Activité expérimentale : Synthèse du savon	Chap 8
Nom Prénom :	1 ^{ère} spé

Objectifs:

- → suivre un protocole de synthèse en respectant les consignes de sécurité ;
- → réaliser un montage de chauffage à reflux, réaliser un montage de filtration sous vide ;
- → comprendre ce qu'est une transformation chimique.

A) Introduction

Pendant la guerre de 1939–1945, le savon était une denrée rare et les particuliers en fabriquaient alors souvent eux-mêmes. Comment procède–t–on pour fabriquer un savon ?

La fabrication des savons peut se faire à partir d'huile d'olive (huile d'origine végétale). Cette contient des triesters (l'oléine). Sous l'action de la soude concentrée, à chaud, les molécules d'oléine se fragmentent : il se forme du glycérol et de l'oléate de sodium (savon).

B) Synthèse d'un savon

1. Précautions

- a) Que signifie les pictogrammes présents sur les flacons d'éthanol et d'hydroxyde de sodium ?
- b) Quelles sont les précautions à prendre pour effectuer les prélèvements des matières premières ?

2. Montage à reflux

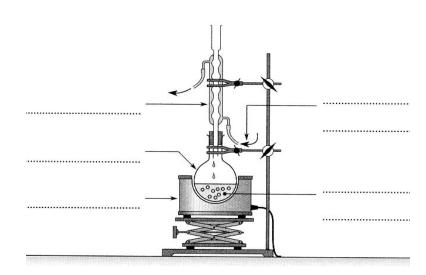
- Fixer le ballon de 250 cm³ avec une pince.

Introduire:

- 20 cm³ d'huile
- 20 cm³ d'éthanol
- 20 cm³ de solution d'hydroxyde de sodium

Remarque : la solution de soude et l'huile ne sont pas miscibles. Afin de favoriser le contact entre ces réactifs, ils sont mis en solution dans l'éthanol : l'huile et la soude sont solubles dans l'éthanol.

- Introduire quelques grains de pierre ponce.
- Placer le réfrigérant sur le ballon.
- Fixer les tuyaux et mettre doucement la circulation d'eau (entrée d'eau en bas et sortie d'eau en haut)


Données

	Éthanol	Soude	Huile	Savon
Masse molaire		40,0	885,0	304,0
Masse volumique			0,90 g.cm ⁻³	
Concentration molaire		10,0 mol.L ⁻¹		
Pictogrammes	(!)	The last		Dépend de son pH

Tableau des solubilités

	Eau	Éthanol	Eau salée
Oléine	non	oui	non
Soude	oui	oui	oui
Savon	non		non

c) Légender le schéma du montage à reflux ci-dessous (il faudra ajouter des flèches) en faisant apparaître les mots suivants : ballon, chauffeballon, mélange réactionnel, support élévateur, sortie d'eau, arrivée d'eau froide, pierre ponce, réfrigérant.

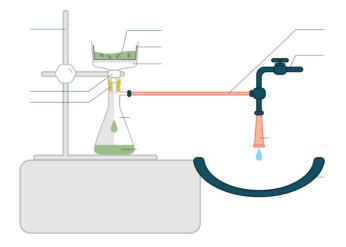
- d) Quel est l'intérêt du chauffage à reflux ?
- e) Quel est le rôle de la pierre ponce ?

3. Réaction de saponification

- Mettre le chauffe-ballon en route
- Attendre que le reflux s'établisse (ajuster le chauffage pour que l'ébullition soit modérée) puis maintenir ce reflux pendant 20 à 30 minutes.
- Arrêter le chauffage et refroidir progressivement le montage à l'air puis sous l'eau froide.
 - f) Quels sont les réactifs utilisés pour fabriquer ce savon?
 - g) Comment nomme-t-on les substances telles que le glycérol et le savon obtenus en fin de synthèse ?
 - h) Quelles sont les espèces chimiques présentes dans le ballon après le chauffage ?
 - i) Pourquoi parle-t-on de transformation chimique?
 - j) Ajuster l'équation de la réaction de saponification :

- k) En considérant que l'huile d'olive est uniquement constituée d'oléine, calculer la quantité n_1 d'oléine introduite dans le ballon puis calculer la quantité n_2 d'hydroxyde de sodium introduite dans le ballon. Quel réactif est en excès ?
- l) Quelle quantité de savon pouvons-nous espérer former ? Calculer la masse de savon correspondante.

4. Extraction du savon brut : le relargage


Remarque : le savon est soluble dans l'eau mais peu soluble dans l'eau salée.

- Verser lentement le contenu du ballon dans un verre à pied contenant 50 cm³ d'eau froide salée à saturation.
 - m) Qu'observe-t-on lors de cette opération de relargage?
 - n) Quel est le rôle de l'eau salée ?

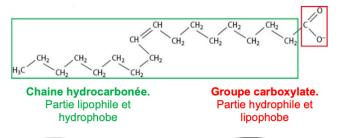
5. Filtration sous vide

- Fixer la fiole à vide avec une pince 3 doigts près de l'évier et adapter le tuyau pour réaliser le vide.
- Installer le Büchner, mettre un papier filtre et l'humidifier avec l'eau du robinet.
- Ouvrir le robinet d'aspiration au vide puis verser doucement le contenu du verre à pied.

- Arrêter l'aspiration, rincer le savon avec un peu d'eau froide salée et remettre l'aspiration sous vide.
- Recueillir le savon dans une coupelle.
- Peser la masse de savon ainsi obtenue.
 - o) Pourquoi filtrer sous vide?
 - p) Quel est l'aspect du savon obtenu?
 - q) Mettre la légende du montage sur le schéma de filtration sous vide cicontre en utilisant les mots : tuyau en caoutchouc, entonnoir Büchner, support à vis, potence, évier, papier filtre, robinet, fiole à vide, joint conique, filtrat, mélange à filtrer

- r) Pourquoi n'a-t-on pas obtenu autant que produit que ce que l'on pouvait espérer?
- s) Calculer le rendement de cette synthèse.

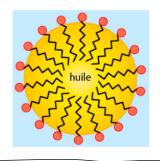
6. Identification

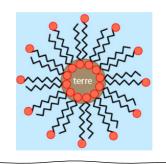

- Verser dans 2 tubes à essais 5 mL d'eau distillée et 5 mL d'eau savonneuse. Rajouter dans chaque tube 2 gouttes d'huile. Agiter.
 - t) Qu'observe-t-on? Conclure
 - u) Pourquoi ne peut-on pas utiliser le savon préparé pour se laver les mains ? Quel traitement faut-il lui faire ?

C) Structure d'un savon

Document 1 : Structure d'un ion carboxylate

Le principal constituant d'un savon est l'ion carboxylate, comme par exemple l'ion oléate issu de l'huile d'olive.

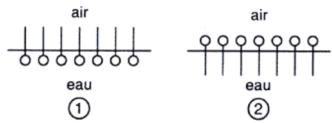

Formule semi-développée de l'ion oléate :



Document 2 : Représentation simplifiée d'un ion carboxylate longue chaîne carbonée tête ionique ou Queue du savon (Chaîne (Fonction carboxylate)

Document 3: Les micelles

Quand la concentration de savon est suffisante, il se forme des micelles qui peuvent "piéger" des espèces chimiques insolubles dans l'eau.


Document 4 : Composés amphiphiles

Les composés amphiphiles appelés aussi tensioactifs sont des composés qui possèdent à la fois un groupe hydrophile (grande affinité pour l'eau) et groupe lipophile (grande affinité pour les graisses, les lipides).

Document 5: Rappels

L'eau est une molécule polaire. Les lipides sont des molécules apolaires.

- v) Expliquer pourquoi le groupe carboxylate COO- est hydrophile et lipophobe et pourquoi la longue chaine carbonée est hydrophobe et lipophile.
- w) En solution aqueuse, les ions carboxylates forment un film à la surface de séparation eau-air. Parmi les 2 schémas suivants, lequel est correct. Justifier brièvement la réponse.

Complément d'information lié à l'actualité :

https://www.futura-sciences.com/sante/questions-reponses/coronavirus-savon-il-efficace-coronavirus- 13402/