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Integrating biomechanics in evolutionary studies, with examples
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ABSTRACT
The functional capacities of animals are a primary factor determining
survival in nature. In this context, understanding the biomechanical
performance of animals can provide insight into diverse aspects of
their biology, ranging from ecological distributions across habitat
gradients to the evolutionary diversification of lineages. To survive
and reproduce in the face of environmental pressures, animals must
perform awide range of tasks, some of which entail tradeoffs between
competing demands. Moreover, the demands encountered by animals
can change through ontogeny as they grow, sexually mature or migrate
across environmental gradients. To understand how mechanisms that
underlie functional performance contribute to survival and
diversification across challenging and variable habitats, we have
pursued diverse studies of the comparative biomechanics of
amphidromous goby fishes across functional requirements ranging
from prey capture and fast-start swimming to adhesion and waterfall
climbing. The pan-tropical distribution of these fishes has provided
opportunities for repeated testing of evolutionary hypotheses. By
synthesizing data from the lab and field, across approaches spanning
high-speed kinematics, selection trials, suction pressure recordings,
mechanical property testing, muscle fiber-type measurements and
physical modeling of bioinspired designs, we have clarified how
multiple axes of variation in biomechanical performance associatewith
the ecological and evolutionary diversity of these fishes. Our studies of
how these fishes meet both common and extreme functional demands
add new, complementary perspectives to frameworks developed from
other systems, and illustrate how integrating knowledge of the
mechanical underpinnings of diverse aspects of performance can
give critical insights into ecological and evolutionary questions.
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INTRODUCTION
Nature is a demanding place to make a living. For animals to
survive, they must, at a minimum, secure food and other resources,
avoid being eaten, and withstand physical and physiological

pressures from their environment (Waterman, 1999, 2001). The
stakes of success are high because, for species to persist, individuals
must survive long enough to reproduce. Relative reproductive
output of individuals (i.e. fitness), which can determine the
evolutionary trajectories of species, is thus intimately related to
functional performance across a wide range of tasks (Arnold, 1983;
Irschick et al., 2008).

Comparative biomechanics contributes diverse, foundational
tools for measuring functional performance and its underlying
mechanisms (Lauder, 1991; Biewener, 1992, 2002; Drucker and
Lauder, 1999; Ashley-Ross and Gillis, 2002; Westneat, 2003;
Brainerd et al., 2010; Vogel, 2013; McCullough et al., 2014;
McInroe et al., 2016; Ilton et al., 2018). By evaluating the capacity
of organisms (or their structures) to produce or resist forces that
contribute to movement, either by parts of the body or of the whole
body through the environment, biomechanical studies provide
opportunities for critical insights into why some individuals (or
species) execute tasks better or worse than others under specified
conditions. These insights provide a key link in understanding
variation in ecological distributions and fitness (Arnold, 1983;
Koehl, 1996).

Although there is a strong foundation for a general connection
between biomechanical performance, ecology and evolution, the
nature of such relationships in specific systems can be complicated
by several factors. Survival depends on the successful performance
of multiple tasks that sometimes impose conflicting demands, such
that particular body designs may incur tradeoffs in functional
performance (Walker, 2007): strong designs may be slow (Kemp
et al., 2005), maneuverable bodies may be unstable (Fish, 2002), and
designs emphasizing speed may sacrifice endurance (Vanhooydonck
et al., 2001).Moreover, the demands placed on individuals commonly
change as they mature and grow (Carrier, 1996; Herrel and Gibb,
2006; Heers, 2016), migrate through different habitats (Ebenman,
1992; Diamond et al., 2019), or experience fluctuations in
environmental conditions (Gibbs and Grant, 1987; Grant and Grant,
2002). In addition, multiple structural designs can sometimes exhibit
equivalent functional performance, or ‘many-to-one mapping’
(Alfaro et al., 2005; Wainwright et al., 2005). Such issues can
complicate efforts to resolve relationships between biomechanics,
ecology and evolution. However, they also represent an opportunity
for comparative biomechanists, providing a framework for developing
hypotheses to test the relative significance of these factors, and their
interactions, in generating functional diversity.

In the context of the issues highlighted above, understanding how
biomechanical performance contributes to fitness by allowing
animals to meet environmental demands requires the examination of
multiple functional components, across multiple life stages and
suites of environmental conditions. Despite the substantial effort
required for such comparisons, several biological systems have
undergone focused research seeking to span many of these axes of

1Department of Biological Sciences, Clemson University, Clemson, SC 29634,
USA. 2Department of Biology, Rhodes College, Memphis, TN 38112, USA.
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variation. For example, studies of Galápagos finches have
associated weather fluctuations that impact the relative availability
of food types across years with beak shape (Grant and Grant, 2002)
and with mechanical performance of the jaw bones and muscles in
relation to both feeding and song production, linking biomechanics
to survival and reproductive isolation (Podos, 2001; Podos et al.,
2004; Herrel et al., 2005, 2009; Soons et al., 2015). Biomechanical
approaches have also garnered evolutionary insights in studies of
Anolis lizards. For example, though hindlimb length correlates
positively with running and jumping performance in many Anolis
species (Losos and Sinervo, 1989; Losos, 1990a, 1990b), longer
hindlegs also incur greater aerodynamic drag that may be selected
against during extreme weather events such as hurricanes (Donihue
et al., 2018, 2020; Dufour et al., 2019; Debaere et al., 2021). Fishes
have also received considerable attention in efforts to link
biomechanics and evolution (Langerhans and Reznick, 2010;
Higham et al., 2016). For instance, studies of Gambusia
(mosquitofish) have shown that populations of G. affinis with
different intensities of predation exhibit differences in body shape
and flexibility that contribute to superior performance in either
sustained or escape swimming (Langerhans, 2009a); moreover,
G. hubbsi from habitats with predators have caudal shapes that
correspond with higher average velocity and peak acceleration
during fast-start escape responses (Langerhans, 2009b). Studies of
Trinidad guppies (Poecilia reticulata) have also tested complex
links between biomechanical performance, ecology and evolution.
For example, experiments with guppies have provided rare tests of a
common assumption that faster escape responses enhance the
chance of surviving encounters with predators (Walker et al., 2005).
In addition, populations from high-predation localities show
morphological traits that contribute to elevated escape
performance, but pregnant females from these locations
experience steeper declines in many aspects of performance as
gestation proceeds (Ghalambor et al., 2004). Moreover, increased
reproductive output that has been selected for in these females yields
smaller, less skeletally mature neonates with inferior escape
performance, indicating that selection for maternal fecundity can
supersede selection on juvenile performance (Dial et al., 2016).
These examples illustrate how diverse model systems have

contributed a range of insights into the role of biomechanics in
ecology and evolution. In this context, studies of additional,
carefully selected systems can lead to new questions and further
distinctive insights that deepen understanding of the complex
relationships between form and function, as well as factors that
cause those relationships to change. This Review synthesizes
findings from such a system: amphidromous goby fishes inhabiting
streams of oceanic islands. Several aspects of the life history,
geographic distribution and diversity of these species make them
advantageous subjects for testing how multiple functional
mechanisms contribute to survival across diverse, challenging and
variable conditions. By drawing together these findings and noting
comparisons with other systems, we demonstrate how multiple
aspects of biomechanics that underlie performance, including some
that have received limited attention in other systems, contribute to
ecological and evolutionary diversity. We also suggest hypotheses
for further testing in other systems, identifying new opportunities
for integrative biomechanical studies.

Biology of amphidromous gobies: features that facilitate
studies of functional diversity and evolution
The complex life cycles of amphidromous gobies (Keith, 2003;
McDowall, 2003, 2004; Watanabe et al., 2014) exhibit many

features that facilitate integration of biomechanical and evolutionary
studies (Fig. 1). Gobies are a diverse group (>1000 species) of
small-bodied fish (most <10 cm in length) (Thacker and Roje,
2011). Though most are strictly marine, numerous amphidromous
species have penetrated freshwater habitats in the streams of
circumtropical oceanic islands (Keith, 2003; Keith et al., 2015). In
this life cycle, adults live and spawn in freshwater but, upon
hatching, larvae are swept downstream to nearshore or ocean
habitats where they grow for up to 10 months before returning to
freshwater (Radtke and Kinzie, 1996; Nishimoto and Kuamo’o,
1997; Radtke et al., 2001; Hoareau et al., 2007; Teichert et al.,
2016), though not necessarily to their natal streams (Moody et al.,
2015). Post-larvae then migrate upstream to their eventual adult
habitat, where they can live and breed for several years (Fitzsimons
and Nishimoto, 1990; Leonard et al., 2012; Teichert et al., 2013a).
Such migrations expose amphidromous gobies to a series of
pressures that can exert opposing functional demands (Fig. 1). For
example, returning post-larvae must first evade predators and then,
for species with ranges further upstream, often overcome instream
barriers such as massive waterfalls and/or dams that must be
climbed to reach breeding habitats (Holmquist et al., 1998; Blob
et al., 2010; Lagarde et al., 2020). Stream reaches above waterfalls
are mostly free from predators in some island systems, but predators
persist in others (Diamond et al., 2019, 2021); moreover, upstream
reaches in which fish hold station to feed and establish reproductive
territories typically experience faster flow than lower reaches where
post-larvae first enter freshwater (Maie et al., 2009a, 2009b). The
pan-tropical distribution of goby subpopulations and species across
streams (and islands) with different physical and biological
environments allows for replicate tests of biomechanical tradeoffs,
using comparisons across systems in which different demands
predominate and different aspects of performance could be favored
(Blob et al., 2010; Moody et al., 2015, 2017, 2019; Lagarde et al.,
2018, 2021; Diamond et al., 2019, 2021). Such replicate testing of
evolutionary hypotheses across disparate island systems can reduce
the influence of unique local environmental conditions as
confounding factors in efforts to draw general conclusions.

Several distinctive aspects of goby functional systems also
promote opportunities for comparative biomechanical studies. All
gobies possess an adhesive disc (Fig. 1D,E) formed by
developmental fusion of the pelvic fins (Budney and Hall, 2010)
that allows them to attach to substrates by suction (Maie et al.,
2012). Adhesion provides a novel framework for biomechanical
comparisons (e.g. Irschick et al., 2006; Russell et al., 2019), such as
testing for differences in performance and the contributions of
different sucker components in climbing versus non-climbing
species (Maie et al., 2012; Palecek et al., 2021, 2022). In addition,
waterfall-climbing likely had a single evolutionary origin (Fig. 2),
but climbing species use one of two distinct mechanisms that reflect
different physiological strategies (Fig. 1B,C): ‘powerburst’ and
‘inching’. Powerburst climbing is likely ancestral (Blob et al., 2019)
and uses rapid pectoral fin adduction and cycles of axial undulation
to propel fish upwards between periods of sucker attachment to the
substrate (Schoenfuss and Blob, 2003). In contrast, inching evolved
in the genus Sicyopterus and involves alternating attachment and
advancement of the pelvic sucker and an additional oral adhesive
structure formed from a velum in the upper lip, which pressure
recordings have demonstrated also attaches to surfaces via suction
(Schoenfuss et al., 1997; Maie et al., 2012). Inching movements are
slower than those of powerburst climbing, with limited axial
undulation or adduction of the pectoral fins (Schoenfuss and Blob,
2003). How such strategies of fast versus slow movement are
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facilitated by underlying traits, and how they impact climbing
performance, represent further frameworks of biomechanical
comparisons that can clarify the diversity and evolution of a novel
functional ability. In addition, the high reproductive output of
gobies and their tendency to migrate into streams in pulses of
thousands of individuals enables experimental approaches that
require large sample sizes, such as tests of selection on performance
(Blob et al., 2008, 2010; Kawano et al., 2013; Moody et al., 2017).
In the context of these distinctive features, the next sections of our

Review highlight examples across different aspects of performance
that illustrate how the integration of biomechanical approaches has
enabled broader ecological and evolutionary insights for gobies,
providing new perspectives for studies of other systems.

Integrating mechanisms of performance in ecological and
evolutionary contexts
Feeding
The availability of appropriate food is a major factor determining
whether species can survive in a particular habitat (Schoenfuss
et al., 2004; Julius et al., 2005). Species of amphidromous gobies
typically use one of three broad feeding strategies: detritivory (e.g.
Stenogobius hawaiiensis); suction feeding on insects and other food

floating in the water (e.g. Lentipes concolor); and grazing diatoms
from rock substrates (e.g. Sicyopterus stimpsoni) (Kido, 1996;
Julius et al., 2005). Evaluations of the mechanisms underlying
feeding performance in amphidromous gobies have revealed
multiple factors that facilitate food acquisition and could influence
survival, species distributions and evolution.

In the Hawaiian Islands, the suction-feeding species Awaous
stamineus and Lentipes concolor show considerable overlap in diet
(Kido, 1996), but typically inhabit different regions of streams, with
A. stamineus in lower, slower flowing reaches and L. concolor
further upstream in faster flow that might necessitate faster feeding
strikes (Kinzie, 1988; Tate, 1997). Kinematic measurements of
feeding in these species show that L. concolor achieve larger gapes
than A. stamineus, which might be expected to decrease the suction
pressure they can produce (Fig. 3A). However, L. concolor also
open their jaws more quickly, which mathematical models show
compensates for the impact of gape size on suction pressure, and
likely facilitates capture of floating prey in fast-flowing, upstream
habitats (Maie et al., 2009a). Specializations for rapid feeding also
extend to the jaw musculature (Fig. 3B), as histochemical data show
that L. concolor have a greater proportion of fast oxidative-
glycolytic fibers in both jaw-opening (sternohyoideus) and
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Fig. 1. Life cycle and anatomy of amphidromous gobies. (A) Adults lay eggs upstream. Currents carry hatched larvae to the ocean. After several months,
larvae return to freshwater, metamorphose, and migrate upstream to adult habitats. Streams on different islands vary in the severity of waterfall barriers, and
whether predators are found above waterfalls. (B) Images from ventral-view, high-speed video of a powerburst-climbing post-larva. Red lines highlight
pectoral fin adduction. (C) Images from ventral-view, high-speed video of an inching post-larva. Red arrows indicate upward advance of oral (168 ms) and
pelvic (256 ms) suckers. (D,E) Ventral photos (left) and micro-computed tomography (microCT; right) reconstructions of pelvic suckers from non-climbing (D,
Stenogobius hawaiiensis) and climbing (E, Sicyopterus stimpsoni) species. Adapted from Schoenfuss and Blob (2003); Blob et al. (2010) and Palecek et al.
(2022).
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jaw-closing (adductor mandibulae) muscles than A. stamineus and
the other three gobioid species that live further downstream (Maie
et al., 2011). Considered in the context of the climbing ability of
these species, these results suggest a novel interaction between
feeding and locomotion (Higham, 2007; Kane and Higham, 2011,
2014), as the ability of L. concolor to climb further upstream above
high waterfalls imposes additional functional demands for capturing
food in fast flow (Maie and Blob, 2021) that must be met via
changes in feeding biomechanics. Moreover, musculoskeletal
models (Fig. 3C) show that a diverse range of goby species
exhibit functional differentiation across portions of the jaw-closing
muscle adductor mandibulae, such that the a. m. rictomalaris
subdivision is better suited for forceful closing and the a. m. stegalis
subdivision is suited for rapid closing (Maie et al., 2009b). These
results suggest an ability to modulate feeding mechanics
(Wainwright et al., 2001, 2008), a capacity that could help gobies
accommodate changing functional demands across different
portions of streams and might have facilitated the original
penetration of upstream habitats.
Biomechanical evaluations of other feeding modes have provided

further evolutionary insights. Comparisons of feeding kinematics
between algal grazing in Hawaiian Sicyopterus stimpsoni and
suction feeding in other gobies show significant differences in the
maximum values of many variables (e.g. mandible and hyoid
retraction) but similar patterns of movements, suggesting that the
transition to the novel feeding mode of grazing was achieved largely
through changes in the extent of cranial movements, rather than the
types or sequence of movements (Cullen et al., 2013). Premaxilla
movements are an exception to this pattern, extending much further
and with a different timing compared with other motions during
algal grazing than in suction feeding by other species. However, as
an inching climber using an oral sucker, movements of the
premaxilla and other cranial structures in S. stimpsoni (Fig. 4) are
similar between feeding and climbing (Cullen et al., 2013). These
results show another novel interaction between feeding and
climbing mechanics (Kane and Higham, 2014); moreover,
kinematic similarities between these behaviors suggest that the

novel climbing mechanism of inching gobies may have evolved via
exaptation of feeding mechanics (Gould and Vrba, 1982;
Kingsolver and Koehl, 1985; Cullen et al., 2013).

The feeding mechanics of predators on gobies also provide
insight into factors impacting their evolution. In the Hawaiian
archipelago, returning post-larvae of the inching climber
S. stimpsoni are ∼50% larger than post-larvae of powerburst
species such as A. stamineus and L. concolor (Schoenfuss and Blob,
2003). High-speed recordings of feeding strikes on post-larvae by
their main predator, the suction-feeding fish Eleotris sandwicensis,
show that post-larvae of the larger species can be captured from
significantly greater predator–prey distances (Maie et al., 2014).
This aspect of predator performance, with greater success capturing
larger prey, could provide a biomechanical basis for the strong
selection against large body size that predators impose on post-
larval gobies (Blob et al., 2010).

Fast-start escape responses
Upon re-entering streams from the ocean, juvenile gobies face
intense predatory pressure (Corkum, 2002; Blob et al., 2010; Maie
et al., 2014). Gobies use fast-start escape responses (Fig. 5A) to
avoid capture (Eaton et al., 1977; Domenici and Blake, 1997;
Turesson et al., 2009); however, the stream habitats to which post-
larvae return often require escapes to be performed against strong
currents (Donaldson et al., 2013). Such currents might directly
impact fast-start performance, as well as the ability of gobies to
detect flow stimuli produced by predators (Stewart et al., 2013,
2014), reducing their chance of escape. In fast-start trials of post-
larval S. stimpsoni conducted in a flow tank, using a water jet-pulse
as a stimulus, S. stimpsoni showed lower response rates to attacks
parallel to the water flow compared with attacks against the flow
(Fig. 5B), suggesting that flow environments might produce a ‘blind
spot’ to mechanical stimuli from predator strikes (Diamond et al.,
2016). However, high-speed videos of natural predatory encounters
in streams show that E. sandwicensis do not preferentially attack
from directions that take advantage of such blind spots; in fact,
attacks succeed more frequently when performed against stream

Sicyopterus stimpsoni (HI)

Sicyopterus japonicus (Japan)

Sicyopterus lagocephalus (Réu)

Sicydium punctatum (Carib)

Lentipes concolor (HI)

Cotylopus acutipinnis (Réu)

Awaous stamineus (HI)

Stenogobius hawaiiensis (HI) Non-climbing

Powerburst

Inching

Fig. 2. Phylogenetic and geographic relationships of
goby taxa in which climbing has been evaluated. HI,
Hawai’i; Réu, Réunion; Carib, Caribbean (Dominica).
Climbing styles are indicated next to species names. Dashed
line indicates possible relationships for Awaous. Data support
a single origin of climbing, with powerbursting ancestral.
Based on Taillebois et al. (2014) and Blob et al. (2019).
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flow, potentially because of the slower escape speeds by prey or the
action of current moving prey toward the predator (Schnieder et al.,
2021). These results underscore the utility of field-based tests of lab-
based conclusions regarding biomechanical impacts on interactions
between species (Combes et al., 2012; Moore and Biewener, 2015;
Freymiller et al., 2019).
Some species of amphidromous gobies (e.g. Stenogobius

hawaiiensis) re-enter streams but do not climb waterfalls, leaving
them at risk of predation throughout their life cycle (Schoenfuss and
Blob, 2007). Moreover, on islands in the Indian Ocean and
Caribbean, predation risk persists after post-larval gobies ascend
waterfalls because of the presence of climbing predators
(Schoenfuss et al., 2011; Lagarde et al., 2015). In locations such

as the Hawaiian archipelago, however, individuals that successfully
climb waterfalls reach habitats devoid of most predators
(Schoenfuss and Blob, 2003; Schoenfuss et al., 2013). This range
of environmental settings guides predictions for how fast-start
performance might vary ontogenetically across species and
geographic locations varying in predation pressure. For example,
post-larvae have higher response frequencies and faster
accelerations than adults of the same species, matching
predictions based on both scaling (Hale, 1999; Domenici, 2001)
and relative predation risk; in addition, adults from taxa that climb
out of the range of predators have lower escape performance than
species exposed to predators as adults (Fig. 5C) (Diamond et al.,
2019). However, species that use climbing styles with different
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Fig. 3. Feeding performance and underlying mechanisms in amphidromous gobies. (A) Images from high-speed video of food capture by Awaous
stamineus (lower flow habitat) and Lentipes concolor (higher flow habitat) at peak gape. Images have been mirror-flipped from the original for consistency
with B. (B) Illustration of jaw closing (adductor mandibulae subdivisions) and opening (sternohyoideus) muscles with representative histochemical sections,
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adductor mandibulae (AM) muscle for five gobioid species, showing greater force output for pars malaris and greater closing speed for pars stegalis for all
taxa. Adapted from (Maie et al., 2009a,b, 2011).
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demands for rapid movement (e.g. slow inching versus rapid
powerbursting) do not differ significantly in fast-start performance;
moreover, closely related species do not have the most similar
performance (Diamond et al., 2021). Thus, fast-start acceleration
shows little evidence of evolutionary constraint, and selection for
competing pressures, such as demands of slow versus fast climbing
mechanics, need not limit escape performance (Diamond et al.,
2021).

Adhesion and climbing
Located ventrally, just posterior to the opercula, the goby adhesive
disc enables attachment to diverse submerged and subaerial
surfaces. In many amphidromous species, the disc can adhere to
vertical surfaces and assist in climbing rocky substrates of waterfalls
up to hundreds of meters tall (Schoenfuss and Blob, 2003; Blob
et al., 2006), facilitating upstream migration by post-larvae and
repopulation of streams denuded by floods (Fitzsimons and
Nishimoto, 1995; Nishimoto and Fitzsimons, 1999), as well as in-
stream movements and station holding by adults (Fukui, 1979;
Fitzsimons et al., 1997; Blob et al., 2007; Maie, 2022). The two
distinct climbing mechanisms used across goby species have
dramatically different speeds of movement (Fig. 6A), with video of
climbing on lab-simulated waterfalls showing that post-larvae from
inching species have size-normalized speeds roughly half as fast as
those of post-larvae from powerburst species during single bouts
(Schoenfuss and Blob, 2003; Schoenfuss et al., 2011; Blob et al.,
2019). However, when climbing extended distances, inching
species spend approximately half of their time moving, whereas
powerburst species spend <25% of their time in motion and >75%
attached to surfaces, resting between bouts (Fig. 6B) (Blob et al.,
2006, 2019; Schoenfuss et al., 2011). These alternative strategies are
facilitated by structural and physiological differences. For example,
the evolutionarily derived slow movements of inching climbers are
accompanied by significantly greater fractions of slow oxidative
(red) fibers in their axial muscles, which could promote sustained
activity (Cediel et al., 2008). In contrast, the ratio of time spent in
movement versus rest by powerburst climbers is typical of species
using intermittent locomotion, allowing metabolic recovery that can

delay fatigue and extend travel distances (Weinstein and Full, 1992,
1998, 1999, 2000; Weinstein, 2001). Climbing ability is sustained
through ontogeny to varying degrees among goby species, with the
kinematics of powerburst and inching species becoming more
similar with increasing size (Blob et al., 2007; Christy and Maie,
2019; Maie and Blob, 2021).

Although factors such as mucous production and surface
structure might also contribute to attachment (Denny and Gosline,
1980; Wainwright et al., 2013; Ditsche et al., 2014), in vivo pressure
transducer measurements during climbing show that the adhesion of
goby pelvic discs is achieved substantially through suction
(Fig. 7A) (Maie et al., 2012). Climbing species show pressure
differentials between their suckers and the ambient atmosphere that
are greater than those of non-climbing species, and greater than
expected if suction were strictly a passive function of disc area
(Maie et al., 2012). Climbing species also show large safety factors
and positive allometry of adhesive strength through ontogeny (Maie
et al., 2012; Christy and Maie, 2019; Maie and Blob, 2021),
facilitated by greater cross-sectional areas of pelvic retractor
muscles and/or lever ratios for these muscles that are
advantageous for force production (Fig. 7B) (Maie et al., 2013).
In the inching climber S. stimpsoni from the Hawaiian Islands,
sustained adhesion also appears to be facilitated by elevated
proportions of red fibers in muscles of the pelvic disc (∼80%)
compared with the pectoral fins (<60%), helping to maintain
increased volume (and decreased pressure) of the chamber formed
when the sucker seals over a surface (Schoenfuss et al., 2013).
Moreover, the proportion of red fibers in pelvic disc muscles
increases among individuals collected from sites above successively
higher waterfalls, whereas measurements of muscle lever arms
remain consistent. This suggests that differences in muscle fiber
proportions, rather than lever mechanics, may facilitate higher
climbing and attachment in faster stream reaches (Schoenfuss et al.,
2013).

In further studies of sucker biomechanics, measurements of
passive adhesive shear forces during pull-off tests of freshly
euthanized specimens (Fig. 7C) show that, among the four native
Hawaiian goby taxa, species with the ability to climb furthest
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upstream exhibit suckers with the greatest tenacity (pull-off force
per unit of sucker area; Palecek et al., 2021). Moreover, sucker
tenacity for all species improved on rough substrates, paralleling
patterns from other fishes (e.g. clingfish; Wainwright et al., 2013;
Ditsche et al., 2014), as well as data that show improved
performance on rough substrates during in vivo climbing trials
(Blob et al., 2006). Attachment to rough surfaces may be facilitated
by flexibility of the sucker that could help close gaps between fins
and the substrate, increasing friction and preventing leakage at the
sucker margin (Wainwright et al., 2013; Wicaksono et al., 2016;
Ditsche and Summers, 2019). Supporting this hypothesis,
mechanical property measurements from goby lepidotrichia show
that fin rays from the pelvic sucker are more flexible than those from
the tail in all tested species; in addition, pelvic lepidotrichia are more
flexible in the suckers of species that are better climbers (Taft et al.,
2017). Amphidromous gobies also show prominent morphological
differences across species in the skeletons of their pelvic suckers

(Taft et al., 2017). However, pull-off tests using biomimetic suction
cups in which silicone was overmolded (Huie and Summers, 2022)
onto different model skeletons, each based on the pelvic anatomy of
gobies with different climbing abilities but made from the same
material, indicate that external sucker shape likely has a larger
impact on tenacity than interior pelvic structure (Palecek et al.,
2022). These results suggest that material specializations of the
sucker skeleton may contribute more to differences in adhesive
performance across species than variation in skeletal morphology.
The extent of material specialization of the skeleton related to
differences in functional demands has been debated (Currey, 1979,
1999; Erickson et al., 2002; Blob and Snelgrove, 2006; Horton
and Summers, 2009; Blob et al., 2014). Findings from gobies add
to studies of other fishes noting functionally correlated
evolutionary diversity in fin ray stiffness (Taft and Taft, 2012;
Aiello et al., 2017, 2018), which might have a material as well as
morphological basis.
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Evolutionary insights through integration of biomechanics
with an environmental context
Habitat gradients across the Hawaiian archipelago
Organisms perform as an integrated whole, but the performance
demands of some tasks can be at odds with each other (Ghalambor
et al., 2003, 2004), producing the potential for tradeoffs that can
shape the diversity and evolution of species across varying
conditions (Walker, 2007). In amphidromous gobies, the
functions of predator escape and climbing might impose
conflicting demands, with escape responses likely aided by deep
bodies that could improve thrust production, whereas climbing
could be facilitated by streamlined bodies that reduce drag from
water flowing down waterfalls (Walker, 1997; Langerhans, 2008).
One system inhabited by amphidromous gobies, the Hawaiian
archipelago, shows a gradient of habitats from its youngest to oldest
islands that influences the predominance of predation versus
climbing as functional demands. Whereas the youngest island
(Hawai’i) has short estuaries, steep stream gradients and many tall
waterfalls close to the shore, most waterfalls on the oldest island
(Kaua’i) have eroded far inland, leading to streams with long,
shallow-gradient reaches (Blob et al., 2008, 2010; Moody et al.,
2015, 2017, 2019). This environmental gradient provides a
foundation for testable predictions of evolutionary divergence
within goby species, informed by understanding of their
biomechanics.
Complementary selection trials that exposed cohorts of post-

larvae of the inching species S. stimpsoni, collected as new recruits
into stream estuaries, to either predation or climbing (Fig. 8A,B)
support the presence of a tradeoff between these demands: predation
survivors had deeper bodies than cohort means prior to selection,
and successful climbers had more streamlined bodies than
unsuccessful climbers (Blob et al., 2008, 2010). These patterns
broadly parallel morphological divergence between individuals
from Kaua’i (where the pressures of predation are stronger) and
Hawai’i (where the pressures of climbing are stronger), even though
larvae from different source islands can mix during their oceanic
phase, and genetic data show that larvae do not necessarily recruit to
their natal island (Moody et al., 2015). This correspondence
between the results of selection trials and observed morphological

variation across an environmental gradient supports a conclusion
that selection on biomechanical performance acts as a mechanism
contributing to diversification, complementing findings in other
systems such as the Galápagos finches (Gibbs and Grant, 1987;
Herrel et al., 2009), Anolis (Donihue et al., 2018), and mosquitofish
(Langerhans, 2008). Among the Hawaiian gobies, the range of
morphologies and performance capacities generated through
oceanic mixing of larvae from different source islands may help
to ensure variation that enables at least some portion of returning
larvae to survive in most types of streams, or in the event of
fluctuations in environmental conditions.

Moving across the archipelago, comparisons of selection results
for S. stimpsoni post-larvae between Kaua’i and Hawai’i indicate
that the predominant pressure on each island (predators on Kaua‘i,
climbing on Hawai’i) tends to impose less significant selection, and
thus may be less effective in promoting morphological changes
(Fig. 8C) (Moody et al., 2017). One possible explanation for this
pattern is that variation in functionally significant traits for each of
these environments may already have been reduced by the past
action of directional or stabilizing selection (Moody et al., 2017).
Explanations for observed divergence patterns were further
explored using individual-based biophysical models of larval
dispersal across the archipelago, in which the strength of each
selective pressure could be varied (Moody et al., 2019). These
analyses showed much greater effects on goby body shape from
varying the intensity of predation pressure, compared with varying
the intensity of selection from climbing (Moody et al., 2019). These
results indicate that, even with the evolutionary emergence of
climbing as a novel performance requirement, differences in
functionally relevant aspects of goby morphology between the
islands may be driven primarily by variation in the intensity of
selection by predators (Moody et al., 2019). The importance of
predator evasion is corroborated by differences in other factors
contributing to performance across individuals from these islands.
For example, post-larval S. stimpsoni from Kaua’i (where predation
pressure predominates) have a greater proportion of white (fast
glycolytic) fibers in the axial muscles that power fast-starts
compared with juveniles from Hawai’i (Blob et al., 2020).
However, no differences in fiber-type proportions were observed
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between successful and unsuccessful climbing individuals of this
species, suggesting that climbing imposes little selection on this trait
(Blob et al., 2020). Thus, even in the context of an extreme
competing demand like climbing, amphidromous gobies parallel

other fish systems such as sticklebacks (Walker, 1997) and
mosquitofish (Langerhans, 2009a, 2009b) in the significance of
predator evasion performance shaping evolutionary diversification.
For amphidromous gobies, this trend may relate to their sequential
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order of evolutionary pressures: climbing imposes selection only
after fish have been exposed to predators, potentially constraining
the diversity on which selection from climbing can act.

Comparisons across broad geographic and phylogenetic scales
The geographic and phylogenetic diversity of amphidromous
gobies provides opportunities for further comparisons of
biomechanical performance that can give insight into the
evolution of functional diversity. For example, selection trials
on climbing post-larvae from a species using powerburst
mechanics, Sicydium punctatum from the Caribbean, show
impacts on different sets of morphological traits and, on
average, stronger magnitudes of both directional and
correlational selection than were observed in the inching climber
Sicyopterus stimpsoni (Kawano et al., 2013). Greater selection
strength in S. punctatummay relate to the different requirements of
climbing mechanics in this species, in which fin and body axis
movements must be coordinated to a greater extent than during
inching kinematics. Thus, patterns of selection may be impacted
by specific biomechanical patterns, such as locomotor kinematics,
that species use to perform a behavior.
Because most species of fishes do not climb waterfalls, the

evolution of waterfall climbing among gobies can be viewed as a
novel functional ability. The role of such novelties in evolutionary
diversification has been debated (Liem, 1973; Wainwright, 2007).
By opening opportunities to use new resources or habitats, novelties
may contribute to the diversification or radiation of taxa in a lineage
(Konow et al., 2008). However, in some cases, the evolution of
novel functions has had limited effects (Price et al., 2010;
Wainwright and Price, 2016) or even reduced functional diversity
in a group (Higham et al., 2015a). One factor that could influence
the impact of novel traits on functional diversity is time: older traits
might show more variation than more recently evolved ones,
because they have had more time for changes to accrue (Wainwright
and Price, 2016). Comparisons of climbing kinematics and
performance across juveniles of multiple inching and powerburst
taxa show similar net climbing speeds among inching climbers,
suggesting this more recently evolved behavior may show less
variation, as predicted (Blob et al., 2019). However, different
inching taxa in which climbing has been measured produce similar
performance through different pathways: species from the Hawaiian
Islands move more slowly, but spend less time resting, than species
from Réunion in the Indian Ocean (Blob et al., 2019). This pattern
of multiple functional pathways producing similar performance
parallels the concept of many-to-one mapping developed for
structure–function relationships (Alfaro et al., 2005; Wainwright
et al., 2005). In addition, because of tradeoffs between speed of
motion and time spent moving observed across inching versus
powerburst taxa, species that use these alternative mechanisms
show little difference in net climbing speed (i.e. performance that
accounts for time spent both moving and resting when traveling a
given distance: Fig. 8D) (Schoenfuss et al., 2011; Blob et al.,
2019). In the context of understanding the evolution of functional
novelties, such similarity in net performance between powerburst
climbing and inching suggests an intriguing conclusion that
selection on locomotor performance may not have been a major
factor promoting the evolution of a new locomotor behavior
(Blob et al., 2019). This conclusion parallels interpretations of
the origins of other functional novelties, such as the evolution of
flight in insects (Kingsolver and Koehl, 1985), potentially
suggesting a widespread pattern in the evolution of novel
functions.

Conclusions and future directions
Animals in nature must secure food, shelter and mates in habitats
that can include hazards ranging from hungry predators and physical
barriers to dangerous weather and changing climate patterns.
Evaluating how animals perform tasks in the face of such
challenges is critical for understanding their current diversity, how
they evolved, and how they may be impacted by environmental
change. Hypotheses about which functional systems and levels of
organization show variation linked to differences in performance
must be tested (Mykles et al., 2010; Schoenfuss et al., 2013). In this
context, systems that are amenable to diverse tests provide
opportunities for new insights (Losos, 1990a; Ghalambor et al.,
2003; Soons et al., 2015). Comparative biomechanical studies of
amphidromous gobies have shown that functional specializations
that help meet environmental demands are ubiquitous across
multiple anatomical systems and levels of organization
(Schoenfuss et al., 2013), from whole-body shape (Maie et al.,
2007; Moody et al., 2015; Lagarde et al., 2018; Diamond et al.,
2021) to lever systems (Maie et al., 2009b, 2013), muscle fiber types
(Cediel et al., 2008; Maie et al., 2011; Schoenfuss et al., 2013) and
bone mechanical properties (Taft et al., 2017; Palecek et al., 2022).
However, important aspects of performance can be similar across
species despite being generated via divergent mechanics (Cullen
et al., 2013; Blob et al., 2019); some prominent functional demands
may have less influence on diversification than expected (Moody
et al., 2019); and some sources of variation may have little impact on
performance (Schnieder et al., 2021; Palecek et al., 2022).
Achieving such understanding of functional contributions to
biodiversity requires the coordination of lab and field studies
(Diamond et al., 2016; Schnieder et al., 2021) and the integration of
biomechanical approaches (e.g. performance measurements:
Schoenfuss and Blob, 2003; Maie et al., 2012) with perspectives
from ecology (e.g. individual-based modeling: Moody et al., 2019)
and evolution (e.g. selection trials: Blob et al., 2010; Kawano et al.,
2013; Moody et al., 2017; population connectivity: Moody et al.,
2015). Examining diverse functional components from varied
perspectives provides a framework of questions and approaches that
can be applied to studies of functional evolution across many
systems.

Several additional approaches could be applied to deepen
understanding of how functional performance diversifies. For
example, neurobiological data indicate that the pectoral fins of
round gobies (Neogobius melanostomus) can detect fine details of
contacted surfaces, providing input to adjust fin position in response
(Hardy and Hale, 2020; Hale et al., 2022). Experiments to test
whether such abilities differ between climbing and non-climbing
goby species, and for their presence in pelvic fins fused into suckers,
would evaluate how yet another level of organization contributes to
the evolution of novel functions and provide an example for other
systems. In addition, tests of escape behaviors motivated by means
other than physical stimuli to the lateral line system, such as vision
and odor cues (Domenici, 2002; Hale, 2002; Kelley and Magurran,
2003; Ylönen et al., 2007; Chicoli et al., 2014), could improve
understanding of critical aspects of performance because such
modes of detection might be differentially impaired by changing
stream conditions, such as increases in turbidity after heavy rains
(Higham et al., 2015b). Additional contexts for performance
measurements would also be valuable. For example, return
migrations of goby post-larvae into streams typically take place
over multiple days with numerous individuals each day, during
which time stream conditions can change (Smith and Smith, 1998).
Knowledge of whether early migrants are typically superior in
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aspects of performance could have wide implications for diverse
migratory species (Diamond, 2019). Links between functional
performance and adult reproductive success also warrant study.
After post-larvae ascend waterfalls, the demands imposed by adult
habitats may diverge between males and females as fish grow large
enough to breed (Maie and Blob, 2021). Males of many species
actively court females by displaying to them in areas exposed to
high flow (Fitzsimons and Nishimoto, 1990; Fitzsimons et al.,
1993; Teichert et al., 2013b). Female fish often favor larger and
deeper-bodied males (Kozak et al., 2008; Ward and McLennan,
2009), shapes that may incur higher drag and greater energetic costs
in flowing water. Measuring the mechanical costs of different body
shapes under a range of flow conditions could reveal conflicts
between natural and sexual selection, and whether such conflicts
vary across environmental gradients (Basolo and Alcaraz, 2003;
Oufiero and Garland, 2007; Clark and Dudley, 2009).
Considering findings from amphidromous gobies in a broader

context suggests additional questions and testable hypotheses about
relationships between form and function, and how those
relationships change, that can be extended to other systems. For
example, in systems in which multiple components contribute to
functional capacity (e.g. skeletal morphology, skeletal material
properties, muscle physiological properties), are there predictable
patterns for which components (or levels of biological organization:
Lauder and Reilly, 1996) show more or less variation related to
differences in performance? Variation in the morphology of skeletal
lever systems is well documented in systems such as the jaws of
fishes (Alfaro et al., 2005; Wainwright et al., 2005), but seems less
prevalent across the lever systems of goby suckers, where
performance variation relates more clearly to differences in
muscle fiber-type proportions (Schoenfuss et al., 2013) and the
mechanical properties of fin rays (Taft et al., 2017). The extension of
variation into these particular functional components might relate to
the extreme demands of climbing encountered by amphidromous
gobies; however, the ways in which extreme demands impact such
patterns will be difficult to evaluate until comparable muscle and
bone property data are more widely available for lineages that
experience more typical demands. The impact of the evolution of
novel climbing behaviors on the diversification of species and body
shapes in gobies also remains be formally tested. Given the
contrasting impacts of evolutionary novelty on diversity observed in
other lineages (Konow et al., 2008; Price et al., 2010; Higham et al.,
2015a; Wainwright and Price, 2016), analyses from gobies could
improve understanding of the circumstances in which evolutionary
novelties promote or constrain diversification.
The diversity of study systems that have linked biomechanics

with ecology and evolution has facilitated understanding of many
factors contributing to how biodiversity is structured (Koehl, 1996;
Lauder, 2003; Wainwright, 2007; Muñoz et al., 2017, 2018). An
especially distinctive feature of amphidromous gobies is their global
distribution of species across distant islands, providing multiple
settings for measuring biomechanical performance in varied
contexts. Comparisons across nearby islands within archipelagos
have led to several insights at a microevolutionary scale (Moody
et al., 2017; Blob et al., 2020), but other analyses have required
comparisons across much greater geographic distances (Kawano
et al., 2013; Blob et al., 2019; Diamond et al., 2021). Comparisons
at broad geographic scales have only recently begun, with
biomechanical performance of species from many localities (e.g.
West Africa, South Pacific) yet to be evaluated. With available
phylogenetic data (Thacker and Roje, 2011; Taillebois et al., 2014;
McCraney et al., 2020), wider sampling of biomechanical

performance would enable broader formal testing of
macroevolutionary hypotheses through comparative phylogenetic
methods (Anderson et al., 2014; Anderson and Patek, 2015; Price
et al., 2015; McGee et al., 2016; Friedman et al., 2021; Hodge et al.,
2021). Further, advancements in next-generation sequencing and
genomic bioinformatics could enable quantification of genome-to-
phenome variation and evolutionary trajectories (Wang and Guo,
2019; Ronco et al., 2021). Such opportunities should open further
avenues to enrich understanding of how biomechanics contributes
to evolutionary diversity.
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Kelley, J. L. and Magurran, A. E. (2003). Learned predator recognition and
antipredator responses in fishes. Fish and Fisheries 4, 216-226. doi:10.1046/
j.1467-2979.2003.00126.x

Kemp, T. J., Bachus, K. N., Nairn, J. A. andCarrier, D. R. (2005). Functional trade-
offs in the limb bones of dogs selected for running versus fighting. J. Exp. Biol.
208, 3475-3482. doi:10.1242/jeb.01814

Kido, M. H. (1996). Morphological variation in feeding traits of native Hawaiian
stream fishes. Pac. Sci. 50, 184-193. http://hdl.handle.net/10125/2414

Kingsolver, J. G. and Koehl, M. A. R. (1985). Aerodynamics, thermoregulation,
and the evolution of insect wings: differential scaling and evolutionary change.
Evolution 39, 488-504. doi:10.1111/j.1558-5646.1985.tb00390.x

Kinzie, R. A. (1988). Habitat utilization by Hawaiian stream fishes with reference to
community structure in oceanic island streams. Env. Biol. Fish. 22, 179-192.
doi:10.1007/BF00005380

Koehl, M. A. R. (1996). When does morphology matter? Ann. Rev. Ecol. Syst. 27,
501-542. doi:10.1146/annurev.ecolsys.27.1.501

Konow, N., Bellwood, D. R.,Wainwright, P. C. andKerr, A. M. (2008). Evolution of
novel jaw joints promote trophic diversity in coral reef fishes. Biol. J. Linn. Soc. 93,
545-555. doi:10.1111/j.1095-8312.2007.00893.x

Kozak, H. L., Cirino, L. A. and Ptacek, M. B. (2008). Femalemating preferences for
male morphological traits used in species and mate recognition in the Mexican
sailfin molies, Poecilia velifera and Poecilia petensis. Behav. Ecol. 19, 463-474.
doi:10.1093/beheco/arm139

Lagarde, R., Teichert, N., Boussarie, G., Grondin, H. and Valade, P. (2015).
Upstreammigration of amphidromous gobies of La Réunion Island: implication for
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