, with accurate prediction
of exchanged metabolite concentrations based on numerical simulations, need curated genome-scale
metabolic networks and is hardly scalable. To identify the cooperation and competition potential of
a community, the prediction accuracy can also be reduced to whether a reaction can produce a com-
pound or not, reducing the computational cost. In [1,2], the competition and cooperation potential
is based on pairwise analysis using scores combined with numerical methods such as Flux Balanced
Analysis (FBA) [3]. While the numerical optimisation problem constrains to pairwise analysis, boolean
abstraction, such in [4], decribes the metabolic potential of a possibly large community. Following this
lead, we propose a method that enriches the description of a natural community.
We first described the metabolic potential of community in its environment, as well as putative accu-
mulated metabolites and limiting substrates using metabolic networks and Answer Set Programming
(ASP) [5]. From this description, we etablished metrics in order to obtain cooperation and competition
scores. Regarding cooperation, we defined three sub-metrics focusing on the number of producible
metabolites, activated reactions and possibly exchanged metabolites. Concerning competition, we
focused on consumed metabolites to model the competition for resources.
In order to test our scores, we built random communities starting from a set of 1520 genomes of
cultivable bacterial species isolated in the human gut microbiota 1. We randomly designed 50 commu-
nities ranging from 5 to 200 species without replacement and analysed the distribution of the scores.
We then tested the relevance of our metrics against data from [6], which performs in vitro co-growth
experiments. Our first results show correlations between our predictions and observations in [6]. Over-
all, our method aims at facilitating the metabolic characterization of microbial communities and the
design of customized communities for which numerical methods are not easily applicable.
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Microbial communities play an important role in various environments, and as a result also is the gut 
microbiota, where host-microbial and microbe-microbe interactions have been highlighted. Numerous studies 
throughout the last decade illustrated these symbioses and their impact on the health of the host. By using 
Genome-Scale Metabolic Networks (GSMNs), one can build models describing the ecosystem at the level of 
metabolism and make hypotheses on the organization of the associated microbial communities [1]. With the 
improvement of GSMN reconstruction toolboxes, such models can be built for thousands of organisms, 
requiring scalable and robust metabolism abstractions.  

Metage2Metabo (M2M) [2] is a tool screening all metabolism of a group of bacteria to detect key species 
and select minimal communities able to produce target metabolisms. M2M uses a discrete model to simulate 
the concept of producibility in metabolic networks and solve combinatorial optimization problems with ASP 
[3]. M2M was used on a set of more than 1,500 intestinal bacterial genomes [4]. With this study it was possible 
to design hundreds of thousands equivalent minimal communities and select key species i.e. bacteria predicted 
on one or more of these communities. The connections between key species were represented in power graphs 
[2], helping us to visualize equivalence groups of species, often grouped by phylum. These models are a first 
step towards the understanding of interactions between organisms, through the composition of minimal 
communities, but the metabolic mechanisms explaining these associations of key species were lacking. 

By using the same programming paradigm as M2M, we designed new models to highlight the metabolism 
in equivalence groups of bacteria. We studied these groups through the lens of the functions they carry, the 
compounds they produce and reactions they can activate. We made comparisons between groups and also with 
bacteria that are not key species and were thus left out of the minimal communities. We applied our models to 
minimal communities for 5 groups of target metabolites predicted with M2M [2]. The results show the role of 
groups of GSMNs in unlocking functions for GSMNs of other groups, which groups are able to produce targets 
and the specificities around these productions. More generally our work proposes the possible interactions 
between members of minimal communities. 

Our study succeeded at suggesting explainable models of previous combinatorial optimization problems 
results. With an expressive programming paradigm and a discrete model, we are able to propose metabolic 
mechanisms for a better understanding of microbial communities. 
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Using network approaches to characterize a set of microbiota samples and identify bacterial communities' 

evolution is a difficult task that requires dedicated approaches. Our project consists in designing generic 

bioinformatics tools to describe and represent bacterial communities and temporal dynamics in datasets of 

metabarcoding samples. In this work, we present a workflow to construct and represent bacterial communities 

and consortia and apply it to public lacto-fermented vegetables samples. Fermented foods have gained interest 

over the last five years, driven by the public's desire to eat healthy, minimally processed foods with low energy 

consumption for preparation and storage. If some key species of vegetable fermentations have been identified, 

there is, to our knowledge, no detailed description of the succession of bacterial communities and their 

interactions. From an Open Science perspective, we are interested in reusing published datasets. We searched 

for public 16S metabarcoding datasets related to fermented vegetables with a sufficient number of samples, 

clear and detailed metadata, and an associated publication in public databases (ENA, MGnify [1]). 

Only the Wuyts et al. dataset on carrot juice fermentation [2] met these criteria. Its interest lies in the diverse 

samples present, from laboratory and participatory science experiments. An approach based on association 

networks between amplicon sequence variants (ASVs) was adopted: the networks were constructed from the 

count tables obtained (using the dada2 pipeline [3]) after filtering the ASVs on their abundance and prevalence 

thanks to the phyloseq R package [4]. Metrics-based methods were used to detect co-presence (Jaccard 

distance) and co-abundance (Pearson and Spearman correlation on relative abundances, proportionality on clr-

transformed abundances with the ALDEx2 R package [5]) between ASVs. The following R packages were 

used to visualize the networks: ggiraph, ggraph, and igraph. 

The networks made it possible to represent the ASVs diversity and show the bacterial communities succeeding 

each other during the different fermentation phases. We will present the workflow and discuss networks 

obtained on the Wuyts et al. dataset. Based on robust and standard R libraries, this strategy will allow the 

integration of new 16S metabarcoding datasets from vegetable fermentation. 
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Shotgun metagenomic sequencing is a highly sensitive method to characterize microbiota diversity
and functional profiles in an ecosystem. However, the drawbacks of its precision are the computer
resources required and the large amount of resulting data, particularly on high throughput sample
analyses. As a result, eukaryotes are often discarded during processes despite there roles in many
microbial communities.

Considering these issues, we developed python tools for eukaryote-friendly multi-sample shotgun
metagenomics analyses. They are based on pre-existing tools selected for their performance, their
IT resource and their consideration of eukaryotic microorganisms. To optimize computational time
of processes, they are parallelized on samples or on splited samples for the most time-consuming
tasks. The scripts have been designed to be reproducible, adaptable and independent, but can easily
be used as a workflow thanks to a yaml file that links inputs and outputs between successive steps.
Currently, 6 scripts have been developed to propose a processing method for the following common
steps of shotgun metagenomic analysis : taxonomy profiling of sample, advanced reads quality filtering,
assembly, binning, taxonomic annotation and structural gene annotation of assembled contigs.
The suite of tools is available on https://forgemia.inra.fr/sebastien.theil/metag-tools, and development
is still in progress.

Our laboratory focuses its studies on microbial and gene transfers between ecosystems inside a
farm system of cheese production. In order to understand the food chain microbiota and its response
to stress (drought, feed change...), we are developing a Shiny application to visualize ecosystem com-
positions and identify shared or specific elements between them. For an efficient querying, whole data
must previously be structured and stored in a DuckDB[1] Database. Once uploaded, user can either
explore the whole dataset or sub-select samples depending on metadata (specific environment types,
collection dates,...) or on a specific taxa for the further analyses. The resulting dataset is then used
to generate taxonomic plots from contigs, genes or bins. This module characterize microorganisms
composition of samples or any metadata group according to a chosen taxonomic rank. A pair-wise
comparison module allows to outline common or specific sequences between two groups or samples,
based on a log2ratio value which describe a normalized differential abundance of sequencing depth.
This analysis allows to explore taxonomy and functions of common or specific fraction of the se-
lected dataset. A term enrichment analysis, enables to highlights KEGG/GO terms that are over or
under represented when comparing, for instance, the overreprepresented sequences versus the whole
dataset. To overview the whole pair-wise results, they will be summarized on a network of shared
terms between each samples or metadata groups. This last step enable to compare the microbiota
composition between all studied ecosystems. Once functional, the application will be available on
https://forgemia.inra.fr/sebastien.theil/exploremetag.
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1 Introduction

Protein are complex biological molecular entities defined primarily by their amino acids sequence. 

Upon or after ribosomal translation, the messenger RNA is transformed into a polypeptide chain, often these 

amino acids may further be processed into more complex entities with the addition of functional groups such 

as carbohydrates, pyrophosphates or other small chemical entities. [1], [2]

Since these co- or post-translational modifications are diverse and spread into multiple databases it is

difficult to assemble these data, and therefore even more complex to reuse them for bioinformatics studies. 

The aim of this project is to ease protein PTM retrieval and annotation, and to provide usage examples.

2 Implementation and user cases

LibProtein is a C++ library allowing the retrieval and annotation of any given protein with modifications

available first in uniprot. It contains an internal representation of PTM as a 3-letter code. This library also
contains  annotations  from  SCOP,  CATH  and  PFAM  to  enrich  sequences  with  functional  domains

descriptions.

The library implementation is flexible enough to envision the incorporation of experimental or predictions

of PTMs.[3], [4] These additional annotations will provide a more complete overview of a given protein life
cycle. 

The library allows to enrich structure analysis in PyMol by the addition of annotations tags into the protein
sequence (PTM, families and categories), to provide data for machine learning development, and to score

protein structure models often lacking PTM predictions. [5], [6] 
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1. Introduction
Metagenomics data represent a largely untapped and continuously growing pool of new sequences coming

from various worldwide biotopes (soil, human gut, oceans…). This biodiversity, up to several billions of
sequences, may be exploited to answer multiple scientific challenges. For instance, biocatalysis (i.e. catalysis
with enzymes) needs new relevant biocatalysts with various activities to take up the energy transition
challenge and replace some polluting synthesis steps. Hence, bioinformatics approaches to efficiently
identify the targeted enzymatic activity from large metagenomic resources are needed.

Through the MODAMDH project (ANR JCJC), we focused on one of the key biocatalysts named amine
dehydrogenases (AmDHs) which enable the access to amines that are important entities in the chemical
industry [1-2]. To do so, we applied a sequence- and structure-based bioinformatics approach to widen the
landscape of protein sequences catalyzing reductive amination by searching for remote homologs and active
site analogs. In the context of the ALADIN project (ESR / EquipEx+), we want to generalize this approach
and develop workflows that could be applied to any enzyme family.

2. Methods
Publicly available and in-house metagenomics databases (>2.5 billion protein sequences) were screened

using HMMER software and the SUPERFAMILY database. Structural modeling and active site classification
were performed by the ASMC software [3]. Remote homologs were recovered by HMM-HMM comparisons
with HHblits software. Active site analogs were searched by screening catalophores (i.e. minimal active site
topologies) using the YASARA software. Phylogeny of protein families was done with IQ-TREE program.

3. Results
The AmDH family was first enriched with new metagenomic sequences before being classified into

subfamilies using an active site classification and a phylogeny. Besides, we generated a pool of
NAD(P)-binding protein sequences from which we found, using HMM-HMM comparisons, new AmDH
distant homologs. In contrast, no active site analog has yet been found for the AmDH family.

Through the ALADIN project, we will extend this strategy to other enzymatic activities by designing
generic workflows and applying them first to explore the diversity of the aforementioned NAD(P)-binding
protein families.

Acknowledgements
This study was supported by the contracts from the MODAMDH (ANR-19-CE07-0007, ANR JCJC) and ALADIN

(IA-21-ESRE-0021, ESR / EquipEx+) projects.

References
1. Ducrot L, Bennett M, Grogan G, Vergne-Vaxelaire C. NADP(H)-Dependent Enzymes for Reductive Amination:

Active Site Description and Carbonyl-Containing Compound Spectrum. Adv. Synth. Catal. 2020, 363, 328-351.
doi:10.1002/adsc.202000870.

2. Mayol O, Bastard K, Beloti L et al. A family of native amine dehydrogenases for the asymmetric reductive
amination of ketones. Nat. Catal. 2019, 2, 324–333. doi:10.1038/s41929-019-0249-z.

3. de Melo-Minardi RC, Bastard K, Artiguenave F. Identification of Subfamily-specific Sites based on Active Sites
Modeling and Clustering. Bioinformatics 2010, 26(24), 3075-3082. doi:10.1093/bioinformatics/btq595.

[Structural bioinformatics et proteomics - poster T6.2]

128



Towards molecular understanding of the UbiJ-UbiK2 protein complex  
by multiscale molecular modelling studies  

Romain LAUNAY1, Elin TEPPA1, Carla MARTINS1, Sophie ABBY2, Fabien PIERREL2,  

Isabelle ANDRE*,1 and Jérémy ESQUE*,1
 

1
 Toulouse Biotechnology Institute, TBI, Université de Toulouse CNRS, INRAE, INSA, 

Toulouse, France. 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France 
2
 TIMC, Université Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, Grenoble, 

France 

Corresponding Authors: isabelle.andre@insa-toulouse.fr, jeremy.esque@insa-toulouse.fr 

 

Ubiquinone is a redox-active prenol localized in the membranes [1] and conserved eukaryotes and 
many proteobacteria. Ubiquinone is composed of two main parts, a redox-active aromatic group forming a 
polar head and a hydrophobic polyisoprenoid tail [1]. In Escherichia coli, the biosynthesis of the ubiquinone 
is performed via a cytosolic complex, called the Ubi metabolon [2]. This latter is composed of different 
subunits including enzymes (methyltransferases UbiG and E, hydroxylases UbiI, H and F) and structural 
proteins (UbiJ and K). UbiJ is assumed to bind the hydrophobic tail via a domain called SCP2 located at the 
N-term, a domain known to interact with the lipid bilayer, notably to enable lipid transport [3]. Moreover, 
experimental evidences have revealed an interaction between UbiJ and an UbiK dimer, but also between UbiK 
and the cellular membrane in E. coli [2]. Considering the biological context and the structural importance of 
UbiJ and UbiK, we investigated the molecular complex UbiJ-UbiK2 using multiscale molecular modelling 
approaches. 

Our in silico study is articulated around three main aspects: (i) modelling of the protein partners (UbiJ 
and UbiK), (ii) identifying interactions of the complex with the membrane via molecular dynamics simulations, 
(iii) investigating binding of ubiquinone inside the UbiJ-UbiK2 complex and its release in the membrane. Due 
to the lack of 3D template, AlphaFold2 [4] was used to predict individually the 3D models of UbiJ, UbiK, and 
their assembly which were further assessed using the contacts predicted from coevolution information. A 
multiscale approach combining both Coarse-Grained (Martini3 Force Field [5]) and all-atom (CHARMM36 
[6]) modelling methods was used to identify the molecular interactions of the UbiJ-UbiK2 complex with the 
membrane. Finally, the release of the ubiquinone was quantitatively estimated using biased molecular 
dynamics simulations such as Umbrella Sampling.  

The main results of this work are: (i) the identification of the key amino acid residues involved in the 
interaction between UbiJ-UbiK2 complex and the membrane, validated by different scales of molecular 
dynamics simulations, (ii) the validation of the ubiquinone binding mode within the UbiJ-UbiK2 complex 
through free energy calculations along its release towards the membrane.   
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1 Introduction  

 The analysis of covariation in multiple sequence alignments (MSA) of evolutionary related proteins is a 
widely used method to gain information on protein structure and function. The analysis of correlated 
sidechain motions in protein molecular dynamics simulations (MD) might also provide valuable information 
on the structural dynamics underlying protein functions. Here, using the Bios2cor R package that we have 
developed, we show that integration of both types of data yields identification of functionally important resi-
dues in the G protein-coupled receptor family.  

2 Method 

The R package Bios2cor (https://CRAN.R-project.org/package=Bios2cor) has been developed for 
the analysis of covariation/correlation data from both multiple sequence alignments and MD simulations [1]. 
Using a variety of scoring functions, Bios2cor computes covariation/correlation scores between either posi-
tions in an MSA or dihedral angles/rotamers in MD simulations. In addition, it provides friendly tools for 
data representation and interpretation, including network and principal component analyses. 

3 Results 

We have applied the Bios2cor package to the G protein-coupled receptor family, to gain insights into the 
mechanism of action of chemokine receptors. We analyzed sequence covariation in different hierarchical 
sequence sets ranging from the GPCR family to the chemokine receptor sub-family. This approach revealed 
the key role of position 3.35, located at the allosteric sodium binding site, in the functional evolution of 
chemokine receptors [2]. Then we carried out accelerated molecular dynamics simulations of the chemokine 
receptor CXCR4. During these simulations, we observed a conformational transition of CXCR4 from an 
inactive to an active-like conformation. Analysis of correlated sidechain motions during this transition 
identified a set of residues whose collaborative sidechain rotamerization immediately preceded or 
accompanied the conformational transition. In particular, the reorientation of the residue at position 3.35 
should be crucial for receptor activation [3].  

4 Conclusion 

Bios2cor is a user-friendly package aimed at analyzing and interpreting covariation/correlation data 

from both protein sequences and MD simulations. The chemokine receptor family provides an example of an 

evolutionary important residue whose conformational reorientation plays a pivotal role in protein function. 

Bios2cor integrates both evolutionary and dynamical data to highlight key residues in the functional 

evolution of protein families.     
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     Background: The Cellular Thermal Shift Assay (CETSA) (originally described in [1]) is a biophysical 
assay based on the principle of ligand-induced thermal stabilization of target proteins, meaning that a 
protein's melting temperature will change upon ligand interaction. By heating samples (lysate, cells or tissue 
pieces) to different temperatures (typically 10) and quantifying proteins expression, we can detect altered 
protein interactions after for example drug treatment. The thermal profile of each protein is established by 
fitting a sigmoid curve on these ten points, which allows determining its melting temperature. Such an 
experiment is complex and time consuming to set up, but above all hard to analyze. A simpler way described 
in [2] is to consider only the expression fold change between the treatment and the control. Thus, only six 
temperatures (or even less) are needed and the sigmoid fit is unnecessary. Although the proof of concept was 
published in [2], the numerical analysis still needs to be validated and a robust scoring has to be determined 
in order to focus the analysis on proteins with the largest change in melting temperature. In addition, it would 
be interesting to identify proteins with similar CETSA profiles because they may belong to the same protein 
complex. Finally, to make these analyses easily accessible to the experimenter, an interactive graphical 
exploration interface would be useful.  
j 
     Methods: To determine a score for ranking the best hits, we first evaluated the mean of differences as in 
[3], although the mean can lower the score if a single temperature has a significant fold change. However, a 
hit can only have one significant fold change. Instead, we chose to compute a weighted least-squared 
regression on the absolute value of the fold changes, ranked in the decreasing order with larger weights on 
the two largest fold changes. From this regression, we obtain the intercept which will be the score, called 
Stability Rate (SR). In this way, the score is always positive, which overcomes the problem explained earlier. 
We can now plot the combined p-value (Fisher's test p-value of the two p-values of the two biggest fold 
changes) against the SR. The more the protein is in the top right corner of the plot, the more confident we can 
be that the drug is binding to this protein. To find proteins with similar thermal profiles, we also chose to 
compute a similarity score. A simple score is the Euclidean distance score, which is between 0 and 1. The 
closer it is to one, the more similar the profiles are. By setting a cutoff, we can identify those proteins. To 
evaluate the relevance of their associations or their belonging to a complex, we can query the STRING 
database. 
j 
     Results: We tested these two methods on the elutriation dataset from [2]. With a combined p-value cutoff 
of 0.01 and an SR cutoff of 0.5 we found 501 hits in total with ten times fewer hits in G2 phase compare to S 
phase (as in [2]). For example CCNB1 comes in first position followed by CDK1 as shown in [2]. In S phase 
it’s RFC3. By searching profiles similar to RFC3 (cutoff 0.3) we recovered the RFC complex. For EXOSC4, 
the similarity search recovered only EXOSC1. With the vimentin protein (VIM) we recovered a STRING 
network of 6 interactions, a potential complex formed by VIM, VCP, ACTN1 and YWHAG. This technique 
could be a new way to focus faster on proteins revealed by CETSA and to identify protein complex. To ease 
the analysis of CETSA experiments in a single and user-friendly way, we developed an R package 
mineCETSAapp (https://github.com/marseille-proteomique/mineCETSAapp) that offers a Shiny application. 
J 
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Abstract
In plants, intercellular communication is primarily achieved through plasmodesmata. These membrane pores
cross the cell wall and create symplastic continuity between cells [1]. Plasmodesms are crucial in
coordinating developmental processes and defense mechanisms against pathogens.[2] They are also hijacked
by viruses that can structurally modify them to propagate their viral genome from cell to cell.

Plasmodesms have a unique membrane organization: they are crossed by a "tube" of endoplasmic reticulum
(ER), which is in intimate contact with the plasma membrane (PM), delimiting the pores. The two
membranes are only a few nm apart (~10 nm) and connected by "tethers". The multiple C2 domains and
transmembrane region protein (MCTP) family, critical regulators of cell-to-cell signaling in plants, act as
ER-PM tethers, specifically at plasmodesmata [2,3]. However, the molecular mechanism and function of
membrane tethering within plasmodesmata remain unknown. Furthermore, MCTP proteins are still poorly
known at the level of the 3D structure.

Thus we used, AlphaFold, an innovative tool had been developed by DeepMind, which combines deep
learning and graph theory that predicts the 3D structure of the protein [4]. We used the MCTP4
transmembrane protein model produced with alphafold2 as a starting point. We then run MD with a
coarse-grained representation, using the MARTINI3 force-field, to provide a molecular description of MCTP
interacting with ER-PM membranes.
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Abstract :
The proteins encoded by the HLA (Human Leukocyte Antigen) system play a fundamental role in the

immune response. However, in the context of organ transplantation, these proteins are the main reason for
the loss of transplants, largely due to their omnipresence in nucleated cells and their great diversity in terms
of sequence (the genes encoding these proteins are the most polymorphic genes in humans). Although
experimental methods are now available to assess the presence of antibodies against donor HLA proteins in
recipient's serum, using a panel of about 200 purified HLA proteins, the molecular mechanisms governing
such recognition remain unknown.

A recent study [1] has demonstrated the importance of reduced structural flexibility to identify favorable
regions in antigens for antibody binding. Amino acid flexibility is expressed through the Normalized Root
Mean Square Fluctuation (N-RMSF) during a molecular dynamics simulation. However this study is
restricted to 61 proteins where sequence dissimilarity was favored and where no HLA protein is found. In the
present work we tested the underlying hypothesis in [1] applied to the particular case of the HLA system,
which has the remarkable peculiarity of high sequence similarity. Moreover, we were interested in studying
the difference in flexibility at the eplet rather than epitope level, that is to say at the level of the polymorphic
amino acids that are characteristics of specific HLA proteins.

For this purpose, we performed molecular dynamics simulations of 203 HLA proteins. The starting
structures for these simulations were either obtained from the PDB [2] (68 proteins) or modeled by
Alphafold2 [3] (135 proteins). The N-RMSF of residues having at least a Relative Solvent Accessible
Surface Area (RSASA) of 20% was then calculated. The list of confirmed eplets in the HLA system was
obtained from EpRegistry [4] and any residue that does not appear as a possible eplet in EpRegistry was
considered a non-eplet residue. The Kolmogorov-Smirnov test was used to verify whether there is a
statistically significant difference between the two distributions of N-RMSF (eplet residues vs non-eplet
residues).

As a result, we found that there is a significantly reduced flexibility for eplet residues compared with
non-eplet residues. This result opens the door to the use of structural flexibility to identify antibody binding
sites on HLA proteins.
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Here we present a computational approach applied to characterize the active site of a family of 

enzymes showing variation in their specificity and regioselectivity. We aim to understand the structural 

and molecular bases governing the differences in substrate specificity and the determinants of the 

narrow/broad regioselectivity in a family of enzymes involved in the biosynthesis of ubiquinone (UQ). 

We focused on four Ubi subfamilies responsible for the three hydroxylation reactions of UQ 

biosynthesis [1], which present both differences in substrate specificity and regioselectivity. All 

subfamilies belong to class A flavin-dependent mono-oxygenases (FMOs). 

To understand the structural basis for this distinct regioselectivity, we analyzed UbiI [2], UbiL, 

and UbiM proteins showing a narrow, intermediate, and broad regioselectivity respectively [1].  It has 

been demonstrated that some organisms, such as E. coli, contain three UQ hydroxylases, each of one 

hydroxylates a specific position of the UQ aromatic ring (C5, C1 and C6). However, other organisms 

(i.e. Rhodobacter capsulatus) contain two enzymes to catalyze the three reactions: UbiL hydroxylates 

C-5 and C-1 showing an intermediate level of regioselectivity; whereas UbiN hydroxylates C-6 

position. There are also organisms containing only UbiM protein to perform the three reactions. For 

instance, Neisseria meningitidis presents a single UbiM protein able to hydroxylate C-1, C-5, and C-6 

positions, showing broad regioselectivity.  

Our work is naturally split into two parts, the first is dedicated to substrate specificity and the 

second part to regioselectivity, (i) Identification of substrate specificity determining positions [3], (ii) 

Identification of residues involved in regioselectivity. 

 To conclude, our study provides important insights into the sequence-structure-function 

relationships of Ubi hydroxylase subfamilies. 
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For several decade, health and alternative medicine sectors focus their research on the bioactive peptides

(BAPs)  derived  from  food,  due  to  their  preventive  and/or  health  benefit  applications.  However,  the

experimental  approaches  for  BAP  discovery  remain  long  and challenging.  As  a  consequence,  in  silico

methods proved to be more strategic due to the time and cost  savings,  and their  efficient  prediction of

potential BAPs [1].

In this context, we developed a comprehensive pipeline, called BioacPepFinder, that is able to perform large-

scale screening in order to discover new BAPs from in silico enzymatic hydrolysis of proteins. This pipeline

takes as input a set of amino acid sequence of proteins (in FASTA format or with Ensembl, Uniprot or NCBI

id). The first step is to simulate in silico hydrolysis, with RPG [2] coupled to an in-house script to deal with

missed cleavages. The list of generated peptides is then filtered according to two complementary criteria.

Peptides are compared with Blast to specialized databases of BAPs such as BIOPEP [3] and DRAMP [4],

that contain known peptide sequences displaying proven bioactivities. We also compute for each peptide the

quantitative structure-activity relationship (QSAR) score for discovering novel and potent BAPs [5]. This

score is based on crucial structural properties, targets peptides with angiotensin-converting enzyme (ACE)

and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities.

BioacPepFinder is implemented in Python and dependencies are managed with Conda. It is modular, as each

step  can  be  carried  out  separately.  It  is  also  extensible:  it  is  possible  to  add  new  proteases  (for  the

hydrolysis),  new databases  or  new criteria  to  select  peptides  (with  wrappers).  It  is  freely  accessible  at

https://gitlab.univ-lille.fr/bilille/bioacpepfinder.

We have evaluated the BioacPepFinder capability of BAP prediction on standard proteins such as bovine-

hemoglobin or -serum albumin using the BIOPEP database and QSAR dedicated to ACE and DPP-IV.  It

proved to be a new high-efficient prediction software that aims for guiding development and optimization of

BAPs  in order to advance in their production. 
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Mutation frequency decline (Mfd) is a 120 kDa multifunctional protein, ubiquitous in all bacteria. It has
been recently shown to boost antibiotic resistance, as it fosters the appearance of bacterial DNA mutations
[1]. Additionally, it is a virulence factor that is overexpressed in bacterial cells to overcome DNA damages,
after oxidative stress such as nitric oxide (NO), produced by macrophages. As such, it acts as a key player to
cancel out the innate immune response [2]. Through cycles of ATP hydrolysis, Mfd translocates onto the
template DNA strand and promotes its disassembly from the RNAP [3]. Hence, we focused on Mfd ATP-ase
function to identify molecules capable of competing with ATP and blocking this step.

Virtual screening of 5 million compounds was computed on RecG, a homologous protein, that was the
only protein whose coordinates  were available  in  an  active conformation  at  that  time [4].  A follow-up
through a medium-throughput activity test performed on Mfd from Escherichia coli confirmed compounds
as very effective in vitro. A first selection of hits was refined through docking, using AutoDock Tools [5], on
Mfd from  E. coli whose coordinates were solved [6].  Then,  this  work was extended to the Mfd of the
ESKAPE group, considered by the World Health Organization, as priority pathogens. Interestingly, those hits
display a much better affinity as compared to ATP/ADP and conserved positions were identified as key for
the affinity binding. Currently, in vivo validation is in progress. Markedly, 6 promising compounds have been
identified, one of which was already tested in vivo and effectively treats Gram-negative infection in animal
models. Here, we propose to describe our work and discuss our promising results.
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1. Introduction 

The vast majority of biological processes rely on macromolecular interactions. Protein docking aims to 
predict the most likely structural binding modes of interacting partners. Using information about the 
coevolution of protein partners improves the success rate of these predictions. Our team has contributed to the 
improvement of protein docking strategies through such incorporation of evolutionary information. Here, we 
present our recent achievements in this respect, as well as ongoing work and perspectives. 

2. The InterEvDock3 docking pipeline 

In previous work, we had developed a protein docking pipeline that integrates evolutionary information [1]. 
Recently, we designed a novel strategy to integrate evolutionary information into atomic-level scoring 
methods, using shallow multiple sequence alignments, and we found that it greatly improved their capacity to 
discriminate correct from incorrect interface models [2]. We integrated this strategy into the InterEvDock3 
docking server [3], along with the capacity to use covariation-based contact maps (possibly derived from deep-
learning-based strategies) and the ability to combine free docking with template-based assembly modeling. 
We also successfully applied the InterEvDock pipeline to recent targets of the CAPRI assembly prediction 
challenge [4]. The server is available at https://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock3/ 

3. Ongoing work 

Ongoing work in our team aims at developing a deep learning method for the protein docking scoring step 
by integrating the physical-chemical environment of amino acids, the interface geometry, and sequence or 
evolutionary information if available. Another project aims at extending the use of evolutionary information 
to the structural prediction of protein-RNA interactions, as well as benefiting from high-throughput protein-
RNA “interactomics” data to enrich available high-resolution structural data. 
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1 Introduction

Myelodysplastic syndromes (MDS) are clonal disorders of the Bone Marrow (BM) that evolve in
secondary Acute Myeloid Leukemia (sAML), characterized by an immune escape and leukemic cell
invasion of the BM, in 30% of cases [1]. In this context, the immunomodulatory Mesenchymal Stromal
Cells (MSC) and the Natural Killer (NK) lymphocytes, both impaired in these pathologies, are known
to play an active part in the disease evolution [2][3]. In this study, we wondered to what extent the
defects observed in the NK-cell immunosurveillance are attributable to MSC immunosupressive role.

2 Material and Methods

To better reproduce cell-cell and cell-matrix interactions in the BM niche, we developed a 3D in
vitro cell culture system putting together NK-cells, MSC and leukemic cells. NK-cells were isolated
from healthy donor (HD) peripheral blood mononucleated cells (n=3). MSC were expanded ex vivo
from the BM samples of sAML patients or HD that underwent a hip replacement (n=3). An in-
creasing number of Molm13, a sAML cell line, has been added in order to modelize the progressive
leukemic cell invasion. After two days of co-culture, the organoid was dissociated and the three cell
types were characterized by spectral cytometry using Aurora, CYTEK®. After a preliminary gating
using FlowJO 10.8.1, FCS files were processed through a pipeline developed in R 4.1.2 using RStudio
comprising: arcsin transformation using FlowVS package, batch effect correction using a FlowSOM
based algorithm, normalization [4] and clustering for trajectory inference analysis [5].

3 Results

This preliminary data allowed us to observe a down-regulation of NK-cell activating receptors when
they are cultured with sAML compared with HD-MSC. In parallel, differential activation trajectory
of NK-cells depending on the BM microenvironement was assessed. This allowed us to reconstruct a
three cell interactome in silico and observe the NK-cell immune defects induced by the MSC that can
be responsible for leukemic cell proliferation, BM invasion and finally disease progression.
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We investigated in this work ways to accommodate deep learning techniques into evolutionary
algorithms (EA) in order to reduce the level of expert tuning required to design such a method.

Global optimization is at the heart of countless applications in bioinformatics, where EA are among
the method of choice. It has been applied to protein structure prediction, RNA sequence design, or
molecular docking. Although it has shown success in most problems, the design of an efficient EA is
challenging as it requires expert tuning, which is usually not transferable.

For the simplest EA, one starts with a random population of solutions for the problem, i) one
applies a perturbation to the population, then ii) poor solutions are removed while good solutions are
kept. Vanilla EAs use simple isotropic perturbations where each solution in the population is changed
only a little in all ”directions”, which is usually called the mutational operator.

Fig. 1. Neural population-based optimiza-
tion. A) description of the mutational operator
where a solution x is encoded into a z vector us-
ing the network called “Encoder”. A Gaussian noise
ϵ is added to the vector z. Next, the decoder net-
work is used to predict the perturbation to add to
the solution. B) Comparison of a simple genetic al-
gorithm (grey) and our method (in orange). Our
method convergence is slower. C) Shows the perfor-
mances of our method compared to differential evo-
lution solution (red dotted line) for various network
configurations (number of hidden units and layers,
colored lines). For each function f , Y-axes show the
minimum value f(x) found in the population at each
generation (x-axes).

Here, we investigated the accommodation of one type of neural network as a mutational operator.
Starting with an un-trained network, we propose to learn optimal perturbations along the optimization
process. To do so, we combined two types of architectures: 1) the auto-encoder that compresses the
solutions into a lower-dimensional manifold and then decodes them, and 2) a recurrent network that is
used to model time series. Similar approaches have been applied to enhance Monte Carlo simulation.

On a set of 18 well-known test functions, the proposed approach showed similar performances
to the differential evolution algorithm implemented in scipy; however, using an easy-to-implement
and straightforward concept. Next, we adapted our approach to discrete optimization. It showed
encouraging performances on the one-max problem. However, the performances are mitigated for the
more complex tasks such as RNA design or Ising model optimizations.

An implementation of our method is given at https://github.com/vaiteaopuu/neural_ga
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Acute Myeloid Leukemia (AML) is a hematopoietic disorder characterized by the infiltration of
the bone marrow, blood, and other tissues by clonal and poorly differentiated cells [1]. The AML is
classified into sub-types that help to improve clinical outcomes and rate survival. Even though the
current classifications are well-known and highly adopted such as French-American-British (FAB) [2]
and European LeukemiaNet (ELN) [3], the misunderstanding to classify specific patients shows the
need of new biomarkers for more confident classification and propose personalized treatment.

A large exploration of RNAseq data provides a deep investigation to identify and target key
molecular mechanisms that drive the AML pathogenesis and progression. In this context, we developed
a pipeline to explore the expression of the different genes using k-mer-based-approach and Machine
Learning methods to yield a better understanding of prognosis classification. As initial tests, we used
NPM1 mutation gene to search for linked genes that can show a new perspective of the disease. The
pipeline was applied to differentiate the condition of mutated and non-mutated NPM1 patients. We
used Kmtricks tool [4] to count the k-mers present in each RNAseq sample. Then, we used a feature
selection step considering the coefficient of variation between the conditions, thus, allowing us to select
relevant k-mers. After, we use the Machine Learning method to classify the conditions and find the
more important k-mers based on the classification. Finally, we identified the genes corresponding to
these k-mers with BLAT [5].

In our initial results, we found a differential expression of HOX family genes, mainly for HOXB9
gene. This gene showed high expression for mutated NPM1 patients and low expression for non-
mutated NPM1 patients, in 5 AML different cohorts (744 samples). When analyzed in 132 wild-type
samples, the expression was minimal. Furthermore, HOX genes are already known genes related to
AML, giving us confidence that our results were not random and guiding us to apply the pipeline to
new genes and prognosis.
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de la faculté de Médecine Montpellier-Nı̂mes, Université de Montpellier”.
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Nowadays, motif discovery is routinely used in high-throughput studies, including at the protein level. 
Motif-calling algorithms can be divided into two categories: generative models and discriminant 

methods. Unlike generative models, discriminative methods compare two datasets to identify motifs 

that are present at a high rate in the positive set compared to the negative one. Although several efficient 

discriminative motif-finding methods have been developed so far [1], they have led to new challenges. 

The first issue concerns the degeneration of the motifs because they identify a high number of motifs 

having either high sequence redundancy or different sequence composition. Furthermore, different 
amino acids (AAs) can have similar physicochemical properties, thus different motif sequences can 

share similar properties. The second issue concerns the lack of a scoring function that considers the 

characteristics of the AAs composing the motifs rather than the occurrence rate only.  

To address these challenges, we have developed a novel tool that identifies clusters of motifs of protein 
sequences (CLUMPs) and associates a score to each CLUMPs. This score encompasses the 

physicochemical properties of AAs and the motif occurrences. Briefly, it takes as input the list of 

discriminant motifs identified in a positive set compared to a negative set and performs motif clustering 

based on 16 features describing the physicochemical properties of AAs. Finally, CLUMPs are sorted 
by a novel score that considers these properties according to the ones of the protein sequences 

composing the positive dataset with respect to the negative set and a Jaccard index-based indicator. 

We used our method to identify discriminant CLUMPs of effector proteins in nematodes. Plant-parasitic 

nematodes secrete effector proteins inside their plant hosts to manipulate their development, defense 

systems, metabolism and physiology [2]. However, accurate detection of effector proteins in nematode 

genomes is challenging. We focused on Meloidogyne incognita species because their effectors are the 

most characterized in the literature among plant-parasitic nematodes and due to their agroeconomic 
importance. We applied our tool to a positive set and a negative set composed respectively of 161 and 

495 protein sequences. We identified 6 CLUMPs which occur at specific positions in the positive 

sequences but not in the negative ones. We showed that the first 3 CLUMPs co-occur significantly in 
the positive sequences, while no co-occurrences are observed in the negative set. To test the validity of 

our findings, we searched for the 6 CLUMPs in an extended set of 14 parasitic nematode species 

comprising 624 and 4214 proteins in the positive and negative sets, respectively. Overall, we achieved 

similar results, allowing to conclude that our method identified discriminant CLUMPs for nematode 

effector proteins.  
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In the field of precision oncology, we seek, among other things, to determine the most appropriate drug
therapy for each patient, taking advantage of the molecular and cellular profile of the tumor before treatment.
This information makes it possible in particular to characterize the content of the tumor microenvironment,
identified in recent years as being able to greatly influence patients response to targeted therapies, such as
protein kinase inhibitors and immunotherapies.

The reference technology for measuring the cellular heterogeneity of the tumor microenvironment is single-

cell RNA-seq. However, its experimental conditions of use, as well as its high financial cost, make it difficult

to use it to profile large cohorts of patients. Indeed, they are rather analyzed with sequencing technologies

such as bulk RNA-seq.

Cell  deconvolution  methods  have  emerged  in  recent  years  as  relevant  alternatives  for  predicting  the

proportions of cell types present in biological samples profiled by bulk RNA-seq. Within the framework of

the European KATY project (https://katy-project.eu/), we are interested in the heterogeneity of the tumor

microenvironment of the clear cell renal cell carcinoma (ccRCC) and its influence on the ability to predict a

patient's response to a treatment. To meet this objective, we have optimized a bioinformatics protocol for the

analysis of single-cell RNA-seq data and the prediction of cell fractions by deconvolution methods. The cell

deconvolution methods used are CIBERSORTx [1] and MuSiC [2]. The single cell RNA-seq matrix [3] used

to perform cell deconvolution was derived from 11 adult patients with ccRCC. We performed deconvolution

on a bulk RNA-seq consisting of 311 ccRCC tumor samples [4].  We estimated the performance of our

predictions using simulated data and by comparison with tumor purity scores.
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Transposable elements (TEs) are mobile genetic elements that have the ability to duplicate, to
transpose from one locus to another. They are ubiquitous sequences that can represent up to 90%
of some genomes. TEs induce chromosomal rearrangements and genetic variability. By consequence,
they can be involved in genome evolution such as adaptation processes. It is therefore important to
study their dynamics to estimate their impact on such genomics processes. TE distribution along
the genome varies depending on the balance between integration preference and post-insertion se-
lection. Some studies highlighted TE insertion bias. For instance, in human, an insertion bias has
been detected for L1 elements. Previous study suggests a preferentially insertion into open-chromatin
regions enriched in non-B DNA motifs for those elements [1]. In order to analysis and character-
ize this insertion bias, Cremona et al further designed a statistical approach called IWTomics for
Interval-Wise-Testing for omics (http://bioconductor.org/packages/IWTomics). This approach takes
advantage of the numerous genomics data available to date (e.g. recombination rate, GC-rich, methy-
lation) to statistically detect significant effects of the insertions along a genome. Genomics features
can be treated as ”curves” (mathematical functions) and then analyzed using functional data analysis
(FDA) [2]. Using IWTomics, Chen et al presented the first high-resolution L1 transposition dynam-
ics. They compared the TE landscapes for three different TE datasets : newly inserted elements,
”de novo”; TEs inserted in some individuals of the populations, ”polymorphic” , and genome spe-
cific TEs present in all individuals of the populations, ”fixed”. They confirm the L1 insertion bias
and highlighted preference sites for de novo and fixed L1 insertions [3]. In Drosophila melanogaster,
Merenciano et al identified a preferential insertion locus for roo elements within a promoter region
of a stress response associated gene [4]. Such retrotransposon elements are known to be the most
abundant and active ones in D. melanogaster [5]. Considering that a lot of genomics features are now
available for this organism (https://flybase.org/), we decided to investigate the TE dynamics using
IWTomics to test this approach. We started our study by focusing on roo elements and used three TE
datasets (”de novo”, ”polymorphic” and ”fixed” TEs), ”Drosophila-specific elements”. The aim of
this exploratory work is to confirm if with IWTomics we can detect the already known insertion bias
of roo elements in D. melanogaster. Next, we plan to develop a pipeline to automatize same analysis
for all TE family to detect TE families with preferential insertion locus.
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The large and growing amount of textual data (scientific articles, reports, database fields, etc.) in the scientific 

domains, particularly in Life Sciences, are a valuable source of information and knowledge. The data are 
however in practice inaccessible with traditional review techniques and remain largely under-utilized [1]. 

Recent advances in the text and data mining (TDM) technologies, the change in the legal and regulatory 

aspects, and the development of the scientific service infrastructures are paving the way for new solutions to 
discover, harness, integrate and learn from the textual data. 
 

The Migale Bioinformatics facility (https://migale.inrae.fr), taking advantage of that context, is working to 

complete its service offer [2] with text mining services to make access to bioinformatics research communities 
text mining solutions for analyzing and extracting value from textual data. The development of the offer will 

be based on the existing Migale infrastructure and on technologies developed by the TDM communities [3,4].  

Migale has already added text mining to its existing Data Analysis Service (https://migale.inrae.fr/ask-data-
analysis) in order to propose collaboration to users who want to address information extraction from texts in 

the microbiology fields (creation of thematic corpora from sources like PubMed, extraction of named entities 

such as genes, phenotypes, metabolites; and classification of parts of texts).  
 

Migale has added a training module entitled "Introduction to Text Mining with AlvisNLP" to its 

"Bioinformatics by practicing" cycle (https://migale.inrae.fr/trainings). The module is open to 

(bio)informaticians who want to benefit from theoretical and practical skills in the analysis of textual data. It 
addresses Named Entity Recognition (REN) methods through use cases in biology (recognition of genes, 

proteins or habitats of bacteria, etc.).  
 

Migale also ensures the deployment and management of several web applications (Semantic Search Engines, 
Annotation Editors, Terminology Editor) for partners. We develop on-demand APIs that encapsulate 

specialized text mining process focusing on well-defined use cases within projects (e.g., we propose in project 

TIERS-ESV an API for the automatic extraction of information about pest organisms to facilitate animal health 
monitoring). 
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Habenulae are bilateral epithalamic structures found in all vertebrates and involved in the integration of sensory

perceptions and the regulation of adaptive behaviors. A remarkable feature of these structures is that they display
asymmetries  between the left  and the right  sides in many vertebrate  species.  Their  subdomain organization

substantially differs between the mouse and zebrafish, and how it evolved across vertebrates remains poorly
known. In order to gain insight into the mode of evolution of habenulae across jawed vertebrates, we focused on

a chondrichthyan species, the catshark Scyliorhinus canicula. This species harbors a key phylogenetic position as
a member of the sister group of osteichthyans and has retained putative ancestral characteristics of habenular

subdomain  organization,  including  asymmetries  lost  in  the  mouse  and  the  zebrafish  (Lanoizelet,  Michel,
Lagadec, Mayeur et al. unpublished results).

Our experimental strategy consisted in generating a genome-wide 3D RNA profile of the habenulae, using RNA

tomography,  a  section-based technique that  yields  spatial  resolution to  RNA-seq data  [1,  2].  To do so,  we
constructed and sequenced barcoded cDNA Illumina libraries starting from RNA extracted from serial sections

along transverse, horizontal and sagittal planes using the Cel-Seq2 single-cell RNA-seq protocol, mapped the
reads on a gene model reference and projected 1D read counts onto a 3D digital model of the habenulae by

iterative proportional  fitting.  We thus generated a genome-wide 3D RNA profile of  the catshark habenulae,
containing quantified expression data for about 20000 protein-coding genes in 95000 voxels.

The digital signals obtained for known habenula subdomain markers reproduce the broad characteristics of their

in  situ  hybridization  profiles,  which  validates  this  model.  We  used  correlation  and  spatial  autocorrelation
analyses to identify (1) novel candidate markers for the habenula subdomains previously characterized and (2)

novel organ subterritories. In situ hybridizations are in progress to validate these in silico data but preliminary
results already confirm the potential of this approach to refine our understanding of habenular organisation and

to  expand  the  repertoire  of  signature  markers  of  habenular  subdomains.  The  resulting  characterization  of
catshark  habenulae  should  provide  a  reference  allowing exhaustive  comparisons  across  vertebrates  and the

generation of a comprehensive scenario for habenular evolution in the taxon.
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1. Context 
Complete human genomes available in full online are quite rare, with the current largest repository of 

publicly available human genomes being that of the 1000 Genomes Project [1], counting data for just over 
2500 people in its final phase. This is understandable: allowing the world to download your genome represents 
a major privacy risk. However, they represent a very useful resource for researchers, as all studies need large 
sample sizes for statistical relevance. Applying machine learning methods to these datasets would allow users 
to produce synthetic genomes that still follow the implicit rules of the genomes it has learned from, but this 
poses a challenge due to the scale of data to analyze. Previous work has applied generative neural networks 
(GNNs) to subsections of the human genome [2], demonstrating that the principle is sound, but complex to 
apply at the necessary scale. Their findings indicate that a GNN is able to generate new sample consisting of 
up to 10,000 SNPs with a diversity similar to that of the input dataset. 

2. Methods  
In this project, we separate publicly available human genomes into subsections separated by 

recombination hotspots, based off of a map of recombination likelihood [3], then apply dimensionality 
reduction methods to each section. We use deep autoencoders, which act as an extension of our GNN, but are 
able to be trained individually to save on computational resources required. This allows a GNN to simulate 
genomic data on a much larger scale in two steps: first by producing compressed data, then by feeding that 
data into the corresponding autoencoder for expansion.  

3. Results 

Preliminary results show that autoencoders are well suited to compress genomic data by at least an order 
of magnitude while still maintaining an accuracy of 95% or better. Our first Generative Adversarial Network 
[4] models are able to learn patterns within this latent space and reproduce realistic samples based on this 
input. Applying them to the entirety of chromosome 1 causes issues in the leaning process, specifically mode 
collapse, even when using Wasserstein loss to reduce the likelihood of this occurring [5]. Currently, we are 
aiming to test the limits of this method to see just how many mutations we are able to simulate, and to what 
degree of diversity and realism. 
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La dégradation de l’ARN joue un rôle essentiel dans la régulation des gènes bactériens. Chez Staphylococcus 

aureus, cette dégradation est principalement effectuée par les ribonucléases RNase J. Ces enzymes possèdent à la

fois une activité endo – et 5'-exoribonucléasique. Cette dernière semble être contrôlée par plusieurs ARN 

pyrophosphohydrolases (RPP) différentes, qui modifient de manière post-transcriptionelle l’état de 

phosphorylation des extrémités 5' des ARN, de la forme 5’PPP à la forme 5’P, et permettent leur dégradation par 

la RNase J[1-3]. Nous avons développé une nouvelle méthode de transcriptomique permettant de distinguer 

l'extrémité 5'PPP (non modifiée après transcription) des extrémités 5'P et 5'PP des ARN et de quantifier leurs 

proportions pour chaque espèce d’ARN : PQ-EMOTE pour Phosphorylation Quantification Exact Mapping Of 

Transcriptome Ends. 

Nous présentons ici, une méthode d’analyse unique et innovante permettant de traiter les données générées par 

PQ-EMOTE. Par rapport à l’analyse différentielle de gènes par RNA-Seq qui regroupe généralement le 

comptage des lectures par régions génomiques, notre méthode permet d’obtenir uniquement des lectures dont 

l’extrémité 5’ correspond à celles observées in vivo, et ainsi, seule la 1  position génomique du transcrit aligné ʳᵉ

sur le génome de référence est prise en compte (position qui correspond au +1 de transcription). Un traitement 

spécifique des données a été élaboré pour la quantification des lectures à la position près et leur normalisation. 

Une autre particularité dans l’analyse provient du fait que nous cherchons à détecter et identifier des variations 

de proportions (d’états de phosphorylation de l’extrémité 5’ pour un même +1 de transcription) et non une 

variation d’abondance de transcrits pour une région génomique.

Nous présentons des résultats préliminaires de l’application de cette méthode pour identifier, chez S. aureus, les 

protéines ayant une activité RPP. Bien que centrale dans le métabolisme de l’ARN, aucune protéine réalisant 

cette fonction n’est connue dans cette espèce. Jusqu’à maintenant, les RPP identifiées chez d’autres bactéries 

appartiennent à la superfamille Nudix dont les membres présentent peu de similarité de séquence, même ceux 

ayant les mêmes fonctions[4], rendant leur identification par correspondance entre espèces peu fiable. De plus, 

ces Nudix sont souvent décrites comme possédant plusieurs fonctions et il est donc possible que plusieurs RPP 

soient présentes chez S. aureus et les effets de cross-talk doivent donc être pris en compte dans l’analyse. Les 

résultats présentés concernent plusieurs jeux de données correspondants à des comparaisons entre la souche 

sauvage et des mutants de délétion simple, double ou triple de quatre des cinq gènes codant pour les protéines 

RPP candidates.
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Transcription factors (TFs) are DNA-binding proteins that play a crucial role in gene regulation. To control 
gene expression TFs bind specific short stretches of DNA called transcription factor binding sites (TFBS). 
However, the intrinsic and predictable binding affinity of a TF for its TFBS does not always translate into in 
vivo binding and to a transcriptional effect. Thus, models based on motif recognition can be poor predictors of 
‘functional TFBS’ (i.e. TFBS that are bound and regulatory in vivo).  

Functionally important TFBS tend to be evolutionarily conserved [1], and multiple TFs can bind to the same 
regulatory region to fine-tune gene expression [2]. We aimed to characterize and build a machine learning 
model to predict TF-dependent gene regulation, leveraging information about (i) co-occurrence of multiple 
TFs close to a TF of reference, and (ii) evolutionary conservation of the putative TFBS. We applied this 
approach on LEAFY (LFY), a plant-specific TF playing a crucial role in floral development. LFY is highly 
conserved in sequence and binding specificity [3], and the availability of binding and expression data makes 
it possible to train a machine learning model and validate predictions. I will show preliminary results obtained 
with this approach to predict gene regulation by LFY. 
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1 Introduction

DNA methylation (DNAm) plays an important role in cell biology, most notably for tissue specific
regulation of gene expression, other roles include X-chromosome inactivation, regulation of splice-
junctions and genomic imprinting [1,2]. Changes in DNAm (i.e. epimutations) arise either from
stochastic errors in the establishment or maintenance of a methylation state by the DNMTs pro-
tein family (i.e. primary epimutations), or following a change in the DNA sequence (i.e. secondary
epimutations) [3]. Both primary and secondary epimutations are found in patients suffering from rare
diseases, a worldwide public health issue estimated to affect between 260 and 445 million people [4].
Identification of primary epimutations can lead to a direct diagnosis, such is the case in imprinting
disorders [5], rare cases of cancer [6,7] and some neurodevelopmental diseases [8]. Secondary epimu-
tations in rare diseases have gained popularity as a surrogate to the detection of sequence variants in
the diagnosis process, as they are easier to detect. Therefore, identification of variations in DNAm
plays an important role in the understanding of the aetiology of those diseases as well as in the clinical
diagnosis process. Canonical pipelines for the detection of epivariants based on methylation-array
technologies rely on case-control group comparisons. However, in the context of rare diseases and
multi-locus imprinting disorders, small cohorts and inter-patients’ heterogeneity prevent the use of
those tools. Therefore, there is a need to provide a comprehensible and statistically robust pipeline
for clinicians to perform analyses at the single patient level as well as characterise how different pa-
rameters may influence epivariants detection. This poster describes a statistical method to detect
differentially methylated regions in correlated datasets based on the z-score and the empirical Brown
aggregation method from a single patient perspective. It further provides a characterisation of how
the chosen parameters may influence epivariants detection. We generated semi-simulated data based
on a public control population of 521 samples. This enabled us to evaluate how control population,
effect and region size affect the performance of epivariants detection, in order to define the optimal
parameters of the method. Finally, we validated the detection of pathological methylation events
in patients suffering from rare multi-locus imprinting disturbances and showed how this method is
complementary to the validation of clinical diagnosis.
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[7] Estela Dámaso, Adela Castillejo, Maŕıa del Mar Arias, Julia Canet-Hermida, Matilde Navarro, Jesús del
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1 Introduction

RNA-sequencing methods are central to biology and the basis of many breakthroughs in under-
standing the transcriptome. Current sequencing techniques offer the opportunity to understand life
in its spatial and temporal aspects. However, the high dimensionality of RNA-seq data limits the
understanding of complex dynamic relations between genes and mathematical methods must be im-
plemented to ease the comprehension of the underpinning biology. Dynamic network inference methods
are methods of choice to integrate the complexity of time-dependant transcriptomic data [1]. These
methods produce networks in which nodes are genes and an edge between two genes represents an
action (up or down-regulation) of a gene on another over time. Although, most network inference
methods are limited by the large dimension of RNA-seq data, in which the number of observations
is always much lower than the number of measured gene expressions. Hence, the data dimension is
frequently reduced by performing the inference on a small number of genes, picked a priori. In this
work, we propose another strategy, which consists of grouping genes with similar expression dynamics
to form a clustered gene network. More precisely, our clustered gene network inference strategy is a
two-step method (clustering then network inference). The clustering step is based on the analysis of
sign variations in order to make it suitable for biology-associated very-short time series. Our clus-
tered gene network inference strategy is illustrated on original transcriptomic data associated with the
priming of plant immune resistance by repeated acoustic stimuli (RAS) over time.

2 Results

Arabidopsis thaliana plants were exposed to acoustic stimuli (1KHz, 100dB) for 3 hours per day
for 0 to 8 days prior to the infection by the necrotrophic fungus Sclerotinia sclerotiorum. After
3 RAS, plants exhibited a 12% significant gain of resistance to the disease. To better understand
the transcriptomic reprogramming underpinning this huge gain of resistance, RNA sequencing was
performed on healthy plants prior to the infection after 0, 1, 3, 8 RAS. The differential analysis led to
identifying 9554 RAS modulated genes. We restricted our analysis to these genes. We benchmarked our
sign variations clustering methods with standard methods (k-means for functional data, hierarchical for
time series data, k-means longitudinal data, k-means and hierarchical clustering). The sign variations
methods consist of 2 steps. Genes with similar temporal variations were first grouped together. Each
group was next split by the k-means clustering method into subgroups whose number is determined by
the silhouette coefficient. The clustering provided by the sign variations method exhibited the lowest
distance within clusters and the lowest Davies-Bouldin index with a reduced computational time. We
also found that the clustering method impacted the mean squared prediction error of VAR(1) inferred
network [2]. The sign variations clustering method led to a reduced prediction error compared to
other clustering methods. The sign variations clustering appears suitable for network inference based
on very-short time series of gene expression.
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The development of transcriptome sequencing (RNASeq) has allowed to rapidly identify and 
quantify all RNA molecules in a cell type or a tissue. This shed light on the pervasive transcription of 
the genomes where functionally important protein-coding (mRNAs) and long non-coding RNAs 
(lncRNAs) need to be distinguished from transcriptional noise [1]. Deep learning (DL) strategies 
using either convolutional neural networks, recurrent neural networks or more recently Encoders with 
self-attention mechanism (e.g. Transformers), have been successfully applied to various genomic 
classification tasks such as chromatin accessibility or regulatory sequence classification. Here, we 
develop a general and easy-to-use framework, called TransforKmers, which facilitates the 
building, training and utilization of Transformers models, as provided by HuggingFace [2], for 
genomic sequence classification. More specifically, all essential steps are included in 
TransforKmers: the creation of a pretraining dataset from any given genomic sequences, the 
configuration of customizable tokenizers, the pretraining of the model and its finetuning with labeled 
sequences, the test and evaluation of the model and finally, the inference on real sequences. To 
illustrate the usability of our framework, we applied it to classify novel transcription start sites (TSSs) 
reconstructed from 6 long-read RNASeq (LR-RNAseq) targeting canine transcriptomes. Hence, we 
pretrained a Transformer architecture inspired by BERT [3] with 2 million DNA genomic sequences 
of length 512 nt. We then fine-tuned the model with a positive set of 94,100 TSSs extracted from the 
canFam4 NCBI annotation and a corresponding negative set composed of both random intergenic and 
real sequences randomly shuffled. Our model achieved high performance with F1-score of 0.912 and 
accuracy of 0.914 on the test set. Interestingly, we highlighted that TSSs classified as true positives 
are enriched for CAGE (Cap Analysis of Gene Expression) peaks (χ2, p-value =2.2.10-16) 
strengthening the accuracy of the 5’-end predictions. We then applied our method on a real dataset of 
novel canine genes (both mRNAs and lncRNAs) that were annotated by our previously published 
pipeline ANNEXA [4]. We showed that 43,9% (2274/5183) of the novel TSSs (i.e. not annotated in the 
reference transcriptome) were classified as positives. Given that LR-RNASeq protocols start from the 
3’end of the transcripts (polyA tail), these transcripts can be considered full-length, thus paving the 
way for further functional validations. Altogether, we developed a novel DL-based framework which 
facilitates the processing and classification of biological sequences based on Transformer 
architectures. This tool has been integrated as a new module in our ANNEXA pipeline and is also 
freely available at GitHub: https://github.com/mlorthiois/TransforKmers. 
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Background. Plant cells harbor three different genomes: in addition to the nucleus, genes are found in other 
organelles, such as mitochondria or chloroplasts. Inside chloroplasts, RNA transcripts undergo a complex set 
of maturation events including splicing, editing – the transformation of one base into another – and processing 
of their extremities [1]. We recently took advantage of the Nanopore sequencing technology to study the 
dependencies between two different maturation events on the same transcript in Arabidopsis thaliana [2]. This 
long read technology allowed us to jointly monitor events that are sometimes separated by several thousand 
bases. Dependencies were measured using a Fisher test, thus ignoring several important features of the 
sequencing data as count dispersion and replicates intrinsic variability. 
R pipeline. Contingency tables containing the number of reads in each maturation state for every pair of 
maturation events were used as input to a conventional gene differential expression analysis pipeline. R 
DESeq2 package [3] was used for computing contrasts and applying a Wald test. In the simple case of studying 
the dependence of pairwise maturation events in one biological condition, testing the contrast is reduced to 
testing the 2nd order interaction term of the generalized linear model. Adjusted p-values led to the estimation 
of dependency between events in each pair. 
Empirical Results. We showed that the contrast method was able to recover most of the dependencies 
previously found with the Fisher test, with a similar ranking between all pairs of events. Differences between 
the two methods mainly lie in the most ambiguous cases, i.e., when the p-value approaches 5%. 
Discussion. In the two-events case, the contrast method proved effective. Dependencies obtained using the 
Fisher test and rejected by the contrast method might be considered false positives since this new method 
estimates the counts' dispersion more accurately using the binomial-negative hypotheses and models the 
specificity of each replicate. 

Further Work. We plan to adapt the method to the study of dependencies between more than two events, and 
to integrate a second biological condition or the maturation event processing of the ends in the pipeline. 
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Proteins perform most of their functions by interacting with other proteins. Studying protein complexes is 
crucial to better understand the interaction mechanisms at the molecular level. Determining experimental 
structures is a time consuming and costly process and is not always possible. Computational methods for 
structure prediction have therefore been developed to identify in silico the most likely conformations of the 
bound partners of a complex. Rigid body docking is a two-step approach: the sampling step and the scoring 
step. During sampling, a large set of possible conformations is generated. Conformations are then ranked to 
identify the most likely poses (scoring step).  

Several scoring methods have been proposed based on physics, statistical and evolutionary information as 
in the consensus score implemented in the server InterEvDock3 [1] developed by our team. In parallel, deep 
learning approaches have proven to be extremely powerful to study the structure of biological objects, by 
extracting a signal from a covariation map as in ComplexContact [2] or TrRosetta [3], or more recently by 
analyzing protein sequences with the Transformers technology in the successful AlphaFold2 method [4]. 

In this work we present a deep learning approach analyzing proteins at the residue level. Inputs of our model 
include geometric and sequence information for one residue and its environment. The model evaluates the 
adequacy between the residue and its context. A more global representation of the whole complex structures 
is being developed, using graph representation and graph convolutions. 
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Transcriptomic analyses have increasingly contributed to our understanding of the intricate biolog-
ical processes involved in the emergence of auto-immune diseases or tumour-promoting environments.
However, classical bulk analyses ignore the intrinsic complexity of biological samples, by averaging
measurements over multiple distinct cell populations. It is therefore unclear whether a change in
the gene expression between samples results from a variation of the cell type proportions, from an
environmental signal or a mutation [1].

To remove this ambiguity, deconvolution algorithms can estimate the proportions of cell pop-
ulations from a bulk transcriptome using the reference transcriptome of purified cell populations.
Traditionally, most approaches, including the gold standard CIBERSORT algorithm [2], retrieve the
cell proportions of a mixture assuming the linear assumption that each gene expression is the sum of
each cell population’s contribution weighted by their corresponding relative frequency in the sample.

However, none of these methods account for the transcriptomic covariance structure and address
the crucial problem of co-expression between distinct genes. The first goal of our project aims at
studying the impact of correlation structures in the quality of the estimation performed by canonical
deconvolution algorithms that assume iid distributions between the genes and use a fixed averaged
expression profile for each cell type. The transcriptomic pathways were learnt from publicly purified
cell data only, hypothesising that the network structure was sparse. Direct connections between
the genes are represented for each population by non-zeros entries, learnt by plugging in the MLE
covariance estimate, with zeros inputs shrunk by the gLasso algorithm [3,4].

Then, we develop a new deconvolution method that model each purified cellular expression profile
as a multivariate Gaussian distribution [5], whose covariance parameter is the plugged-in estimate
learnt beforehand to reconstitute the bulk profile. Next, we will optimise the estimation of the cellular
expression profiles, by determining the MLE optimising the associated convolution of density func-
tions of purified multivariate Gaussian transcriptomic profiles. Finally, we will compare our method
to standard deconvolution algorithms, showing its interest to supply estimates more faithful to the
biological reality.
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Abstract 

The Adverse Outcome Pathway (AOP) is a conceptual framework proposed by Ankley et al. (2010) that 

was developed to address some of the toxicological and ecotoxicological challenges of the 21st century [1]. 

AOPs allow to organize toxicological and ecotoxicological data as a linear combination of biological events 

initiated by exposure to a stressor (e.g., pollutants, chemicals, stresses). An AOP always starts with a molecular 
initiating event (MIE), progresses via a cascade of key events (KEs) through different levels of biological 

organization (cells, tissues, organs) to the appearance of an Adverse Outcome (AO). Biological events (MIE, 

KE, AO) are not exclusive to one AOP and can be found in a multitude of AOPs. Thus, AOPs can be assembled 
into complex Adverse Outcome Networks (AONs) to better evaluate and identify the risks caused by exposure 

to certain stressors on health and the environment and help reduce the use of animal methods. 

Given the enormous amount of existing knowledge in the scientific literature and other data sources, the 
identification of relevant biological information to build AOP is a complex and time-consuming task, 

especially in deciphering dispersed data. Thus, to assist in the AOP development process, the AOP-helpFinder 

tool has been developed [2]. AOP-helpFinder is an innovative tool, developed under python, combining graph 

theory and text mining that automatically explores scientific abstracts from the PubMed database.  
From a list of stressors (e.g., "bisphenol", "ionizing radiation") and a second list of key biological events (e.g., 

"oxidative stress", "DNA breaks") provided by the user, AOP-helpFinder will be able to identify and extract, 

in a systematic manner, all published existing associations between at least one stressor and one key events 
from the lists. For example, the tool has already been successfully applied for the identification of links 

between different substances (bisphenol S, bisphenol F and pesticides) and KEs [2, 3, 4]; as well as for the 

development of an AOP on microcephaly induced by ionizing radiation (https://aopwiki.org/aops/441). 

Recently, a web-server (available at: http://aop-helpfinder.u-paris-sciences.fr/) has also been developed for a 
friendly use of the tool [5].  

In the current version, AOP-helpFinder only allows the search for links between stressors and KEs/AOs. An 

updated version is under development to also offer a search for links between pairs of biological events. The 
ultimate goal is to provide a tool to assist experts at all levels of AOP development but also to provide 

automated creation of predictive AOPs and AOP networks, which would greatly support the development of 

systems toxicology. 
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1 Introduction

There is increasing interest in studying the connection between some diseases and the gut micro-
biota, as well as to identify what specific microbes play a fundamental role in that. Formally, this
can be cast as a variable selection problem. Despite standard in statistics, it poses a big challenge to
available methods to deal simultaneously with the intrinsic complexity of the data and the experiment
design. Briefly, methods that can accomodate specific designs and longitudinal data tend to be uni-
variate, while multivariate methods often do not take full advantage of the repeated measurements. In
this work we present a two-step approach that combines the main advantages of univariate approaches,
while still preserving a multivariate nature via random linear combinations of the original features.

2 Proposed method

Let X = (X1, . . . , XT ) be a sequence of microbiome profiles Xt ∈ Rq collected at times t = 1, . . . , T
for the same individual and let uk ∈ Rq be a fixed vector of norm one. Let Zk = (Z1k, . . . , ZTk), with
Ztk = ⟨uk, Xt⟩, be the sequence of projections of the microbiome profiles onto the direction uk. Also,
let L(Zk,Y) denote a linear mixed model for the outcome Zk as a function of the fixed effects in Y,
using the subject ID as a random effect. The proposed method consists of the following two steps:

— Step 1 (Tested random projections): Let Ũ = {u1,u2, . . . ,up} be a set of p randomly
generated directions of projection, with large enough p. Get the matrix U of column vectors
in Ũ so that uk is a column of U iff L(Zk,Y) gets a significant p-value for the intended
comparison on Zk. That is, U is built only from the projective directions that are good enough
to discriminate between the tested groups in Y. No correction for simultaneous testing on the
p directions is included at this step.

— Step 2 (Sparsity-inducing matrix factorization): Find a reduced-rank factorization of U
as U = AB, inducing some full rows of matrix A to go to zero. Then, if I indexes the set
of rows of A that are not null, it determines the set of relevant features as Xt(1), . . . , Xt(ℓ) for
indices (1), . . . , (ℓ) in I and for every time-point t.

Step 1 evaluates a set of random candidate directions to project the data and retains only those who
are discriminant. Since each projection is scalar, this can be achieved using standard tools that easily
accomodate repeated measurements. For large enough p, matrix U spans a subspace that retains key
information about Y available on X, while avoiding multivariate estimation. Since each uk combines
information from all the variables, the method preserves a multivariate nature. Moreover, since U
can be made rank-defficient, so that it has redundant information to characterize such a subspace, the
factorization in Step 2 finds a minimal spanning basis A of the discriminant subspace while inducing
variable selection via structured sparsity. Provided the dimension of such minimal subspace is known
(i.e. by testing on the SVD of U), the optimization problem can be cast as a group-lasso problem.

3 Results

Obtained results from experiments with GAN-based simulated microbiome data [1] show that the
proposed method is competitive in terms of selection accuracy (false discoveries, false negatives), while
not requiring complex estimation of multivariate models but software tools commonly available.
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Computational neuroscience aims to model the biological reality of brain behaviour using computer
science tools. In particular, one branch of this research field has specialised towards bio-inspired
artificial intelligence, which comprises Spiking Neural Network (SNN). A spiking neuron mimics the
dynamics of biological neuronal circuits by receiving, processing and sending information in the form of
spike trains [1]. A SNN is constructed using populations of neurons linked together with connections,
with respect to a certain architecture and certain rules allowing it to learn a behaviour. These rules
often concern the evolution of the synaptic weight between two pre- and post-synaptic neurons, i.e. the
amount of neurotransmitters released in the synapse following the pre-synaptic neuron’s excitation.

Delay learning is another of those learning rules which, instead of changing the synaptic weight,
changes the delay of the electrical spike journey in the pre-synaptic neuron’s axon [2].

First biological observations

The first evidence of any neuronal delay in the information propagation within the animal brain
came from the interaural time difference, allowing for the azimutal localization of sound by barn
owls. According to Gerstner in 1996, there is a true paradox in auditory neural systems since “neural
networks encode behaviourally relevant signals in the range of a few µs with neurons that are at least
one order of magnitude slower” [3]. Various biological experiments have thus revealed the existence
of a biological axonal delay precisely adjusted according to variations of parameters in the brainstem.

The importance of myelination

Over and over, myelin has been identified as one of the parameters mentioned above. Indeed,
this multilaminar coating formed by the glial cells in the Vertebrates’ nervous system facilitates both
the neural circuit function and the behavioural performance [4]. Experiments on mammals show that
myelination is directly related to learning and memory consolidation, both at an early age and in older
animals, due to its involvement in coupling the activity of distant neuron populations.

Some computational approaches

Delay learning is a striking example of a computer science concept effectively reinforced by ongoing
neuroscience work. Indeed, more and more SNN models are being developed with an impetus to learn
by updating delays, not just synaptic weights. One convincing instance among many is given by [1],
which combines delay adaptation and polychronization for reservoir computing; or more recently by
[5], which proposes an STDP extended to the delay learning repeating spatio-temporal patterns. We
likewise aim to implement such a delay learning applied to motion detection, notably by drawing on
neurological knowledge in order to approach biological efficiency.
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1 Background

The Wnt signalling pathway is a driving force of proliferation and differentiation [1]. Aberrant
behaviour in this pathway may lead to several types of cancers and Alzheimer’s disease [2,3]. To
complete our understanding of this pathway we look for its target genes, which may be tissue-specific.
We found 93 target genes identified experimentally in the colorectal cancer context, but it is probable
that the real number is higher. We aim to identify novel target genes of the Wnt/β-catenin signalling
pathway using a one-class machine learning approach, expanding the method presented in [4]. The
challenge here is the lack of well-defined negative examples.

2 Materials and methods

We analyzed several publicly available transcriptome experiments and used the differential gene
expression profiles to represent each gene. We used the experimentally validated target genes as “posi-
tive” examples in training. We took a random sample from the rest of the genes as “negative” examples
to train a CART classifier. This process was repeated 1000 times with independent sampling. Each
trained classifier was then used to assign a “positive” or “negative” label for each gene. The number
of times each gene is classified as “positive” is a score that can be tested for significance using the
Fisher method. The classification depends on two hyperparameters, sample size and misclassification
cost, which we tuned to minimize over-fitting using a suitable negative control. Thus, we found a set
of putative target genes having an expression pattern very similar to known target genes.

3 Results

The pool of trained classifiers predicted 144 putative novel target genes. Some of the highest
scoring genes are PTCH1, GLI3 and SOX4. The first two predictions, PTCH1 and GLI3, are important
components of the Hedgehog Signalling. This suggests a possible interplay between Wnt and Hedgehog
signalling in colorectal cancer. In parallel to our study, experimental researchers have shown that
PTCH1 is indeed a colon specific Wnt target [5].

4 Conclusion

We present a bioinformatic method to find putative target genes of the canonical Wnt signalling
pathway, and eventually in other pathways, based only on gene expression data and a set of experimen-
tally validated targets. This method narrows the set of genes to validate experimentally. Moreover,
some of our predictions have already been validated by other studies.

References

[1] Catriona Y. Logan and Roel Nusse. The Wnt signaling pathway in development and disease. Annual Review
of Cell and Developmental Biology, 20(1):781–810, nov 2004.

[2] Hans Clevers. Wnt/β-catenin signaling in development and disease. Cell, 127(3):469–480, nov 2006.

[3] Giancarlo V. De Ferrari and Nibaldo C. Inestrosa. Wnt signaling function in Alzheimer’s disease. Brain
Research Reviews, 33(1):1–12, aug 2000.

[4] Christian Hödar, Rodrigo Assar, Marcela Colombres, Andrés Aravena, Leonardo Pavez, Mauricio González,
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Single-cell  RNA sequencing  revolutionizes  transcriptomic  studies  providing  gene  expression  level  at

single-cell  resolution  [1].  The  classical  pipeline  used  to  discover  cell  populations  consists  of  several

consecutive steps, namely feature selection,  dimension reduction and cell  clustering [2].  These steps are

widely used  in  the  world  of  single-cell  RNA-sequencing,  however,  three  major  problems  remain  to  be

improved. First, feature selection methods do not lead to a common consensus and most of them provide

variable results [3]. Second, the identification of marker genes leads to double dipping by creating a high

type I error rate caused by the prior identification of cell groups [4]. Finally, all the steps of the classical

pipeline depend on a number of parameters which, depending on their values, will generate a large variability

of results.

To overcome these problems, we developed SciGeneX (for Single-cell informative Gene eXplorer). An

unsupervised method offering an alternative approach that provides an initial insight into the pattern of co-

expressed genes across cells. SciGeneX automatically filters co-expressed genes across the set of cells using

a density-based-filtering algorithm and clusters them into gene patterns of expression using the Markov

Cluster  Algorithm [5].  Combinations  of  these patterns  spontaneously highlight  biologically relevant  cell

populations  associated  with  cell  types  or  states  as  well  as  the  genes  specifically  expressed  in  these

populations. Thus, SciGeneX perform feature selection and identification of co-expressed gene patterns and

provide an alternative approach for cell clustering based on these patterns, avoiding the main drawbacks of

the currently used algorithms.
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The immune system is capable of detecting and killing various pathogenic agents such as viruses and 

bacteria but also cells, including cancer cells. In some cases, cancer cells can escape the immune 

response.  Understanding the regulation of the immune system cells is important to know how a patient could 

react to cancer and cancer treatments. We are interested in the regulation of the immune system, that is the 

non-coding variants involved in the immune regulation.  

In order to do that the first objective was to collect data in the different immune cell types: first, we collected 

ATAC-seq data [1] which allowed us to study the regulatory regions which are known to contain regulatory 
variants.  ATAC seq is a technique that aims to localize open chromatin regions that are known to be enriched 

in regulatory elements. For that, a hyperactive transposase inserts sequencing adaptors to the DNA. The tagged 

DNA fragments are then purified, PCR-amplified, and sequenced using next-generation sequencing. 

Sequencing reads can then be used to infer regions of increased accessibility. The number of reads for a region 

correlates with how open that chromatin is, at single nucleotide resolution. 

Then the same thing has been done with the eQTL [2] which allows the analysis of the regulatory variants 

directly. eQTL stand for expression quantitative trait loci and aim to localize loci that have an influence in the 
expression of genes. The idea was to check whether the different immune cell types are separated in order to 

check the coherence of the data.  

We saw with ATAC-seq that we had a good separation between stimulated and unstimulated conditions but 
also a good separation between the main cell types whether it is on the basis of normalized peaks or motifs. 

Regarding eQTL we saw that the separation between stimulated and unstimulated conditions was not clear but 

well by cell types.  

After this we wanted to know whether eQTLs were found in ATAC-seq peaks for similar cell types. For that 
we used Chromvar [3]. ChromVar computes raw deviation in accessibility, then the raw deviations for 

background peaks and finally bias corrected deviation and z-score. A high score means an enrichment of 

eQTLs of the dataset in the ATAC-seq sample. We can see enrichment of eQTL in the ATAC-seq region of the 

same cell type. 

Next, I use deep learning based on ATAC-seq and eQTL DNA sequences as well as the ATAC seq count 

matrix in order to predict variant prediction. The results of de deep learning show good results. 

My next objectives are to collect new data in immune cell types such as CHIP-seq, DNase-seq, histones 

marks and so on. Finally, we want to link everything to cancer by integrating data from GWAS, TCGA or 

PCAWG.  

 

References 

1. Calderon, D., et al. Landscape of stimulation-responsive chromatin across diverse human immune cells. Nat Genet, 

(51):1494–1505, 2019. 

2. Kerimov, N., Hayhurst, J.D., Peikova, K. et al. A compendium of uniformly processed human gene expression and 

splicing quantitative trait loci. Nat Genet, (53):1290–1299, 2021. 

3. Schep, A., Wu, B., Buenrostro, J. et al. chromVAR: inferring transcription-factor-associated accessibility from 

single-cell epigenomic data. Nat Methods, (14):975–978, 2017. 

[Statistics, machine learning, artificial intelligence and image analysis - poster T7.22]

161



Bulk RNA-Seq deconvolution for the study of hemorrhagic fever

Emeline Perthame1, Hélène Lopez-Maestre1 and Natalia Pietrosemoli1
Hub of Bioinformatics and Biostatistics, Institut Pasteur, 25-28 rue du Docteur Roux, Paris, France

Corresponding author: emeline.perthame@pasteur.fr

1 Abstract

We are interested in studying the kinetics of Lassa fever infection in Cynomolgus monkeys [1]. Lassa
virus produces a viral hemorrhagic fever that has been quickly expanding in the African continent and
its pathogenesis and the spectrum of severity is not fully understood.

Here, we compare the virus invasion into several tissues to describe pathogenesis of the disease and
host response. By inferring cell type proportions for the different viral strains using deconvolution
methods, we can provide keys to understanding the host response. The evolution of the proportions of
activated, resident or infiltrated immune cells allows for refined characterisation of the nature of immune
activation and tissue inflammation and possibly of the cell populations destroyed by the infection. We
apply our methods to a transcriptomic dataset (RNAseq) representing the evolution of Lassa infection
at 3 time points for healthy and infected monkeys. The comparison of a lethal and a non-lethal strain
of the virus allows the identification of markers both of early infection and severity. Currently, there
are more than 50 cell type deconvolution methods available in the literature, mostly implemented on
variations of the linear model [2]. We selected a handful of methods according to their "feasibility"
such as, the most used in the community, R implementation into a well maintained and easy to install
package, documentation on the method, and running time, as assessed in recent reviews of bulk RNA-
Seq deconvolution methods [3], [2]. Our analysis includes methods such as CIBERSORT [4], one of
the most used methods in the community, as well as the Ordinary Least Square which represents a
straight-forward implementation to estimate the regression coefficients reflecting cell types abundances.

Most deconvolution methods require two inputs: the count matrix representing the gene expression
values for each sample M , and a matrix of signatures S, required to define the gene expression levels
corresponding to each cell type. The S matrix needs to be specific to the tissue or organ under study.
In order to refine the signature definition, we designed a two-level procedure: first, inferring the cell
types proportions with a signature specific to the tissues under study, to identify the main cell types,
and second, computing the remaining proportions with three publicly available signatures for immune
cells. We show that the construction of S has a substantial impact on the results, as missing cell types
can alter the proportions of the inferred cells and thus produce misleading results.

Last, we discuss some key elements to biologically interpret the results provided by this analysis.
For example, the application of CIBERSORT to liver cells using one of our combined signature shows
that the proportion of activated NK cells, CD4 T cells and naive B cells increases sharply in the
tissue during the course of the disease, which shows the high level of inflammation in the liver. This
observation is confirmed using histology.
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1 Background/Objectives
Synthesizing the hereditary information of each family case, family trees or genograms are a central tool

for patient management and variant interpretation in genomic medicine. However, as it is currently produced
on paper during consultations, this clinical information is not exploitable in bioinformatic analysis pipelines.
Despite the availability of digital drawing tools, there is unfortunately no adoption in the community yet.

2 Methods
We develop DetecTree, an artificial intelligence system able to automatically digitize family trees,

including the detection of the number and position of the family members, their attributes and their
relationships. In May 2022, we collected and annotated manually 38 digitally made genograms and 47
photographed images of anonymous family trees drawn by health professionals as in the usual practice [1].
We trained a deep learning model based on the Detectron2 framework [2] that takes a family tree picture as
an input and produces a digitalized family tree as an output compliant with standard formats.

3 Results
We achieved promising results, managing to correctly register 95% of the individuals of our evaluation

batch in the right generation and order. We can confidently identify the sex and disease status attributes with
an AP50 of around 95%, but still get limited performance for relationship detection, and deceased and
proband status detection because of the low representation of these cases in our initial samples. Using these
predictions, DetecTree attributes for each family member its position in their respective generation and
detected parent-offspring relationships.

4 Conclusion
DetecTree is a deep learning system for genogram digitalization. It yields exploitable outputs in

automated digital DNA analysis and thus could improve the diagnostic management of patients. Our solution
passed the initial testing phase and we are scaling it to manage more diverse data inputs by retraining and
optimizing our models on the real-life collected data, with a more balanced representation of all
characteristics to identify deceased status and proband position.
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1 Abstract

Health data are often very high-dimensional (especially omics and metaomics) and difficult to
collect in large quantities, due to resource constraints and/or disease rarity.
Classically, n refers to the number of samples (e.g. patients in a cohort) while p refers to the number of
features (e.g. number of gene expressions for transcriptomic data, the number of species for microbiome
data, etc). To address the high-dimensional regime (p ≪ n) where many standard approaches fail,
several steps are usually taken:

1. The first is to get more data (i.e. increase n). For example, in the context of medical data, it
is common to have to gather several datasets, from different cohorts, to increase the amount
of data, especially when the size of each dataset is limited.

2. The second is to reduce the size of the data (i.e. decrease p). Principal Component Anal-
ysis (PCA) remains a very popular first approach to dimension reduction, due to its good
performance and ease of use.

3. The third is to use regularisation techniques (such as LASSO) to perform feature selection (i.e.
choose only some features).

The focus here is on the case where there are several datasets measuring the same features on
several cohorts of samples (multi-block approch). A naive way of integrating the data consists in
concatenating these datasets, in line with point 1), in order to increase n. They are likely mutually
informative, even though they probably each have their own specificity. One could then apply a
dimension reduction technique, such as PCA, to decrease p as in 2).
However, this simple approach leaves us vulnerable to batch effects which might bias the global
analyses. It is there therefore recommended to both pool the different datasets but still correct for
the peculiarity of each dataset. We propose here an approach based on Wasserstein regularisation and
Optimal Transport [1] to allow a penalised variability between the loadings obtained by an independent
PCA on each of the individual datasets, which we call Multi-Wasserstein PCA (MWPCA).
More formally, given a collection X of D datasets, νS , νL, µ ∈ R+

∗ , and a rank k ∈ N∗, the MWPCA
consists in finding a collection (S,L) of D pairs (Sd ∈ Rn×k, Ld ∈ Rk×p), which minimizes the loss:

1

D

D∑

d=1

1

nd




||Xd − SdLd||2F︸ ︷︷ ︸
Reconstruction error

+ νS

k∑

l=1

||Sd
·l||2

︸ ︷︷ ︸
Norm regularisation

+ νL ||Ld||1︸ ︷︷ ︸
Norm regularisation

+ Sparsity




+ µΩ(L1, ..., LD)︸ ︷︷ ︸
Wasserstein regularisation
=⇒ Loadings consistency

This model is computed using an alternating minimisation algorithm [2], combined with a penalty
based on Sinkhorn’s algorithm [3] to ensure inter-dataset consistency of the loading matrices.

We demonstrate our methodology on microbiome data, for which it is known that there are country-
specific compositional differences. We predict colorectal cancer (CRC), based on the patient’s micro-
biome, applying MWPCA to nine datasets from studies conducted in various countries.
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Abstract
Several studies have made it possible to envision a translational application of plasma sequencing in

cancer diagnosis and monitoring[1]. However, for early cancer detection, the stoichiometry of fragments
tumour cell DNA (ctDNA) among the cell-free DNA (cfDNA) remains a formidable challenge to overcome.

Dying cells, even in healthy individuals, release a fraction of the digested fragments of their genetic
material into the blood stream. Interestingly, the position of the nucleosomes remains imprinted onto the
circulating DNA fragments so that those fragments can be sequenced and statistical models can be trained to
recognise the tissue those fragments originate from.

This information, if made sensitive enough, could be a useful medical device to carry out so-called ‘liquid
biopsies’, allowing clinicians to diagnose at an early stage or to precisely monitor a number of diseases,
including cancer. In this study, we comprehensively study genetic and computational features of circulating
DNA fragments in the vicinity of transcriptional start sites that increases the sensitivity of statistical models
trained on the sequences of circulating DNA from healthy individuals.

In this study, we set about comprehensively appraising the predictive value of genetic, functional as well
as computational features of cfDNA around transcription start sites (TSSs) in models trained to identify the
(lympho-myeloid) tissue(s) of origin of cfDNA in healthy samples from public datasets.

Our study also considers a variety of selection approaches to derive sets of tissue-specific genes. The
features of interest are: mapped fragment density around each TSS, inclusion of long non-coding RNA
(lncRNA) genes, inclusion of the first nucleosome position after a TTS. The inclusion or not of each feature
together with the selection approach was evaluated combinatorially in an attempt to increase the performance
of those models but also to derive biological insight into the gene expression landscape seen from a tissue
perspective.

Our results show that:

1. lncRNAs are more tissue-specific than coding genes;

2. The first nucleosome position after a TTS doesn’t convey a substantial amount of predictive
information to identify the tissue of origin;

3. The comparison of highly specific genes vs non-specific genes are the most useful predictive
comparison.

While the main approach in the field tend to rely more and more on deeplearning[1,2], leading to blackbox
model, our approach offer to improve the biological knowledge of the biomarker that is the cfDNA.
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Toxicological studies are designed to characterize the adverse effects of chemicals according to the dose and
the duration of exposure to ensure their safety for humans. These past years, guided by progress in data
science  and  the  objective  to  reduce  animal  testing,  new  in  silico and  in  vitro methods  appeared  as  a
supplement to in vivo studies. In this context, the Broad Institute of the MIT developed the Cell Painting [1],
a technique of image-based cell profiling, to study morphological changes induced by chemicals in cells
cultivated in vitro and to identify potential toxic risks. 

In  this  study,  we focused on how Cell  Painting could help to  predict  drug-induced liver  injury (DILI).
Overall, 537 chemicals  from the Cell  Painting data  were gathered and annotated using two datasets  of
hepatotoxicity findings in humans and rodents called DILIrank [2] and eTox [3]. Based on an ensemble of
1779 morphological  features,  a T-test  was  performed to  identify  features  that  would  be  more  likely  to
discriminate between DILI and non-DILI chemicals.  Then machine learning methods were computed to
assess the hepatotoxicity risk induced by the chemical. 

Combined  with  2  times  5-fold  cross-validation  and  grid-search  hyperparameter  tuning,  the  ElasticNet
regression model gave encouraging predictive performances with balanced accuracies (BA) higher than 0.6
for test sets. Morphological features related to cells’ appearance, especially roughness and smoothness, seem
to contribute to the performance of the model. Our results show that the application of machine learning
tools on phenotypic screening data could be used for chemical risk assessment in hepatic failures. 

In the near future, morphological profiles induced in cells by chemicals could be a new lead to improve the
identification  of  chemical-phenotype  relationships  of  interest  not  only  in  toxicology  but  also  in
pharmacology.
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Adverse drug reactions (ADRs) from drugs are a major issue in modern healthcare causing longer 

hospital stays and higher mortality rates with costs estimated at around 30 billion dollars in the US only 

[1].  

These adverse effects are usually linked to overdosage, drug-drug interactions or the effect of 

polymorphism on specific therapeutic targets [2]. This study will focus on the latter to develop a 

predictive model able to assess if an ADR can be caused by a genetic mutation present in a drug target. 

Mutations used in this study were missense SNPs or SNVs.  

Firstly, we used a system pharmacology network integrating data from multiple sources like DrugBank, 

DrugCentral or dbSNP to compile the information on molecule-target-mutation and adverse effects [3]. 

Then, we built sequential neural network models to predict the possibility of a compound being 
associated with ADRs from these extracted data. For simplicity, we grouped the AE into organs using 

the system organ class (SOC). Three distinct approaches were considered, i) a model using all the SOCs 

at the same time ii) a distinct model for each SOC, and finally, iii) a model including structural 

information on the compounds.  

The models developed for each SOC were promising with a balanced accuracy of around 0,6 on a 

training set and 0,57 on the test for the SOC “Respiratory, thoracic and mediastinal disorders”. Even 

more, when structural information is added results are even improved with a notable 0,69 on a training 

set and 0,63 on the test for the “Metabolism and nutrition disorders” SOC. 

With the increasing number of large studies investigating the impacts of pharmacogenomic i.e., the role 
of the genome in drug responses in patients, such computational implementation could be of interest in 

the development of personalized medicine where ADRs could be avoided based on the patient genome. 
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Abstract 

The phytopharmaceutical and pharmaceutical industries aim to design chemical products that are active on 
desired targets while limiting the number of off-targets, to make the products safe for humans and the 
environment in the conditions of use. 

The development of such small molecules is a long and costly process. It takes typically about 12 years to 
deliver a new molecule on the market, costing several hundred million euros.  At any moment, a compound 
can be stopped due to its suboptimal safety profile.  

It is then key to evaluate the safety of chemicals as early as possible in the R&D process. 

Due to animal welfare concerns, in vivo experiments must be reduced then stopped by 2035[1]. 

New approach methods (NAM) are being developed [2]. Those new approaches are ambitioning to shift 
both hazard identification and risk assessment derived from laboratory animal evaluations towards in silico 
and in vitro models based evaluations. 

Those methods are at their beginning, not yet implemented and not yet legally accepted, but they would 
allow safety evaluation and risk assessment in a fastest, cheapest way and in a more holistic manner while 
being more ethical and providing sufficient level of protection of human health. 

The Cell Painting in vitro assay is one of the promising NAMs with scalability potential, rich biological 
information content and, when combined with ADME properties, could provide predictive in vivo adverse 
outcomes.  

We are exploring the information contained in cell painting images for the small molecule safety evaluation 
and human risk assessment. Morphological profiles will be analyzed in the frame of acute toxicity prediction, 
for Point of Departure (POD) determination, and for the prediction of other in vitro assay results. U2OS cells 
are currently being used as a first approach, but we believe that a specific set of cell lines need to be defined, 
to reflect a maximum of derived toxicological endpoints. Moreover, toxicokinetic models will be also 
discussed in their applications for reverse dosimetry to extrapolate in vivo doses that would produce POD in 
rat plasma. Those doses will be compared to known in vivo PODs to evaluate their potential to estimate in 
vivo POD. Finally, the analysis of links between morphological profiles and toxicological outcomes, would 
allow us to define unsafe morphological profiles, that could then be used to drive the generation of de novo 
drug that are safe by design, using generative models such as GANs or Autoencoders.   

 

References 

1. David Grimm. U.S. EPA to eliminate all mammal testing by 2035. Science, 2019. 
2. U.S. EPA. Strategic Vision for Adopting New Approach Methodologies 

[Statistics, machine learning, artificial intelligence and image analysis - poster T7.30]

168



 

 

Automatic Empirical Segmentation of the Peritumoral Area in Lung Cancer 

Computed Tomography, Locating the Non-anatomical 

Alexis NOLIN-LAPALME

 1,2

, Kim PHAN

2

, Tess BERTHIER

2

, Robert AVRAM

1

 and Julie HUSSIN

1

 

1

 Montreal Heart Institute, 5000 Rue Belanger, H1T 1C8, Montreal, Canada 
2

 Imagia, 6650 Rue Saint-Urbain #100, H2S 3G9, Montreal, Canada 

 

Corresponding Author: alexis.nolin-lapalme@umontreal.ca 

Lung cancer (LC) remains the principal source of cancer-related mortality worldwide [1]. The cornerstone of 

LC diagnosis and treatment management is based on computed tomography (CT) which allows a noninvasive 
internal view of the patient’s anatomy. This modality has allowed the use of quantitative imaging approaches 

in attempt to extract quantifiable information from CT images in attempt to design classifying or predictive 

models [2]. However, most of these approaches focus on the tumor-bounded region thus wasting other potential 

hotspots of data present within the lung. One of these candidate regions is the peritumoral area (PA); a non-
anatomical zone of lung parenchyma surrounding tumors, associated with disease severity and evolution where 

cancer cells or immune infiltrate can be detected [3]. However, no studies have been able to propose an accurate 

empirical segmentation approach thus hindering it’s use in feature extraction. 

We initially used the RIDER dataset [4]. An ensemble of 32 pairs of LC CT taken fifteen minutes apart. Each 

segmented tumor mask was dilated with a disk-shape structuring element of radius of 3,6,9,12 mm yielding an 

associated donut-shaped mask approximating the tumor’s PA. Lung masks were adjusted using a U-Network-

derived mask used to prevent the sampling of non-lung voxels. Using this mask, features were extracted using 
the PyRadiomics pipeline [5]. Features within image pairs were then compared using their concordance 

correlation coefficient (CCC) to identify time-stable features. These were subsequently analyzed within 

patients by comparing each peritumoral dilation with a randomly sampled healthy area and the tumoral area 
in each CT from the 1018 cases present in the LIDC dataset [6]. The feature map for the LIDC dataset based 

on the final features describing the PA were then generated and used to generate the final PA segmentation.  

Our results suggest that gray-level co-occurrence matrix maximal correlation coefficient as well as skewness 
describe the unique appearance of the PA and that those features can be used to generate a PA mask. Moreover, 

these maps show previously unknown patterns such as the connection of the PA to key metastatic pathways. 

We will validate the information gain offered by the PA will be compared by comparing tumor malignancy 

prediction from ResNet18-extracted features of the tumor alone or with the generated PA or the tumor dilation. 

The tumor and the PA will be considered superior if the accuracy significantly exceeds the other alternatives. 

In conclusion, our approach demonstrates for the first time that an empirical segmentation of the PA is possible 

and that the incorporation of that area in quantitative imaging could further improve algorithmic performance 
in the context of LC-specific quantitative imaging approach. To validate those results in other cancers, this 

approach will also be attempted brain as well as liver cancer CT datasets.  
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1 Introduction

Human disorders have a highly multifactorial nature and depend on genetic, behavioral, socio-
economic, and environmental factors. The number of metabolic diseases, cancer, and autoimmune
pathologies has increased significantly in recent years, making research in this field a public health
priority. In parallel, bioclinical routine datasets have expanded in conjunction with all kind of “omics”
data, from both the host and microbiota, as well as metabolomic, proteomic, and cytometry data
[1]. All these types of data have some underlying structure on their own, taking values on different
scales, with different variability, and are differently distributed. In addition, human patients are an
equally important source of variability even among carefully selected cohorts: phenotypic variability
(age, gender, previous conditions), dietary habits, bad vs good responders to the treatment, etc. In
particular, new types of data have emerged which yield description at the cell level ie cytometry of sc
RNA seq. These data add a new layer of structuration that needs to be taken into account.

2 Motivations and Results

From the analytical viewpoint, the single cell data are huge-dimensional matrices produced for
each subject. The data dimension, i.e., the number of cells, vary from one individual to another, and
note that cell types, as well as the correspondence between the cell populations of the subjects, have
to be identified before applying any statistical machine learning method. We refer to the challenge
we introduce and consider here as to a double clustering problem, where the aim is to simultaneously,
purely from observations without any prior knowledge determine cell types, as well as stratify patients
in order to study mechanisms of pathologies explained by particular cell subpopulations. We propose
a novel approach to stratify cell-based observations within a single probabilistic framework, i.e., to
extract meaningful phenotype from both patients and cells simultaneously. Our method is a practical
extension of the Latent Dirichlet Allocation [2] and is used to solve the Double Clustering task (LDA-
DC).The first step of our framework is the identification of the cell types. Once the cell types are
fixed, we can efficiently estimate both probability of a phenotype given a patient and the probability
of a cell type given a phenotype. We tested our method on different datasets ranging from simulated
patients to whom with AML (acute myeloid leukemia) or Crohn’s disease, and were able to identify
simultaneously clusters of patients and clusters of cells related to patients’ conditions. Furthermore,
using a network approach, we were able to stratify patients and identify groups of patients with specific
phenotypes.
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The chemodiversity of living organisms corresponds to all natural compounds, and is organized
around taxa, trophic environments and ecosystems in a dynamic and a cartography that is still poorly
documented. This is obviously part of the problem of biodiversity erosion, thus limiting pharmaco-
logical and agri-food knowledge that can be pivotal. The experimental study of this chemodiversity
is done using a metabolomic approach, the last element of ‘omics’ cascade.

Since the year 2000, more than 120 of public or licensed compounds databases have been created [1].
They are more or less specialised in chemical classes such as LipidMaps or in taxa such as HMDB. Their
structures and contents are quite different because the objectives are not the same. The Chemomaps
project aims to fill these gaps by building a database of all known natural products. It involves
integrating and merging data from several heterogeneous sources.

The internal observation of the metabolomics team at the origin of this project is that the data
processing during the compound annotation stage is not optimal currently. Indeed, there is no data
source associated with a processing chain that performs the annotation process including filters on
the biological origin as well as on the structurally close molecules. These criteria should be included
to prioritize candidate results, so as to optimize and accelerate the compound annotation. Since
2017, our team has developed initial versions of a database merging several data sources, as well as a
processing tool for annotation: MS-CleanR [2]. This work confirmed the interest of this database, but
also highlighted the limitations that led to the continuation of this project with a multidisciplinary
PhD to rethink the construction of the Pharmakon database to meet new needs. We especially seek
to correct the lack of information on the biological origin of compounds. Indeed, this information is
essential but missing for two-thirds of the compounds retrieved in Pharmakon2020, the latest version
including more than 600,000 compounds.

Based on the observed distribution of chemical classes according to the phylogenetic branches
(plant, animal, bacterium, and fungus) [3], this project proposes to develop inference models to predict
the biological origin of compounds. We hope to confirm the results obtained on a reduced dataset
from Pharmakon2020: our approach yielded a 80% precision when predicting the correct phylogenetic
branch for 9,736 compounds described with a single biosource. An experimental validation step of the
predictions will be performed on organisms (plants) to confirm or improve the models.
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L’analyse GSEA (Gene Set Enrichment Analysis) [1] est une étape incontournable en analyse 

transcriptomique (RNAseq) permettant d’organiser des sous-ensembles de gènes en fonctions biologiques, 
conduisant à une vision plus intégrative des jeux de données. La Molecular Signatures Database (MSigDB) 

offre une collection d’annotations d’ensemble de gènes (genesets) essentiellement basés sur données 

génomiques [2] ainsi qu’un environnement logiciel dédié. 
 En parallèle de ces informations, la banque de données « Human Metabolome Database » (HMDB) 
offre une source d’information complète sur les métabolites et le métabolisme chez l’homme [3]. Notre 

travail offre de lier ces deux sources d’information en effectuant une analyse GSEA/RNASeq. 
 Nous avons développé une signature Métabolomique en utilisant l’information d’association entre 
métabolites et gènes issus de la HMDB. A partir des 217 920 métabolites et 863 760 interactions Métabolite-

Gène. Parmi les 19 178 genesets (comportant plus de 10 gènes) obtenus, plus de 97 % sont redondants et 

doivent être traités afin de ne pas biaiser les statistiques de correction pour des tests multiples par exemple. 

Après filtration, nous avons construit un geneset comportant 571 genesets « Métabolomiques ». Cette 

signature, au format “Gene Matrix Transposed” (GMT), permet de l’utiliser avec le logiciel GSEA du site 

(http://www.gsea-msigdb.org/gsea/index.jsp) et de bénéficier des tests statistiques et outils visuels associés. 
Note signature permet ainsi d’associer Transcriptomique et Métabolomique dans un premier niveau 

d’exploration multi-omics. 
 Nous présenterons l’illustration de notre signature Métabolomique aux données de RNAseq sur le 
jeu de données du Cholangiocarcinome du TCGA (TCGA-CHOL [4]) en comparant l’expression des gènes 

dans les tissus cancéreux versus les tissus normaux. 
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Germline bi-allelic inactivation of ATM causes ataxia-telangiectasia (A-T) disorder, characterized
by genetic instability, radiosensitivity and predisposition to cancer. Women heterozygous for a rare
predicted deleterious ATM variant have a two to four-fold increased risk of breast cancer (BC) as
compared to non-variant carriers. However, the current imprecise estimates of BC risk associated with
ATM variants prevents the establishment of management recommendations for women carrying an
ATM variant and their relatives. Thus, no specific risk management strategies currently exist for these
patients [1]. The identification of a molecular signature of ATM-deficient tumours would allow to better
understand the aetiology of these cancers and to identify potential therapeutic targets. Recently, we
showed that breast tumours developed by ATM deleterious variant carriers may display specific genomic
alterations, notably bi-allelic inactivation of ATM and loss at the RB1 locus [2]. Given that both ATM
and its antagonist RB, regulate the function of the DNA methyltransferase DNMT1, we hypothesized
that ATM-deficient tumours will have a distinctive genome-wide methylation pattern.

To address this question, we analysed DNA methylation profiles of 24 breast tumours from ATM
variant carriers identified in A-T or in Hereditary Breast and Ovarian Cancer families. Nineteen patients
carried a pathogenic or likely pathogenic variant and five patients carried a Variant of Unknown Sig-
nificance (VUS). DNA methylation was measured using the Illumina Infinium HumanMethylationEPIC
array and compared to a published dataset comprising 34 breast tumours of cases from the general
population analysed with the same array. We first pre-processed raw data of the whole dataset using a
custom pipeline developed with Minfi. We then mapped each probe of the array to genes and promot-
ers using bedtools. We performed a gene set enrichment analysis (GSEA) with KEGG database and
ClusterProfiler R package to search for pathways enriched in differentially methylated genes. We then
used EnrichmentMap, a Cytoscape App, to group pathways according to gene similarities. Next, we
performed a cluster analysis based on promoter methylation level for each group of genes.

We found 203 genes with differentially methylated promoters (|log2(fold change)|>1 and adjusted
p-value<0.05) when comparing tumours of carriers of a pathogenic or likely pathogenic ATM variant to
tumours of cases from the general population. The GSEA detected 76 KEGG pathways significantly en-
riched in ATM-deficient tumours (p-value<0.05) with “Homologous recombination”, “Fanconi anaemia
pathway” and “p53 signalling pathway” among the 15 most enriched pathways. Furthermore, we identi-
fied three groups of overlapping pathways, containing 453, 298 and 77 genes, respectively. Methylation
level of the group composed of 298 genes and regrouping cancer-related pathways, allowed to better
discriminate ATM tumours: 13 out of the 19 tumours (68.4%) of pathogenic or likely pathogenic variant
carriers were clustered. Hence, differentially methylated genes and enriched pathways may represent
potential therapeutic targets. Additional GSEA using Gene Ontology and Reactome databases are un-
derway to confirm these preliminary results. Next, tumour profiles of carriers of a VUS will be compared
to these 19 ATM-deficient tumours to assess if methylation profile can be of use for variant classification.
Transcriptomic analyses are also planned to assess the functional impact of methylation dysregulation
occurring in ATM-deficient tumours and to complete the genomic profile of ATM tumours.
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The embryonic development of the pig differs from that of humans and mice from the blastocyst stage and is 

characterised by much later implantation. This particular period is concomitant with a lengthening and a 

significant growth of the extraembryonic tissues of the embryo and is still poorly understood. These drastic 

changes occurring before implantation could thus affect the biology of embryonic pluripotent cells in a new 

way compared to our knowledge developed on primate or rodent cells. 

 

To better understand the biology of pig embryos before implantation, we first produced a large dataset of 

single-cell RNAseq at different embryonic states (early, late, ovoid and elongated blastocysts). These data were 

cleaned, filtered and represent a total of 40,000 cells. With these data, we firstly characterised embryonic 

cellular population and their evolution, and we identified specific markers of these populations. We then 

inferred gene regulatory networks working on modules of gene regulation (regulon) using a pig adapted version 

of the SCENIC [1] package and selected those specifically active in each embryonic population. Meta-analysis 

on others scRNAseq publication on preimplementation embryo in pigs [2] and humans [3] enhance the 

confidence on our identified regulon. Our results confirm the molecular specificity of the three primary 

embryonic lineages (epiblast, trophectoderm and hypoblast) and identify stage-specific subpopulations. This 

allows us to infer the biological functions of these three main lineages and the interactions between them and 

identify key regulation modules linked to those functions. We also provide new insights into the biology of 

epiblast cells prior to implantation, and we observed a relatively constant pluripotent state in the epiblast over 

time for the studied stages. In addition, to discover chromatin specific landscape between the three main 

populations, a single-cell multi-omics dataset (paired scRNAseq and scATACseq) has been performed and will 

be briefly presented. 
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The human gut microbiota is a complex ecosystem composed of numerous bacteria that co-exist,
forming communities that interact within each other but also with their host. These interactions occur
essentially at the metabolic level, building a commensal relationship between the host and its micro-
biota through beneficial exchanges, metabolic niches and competition for nutrients. However, this
balance can be disrupted by many factors, including infections by enteric bacteria such as Salmonella,
a foodborne pathogen. To invade the anaerobic environment of the gut very favorable to commensals,
enteric pathogens can trigger an inflammation in the epithelium, that initiates a cascade of shifts
in the commensal microbiota and the host metabolism, ending up in the creation of a new aerobic
metabolic niche in favor of the pathogen.
One way to understand the complex dynamics of these infections is to construct metabolic networks
consisting of all the metabolic and molecular interactions that occur in an organism and use them into
numerical models such as Flux Balance Analysis (FBA) [1]. FBA computes activity rates, or fluxes,
in metabolic reactions of a bacteria alone or within a community. Dynamic FBA (dFBA) integrates
the fluxes calculated in FBA into a system of ordinary differential equations (ODEs), enabling us to
model the temporal dimension of metabolic simulations.
We model the host-microbiota-pathogen system by gathering three metabolic models : Faecalibac-
terium prausnitzii as a representative butyrate producing commensal bacterium, Salmonella Enterica
serovar Thiphimurium for the enteric pathogen, these models are from the VMH database [2], and a
metabolic model of human cell representative of the epithelial cell metabolism. Namely, we extracted
and cleaned reactions occurring in colonocytes - epithelial cells of the colon - from a metabolic network
of the whole human body [3], thereby creating a metabolic model representing the host part. The com-
plexity of building this three-partner model came from the reconstruction of the colonocyte model and
its connection to both the other networks as well as its environment through several compartments.
The complete model consists in an ODE system that allows the exchange of metabolites between the
host and the two bacteria, and the uptake and transfer of nutrients to blood compartments. To speed
up the computation of the FBA models needed for extensive numerical exploration, the metabolic
models are approximated by a metamodeling method [4]. The complete model correctly captures
the dynamics of the complex cross-talk between the commensal, the pathogen and the host during
infection.
The use of statistical learning in numerical metabolic modelling opens doors to more complex and
previously time-consuming simulations, including spatio-temporal modelling.
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1 Introduction

Master regulator genes are at the top of the gene regulation hierarchy and allow to better under-
stand regulatory dynamics. In silico detection of these genes, through system biology approaches,
is a popular attempt at speeding up disease research. However, when considering a large number of
genes, building a dynamic regulatory model becomes a tedious and time-consuming task. Moreover,
current detection methods do not take into account regulatory cascades. Here, we describe a method
to identify master regulatory genes, and apply it to find novel master regulator genes linked to epilepsy.

2 Methods

First, our work focus on combining public data sources to design an end-to-end pipeline for the
synthesis of a dynamic gene regulatory network, starting from a subset of genes. This network models
the regulatory dynamics in a well-chosen cell line. For epilepsy, we considered the gene module M30
associated with epileptic de novo mutations [1], and gene expression data from a neural progenitor
and a neuroblastoma cell lines. Second, we defined the concept of “gene influence”, in terms of tran-
scriptomic impact of gene perturbation in this network. Finally, we applied an influence maximization
algorithm [2] to retrieve genes with highest regulatory influence on the remainder of the network.

3 Results
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Fig. 1 displays the Spearman’s ρ correlation heatmap between influence
values, network centrality measures (Control Centrality), and scores associ-
ated with the pathogenicity of genes (pLI, RVIS) in M30. Influence is con-
sistent and strongly correlated with network-dependent measures. More-
over, we performed a over-representation analysis (ORA), which shows that
top genes for influence (Fig. 2) are significantly enriched in epilepsy-related
terms at level 5%, compared to the whole M30 module. This methodology
allows a reproducible detection of master regulators, introducing for the
first time a measure which takes into account transcriptional cascades.
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The metabolome is often seen as the ultimate cellular phenotype, resulting from all biochemical
processes taking place in an organism. Using a robotized high throughout platform to prepare samples
and modern mass spectrometers coupled with chromatography, it is nowadays possible to obtain both
targeted and untargeted metabolomic data on hundreds of samples in a few days. Those experiments
lead to thousands of metabolic features representing a precise description of the cell state at a given
time. This state is a good proxy of the past, the present and the future of a given tissue, combining
the result of the previous developmental stages, the current status and the bricks enabling the future
development of the cells. Moreover, by applying different types of stresses to an organism, it is possible
to increase the diversity of the metabolome, hence displaying broader characteristics.

By combining metabolomic and phenotypic data and using machine-learning approaches, we were
able to accurately predict several complex phenotypes such as relative growth rate [1], grafting success
[2], plant elevation [3] or resistance to pathogens [4] on various plant matrices. Besides, enabling
prediction of those complex phenotypes, those techniques permit the discovery of biomarkers that give
insights into mechanisms controlling the phenotypes.

Here we will present the different cases studied recently by our laboratory and metabolomic plat-
form. The accuracies of the predictions and the physiological knowledge acquired thanks to those
models will be detailed. Perspectives about the integration of knowledge acquired through the use of
those machine-learning models into more mechanistic models will also be discussed.
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Abstract

We aim at improving current understanding of the pathophysiology of spondyloarthritis (SpA).
Currently, there exist no treatments to cure this chronic inflammatory disease, and only limited
therapies to treat the symptoms. Here, we analyze gene expression profiles and clinical for a cohort
of 80 SpA patients whose cells have been exposed to two kinds of stimulation: Lipopolysaccharide
stimulation (LPS), as a proxy of innate immunity and, Staphylococcal enterotoxin B stimulation
(SEB), as a proxy of acquired immunity.

Here, we propose a method called netSGCCA, based on the integration of multiblock data. These
types of approaches are now an essential tool to analyze the increasingly complex data that biologists,
bioinformaticians and biostatisticians encounter on a daily basis: from multi-omics data, to imaging-
genetic data. netSGCCA derives from framework of the Generalized Canonical Correlation Analysis,
used to study the relationship between several groups of variables. In particular, we base our method
on the SGCCA [1] (Sparse Generalized Canonical Correlation Analysis), which allows choosing the
most pertinent variables when the blocks have a large number of variables, such as in omic-derived data.
Our method uses the GraphNet penalty [2], offering the advantage of integrating network topology
information reflecting the interactions among the variables within a given data block. netSGCCA
may benefit from the rich and complex information present in biological reference databases such as
STRING-DB, thus allowing to integrate known associations between the molecular players.

We apply netSGCCA to a study comprising three data blocks. Two blocks of gene expression
data corresponding to the different stimulations (LPS and SEB) of 277 and 283 genes, respectively.
One block of quantitative variables corresponding to three clinical progress scores. The reference
network used was obtained from the Protein-Protein interactions STRING-DB database [3]. One
of the objectives of the method is to remove the ”high-frequency” components [4] induced by the
GraphNet penalty, meaning sharp variations of the loadings between variables (e.g., genes) that are
neighbors in the reference network. These high frequencies make difficult to interpret results. In order
to solve this problem, we use a modified version of the graph’s Laplacian.

netSGCCA offers promising results for integrating network topology information, further devel-
opments include how to define the optimal values for the different method parameters, including the
GraphNet penalty.
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1 Introduction

Flux balance analysis (FBA) allows us to predict the uptake and production rates of different
metabolites and molecules of interest. FBA consists of a set of linear constraints describing the
reactions encoded in the genome coupled with an objective function, thus creating a linear program
(LP) very efficiently tackled by available solvers [1]. The nutritional environment which affects what
and how much a cell can produce and grow is defined through the constraints of a FBA model.
Dynamic flux balance analysis (dFBA) allows to consider the inherent temporal dimension of cells as
entities immersed in a medium which changes through time either by the cell’s own metabolic activity
or by the flows of matter and energy through the environment. Community dFBA models can be
obtained by coupling different dFBA models by their nutrient use.

Community dFBA consists of a set of differential equations with state variables that include both
metabolites and cells populations concentrations through time, whose dynamics are described by
reaction and exchange rates. Some of these rates are given by the state-dependent result of the FBA
model of the different cell populations involved in the community. Numerically, solving a system of
differential equations implies the computation of at least one FBA per population per time step. Even
though LP are numerically very efficiently solved, a batch of LP problems can prove computationally
expensive impairing computational exploration of the model [2].

In order to speed-up computations we propose a metamodelling technique based on Reproducing
Kernel Hilbert Spaces (RKHS) that approximates the relationship between inputs and outputs of the
FBA models. A learning database was assembled from the FBA outputs and nutrient concentrations
obtained from several simulations of the dFBA. This input-output dependence is approximated by
projection in an RKHS, which is done in an offline manner. We chose a specific RKHS space, the
ANOVA-RKHS, which allows to perform variable selection, inducing additional speed-up [3].

We used a toy example based on the modelling of Salmonella infection of the colon where two
FBA are involved in the differential equations. Replacing the FBA models by their metamodels in the
community dFBA speeds up computations by a factor of 45, with a total relative error for the dFBA
state variables maintained below 5%.
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1 Introduction

Define predictive models of complex biological systems is an important work in system biology.
Answer-Set Programming (ASP) handles high combinatorial problems, e.g. to discriminate the re-
sponse of Acute Myeloid Leukemia to treatment [1]. Here, our project is to develop a method to model
a dynamic biological system using single-cell RNA-seq data: human pre-implantation development.
In vitro fertilization (IVF) allows infertile couples to have babies, but works only 25% of IVF cycles
are successful. Given limited access to human embryos, the field of IVF needs in silico models, in
order to improve our understanding of embryo development. Sequential events drive the cell fate tran-
sitions during the human pre-implantation development. The first cell fate decision in the common
fate morula segregates the EPI cells from early TE cells. Then, the early TE stage becomes late TE
one during the TE maturation. Ultimately, our model would allow to predict how embryos respond
to specific perturbation of the system, such as changes in the culture media composition.

2 Proposed method

Current machine learning approaches to handle single-cell data focus on limited gene sets, obtained
through dimensionality reduction (e.g., Area Under Curve of cluster-specific genes) or gene-to-gene
correlation (e.g., WGCNA). The data we use are single-cell RNA-seq data of cells extracted from
different embryos at different development stages (representing the expression of ∼ 20, 000 genes for
an atlas of ∼ 1, 700 cells from 128 embryos) [2]. The samples are precisely annotated: timelapse
developmental stage and embryo of origin. Our objective is to infer Boolean networks (BNs) that will
represent the human pre-implantation embryonic development. First, we will build a prior-knowledge
network (PKN). We reconstruct our PKN, representing the gene interactions, using pyBRAvo [3] which
automatically assembles gene regulatory networks using Web Semantic tools. Second, we will use the
caspo software [4], which learn BNs from the PKN combined to experimental responses of perturbations
inferred from the single-cell RNA-seq data. The main challenge is to emulate a perturbation from
a time series, without perturbation. We aim to use the different fates (e.g., EPI vs TE) or stages
(e.g., early TE vs late TE) as pseudo-perturbation to infer BNs using ASP. Altogether, our model will
greatly contribute to improve IVF cycles.
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1 Abstract

Understanding the gut microbiota and its mechanisms has become a major point of interest in the medical 

field, with more and more studies correlating it to a variety of pathologies [1]. Machine Learning methods 

have been applied to this issue, approaching the microbiome as a predictor of the subjects’ health [2-5]. 

These approaches however have yet to tap into the potential augmentation of the microbiome data which 

could be achieved by gathering information correlated to the microbiota’s composition. In particular, the 

recognised micro-organisms’ functional annotations have been suggested as a promising lead to enhance the 

comprehension of the microbiota as a metabolic network [6,7]. In line with this approach, we propose a new 

method to shift the representation of the gut microbiota from relative OTU abundances to a numeric mapping

of the associated functional annotations, creating a mechanistic description of the microbial community. We 

have then explored the performances of Random Forest classifiers, a classic Machine Learning approach for 

microbiota classification, when applied to data converted to this new paradigm. This led to us finding that for

a small sacrifice in classification performance, this approach could help highlight important metabolic mech-

anisms. Exploiting this method would also yield more thorough and complete results than what can be gath-

ered through the standard approach based on finding OTUs that make a difference between classes of sub-

jects. 
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Over the past decades, hundreds of thousands of short open reading frames (sORFs) have been identified
on most eukaryotic RNAs, including long non-coding RNAs. Some of these ubiquitous elements are conserved
across species and may eventually encode functional peptides [1]. Most of these peptides, called sORF-
encoded peptides (sPEPs), have failed to be annotated notably due to the short length of their ORF (< 100
codons) and the use of alternative start codons (other than AUG). So far, the roles of only few sPEPs have been
characterized. sPEPs whose function has been determined seem to be involved in a wide range of key
biological processes such as apoptosis, mitochondrial complexes integrity, DNA reparation, mTOR signaling,
transcriptional regulation, antigen presentation in eukaryotes or cardiac activity regulation in D. melanogaster
[2]. This broad range of functions and their roles in physiological functions suggests sPEPs may constitute a
new pool of therapeutic targets. Nonetheless, most of sPEPs remain unknown or poorly characterized.

In order to scrutinize their roles, we are studying the way sPEPs interact with canonical proteins, whose
functions are known. To that extent, we gathered and homogenized publicly available data characterizing the
human sORFs into a database, MetamORF (https://metamorf.hb.univ-amu.fr) [3], that has been exploited to
study the functions of sPEPs. 10,475 sPEPs encoded by sORFs identified in monocytes have been recovered
from this database. The interactions between these sPEPs and the canonical proteins expressed in monocytes
have then been inferred using mimicINT, a method we developed. mimicINT is a computational method that
allows to predict protein-protein interactions. It identifies the short linear motifs (SLiMs) and the globular
domains on sPEPs and canonical proteins, two major protein interaction interfaces. SLiMs are short stretches
of 3-10 contiguous amino acids, usually located in disordered regions [4]. mimicINT then uses experimentally
validated patterns of SLiM-domain and domain-domain interactions to infer a network of sPEP-protein
interactions. Finally, Monte-Carlo simulations are used to assess the SLiM functionality by estimating the
likelihood of each SLiM observed in the sequences to occur by chance, which allows to discard the most likely
false positive interactions from the network inferred.

This first sPEP-canonical proteins human interactome in monocytes contains nearly 950,000 binary
interactions. We are currently exploring it to understand in which biological processes and signaling pathways
sPEPs are involved. Interestingly, our preliminary analyses showed that, in monocytes, the sPEPs that are
encoded on genes annotated as involved within a biological process are preferentially targeting the genes of
this same biological process (BP) for most of the BPs (significant enrichment for 68%BP generic GO terms).
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Filamentous fungi are known to be reservoirs of specialised metabolites and much knowledge about their 
metabolism has been accumulated over time. Genome exploration of these organisms has revealed the high 
proportion of specialised metabolites produced by enzymes related to biosynthetic gene clusters. Modelling 
metabolism through reconstruction of Genome-Scale Metabolic Network (GSMN) is one way to understand 
their biosynthesis mechanisms. 

Since the genome sequencing of Penicillium chrysogenum Wisconsin 54-1255 in 2008, several GSMNs 
reconstructions have been made [1, 2]. However, the rapid evolution and multiplication of data make the 
comparison or reuse of these models tricky. 

Following current convention standards and quality criteria, the new reconstruction that we propose results 
from the following four elements. In parallel, (1) an update functional annotation of the P. chrysogenum 
genome was carried out and then supplemented by (2) an orthology search with different GSMNs models. This 
first draft was then enriched (3) by integrating data from previous GSMN reconstructions of P. chrysogenum 
and complemented (4) by manual curation steps targeting basal and specialised metabolism (supported by 
bibliographic data and by metabolomic data obtained in the laboratory). Of the 233 metabolites monitored, 
204 are topologically producible. Keeping traceability of these different steps allows us to apprehend the 
complementarity of the approaches used as well as their relevance. Identifiers enrichment, based on MetaNetX 
[3], ensures interoperability between various databases [4]. 

Thus, the proposed high-quality GSMN has a MEMOTE [5] score of 67% and a metabolic coverage of 43%. 
In comparison, the networks published in 2013 and 2018 have a score of 31% and 16% respectively and offer 
a metabolic coverage of 8% and 14%. The model is composed of 5,191 metabolites interconnected by 5,888 
reactions of which 5,025 are at least supported by a genomic sequence. In fine, GSMN exploration, with 
various physical and biological constraints, is expected to allow us to get insights into the natural products 
production and their precursors. 

Keywords: Genome-Scale Metabolic Network (GSMN), data integration, interoperability, reconciliation 
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1 Context

Graph-theory based methods are essential tools for network analysis in various domains, including
biology. Despite successful applications to metabolic networks over the last decades, including several
developments specific to these models, few off-the-shelf implementations are openly available and
easily findable. Furthermore, the conversion from metabolic model to meaningful graph is far from
straightforward, yet tools for such endeavour are scarce. Beyond the necessary tailored pre-processing
of models, the SBML interchange format[1] adopted for the most accurate models is incompatible with
main generic graph-analysis libraries.

2 Description

We present met4J, an open-source library dedicated to the structural analysis of metabolism and
graph-based analysis of metabolism-related data. The library allows to create multiple graph types
encompassing metabolic models content, as well as several utilities for model scrapping and edition.

Met4J also includes a toolbox gathering implementations with command line interface of com-
prehensive pipelines for several analyses relevant to metabolism-related research, including network
expansion[2], MetaboRank[3] and metabolic route search[4]. Some analyses will also be made available
in a web browser through the MetExplore[5] webserver and a Galaxy instance.

3 Availability

Met4J source code and toolbox, proposed as executable JAR and docker or singularity images, are
available at https://forgemia.inra.fr/metexplore/met4j under CeCILL open license. Library
artifact is accessible through maven central repository for inclusion in other projects.

References

[1] M Hucka, A Finney, H M Sauro, H Bolouri, J C Doyle, H Kitano, B J Bornstein, D Bray, A A Cuellar,
S Dronov, E D Gilles, M Ginkel, V Gor, I I Goryanin, W J Hedley, T C Hodgman, P J Hunter, N S
Juty, J L Kasberger, A Kremling, U Kummer, L M Loew, D Lucio, P Mendes, E Minch, E D Mjolsness,
Y Nakayama, M R Nelson, P F Nielsen, T Sakurada, J C Schaff, B E Shapiro, T S Shimizu, H D Spence,
J Stelling, K Takahashi, M Tomita, J Wagner, and J Wang. The systems biology markup language ( SBML
): a medium for representation and exchange of biochemical network models. 19(4):524–531, 2003.
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1 Abstract

The 3R rule strongly encourages reducing the use of in vivo studies, which are even forbidden in
some research fields such as cosmetic. As a result, it is crucial to develop new methods to understand
the Mechanisms of Action(MoA) of potentially hepatotoxic molecules. Current read-across strategies,
which were first developed as potential in silico alternatives large-scale evaluation methods, are
known to have some flaws (e.g indirect representation of metabolism, genes considered independents
and post-translational modifications ignored). To overcome these limitations, we developed a new
system biology approach based on Genome-Scale Metabolic Networks(GSMN), which, thanks to its
topology, allows for a direct representation of metabolism and post-translational modifications, as
well as dependencies between genes, proteins, reactions. Combining this new source of information
with existing ones (e.g., transcriptomics, structural data, metabolomics, etc) should improve our
understanding of hepatotoxic molecules MoA, and by extension, our ability to predict the toxicity
of new molecules. To achieve these objectives, we developed a workflow that can be divided into
two parts: condition-specific modelling and knowledge extraction by network analysis. The aim of
the modelling part is to combine transcriptomic data and metabolic network topology to generate
metabolic networks that are representative of the metabolic impact of a chemical compound. It starts
with the pre-processing and binarization of transcriptomic data, which is then integrated by constraint-
based modelling into the metabolic network using iMAT[1], to find the activated part of the network in
adequation with transcriptomic data. However, usually one of the many possible solutions is arbitrarily
picked.To tackle this, we implemented an extra enumeration step, inspired from DEXOM[2], which
finds thousands of different but equally optimal condition-specific models, improving the robustness
of the results. The network analysis step then extracts meaningful information from all the condition-
specific models to understand the MoA of the studied molecule. In this step, we first extract reactions
which are differentially activated after exposure to the molecule, and then we compute the pairwise
distance matrix of the differentially activated reactions, based on the shortest path in the GSMN.
This distance matrix is used to identify specific clusters of reactions in the metabolic network that
can be extracted into small subnetworks. To facilitate the biological interpretation, these subnetworks
can be analyzed and visualized using MetExploreViz[3]. Finally, combining thousands of condition-
specific models representing a molecule’s effect in specific metabolic subnetworks should improve our
understanding of toxicants MoA. As a use case, we applied this workflow to model the effect of
Amiodarone on PHH using transcriptomics data from Open TG-GATES[4]
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Climate change, especially climatic variability, poses critical challenges to European agriculture
causing drought and high temperature stress to crops, resulting in productivity and yield loss. Camelina
sativa is a native traditional European oilseed crop which has regained some attention thanks to its
adaptability, yield stability and high performance in variable environments [1]. Camelina lipids in
particular are a subject of research as they have multiple uses (feed, biofuel and green chemistry) [2].
The UNTWIST project will unravel the stress response mechanisms of Camelina in a multidisciplinary
scientific project.

UNTWIST generates an unprecedented dataset, coming from a core collection of 54 Camelina
sativa lines growing under different stresses and locations across Europe in greenhouses and fields.
This data will be processed in order to link performance of Camelina to phenotypic traits, by classical
univariate and multivariate statistical analysis, and in a second phase through a double modeling
approach (top-down and bottom-up modelling).

The top-down modelling aims to predict phenotypic field traits from metabolic data. This in-
volved creating a predictive model based on machine learning by combining phenotypic field data
with metabolic data coming from targeted and untargeted metabolomics of early stage leaves of core
collection Camelina lines grown in greenhouse under control condition and water or thermal stress.
This data will be supplemented by redox and carbon isotope data from the same plants to achieve
the predictive model. This model will be assessed against plants of Camelina coming from future
field experiments. Once validated, metabolic variables with a strong positive or negative effect on
phenotypic traits will be selected and annotated to find the underlying metabolites. The first results
are encouraging, especially the correlation between metabolic profile and thousand kernel weight, with
a correlation between 0.53 and 0.77 depending on the stress and the location of the field.

The bottom-up approach will focus on the growth and the development of the fruit (seed and
silique) by the reconstruction of four compartmentalized genome scale metabolic networks of four
focus lines of Camelina that have been identified as representing the diversity of answers to stress,
based on their genomic data. These networks will be later refined with transcriptomics, proteomics and
DNA methylation data from the four focus lines. The metabolic data used for the top-down modelling
will be used to calculate input and output fluxes of each model in order to constrain networks to give
insights into the mechanism involved in drought and heat tolerance.
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Context 
Dysferlinopathies are a set of rare muscle diseases caused by mutations in the dysferlin gene (DYSF) [1]. 

The symptoms are severe weakness and atrophy of skeletal muscles. Physiopathology shows defects in muscle 
cell membrane repair, abnormal muscle fiber regenerations alongside increased inflammatory response, and 
the presence of necrotic fibers [1]. Dysferlin is directly involved in the repair of cells membrane [2]. Notably, 
mutations in DYSF can cause those symptoms either in proximal or distal muscles [1]. To the best of our 
knowledge, there is no explanation as to how similar mutations in DYSF can lead to variation in symptoms. 

Purpose 

The aim of this work is to better understand the complex genotype-phenotype relationships of 
dysferlinopathies through the study of the regulatory networks of its disease gene. More precisely, we propose 
to build a logical model of DYSF-associated cellular processes, focusing on the functions impacted in 
dysferlinopathies. We aim to understand the mechanisms of control of the dynamical behaviors (at the cellular 
components level) and the appearance of phenotypic heterogeneities specific to these diseases. 

Methods 

Briefly, logical models consist in regulatory graphs in which nodes can represent any cellular component, 
including genes, proteins, or even a phenotypic state. Each node is associated with a discrete variable 
corresponding to a binary abstraction of its level of activity. Directed edges between nodes represent regulatory 
interaction (i.e., inhibitions or activations). The evolution of the activity level of each node is defined by a 
logical regulatory function. Biological information required to construct the model are obtained from literature 
and omics data. Overall, the state of the model corresponds to the activity level of all the nodes. The transition 
from one state to the next is given by the set of logical functions, and the resulting trajectories are stored in a 
state transition graph (STG). As the system evolves, it reaches attractors of the STG, which are either stable 
states (attractor of size one), or complex attractors (set of states in which the system cycles indefinitely). 

Results and Perspectives 

We built a phenomenological model in order to have a broad understanding of the main biological processes 
and cellular components involved in the diseases, and of their cross-talks. Through the inhibition of the 
membrane repair function, we were able to model dysferlinopathies physiopathology. Indeed, the attractors of 
the model (with defective membrane repair) can be assimilated with the phenotype of dysferlinopathies. We 
are now completing the model at the molecular level to obtain a Boolean model reflecting the phenotypic 
heterogeneities associated with DYSF mutations. In parallel, we are developing a theoretical analysis of the 
impact of the updating rules (used to construct the STG) on the dynamics of the Boolean models. We are 
analyzing in-depth three updating approaches (synchronous, asynchronous, most permissive). Our goal is to 
select the most suitable updating rule for the modelling of dysferlinopathies physiopathology. 
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Immune cells play a major role in cancer development. The characterization of these cells allows a
better understanding of the tumor microenvironment (TME), a complex system containing multiple
cell types interacting through contact and cytokine exchanges. Macrophages can be broadly cate-
gorized into two polarization states: M1, pro-inflammatory, or M2, anti-inflammatory and involved
in wound healing. Interestingly, macrophages infiltrating tumors can be educated by cancer cells to
promote tumor growth, thus becoming M2-like tumor-associated macrophages (TAMs). TAMs secrete
cytokines and chemokines, exerting an anti-apoptotic, proliferative and pro-metastatic effect on tumor
cells. This type of macrophages is present in many cancers, including chronic lymphocytic leukemia
(CLL), a disease characterized by increased production of mature but dysfunctional B lymphocytes.
Current CLL treatments target the formation of these TAMs in patient lymph nodes, remodeling the
TME to arrest CLL cell proliferation [1]. Transcriptomics time courses on CLL patient blood allow
studying the gene regulatory networks and interactions between immune and cancer cells in vitro to
characterize the formation of TAMs. Inferring regulatory networks from transcriptomics data is an
evolving subject, with several methods and inference algorithms that use bulk [2] or single-cell [3] gene
expression data, based on steady state data or time series to uncover gene interactions [4]. Inferring
such networks from data allows us to discover new molecular interactions, potentially identifying new
drug targets.

The goal of this project is to use gene regulatory networks to investigate the crosstalk between
macrophages and CLL cells. We perform gene regulatory network inference on both CLL and
macrophage cells, using the dynGENIE3 [5] inference method on a unique transcriptomics time-series
on purified macrophages and CLL cells from a 13-days co-culture. We focus on Transcription Factors
(TF) only and applied network analysis tools to explore how the structural features of the network give
information on the importance of the TFs included in the macrophage and CLL networks. Enrichment
analysis of the TFs in the inferred networks shed light on the processes taking place inside the two
cell populations. We are currently exploring how to integrate these entirely data-driven results with
information from databases and literature based models to turn these networks into executable logical
models.
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In the tumor microenvironment, tumor-associated macrophages are known to play a critical role in the survival 
and chemoresistance of cancer cells. In the case of chronic lymphocytic leukemia (CLL), these tumor-
associated macrophages are called Nurse-Like Cells (NLCs) and reside mainly in the lymph nodes, where they 
are able to protect leukemic B cells (B-CLL) from spontaneous apoptosis and contribute to their 
chemoresistance, hindering the efficacy of immunotherapy in many patients. NLCs are differentiated from 
monocytes through cytokines signaling and physical contact with the cancer cells [1], however, the precise 
mechanisms by which B-CLL cells influence this differentiation are still unknown. We used an in vitro model 
of leukemia, in which we can closely follow the production of NLCs from monocytes in the presence of 
leukemic B cells from CLL patients. Building on experimental observations of cancer cells in these cultures 
of patients' blood, we propose here a two-dimensional agent-based model simulating the monocyte-to-
macrophage differentiation and intercellular interactions in the spatial context of this in vitro co-culture of 
monocytes and cancer B-CLL cells.  

Using our time-course measurements of B-CLL cell viability and concentration to optimize the model 
parameters, we were able to reproduce the experimentally observed dynamics. We further tested the model’s 
predictive power by simulating specific NLC production features in relation to varying measured proportions 
of monocytes in each patient in the co-cultures. Our results suggest that this model could be made patient-
specific using their blood monocytes counts, which is a routinely measured variable. Finally, we performed a 
sensitivity analysis of the different parameters and suggest a strong role for phagocytosis from monocytes and 
NLCs to ensure the survival of cancer cells in this in vitro CLL model, especially in the initial phases of the 
time course. Additionally, we show that the protective anti-apoptotic signals provided by NLCs to the cancer 
cells are most important towards the later stages of the culture. This finding suggests that monitoring and 
potentially modulating phagocytosis could play a role in the control of NLCs polarization in CLL and also 
help understanding tumor-associated macrophages formation even in solid tumors [2]. 

References 

1. Frédéric Boissard et al. Nurse like cells: Chronic lymphocytic leukemia associated macrophages. Leuk. Lymphoma, 
56(5):1570- 1572, 2015. 

2. Nina Verstraete et al. An Agent-Based Model of Monocyte Differentiation into Tumor-Associated Macrophages in 
Chronic Lymphocytic Leukemia. https://www.biorxiv.org/content/10.1101/2021.12.17.473137v2 

[Systems biology and metabolomics - poster T8.20]

189



 

 

Probing SARS-CoV-2 RNA interactome to unravel post-transcriptional 
dysregulation associated with COVID-19 

Deeya Saha
1
, Andreas Zanzoni

1
 and Christine Brun

1
 

1
 TAGC, INSERM-AMU, Theories and Approaches to Genomic Complexity, Marseille, France 

 

Corresponding Author: andreas.zanzoni@univ-amu.fr; christine-g.brun@inserm.fr 

1. Introduction 

SARS-CoV-2 greatly remodels host’s RNA bound proteome or RBPome [1]. Previous work on RNA-protein 
interactions have shown that RNA binding proteins (RBPs) regulate functionally related mRNAs encoding 
proteins involved in the same biological processes [2], the so-called RNA regulons. We have previously studied 
the pervasiveness of the regulon theory at coding transcriptome level by associating cellular pathways to RBPs. 
Based on this study [3], we aimed at addressing some fundamental questions on the role of RNA-protein 
interactions between SARS-CoV-2 genomic RNA (gRNA) and cellular RBPs in the context of infection. We 
tested whether the sequestration of RBPs could indeed impact the host post-transcriptional regulatory 
networks. We also sought to determine the range of host biological processes that are likely to be perturbed as 
a consequence of the interaction between a given RBP and the viral gRNA. 

2. Results 

Based on our previous approach [3], we built an RBP-pathway association map using a rigorous statistical 
approach. We observed that RBPs known to be linked to viral infection regulate a significantly higher number 
of pathways as compared to the others. We gathered experimentally determined SARS CoV-2 gRNA-protein 
interaction datasets and observed that cellular RBPs that are bound to SARS-CoV-2 gRNA are associated with 
a large number of pathways as compared to non-gRNA binders. Moreover, it was also observed from our 
analyses that pathways dysregulated during SARS-CoV-2 infection are more likely to be associated with RBPs 
that are bound to SARS-CoV-2 gRNA. Thus, our data supports the notion that SARS-CoV-2 gRNA could 
indeed act as a sponge to sequester different cellular RBPs. As a result of this sequestration, dysregulation of 
important cellular pathways such as carbohydrate metabolism, could be observed. Our computational strategy 
also provides some testable hypotheses on G3BP1, a core component of stress granule and SARS-CoV-2 
gRNA binder. Our data suggests that G3BP1 is a potential regulator of carbohydrate metabolism. We also 
hypothesize that sequestration of G3BP1 could have profound effects on various pathways such as 
neurodegenerative pathways, which can lead to their dysregulation upon SARS-CoV-2 infection.    

3. Conclusions 

Our study shows the effect of sequestration of cellular RBPs by SARS-CoV-2 gRNA on host post-
transcriptional regulatory networks. This underlines that SARS-CoV-2 gRNA-binding proteins are 
promiscuous and can regulate multiple different pathways. Lastly, we generate testable hypothesis on G3BP1, 
a known viral RNA binder. 
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1 Introduction

Primary Sjögren’s Syndrome (pSS) is a systemic chronic autoimmune disorder with common symp-
toms fatigue, dryness and pain. To date, the treatment of pSS remains symptomatic, although research
improves the understanding of the disease [1]. The type I interferone (IFNα) system has a pivotal
role in the disease process and is associated with clinical and immunological phenotype. However, the
impact of IFNα on different aspects of the disease remains unresolved.

2 Objective

We aimed to improve our understanding of the clinical correlates of varying IFNα levels through
quantitative modeling that relate quantitative IFNα protein measurements with gene expression. Since
IFNα levels are known to be associated with autoantibodies, like anti-SSA and anti-SSB, presentation,
as well as disease activity, our approach was to explain and quantify their different type of interplay to
effect gene expression. Different gene signatures indicate then gene groups with different interaction
to genes.

3 Method

Data from patients with pSS from the multi-center prospective clinical cohort ASSESS (Clinical-
Trials.gov ID: NCT03040583) were analyzed, whereby transcriptomic data (GEO: GSEA 140161) as
well as parameters, like IFNα and levels of the autoantibodies SSA and SSB, were available. We
tested 6 different models for their ability to capture different types of interplay and to identify the
best fitting model for each gene. We employed linear mixed regression models, adjusting for the effect
of age including as a fixed factor and for hospital center effects as a random factor.

4 Results

Three main gene signatures were identified, whereby the analysis showed that most of the genes
are related to both IFNα and autoantibody level instead of only one of them. Furthermore, in general
the gene expression increases with increasing IFNα blood concentration, but the increase is higher
the more autoantibodies are present. This effect of autoantibodies to the increase of gene expression
by increasing IFNα was found to be constant for those genes related to both factors. Moreover, the
impact of the second antibody (SSB) on gene expression was – in a surprisingly consistent manner –
found to be three times as strong as the impact of the first antibody (SSA).

5 Discussion

Our models reveal different classes of genes whose expression is related in different ways to IFNα
and autoantibody levels in Primary Sjögren’s Syndrome. The quantitative nature of these models
opens the door for further refinements, such as the precise characterization of the effect of other
known major players controlling gene expression, such as the rheumatoid factor.
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Abstract

There’s a substantial number of tools released around Synthetic Biology and Metabolic Engineering-
related questions and needs. This population of tools is difficult to comprehend and use together, main
reasons being complexity and interoperability issues. Indeed, a high level of expertise could be re-
quired for installing codes, and execution for real life use cases could be computationally resource
demanding. Plus some tools, although complementary, use different inputs and outputs which prevent
easy chaining.

The SynBioCAD-Galaxy portal is a growing toolshed for synthetic biology, metabolic engineering,
and industrial biotechnology[1]. The tools and workflows currently shared on the portal enable one to
build libraries of strains producing desired chemical targets covering an end-to-end metabolic pathway
design and engineering process: from the selection of strains and targets, the design of DNA parts
to be assembled, to the generation of scripts driving liquid handlers for plasmid assembly and strain
transformations.

Tools are made available on GitHub, anaconda.org and the Galaxy Tool Shed, opening to the
greatest number access and utilization throughout the SynBio community, and significant effort has
been granted for adopting FAIR principles. As a community effort helped by funded projects, the
scope covered by tools is expected to expand over time.

The poster will give an overview of the SynBioCAD-Galaxy portal in the context of prediction
and construction of E. coli lycopene-producing pathways. The poster will open the discussion around
good practices guiding releases of tools through continuous integration.

A – lightweight – testing instance of SynBioCAD-Galaxy is available at https://galaxy-synbiocad.
org.

References

[1] Joan Hérisson, Thomas Duigou, Melchior du Lac, Kenza Bazi Kabbaj, Mahnaz Azad Sabeti, Gizem Buldum,
Olivier Telle, Yorgo El Moubayed, Pablo Carbonell, Neil Swainston, Valentin Zulkower, Manish Kushwaha,
Geoff S. Baldwin, and Jean-Loup Faulon. Galaxy-synbiocad: Automated pipeline for synthetic biology
design and engineering. bioRxiv, 2022.

[Systems biology and metabolomics - poster T8.24]

192



 

 

RFLOMICS : R package and Shiny interface for 

Integrative analysis of omics data 

Nadia BESSOLTANE
1
, Christine PAYASANT-LE-ROUX

2
, Gwendal CUEFF

1
, Audrey HULOT

1
, Delphine CHARIF

1 

1Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAe, AgroParisTech,  

78000, Versailles, France 
2 Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, 

Univ Evry, 91190, Gif-sur-Yvette, France 
 

Corresponding Author: nadia.bessoltane@inrae.fr and delphine.charif@inrae.fr 

 

The acquisition of multi-omics data in the context of complex experimental design is a widely used practice 
to identify entities and decipher the biological processes they are involved. The investigation of each omics 
layer is a good first step to explore and extract relevant biological variability. The statistical integration could 
then be restrained to pertinent omics levels and features. Such analysis of heterogeneous data remains a 
technical challenge with the needs of expertise methods and parameters to take into account data specificity. 
Furthermore, applying different statistical methods from several tools is also a technical challenge in term of 
data management. In this context, we developed RFLOMICS, an R package with a shiny interface, to ensure 
the reproducibility of analysis, with a guided and comprehensive analysis and visualization of data in a 
framework which can manage several omics-data and analysis results. 

RFLOMICS currently supports up to three types of omics (RNAseq, proteomics, and metabolomics), and 
can deal with multi-factorial experiments (up to 3 biological factors). It includes methods chosen based on 
expert feedback [1,2]. This application is divided into three key steps. The first step allows the user to import 
the experimental design file and abundance matrix for each dataset (read counts for RNA-Seq, signal intensity 
for metabolomics and proteomics), and set up the statistical model and contrasts associated to the biological 
issues [1]. The second step is to perform a full analysis for each dataset, which includes : i- quality control to 
check for batch effects or identify outlier samples that can be removed, ii- filtering and normalization of RNA-
Seq data, or transformation of prot/meta data, iii- differential expression analysis using edgeR [1] for RNA-
Seq and limma [3] for prot/meta data, iv- co-expression analysis using coseq [1], and finally, v- functional 
enrichment analysis [1]. The third step is to integrate selected omics layers using the unsupervised methods 
proposed by MOFA [4]. All the results as well as the raw data, and all information necessary for reproducibility 
of analysis are managed and stored thanks to the MultiAssayExperiment object [5]. An HTML report can be 
generated, summarizing all analysis steps, using rmarkdown R package. 

RFLOMICS provides the same framework that allows the user to perform the analysis of multi-omics 
project from A to Z, taking into account the complexity of the design. It guarantees the relevance of the used 
methods, and ensures the reproducibility of the analysis. The interface offers an interesting flexibility between 
the visualization of the results and the data manipulation (filtering, parameter setting). Future development 
will include the implementation of supervised integration methods, and a docker image to facilitate 
deployment. 
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L’urgence climatique, l’empreinte environnementale de l’homme grandissante ou le dépassement
de limites planétaires nous oblige à nous interroger sur nos pratiques et nos impacts. Notamment ceux
du numérique, au cœur des activités d’un bioinformaticien.

Si ce n’est pas le poste le plus important en terme d’émission de gaz à effet de serre (GES) parmi
toutes nos activités (transport, alimentation, bâtiment, etc), le numérique représenterait quand même
2 à 4% des GES [1]. En France, ces impacts sont principalement liés à la fabrication (78%) et aux
terminaux utilisateurs (79%) [2]. Mais le numérique, c’est aussi des minerais (600Kg de matières
premières mobilisées pour la fabrication d’un ordinateur). Cette exploitation minière, industrie parmi
les plus polluantes au monde, provoque localement des bouleversements sociaux-économiques, envi-
ronnementaux, sanitaires et parfois des violations de droits humains. C’est aussi de l’eau (0,2% eau
douce mondiale) pour l’extraction de métaux ou la fabrication de composants électroniques. C’est
encore des déchets pas toujours collectés et peu recyclés.

Et ce secteur est en croissance (en contradiction avec les objectifs de réduction globale) avec des
effets rebonds difficiles à évaluer.

Les traitements réalisés en bioinformatique (alignement, assemblage, docking, etc.) s’appuient sur
les équipements informatiques. On peut alors essayer d’évaluer ces impacts [3], de même que certains
centres de calcul ont estimé leur empreinte carbone. On notera notamment le GRICAD et la plateforme
bioinformatique GenoToul qui évaluent l’heure par cœur de calcul autour de 5g eqCO2 [4,5]. A cette
empreinte du numérique on peut ajouter le stockage des données, les transferts, les visioconférences,
nos terminaux utilisateurs, etc. Ces impacts peuvent être mitigés en rallongeant la durée de vie des
équipements, en mutualisant, en améliorant l’efficacité énergétique, etc.

Finalement, si on estime nos projets nécessaires, il faut allonger autant que possible la durée de
vie des équipements, réduire leur nombre et tendre vers une certaine sobriété de nos usages.
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report, UGA - Université Grenoble Alpes ; CNRS ; INP Grenoble ; INRIA, April 2020.

[5] Genotoul Bioinfo. Newsletter #35, special carbon footprint issue, 2021.

[Workflows, reproducibility and open science - poster T9.1]

194



EMERGEN-DB : The French database for SARS-CoV-2 genomic surveillance
and research

Imane MESSAK1, Anliat MOHAMED1, Chiara ANTOINAT1, Arthur LE BARS1,3, Arianna TONAZZOLLI1,
Benjamin DEMAILLE1,5, Olivier SAND1, François GERBES1,3, Thomas ROSNET1,4, Laurent BOURI1,5,

Julien SEILER5,1, Nicole CHARRIÈRE1, Christophe ANTONIEWSKI6, Anne BOZORGAN7, Javier
CASTRO ALVAREZ7, Jeanne SUDOUR7, Yann LE STRAT7, Bruno COIGNARD7, Abdelkader Amzert 8,
Nebras Gharbi8, Franck Lethimonier8, Hélène CHIAPELLO1,2, Naira NAOUAR6, Claudine MEDIGUE1,9,
Gildas LE CORGUILLE3,1,  David SALGADO1,10 , Jacques VAN HELDEN1,4 and Thomas DENECKER1

1 CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Évry, France
2 Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France

3 Sorbonne Université, CNRS, FR2424, ABiMS, Station Biologique, 29680, Roscoff, France
4 Aix-Marseille Univ, Inserm, laboratoire Theory and approaches of genome

complexity (TAGC), Marseille, France
5 CNRS UMR7104, Inserm U1258, Université de Strasbourg, Institut de Génétique et

de Biologie Moléculaire et Cellulaire, Illkirch, France
6 Sorbonne Université, CNRS FR3631, Inserm US037, Institut de Biologie Paris Seine

(IBPS), ARTbio Bioinformatics Analysis Facility, Paris, France
7 Santé Publique France, 12, rue du Val d'Osne 94 415 Saint-Maurice Cedex

8 Inserm, Institut national de la santé et de la recherche médicale, 101 rue de Tolbiac
75013 Paris.

9 UMR 8030, CNRS, Université Evry-Val-d'Essonne, CEA, Institut de Biologie
François Jacob - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la

Génomique et le Métabolisme, Evry, France
10 Aix Marseille Univ, INSERM, MMG, 13005, Marseille, France

Corresponding Author: imane.messak@france-bioinformatique.fr

In January 2021, the French Ministries of Health (MSS) and Research (MESRI) launched EMERGEN, a
national plan for SARS-CoV-2 genomic surveillance, which aims at monitoring the evolution of the
COVID-19 in France, detecting new variants and supporting the integration of viral genomic data and health
data for both surveillance and research. We present two components of the EMERGEN-Bioinfo digital
platform developed by the IFB (Institut Français de Bioinformatique):

(a) EMERGEN-DB, the database that collects and manages non-sensitive metadata (sample collection,
sequencing method, …) and consensus SARS-CoV-2 genomic sequences produced by the 55 sequencing
platforms of the consortium. Developed under Django, it is equipped with both user-friendly and application
programmatic interfaces (API) that currently offer over 121 entry points, enabling users to upload their data
and query the database manually or in batch. EMERGEN-DB also offers numerous tools to facilitate
real-time monitoring of variant evolution and expansion throughout France (alerts, etc.), data export via the
APIs, data brokering services to curate and manage the metadata before submitting them to the international
repositories such as GISAID and EBI-ENA, and finally data exploration and visualization (summary tables,
figures, maps, …) through the interactive pages (activity, sampling, …).

(b) Rtools4emergen, an R package enabling to query EMERGEN-DB, to visualize data and to automatically
generate reports.

To date, EMERGEN-DB collects metadata from ~74 sequencing platforms and has gathered more than
520513 records, of which 120186 were submitted to GISAID via our brokering tool.

Keywords SARS-CoV-2;  COVID-19; EMERGEN-Bioinfo; EMERGEN-DB; genomic surveillance;
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The Data Analysis Core – DAC - facility is part of Paris Brain Institute (ICM), which is dedicated to basic 
and clinical neuroscience research; it develops and makes available software solutions and methodological 
expertise in three domains: data management (curation, standardization, structuration, integration); high 
throughput genetics and omics data processing (in particular from NGS data); basic and advanced biostatistics, 
especially integration of multimodal data (namely clinical, omics and imaging data). 

As part of the omics data analysis activity, a dedicated team of 6 persons within the platform assists scientific 
and clinical teams from the design of their study up to data processing, analysis and interpretation. This support 
consists of three complementary services: the building and operation of specialized pipelines to compute the 
raw data; the development and deployment of graphical tools to help in the interpretation of the results; a 
personalized assistance to biologists to go deeper in their scientific questions. 

Software pipelines were built around three technologies: Snakemake [1], a workflow manager that makes 
pipelines scalable by enabling their parallelization; Conda [2], a package manager used to make the installation 
of the pipelines and their dependencies automatic, and Illumina DRAGEN 
(https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html), a 
fieldprogrammable gate array technology (FPGA) that provides hardwareaccelerated implementations of 
common genomic analysis algorithms. Pipelines were developed for the following types of (epi)genomics 
studies: gene panel, whole-exome (WES) and whole-genome (WGS) sequencing (SNPs, CNVs, expansions, 
rare variants), bulk RNA-seq (differential gene expression, fusion transcript detection, small and long non-
coding RNA), single-cell/nuclei RNAseq (CITE-seq, multiome), bisulfite-seq (methylation profile) [3], ATAC-
seq (chromatin accessibility), and ChIP-seq (protein binding). Currently, two pipelines are in development for 
the analysis of spatial transcriptomics data from NanoString, and for the analysis of long-reads sequencing 
from Nanopore. 
 

Shiny/R graphical applications were developed to make data available to end-users in an intuitive and 
interactive way. Dedicated tools are thus proposed to explore WGS/WES data, transcriptomics data from bulk 
RNA-seq experiments, and a dedicated module for the analysis of single-cell RNAseq. In addition, a recent 
development was performed to build DEJAVU, a MongoDB database of variants identified in the frame of 
ICM studies, together with a graphical user interface. All those interfaces are managed in one tool named 
QUBY, with Shinyproxy, an open-source system that makes it possible to deploy dockerized applications, with 
a built-in functionality for Keycloak authentication and authorization, which makes securing Shiny traffic 
(over TLS) a breeze and has no limits on concurrent usage of a Shiny app. 
 

Finally, ad hoc expertise is proposed as a follow-up of every project. The bioinformaticians of the platform 
dialog with biologists and clinicians to understand their scientific questions, and extract relevant information 
from experimental results. This activity consists in guiding scientists from and outside ICM in the use of 
softwares and methods, and developing scripts to carry out specific data processing steps; this is tightly linked 
to the biostatistics component of DAC. Co-authored publications are a frequent outcome of such projects. 
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The IFB Catalogue

Bryan Brancotte1, Hippolyte Kengni2, Thomas Rosnet2,3, Laurent Bouri2,6, Jon Ison2, Olivier
Sand2, Hélène Chiapello4,2, Alban Gaignard5, Sylvain Milanesi2, Jacques van Helden2,3and
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The IFB Catalogue is a centralized database developed as part of the IFB Distributed national
environment of services in Bioinformatics. Its aim is to ensure the visibility and accessibility of
the Bioinformatics resources provided and maintained by the french community, whether these are
research labs or service platforms, in a structured and open database that guarantees their FAIRness.
Such resources can be software tools, databases, computing resources, individual expertises, platforms,
trainings and training materials. This catalogue stores the metadata describing their properties (e.g.
the licence of a software tool) and linking them (e.g. the publication of a database by a given team).

Fig. 1. Architecture of the IFB Cata-
logue

The primary role of the Catalogue is to help
users of Bioinformatics services. Through the integra-
tion of the data in the IFB website (https://www.
france-bioinformatique.fr), it provides an overview of
the various resources provided by the community, and sup-
ports the needs of end-users (who can perform a given kind
of analysis? where is a tool available?). It is also synchro-
nized with related international catalogues (e.g. ELIXIR
bio.tools[1] , TeSS[2]), and promotes the reusability of the
data through the publication of Bioschemas[3] markup and
REST APIs as well as the use of the EDAM ontology[4].

The backend server is available at https://catalogue.
france-bioinformatique.fr/. The code of the Catalogue
database backend is openly available on https://github.

com/IFB-ElixirFr/ifbcat.
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The French Institute of Bioinformatics (IFB) is the National Bioinformatics Infrastructure that
provides support, deploys services, organizes training and carries out innovative developments
for the life science communities. According to a 2019 IFB survey targeting life scientists and
bioinformaticians, almost all teams and units express the need for training. The most requested
skills are related to NGS analysis, biostatistics and data analysis (including machine learning
and AI), and bioinformatics skills, especially related to the recent field of integrative
bioinformatics. The survey also highlights an important need for training in the fundamentals of
Open Science and FAIR principles applied to bioinformatics activities.
In order to face this important demand, IFB training activities are organized at 3 levels :

- at the regional level with the training activities carried out by the IFB platforms and teams,
- at the national level with actions (co)-coordinated by the IFB,
- at the European level through the ELIXIR network.

In this poster we will report a summary of the IFB training activities over the last three years.
We will also present recent IFB training actions that have been designed to enhance
bioinformatics skills at the national level and fill gaps in the existing french training activity
landscape. We will focus on two new courses designed in 2020 and 2021: (i) The FAIR bioinfo
training, which aims to make bioinformatics analyses more reproducible by implementation of
the FAIR principles in a bioinformatics analysis or development project and (ii) The FAIR data
training, which is dedicated to the fundamental aspects of Open Data, including legal aspects,
practical DMP sessions and metadata issues in the context of omics data and bioinformatics.
We will also present future projects for the development of new training resources, e-learning
material and ongoing training actions related to integrative bioinformatics skill development.

Training events, Training materials, Open Science, FAIR, e-learning
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Recent  technological  developments  have  enabled  telomere-to-telomere  assembly  of  genomes  for

numerous non model species  [1]–[3]. Among  these progresses, the continual improvement of sequencing

techniques, in particular regarding the sequencing of long fragments plays an important role, as well as the

application to scaffolding of methods to acquire long-range contiguity information such as conformation

capture [4]. Also, assembly algorithms and pipelines, including important preprocessing and polishing steps,

are developed to tackle issues that frequently hamper assembly of non-standard genomes (e.g. with high

ploidy or heterozygosity and repeated regions)  [5].  However, genome assembly remains a difficult  task.

Empirical optimisation are still often required for each dataset, making full automation difficult to achieve.

The National Museum of Natural History of Paris (MNHN) stands out for the diversity of its research

models. Many of its research projects ambition to build genomic data from non-standard organisms and/or

DNA sources.  The Data Analysis Service (SAD) belongs to the UAR 2700 2AD, Data Acquisition and

Analysis for Natural History. Its aim is to provide support to researchers regarding their data analysis notably

regarding  NGS data.  Both  to  fulfil  this  ambition and to  take advantage  of  this  multiplicity  of  projects

involving genomic data generation, we are organizing an Assemblathon, which aims are:

(1)  to  create  and  maintain  flexible  assembly  pipelines,  adapted  to  a  high  diversity  of  organisms,

sequencing techniques and objectives.

(2) to centralize experiences, original approaches and good practices regarding assembly of non-model

organisms.

(3) Eventually, this framework will favor the emergence of new tools and guidelines useful for any new

genome assembly project.

This  poster  brushes  over  the  initial  set-up  of  our  assembly  pipeline,  preliminary  tests  as  well  as  an

overview of the panel of projects currently participating to the Assemblathon.
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The BioInformatics and Genomics (BIG) platform of Institut Sophia Agrobiotech (ISA: INRAE - 
CNRS - Univ. Côte d'Azur) offers expertise in bioinformatics and solutions for processing, 
integrating, analyzing and visualizing multi-omics data in the field of plant health and protection. The 
BIG platform is part of PlantBios (Biocontrol and Plant Biostimulation, Facilities and Expertise), 
labeled as a collective scientific infrastructure by INRAE. PlantBIOs offers equipment and expertise 
for studies ranging from gene level to the whole agroecosystem scale with analytical tools (Imagery 
and Microscopy, Biochemistry and Mass Spectrometry, Bioinformatics and Genomics), experimental 
tools, and collections of rare biological resources. 
Since the end of 2020, BIG has been an IFB contributing platform. The core of the BIG platform is 
composed of three bioinformatics engineers: Martine Da Rocha and Arthur Péré (from INRAE), with 
Corinne Rancurel (from CNRS) as operational manager . The core is complemented by a scientific 
advisor: Etienne Danchin (INRAE senior scientist). 
BIG has a main expertise in comparative genomics, transcriptomics, and molecular evolution. More 
recently, BIG has been involved in epigenomics, small RNA as well as metagenomics studies. The 
tools and resources produced by BIG are made available to the scientific community (website, forge 
and integrative portals) and can address similar problems encountered in other research areas. For 
instance, the Alienness tool, which allows rapid detection of candidate horizontal gene transfers in 
genomes has been used 1446times by 353 different users and the corresponding paper [1]  (Rancurel 
et al. 2017) has already been cited 29times, since its launch in August 2017. 
In addition to methodological developments, the platform offers support and training for biologists 
in the use of bioinformatics tools and pipelines, including the one developed by BIG itself.  
The BIG platform is open for collaboration and can be contacted at the following e-mail address: 
big.plantbios@inrae.fr 
This web page summarizes the activities and organization of the BIG platform: 
https://www6.paca.inrae.fr/institut-sophia-agrobiotech/Infrastructure-PlantBIOs/Equipements-
Ressources-biologiques-et-Expertises/Plateau-de-bioinformatique or http://tinyurl.com/y9qkho4v 
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Abstract:

The MGX (Montpellier GenomiX) is an NFX 50-900 certified facility which offers, since 2008,

next-generation sequencing services, as well as bioinfomatics and biostatistics analysis of the

produced data. The facility is accessible to both academic and industry/biotech scientists. Our

expertise  is  drawing  on  many  years  of  experience,  as  much  in  molecular  biology  as  in

bioinformatics.

Keywords : Sequencing, analysis, service, libraries, expertise

Our facility offers a wide range of applications on Novaseq 6000, including whole-genome sequencing,

exome and targeted sequencing, RNA-seq, small RNA-seq, epigenetics (ChIP-seq, HiC, Whole Genome and

Reduced  Representation  Bisulfite  Sequencing,  …),  population  genomics  with  RAD-seq,  etc.  We  an

integrated  service  from  library  construction  to  bioinformatics  analysis.  Bioinformatics  analyses  include

quality control, alignment of sequences to a reference genome or transcriptome, statistical and functional

analyses.  A typical  project  starts  with  a  launch  meeting  to  define  the  aims  of  the  experiment,  the

experimental design, and the analysis tools to be used. Throughout the project, a project management web

application provides an easy and flexible way to store and retrieve information, and to communicate with

customers.

Using a Chromium device from 10X genomics, we offer single cell gene expression, as well as ATAC and

Multiplex analysis. The Chromium is a droplet-based method, which allows the characterization of hundreds

to thousand of cells  in a single experiment.  The 3’ mRNA quantification of gene expression is  used to

identify cell  populations  in  heterogenous or complex samples.  The analysis  can be done using the Cell

Ranger solution available from 10x Genomics. We are also currently evaluating other approaches to improve

the  results  concerning  normalization,  dimension  reduction,  clustering,  statistical  analysis  and  data

visualization.

Besides sequencing on an Illumina machine, we also offer the possibility to sequence on MinION (Oxford

Nanopore Technologies), which produces long reads from DNA or RNA samples. We particularly focused on

direct RNA sequencing (SQK-RNA002) and DNA sequencing (SQK-LSK110) on R9.4.1 flow cell. So far,

we produced up to 15 million reads with a N50 ranging from 1 300 to 36 000 depending on the project. The

basecalling is done by GPU version of Guppy in SUP model on two Nvidia Tesla V100 GPU cards. We have

also  developed a  procedure for  the de  novo assembly of  long-read  only or  hybrid long-read/short-read

bacterial genomes.
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Abstract Exploiting omic data has become a usual task within many medical and biological research 

laboratories. Indeed the increasing number of technological platforms and their attached services, the 

lessening of costs, and the publication of raw data impulse the creation of new standards in analysis 

methodology.Our analysis methodology relies on two axes: we carry out the bioinformatics analysis of data 

locally, comprehensively, and in one go to create a new base of analyzed data that is then biologically exploited 

and interpreted. Briefly, the workflow needs normalized data, statistical experimental design and symbol 

annotations. First, we apply quality control and unsupervised analysis on global data for all input factors. 

Then we apply analysis of variance model and compute post hoc pairwise comparisons tests with biological 

sense and their combination pattern with fold-change. The workflow then filters the results using a threshold 

gradient to make downstream analysis. All data subsets are used to generate venn and cluster analysis. All 

created lists of significant features from all subset analysis are then used for global enrichment analysis for 

functions, pathway, regulators, etc… using MSigDB[1] . 
We exploit the analyzed data thanks to a collaborative tool allowing putting together the know-how of 

bioinformaticians, bio-analysts, and biologists all involved in the project to optimize both interpretation and 

follow-up of the results. To enforce such methodology, we have developed the R package MOAL (Multi-Omic 

Analysis at Lab), containing a simple function to make an omic analysis that will generate the basis of analyzed 

data[2]. To maintain a collaborative and transparent spirit in exploiting the results, we have created a fruitful 

private-public partnership with ADLIN Science[3]. This digital health-tech company is developing an 

innovative solution for data management and multi-omics analysis. ADLIN platform promotes the open science 

initiative, following fair principles to guarantee the security and traceability of scientific research. ADLIN 

workspace is a user-friendly, integrated environment that assists and guides the user in building and managing 

projects with different levels of complexity. Individual modules facilitate a wide range of tasks, such as data 

structuration, bioinformatics analysis, etc., carried out in parallel. 

We aim to present our integrated approach and its use through applied to a biological demonstrator generated 

in partnership with INSERM UMS-R 999. Here we explored the Implication of the NMDA (N-methyl-D-

aspartate) receptor in the transcriptomic and proteomic PDGF (Platelet derived growth factor subunit B) 

Response of Pulmonary Vascular Smooth Muscle Cells from Patients with Pulmonary Arterial 
Hypertension. This multi-omics analysis showed PDGF induced pro-proliferative gene and protein expression 

in pulmonary vascular smooth muscle cells that tended to normalize using NMDAR antagonists.  
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Des domaines tels que la biologie des systèmes, la modélisation des réseaux ou l'analyse des données 

NGS constituent un véritable défi en termes de calcul scientifique. Dans un contexte de production de 

données de biologie marine à haut débit et de traçabilité des analyses, le développement d'une 

infrastructure de calcul scientifique est une étape essentielle pour la production de connaissances. 

 

La plateforme ABiMS (Analysis and Bioinformatics for Marine Science) de la Station biologique de 

Roscoff répond aux besoins des chercheurs et des chercheuses en biologie marine et, plus largement, 

des sciences de la vie. Créée en 2008, elle est l'une des plateformes nationales de l'Institut français de 

bioinformatique (IFB). Elle est également un Centre de Données et de Services in situ du pôle ODATIS, 

de l’infrastructure de recherche Data Terra. ABiMS fait partie du réseau IBISA et est membre du GIS 

BioGenouest. 

 

La plateforme met au service de la communauté une infrastructure de calcul et de stockage (2500 CPU 

, 2.5 Po), ainsi qu’une palette de compétences, un catalogue de services organisés autour de 5 activités 

: 

● Ingénierie logicielle : développement d’interfaces web couplées à des bases de données, 

centrées aussi bien sur des données de type séquence que sur des données d’observation 

● Gestion de données : FAIRisation ou accompagnement à la FAIRisation, mise en accès de 

jeux de données FAIRisées, publication de jeux de données DOIsés dans des entrepôts 

thématiques 

● Analyse bioinformatique : analyse de données (Assemblage et annotation de genome, 

transcriptomes, metagenomes etc, analyse de diversité ) , etc. 

● E-infrastructure : cluster de calcul, interfaces Galaxy, JBrowse, Apollo, R, espace de 

stockage ou outils bioinformatiques. Environnement pour l’analyse, l'annotation et 

l’hébergement de données de génomiques 

● Support : demande de support pour l'utilisation des ressources de la plateforme (logiciels, 

données, etc.) 

● Formation : formation aux méthodes et logiciels bioinformatiques 

 

Pour assurer la qualité de nos services, nous avons mis en place un système de gestion de la qualité basé 

sur la norme ISO 9001, qui a été initialement certifié en 2014 et qui est approuvé à la norme ISO 

9001:2015 depuis décembre 2017. 

Grâce à ses nombreuses interactions avec les unités de recherche et en tant que membre du Réseau 

national des ressources informatiques de l’IFB et en tant que centre de données et de service , ABiMS 

est impliquée dans de nombreux projets de recherche (une vingtaine par an), dont les impacts nationaux 

et européens concernent les activités de bioanalyse, de développement logiciel et d'e-infrastructures. 
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The Migale bioinformatics facility is a team of INRAE’s MaIAGE research unit (Applied 

Mathematics and Computer Science, from Genome to the Environment). It has been providing 

services to the life sciences community since 2003. 

Migale is an open platform, that offers four types of services ; 

· an open infrastructure dedicated to life sciences data processing, 

· dissemination of expertise in bioinformatics, 

· design and development of bioinformatics applications, 

· genomic, metagenomic and metatranscriptomic analysis. 

Migale is part of the French Institute of Bioinformatics (IFB) and France Génomique projects. It has 

an ISO9001 certification and  is also one of the four platforms which compose BioinfOmics, the 

national Research Infrastructure in bioinformatics of INRAE. 

The poster will illustrate the platform services with examples chosen from recent achievements. 

 

A complete description of Migale facility’s service offer is available on its website : 

https://migale.inrae.fr 
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Emergence of single cell transcriptomics has led to the challenge of developing data analysis
pipelines that are both fully reproductible and modular while allowing interoperability across mul-
tiple systems and institutions, overcoming differences in hardware, operating systems and software
versions.
We approached this challenge by designing scAN10 (single cell ANalysis of 10X data), a processing
pipeline of 10X single cell RNAseq data, that is written in Nextflow and inherits the ability to be
executed on most computational infrastructures.
This pipeline takes as input fastq files that are generated using the 10X Genomics protocol. In order
to produce the filtered normalized count matrices, the fastq files are processed and trimmed by using
Fastp [1], an ultrafast fastq processor that supports multi-threading with the aim of removing low
quality bases. To compute feature barcode count matrix from trimmed fastq files, the pipeline gives
the possibility to choose between two of the most popular single cell mappers: Kallisto-bustools [2]
that perform an alignement free approach, so called pseudo-alignement or Cellranger [3] that performs
a classical alignement approach with the underlying use of STAR. This step requires the input of ge-
nomic files (genome sequence and GTF annotation files) corresponding to the species of interest. In
the case of human analysis these files can be downloaded automatically by specifying a version number
available on the Ensembl database. To remove low quality cells, the count matrix is filtered by using
the Seurat (R) package based on different criteria that the user can modify at the start of the pipeline.
To normalize filtered data counts and ensure that any heterogenity observed is driven by biology and
not by technical biases, the user is then allowed to use a Bayesian inference of gene expression states
by filtering out the Poisson noise called Sanity [4]. Finally, a KNN based clustering with a Louvain
modularity optimisation and the visualization of the data in a reduced dimension space with UMAP
or T-SNE is done with the Seurat package. Alternatively this last step can be skipped allowing the
user to use their own clustering method. Similarly, to avoid the introduction of layers of complexity
and simplify the pipeline usage, the automatic annotation of clusters was not introduced. Users can
annotate their dataset manually. In our case, we used the expression of sets of markers specific to our
biological model.

We will illustrate the application of scAN10 to a clinical dataset of human pituitary gonadotroph
tumours acquired from 6 patients (3 Men / 3 Women). This data were analysed using scAN10,
with the perspective to better understand the cell heterogeneity and microenvironment composition
of gonadotroph tumours, a frequent form (35% of total) of intracranial pituitary neoplasm with poor
diagnostic, predictive and therapeutic clinical perspectives.
The git repository of scAN10 is avalaible at https://gitbio.ens-lyon.fr/LBMC/sbdm/scan10

We thank the PLASCAN institute for financing this project, and Laurent Modolo from the LBMC
for his help for using the Nextflow language.
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The heterogeneity of healthy, tumor and immune cells plays a key role in normal and pathological 

development, as well as in response to treatment. Conventional technologies (in bulk) study a global population 

of cells and do not allow the detection of subpopulations of rare cells. To be able to distinguish the identity of 

each cell individually, high-throughput technologies at the scale of the single cell, have been under intense 

development for several years.  

At the research center of Institut Curie, four core facilities from the Curie CoreTech network (Custom Single 

Cell Omics, Next Generation Sequencing (NGS ICGEX), Cytometry and Bioinformatics platforms) have 

decided to join forces and create the Single-Cell Initiative. This program aims to coordinate and share resources 

to optimize services and developments of single-cell technologies for the scientific community. The Single-

Cell Initiative (i) benchmarks and adapts state-of-the art technologies, (ii) develops custom single-cell 

approaches, when necessary [1], and (iii) provides support for research teams with their single-cell 

experiments. This support includes cell characterization, cell sorting, single-cell isolation, sequencing and data 

analyses covering a large range of single-cell approaches from 3’ and full-length RNA-seq, to single-cell 

epigenomics and spatial omics. Custom projects requiring dedicated microfluidic developments are also 

encouraged through the custom single-cell omics platform. 

In addition to the experimental support, the single-cell initiative is developing bioinformatics pipelines for all 

supported single-cell technologies. The goal of these pipelines is to propose quality controls of the experiments 

as well as the pre-analysis steps such as data cleaning, filtering and first level analysis (e.g mapping, counting). 

These pipelines are based on the Nextflow framework, and developed following the FAIR principles of 

scalability, portability and re-usability. They can easily be used for both production environment (with the 

geniac framework [2]) and user applications, and support containers usage such as conda, docker and 

singularity. 

We will present the Institut Curie Single-Cell initiative - its organization and the different supported 

technologies.  
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EDAM [1]  is  a  domain  ontology  of  data  analysis  and  data  management  in  life  sciences.  It  comprises
concepts related to analysis, modeling, optimization, and data life-cycle, and is divided into 4 main sections:
topics, operations, data, and formats. 

EDAM  is  used  in  numerous  resources,  for  example bio.tools,  Galaxy,  CWL,  Debian,  BioSimulators,
FAIRsharing, or the ELIXIR Europe training portal  TeSS.  Thanks to the annotations with EDAM, tools,
workflows, standards, data, and learning materials are easier to find, compare, choose, and integrate. EDAM
contributes to open science by allowing semantic annotation of research products, thus making them more
understandable, findable, and comparable. 

EDAM  is  continuously  evolving  and  expanding  by  improving  the  implementation  of  links  to  external
resources (including other ontologies), definitions, and the overall quality, or the addition of new concepts.
EDAM is developed in a participatory and transparent fashion, within a broad and growing community of
contributors. This development model, based on the contribution of a large number of scientific experts,
therefore comes with its own set of challenges.

To ease the contribution processes, users can explore graphically the ontology and its most useful features

using the EDAM Browser [2] web interface.

To streamline and accelerate the evolution of EDAM, we have developed and integrated a set of tools that
automate  the  quality  control  and  release  process  for  the  ontology.  In  addition  to  ensuring  the  global
consistency of EDAM, it enforces edition best practices both at the syntactic and semantic levels. These tools
have  been integrated  in  a  continuous integration (CI)  pipeline,  automated  using  GitHub Actions  in  the
source-code repository.

These tools participate in the improvement of EDAM’s contribution process and visibility by the community.
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Transposable elements (TEs) are major players of structure and evolution of eukaryote genomes. Thanks to
their ability to move around and to replicate within genomes, they are probably the most important contributors
to genome plasticity. Their detection and annotation are considered essential and must be undertaken in any
genome sequencing project.

The REPET package [1, 2] integrates bioinformatics pipelines dedicated to detect, annotate and analyze
TEs in genomic sequences. The two main pipelines are (i) TEdenovo, that search for interspersed repeats,
build consensus sequences and classify them [3] according to TE features and (ii) TEannot, which mines a
genome with a library of TE sequences, for instance the one produced by the TEdenovo pipeline, to provide
TE annotations.

The REPET package is in continuous improvement for speed by parallelizing several key bottleneck steps.
In addition, several strategies which reduce the time required for analyzing large genome have been tested.
With the speed improvement and adapted strategies, REPET is now able to annotate and analyze genomes
such as the maize with more than 85% of TEs on a 2.3 Gb genome [4] on current computer cluster.

With this tool, the PlantBioinfoPF platform ensures a TE annotation service. Indeed, we are now able to
propose an automatic TE annotation of good quality through a process called "Repet-Factory". This process
uses the REPET software suite with parameters optimized for TE detection specificity and computing time.
This process is capable of successively annotate several genomes in batches with the required traceability and
reproducibility of the analyzes.

Moreover, a Virtual Research Environment (VRE) for TE annotation and its analysis has been developed
on Virtual Machines (VM). An ansible script instantiate VMs with all packages and tools required for a
complete genome annotation with the REPET package. This script allows this VRE to be easily re-instantiated
in other infrastructures which greatly simplify the REPET package installation with all its required
dependencies. We also simplified the distribution of REPET to increase its availability and portability to users,
by developing a Docker image of REPET (https://hub.docker.com/r/urgi/docker_vre_aio).

The REPET tool is a cornerstone of the platform. In addition to its use in the genome TE annotation service
and its availability for download, it is also the basis of the RepetDB [5] database
(https://urgi.versailles.inrae.fr/repetdb) hosted by the platform which provides libraries of reference TE
sequences for more than 50 species.
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1. Introduction
Restriction-site associated DNA sequencing (RADSeq) is a technique to scan complete genomes of

organisms without sequencing them entirely. RADSeq is commonly used to identify thousands of single
nucleotide polymorphisms (SNPs) randomly distributed across the genome for applications in population
genomics. Different tools exist to search for SNPs from RADSeq data. Here, we compare two pipelines: a
custom pipeline (using among others the GBSx [1] tool for demultiplexing) and the Stacks pipeline
developed by Rochette and Catchen [2].

2. Approach
Both pipelines were applied on a dataset of 192 individual fish (polar cod; Boreogadus saida) from 10

different sampling regions in the Arctic Ocean. The samples were paired-end sequenced on a single run of an
Illumina NovaSeq6000 device. The custom pipeline consists of the following steps: demultiplexing using
GBSx v. 1.3, merging of paired-end reads with Flash v. 1.2.11, read mapping using Bowtie2 v. 2.3.4.3 or
BWA v. 0.7.17, annotating read groups with Picard v. 2.18.23 and finally SNP calling using Freebayes v.
1.3.2. Stacks pipeline v. 2.5 was applied following the recommendations of Rochette and Catchen. To
compare the results of both pipelines, VCFtools v. 0.1.16 was used to filter the VCF files because the
populations module of Stacks is not applicable to VCF files generated with other tools. Finally, we
performed a Principal Component Analyses (PCA) for the different VCF files using R (adegenet v. 2.1.5) to
have a better insight in the differences of both pipelines.

3. Results
GBSx retrieved an average of 0.34% (= 1,496,545) more paired reads compared to the process_radtags

command of Stacks. We also observed a difference between both mappers, with BWA having a higher
alignment rate than Bowtie2 in both pipelines. A difference between both pipelines is also present as more
reads are aligned in Stacks than in the custom pipeline.

Removing indels had an effect only with the custom pipeline because, unlike gstacks, Freebayes retrieved all
variants, not only SNPs. We filtered the SNPs using a maximum of 75% missing data per individual, a
minimum allele frequency (MAF) of 0.05, a minimum allele count (MAC) of 5 and a maximum of 20%
missing data per site. We retrieved with the Stacks pipeline more SNPs when using Bowtie2, with only 22%
SNPs in common with the BWA dataset.

Finally, we detected with the PCAs a possible lane effect in the Bowtie2 datasets. Otherwise, the results are
comparable for all Stacks datasets: one population clustering apart from the others, which was expected
given its remote location (the Freebayes results will be integrated in the final analysis of the poster).

4. Discussion
Choosing tools correctly when doing RADSeq analysis is essential because each tool can have an impact

on downstream analysis. Here, the best tool seems to be Bowtie2 for the mapping. BWA was developed for
human genome analysis, which may explain its reduced efficiency for other organisms. However, further
filtering might be required to remove the lane effect detected with Bowtie2.
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1 Introduction

We present ePeak[1], a Snakemake-based pipeline for the identification and quantification of re-
producible peaks from raw ChIP-seq, CUT&RUN and CUT&Tag epigenomic profiling techniques. It
also includes a statistical module to perform tailored differential marking and binding analysis with
state of the art methods. ePeak streamlines critical steps like the quality assessment of the immuno-
precipitation, spike-in calibration and the selection of reproducible peaks between replicates for both
narrow and broad peaks. It generates complete reports for data quality control assessment and optimal
interpretation of the results. We advocate for a differential analysis that accounts for the biological
dynamics of each chromatin factor. Thus, ePeak provides linear and nonlinear methods for normali-
sation as well as conservative and stringent models for variance estimation and significance testing of
the observed marking/binding differences. Using a published ChIP-seq dataset, we show that distinct
populations of differentially marked/bound peaks can be identified. We study their dynamics in terms
of read coverage and summit position, as well as the expression of the neighbouring genes. We propose
that ePeak can be used to measure the richness of the epigenomic landscape underlying a biological
process by identifying diverse regulatory regimes.

The pipeline is freely available at https://gitlab.pasteur.fr/hub/ePeak/ under GNU General
Public Licence.
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CEA Grenoble has recently set up a JupyterHub infrastructure (https://jupyter.org/hub) capable of putting

the power of Notebooks (1) in the hands of researchers and students. This shared work environment allows
Data  Scientists  and  Biologists  to  perform  their  data  exploration  on  shared  computing  resources.  This

paradigm  shift  allows  the  implementation  of  good  practices  associated  with  Open  Science
(https://www.fosteropenscience.eu/) which are the reproducibility of analyses and the FAIR principles (2).

The Notebooks are developed by bioinformaticians and are deposited on the CEA JupyterHub platform in
order to allow easy access to the various members, researchers, engineers and students of biology research

teams.  This  new data  analysis  environment  is  currently  composed of  Notebooks  allowing  to  carry  out
differential analyses of gene expression, ontological enrichment studies, using different statistical methods

and  several  reference  databases,  and  analyses  to  identify  master  transcriptional  regulators.  In  order  to
facilitate  access  to  this  work  environment  by  non-bioinformaticians,  the  user  starts  its  analysis  by a

Notebook with a graphical interface, implemented with the Python Dash software library, allowing to enter
input data and to select the analyses to perform associated with the appropriate parameters, without having to

modify the Notebook code.

In compliance with the FAIR approach, the Jupyter Notebooks developed within the framework of this CEA

JupyterHub platform will be accessible from a public Gitlab repository.
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Galaxy is an international bioinformatics platform for biologists [1] . So far, the Galaxy team has
adapted molecular dynamics tools which are mainly tools to create the prerequisites of a simulation or to run
a simulation. In our case, this simulation step was done but the tools to finalize our analysis were missing.
This is why tools have been developed and integrated in Galaxy. This integration of a succession of internal
tools in the form of a Galaxy workflow is intended to help biologists and would benefit from the high perfor-
mance computing facilities connected to the Galaxy webservice. 

Tools developed here aim at studying the structure the structure of 102 aquaporin trajectories using a
molecular dynamics approach. This approach requires to take into account the molecular scale (Ångströms)
of the proteins and the time step (nanosecond). In total, we speak of a simulated trajectory of 100 ns to model
the transport of a water molecule [2]. In order to optimize the computational time on a trajectory, each trajec-
tory is divided into several sub-trajectories and the pore diameter calculations are performed for each sub-tra-
jectory. The resulting data are then compiled in a table before being visualized in graphical form.

This workflow is designed to work on aquaporin trajectories. Aquaporins are transmembrane pro-
teins that transport water. In addition, an aquaporin is a tetramer composed of four protomers. Each protomer
has six transmembrane alpha helices connected by extramembrane loops that structure into a central pore. In
addition, each protomer is hourglass-shaped and has two sites consisting of 3 successive amino acids, As-
paragine - Proline - Alanine (NPA) and an aromatic arginine site (arR) [3]. The NPA sites form an electro -
static barrier preventing excess protons from entering the cell. The arR site is composed of 4 amino acids that
form a constriction inside the pore of each protomer. This constriction prevents large particles from passing
and also regulates the amount of water that can pass through the transmembrane space at any given time. Our
worlflow allows us to calculate the pore diameter at this constriction. Recent advances in pore diameter char -
acterization of aquaporin complexes, from manipulation of molecular modeling files to visualization of re-
sults, will be presented here.
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1. Introduction

Hosted  by  the  Clermont  Auvergne  Mesocenter [1],  the  Auvergne  Bioinformatics  (AuBi)  platform  is
member of the French Institute of Bioinformatics (IFB) [2]. We aim at sharing expertise and knowledge in
large-scale data analysis with computing and storage facilities for biology and health research laboratories
located at Clermont Auvergne University (UCA). Among axis of interest is imaging for which OMERO [3] a
tool for  data visualization and  metadata storage  as well as a bio-analysis platform  Galaxy [4] have been
deployed.

2.  A web portal to orchestrate the tools around the FAIR data

With the recent  advances towards Open Science,  data flows,  tools and workflow analysis need to be
orchestrated in order to help scientists to navigate across projects and collaborate together. To initiate this
structuration around the data projects and based on FAIR principles, we started working on a web portal
accessible  from  the  Mesocenter hub.  This  portal  shall  give access  to  several  services  :  (1)  a  unique
corresponding  address  to  help  scientists  feeding  Data  Management  Plan  (DMP)  and  HAL publication
referencing system leaded by University library ; (2) mature web services for meta-data and image storing
system, as well as images workflow analysis ; (3) a high performance calculation and storage infrastructure
provided by the Mesocenter. Our objective is to be able to link these tools through data projects. This is why
we  are  working  together  with  OpenLink  team  [5]  to  develop  a  service  meeting  our  biologists  and
bioinformatics communities, the Mesocenter and UCA requirements.

3.  Conclusion

This Open Science project gives an opportunity for laboratories associated with AuBi platform to get
involved in  national  IFB projects  such as  MuDiS4LS.  This  is  the case for  iGReD [6]  and i ts  confocal
microscopy facility CLIC (CLermont Imagerie Confocal) by contributing to the Implementation Study for
the elaboration of the structure DMP dedicated to imaging. This  is  challenging laboratories with imaging
projects to mutualize storage resources like the storage server bought in 2021 all together with four Mixed
Research Units : GDEC, iGReD, PIAF and UNH [6]. This project is initiated on imaging data and once on
track, other data types will be orchestrated and linked together.

Keywords Open Science, Imaging, OpenLink, OMERO, GALAXY
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Minos Biosciences develops an instrument that offers the unique ability to directly combine
sequencing-based multi-omic analysis and image-based phenotypic analysis at high-throughput single-cell
resolution. This is enabled using a breakthrough microfluidics concept, as well as innovative approaches in
imaging and molecular biology, to isolate, image and barcode cells. Together with the instrument, a
bioinformatics solution will be provided to analyse these novel multimodal data.
It is necessary to develop a robust and efficient data analysis pipeline to analyze Minos Biosciences specific
coupled omic and phenotypic datasets. This pipeline will be composed of published open source tools (like
scanpy [1]) and new ones developed to take advantage of Minos Biosciences peculiarities. Firstly, the
doublet or dying cells detection is assessed with certainty from the acquired images instead of having to be
guessed from sequencing data. Secondly, the additional information obtained by immunofluorescence and
features detection on these same cells imaging is used to refine the identification of cell populations.
The pipeline will integrate both omics and image analyses steps. The omics part consists of different steps:
demultiplexing (by STARsolo [2]), quality control, batch effect correction [3], clustering and cell type
annotation. The demultiplexing step will take advantage of imaging by only considering the relevant
barcodes, the ones associated with actual isolated cells. The whole process outputs will be synthesized in an
automated analysis report using MultiQC [4] and mainly lie in an augmented count matrix. The nf-core
bioinformatics community [5] provides many standardized, portable and reproducible pipelines using
Nextflow [6] as well as templates to create custom pipelines. Our pipeline, stemming from a nf-core
template, is modular so that parts of it could be integrated to pipelines dealing with other omics data. To
guarantee reproducibility, Singularity containers [7] are used on the fly to run the steps of the pipeline.
The omics part of the pipeline, for scRNA-seq, is complete from raw FASTQ files to cell population
annotation while the phenotyping part is still under development. The integration of both modalities still
needs to be studied. For a dataset of 67M reads, the pipeline execution time is 9m20s and reaches a
maximum RAM usage of 30G RAM on a recent server with 12 CPU allocated for the demultiplexing step. In
the coming months, tests on new, varied, datasets will help strengthen its robustness.
Minos Biosciences solution will provide highly accurate insights into complex cell populations and their
dynamics.
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1 Abstract

Functional screening protocols, such as shRNA and CRISPR/Cas9, allow for detection of elements
of genomes whose functionality is essential or incompatible with the maintenance of a phenotype of
interest. Each functional screening protocol has been followed by the development of several bioin-
formatic algorithms dedicated to the identification of essential elements by building statistical models
taking into account their own specificities. Here, we present, PitViper, an user-friendly bioinformatics
software for integrative screening data analysis, that we developed with the aim of: (i) accept stan-
dard input formats for de novo and reanalysis of functional screening experiments; (ii) perform reads
quantification, normalization and essentiality analysis using current gold standard tools and addi-
tional methods; (iii) allow for multiple methods integration; (iv) generate interactive and customable
reports for data annotation and analysis, with publication-ready figures. PitViper is a comprehensive
and convenient tool for functional screening data analysis for both bioinformaticians and researchers
without extensive computer expertise.

PitViper was developed to analyze shRNA, CRISPR/Cas9 and CRISPR/dCas9 screens and sup-
ports most common file formats of screening experiments as starting input, such as raw unaligned
sequences as FASTQ file, aligned sequences as BAM file or count matrix as a text file. PitViper
workflow is organized as follows: (i) reads are mapped to a reference library of guides/hairpins, (ii)
read abundance is quantified for each guide/hairpin in the library using mapping results, (iii) essential
elements are identified using changes in read abundance between conditions, and then (iv) results
are integrated before annotation and visualization. Mapping and quantification of reads is based on
Bowtie2 and/or MAGeCKcount [1]. Essentiality analysis is performed using several reference meth-
ods such as MAGeCK MLE [2] and RRA [1], BAGEL [3], CRISPhieRmix [4] in addition of our own
methods and work both for genes or genomic positions automatically annotated with proximal genes.
PitViper consists of: first, a bioinformatics pipeline produced using Snakemake, a workflow manage-
ment system for creating reproducible and scalable data analyses. Then, a command line interface
written in Python3 was developed to facilitate the use in an automated and reproducible way. This
command-line interface allow easy reanalysis of previously generated results. Finally, a graphical user-
interface allows users to run PitViper with chosen parameters. All dependencies can be installed with
the Conda package manager using a YAML file with specifications of all dependencies or with Docker.
Actionable Jupyter Notebook reports are automatically generated for dynamic viewing and exporting
of results as HTML pages. Interactivity is achieved using Altair, a statistical visualization library for
Python, and the python library Ipywidgets for modules parameterization. Reports are customizable
and contain quality control, single tool results or multiple method integration and data annotation
with external tools/databases, such as EnrichR, Genamania or Depmap.
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Galaxy [1] is an open-source web-based computational portal, primarily specialized in bioinformatics. It
enables accessible, reproducible, transparent and FAIR (Findable Accessible Interoperable Reusable) data
analysis. Using it, scientists can perform data treatments, including single tool executions, more complex and
data-intensive scientific workflows, or even custom code execution using on-demand interactive
environments (RStudio, Jupyter, RShiny, ...). Galaxy also allows to manage scientific data by easily sharing
and publishing scientific results and workflows, with customisable reporting and visualisations. This web
portal makes computational biology accessible to scientists without requiring computer programming skills.

The French Institute of Bioinformatics (IFB) offers various services to facilitate access to life science data
processing. Part of these services is based on its IFB Core Cluster, a Slurm based high-performance
computing infrastructure, composed of 4300 cores, 20 TB of RAM and 2PB of storage. Built on top of the
Core Cluster, UseGalaxy.fr, the French national Galaxy instance, is available for free. The target audience
includes any scientist from the national biology and bioinformatics community. Officially launched in 2020,
it is operated by IFB, and it already provides access to 1850 tools to more than 2300 registered users.

Following the international UseGalaxy.* [2] guidelines, administration of usegalaxy.fr is based on a IaC
(Infrastructure as Code) model: every aspect of the portal is managed using Ansible (developed
collaboratively with the international community), deposited on public GitLab repositories [3]. As such, in a
collaborative manner, UseGalaxy.fr is continuously being improved to address the needs of the community.

While many local Galaxy instances exist in the French community, the intention of UseGalaxy.fr is to
propose a national-scale Galaxy instance with robust computing and storage capacities, and federated human
resources for the development and support activities. Members of multiple regional platforms (Rennes,
Roscoff, Strasbourg, ...) are regular contributors to this project, and new members are always welcome.

In addition to the global UseGalaxy.fr portal, five thematic subdomains have been set up
(Workflow4Metabolomics, Covid19, ProteoRE, Metabarcoding, Ecology); allowing users to find a more
focused choice of specific tools. It also offers a complete training platform, by using the Galaxy Training
Network (a collection of tutorials for users), and since recently the TIaaS (Training Infrastructure as a
Service), a tool to assist the trainers: it allows to reserve dedicated computing resources on the IFB-core
cluster (to reduce waiting time on the day of training), and to track progress of students during the event.

Finally, UseGalaxy.fr is supporting several IFB flagship health projects: EMERGEN (genomic surveillance
of SARS-CoV-2), ABRomics (research and monitoring project on antibiotic resistance) through its API and
workflow system.

1. Enis Afgan et al., The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018
update, Nucleic Acids Research, Volume 46, Issue W1, 2 July 2018, Pages W537–W544, doi:10.1093/nar/gky379.

2. The Galaxy Community. Galaxy Community Update. BCC2020. https://vimeo.com/440168116
3. https://gitlab.com/ifb-elixirfr/usegalaxy-fr
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Single-cell RNA-sequencing (scRNAseq) experiments are becoming a standard tool for bench-
scientists to explore the cellular diversity present in all tissues. Data produced by scRNAseq is
technically complex and requires analytical workflows that are an active field of bioinformatics research,
whereas a wealth of biological background knowledge is needed to guide the investigation. Thus, there
is an increasing need to develop applications geared towards bench-scientists to help them abstract the
technical challenges of the analysis so that they can focus on the science at play. It is also expected that
such applications should support closer collaboration between bioinformaticians and bench-scientists
by providing reproducible science tools.

We present SCHNAPPs, a Graphical User Interface (GUI), designed to enable bench-scientists
to autonomously explore and interpret scRNAseq data and associated annotations. The R/Shiny-
based application allows following different steps of scRNAseq analysis workflows from Seurat or
Scran packages: performing quality control on cells and genes, normalizing the expression matrix,
integrating different samples, dimension reduction, clustering, and differential gene expression analysis.
Visualization tools for exploring each step of the process include violin plots, 2D projections, Box-plots,
alluvial plots, and histograms. An R-markdown report can be generated that tracks modifications and
selected visualizations. The modular design of the tool allows it to easily integrate new visualizations
and analyses by bioinformaticians. We illustrate the main features of the tool by applying it to the
characterization of T cells in a scRNAseq and Cellular Indexing of Transcriptomes and Epitopes by
Sequencing (CITE-Seq) experiment of two healthy individuals.

[Workflows, reproducibility and open science - poster T9.28]

219



The IFB Core Cluster : an open HPC resource for all biologists and the breeding
ground of the IFB National Network of Computational Resources (NNCR)

David BENABEN1,2,3, Anthony BRETAUDEAU1,4,5, Philippe BORDON1,6, Thomas CHAUSSEPIED1,5, Nicole
CHARRIÈRE1,5, François GERBES1,7, Jean-François GUILLAUME1,8, Jean-Christophe HAESSIG1,9,  Didier LABORIE1,6,

Guillaume SEITH1,9, Julien SEILER1,9* and Gildas LE CORGUILLÉ1,7*

1 IFB/Institut Français de Bioinformatique, CNRS UMS 3601, Génoscope, 91057, ÉVRY, France
2 UMR Biologie du Fruit et Pathologie, Université de Bordeaux, INRAE, F-33140 Villenave

d’Ornon, France
3 Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, F-33140 Villenave d’Ornon, France

4 IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France
5 Plate-forme GenOuest, Univ Rennes, Inria, CNRS, IRISA, F-35000 Rennes

6 GenoToul-Bioinfo, INRAE, 24 chemin de Borde-Rouge, 31320, Auzeville-Tolosan, France
7 Sorbonne Université/CNRS, FR2424, ABiMS, Station Biologique, 29680, Roscoff, France
8 CHU Nantes, Inserm UMS 016, CNRS UMS 3556, SFR Santé, Bird, Université de Nantes,

44000, Nantes, France
9 CNRS UMR 7104, BiGEst, IGBMC, 1 rue Laurent Fries, 67404 Illkirch Cedex

Corresponding Author: lecorguille@sb-roscoff.fr, seilerj@igbmc.fr

Since 2018, the IFB (Institut Français de Bioinformatique) has deployed, in addition to the Cloud
infrastructure, a central HPC resource: the IFB Core Cluster. It is implemented by a cross-functional team of
about ten engineers from IFB regional platforms ("mutualised task force") who dedicate part of their time to
this common project.

This resource is made of 4300 CPU-cores (Hyper-Threaded), 2 PB of storage and 9 GPU cards (Nvidia
A100). The cluster size should double before the end of 2022. The IFB Core Cluster offers various services
and tools to facilitate access to life sciences data processing. Users can have, free of charge, an account, a
shared project space of 250 GB and 10k hours of CPU that can be extended on demand. They also have
access to more than 450 pre-installed scientific tools, and public indexed databanks.

All these resources are available through different user interfaces: i) CLI (Command Line Interface) via the
scheduler SLURM, ii) JupyterHub, a web interface that allow the usage of Notebooks and terminal, iii)
RStudio Server and finally iv) UseGalaxy.fr. Finally, the IFB Core Cluster via UseGalaxy.fr is supporting
several IFB flagship health projects: EMERGEN (genomic surveillance of SARS-CoV-2), ABRomics
(research and monitoring project on AntiBiotic Resistance) through its API and workflow system.

Beyond that, the IFB Core Cluster, as other NNCR nodes, is managed using Infrastructure as a Code (IaC)
which means that all the administration is based on Ansible recipes, code and Continuous Integration (CI).
Thus, everyone can participate in its administration in complete safety.

The IFB Core Cluster was the starting point for the National Network of Computing Resources (NNCR),
which today brings together more than 8 IFB clusters in a federation of tools, best practices and expertises.
Through this shared infrastructure, the contributing engineers from all IFB regional platforms were able to
test and validate together new solutions that they then deployed on their own infrastructures. Most of these
developments have in common the fact that they were born within specific regional platforms, were then
refactorized, generalized and deployed on the IFB Core Cluster to finally be redistributed more widely to
other regional platforms.
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Next Generation Sequencing (NGS) technologies, including Illumina, PacBio and Nanopore, have become
fundamental in modern genomic, transcriptomic and epigenetic applications. With a steadily growing demand,
the challenge lies in simultaneously sequencing multiple samples of various types. In order to fully benefit
from the high-throughput production of NGS technologies, an advanced level of automation must be achieved
from library preparation to data quality analysis. At the INRAE GeT-PlaGe facility, we are currently
implementing a flexible LIMS, developed at Institut de Génomique, that allows to completely automate our
data quality control workflow and other time-consuming tasks. With the development of pipelines using the
widely-adopted and scalable Nexflow framework [1], we have completely rebuilt and optimized our quality
control workflow. In the poster, we will describe the methodology that we used to design this workflow.
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Background: The Hepatitis B Virus has a circular DNA genome expressing 8 major viral RNAs
(preC, pgRNA, preS1, preS2, S, L-HBx, HBx and S-HBx) and 22 splice variants (20 deriving from
pg, 2 from preS1). The organization of the HBV genome is highly condensed and all transcripts are
to various degrees subsets of each other. Indeed, all HBV transcripts share the same 3’ end and,
thus, the HBx sequence constitutes the 3’ end of every viral transcript. Moreover, preC and pgRNA
are longer than the viral DNA genome and thus are characterized by a 100bp redundancy at their 3’
ends identical to their 5’end. Due to these constraints, HBV RNAs are indistinguishable by classic
approaches like quantitative real time PCR and also by the short-reads transcriptome sequencing
technologies, where in a large majority of cases, it is impossible to assign a short-read to a specific
transcript. Our laboratory has previously described a Full length 5’RACE method which allows the
qualitative assessment of all HBV transcripts according to their size, except for spliced variants, which
require a Sanger sequencing step to be specifically recognized [1]. Therefore, it is so far impossible to
specifically quantify each HBV transcript and splice variant produced during viral infection. Our aim
is to propose a bioinformatics method to evaluate the expression of each individual HBV RNA and
Splice Variants.

Methods: Following RNA extraction from HBV infected human hepatocyte cells or sera of chron-
ically infected patients, we subjected the 5’RACE amplified HBV transcripts to Oxford Nanopore
Technologies Long-read sequencing. We designed a new, HBV specific reference transcriptome to im-
prove the mapping of reads and to reduce overestimation of longest viral RNAs and underestimation
of shorter ones. Hence, we developed a dedicated graphical representation of the quantification of
“start positions” of mapped reads on the HBV genome to obtain a global view of HBV transcriptome
expression pattern. Moreover, we implemented the count of splice junctions to refine the evaluation
of splice variants expression.

Results: We generated simulated and experimental data sets to improve and test our method. We
showed that the quantification of canonical viral RNAs (not spliced) is accurate, with 0,1 to 10,9% of
error. However, due to the high similarity of splice variants, in terms of sequence and position on the
genome, the evaluation of their expression was still highly biased. Indeed, since only the use of specific
splice junction or combination of junctions permits to distinguish these variants, we implemented the
count of splice junctions usage to determine the expression of each splice variants.

Conclusion: We present here a bioinformatics method, based on different mapping approaches
and analyses, that permits to accurately evaluate the expression of the known HBV transcriptome,
coupling a 5’RACE amplification of full-length viral RNAs and long-read sequencing technology. The
method is being implemented in a Nextflow pipeline to be published and released to the research
community. This method will greatly help in improving the comprehension of HBV biology and will
assist in the evaluation of the antiviral activity of newly developed anti-HBV compounds.
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In a context of exponential growth in the volumes of data generated, due to the increasing avail-
ability of new technologies and the metadata to accompany them, data management is taking on an
increasingly important role in the research world. To address this global issue, the FAIR Principles
[1] were established to provide guidelines for promoting the machine actionability of data so that it
can be easily processed by computing tools. These FAIR principles have developed and taken hold in
the various scientific communities, particularly in Biology. Like many other bioinformatics platforms,
Genouest has witnessed this evolution, and has seen its role change from that of a simple calculation
provider to that of a data management player, which has led to the creation of a data management
and work environment, Cesgo [https://www.cesgo.org/fr/].

To facilitate the application of FAIR principles within the IFB infrastructure, we looked at DMPs
(Data Management Plans) and the benefits they could bring to all stakeholders in a research project.
This document, intended for the project funder, was initially created to describe, at the design stage
of the research project, the different data to be produced, the processing methods, as well as where
and how to access them once the project was completed. Despite the beneficial introspective work it
represents, this document is still seen as an administrative burden with no real benefit to the researcher,
which led to the launch of the MaDMP4LS project. This project is a collaboration between the IFB,
the Genouest platform and the Opidor team of INIST and has two facets. Firstly, it aims to transform
the OPIDoR DMP model into an actionable machine model, so that various systems and project actors
can exploit the information contained in it. Secondly, the aim is to integrate the DMPs written and
hosted on DMP OPIDoR [https://dmp.opidor.fr/] into the IFB infrastructure, via MY, the account
and project management tool developed within the Genouest unit (IRISA, Rennes).

In concrete terms, we will show how, after having written his DMP on the OPIDoR DMP tool,
the researcher will be able, via the MY tool, to request storage resources from the Genouest platform,
simply by providing access to his DMP. This will enable the needs of a project to be defined automat-
ically using information extracted from the DMP. The DMP will remain linked to the project, thus
maintaining access to essential project information.

In the next phases of the project, we will work on automating this project request directly from
the Opidor DMP interface, as well as allowing local modifications of the project to be sent back to the
DMP so that the latter remains up to date without requiring manual intervention by the researcher.
This project is also part of a larger project, MUDIS4LS, an ambitious IFB project that aims to
promote open science in the life sciences by helping researchers apply the FAIR principles, and the
maDMPs are a key element towards that goal.
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Dans le contexte d’un changement climatique dont les effets se font de plus en plus prégnants, la question de 

la mesure et de la réduction de l’empreinte environnementale de la recherche académique – et en particulier 
son empreinte carbone – se pose. Le collectif Labos 1point5 [1] s’est saisi en 2019 de cette question qui devient 

un véritable objet de recherche. Constitué en GDR depuis 2021, Labos 1point5 vise tout d’abord à mesurer et 

à comprendre les déterminants de cette empreinte carbone à l’échelle de la recherche française, dans une 

approche très originale à cette échelle. L’outil GES 1point5 [2] développé dans cette perspective en constitue 
un outil de diagnostic et un premier pas vers l’action. 

 

Pour stimuler, faciliter la mise en mouvement des laboratoires vers la réduction de leurs émissions de gaz à 
effet de serre (GES) et étudier les facteurs susceptibles de l’accélérer ou de la freiner, l’équipe Expérimentation 

propose différents dispositifs (de sensibilisation, financiers ou règlementaires) qui sont actuellement explorés 

dans une vingtaine de laboratoires participant à une phase pilote. Dans le cadre de cette « Expé-1point5 », un 
volet accompagnement a été développé afin de faciliter (i) l’appropriation de ces dispositifs par les laboratoires 

(Kit-1point5, qui présente l’ensemble de ces dispositifs), (ii) les discussions qui doivent y avoir lieu en vue de 

choisir collectivement un objectif de réduction, une trajectoire de réduction et un ou des dispositifs à explorer 

et (iii) les échanges de bonnes pratiques entre les laboratoires (développement d’une plateforme collaborative). 
Un volet recherche se constitue également pour étudier les processus en jeu lors de cette transition dans les 

laboratoires et pour explorer cette expérimentation sous différents angles disciplinaires, comme dans une 

approche plus intégrée. Seront également élaborés des indicateurs (i) de sobriété de la recherche, (ii) de qualité 
de la recherche sous contrainte climatique et (iii) de qualité de vie au travail, dans une tentative de 

réappropriation de cet enjeu climatique par la communauté de recherche. 

 
Cette expérimentation, unique en son genre à cette échelle nationale, entrera dans une phase de déploiement 

au début 2023.  Tous les laboratoires qui souhaiteront intégrer ce réseau de laboratoires en transition seront 

alors les bienvenus pour participer à cette dynamique de réappropriation de ces grands enjeux par la 

communauté de recherche. Ainsi, après avoir alerté, la communauté des personnels de la recherche et de 
l’enseignement supérieur se met en mouvement et espère entrainer avec elle d’autres pans de la société civile. 

 

Le laboratoire MaIAGE fait partie des 20 labos pilotes pour cette expérimentation et vient de voter un objectif 
de 40% de réduction de ses émissions à l’horizon 2030. Ce poster sera l’occasion de faire un retour 

d’expérience, entre autres, sur la conduite des discussions au sein du labo et sur les actions et dispositifs de 

réduction expérimentés. 
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Cancer research has been transformed in recent years by the considerable increase in omics data accumulated

in public databases through the use of high-throughput technologies for profiling patient cohorts (1, 2). The

challenge now is to translate the molecular characteristics of a patient’s tumor into an appropriate therapeutic

choice  applicable  in  the  clinic.  Among  the  arsenal  of  anti-tumor  treatments,  targeted  therapies  and

immunotherapies  are  now considered relevant  therapeutic  options  used in  first  line for  several  types  of

cancer. However, a fairly large proportion of patients do not respond to these treatments or quickly develop

resistance.  The  implementation  of  personalized  medicine  in  our  hospitals  aims  to  help  doctors  better

diagnose  and  treat  their  patients,  by  adapting  the  therapeutic  choice  to  the  molecular  and  cellular

characteristics of each patient's tumor.

Artificial intelligence (AI) algorithms are powerful tools  on which to rely to advance precision medicine.

However, these AI-based approaches are often “black boxes” regarding the reasons leading to a decision,

penalizing their use in the clinic. The KATY project seeks to build a precision medicine platform based on AI

systems.  It  will  be  hosted  on  a  European computing  infrastructure  and accessible  by  several  European

hospitals. This platform will not only be efficient, but above all transparent when it comes to the molecular,

cellular and clinical evidence underlying the recommandation of drug treatments adapted to each patient.

Clinicians will be able to trust, evaluate and effectively use this AI system in their daily work.

The platform implemented by the KATY consortium will be built around two main components: a distributed

knowledge graph (DKG) and a collection of explainable artificial intelligence predictors (XAIPs). While the

DKG is  an  intelligent  repository  that  stores  vast  multi-omics  patient  information,  as  well  as  scientific

information, the XAIPs will enrich the DKG and enable understandable personalized medicine decisions.

This platform will be prototyped to predict the response of patients with kidney cancer to targeted therapies

and immunotherapies.

References

[1] International Cancer Genome Consortium, Hudson, T. J., Anderson, W., Artez, A., Barker, A. D., Bell, C., Bernabé,

R. R., Bhan, M. K., Calvo, F., Eerola, I., Gerhard, D. S., Guttmacher, A., Guyer, M., Hemsley, F. M., Jennings, J. L.,

Kerr,  D., Klatt, P., Kolar, P., Kusada, J.,  Lane, D. P., … Yang, H. (2010).  International network of cancer genome

projects. Nature, 464(7291), 993–998. https://doi.org/10.1038/nature08987

[2] Freeberg, M. A., Fromont, L. A., D'Altri, T., Romero, A. F., Ciges, J. I., Jene, A., Kerry, G., Moldes, M., Ariosa, R.,

Bahena,  S.,  Barrowdale,  D.,  Barbero,  M.  C.,  Fernandez-Orth,  D.,  Garcia-Linares,  C.,  Garcia-Rios,  E.,  Haziza,  F.,

Juhasz, B., Llobet, O. M., Milla, G., Mohan, A., … Rambla, J. (2022). The European Genome-phenome Archive in

2021. Nucleic acids research, 50(D1), D980–D987. https://doi.org/10.1093/nar/gkab1059

[Networks - poster N.2]

225



ABRomics - a digital platform on antimicrobial resistance to store, integrate,
analyze and share multi-omics data

Pierre MARIN1,2, Julie LAO1,3, Kenzo-Hugo HILLION4, Nadia GOUE2, [consortium ABRomics]5, Philippe
GLASER6 and Claudine MEDIGUE1,7

1. CNRS, Institut Français de Bioinformatique, IFB-core, UAR 3601, Évry, France
2. AuBi platform, Mésocentre, Université Clermont-Auvergne, 63170 AUBIERE, France

3. Université Paris Cité and Univ Sorbonne Paris Nord, Inserm, IAME, 75018 Paris, France
4. Faculté des Sciences et Techniques, Université de Nantes, 44000 Nantes, France
5. https://ppr-antibioresistance.inserm.fr/fr/projets-actions-soutenus/action-2-

resultats-des-aap-structurants-du-ppr-antibioresistance-3-projets-retenus/#abromicspf
6. Institut Pasteur, Unité EERA, CNRS UMR604, 75015 Paris, France

7. CNRS UMR8030, Univ Evry-Val-d'Essonne, CEA, Genoscope, LABGeM, Evry, France
Corresponding Authors: pierre.marin@france-bioinformatique.fr, claudine.medigue@france-
bioinformatique.fr

Antibiotic resistance (ABR) is a major public health issue prioritized for mitigation by major international
institutions, especially regarding the emergence and the global dissemination of multidrug resistant (MDR)
isolates and of antibiotic resistance genes (ARGs) carried by mobile genetic elements. They are also
transmitted between humans, animals and the environment, without borders. The evolution of ABR is a
complex process with multiple selective forces in different environments.

Genome sequences, which contain all the genetic information of an organism, can be used for molecular
typing purposes with the highest resolution, the identification of ARGs and their genetic supports as well as
mutations leading to a decrease in antibiotic susceptibility. Combined with epidemiological information,
bacterial Whole Genome Sequencing (WGS) can enable tracking transmissions of outbreaks and identifying
a source of contamination. Reinforcing the sharing of high-quality sequence data for diagnostic and
epidemiological applications, together with interoperable and curated metadata, which can be integrated with
other omics data, is a key requirement for understanding the complexity of spatiotemporal patterns of
pathogen and ARGs transmission between compartments.

Today, if more systematic genome sequencing and bioinformatics analysis can partially address such
major issues, data sharing and comparison across centers, together with standardization of analytical
workflows remain major bottlenecks. The ABRomics project aims to develop a secure One Health, online
platform to make bacterial infectious disease (meta)genomics data and their associated clinical and
epidemiological metadata accessible to a meta-network of researchers including epidemiologists, clinical
microbiologists and the wider research community. It should provide the diverse communities with a user-
friendly platform to store, share and analyze genomic information together with their metadata. It will also
serve as a data brokering hub to ease the submission of data sequences into international repositories.

The platform will meet two main objectives:

1. Establish a repository of structured, interoperable, standardized, and well-annotated multi-omics
microbiology data with tailored mathematical and bioinformatics tools that can be used to answer specific
research questions related to ABR.

2. Establish a shared platform to facilitate retrospective and prospective surveillance of ABRs in human
and veterinary medicine, including environmental and food isolates, to enable near-real-time surveillance of
pathogen transmission and outbreaks with actionable results for public health authorities. FAIR (Findable,
Accessible, Interoperable and Reusable) data management procedures will enable retrospective studies.

We will present here the ongoing development of the three main modules of the ABRomics platform
architecture: (i) ABRomics-BIOINFO: an IT infrastructure with high capacity of data storage and data
analysis, accessible to users under defined rules and offering a general software environment, both HPC and
Cloud environments, (ii) ABRomics-DB: an integrated multi-omics microbiological databases for the
Human-Animal-Environment sectors, and (iii) ABRomics-WF: standard tools and pipelines for (semi)
automatic analysis of NGS data from pathogenic strains.

The ABRomics project is led by the Institut Français de Bioinformatique (IFB), the Institut Pasteur and is
made up of a consortium of 45 specialized teams belonging to the main French research organizations.

[Networks - poster N.3]

226



Montpellier Omics Days: An annual bioinformatics and biostatistics
conference organised by Bioinformatics students

Yascim Kamel1, Nassif Saab1, Marie Mille1, Corentin Marco1, Fabien Kon-Sun-Tack1, Carla
Heredia1, Quentin Bouvier1, Bioinformatics Master’s students1 and Statistics and Data Science

Course’s students1
Université de Montpellier, 30, Faculté des Sciences de Montpellier, Place E. Bataillon, 34095

Montpellier, France

Corresponding author: yascim.kamel@etu.umontpellier.fr

Montpellier Omics Days (MOD) [1] is an event about the “omics” sciences, which refers to the
combination of multiple disciplines for a better understanding of biological subjects. The pooling of
disciplines for a more in-depth study tends to generate large amounts of data, a phenomenon accentu-
ated by the newly emerging, more efficient and more affordable sequencing technologies. Analysing and
storing all this data are becoming more and more challenging. To solve these problems, scientists try
to implement information technologies, which include the creation of statistical methods and various
tools capable of analysing and visualising different kinds of data. Consequently, "bioinformatics" came
into being as an interdisciplinary field that combines knowledge from multiple domains such as biology
and informatics. It is particularly through events like MOD that new problems and solutions in the
field of bioinformatics are brought to the attention of biologists, bioinformaticians and biostatisticians.
In February of 2022, MOD celebrated a decade of yearly held international conferences, organised by
second year Bioinformatics Master’s students at the University of Montpellier in France and students
studying Statistics and Data Science at its Faculty of Sciences.

With over 500 subscriptions this year, the 10th edition brought together members of the scientific
community worldwide. This poster presents what went into the organisation of a free-access event, the
tasks entrusted to the students and the decisions they had to make in light of the constantly evolving
laws and the restrictions brought about by the COVID-19 pandemic. Inquiring funds, finding the
speakers and planning the event, from setting up the program to managing the subscriptions, are some
of the tasks entrusted to the organisers. Divided into six sub-categories, i.e. management, finance,
logistics, website & publicity, program and workshops, tasks are assigned to small groups of students.
Having to quickly adjust to new regulations, the event was finally held online on January 26 in the form
of a webinar, and the conferences were centered around the theme “BIODIVERSITY TECHNOLO-
GIES”, chosen by the students among four subjects via anonymous voting. This edition welcomed
seven speakers: Lucie Bittner, Benjamin Linard, Kateryna Makova, Nicolas Gilbert, Stéphanie Bocs,
Simon Rio and Nika Abdollahi. Subjects ranging from metagenomics to immunology were presented
to the spectators who then had the opportunity to engage with the speakers though Q&A sessions.
The event concluded with a word from pioneer organisers of MOD and a closing speech thanking all
the partakers and looking forward to next year’s edition.
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Since 2006, the University of Rouen Normandy (URN) has been committed to a sustainable development 
and quality of life at work approach. It has resulted in the implementation of management practices of the 
university: selective sorting of waste, energy management, differentiated management of green spaces, travel 
plan, etc. As part of its strategy for social responsibility and sustainable development (DD&RS label in French 
“Développement Durable et Responsabilité Sociétale”), URN is now part of a more integrated approach 
including its fundamental missions of research and education.  

In this context, the Master of Bioinformatics of the URN is committed to raise awareness among its students, 
future actors and professional decision-makers, of the environmental impacts and challenges of digital 
technologies in terms of sustainable development (green computing or "Green-IT"). Indeed, due to the analysis 
of large biological data, bioinformatics research and its applications require the extensive usage of large-scale 
computational infrastructure. However, data centers or clouds contribute to the increase of energy consumption 
and the chain of consequences such as the increase of greenhouse gas, the impact air quality and finally the 
global warming and imbalance of ecosystems. Recently, researchers have been studying the impact of 
bioinformatics algorithms and computational strategies [1, 2]. The authors quantified the environmental costs 
of numerous bioinformatics tools and commonly analyses, such as genome scaffolding, genome and 
metagenome assembly, metagenome classification, RNA-Seq pipelines especially read alignment, genome-
wide association analysis, phylogenetics or molecular docking. 

Here, we present a first work of sensitizing young professionals in bioinformatics to the challenges and good 
practices in this topic. First, we determined their weekly carbon consumption during their apprenticeship 
period, representing different cases of computation practice, tools and bioinformatics applications 
(metagenomics, machine learning, transcriptomics, comparative genomics, phylogenetics, genome 
annotation). Their carbon consumption was calculated by estimating the energy draw of the algorithms and the 
carbon intensity of producing this energy at a given geographical location (in kilograms of CO2 equivalent 
units, kgCO2e), using the Green Algorithms model and online tool (www.green‐algorithms.org) [1, 2]. 
Secondly, the important dispersion of results was explored by detailing the major features of their practice such 
as runtimes, used memory or used CPU/GPU or the location of their resources. Finally, based on “The Carbon 
Footprint of bioinformatics” article [2], we summarize some advice to reduce these values and to improve the 
environmental impact for a greener bioinformatics. 
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JeBiF, which stands for “Jeunes Bio-Informaticiens de France” [Young Bioinformaticians of France],
is a french non-profit organisation created in 2008. This association is the French branch of a bigger
network handled by the International Society for Computational Biology Student Council (ISCB-SC).
There are 26 other local branches. Such local branches are called Regional Student Groups (RSG),
hence the full denomination of the association: RSG France – JeBiF.

The main goal is to promote the development of the next generation of bioinformaticians. In order
to reach this goal, we mainly provide networking opportunities and career advice. We are also actively
advertising computational biology and bioinformatics to general audience by the mean of science-
popularisation events. In the poster, we present with more details the different activities developed
by RSG France – JeBiF. In particular:

— JeBiF-Pub: every month, in different cities, JeBiF sympathisers are invited to meet at a bar
for a drink (paused for now due to sanitary constraints).

— Table Ouverte en Bioinfo (TOBi): every month in a bar of Paris, a professional bioinfor- matician
is invited to present their studies and career. Due to the sanitary constraints, TOBi have been replaced
by TOBirtuelles which happen online and are opened to everyone, and not only Parisians.

— Table Ronde: once a year with the volunteering Master of Bioinformatics, several alumni of
the Master are invited to present their path since they finished the Master. This year, due to the
sanitary constraints, we replaced these local events by one big event organised with the support of
the human resources team of the Pasteur Institute dedicated to career development and support for
scientists (Mission Accueil, Accompagnement et Suivi des Carrières des Chercheurs – MAASQ). We
received more than a hundred attendees.

— JeBiF@JOBIM: annual workshop with scientific presentations, open-table with various subjects,
and flash-talks for people who have been accepted at JOBIM and would like to advertise their poster.

— Fête de la science and Pint of Science: two yearly events of science popularisation. JeBiF
volunteers are encourage to create and animate activities, or give a talk.

The events proposed by RSG France – JeBiF are opened to everyone. The adhesion, which is free
of charge, gives access to the mailing list and allows you to vote at the general assembly. It is also a
way to quantify our impact. In particular, it gives us more weight in our funding applications. More
funding allow us to maintain the association in long term, to propose more events and of larger scale.
To date, JeBiF has 111 adherents. But its actions rely on the participation of its volunteers. We
are always happy to meet new faces, and there is space for everybody to develop their ideas. Do not
hesitate to join us if you would be part of the adventure!

[Networks - poster N.6]
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