

Dental Amalgam

• Properties of Amalgam

Microleakage:

- \checkmark Has the tendency to minimise marginal leakage.
- ✓ Self sealing material

Dimensional Change:

 \checkmark May expand or contract depending on its manipulation.

• Strength:

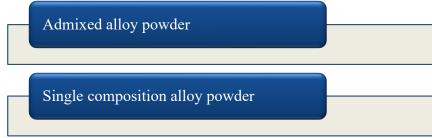
✓ Hardened amalgams have good compressive strength.

Tensile Strength:

- ✓ Amalgam cannot withstand high tensile or bending strength.
- ✓ Tensile strength is 48-70MPa.
- Creep:
 - ✓ Time dependent plastic deformation.
 - ✓ Slow progressive permanent set amalgam which occurs under constant stress (static creep) or intermittent stress (dynamic creep).

Retention of Amalgam:

- ✓ Amalgam does not adhere to tooth structure.
- \checkmark Retention of amalgam is achieved by mechanical interlocking.


Tarnish and Corrosion:

 \checkmark Amalgam restoration often tarnishes and corrodes in the mouth.

High copper alloys:

- \checkmark Contains more than 6% wt copper.
- ✓ Weakest γ_2 phase is eliminated in high copper amalgam.
- ✓ Preferred because of the improved mechanical properties, resistance to corrosion and better marginal integrity.

• <u>Types:</u>

Single composition alloys:

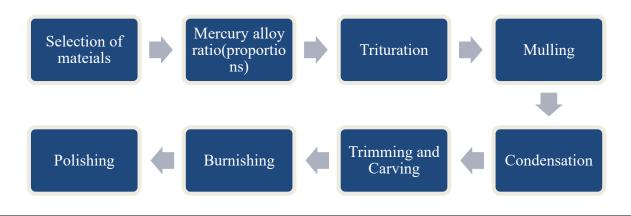
- \checkmark Each particle of the alloy particle has the same composition.
- Setting Reaction:
 - ✓ When triturated, silver and tin from Ag-Sn phase, dissolve in mercury. Very little Cu dissolve in mercury. TheAg₂Hg₃, crystals grow forming a matrix that binds together the partially dissolved alloy particles.
 - ✓ Later, $Cu_6Sn_5(\eta)$ crystals are formed.

Overall Reaction:

AgSnCu+ Hg \longrightarrow Cu₆Sn₅(η) + Ag₂Hg₃(γ_1) + AgSnCu(unreacted) ($\gamma + \varepsilon$)

Application:

- ✓ As a permanent filling material in class I and class II cavities and class V cavities where aesthetics is not important.
- $\checkmark~$ In combination with retentive pins to restore a crown.
- \checkmark For making dyes.
- ✓ In retrograde root canal fillings.
- \checkmark As a core material.


Merits of Dental amalgam :

- ✓ Reasonably easy to insert.
- ✓ Not overly technique-sensitive.
- ✓ Maintain anatomic form well.
- ✓ Prevents marginal leakage.
- ✓ Adequate resistance to fracture.

Demerits:

- \checkmark Colour doesn't match tooth structure.
- \checkmark More brittle and less tough than derivable.
- \checkmark They are subject to corrosion and galvanic action.
- ✓ Eventually show marginal breakdown.
- \checkmark They don't bond to tooth structure.

Stages of Manipulation of amalgam alloys:

- Admixed alloys:
 - Setting reaction: $SnHg + Ag-Cu \longrightarrow Cu_6Sn_5 + Ag_2Hg_3$ (γ_2) (η) $\gamma_2 \longrightarrow$ eliminated, replaced by γ phase
 - Trituration:
 - ✓ Process of grinding powder, especially within a liquid.
 - ✓ Mixing procedure to remove the oxide film by friction and enhance the amalgamation reactions.
 - ✓ Two types:
 - a. Hand trituration
 - b. Mechanical

• Eames technique:

- Better method of reducing mercury content is to reduce the original mercury.
- Ratio (1:1)
- The usual Hg/Alloy ratios are as following:
 - ✤ Hg/alloy ratio for high copper alloys is 1:1
 - ✤ Hg/alloy ratio for low copper alloys is 40:60