

Single phenotype, selection index with P and P^2

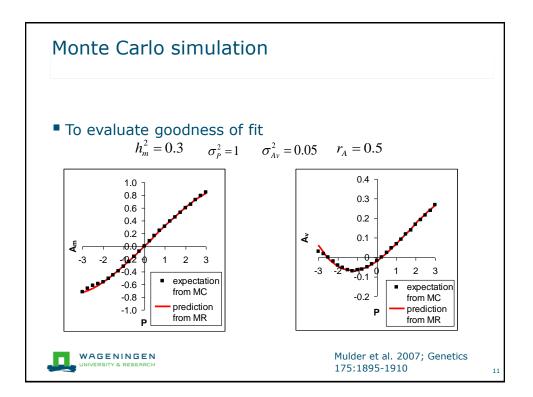
Info:
$$x_1 = P - \mu$$
, $x_2 = (P - \mu)^2 - \overline{(P - \mu)^2}$
 $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} P - \mu \\ (P - \mu)^2 - \overline{(P - \mu)^2} \end{bmatrix}$
Index: $\hat{A}_m = b_{m,1}(P - \mu) + b_{m,2} \Big[(P - \mu)^2 - \overline{(P - \mu)^2} \Big]$
 $\hat{A}_v = b_{v,1}(P - \mu) + b_{v,2} \Big[(P - \mu)^2 - \overline{(P - \mu)^2} \Big]$
Selection index in matrix-vector notation

$$\hat{A}_{m} = \begin{bmatrix} b_{m,1} & b_{m,2} \end{bmatrix} \mathbf{x} = \mathbf{b}_{m} \mathbf{x} \implies \hat{\mathbf{a}} = \begin{bmatrix} \hat{A}_{m} \\ \hat{A}_{v} \end{bmatrix} = \begin{bmatrix} b_{m,1} & b_{m,2} \\ b_{v,1} & b_{v,2} \end{bmatrix} \begin{bmatrix} P - \mu \\ (P - \mu)^{2} - (P - \mu)^{2} \end{bmatrix} = \mathbf{B}' \mathbf{x}$$

$$\hat{A}_{v} = \begin{bmatrix} b_{v,1} & b_{v,2} \end{bmatrix} \mathbf{x} = \mathbf{b}_{v} \mathbf{x}$$
WAGENINGEN
Mulder et al. 2007; Genetics 175:1895-1910

Single phenotype, selection index with P
and P² = multiple regression
• Solve the index weights
• B = P⁻¹G, P = Var(x), G = Cov(x,a)
• Use moments of the normal distribution
$$\rightarrow$$

 $P = Var(\mathbf{x}) = \begin{bmatrix} \sigma_P^2 & 3\sigma_{A_m} \\ 3\sigma_{A_m} & 2\sigma_P^4 + 3\sigma_{A_v}^2 \end{bmatrix} \quad G = Cov(\mathbf{x}, \mathbf{a}) = \begin{bmatrix} Cov(x_1, A_m) & Cov(x_1, A_v) \\ Cov(x_2, A_m) & Cov(x_2, A_v) \end{bmatrix} = \begin{bmatrix} \sigma_{A_m}^2 & \sigma_{A_m} \\ \sigma_{A_mv} & \sigma_{A_v}^2 \end{bmatrix}$
Mulder et al. 2007; Genetics 175:1895-1910
• This allows you to estimate breeding values for mean and variance when you know the phenotype of the individual
• From those selection index equations, you can also derive the accuracy for each trait

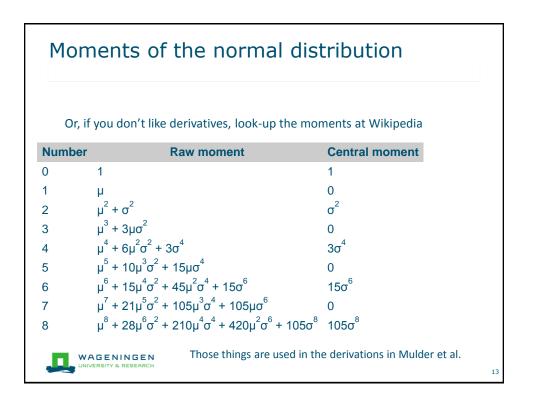


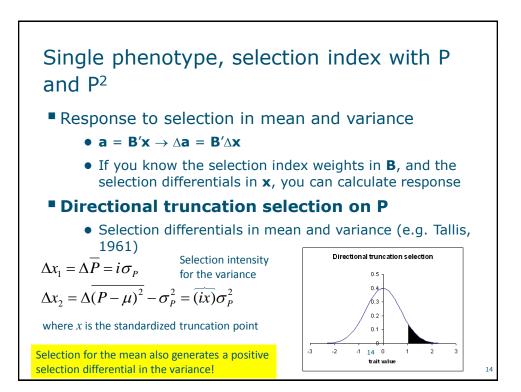
Intermezzo, The Moment Generating Function (MGF) The MGF is a function that allows you to derive "moments" of distributions First moment: E(X) = mean Second moment: E(X²)

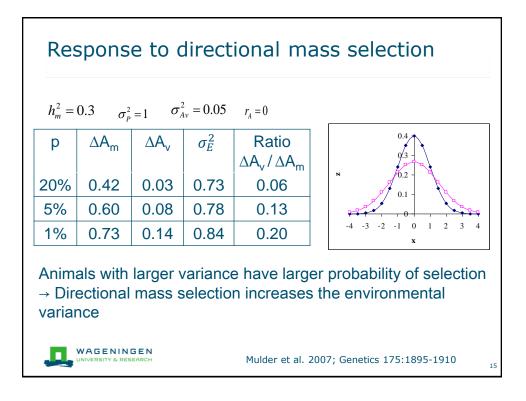
- Variance = E(X²) mean²
- nth moment: E(Xⁿ)
- Really handy for derivations of variances and covariances
- For the nth moment:
 - Take the nth derivative of M_x(t) with respect to t
 - Calculate its value for t = 0 $E(X^{n}) = M_{X}^{n}(t=0) = \frac{d^{n}M_{X}}{dt^{n}}(t=0)$

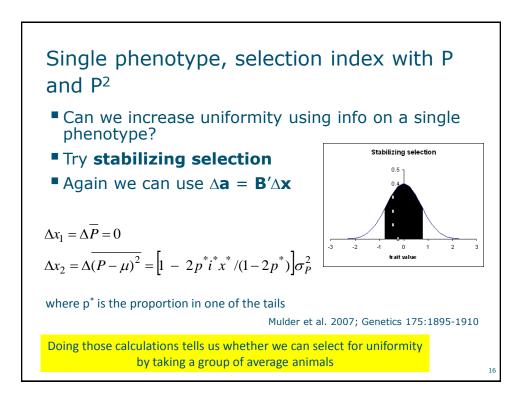
WAGENINGEN

12

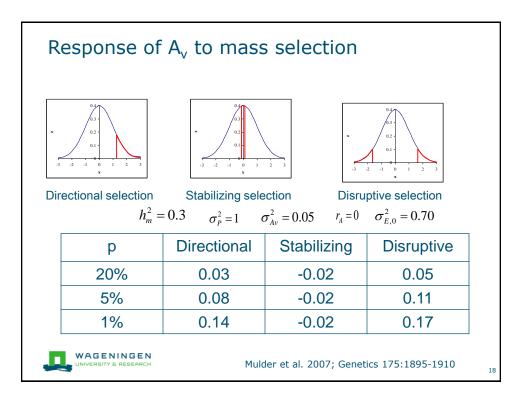


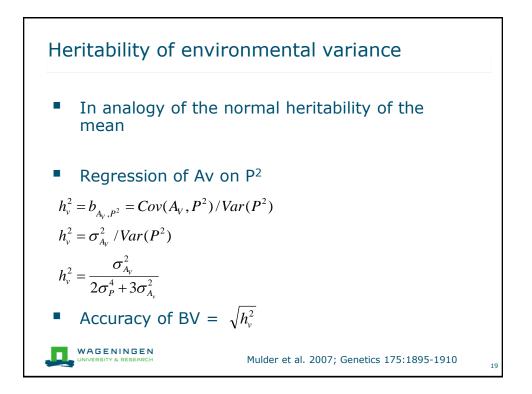


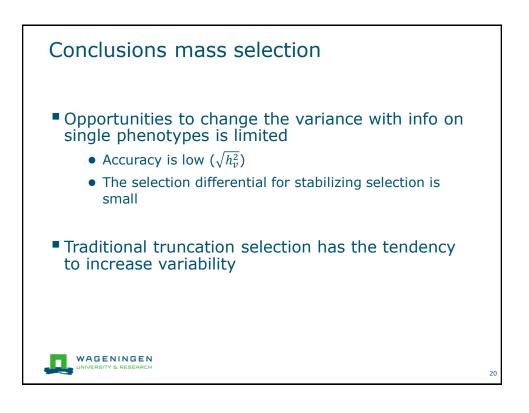




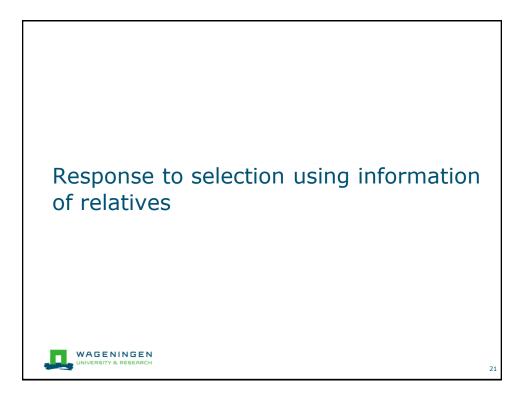
Single phenotype, selection index with P and P² What selection differentials are feasible for P²? Standardized selection differentials of $\overline{P_{*}^{2}}$ for directional, stabilizing, and disruptive selection by truncation on a normal distribution corrected for the expectation of P^2 (= 1) for different selected proportions (p) Selected proportion (p) Type of selection 0.800.400.200.100.050.010.001Directional -0.290.241.18 2.25 3.39 6.20 10.41Stabilizing -0.56-0.91-0.98-0.99-1.00-1.00-1.00Disruptive 0.241.18 2.253.39 4.587.4511.70You can select strongly for greater P², but not for smaller P² 😣 The selection differential limits the potential to reduce variability with mass selection. Stabilizing selection on own performance is not promising The usual directional selection has the effect to increase variability! 🐵

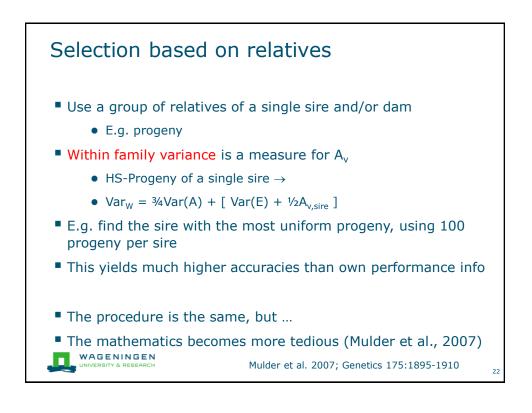


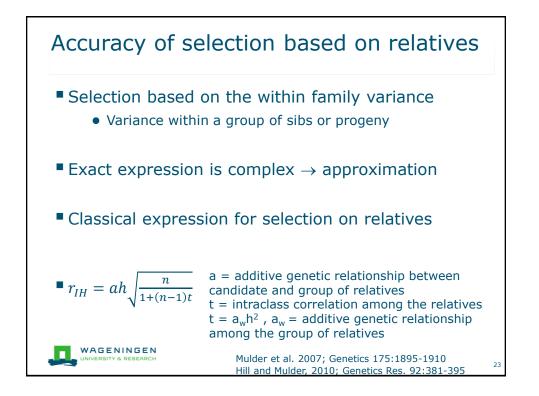


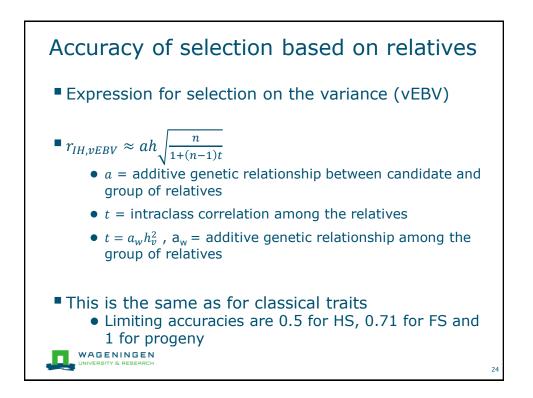


10









Comparison approximation with simulation

		n _m o	F		exact) or the	e approximate			
diction (N	AR approx) ^a	<i>b</i> .	Mulder et al. 2007; Genetics 175:1895-191						
			Accurac	cy \hat{A}_{v}					
			Number of	progeny					
	10			100					
$\sigma^2_{\scriptscriptstyle A_m}$	MC	MR exact	MR approx	MC	MR exact	MR approx			
0	0.235	0.235	0.235	0.607	0.607	0.607			
0.1	0.236	0.236	0.235	0.615	0.615	0.607			
0.3	0.243	0.244	0.235	0.633	0.633	0.607			
0.6	0.251	0.260	0.235	0.648	0.663	0.607			

Accuracy of vEBV										
$h_m^2 = 0.3$ $\sigma_p^2 = 1$	$h_v^2 = 0.023$	$r_A = 0$								
Number of records	Mass	FS	HS progeny							
Own phenotype	0.15	-	-							
10	-	0.25	0.24							
50	-	0.47	0.50							
100	-	0.55	0.63							
• With phenotype on when $r_A \neq 0$	ly, accuracy	is small and re	lies on the mean							
Using 100 progeny	yields mea	ningful accuraci	es							
UNIVERSITY & RESEARCH	Mulder e	t al. 2007; Genetics 17	75:1895-1910							

27

Numerical results for accuracy

TABLE 7

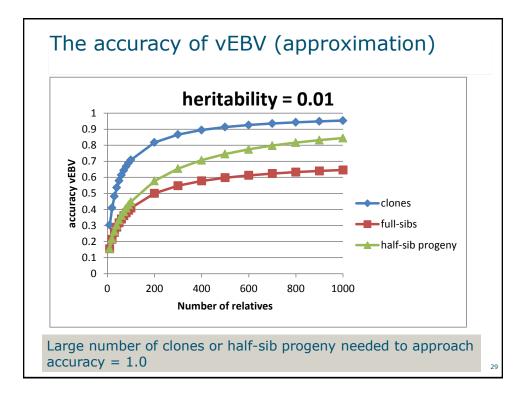
Predicted accuracy of \hat{A}_v based on a single phenotype or different numbers of full-sibs or half-sib progeny for different values of $\sigma_{A_v}^2$ and r_A

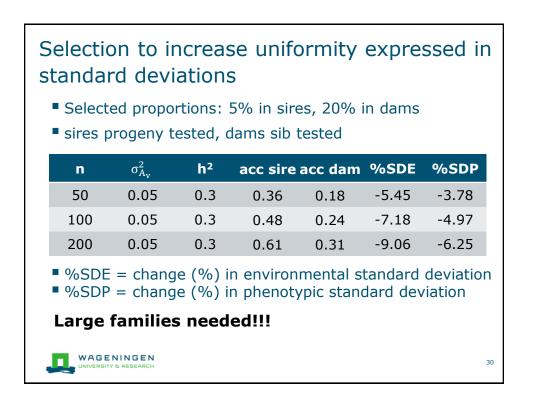
	No. of progeny	$r_A = 0:$ $\sigma^2_{A_r}$			$r_A = 0.5$: $\sigma^2_{A_v}$				
Information		0.01	0.05	0.10	0.01	0.05	0.10		
		Predicted accuracy $\hat{A}_{\mathbf{v}}$							
Phenotype	_	0.070	0.152	0.209	0.279	0.299	0.319		
Full-sibs	10	0.123	0.252	0.327	0.299	0.348	0.388		
	50	0.267	0.468	0.544	0.394	0.505	0.560		
	100	0.355	0.553	0.610	0.442	0.570	0.617		
Half-sib	10	0.115	0.244	0.325	0.346	0.386	0.424		
Progeny	50	0.257	0.499	0.618	0.490	0.597	0.671		
0 /	100	0.353	0.633	0.745	0.545	0.693	0.772		
	1000	0.768	0.933	0.962	0.798	0.936	0.963		

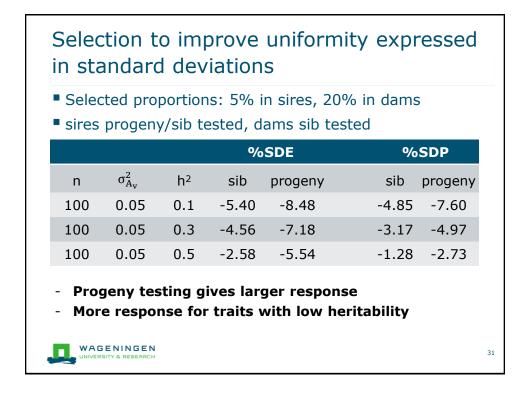
Using 100 progeny yields meaningful accuracies

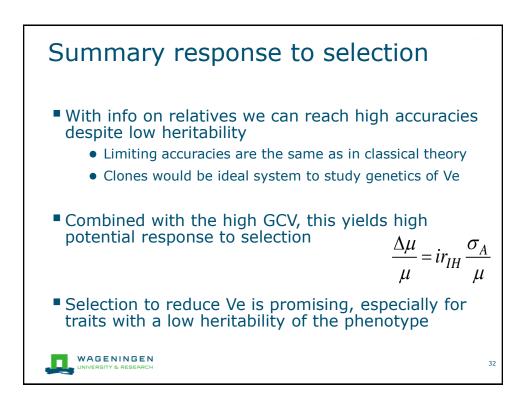
Mulder et al. 2007; Genetics 175:1895-1910

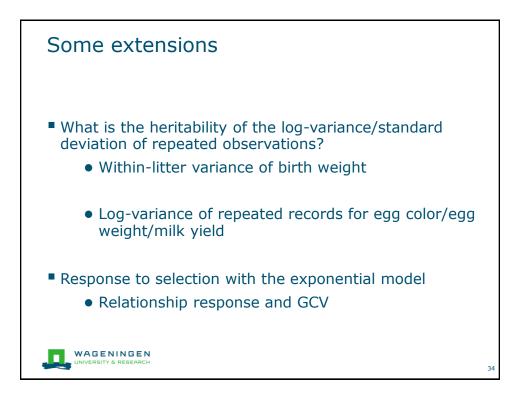
The accuracy of vEBV (approximation) heritability = 0.03 1 0.9 0.8 0.7 accuracy vEBV 0.6 0.5 clones 0.4 0.3 full-sibs 0.2 half-sib progeny 0.1 0 0 200 400 600 800 1000 Number of relatives WAGENINGEN 28

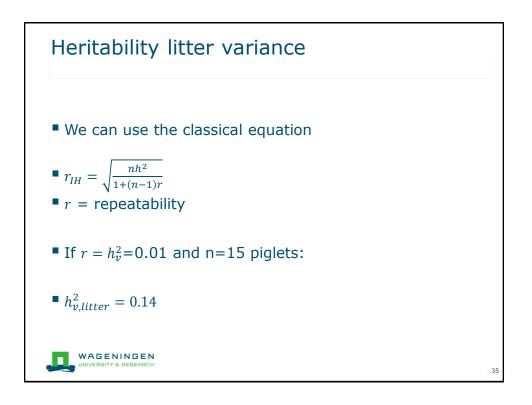


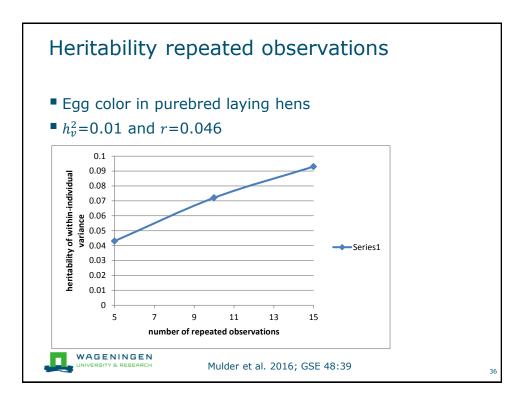


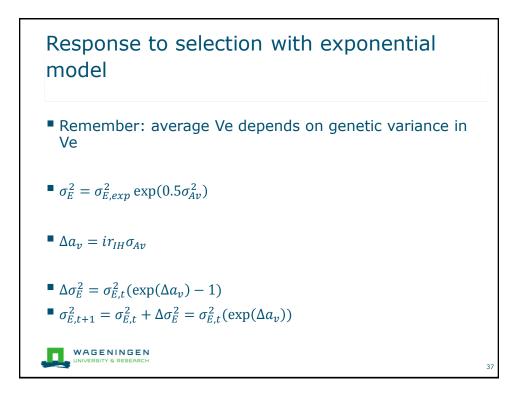


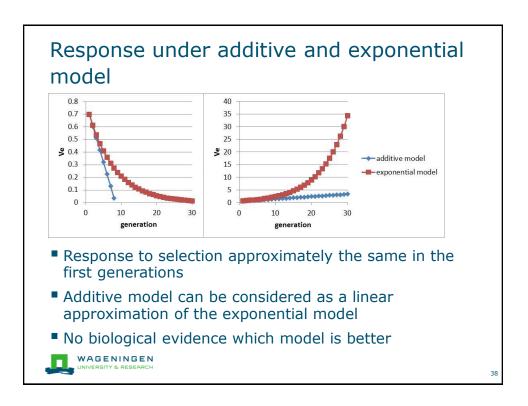


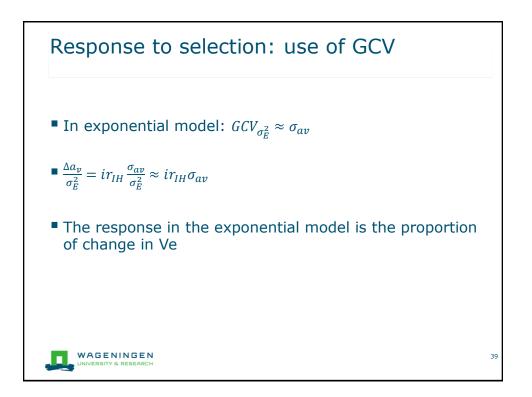






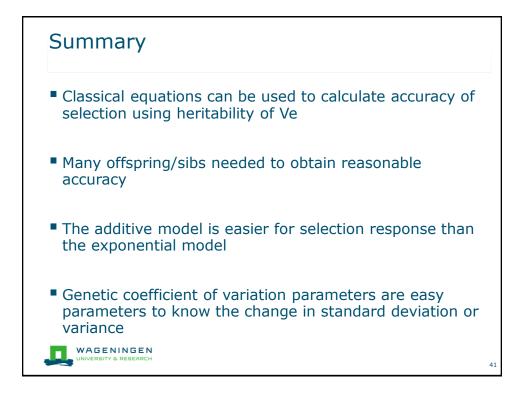


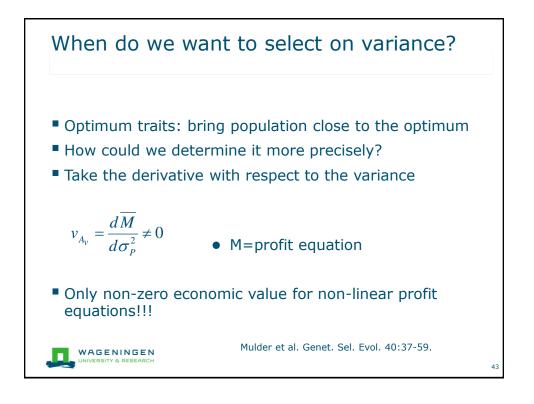


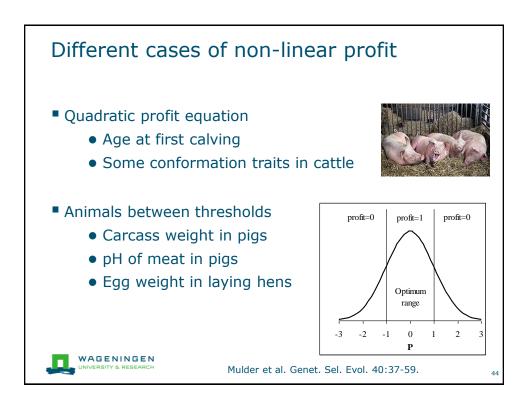


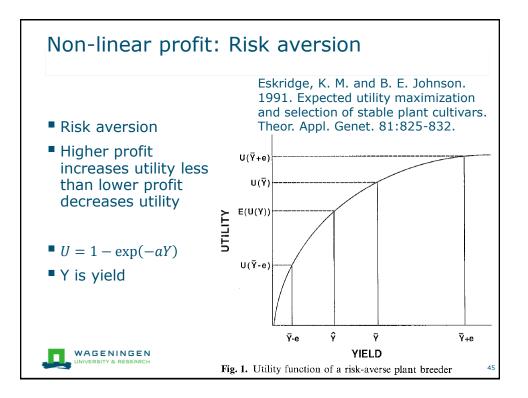
Selection response in standard deviations
•
$$GCV_{\sigma_e} \approx \frac{1}{2}\sigma_{av}$$

• $GCV_{\sigma_p} \approx \frac{1}{2}\sigma_{av}\frac{\sigma_{e}^2}{\sigma_{p}^2}$
• $\frac{\Delta a_v}{\sigma_p} \approx ir_{IH}\frac{1}{2}\sigma_{av}\frac{\sigma_{e}^2}{\sigma_{p}^2}$
• Example: $i = 1.0$, $r_{IH} = 0.6$; $\sigma_{av}^2 = 0.05$; $\frac{\sigma_{e}^2}{\sigma_{p}^2} = 0.7$
• $\Delta a_v = 1.0 * 0.6 * \sqrt{0.05} = 13\%$
• $\frac{\Delta a_v}{\sigma_E} = 1.0 * 0.6 * \sqrt{0.05} * 0.5 = 6.7\%$
• $\frac{\Delta a_v}{\sigma_p} = 1.0 * 0.6 * \sqrt{0.05} * 0.5 * 0.7 = 2.3\%$



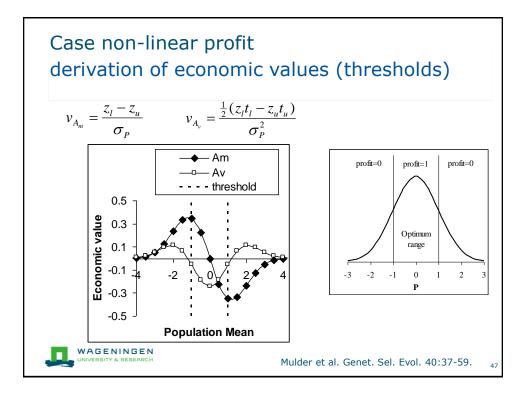


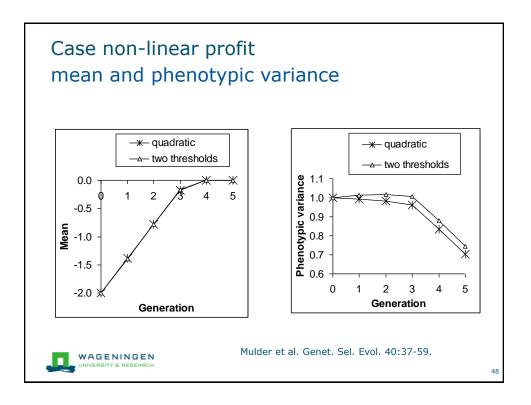


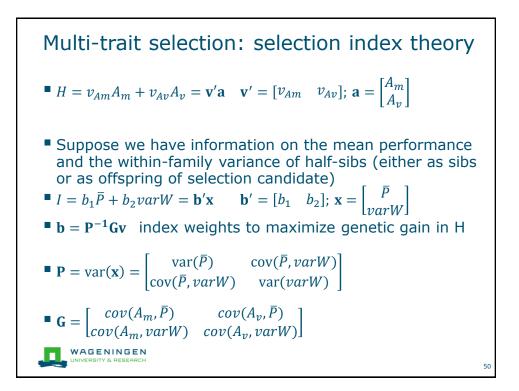


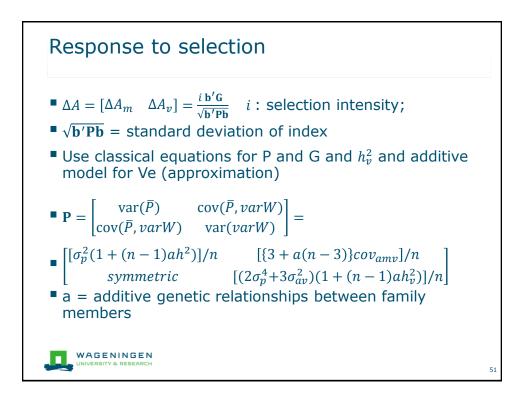
Case non-linear profit: derivation of economic values (quadratic profit)

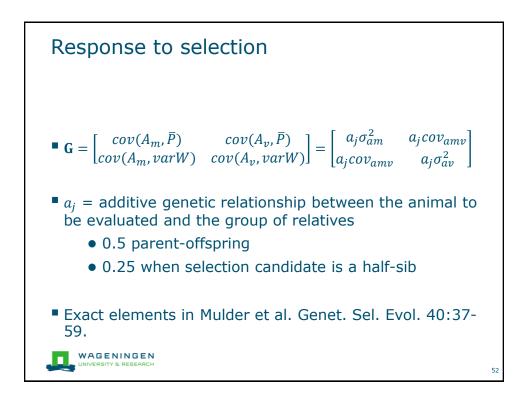
• Animal level $M = a_1(P-O)^2 + a_2$ • Population level $\overline{M} = \int_{-\infty}^{\infty} Mf(P)dP = a_1\mu^2 - 2a_1\mu O + a_1O^2 + a_2 + a_1\sigma_P^2$ • Economic values $v_{A_m} = \frac{d\overline{M}}{d\mu} = 2a_1(\mu - O)$ $v_{A_m} = \frac{d\overline{M}}{d\sigma_P^2} = a_1$ • Mulder et al. Genet. Sel. Evol. 40:37-59.











What is the relationship between fitness and Ve?

- What is the best Ve from a fitness point of view?
- Are there any trade-offs of a high or low variance?
- What is the regression of fitness on trait values or on within-family variance?
- We performed an analysis in Great Tits at the Veluwe, a nature reservation close to Wageningen

