

Chemical Constituents from the Roots of Atalantia monophylla

Arnon Chukaew

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Organic Chemistry

Prince of Songkla University

ชื่อวิทยานิพนธ์
 ผู้เขียน
 สาขาวิชา
 ปีการศึกษา
 องค์ประกอบทางเคมีจากรากของต้นมะนาวผี
 นายอานนท์ ชูแก้ว
 เคมีอินทรีย์
 2551

บทคัดย่อ

การศึกษาองค์ประกอบทางเคมีของส่วนสกัดเมทิลีนคลอไรด์ และอะซีโตนจาก รากของต้นมะนาวผี สามารณแยกสารใหม่ได้ 3 สาร เป็นสารประกอบอัลคาลอยด์ชนิดอะครีโดน คือ cycloatalaphylline-A (AM4), N-methylcycloatalaphylline-A (AM5) และ N -methylbuxifoliadine-E (AM9) นอกจากนี้ยังพบสารที่มีการรายงานแล้ว 17 สาร ประกอบด้วยสาร ประเภทอะครีโดน อัลคาลอยด์ 8 สาร คือ N-methylatalaphylline (AM1), atalaphylline (AM2), buxifoliadine-A (AM3), yukocitrine (AM6), N-methylataphyllinine (AM7), buxifoliadine-E (AM8), citrusinine-I (AM10) และ junosine (AM11) สารประเภทลิโมนอยด์ 4 สาร คือ atalantolide (AM12), atalantin (AM13), cycloepiatalantin (AM14) และ cycloepiatalantin acetate (AM15), สารประเภทคูมาริน 2 สาร คือ auraptene (AM16) และ 7-O-geranylscopoletin (AM17) สารประเภทแอนทราควิโนน 1 สาร คือ physcion (AM18) และ สารประเภทสเตอรอยด์ 2 สาร คือ สารผสมของ β-sitosterol ($\mathbf{A M 1 9}$) และ stigmasterol (AM20) โครงสร้างของสารประกอบเหล่านี้ วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี และสำหรับสาร $\mathbf{A M 7}$ ใช้ข้อมูลทางเอกซ์เรย์ ประกอบการวิเคราะห์อีกด้วย

$$
\text { AM1 } \quad \mathbf{R}=\mathrm{Me} \quad \mathbf{R}_{1}=\mathrm{H}
$$

AM2 $\quad \mathbf{R}=\mathrm{H} \quad \mathbf{R}_{1}=\mathrm{H}$
AM3 $\quad \mathbf{R}=\mathrm{Me} \quad \mathbf{R}_{\mathbf{1}}=\mathrm{Me}$

AM6

AM7

AM8 $\quad \mathbf{R}=\mathrm{H}$
AM10

AM9 $\quad \mathbf{R}=\mathrm{Me}$

AM11

AM12

AM13

AM16 $\mathbf{R}=\mathrm{H}$
AM17 $\mathbf{R}=\mathrm{OMe}$

AM18

AM20
AM19

Thesis Title	Chemical Constituents from the Roots of Atalantia monophylla
Author	Mr. Arnon Chukaew
Major Program	Organic Chemistry
Academic Year	2008

Abstract

Investigation of the methylene chloride and acetone extracts of the roots of Atalantia monophylla resulted in three new acridone alkaloids: cycloatalaphylline-A (AM4), N -methylcycloatalaphylline-A (AM5) and N-methylbuxifoliadine-E (AM9), together with seventeen known compounds: eight acridones; N-methylatalaphylline (AM1), atalaphylline (AM2), buxifoliadine-A (AM3), yukocitrine (AM6), N-methylataphyllinine (AM7), buxifoliadine-E (AM8), citrusinine-I (AM10) and junosine (AM11); four limonoids: atalantolide (AM12), atalantin (AM13), cycloepiatalantin (AM14) and cycloepiatalantin acetate (AM15); two coumarins: auraptene (AM16) and 7-O-geranylscopoletin (AM17); one anthraquinone: physcion (AM18) and two steroids: a mixture of $\boldsymbol{\beta}$-sitosterol (AM19) and stigmasterol (AM20). Their structures were elucidated by spectroscopic methods. The structure of AM7 was additionally confirmed by X-ray diffraction analysis.

AM1 $\quad \mathbf{R}=\mathrm{Me} \quad \mathbf{R}_{\mathbf{1}}=\mathrm{H}$
AM2 $\quad \mathbf{R}=\mathrm{H} \quad \mathbf{R}_{1}=\mathrm{H}$
AM3 $\quad \mathbf{R}=\mathrm{Me} \quad \mathbf{R}_{\mathbf{1}}=\mathrm{Me}$

$$
\begin{array}{ll}
\text { AM4 } & \mathbf{R}=\mathrm{H} \\
\text { AM5 } & \mathbf{R}=\mathrm{Me}
\end{array}
$$

AM6

AM7

AM8 $\mathbf{R}=\mathrm{H}$

AM9 $\mathbf{R}=\mathrm{Me}$

AM11

AM12

AM14 $\mathbf{R}=\mathrm{H}$
AM15 R = Ac

AM18

AM20

AM19

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Associate Professor Chanita Ponglimanont, my major advisor for her constant guidance, useful suggestions, appreciation, sincere advice and kindness. This was a great motivator for me and will remain to be deep-rooted in my heart.

My sincere thanks are expressed to Associate Professor Dr. Chatchanok Karalai my coadvisor for his valuable advice. I would like to offer thanks to Assoc. Prof. Dr. Kitichate Sridith for plant identification.

I am very thankful to Professor Dr. Hoong-Kun Fun, X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Malaysia and Associate Professor Dr. Suchada Chantrapromma for structure determination by single X-ray diffraction and advice. I am very thankful to Associate Professor Dr. Supinya Tewtrakul, Dr. Akkharawit Kanjana-Opas, for bioactivity tests.

I would like to express my appreciation to the staffs of the Department of Chemistry, Faculty of Science, Prince of Songkla University for making this thesis possible. Dr. Yaowapa Sukpondma is highly acknowledged for recording NMR spectral data.

This research was supported by a scholarship from the graduate school, Prince of Songkla University. I would like to acknowledge Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Prince of Songkla University for partial financial support.

Arnon Chukaew

THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

The purpose of this research is to investigate the chemical constituents of A. monophylla in order to exploit potential uses of this plant as a medicinal plant. The chemical investigation of constituents from the roots of A. monophylla has led to isolation of eleven acridone alkaloids: AM1-AM11, four limonoids: AM12-AM15, two coumarins: AM16-AM17, one anthraquinone: AM18 and two steroids: AM19 and AM20. Two acridone alkaloids: buxifoliadine-E (AM8) and citrusinine-I (AM10) possessed significant anti-allergic activity against cell degranulation in RBL-2H3 cells with an IC_{50} values at 6.1 and $18.7 \mu \mathrm{M}$, respectively. All four limonoids isolated: atalantolide (AM12), atalantin (AM13), cycloepiatalantin (AM14) and cycloepiatalantin acetate (AM15) were moderately active against MCF-7 (breast adenocarcinoma), HT-29 (human colon cancer), KB (human oral cancer) and HeLa (human cervical cancer) cell lines.

CONTENTS

Page
CONTENTS xiii
LIST OF TABLES XV
LIST OF ILLUSTRATIONS xviii
LIST OF ABBREVIATIONS AND SYMBOLS xxvi
CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Review of literatures 3
1.3 Objective 28
CHAPTER 2 EXPERIMENTAL 29
2.1 Instruments and chemicals 29
2.2 Plant material 28
2.3 Extraction and isolation 30
2.4 Isolation and chemical investigation 31
2.4.1 Investigation of the crude methylene chloride extract 31from the roots of A. monophylla
2.4.2 Investigation of the crude acetone 37
extract from the roots of A. monophylla
2.5 Bioassays 39
2.5.1 Anti-allergic activity assay 39
2.5.2 Antibacterial assay 39
2.5.3 Cytotoxic assay 40
CHAPTER 3 RESULTS AND DISCUSSION 41
3.1 Structure elucidation of compounds from the roots of A. monophylla 41
3.1.1 Compound AM1 42
3.1.2 Compound AM2 45
3.1.3 Compound AM3 47
3.1.4 Compound AM4 52
3.1.5 Compound AM5 54
3.1.6 Compound AM6 57
3.1.7 Compound AM7 59
3.1.8 Compound AM8 63
3.1.9 Compound AM9 65
3.1.10 Compound AM10 71
3.1.11 Compound AM11 75
3.1.12 Compound AM12 77
3.1.13 Compound AM13 82
3.1.14 Compound AM14 87
3.1.15 Compound AM15 92
3.1.16 Compound AM16 96
3.1.17 Compound AM17 99
3.1.18 Compound AM18 102
3.1.19 Compounds AM19 and AM20 104
3.2 Bioactivities of isolated compounds from the roots of A. monophylla 105
3.2.1 Anti-allergic activity 105
3.2.2 Antibacterial activity 106
3.2.3 Cytotoxic activity 106
CHAPTER 4 CONCLUSION 109
REFERENCE 110
APPENDIX 115
VITAE 202

LIST OF TABLES

Table

1

6 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM1,

AM3 and Buxifoliadine-A (R , acetone $-d_{6}$)

11 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM5,

AM7 and N -methylataphyllinine ($\mathrm{R}, \mathrm{CDCl}_{3}$)

12
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM8(acetone- d_{6}) 6464
$13 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HMBC and NOESY spectral data of compound AM9 67
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HMBC and NOESY spectral data of compound AM4
(acetone- d_{6})
$8 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HMBC and NOESY spectral data of compound AM5
(acetone- d_{6})
$9 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM6(acetone- d_{6})
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM7 (acetone- d_{6}) 61

```
                (acetone-d}\mp@subsup{|}{6}{
```

Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM8,

AM9 and Buxifoliadine-E (R, recorded in acetone- d_{6})

Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM8,

AM9 and Buxifoliadine-E (R, acetone- d_{6})
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM10 (acetone- d_{6})

Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM10
and citrusinine-I (R, DMSO- $\left.d_{6}+\mathrm{CDCl}_{3}\right)$

Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM10
and citrusinine-I (R, $\mathrm{DMSO}_{-} \mathrm{d}_{6}+\mathrm{CDCl}_{3}$
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM11 (acetone- d_{6})
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound $\mathrm{AM} 12\left(\mathrm{CDCl}_{3}\right)$78

Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM12 80
and atalantolide $\left(\mathrm{R}, \mathrm{CDCl}_{3}\right)$
mparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM12
and atalantolide $\left(\mathrm{R}, \mathrm{CDCl}_{3}\right)$
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM13 (acetone- d_{6})83

Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM13 85
and atalantin $\left(\mathrm{R}, \mathrm{CDCl}_{3}\right)$

Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM13
and atalantin $\left(\mathrm{R}, \mathrm{CDCl}_{3}\right)$
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM14 (acetone- d_{6})88

LIST OF TABLES (Continued)

Table

27 Comparison of ${ }^{1}$ H NMR spectral data between compounds AM14 90 and cycloepiatalantin $\left(\mathrm{R}, \mathrm{CDCl}_{3}\right)$

Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM14
and cycloepiatalantin $\left(\mathrm{R}, \mathrm{CDCl}_{3}\right)$
$29 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM15 (acetone- d_{6})

Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM15 95
and cycloepiatalantin acetate ($\mathrm{R}, \mathrm{CDCl}_{3}$)
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM16 $\left(\mathrm{CDCl}_{3}\right)$97

32 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM16
and auraptene ($\mathrm{R}, \mathrm{CDCl}_{3}$)
$33 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM17 (acetone-d ${ }_{6}$) 100

34 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM17
and 7-O-geranylscopoletin ($\mathrm{R}, \mathrm{CDCl}_{3}$)

35
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM18 $\left(\mathrm{CDCl}_{3}\right)$103

36 Anti-allergic activities of compounds (AM1, AM2, AM5,

AM7, AM8, AM10, AM12, AM16-AM18) from the roots of A. monophylla

37
Antibacterial activity of the compounds isolated
Table
38 In vitro cytotoxic activity of the compounds isolated from 108 the roots of A. monophylla

LIST OF ILLUSTATIONS

Schemes Page
1 Extraction of the roots of A. monophylla 30
2 Isolation of compounds AM1-8, AM10, AM12-20 31
from the methylene chloride extract
3 Isolation of compounds AM11 and AM9 from the acetone extract 37
Figures
1 Different parts of Atalantia monophylla 2
2 Selected HMBC correlation of AM1 43
3 Selected HMBC correlation of AM2 45
4 Selected HMBC correlation of AM3 48
5 Selected HMBC correlation of AM4 53
6 Selected HMBC correlation of AM5 55
7 Selected HMBC correlation of AM6 58
8 X-ray ORTEP diagram of compound AM7 60
9 Selected HMBC correlation of AM7 60
10 Selected HMBC correlation of AM8 64
11 Selected HMBC correlation of AM9 66

LIST OF ILLUSTATIONS (Continued)

Figures Page
12 Selected HMBC correlation of AM10 72
13 Selected HMBC correlation of AM11 75
14 Selected HMBC correlation of AM12 78
15 Selected HMBC correlation of AM13 83
16 Selected HMBC correlation of AM14 88
17 Selected HMBC correlation of AM15 93
18 Selected HMBC correlation of AM16 96
19 Selected HMBC correlation of AM17 99
20 Selected HMBC correlation of AM18 103
21 UV (MeOH) spectrum of compound AM1 116
22 IR (KBr) spectrum of compound AM1 116
$23{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM1 117
$24{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM1 117
25 DEPT 135° (acetone- d_{6}) spectrum of compound AM1 118
26 DEPT 90° (acetone- d_{6}) spectrum of compound AM1 118
27 2D COSY (acetone- d_{6}) spectrum of compound AM1 119
28 2D HMQC (acetone- d_{6}) spectrum of compound AM1 119

LIST OF ILLUSTATIONS (Continued)

Figures Page
29 2D HMBC (acetone- d_{6}) spectrum of compound AM1 120
$30 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AM2 120
31 IR (KBr) spectrum of compound AM2 121
$32{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM2 121
$\mathbf{3 3}{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM2 122
34 DEPT 135° (acetone- d_{6}) spectrum of compound AM2 122
35 DEPT 90° (acetone $-d_{6}$) spectrum of compound AM2 123
36 2D COSY (acetone- d_{6}) spectrum of compound AM2 123
37 2D HMQC (acetone- d_{6}) spectrum of compound AM2 124
38 2D HMBC (acetone- d_{6}) spectrum of compound AM2 124
$39 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AM3 125
40 IR (neat) spectrum of compound AM3 125
$41{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM3 126
$42{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM3 126
43 DEPT 135° (acetone- d_{6}) spectrum of compound AM3 127
44 DEPT 90° (acetone- d_{6}) spectrum of compound AM3 127
45 2D COSY (acetone- d_{6}) spectrum of compound AM3 128

LIST OF ILLUSTATIONS (Continued)

Figures Page
46 2D HMQC (acetone- d_{6}) spectrum of compound AM3 128
47 2D HMBC (acetone- d_{6}) spectrum of compound AM3 129
$48 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AM4 129
49 IR (KBr) spectrum of compound AM4 130
$50{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM4 130
$51{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM4 131
52 DEPT 135° (acetone $-d_{6}$) spectrum of compound AM4 131
53 DEPT 90° (acetone- d_{6}) spectrum of compound AM4 132
54 2D COSY (acetone- d_{6}) spectrum of compound AM4 132
55 2D HMQC (acetone- d_{6}) spectrum of compound AM4 133
56 2D HMBC (acetone- d_{6}) spectrum of compound AM4 133
57 2D NOESY (acetone- d_{6}) spectrum of compound AM4 134
58 EIMS spectrum of compound AM4 134
59 HREIMS spectrum of compound AM4 135
$60 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AM5 135
61 IR (KBr) spectrum of compound AM5 136
$62{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM5 136

LIST OF ILLUSTATIONS (Continued)

Figures Page
$63{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM5 137
64 DEPT 135° (acetone- d_{6}) spectrum of compound AM5 137
65 DEPT 90° (acetone- d_{6}) spectrum of compound AM5 138
66 2D COSY (acetone- d_{6}) spectrum of compound AM5 138
67 2D HMQC (acetone- d_{6}) spectrum of compound AM5 139
68 2D HMBC $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM5 139
69 2D NOESY $\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM5 140
70 EIMS spectrum of compound AM5 140
71 HREIMS spectrum of compound AM5 141
$72 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AM6 141
73 IR (neat) spectrum of compound AM6 142
$74{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM6 142
$75{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM6 143
76 DEPT 135° (acetone- d_{6}) spectrum of compound AM6 143
77 DEPT 90° (acetone- d_{6}) spectrum of compound AM6 144

LIST OF ILLUSTATIONS (Continued)

Figures Page
78 2D COSY (acetone- d_{6}) spectrum of compound AM6 144
79 2D HMQC (acetone- d_{6}) spectrum of compound AM6 145
80 2D HMBC (acetone- d_{6}) spectrum of compound AM6 145
$81 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AM7 146
82 IR (neat) spectrum of compound AM7 146
$\mathbf{8 3}{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM7 147
$\mathbf{8 4}{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM7 147
$\mathbf{8 5}$ DEPT 135° (acetone- d_{6}) spectrum of compound AM7 148
86 DEPT 90° (acetone- d_{6}) spectrum of compound AM7 148
87 2D COSY (acetone- d_{6}) spectrum of compound AM7 149
88 2D HMQC (acetone- d_{6}) spectrum of compound AM7 149
89 2D HMBC (acetone- d_{6}) spectrum of compound AM7 150
$90 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AM8 150
91 IR (neat) spectrum of compound AM8 151
$\mathbf{9 2}{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM8 151
$\mathbf{9 3}{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM8 152
94 DEPT 135° (acetone- d_{6}) spectrum of compound AM8 152

LIST OF ILLUSTATIONS (Continued)

Figures Page
95 DEPT 90° (acetone- d_{6}) spectrum of compound AM8 153
96 2D COSY (acetone- d_{6}) spectrum of compound AM8 153
97 2D HMQC (acetone- d_{6}) spectrum of compound AM8 154
98 2D HMBC (acetone- d_{6}) spectrum of compound AM8 154
99 UV (MeOH) spectrum of compound AM9 155
100 IR (KBr) spectrum of compound AM9 155
$101{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM 156
$\mathbf{1 0 2}{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM9 156
103 DEPT 135° (acetone- d_{6}) spectrum of compound AM9 157
104 DEPT 90° (acetone- d_{6}) spectrum of compound AM9 157
105 2D COSY (acetone- d_{6}) spectrum of compound AM9 158
106 2D HMQC (acetone- d_{6}) spectrum of compound AM9 158
107 2D HMBC (acetone- d_{6}) spectrum of compound AM9 159
108 2D NOESY $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM9 159
109 EIMS spectrum of compound AM9 160
110 HREIMS spectrum of compound AM9 160
$111 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AM10 161

LIST OF ILLUSTATIONS (Continued)

Figures Page
112 IR (neat) spectrum of compound AM10 161
$113{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM10 162
$114{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM10 162
115 DEPT 135° (acetone- d_{6}) spectrum of compound AM10 163
116 DEPT 90° (acetone- d_{6}) spectrum of compound AM10 163
117 2D COSY (acetone- d_{6}) spectrum of compound AM10 164
118 2D HMQC (acetone- d_{6}) spectrum of compound AM10 164
119 2D HMBC (acetone- d_{6}) spectrum of compound AM10 165
120 UV (MeOH) spectrum of compound AM11 165
121 IR (neat) spectrum of compound AM11 166
$\mathbf{1 2 2}{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone $-d_{6}$) spectrum of compound AM11 166
$\mathbf{1 2 3}{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM11 167
124 DEPT 135° (acetone- d_{6}) spectrum of compound AM11 167
$\mathbf{1 2 5}$ DEPT $90^{\circ}\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM11 168
126 2D COSY (acetone- d_{6}) spectrum of compound AM11 168
127 2D HMQC (acetone- d_{6}) spectrum of compound AM11 169
128 2D HMBC (acetone- d_{6}) spectrum of compound AM11 169

LIST OF ILLUSTATIONS (Continued)

Figures Page
129 UV (MeOH) spectrum of compound AM12 170
130 IR (neat) spectrum of compound AM12 170
$\mathbf{1 3 1}{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12 171
$132{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12 171
133 DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12 172
134 DEPT $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12 172
135 2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12 173
136 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12 173
137 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12 174
$138 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AM13 174
139 IR (neat) spectrum of compound AM13 175
$\mathbf{1 4 0}{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone $-d_{6}$) spectrum of compound AM13 175
$141{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM13 176
142 DEPT $135^{\circ}\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM13 176
143 DEPT 90° (acetone- d_{6}) spectrum of compound AM13 177
144 2D COSY (acetone $-d_{6}$) spectrum of compound AM13 177
145 2D HMQC (acetone- d_{6}) spectrum of compound AM13 178

LIST OF ILLUSTATIONS (Continued)

Figures Page
146 2D HMBC (acetone- d_{6}) spectrum of compound AM13 178
147 UV (MeOH) spectrum of compound AM14 179
148 IR (neat) spectrum of compound AM14 179
$149{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM14 180
$\mathbf{1 5 0}{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM14 180
151 DEPT 135° (acetone- d_{6}) spectrum of compound AM14 181
152 DEPT 90° (acetone- d_{6}) spectrum of compound AM14 181
153 2D COSY (acetone- d_{6}) spectrum of compound AM14 182
154 2D HMQC (acetone- d_{6}) spectrum of compound AM14 182
155 2D HMBC (acetone- d_{6}) spectrum of compound AM14 183
156 UV (MeOH) spectrum of compound AM15 183
157 IR (neat) spectrum of compound AM15 184
$\mathbf{1 5 8}{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM15 184
$\mathbf{1 5 9}{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM15 185
160 DEPT 135° (acetone- d_{6}) spectrum of compound AM15 185
161 DEPT 90° (acetone- d_{6}) spectrum of compound AM15 186

LIST OF ILLUSTATIONS (Continued)

Figures Page
162 2D COSY (acetone- d_{6}) spectrum of compound AM15 186
163 2D HMQC (acetone- d_{6}) spectrum of compound AM15 187
164 2D HMBC (acetone- d_{6}) spectrum of compound AM15 187
165 UV (MeOH) spectrum of compound AM16 188
166 IR (neat) spectrum of compound AM16 188
$167{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16 189
$168{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16 189
169 DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16 190
$\mathbf{1 7 0}$ DEPT $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16 190
$171 \operatorname{COSY}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16 191
172 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16 191
173 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16 192
174 UV (MeOH) spectrum of compound AM17 192
175 IR (neat) spectrum of compound AM17 193
$\mathbf{1 7 6}{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM17 193
$\mathbf{1 7 7}{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM17 194
178 DEPT 135° (acetone- d_{6}) spectrum of compound AM17 194

LIST OF ILLUSTATIONS (Continued)

Figures Page
179 DEPT 90° (acetone- d_{6}) spectrum of compound AM17 195
180 2D COSY (acetone- d_{6}) spectrum of compound AM17 195
181 2D HMQC (acetone- d_{6}) spectrum of compound AM17 196
182 2D HMBC (acetone- d_{6}) spectrum of compound AM17 196
183 UV (MeOH) spectrum of compound AM18 197
184 IR (neat) spectrum of compound AM18 197
$\mathbf{1 8 5}{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18 198
$\mathbf{1 8 6}{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18 198
187 DEPT $135 \square\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18 199
188 DEPT 90 $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{A M 1 8}$ 199
189 2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18 200
190 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18 200
191 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18 201
$192{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compounds AM19-AM20 201

LIST OF ABBREVIATIONS AND SYMBOLS

s	$=$	singlet
d	$=$	doublet
t	$=$	triplet
q	$=$	quartet
m	$=$	multiplet
$d d$	$=$	doublet of doublet
$d t$	$=$	doublet of triplet
$b r s$	$=$	broad singlet
$q d$	$=$	quartet of doublet
g	$=$	Gram
nm	$=$	Nanometer
mp	$=$	Melting point
cm^{-1}	$=$	Reciprocol centimeter (wave number)
δ	$=$	Chemical shift relative to TMS
J	$=$	Coupling constant
$[\alpha]_{\mathrm{D}}$	$=$	Specific rotation
$\lambda_{\text {max }}$	$=$	Maximum wavelength
v	$=$	Absorption frequencies

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

ε	$=$	Molar extinction coefficient
m / z	$=$	A value of mass divided by charge
$\stackrel{\circ}{\text { C }}$	$=$	Degree celcius
MHz	$=$	Megahertz
ppm	$=$	Part per million
C	$=$	Concentration
FT-IR	$=$	Fourier Transfrom Infrared
UV-Vis $=$	Ultraviolet-Visible	
ESI-TOF MS	$=$	Electrospray Ionization Time-of-Flight Mass
Spectrometry		
EIMS	$=$	Electron Ionization Mass Spectrometry
HREIMS	$=$	High Resolution Electron Ionization Mass Spectrometry
NMR	$=$	Nuclear Magnetic Resonance
2D NMR	$=$	Two Dimensional Nuclear Magnetic Resonance
COSY	$=$	Correlation Spectroscopy
DEPT	$=$	Distortionless Enhancement by Polarization Transfer
HMBC	$=$	Heteronuclear Multiple Bond Correlation
HMQC $=$		uclear Multiple Quantum Coherence

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

NOE	$=$	Nuclear Overhauser Effect
NOESY=		Overhauser Effect Correlation Spectroscopy
CC	$=$	Column Chromatography
QCC	$=$	Quick Column Chromatography
PLC	$=$	Preparative Thin Layer Chromatography
DCM	=	Dichloromethane
TMS	=	Tetramethylsilane
CDCl_{3}	=	Deuterochloroform
$\mathrm{CD}_{3} \mathrm{OD}=$	Deuteromethanol	
DMSO	$=$	Dimethylsulfoxide

CHAPTER 1

INTRODUCTION

1.1 Introduction

Atalantia monophylla (DC.) Corrêa (Figures 1) is the plant in the Rutaceae family, which is locally known as "Manao Pee (มะนาวผี)". It is a shrub with brown bark and thorny branches distributed in Southeast Asia, East Bengal, South India and Ceylon (Panda 2004). Various parts of this plant has been used as folk medicines for several purposes such as the treatment of chronic rheumatism, paralysis (Basa, 1975), antispasmodic, stimulant and hemiplegia (Panda, 2004). The essential oil from the leaves showed antimicrobial and strong inhibitory activities against some pathogenic fungi (Prasad, 1988), whereas decoction of the leaves is applied in itch and other skin complaints (Panda 2004). In the previous report, limonoids and acridone alkaloids have been isolated from the petroleum ether extract of the root bark (Govindachari et al., 1970, Basu and Basa 1972, Kulkarni and Sabata, 1981). Acridone alkaloids have shown several biological activities such as inhibition of Epstein-Barr virus (EBV)-EA induction (Itoigawa et al., 2003), induction of human promyelocytic leukemia cell (HL-60) differentiation (Kawaii et al., 1999a), and antiproliferative (Kawaii et al., 1999b). Atalantia genus comprises 12 species: buxifolia, ceylanica, citroides, guillauminii, hainanensis, macrophylla, monophylla, racemosa, rotandifolia, roxburghiany, simplicifolia and wightii (http://www.wikimedia.org). A. monophylla is the only specie found in Thailand.
A. monophylla is a small to medium-sized, shrubby tree, $8-15 \mathrm{~m}$ tall. The bark is distinct ridges and many prickles that is grey brown color. The stem has the character of rut twists. Leaves are single arrange alternate oval, with concave curly end, width $3-5 \mathrm{~cm}$, length $7-12 \mathrm{~cm}$. The flowers are white gathering in a bouquet. The fruits have round character, small-sized with the thick rough skin and an oval-shaped seed. They are found in the mixed forest and seaside forest.

In Thailand, A. monophylla has been found in every part of the country. It has many local Thai names: Krut-proei (กรูดเปรย) Khmer-Chanthaburi; Krut
phi (กรูดผี) Surat Thani; Kanao phli (กะนาวพลี) Peninsular; Khi tio (ขิ้ติ้ว) Northern; Nang kan (นางกาน) Khon kaen; Manao phi (มะนาวผี) Chiang Mai, Ratchaburi; (Smitinand, 2001).

Figure 1 Different parts of Atalantia monophylla

1.2 Review of Literatures

Chemical constituents isolated from the six species of this genus were summarized in Table 1. Information obtained from Scifinder Scholar copyright in 2007 will be presented and classified into groups: Acridone alkaloids, Alkaloids, Anthraquinones, Aromatics, Coumarins, Flavonoids, Limonoids, Monoterpenoids, Pyropheophorbides, Serverine benzamides, Sesquiterpenoids and Triterpenoids.

Table 1 Compounds from plants of Atalantia genus.
a. Acridone alkaloids
g. Limonoids
b. Alkaloids
h. Monoterpenoids
c. Anthraquinones
i. Pyropheophorbides
d. Aromatics
j. Serverine benzamides
e. Coumarins
k. Sesquiterpenoids
f. Flavonoids
l. Triterpenoids

Scientific name	Part	Compounds	Bibliography
A. buxifolia	Root Bark	N-methylseverifoline, a1 Severifoline, a2 Atalaphyllinine, a3 N, O-Dimethylseverifoline, a4 N-methylataphyllinine, a5 N -methylbicycloatalaphylline, a6 Noracronycine, a7 N-methylatalaphylline, a8 Severifoline, a2 Atalaphyllinine, a3 Atalaphyllidine, a9 Citrusinine-I, a10 Citrusinine-II, a11 N-methylatalaphylline, a8 1,2,3-Trihydroxy acridone, a12 5-Hydroxy- N -methyl-Severifoline, a7 Glycocitrine-I, a13 Buxifoliadine-A, a14 Buxifoliadine-A, a15	Wu et al., 1982 Wu et al., 2000

Scientific name	Part	Compounds	Bibliography
A. buxifolia	Root Bark	Buxifoliadine-C, a16 Buxifoliadine-D, a17 Buxifoliadine-E, a18 Buxifoliadine-F, a19 Buxifoliadine-G, a20 Buxifoliadine-H, a21 Buxifoliadine-B, a15 Buxifoliadine-D, a17 Buxifoliadine-H, a21 Severifoline, a2 Citrusinine-I, a10 Citrusinine-II, a11 7-Isovaleroylcycloseverinolide, - g1 7-Isovaleroylcycloepiatalantin, - g2	Wu et al., 2000 Wu et al., 2001
A. ceylanica	Bark Root bark Heart wood Seed	Atalantine, $\mathbf{a} 22$ Ataline, a23 Xanthoxine, e7 Racemosin, e8 Ceylantin, e6 Cycloatalantin, g3 Cycloatalantinone, g4 Cycloatalantin-16-oic acid, g5 Isocycloatalantin, g6 Cycloepiatalantin, g7 Dehydrocycloatalantin, g8	Fraser et al., 1973 Ahmad et al., 1984 Murray et al., 1985 Bennett et al., 1994

Scientific name	Part	Compounds	Bibliography
A. ceylanica	Seed	Ataloxime, b1 Xanthotoxin, e1 Imperatorin, e2 Bergapten, e3 Heraclenin, e4 Oxypeucedanin, e5	Bacher et al., 1999
A missionis	Root and Stem bark	Ostruthine, e9 Isopimpinellin, e10	Barua et al., 1974
A. monophylla	Leave Root bark	Benzopyran-6-acrylic acid, e11 Marmesin, e12 Sabinene, h1 Stigmas-5-en-3-ol, $1 \mathbf{1}$ Friedelanone, 12, N -methylatalaphyllinine, a5 Atalaphyllinine, a3 Obacunoic acid, g13 Atalaphylline, a25 N-methylatalaphylline, a8 N-methylbicycloatalaphylline, a6 O-Methylbicycloatalaphylline, a27 Monomethyl ether atalaphylline, a28	Thakar et al., 1969 Talapatra et al., 1970 Govindachari et al., 1970 Basu et al., 1972

Scientific name	Part	Compounds	Bibliography
A. monophylla	Root bark Fruit Heart wood	Atalaphylline-3,5-dimethyl ether a29 Atalaphyllinine, a3 Atalantolide, $\mathbf{g 1 2}$ Auraptene, e13 Bisabolene, $\mathbf{k 1}$ Trans- β-Bergamotenes, $\mathbf{k 2}$ Trans- α-Bergamotenes, $\mathbf{k 3}$ Bisabolol, k4 Norbisabolide, $\mathbf{k 5}$ Bisabols oxide, k6 Dehydroatalantin, g8 Atalaphylline, $\mathbf{a} 25$ N-methylatalaphylline, a8 Atalantine, $\mathbf{a 2 2}$ physcion, c1 Atalantin acetate, g10 Rutevin, g11 Atalaphyllidine, a9 Atalantin, g9 Severine palmitate, $\mathbf{j 1}$ Benzamidate, $\mathbf{j} 2$ Deoxyseverine, j3 Severine acetate, $\mathbf{j} 4$ Oxodeoxyseverine, $\mathbf{j} 5$ Severinol, j6 Psoralene, e14 Isopsoralene, e15 Stigmast-4-en-3-one, $\mathbf{1 3}$	Basu et al., 1972 Basa, 1975 Shringarpure et al., 1975 Dreyer et al., 1976 Chatterjee et al., 1976 Sabata et al., 1977 Dreyer et al., 1980 Kulkarni et al., 1980

Scientific name	Part	Compounds	Bibliography
A. monophylla	Leave Root bark Leave	Stigmas-5-en-3-ol, 11 Atalaphylline, a25 N-methylatalaphylline, a8 N-methylatalaphylline-3,5- dimethyl ether, a30 N -methyl-tri- O - methylatalaphylline, a31 Cycloatalaphylline 3,5-dimethyl ether, $\mathbf{a} 32$ 1,3-Dihydroxy-5-methoxy- acridone, a24 Atalaphylline, a25 5-Hydroxyarborinine, a26 N-methylataphyllinine, a5 Pyropheophorbide a, i1 Pyropheophorbide b, i2	Shah et al., 1981 Kulkarni et al., 1981 Bahar et al., 1982 Shah et al., 1982 Chansakaow et al., 1994
A. racemosa	Heart wood	Xanthoxine, e 7 Isoevodionol, e16 Umbelliferone, e17 Luvangetin, e18 Xanthyletin, e19 Rutaretin, e20 Rutarin, e21 Racemosin, e22 Racemoflavone, $\mathbf{f 1}$ Atalantaflavone, $\mathbf{f} \mathbf{2}$	Banerji et al., 1988b

\begin{tabular}{|c|c|c|c|}
\hline Scientific name \& Part \& Compounds \& Bibliography \\
\hline A. wightii \& \begin{tabular}{l}
Root \\
Stem bark \\
Stem bark
\end{tabular} \& \begin{tabular}{l}
Kokusaginin, b4 \\
Xanthyletin, e19 \\
Cinnamic acid lactone, e30 \\
Isoimpinellin, e31 \\
Ostol, e32 \\
Marmesin, e12 \\
Xanthoxine, e7 \\
Obacylactone, g14 \\
Atalantin, g9 \\
Phebalosin, e27 \\
\(N\)-methylatalaphylline, a8 \\
\(N\)-methylataphyllinine, a5 \\
Auraptene, e13 \\
Umbelliferone, e17 \\
Micromelumin, e28 \\
Murrangatin, e29 \\
Skimmianin, b2 \\
Heplopine, b3 \\
\(p\)-Coumaric acid ethyl ester, d1 \\
Imperatorin, e2 \\
Scopoletol, e23 \\
Marmin, e24 \\
Limettin, e25 \\
Crenyllatin, e26 \\
Phebalosin, e27
\end{tabular} \& Banerji et al., 1982

Banerji et al., 1988a

\hline
\end{tabular}

Structures

a Acridone alkaloids

R	R_{1}	R_{2}
Me	H	$\mathrm{H}: N$-Methylseverifoline, a1
H	H	$\mathrm{H}:$ Severifoline, a2
H	OH	$\mathrm{H}:$ Atalaphyllinine, a3
Me	H	$\mathrm{Me}: N, O$-Dimethylseverifoline, a4
Me	OH	$\mathrm{H}: N$-Methylataphyllinine, a5

N -methylbicycloatalaphylline, a6

Noracronycine, a7

N -Methylatalaphylline, a8

Atalaphyllidine, a9

Buxifoliadine-E, a18

Buxifoliadine-F, a19

Buxifoliadine-G, a20

Buxifoliadine- H, a21

Atalantine, a22

Ataline, a23

1,3-Dihydroxy-5-methoxy-acridone, a24

Atalaphylline, a25

5-Hydroxyarborinine, a26

$\mathrm{R}=\mathrm{H}: \quad O$-Methylbicycloatalaphylline, a27
$\mathrm{R}=\mathrm{Me}:$ Monomethyl ether atalaphylline, a28

Atalaphylline 3,5-dimethyl ether, a29

N-Methyl-atalaphylline-3,5-dimethyl ether, a30

N -Methyl-tri- O-methylatalaphylline, a31

Cycloatalaphylline 3,5-dimethyl ether, a32

b. Alkaloids

Ataloxime, b1

Skimmianin, b2

Haplopine, b3

c. Anthraquinone

Kokusaginin, b4

Physcion, c1

d. Aromatic

p-Coumaric acid ethyl ester, d1
e. Coumarins

Xanthotoxin, e1

Imperatorin, e2

Bergapten, e3

Heraclenin, e4

Oxypeucedanin, e5

> Ceylantin, e6

Xanthoxine, e7

Racemosin, e8

Ostruthine, e9

Isoimpinellin, e10

Benzopyran-6-acrylic acid, e11

Marmesin, e12

Psoralene, e14

Isopsoralene, e15

Isoevodionol, e16

Umbelliferone, e17

Xanthyletin, e19

Luvangetin, e18

Racemosine, e22

Scopoletol, e23

Marmin, e24

Limettin, e25

Crenyllatin, e26

Phebalosin, e27

Micromelumin, e28

Murrangatin, e29

Cinnamic acid lactone, e30

Isoimpinellin, e31

f. Flavonoids

$\mathrm{R}=\mathrm{OMe}$: Racemoflavone, f1
R = H : Atalantaflavone, f2

g. Limonoids

R_{1}	R_{2}
OH	$\mathrm{H}: 7$ 7-Isovaleroylcycloseverinolide $\mathbf{g 1}$
O	$\mathrm{O}: 7$ 7-Isovaleroylcycloepiatalantin, $\mathbf{g 2}$

Cycloatalantin, g3

Cycloatalantinone, g4

Cycloatalantin-16-oic acid, g5

Isocycloatalantin, g6

Cycloepiatalantin, $\mathbf{g} 7$

Dehydrocycloatalantin, g8

Atalantin, g9

Atalantin acetate, g10

Rutevin, g11

Atalantolide, $\mathbf{g 1 2}$

Obacunoic acid, g13

Obacylactone, g14

Sabinene, h1

i. Pyropheophorbides

R = H: Pyropheophorbide a , i1
R = Me : Pyropheophorbide b, i2

Severine palmitate, $\mathbf{j} 1$

Benzamidate, j2

R=H : Deoxyseverine, $\mathbf{j} 3$
R=OAc : Severine acetate, j4
$\mathrm{R}=\mathrm{Ac}$: Oxodeoxyseverine, $\mathbf{j 5}$
R=OH: Severinol, j6

k. Sesquiterpenoids

Bisabolene, k1

trans- β-Bergamotenes, $\mathbf{k 2}$

trans- α-Bergamotenes, $\mathbf{k 3}$

Bisabolol, k4

Norbisabolide, k5

Bisabols oxide, k6

1. Triterpenoids

Friedelanone, 12

Stigmast-4-en-3-one, $\mathbf{1 3}$

1.3 Objective

This research work involved isolation, purification and structure elucidation of chemical constituents isolated from the roots of Atalantia monophylla and also evaluation of pure compounds for anti-allergic, antibacterial and cytotoxic activities.

CHAPTER 2

EXPERIMENTAL

2.1 Instruments and Chemicals

Melting points were determined on the Fisher-John melting point apparatus. The UV spectra were measured with a SPECORD S 100 (Analytikjena) and principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in MeOH solution. The optical rotation $[\alpha]_{D}$ was measured in chloroform and methanol solution with Sodium D line (590 nm) on a JASCO P-1020 digital polarimeter. The IR spectra were measured with a Perkin-Elmer FTS FT-IR spectrophotometer. Single Crystal Xray diffraction measurements were collected using SMART 1-K CDD diffractometer with monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \mathrm{~A}$) using ω-scan mode and SHELXTL for structure solution and refinement. NMR spectra were recorded using 300 MHz Bruker FTNMR Ultra Shield ${ }^{\mathrm{TM}}$ spectrometers in acetone- d_{6} and CDCl_{3} with TMS as the internal standard. Chemical shifts are reported in $\delta(\mathrm{ppm})$ and coupling constants (J) are expressed in hertz. EI and HREI mass spectra were measured on a Kratos MS 25 RFA spectrometer. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except chloroform was analytical grade reagent. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 H (Merck) and silica gel 100 (Merck), respectively.

2.2 Plant Material

Root of A. monophylla was collected from Trang province in the southern part of Thailand, in June 2006. Identification was made by Assoc.Prof. Dr.Kitichate Sridith and a specimen (Arnon Chukaew 1) deposited at PSU herbarium, Department of Biology, Faculty of Science, Prince of Songkla University.

2.3 Extraction and Isolation

The air-dried and pulverized root (6.0 kg) was successively extracted with methylene chloride and acetone ($2 \times 20 \mathrm{~L}$ for one week for each solvent) at room temperature to furnish a yellow viscous residue of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract (52.5 g) and brownish acetone extract (15.0 g), respectively. The process of extraction was shown in Scheme 1.

Scheme 1 Extraction of the roots of A. monophylla

2.4 Isolation and Chemical Investigation

2.4.1 Investigation of the crude methylene chloride extract from the roots of A. monophylla

* No further investigation

Scheme 2 Isolation of compounds AM1-8, AM10, AM12-20 from the methylene chloride extract.

The crude methylene chloride extract as a yellow viscous residue (52.5 g) was subjected to quick column chromatography over silica gel using solvent of increasing polarity from hexane through ethyl acetate. The eluates were collected and combined based on TLC characteristic to give twelve fractions (F1-F12).

Fraction $2(1.5 \mathrm{~g})$ was subjected to QCC with a gradient of EtOAchexane and followed by CC with acetone-hexane (1:5, v/v) to give AM16: auraptene (53.3 mg).

Fraction $4(3.2 \mathrm{~g})$ was subjected to QCC with a gradient of acetonehexane and followed by CC with acetone-hexane (1:5, v/v) to give AM12: atalantolide (11.3 mg).

Fraction F5 was filtered and washed with hexane to yield a mixture of AM19: β-sitosterol and AM20: stigmasterol (154.0 mg) as a white solid and the mother liquor as yellow viscous oil after evaporation of the solvent.

Fraction F6 (1.5 g) was filtered and washed with hexane to give a yellow crystal (F6A) and followed by CC with acetone-hexane (1:5, v/v) to give AM1: N-methylatalaphylline (7.0 mg) and AM5: N -methylcycloatalaphylline-A (20.0 mg) and the mother liquor as yellow viscous oil after evaporation of the solvent.

Fraction $7(1.2 \mathrm{~g})$ was purified by QCC with a gradient of EtOAc$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give AM7: N-methylataphyllinine (25.0 mg).

Fraction $8(2.5 \mathrm{~g})$ was purified by QCC with a gradient of acetonehexane to afford 8 fractions $(8 \mathrm{~A}-8 \mathrm{H})$.

Subfraction 8C (154.0 mg) was separated by CC with acetone-hexane ($1: 6, \mathrm{v} / \mathrm{v}$) to give AM4: cycloatalaphylline-A (2.3 mg).

Subfraction 8D (147.0 mg) was purified by CC with acetone-hexane (1:5, v/v) to give AM17: 7-O-geranylscopoletin (3.7 mg).

Fraction $9(4.3 \mathrm{~g})$ was purified by QCC with a gradient of acetonehexane to afford 6 fractions (9A-9F).

Subfraction 9A (85.0 mg) was purified by CC with acetone-hexane (1:5, v/v) to give AM18: physcion (12.0 mg).

Subfraction 9C (385.0 mg) was purified by QCC with acetone-hexane (1:5, v/v) to give AM2: atalaphylline (22.0 mg).

Subfraction 9D (115.0 mg) was purified by CC with acetone-hexane (1:5, v/v) to give AM3: buxifoliadine-A (2.8 mg).

Subfraction 9E (250.0 mg) was purified by QCC with a gradient of acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and followed by CC with $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 25, \mathrm{v} / \mathrm{v})$ to give AM10:
citrusinine-I (6.5 mg) and followed by CC with acetone-hexane ($1: 5, \mathrm{v} / \mathrm{v}$) to give AM13: atalantin (26.7 mg).

Fraction $11(3.1 \mathrm{~g})$ was purified by QCC with a gradient of acetonehexane to afford 8 fractions $(11 \mathrm{~A}-11 \mathrm{H})$.

Subfraction 11A (250.0 mg) was purified by QCC with a gradient of acetone-hexane to give AM14: cycloepiatalantin (26.7 mg) and followed by CC with EtOAc-hexane (1.5:5, v/v) to give AM6: yukocitrine (2.5 mg).

Subfraction 11D (135.0 mg) was purified by CC with EtOAc-hexane (1:2.5, v/v) to give AM15: cycloepiatalantin acetate (20.7 mg).

Subfraction 11F (112.0 mg) was purified by CC with acetone-hexane ($1: 5, \mathrm{v} / \mathrm{v}$) to give AM8: buxifoliadine-E (6.7 mg).

Compound AM1: N-methylatalaphylline, orange needles, m.p. 189$192{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205$ (4.18), 272 (4.25), 335 (3.85) and 414 (3.42) $\mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) v_{\max } 3350(\mathrm{O}-\mathrm{H}$ stretching), 1633 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1604 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75$ MHz) spectral data, see Table 2.

Compound AM2: atalaphylline, orange needles, m.p. $245-247^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205$ (7.65), 253 (7.77), 283 (7.73), 305 (7.37) and 404 (6.92) $\mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) v_{\max } 3378$ ($\mathrm{O}-\mathrm{H}$ stretching), 1636 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1605 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone $-d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75$ MHz) spectral data, see Table 3.

Compound AM3: buxifoliadine-A, yellow needles, m.p. 155-157 ${ }^{\circ} \mathrm{C}$ UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205$ (4.11), 272 (4.21), 323 (3.68) and 416 (3.35) nm; IR (neat) $\nu_{\max } 3385$ (O-H stretching), 1637 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1602 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 4.

Compound AM4: cycloatalaphylline-A, yellow needles, m.p. 238-240 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 275(1.13), 305(0.98), 334(0.79), 376$ (0.69) and 401 (0.54) nm; IR (KBr) $v_{\text {max }}: 3363$ ($\mathrm{O}-\mathrm{H}$ stretching), 1634 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1607
(aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75$ MHz) spectral data, see Table 7; EIMS: $m / z 377$ (19) [M] ${ }^{+} ; 376$ (84), 361 (100), 333 (28), 305 (36), 293 (10), 153 (11); HREIMS: $m / z[M]^{+} 377.1626$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}, 377.1627$).

Compound AM5: N-methylcycloatalaphylline-A, yellow-orange crystals, m.p. $240-241{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 204$ (1.24), 272 (1.14), 323 (0.86), 345 (0.73) and 417 (0.37) nm; IR (KBr) $v_{\text {max }}: 3369$ (O-H stretching), 1639 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1608 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$) and ${ }^{13}$ C NMR (acetone- $d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 8; EIMS: m/z 391 (23) [M] ${ }^{+}$; 390 (96), 375 (100), 347 (50), 335 (54), 321 (30), 317 (18), 279 (13), 119 (17); HREIMS: $m / z[\mathrm{M}]^{+} 391.1748$ (calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4}, 391.1784$).

Compound AM6: yukocitrine, yellow needles, m.p. 215-217 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon): 203$ (3.57), 295 (3.98), 304 (4.03) and 413 (3.03) nm; IR (neat) $v_{\max }: 3385$ (O-H stretching), 1638 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1604 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 9.

Compound AM7: N-methylataphyllinine, orange crystals, m.p. 195$196{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205$ (3.97), 290 (4.16), 345 (3.60) and 422 (3.22) nm ; IR (neat) $v_{\text {max }}$: 3374 ($\mathrm{O}-\mathrm{H}$ stretching), 1635 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1604 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75$ $\mathrm{MHz})$ spectral data, see Table 10.

Compound AM8: buxifoliadine-E, yellow needles, m.p. 247-249 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{27}{ }_{\mathrm{D}} \pm 0^{\circ}(c 0.12, \mathrm{MeOH})$, UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205$ (4.04), 258 (4.28), 283 (4.24) and 394 (3.43) nm; IR (neat) $v_{\text {max }}: 3385$ ($\mathrm{O}-\mathrm{H}$ stretching), 1634 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1602 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 12.

Compound AM10: citrusinine-I, orange needles, m.p. 206-207 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 203$ (3.80), 221 (3.74), 263 (4.19), 319 (3.71) and 416 (3.27) nm ; IR (neat) $\nu_{\text {max }}$: 3386 ($\mathrm{O}-\mathrm{H}$ stretching), 1633 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1604
(aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75$ $\mathrm{MHz})$ spectral data, see Table 16.

Compound AM12: atalantolide, light yellow crystals, m.p. $228-230{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 209$ (3.90) nm; IR (neat) $v_{\max } 3401$ (O-H stretching), 1742, 1717 and 1658 ($>\mathrm{C}=\mathrm{O}$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$,) and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 20.

Compound AM13: atalantin, light yellow crystals, m.p. 182-184 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon): 210(4.01) \mathrm{nm}$; IR (neat) $v_{\text {max }}: 3396$ (O-H stretching), 1739 and 1709 ($>\mathrm{C}=\mathrm{O}$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 23.

Compound AM14: cycloepiatalantin, yellow crystals, m.p. 308-310 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 211(3.92) \mathrm{nm}$; IR (neat) $v_{\text {max }}: 3390$ (O-H stretching), 1733 and 1693 ($>\mathrm{C}=\mathrm{O}$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 26.

Compound AM15: cycloepiatalantin acetate, yellow crystals, m.p. $115-117{ }^{\circ} \mathrm{C} ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 214(4.05) \mathrm{nm}$; IR (neat) $v_{\max }: 1736$ and 1693 ($>\mathrm{C}=\mathrm{O}$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone $-d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone$d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 29.

Compound AM16: auraptene, white solid, m.p. $71-73{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ $(\mathrm{MeOH})(\log \varepsilon): 205$ (4.02), 252 (3.13) and 323 (3.95) nm; IR (neat) $v_{\text {max }}: 1710$, and 1612 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$,) and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz) spectral data, see Table 31.

Compound AM17: 7-O-geranylscopoletin, white solid, m.p. $86-88^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon): 206$ (3.96), 229 (3.64), 253 (3.16), 294 (3.13) and 345 (3.44) nm; IR (neat) $v_{\text {max }}: 1725$ ($>\mathrm{C}=\mathrm{O}$ stretching) and 1607 (aromatic) 1553 ($\mathrm{C}=\mathrm{C}$) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$, and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 33.

Compound AM18: physcion, yellow crystals, m.p. 208-210 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 221$ (3.33), 252 (3.05), 264 (3.07), 285 (3.05) and 434 (2.87) nm ; IR (neat) $v_{\text {max }}: 3380$ (O-H stretching) and 1646 ($>\mathrm{C}=\mathrm{O}$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 35.

The mixture of compound AM19: β-sitosterol and AM20: stigmasterol was obtained as colorless crystals, ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$.

2.4.2 Investigation of the crude acetone extract from the roots of \boldsymbol{A}. monophylla

* No further investigation

Scheme 3 Isolation of compounds AM11 and AM9 from the acetone extract.

The brownish crude acetone extract of A. monophylla (15.0 g) was subjected to quick column chromatography and eluted with hexane and ethyl acetate. The eluates were combined on the basis of TLC characteristic to give eight fractions (FA1-FA8).

Fraction FA4 (1.2 g) was purified by QCC with a gradient of acetonehexane to afford 8 fractions (4A-4H).

Subfraction 4C (112.0 mg) was purified by CC with acetone-hexane (1:5, v/v) to give AM11: junosine (2.1 mg).

Fraction FA5 (615.0 mg) was purified by QCC with a gradient of acetone-hexane to afford 8 fractions ($5 \mathrm{~A}-5 \mathrm{H}$).

Subfraction 5B (50.0 mg) was purified by CC with $\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:10, v/v) to give AM9: N-methylbuxifoliadine-E (2.3 mg).

Compound AM9: N-methylbuxifoliadine-E, yellow needles, m.p. 250$252{ }^{\circ} \mathrm{C} ;[\alpha]^{27}{ }_{\mathrm{D}} \pm 0^{\circ}(c 0.12, \mathrm{MeOH})$; UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon): 252$ (1.19), 276 (1.03), 282 (1.29), 327 (0.98) and 395 (0.65) nm; IR (KBr) $v_{\text {max }}: 3374$ (O-H stretching), 1639 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1604 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75 \mathrm{MHz}$) spectral data, see Table 13; EIMS: $m / z 409$ (23) $[\mathrm{M}]^{+} ; 408$ (100), 393 (71), 335 (36), 321 (48), 104 (12); HREIMS: $m / z[\mathrm{M}]^{+} 409.1888$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5}, 409.1889$).

Compound AM11: junosine, orange needles, m.p. 218-220 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205$ (3.96), 265 (4.12), 285 (4.06), 305 (3.79) and 407 (3.29) nm ; IR (neat) $v_{\text {max }}$: 3380 ($\mathrm{O}-\mathrm{H}$ stretching), 1636 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1604 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 300 \mathrm{MHz}$,) and ${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 75$ MHz) spectral data, see Table 19.

2.5 Bioassay

2.5.1 Anti-allergic activity assay

2.5.1.1 Inhibitory effects on the release of β-hexosaminidase from RBL-2H3 cells.

Inhibitory effects on the release of β-hexosaminidase from RBL-2H3 were evaluated by the following method (Matsuda et al., 2002).
2.5.1.2 β-Hexosaminidase inhibitory activity

In order to clarify that the anti-allergic effects of samples were due to the inhibition of β-hexosaminidase release and not β-hexosaminidase activity, the following assay was carried out. The cell suspension (5×10^{7} cells) in 6 ml of PBS was sonicated. The solution was then centrifuged; and the supernatant diluted with Siraganian buffer and adjusted to equalize the enzyme activity of the degranulation tested above. The enzyme solution ($45 \mu \mathrm{l}$) and test sample solution ($5 \mu \mathrm{l}$) were transferred into a 96 -well microplate and incubated with $50 \mu \mathrm{l}$ of the substrate solution at $37{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was stopped by adding $200 \mu \mathrm{l}$ of the stop solution. The absorbance was measured using a microplate reader at 405 nm and the results were expressed as mean \pm SEM of four determinations. The IC_{50} values were calculated using the Microsoft Excel program. The statistical significance was calculated by one-way analysis of variance (ANOVA), followed by Dunnett's test.

2.5.2 Antibacterial assay

The isolated compound from the root of A. monophylla were tested for antibacterial activities against Bacillus subtilis, staphylococcus aureus TISTR517 and Candida albicans (obtained from Department of Industrial Biotechnology, Faculty of Agroindustry, PSU). Vancomycin which was used as a standard showed antibacterial activity of $75 \mu \mathrm{~g} / \mathrm{ml}$.

2.5.3 Cytotoxic assay

The procedure for cytotoxic assay was performed by the sulphorhodamine B (SRB) assay as described by Skehan et al. (Skehan et al., 1990). In this study, three cancer cell lines obtained from National Cancer Institute, Bangkok, Thailand, were used: MCF-7 (breast adenocarcinoma), KB (human oral cancer), HT-29 (human colon cancer) and HeLa (human cervical cancer). Camptothecin which was used as a standard showed cytotoxic activity in the range of $0.2-2.0 \mu \mathrm{~g} / \mathrm{ml}$.

CHAPTER 3
 RESULTS AND DISCUSSION

3.1 Structure elucidation of compounds from the roots of A. monophylla

The crude methylene chloride and acetone extracts from the root of A. monophylla were subjected to repeated quick column and column chromatography over silica gel to furnish three new acridone alkaloids: cycloatalaphylline-A (AM4), N-methylcycloatalaphylline-A (AM5), and N-methylbuxifoliadine-E (AM9) together with eight known acridones: AM1-AM3, AM6-AM8, AM10 and AM11, four known limonoids: AM12-AM15, two known coumarins: AM16 and AM17, one known anthraquinone: AM18 and the mixture of compounds AM19: β-sitosterol and AM20: stigmasterol.

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, COSY and NOESY. Mass spectra were determined for the new compounds: AM4, AM5 and AM9. The physical data of the known compounds were also compared with the reported values. In addition X-ray crystallographic structure was reported for compound AM7.

3.1.1 Compound AM1

Compound AM1 was isolated as orange needles. The UV-Vis spectrum exhibited the absorption bands at 205, 272, 325 and 414 nm characteristic of a 9-acridone chromophore, which was confirmed by IR absorption maxima indicating the presence of hydroxyl $\left(3350 \mathrm{~cm}^{-1}\right)$ and chelated carbonyl $\left(1633 \mathrm{~cm}^{-1}\right)$ groups.

The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 2) of AM1 exhibited the presence of a chelated phenolic hydroxyl group at $\mathrm{C}-1$ as a singlet signal at $\delta 14.56$. Two broad singlets at $\delta 9.28$ and $\delta 7.89$ indicated two hydroxyl groups in the molecule. One methyl singlet signal at $\delta 3.67$ and together with ${ }^{13} \mathrm{C}$-NMR spectrum at $\delta 47.6$ was assigned for N -methyl group. The ${ }^{13} \mathrm{C}$ NMR and DEPT spectral data (Table 2) exhibited 24 carbons, attributable to five methyl, two methylene, five methine and twelve quaternary carbons. In the aromatic region, ABX pattern of ${ }^{1} \mathrm{H}$ NMR at $\delta 7.77$ $(1 \mathrm{H}, d d, J=7.8,1.5 \mathrm{~Hz}), 7.26(1 \mathrm{H}, d d, J=7.8,1.5 \mathrm{~Hz})$, and $7.16(1 \mathrm{H}, t, J=7.8 \mathrm{~Hz})$ were attributed to $\mathrm{H}-8, \mathrm{H}-6$, and $\mathrm{H}-7$, respectively. The lower field proton at $\delta 7.77$ was deshielded by the 9 -carbonyl group. In the aliphatic region, two sets of prenyl groups appeared at $\delta 5.37(1 \mathrm{H}, m), 3.60(2 \mathrm{H}, b r d, J=6.0 \mathrm{~Hz}), 1.80(3 \mathrm{H}, b r s), 1.71$ $(3 \mathrm{H}, d, 1.5 \mathrm{~Hz})$, and $5.25(1 \mathrm{H}, m), 3.45(2 \mathrm{H}, b r d, J=6.9 \mathrm{~Hz}), 1.80(3 \mathrm{H}, b r s), 1.67$ $(3 \mathrm{H}, d, 0.9 \mathrm{~Hz})$. The locations of two prenyl groups at $\mathrm{C}-2$ and $\mathrm{C}-4$, respectively were confirmed by HMBC correlation of $\mathrm{H}-1^{\prime}$ at $\delta 3.45$ with the carbons at $\delta 159.7$ (C-1) 107.5 (C-2) 123.4 (C-2') 132.4 (C-3') and $161.2(\mathrm{C}-3)$, of $\mathrm{H}-1^{\prime \prime}$ at $\delta 3.60$ with the carbons at $\delta 109.3$ (C-4), 161.2 (C-3), 122.4 (C-2") and 131.4 (C-3"). Two hydroxyl groups were placed at C-3 and C-5, respectively from HMBC correlation of 3-OH at δ 7.89 to the carbons at $\delta 161.2(\mathrm{C}-3), 107.5(\mathrm{C}-2)$ and $109.3(\mathrm{C}-4)$ and $5-\mathrm{OH}$ at $\delta 9.28$ with the carbons at 138.2 (C-5a), 119.4 (C-6) and 148.5 (C-5) (Figure 2). The
complete HMBC correlations were summarized in Table 2. Therefore, compound AM1 was assigned as N-methylatalaphylline (Govindachari et al., 1970).

Figure 2 Selected HMBC correlation of AM1

Table $2{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM1 (acetone- d_{6})

Position		$\delta_{\text {C }}$	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC
1	159.7	C		
1-OH			14.56 (s)	C-9a, C-2, C-1
2	107.5	C		
3	161.2	C		
$3-\mathrm{OH}$			7.89 (br s)	C-2, C-3, C-4
4	109.3	C		
5	148.5	C		
$5-\mathrm{OH}$			9.28 (br s)	C-5a, C-6, C-5
6	119.4	CH	7.26 (dd, $J=7.8,1.5)$	C-8, C-5a
7	122.7	CH	7.16 (t, $J=7.8)$	C-5, C-8a
8	116.2	CH	7.77 (dd, $J=7.8,1.5)$	C-6, C-5a, C-9
9	182.6	C		
4a	148.9	C		
5a	138.2	C		
8a	125.0	C		
9a	107.0	C		
1^{\prime}	21.2	CH_{2}	3.45 (br d, $J=6.9)$	$\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$
2^{\prime}	123.4	CH	5.37 (m)	
3^{\prime}	132.4	C		
4^{\prime}	17.0	CH_{3}	1.80 (br s)	C-2', C-3', C-5'
5^{\prime}	25.0	CH_{3}	1.71 (d, $J=1.5$)	C-2', C-3', C-4'
1 "	26.2	CH_{2}	3.60 (br d, $J=6.0)$	C-3, C-4, C-4a, C-3"
2"	122.4	CH	5.25 (m)	
3 "	131.4	C		
4 "	17.0	CH_{3}	1.80 (br s)	C-2', C-3", C-5"
5"	25.0	CH_{3}	1.67 (br s)	C-2', C-3", C-4"
$10-\mathrm{NMe}$	47.6	CH_{3}	3.67 (s)	C-4a, C-5a

3.1.2 Compound AM2

Compound AM2 was isolated as orange needles. The UV-Vis spectrum exhibited the absorption bands at 205, 253, 283, 305 and 404 nm characteristic of a 9 -acridone chromophore which was confirmed by the presence of IR absorption maxima of hydroxyl ($3378 \mathrm{~cm}^{-1}$) and chelated carbonyl ($1636 \mathrm{~cm}^{-1}$) functionalities.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 3) of AM2 were similar to those of AM1, except that N-methyl signal ($\delta_{\mathrm{H}} 3.67, \delta_{\mathrm{C}} 47.6$) in AM1 was replaced by an NH proton ($\delta_{\mathrm{H}} 9.00$) in AM2. The chelated hydroxyl signal was evidenced at δ 14.65. The locations of two prenyl groups at $\mathrm{C}-2$ and $\mathrm{C}-4$, respectively were confirmed by HMBC correlation of $\mathrm{H}-1^{\prime}$ at $\delta 3.48$ with the carbons at $\delta 159.5(\mathrm{C}-1)$, $107.8(\mathrm{C}-2), 122.7\left(\mathrm{C}-2^{\prime}\right)$ and $131.2\left(\mathrm{C}-3^{\prime}\right)$ and of $\mathrm{H}-1^{\prime \prime}(\delta 3.65)$ with the carbons at δ 101.1 (C-4), 138.7 (C-4a), 158.7 (C-3) and 134.0 (C-3") (Figure 3). The complete HMBC correlations were summarized in Table 3. Therefore, compound AM2 was assigned as atalaphylline (Govindachari et al., 1970).

Figure 3 Selected HMBC correlation of AM2

Table $3{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM2 (acetone- d_{6})

Position	$\delta_{\text {C }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz})$	HMBC
1	159.5	C		
1-OH			14.65 (s)	C-9a, C-2, C-1
2	107.8	C		
3	158.7	C		
4	101.1	C		
5	144.6	C		
6	115.6	CH	7.20 (br d, $J=7.8)$	C-8, C-5, C-5a
7	120.8	CH	7.07 (t, $J=7.8)$	C-5, C-8a
8	115.8	CH	7.76 (d, $J=7.8)$	C-6, C-5a, C-9
9	181.2	C		
4 a	138.7	C		
5a	131.1	C		
8a	120.0	C		
9a	104.3	C		
1^{\prime}	21.4	CH_{2}	3.48 (d, $J=7.0$)	C-1, C-2, C-2', C-3'
2^{\prime}	122.7	CH	5.27 (br t, $J=7.0$)	C-1', C-4', C-5'
3^{\prime}	131.2	C		
4^{\prime}	17.1	CH_{3}	1.81 (s)	C-2', C-3', C-5'
5^{\prime}	25.0	CH_{3}	1.67 (s)	C-2', C-3', C-4'
1 "	22.4	CH_{2}	3.65 (d, $J=7.0$)	C-3, C-4, C-4a, C-3"
$2^{\prime \prime}$	121.9	CH	5.15 (br t, $J=7.0$)	C-1", C-4", C-5"
$3 \prime \prime$	134.0	C		
$4 \prime \prime$	17.3	CH_{3}	1.98 (s)	C-2", C-3", C-5"
$5 \prime$	25.0	CH_{3}	1.75 (s)	C-2", C-3", C-4"
10-NH			9.00 (br s)	C-8a, C-9a

3.1.3 Compound AM3

Compound AM3 was isolated as yellow needles, m.p. $155-157^{\circ} \mathrm{C}$. The 9 -acridone skeleton in the molecule was suggested by ultraviolet (UV) spectroscopic absorptions at 205, 272, 323 and 416 nm and a carbonyl group absorption band at $1637 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 4) of AM3 were similar to those of AM1. The difference was shown as the replacement of a singlet signal of the hydroxyl group at C-3 ($\delta 7.89$) in AM1 with a methoxyl group ($\delta 3.85$) in AM3. The presence of a chelated phenolic hydroxyl group at C-1 was indicated by the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signal at $\delta 14.40$. One-proton singlet at $\delta 9.42$ indicated another hydroxyl group in the molecule. Two singlet signals at $\delta 3.85$ and $\delta 3.72$ (each 3 H) together with ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra at $\delta 62.0$ and 47.9 were assigned for methoxyl and N-methyl groups respectively. The location of two prenyl groups at C-2 and C-4, respectively were confirmed by HMBC correlation of $\mathrm{H}-1^{\prime}$ at $\delta 3.40$ with the carbons at $\delta 160.8(\mathrm{C}-1)$, $116.2(\mathrm{C}-2), 123.7\left(\mathrm{C}-2^{\prime}\right)$ and $131.4\left(\mathrm{C}-3^{\prime}\right)$, of $\mathrm{H}-1^{\prime \prime}(\delta 3.65)$ with the carbons at δ 115.2 (C-4), 165.7 (C-3) 124.5 (C-2') and 134.1 (C-3"). The O-methoxyl group was placed at $\mathrm{C}-3$ due to HMBC correlation of $\mathrm{O}-\mathrm{Me}$ at $\delta 3.85$ with the carbon at $\delta 165.7$ (C-3) (Figure 4). On the basis of the above results, the structure of buxifoliadine-A was assigned as AM3 (Wu and Chen, 2000).

Figure 4 Selected HMBC correlation of AM3

Table $4{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM3 (acetone- d_{6})

Position	$\delta_{\text {c }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC
1	160.8	C		
1-OH			14.40 (s)	C-9a, C-2, C-1
2	116.2	C		
3	165.7	C		
$3-\mathrm{OMe}$	62.0	CH_{3}	3.85 (s)	C-3
4	115.2	C		
5	150.0	C		
$5-\mathrm{OH}$			9.42 (br s)	
6	120.6	CH	7.30 (dd, $J=7.8,1.5$)	C-8, C-5a
7	123.7	CH	7.17 (t, $J=7.8)$	C-5, C-8a
8	117.2	CH	7.78 (dd, $J=7.8,1.5$)	C-5a, C-9
9	184.3	C		
4a	149.5	C		
5a	136.8	C		
8a	125.8	C		
9a	110.3	C		
1^{\prime}	23.2	CH_{2}	3.40, (br d, $J=6.9)$	C-1, C-2, C-2', C-3'

Table 4 (continued)

Position	δ_{C}		$\delta_{\mathbf{H}}(\mathrm{mult}, \boldsymbol{J}, \mathrm{Hz})$	HMBC
2^{\prime}	123.7	CH	$5.35(\mathrm{~m})$	
3^{\prime}	131.4	C		
4^{\prime}	17.9	CH_{3}	$1.66(\mathrm{~s})$	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}$
5^{\prime}	25.7	CH_{3}	$1.77(\mathrm{~s})$	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}$
$1^{\prime \prime}$	27.5	CH_{2}	$3.65(\mathrm{~d}, J=7.0)$	$\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-3^{\prime \prime}$
$2^{\prime \prime}$	124.5	CH	$5.30(\mathrm{br} \mathrm{t}, J=7.0)$	
$3^{\prime \prime}$	134.1	C		
$4^{\prime \prime}$	18.1	CH_{3}	$1.65(\mathrm{~s})$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$
$5^{\prime \prime}$	25.8	CH_{3}	$1.82(\mathrm{~s})$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-4^{\prime \prime}$
$10-\mathrm{NMe}$	47.9	CH_{3}	$3.72(\mathrm{~s})$	$\mathrm{C}-4 \mathrm{a}, \mathrm{C}-5 \mathrm{a}$

Table 5 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM1, AM3 and Buxifoliadine-A (R, acetone- d_{6})

Position	$\begin{gathered} \text { AM1 } \\ \delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { AM3 } \\ \delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \hline \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult }, J, \mathrm{~Hz}) \end{gathered}$
1-OH	14.56 (s)	14.40 (s)	14.38 (s)
2			
$3-\mathrm{OH}$	7.89 (br s)		
$3-\mathrm{OMe}$		3.85 (s)	3.84 (s)
4			
5-OH	9.28 (br s)	9.42 (br s)	9.23 (s)
6	7.26 (dd, $J=7.8,1.5$)	7.30 (dd, $J=7.8,1.5)$	7.28 (dd, $J=8.0,1.6)$
7	7.16 (t, $J=7.8)$	7.17 (t, $J=7.8)$	7.16 (t, $J=8.0)$
8	7.77 (dd, $J=7.8,1.5$)	7.78 (dd, $J=7.8,1.5$)	7.78 (dd, $J=8.0,1.6)$
9			
4a			
5a			
8a			
9a			
1^{\prime}	3.45 (br d, $J=6.9$)	3.40, (br d, $J=6.9)$	3.39 (d, $J=6.8)$
2^{\prime}	5.37 (m)	5.35 (m)	$5.28(\mathrm{t}, J=6.8)$
3^{\prime}			
4^{\prime}	1.80 (br s)	1.66 (s)	1.65 (br s)
5'	1.71 (d, $J=1.5$)	1.77 (s)	1.75 (br s)
$1^{\prime \prime}$	3.60 (br d, $J=6.0$)	3.65 (d, $J=7.0$)	3.64 (d, $J=6.2$)
2"	5.25 (m)	5.30 (br t, $J=7.0$)	5.33 (brt, $J=6.2$)
3"			
4"	1.80 (br s)	1.65 (s)	1.66 (br s)
5"	1.67 (s)	1.82 (s)	1.79 (br s)
10-NMe	3.67 (s)	3.72 (s)	3.71 (s)

Table 6 Comparison of ${ }^{13}$ C NMR spectral data between compounds AM1, AM3 and Buxifoliadine-A (R, acetone- d_{6})

Position	$\delta_{\mathbf{c}}, \mathbf{A M 1}$	$\delta_{\mathbf{C}}, \mathbf{A M 3}$	$\delta_{\mathbf{C}}, \mathbf{R}$
1	159.7	160.8	160.8
2	107.5	116.2	116.1
3	161.2	165.7	165.6
$3-\mathrm{OMe}$		62.0	62.0
4	109.3	115.2	115.2
5	148.5	150.0	149.5
6	119.4	120.6	120.5
7	122.7	123.7	124.0
8	116.2	117.2	117.2
9	182.6	184.3	184.2
4 a	148.9	149.5	149.2
5 a	138.2	136.8	138.2
8 a	125.0	125.8	125.8
9 a	107.0	110.3	105.3
1^{\prime}	21.2	23.2	23.2
2^{\prime}	123.4	123.7	123.7
3^{\prime}	132.4	131.4	131.4
4^{\prime}	17.0	17.9	17.9
5^{\prime}	25.0	25.7	25.7
$1^{\prime \prime}$	26.2	27.5	27.1
$2^{\prime \prime}$	122.4	124.5	124.4
$3^{\prime \prime}$	131.4	134.1	132.1
$4^{\prime \prime}$	17.0	18.1	18.1
$5^{\prime \prime}$	25.0	25.8	25.8
$10-\mathrm{NMe}$	47.6	47.9	47.9

3.1.4 Compound AM4

Compound AM4 was isolated as yellow needles. It showed $\left[\mathrm{M}^{+}\right]$at m / z $377.1626\left(\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$ in the HREIMS spectrum. The UV-Vis spectrum exhibited the absorption bands at $275,305,334,376$ and 401 nm characteristic of a 9 -acridone chromophore which was confirmed by the presence of IR absorption maxima of hydroxyl ($3363 \mathrm{~cm}^{-1}$) and chelated carbonyl $\left(1634 \mathrm{~cm}^{-1}\right)$ groups.

The ${ }^{13} \mathrm{C}$ NMR and DEPT spectral data (Table 7) exhibited 23 carbons, attributable to four methyl, one methylene, six methine and twelve quaternary carbons. In the aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum, three mutually coupling ABX signals at $\delta 7.76(1 \mathrm{H}, d, J=7.8 \mathrm{~Hz}), 7.25(1 \mathrm{H}, b r d, J=7.8 \mathrm{~Hz})$, and $7.12(1 \mathrm{H}$, $t, J=7.8 \mathrm{~Hz}$), were attributed to $\mathrm{H}-8, \mathrm{H}-6$ and $\mathrm{H}-7$, respectively. A prenyl group in the molecule was inferred by the signals at $\delta 5.17\left(1 \mathrm{H}, b r t, J=7.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 3.61$ $\left(2 \mathrm{H}, d, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}-1^{\prime \prime}\right), 1.99$ and 1.76 (each $3 \mathrm{H}, s, \mathrm{Me}-5^{\prime \prime}$, Me-4" respectively). The remaining signals at $\delta 6.77,5.71$ (each $1 \mathrm{H}, d, J=9.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}$, respectively), and $1.49\left(6 \mathrm{H}, s, \mathrm{Me}-4^{\prime}, \mathrm{Me}-5^{\prime}\right)$ represented the presence of a 2,2dimethylpyrano moiety. The HMBC correlation of $\mathrm{H}-1^{\prime \prime}$ at $\delta 3.61$ with the carbons at $\delta 156.2(\mathrm{C}-3)$ and $139.9(\mathrm{C}-4 \mathrm{a})$, and its NOESY cross peak with the $\mathrm{N}-\mathrm{H}$ proton at δ 9.05 supported the attachment of a prenyl group at C-4 (Table 7). Additional HMBC correlation of $\mathrm{H}-1^{\prime}(\delta 6.77)$ with the carbon at $\delta 157.1$ (C-1), of $\mathrm{H}-2^{\prime}(\delta 5.71)$ with δ 102.1 (C-2) (Figure 5) suggested that the 2,2-dimethyl pyran ring was fused to the acridone nucleus with linear orientation. On the basis of the above analysis, the structure of AM4 was identified and named as cycloatalaphylline-A, a new compound.

Figure 5 Selected HMBC correlation of AM4

Table $7{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HMBC and NOESY spectral data of compound AM4 (acetone- d_{6})

Position		$\delta_{\text {C }}$	$\delta_{\mathbf{H}}(\mathrm{mult}, \boldsymbol{J}, \mathrm{Hz})$	HMBC	NOESY
1	157.1	C			
1-OH			14.74 (s)	C-9a, C-2, C-1	
2	102.1	C			
3	156.2	C			
4	102.2	C			
5	144.7	C			
5-OH			9.82 (br s)		
6	116.0	CH	7.25 (br d, $J=7.8$)	C-5a	7
7	121.3	CH	7.12 (t, $J=7.8)$	C-5, C-8a	6, 8
8	115.7	CH	7.76 (d, $J=7.8)$	C-6, C-5a, C-9	7
9	181.4	C			
4a	139.9	C			
5a	130.8	C			
8a	120.3	C			
9a	104.2	C			
1^{\prime}	115.9	CH	6.77 ($\mathrm{d}, \mathrm{J}=9.9)$	C-1, C-3'	2^{\prime}
2^{\prime}	126.6	CH	$5.71(\mathrm{~d}, ~ J=9.9)$	C-2, C-3'	$1^{\prime}, 4^{\prime}, 5^{\prime}$

Table 7 (continued)

Position	δ_{C}			$\delta_{\mathbf{H}}($ mult, $J, \mathbf{H z})$	$\mathbf{H M B C}$
3^{\prime}	77.5	C		NOESY	
$4^{\prime} / 5^{\prime}$	27.5	$\mathrm{CH}_{3} \times 2$	$1.49(\mathrm{~s})$	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$	2^{\prime}
$1^{\prime \prime}$	21.5	CH_{2}	$3.61(\mathrm{~d}, J=7.2)$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C} 3^{\prime \prime}, \mathrm{C}-4 \mathrm{a}$,	$2^{\prime \prime}, 10$
				$\mathrm{C}-3$	
$2^{\prime \prime}$	121.8	CH	$5.17(\mathrm{brt}, J=7.2)$	$\mathrm{C}-4^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$	$1^{\prime \prime}, 4^{\prime \prime}$
$3^{\prime \prime}$	133.8	C			
$4^{\prime \prime}$	25.0	CH_{3}	$1.76(\mathrm{~s})$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$	$2^{\prime \prime}$
$5^{\prime \prime}$	17.2	CH_{3}	$1.99(\mathrm{~s})$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-4^{\prime \prime}$	
$10-\mathrm{NH}$			$9.05(\mathrm{br} \mathrm{s})$		$1^{\prime \prime}$

3.1.5 Compound AM5

Compound AM5 was isolated as yellow-orange crystals. The UV-Vis spectrum exhibited the absorption bands at 204, 272, 323, 345 and 417 nm characteristic of a 9-acridone chromophore which was confirmed by the presence of IR absorption maxima of hydroxyl ($3369 \mathrm{~cm}^{-1}$) and chelated carbonyl ($1639 \mathrm{~cm}^{-1}$) groups.

Compound AM5, showed [M] ${ }^{+}$at $m / z 391.1748 \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4}$ whose MW was 14 mass units more than that of AM4. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were closely related to those of AM4, except that the $\mathrm{N}-\mathrm{H}$ proton signal at $\delta 9.05$ in AM4 was replaced by N-methyl signal in AM5 at $\delta_{\mathrm{H}} 3.71: \delta_{\mathrm{C}}$ 47.7. A prenyl group was placed at C-4 due to HMBC correlation of $\mathrm{H}-1^{\prime \prime}(\delta 3.51)$ with the carbons at $\delta 108.5$ (C-4), 150.0 (C-4a) and 158.8 (C-3), and NOESY cross peak between N-Me ($\delta 3.71$)
and $\mathrm{H}-2^{\prime \prime}(\delta 5.36)$. Hence, AM5 was an N-methyl derivative of AM4, a new compound and named as N -methylcycloatalaphylline-A.

Figure 6 Selected HMBC correlation of AM5

Table $8{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HMBC and NOESY spectral data of compound AM5 (acetone- d_{6})

Position	δ_{C}		$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC	NOESY
1	157.5	C			
$1-\mathrm{OH}$			14.63 (s)	C-9a, C-1, C-2	
2	103.4	C			
3	158.8	C			
4	108.5	C			
5	148.6	C			
$5-\mathrm{OH}$			9.41 (br s)		
6	119.7	CH	7.29 (br d, $J=7.5$)	C-8, C-5a	7
7	123.1	CH	7.18 (t, $J=7.5$)	C-5, C-8a	6,8
8	116.1	CH	7.76 (d, $J=7.5$)	C-5a, C-9	7
9	182.7	C			
4a	150.0	C			
5a	138.0	C			
8a	124.9	C			
9 a	106.9	C			
1^{\prime}	115.6	CH	6.73 (d, $J=9.9)$	C-3	2^{\prime}
2^{\prime}	126.9	CH	5.70 (d, $J=9.9)$		$1^{\prime}, 4^{\prime}, 5^{\prime}$
3^{\prime}	77.7	C			
$4^{\prime} / 5^{\prime}$	27.6	$\mathrm{CH}_{3} \times 2$	1.48 (s)	C-3', C-2'	2^{\prime}
$1^{\prime \prime}$	25.7	CH_{2}	3.51 (br d, $J=6.3)$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-4$,	
				C-4a	
$2^{\prime \prime}$	123.9	CH	5.36 (m)		10
$3 \prime \prime$	130.8	C			
$4 \prime \prime$	24.9	CH_{3}	1.70 (s)	C-2', C-3", C-5"	
5"	17.3	CH_{3}	1.80 (s)	C-2', C-3", C-4"	
10-NMe	47.7	CH_{3}	3.71 (s)	C-4a, C-5a	2"

3.1.6 Compound AM6

Compound AM6 was isolated as yellow needles, m.p. 215-217 ${ }^{\circ} \mathrm{C}$. The UV-Vis spectrum exhibited the absorption bands at 203, 295, 304 and 413 nm characteristic of a 9-acridone chromophore which was confirmed by the presence of IR absorption maxima of hydroxyl ($3385 \mathrm{~cm}^{-1}$) and chelated carbonyl ($1638 \mathrm{~cm}^{-1}$) groups.

The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 9) of AM6 indicated the presence of a chelated phenolic hydroxyl group at $\mathrm{C}-1$ by the singlet signal at $\delta 15.22$. One-proton broad singlet at $\delta 9.65$ indicated another hydroxyl group in the molecule and one methyl singlet signal at $\delta_{\mathrm{H}} 4.08: \delta_{\mathrm{C}} 40.5$ was assigned for N-methyl group. In the aromatic region, signals of ABX pattern at $\delta 7.89(1 \mathrm{H}, d d, J=8.1,1.5 \mathrm{~Hz}), 7.32(1 \mathrm{H}$, $d d, J=8.1,1.5 \mathrm{~Hz})$ and $7.16(1 \mathrm{H}, t, J=8.1 \mathrm{~Hz})$ were attributed to $\mathrm{H}-8, \mathrm{H}-6$, and $\mathrm{H}-7$, respectively. The spectral data of AM6 were comparable to AM5, except that a singlet signal of an aromatic proton at $\delta 6.38$ in AM6 replaced signals of a prenyl group in AM5. Its location was placed at C-4 due to HMBC correlations to $\delta 101.9$ (C-2), 158.8 (C-3), 147.1 (C-4a) and 104.7 (C-9a). On the basis of the above results, the structure of yukocitrine was assigned as AM6 (Auzi et al., 1996).

Figure 7 Selected HMBC correlation of AM6

Table $9{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM6 (acetone- d_{6})

Position		C	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC
1	159.2	C		
1-OH			15.22 (s)	C-9a, C-2
2	101.9	C		
3	158.8	C		
4	91.9	CH	6.38 (s)	C-2, C-3, C-4a, C-9a
5	147.0	C		
$5-\mathrm{OH}$			9.65 (br s)	
6	120.0	CH	7.32 (dd, $J=8.1,1.5)$	C-8, C-5a
7	122.3	CH	7.16 (t, $J=8.1)$	C-5, C-8a
8	116.8	CH	7.89 (dd, $J=8.1,1.5)$	C-5a, C-9, C-6
9	180.6	C		
4 a	147.1	C		
5a	136.6	C		
8a	123.0	C		
9 a	104.7	C		
1^{\prime}	115.6	CH	6.72 (d, $J=10.1)$	C-3, C-3'
2^{\prime}	126.0	CH	5.69 (d, $J=10.1)$	C-1, C-3', C-4', C-5'

Table 9 (continued)

Position	δ_{C}		$\delta_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathrm{Hz})$	$\mathbf{H M B C}$
3^{\prime}	77.6	C		
$4^{\prime} / 5^{\prime}$	27.7	$\mathrm{CH}_{3} \times 2$	$1.48(\mathrm{~s})$	$\mathrm{C}-3^{\prime}, \mathrm{C}-2^{\prime}$
$10-\mathrm{NMe}$	40.5	CH_{3}	$4.08(\mathrm{~s})$	$\mathrm{C}-4 \mathrm{a}, \mathrm{C}-5 \mathrm{a}$

3.1.7 Compound AM7

Compound AM7 was isolated as orange crystals, m.p. $195-196^{\circ} \mathrm{C}$. The UV-Vis spectrum exhibited the absorption bands at 205, 290, 345 and 422 nm characteristic of a 9-acridone chromophore which was confirmed by the presence of IR absorption maxima of hydroxyl ($3374 \mathrm{~cm}^{-1}$) and chelated carbonyl ($1635 \mathrm{~cm}^{-1}$) groups. The X-ray structure of AM7 (Figure 8) (Chukaew et al., 2007) confirmed a structure with an acridone skeleton.

The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 10) of AM7 were similar to those of AM5. Signals of a chelated hydroxyl group appeared at $\delta 14.43$ ($s, 1-\mathrm{OH}$) and three adjacent aromatic proton signals with ABX pattern were shown at $\delta 7.72(1 \mathrm{H}, d d, J=$ $8.1,1.5 \mathrm{~Hz}), 7.32(1 \mathrm{H}, d d, J=8.1,1.5 \mathrm{~Hz})$ and $7.16(1 \mathrm{H}, t, J=8.1 \mathrm{~Hz})$ attributable to $\mathrm{H}-8, \mathrm{H}-6$ and $\mathrm{H}-7$, respectively. A prenyl group was shown as signals at $\delta 3.27(2 \mathrm{H}$, br $\left.d, J=7.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.20\left(1 \mathrm{H}, b r t, J=7.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 1.75,1.60$ (each, $s, \mathrm{Me}-4^{\prime}$, Me-5'), whose HMBC correlation of H-1' at $\delta 3.27$ with the carbons at $\delta 160.2$ (C-1), 159.3 (C-3) indicated a connection of a prenyl group at C-2. Signals of a 2,2-dimethyl pyran ring were shown at $\delta 6.90\left(1 \mathrm{H}, d, J=9.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 5.43(1 \mathrm{H}, d, J=9.5 \mathrm{~Hz}, \mathrm{H}-$ $2^{\prime \prime}$) and 1.43 ($\left.6 \mathrm{H}, s, \mathrm{Me}-4^{\prime \prime}, \mathrm{Me}-5^{\prime \prime}\right)$. HMBC correlation of $\mathrm{H}-1^{\prime \prime}$ at $\delta 159.3$ (C-3) and $146.0(\mathrm{C}-4 \mathrm{a})$, of $\mathrm{H}-2^{\prime \prime}$ at $\delta 5.43$ with the carbon at $\delta 102.6$ (C-4) suggested that a 2,2-
dimethyl pyran ring was fused to the acridone nucleus with angular orientation. Therefore, compound AM7 was assigned as N-methylataphyllinine (Auzi et al., 1996).

Figure 8 X-ray ORTEP diagram of compound AM7

Figure 9 Selected HMBC correlation of AM7

Table $10{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM7 (acetone- d_{6})

Position	$\delta_{\text {C }}$	Type of carbon	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC
1	160.2	C		
$1-\mathrm{OH}$			14.43 (s)	C-9a, C-1, C-2
2	106.4	C		
3	159.3	C		
4	102.6	C		
5	147.8	C		
$5-\mathrm{OH}$			9.45 (br s)	
6	119.5	CH	7.32 (dd, $J=8.1,1.5$)	C-8, C-5a
7	123.0	CH	7.16 (t, $J=8.1)$	C-5, C-8a
8	116.5	CH	7.72 (dd, $J=8.1,1.5)$	C-5a, C-9
9	180.8	C		
4 a	146.0	C		
5a	137.9	C		
8a	124.9	C		
9 a	110.1	C		
1^{\prime}	21.2	CH_{2}	3.27 (br d, $J=7.0$)	C-1, C-3, C-2', C-3'
2^{\prime}	122.5	CH	5.20 (br t, $J=7.0$)	
3'	131.0	C		
4^{\prime}	26.0	CH_{3}	1.75 (s)	C-2', C-3', C-5'
5^{\prime}	18.0	CH_{3}	1.60 (s)	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}$
1 "	121.0	CH	6.90 (d, $J=9.5$)	C-3', C-3, C-4a
2 "	123.5	CH	5.43 (d, $J=9.5$)	C-3", C-4, C-4'/5'
3 "	76.2	C		
$4^{\prime \prime} / 5^{\prime \prime}$	27.3	$\mathrm{CH}_{3} \times 2$	1.43 (s)	C-3', C-2'
$10-\mathrm{NMe}$	48.3	CH_{3}	3.66 (s)	C-4a, C-5a

Table 11 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM5, AM7 and N-methylataphyllinine ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\begin{gathered} \text { AM5 } \\ \delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { AM7 } \\ \delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \hline \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult }, J, \mathrm{~Hz}) \end{gathered}$
1-OH	14.63 (s)	14.43 (s)	14.32 (s)
2			
3			
4			
5-OH	9.41 (br s)	9.45 (br s)	
6	7.29 (br d, $J=7.5$)	7.32 (dd, $J=8.1,1.5$)	7.32 (dd, $J=7.0,3.0)$
7	$7.18(\mathrm{t}, J=7.5)$	7.16 (t, $J=8.1)$	7.06 ($\mathrm{t}, \mathrm{J}=7.0$)
8	7.76 (d, $J=7.5$)	7.72 (dd, $J=8.1,1.5)$	7.80 (dd, $J=7.0,3.0)$
9			
4a			
5a			
8a			
9a			
1^{\prime}	6.73 (d, $J=9.9)$	3.27 (br d, $J=7.0$)	3.37 (d, $J=7.0$)
2^{\prime}	5.70 (d, $J=9.9)$	5.20 (br t, $J=7.0$)	5.30 (m)
3^{\prime}			
4^{\prime}	1.48 (s)	1.75 (s)	1.82 (s)
5'	1.48 (s)	1.60 (s)	1.68 (s)
1"	3.51 (br d, $J=6.3$)	6.90 (d, $J=9.5$)	6.63 (d, $J=10.0)$
$2^{\prime \prime}$	5.36 (m)	5.43 (d, $J=9.5$)	5.51 (d, $J=10.0)$
$3^{\prime \prime}$			
$4^{\prime \prime}$	1.70 (s)	1.43 (s)	1.52 (s)
$5{ }^{\prime \prime}$	1.80 (s)	1.43 (s)	1.52 (s)
10-NMe	3.71 (s)	3.66 (s)	3.78 (s)

3.1.8 Compound AM8

Compound AM8 was isolated as optically inactive yellow needles, m.p. $247-249{ }^{\circ} \mathrm{C}$. The UV-Vis spectrum exhibited the absorption bands at 205, 258, 283 and 394 nm characteristic of a 9-acridone chromophore which was confirmed by the presence of IR absorption maxima of hydroxyl $\left(3385 \mathrm{~cm}^{-1}\right)$ and chelated carbonyl (1634 cm ${ }^{-1}$) groups.

A proton singlet signal of a phenolic hydroxyl was displayed at $\delta 14.50$ and that of $\mathrm{N}-\mathrm{H}$ proton at $\delta 9.01$. In the aromatic region, three mutually coupling signals at $\delta 7.74(1 \mathrm{H}, d, J=7.8 \mathrm{~Hz}), 7.20(1 \mathrm{H}, b r d, J=7.8 \mathrm{~Hz})$ and $7.08(1 \mathrm{H}, t, J=$ $7.8 \mathrm{~Hz})$ were attributed to H-8, H-6 and H-7, respectively. Signals at $\delta 5.21(1 \mathrm{H}, \mathrm{br} t$, $J=7.2 \mathrm{~Hz}), 3.54(2 \mathrm{H}, b r d, J=7.2 \mathrm{~Hz}), 1.77(3 \mathrm{H}, s)$ and $1.97(3 \mathrm{H}, s)$ indicated the presence of a prenyl group in the molecule. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AM8 were partly comparable with those of AM4 and AM5, suggesting an acridone chromophore with a prenyl side chain attached at C-4 from HMBC correlation of H $1^{\prime \prime}(\delta 3.54)$ with the carbons at $\delta 96.4$ (C-4), 140.6 (C-4a) and C-3 (164.6). The ${ }^{1} \mathrm{H}$ NMR data different from those of AM4 and AM5 were shown as signals at $\delta 4.80$ $\left(1 \mathrm{H}, d d, J=9.0,8.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.22$ and 3.15 (each $1 \mathrm{H}, d d, J=15.6,8.1 \mathrm{~Hz}$, and 15.6 , 9.0 Hz , respectively, $2 \mathrm{H}-1^{\prime}$), 1.30 and 1.27 ($6 \mathrm{H}, s$, Me-4', 5^{\prime}). These data were consistent with a hydroxyisopropyldihydrofurano moiety whose location was placed between $\mathrm{C}-2$ and $\mathrm{C}-3$ due to HMBC correlation of $\mathrm{H}-1^{\prime}(\delta 3.22)$ with the carbon at δ 105.1 (C-2), of $\mathrm{H}-1^{\prime}(\delta 3.15)$ with $\delta 164.6$ (C-3). Based on these data, AM8 was assigned as buxifoliadine-E previously isolated from Severinia buxifolia (Wu and Chen, 2000).

Figure 10 Selected HMBC correlation of AM8

Table $12{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM8 (acetone- d_{6})

Position	$\delta_{\text {C }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz})$	HMBC
1	157.0	C		
$1-\mathrm{OH}$			14.50 (s)	C-9a, C-1, C-2
2	105.1	C		
3	164.6	C		
4	96.4	C		
5	144.6	C		
$5-\mathrm{OH}$			10.01 (br s)	
6	115.5	CH	7.20 (br d, $J=7.8)$	C-5a, C-8
7	121.0	CH	7.08 (t, $J=7.8$)	C-5, C-8a
8	115.7	CH	7.74 (d, $J=7.8$)	C-5a, C-9, C-6
9	181.0	C		
4 a	140.6	C		
5a	130.8	C		
8a	120.1	C		
9 a	104.9	C		
1^{\prime}	26.7	CH_{2}	3.15 (dd, $J=15.6,9.0)$	C-3', C-3
			3.22 (dd, $J=15.6,8.1)$	$\mathrm{C}-3^{\prime}, \mathrm{C}-2^{\prime}, \mathrm{C}-2$

Table 12 (continued)

Position	$\delta_{\mathbf{C}}$		$\delta_{\mathbf{H}}($ mult, $J, \mathbf{H z})$	HMBC
2^{\prime}	91.1	CH	$4.80(\mathrm{dd}, J=9.0,8.1)$	
$3^{\prime}-\mathrm{OH}$	70.7	C		
4^{\prime}	25.0	CH_{3}	$1.30(\mathrm{~s})$	$\mathrm{C}-3^{\prime}, \mathrm{C}-2^{\prime}$
5^{\prime}	25.0	CH_{3}	$1.27(\mathrm{~s})$	$\mathrm{C}-3^{\prime}, \mathrm{C}-2^{\prime}$
$1^{\prime \prime}$	22.5	CH_{2}	$3.54(\mathrm{br} \mathrm{d}, J=7.2)$	$\mathrm{C}-4, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-3, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}$
$2^{\prime \prime}$	121.6	CH	$5.21(\mathrm{br} \mathrm{t}, J=7.2)$	$\mathrm{C}-4^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$
$3^{\prime \prime}$	134.3	C		
$4^{\prime \prime}$	17.2	CH	$1.97(\mathrm{~s})$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$
$5^{\prime \prime}$	24.5	CH_{3}	$1.77(\mathrm{~s})$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}$,
$10-\mathrm{NH}$			$9.01(\mathrm{~s})$	

3.1.9 Compound AM9

Compound AM9 was isolated as yellow needles. The UV-Vis spectrum exhibited the absorption bands at $252,276,282,327$ and 395 nm characteristic of a 9 -acridone chromophore which was confirmed by the presence of IR absorption maxima of hydroxyl ($3374 \mathrm{~cm}^{-1}$) and chelated carbonyl ($1639 \mathrm{~cm}^{-1}$) groups.

Its molecular formula $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{5}$ was suggested on the basis of HREIMS (m / z 409.1888). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 13) of AM9 were similar to those of AM8, except that an N-methyl signal ($\delta_{\mathrm{H}} 3.73, \delta_{\mathrm{C}} 47.2$) in AM9 replaced an NH signal (δ_{H} 9.01) in AM8. A proton singlet signal of a phenolic
hydroxyl was displayed at $\delta 14.45$. The location of a prenyl group at $\mathrm{C}-4$ was confirmed by HMBC correlation of $\mathrm{H}-1^{\prime \prime}(\delta 3.53)$ with the carbons at $\delta 103.0$ (C-4), 150.0 (C-4a) and C-3 (167.0). A hydroxyisopropyldihydrofurano moiety was placed between $\mathrm{C}-2$ and $\mathrm{C}-3$ due to HMBC correlation of $\mathrm{H}-1^{\prime}(\delta 3.22)$ with the carbon at δ 106.7 (C-2), of $\mathrm{H}-1$ ($(\delta 3.15$) with $\delta 167.0$ (C-3). Based on these data, AM9 was identified as N-methyl derivative of buxifoliadine-E and named as N -methylbuxifoliadine-E, a new compound.

Figure 11 Selected HMBC correlation of AM9

Table $13{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HMBC and NOESY spectral data of compound AM9 (acetone- d_{6})

Position	$\delta_{\text {c }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz})$	HMBC	NOESY
1	157.2	C			
1-OH			14.45 (s)	C-9a, C-1	
2	106.7	C			
3	167.0	C			
4	103.0	C			
5	148.4	C			
$5-\mathrm{OH}$			9.32 (br s)		
6	119.4	CH	7.27 (dd, $J=7.8,1.5$)	C-5, C-5a, C-8	7
7	122.8	CH	7.17 (t, $J=7.8$)	C-5, C-8a	6, 8
8	116.2	CH	7.77 (dd, $J=7.8,1.5)$	C-5a, C-9	7
9	182.3	C			
4a	150.0	C			
5a	138.0	C			
8a	125.0	C			
9a	107.0	C			
1^{\prime}	26.7	CH_{2}	3.15 (dd, $J=15.6,9.3)$	$\mathrm{C}-3, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$	2^{\prime}
			3.22 (dd, $J=15.6,7.5$)	C-2	
2^{\prime}	91.0	CH	4.82 (dd, $J=9.3,7.5$)		$1^{\prime}, 4^{\prime} / 5^{\prime}$
$3^{\prime}-\mathrm{OH}$	70.8	C	3.76 (s)	C-4', C-5', C-2',	$4^{\prime} / 5^{\prime}$
$4^{\prime} / 5^{\prime}$	25.3	$\mathrm{CH}_{3} \times 2$	1.28 (s)	C-3', C-2'	$2^{\prime}, 3^{\prime}-\mathrm{OH}$
1 "	25.9	CH_{2}	3.53 (br d, $J=6.3$)	C-4, C-4a, C-3,	$2^{\prime \prime}, 5^{\prime \prime}$
				C-2", C-3"	
$2^{\prime \prime}$	123.1	CH	5.39 (m)		1', 4", 10
3"	131.2	C			

Table 13 (continued)

Position	$\delta_{\text {C }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, \boldsymbol{J}, \mathrm{Hz})$	HMBC	NOESY
4 "	17.2	CH_{3}	1.78 (s)	C-2', C-3", C-	2 "
5"	24.9	CH_{3}	1.69 (s)	C-2", C-3", C-	$1 \prime \prime$
10-NMe	47.2	CH_{3}	3.73 (s)	C-4a, C-5a	$2^{\prime \prime}$

Table 14 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM8, AM9 and Buxifoliadine-E (R, acetone- d_{6})

Position	$\begin{gathered} \text { AM8 } \\ \delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { AM9 } \\ \delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \hline \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult }, J, \mathrm{~Hz}) \end{gathered}$
1-OH	14.50 (s)	14.45 (s)	14.49 (s)
2			
3			
4			
5-OH	10.01 (br s)	9.32 (br s)	9.82 (s)
6	7.20 (br d, $J=7.8)$	7.27 (dd, $J=7.8,1.5$)	7.20 (dd, $J=8.0,1.2)$
7	7.08 (t, $J=7.8$)	7.17 (t, $J=7.8)$	7.08 (t, $J=8.0)$
8	7.74 (d, $J=7.8)$	7.77 (dd, $J=7.8,1.5$)	7.74 (dd, $J=8.0,1.2)$
9			
4a			
5a			
8 a			
9 a			
1^{\prime}	3.15 (dd, $J=15.6,9.0)$	3.15 (dd, $J=15.6,9.3)$	3.16 (dd, $J=15.2,9.2)$
	3.22 (dd, $J=15.6,8.1)$	3.22 (dd, $J=15.6,7.5)$	3.21 (dd, $J=15.2,8.0)$
2^{\prime}	4.80 (dd, $J=9.0,8.1$)	4.82 (dd, $J=9.3,7.5$)	4.79 (dd, $J=9.2,8.0)$
3'-OH		3.76 (s)	3.82 (s)
4^{\prime}	1.30 (s)	1.28 (s)	1.28 (br s)
5'	1.27 (s)	1.28 (s)	1.25 (br s)
1"	3.54 (br d, $J=7.2$)	3.53 (br d, $J=6.3$)	3.55 (d, $J=6.8)$
2"	5.21 (br t, $J=7.2$)	5.39 (m)	5.21 (m)
3"			
$4 \prime$	1.97 (s)	1.78 (s)	1.99 (br s)
5"	1.77 (s)	1.69 (s)	1.68 (br s)
10	9.01 (s)	3.73 (s)	9.02 (s)

Table 15 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM8, AM9 and Buxifoliadine-E (R, acetone- d_{6})

Position	δ_{C}, AM8	δ_{C}, AM9	$\delta_{\text {c }}, \mathbf{R}$
1-OH	157.0	157.2	158.1
2	105.1	106.7	108.2
3	164.6	167.0	165.5
4	96.4	103.0	97.3
5-OH	144.6	148.4	145.3
6	115.5	119.4	116.5
7	121.0	122.8	121.9
8	115.7	116.2	116.8
9	181.0	182.3	181.9
4a	140.6	150.0	141.5
5a	130.8	138.0	131.7
8a	120.1	125.0	121.1
9a	104.9	107.0	106.0
1^{\prime}	26.7	26.7	27.7
2^{\prime}	91.1	91.0	92.0
3^{\prime}	70.7	70.8	71.6
4^{\prime}	25.0	25.3	25.9
5^{\prime}	25.0	25.3	29.5
1 '	22.5	25.9	23.4
2"	121.6	123.1	122.5
$3 \prime \prime$	134.3	131.2	135.2
4"	17.2	17.2	18.1
5"	24.5	24.9	25.4
$10-\mathrm{NMe}$		47.2	

3.1.10 Compound AM10

Compound AM10 was obtained as orange needles, m.p. 206-207 ${ }^{\circ} \mathrm{C}$. The UV-Vis spectrum exhibited the absorption bands at 203, 263, 319 and 416 nm characteristic of a 9-acridone chromophore. An infrared (IR) absorption maxima indicated the presence of hydroxyl ($3386 \mathrm{~cm}^{-1}$) and chelated carbonyl $\left(1633 \mathrm{~cm}^{-1}\right)$ groups.

The ${ }^{1} \mathrm{H}$-NMR spectrum showed a singlet signal at $\delta 14.22$ indicating the presence of a chelated hydroxyl group. Three sharp singlets (each 3 H) at $\delta 3.76$, 3.83 , and 3.98 were due to methoxyl, N-methyl and methoxyl groups, respectively. Signals of three adjacent aromatic protons at $\delta 7.78(1 \mathrm{H}, d, J=7.8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, b r$ $d, J=7.8 \mathrm{~Hz})$ and $7.16(1 \mathrm{H}, t, J=7.8 \mathrm{~Hz})$ were assigned to $\mathrm{H}-8, \mathrm{H}-6$, and H-7, respectively. The deshielding of $\mathrm{H}-8$ is reasonable because it lies in the peri-position with respect to the 9 -carbonyl moiety. A sharp one-proton singlet signal at $\delta 6.41$ could be attributed to an aromatic proton at C-2 which was confirmed by HMBC correlation of H-2 ($\delta 6.41$) with the carbon at $\delta 105.9$ (C-9a), 160.0 (C-3) and 130.3 (C-4). Two singlet signals at $\delta 3.76$ and $\delta 3.98$ (each 3 H) were assigned for methoxyl group at $\mathrm{C}-3$ and $\mathrm{C}-4$ respectively due to HMBC correlations (Figure 12) of 3-OMe with the carbon at $\delta 160.0(\mathrm{C}-3)$ and $4-\mathrm{OMe}$ with the carbon at $\delta 130.3$ (C-4). NOESY cross peak of $\mathrm{O}-\mathrm{Me}(\delta 3.76)$ at $\mathrm{C}-4$ with $\mathrm{N}-\mathrm{Me}(\delta 3.83)$ supported the assigned structure. On the basis of the above analysis, the structure of AM10 was identified as citrusinine-I (Wu and Furukawa, 1983).

Figure 12 Selected HMBC correlation of AM10

Table $16{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM10 (acetone- d_{6})

Position		$\delta_{\text {c }}$	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC
1	160.3	C		
$1-\mathrm{OH}$			14.22 (s)	
2	93.7	CH	6.41 (s)	C-9a, C-4, C-3
3	160.0	C		
$3-\mathrm{OMe}$	55.7	CH_{3}	3.98 (s)	C-3
4	130.3	C		
$4-\mathrm{OMe}$	59.5	CH_{3}	3.76 (s)	C-4
5	148.0	C		
$5-\mathrm{OH}$			9.42 (br s)	
6	119.9	CH	7.30 (br d, $J=7.8$)	C-5a, C-8, C-5
7	122.5	CH	7.16 (t, $J=7.8$)	C-5, C-8a
8	116.3	CH	7.78 (d, $J=7.8$)	C-5a, C-9, C-6
9	182.2	C		
4a	142.2	C		
5a	137.4	C		
8 a	124.5	C		
9 a	105.9	C		
10-NMe	45.9	CH_{3}	3.83 (s)	C-4a, C-5a

Table 17 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM10 and citrusinine-I ($\mathbf{R}, \mathrm{DMSO}-d_{6}+\mathrm{CDCl}_{3}$)

Position	AM10 $\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	\mathbf{R} $\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$
$1-\mathrm{OH}$	$14.22(\mathrm{~s})$	$14.05(\mathrm{~s})$
2	$6.41(\mathrm{~s})$	$6.30(\mathrm{~s})$
3		
$3-\mathrm{OMe}$	$3.98(\mathrm{~s})$	$3.92(\mathrm{~s})$
4		$3.77(\mathrm{~s})$
$4-\mathrm{OMe}$	$3.76(\mathrm{~s})$	$9.16(\mathrm{br} \mathrm{s})$
$5-\mathrm{OH}$	$9.42(\mathrm{br} \mathrm{s})$	$7.19(\mathrm{dd}, J=8.0,2.0)$
6	$7.30(\mathrm{br} \mathrm{d}, J=7.8)$	$7.04(\mathrm{t}, J=8.0)$
7	$7.16(\mathrm{t}, J=7.8)$	$7.68(\mathrm{dd}, J=8.0,2.0)$
8	$7.78(\mathrm{~d}, J=7.8)$	
9		
4 a		$3.71(\mathrm{~s})$
5 a		
8 a		
9 a		
$10-\mathrm{NMe}$	$3.83(\mathrm{~s})$	

Table 18 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM10 and citrusinine-I ($\mathbf{R}, \mathrm{DMSO}-d_{6}+\mathrm{CDCl}_{3}$)

Position	$\boldsymbol{\delta}_{\mathbf{C}}, \mathbf{A M 1 0}$	$\boldsymbol{\delta}_{\mathbf{C}}, \mathbf{R}$
$1-\mathrm{OH}$	160.3	159.9
2	93.7	93.4
3	160.0	159.4
$3-\mathrm{OMe}$	55.7	55.9
4	130.3	129.7
$4-\mathrm{OMe}$	59.5	59.9
$5-\mathrm{OH}$	148.0	148.1
6	119.9	119.9
7	122.5	122.4
8	116.3	115.7
9	182.2	181.9
4 a	142.2	141.8
5a	137.4	137.1
8a	124.5	124.1
9a	105.9	105.8
10-NMe	45.9	45.9

3.1.11 Compound AM11

Compound AM11 was obtained as orange needles, m.p. $218-220{ }^{\circ} \mathrm{C}$. The UV-Vis spectrum exhibited the absorption bands at 205, 265, 285, 305 and 407 nm characteristic of a 9 -acridone chromophore. An infrared (IR) absorption maxima indicated the presence of hydroxyl ($3380 \mathrm{~cm}^{-1}$) and chelated carbonyl ($1636 \mathrm{~cm}^{-1}$) groups.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AM11 were comparable with AM1, except that AM1 has two prenyl groups attached at C-2 and C-4 but only one prenyl group at $\mathrm{C}-2$ in AM11. The HMBC correlation of $\mathrm{H}-1^{\prime}$ at $\delta 3.38$ with the carbons at $\delta 107.8(\mathrm{C}-2), 162.0(\mathrm{C}-1)$ and 162.3 (C-3) supported the connection of a prenyl group at $\mathrm{C}-2$. An aromatic proton singlet signal was displayed at $\delta 6.50$ which was assigned as H-4 due to its HMBC correlation to the carbons at $\delta 104.7$ (C-9a), 107.8 (C-2), 140.8 (C-4a) and 162.3 (C-3). The complete HMBC data were summarized in Table 19. Based on these data, AM11 was assigned as junosine (Auzi et al., 1996).

Figure 13 Selected HMBC correlation of AM11

Table $19{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM11 (acetone- d_{6})

Position	$\delta_{\text {C }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC
1	162.0	C		
1-OH			14.98 (s)	C-9a, C-2, C-1
2	107.8	C		
3	162.3	C		
4	90.5	CH	6.50 (s)	C-9a, C-2, C-3, C-4a
5	146.8	C		
6	119.5	CH	7.28 (dd, $J=7.8,1.5)$	C-8, C-5a, C-5
7	121.7	CH	7.12 (t, $J=7.8)$	C-5, C-8a
8	116.9	CH	7.90 (dd, $J=7.8,1.5)$	C-5a, C-9, C-6
9	180.2	C		
4a	140.8	C		
5a	133.8	C		
8a	123.7	C		
9a	104.7	C		
1^{\prime}	21.0	CH_{2}	3.38 (br d, $J=7.2$)	C-1, C-2, C-2', C-3, C-3'
2^{\prime}	122.9	CH	5.52 (m)	C-4', 5^{\prime}
3^{\prime}	130.2	C		
4^{\prime}	17.0	CH_{3}	1.79 (s)	C-3', C-2'
5^{\prime}	25.0	CH_{3}	1.65 (s)	C-3', C-2'
10-NMe	40.2	CH_{3}	4.02 (s)	C-5a, C-4, C-5

3.1.12 Compound AM12

Compound AM12 was obtained as yellow crystals, m.p. $228-230{ }^{\circ} \mathrm{C}$. The IR spectrum of compound AM12 indicated the presence of hydroxyl at 3401 cm^{-1} and three carbonyl absorptions at 1742,1717 and $1658 \mathrm{~cm}^{-1}$, the last band being due to an α, β-unsaturated carbonyl.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 20) suggested the presence of a β substituted furan at $\delta 7.40(1 \mathrm{H}, b r s), 7.38(1 \mathrm{H}, b r s)$ and $6.37(1 \mathrm{H}, b r s)$. It was further established that compound AM12 was a limonoid with five tertiary C-methyl groups resonating as singlets at $\delta 2.02,1.78,1.40,1.34$ and 0.66 and a COOMe as a singlet at $\delta 3.55$. Two of the five C-methyl groups at $\delta 2.02$ and 1.78 were ascribed to two methyl groups connecting to a double bond, suggesting a seco-limonoid. The presence of an epoxy lactone moiety was revealed by the characteristic $\mathrm{H}-15$ and $\mathrm{H}-$ 17 singlet signals at $\delta 4.22$ and 5.49 respectively. The ${ }^{1} \mathrm{H}$ NMR also had two protons of a conjugated double bond absorbing as two AB doublets at $\delta 6.32(1 \mathrm{H}, J=12.3$ $\mathrm{Hz})$ and $5.72(1 \mathrm{H}, J=12.3 \mathrm{~Hz})$. This large coupling constant $(J>10 \mathrm{~Hz})$ for $\mathrm{H}-1$ and $\mathrm{H}-2$ combined with their chemical shifts showed that compound AM12 belonged to the obacunone type (dreyer, et al., 1965) limonoids with seco-ring A of the methyl obacunoate rather than the gedunin-type ($J \sim 10 \mathrm{~Hz}$). This result was also supported by a HMBC experiment (Figure 14). Based on these data, the structure of atalantolide was assigned as AM12 (Okorie et al., 1982).

Figure 14 Selected HMBC correlation of AM12

Table $20{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM12 $\left(\mathrm{CDCl}_{3}\right)$

Position	$\delta_{\mathbf{C}}$		$\delta_{\mathbf{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC
1	158.3	CH	$6.32(\mathrm{~d}, J=12.3)$	$\mathrm{C}-5, \mathrm{C}-3, \mathrm{C}-10$
2	118.0	CH	$5.72(\mathrm{~d}, J=12.3)$	$\mathrm{C}-1, \mathrm{C}-3, \mathrm{C}-10$
3	166.1	C		
4	152.6	C		
5	135.8	C		
6	201.0	C		
7	79.7	CH	$4.81(\mathrm{~s})$	$\mathrm{C}-8, \mathrm{C}-24, \mathrm{C}-14, \mathrm{C}-6$
8	45.0	C		
9	44.3	CH	$3.36(\mathrm{br} \mathrm{d}, J=10.8)$	$\mathrm{C}-10, \mathrm{C}-11, \mathrm{C}-12$
10	45.2	C		$\mathrm{C}-9, \mathrm{C}-10, \mathrm{C}-12$
11	20.3	CH		
12	32.5	CH	$1.68(\mathrm{~m})$	$1.84(\mathrm{br} \mathrm{d}, J=6.9)$
$\mathrm{C}-11, \mathrm{C}-9$				
13	37.8	C		
14	67.3	C		$\mathrm{C}-8, \mathrm{C}-14, \mathrm{C}-16$
15	51.3	CH	$4.22(\mathrm{~s})$	
16	167.6	C		

Table 20 (continued)

Position	$\boldsymbol{\delta}_{\mathbf{C}}$		$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\mathbf{H M B C}$
17	78.2	CH	$5.49(\mathrm{~s})$	$\mathrm{C}-12, \mathrm{C}-13, \mathrm{C}-18, \mathrm{C}-20, \mathrm{C}-22$
18	20.0	CH_{3}	$1.34(\mathrm{~s})$	$\mathrm{C}-12, \mathrm{C} 13, \mathrm{C}-14, \mathrm{C}-17$
19	24.4	CH_{3}	$1.40(\mathrm{~s})$	$\mathrm{C}-10, \mathrm{C}-5$
20	120.5	C		
21	142.8	CH	$7.38(\mathrm{br} \mathrm{s})$	$\mathrm{C}-22, \mathrm{C}-20, \mathrm{C}-23$
22	110.0	CH	$6.37(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-23$
23	140.9	CH	$7.40(\mathrm{br} \mathrm{s})$	$\mathrm{C}-22, \mathrm{C}-20, \mathrm{C}-21$
24	13.0	CH_{3}	$0.66(\mathrm{~s})$	$\mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-14$
25	29.1	CH_{3}	$1.78(\mathrm{~s})$	$\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-25$
26	25.5	CH_{3}	$2.02(\mathrm{~s})$	$\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-24$
27	51.4	CH_{3}	$3.55(\mathrm{~s})$	$\mathrm{C}-3$

Table 21 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM12 and atalantolide ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz}), \mathrm{AM12}$	$\delta_{\mathrm{H}}(\mathrm{mult}, \boldsymbol{J}, \mathrm{Hz}$), R
1	6.32 (d, $J=12.3)$	6.37 ($\mathrm{d}, \mathrm{J}=12.4$)
2	5.72 (d, $J=12.3)$	5.75 (d, $J=12.4)$
3		
4		
5		
6		
7	4.81 (s)	4.83 ($\mathrm{d}, J=2.9)$
8		
9	3.36 (br d, $J=10.8)$	3.39 (m)
10		
11	1.68 (m)	1.63 (m)
12	1.84 (br d, $J=6.9)$	1.81 (m)
13		
14		
15	4.22 (s)	4.24 (s)
16		
17	5.49 (s)	5.51 (s)
18	1.34 (s)	1.36 (s)
19	1.40 (s)	1.41 (s)
20		
21	7.38 (br s)	7.40 (m)
22	6.37 (br s)	6.39 (dd, $J=1.8,1.0)$
23	7.40 (br s)	7.40 (m)
24	0.66 (s)	0.68 (s)
25	1.78 (s)	1.77 (s)
26	2.02 (s)	2.04 (s)
27	3.55 (s)	3.57 (s)

Table 22 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM12 and atalantolide ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\delta_{\text {c }}$, AM12	$\delta_{\mathrm{C}}, \mathbf{R}$
1	158.3	158.4
2	118.0	118.0
3	166.1	166.3
4	152.6	152.8
5	135.8	135.8
6	201.0	201.1
7	79.7	79.8
8	45.0	45.0
9	44.3	44.3
10	45.2	45.2
11	20.3	20.3
12	32.5	32.4
13	37.8	37.9
14	67.3	67.4
15	51.3	51.3
16	167.6	167.7
17	78.2	78.3
18	20.0	20.0
19	24.4	24.4
20	120.5	120.5
21	142.8	141.0
22	110.0	110.0
23	140.9	142.9
24	13.0	13.0
25	29.1	29.1
26	25.5	25.6
27	51.4	51.4

3.1.13 Compound AM13

Compound AM13 was obtained as yellow crystals, mp 182-184 C. The IR spectrum of compound AM13 indicated the presence of hydroxyl at 3396 cm^{-1} and two carbonyl bands at 1739 and $1709 \mathrm{~cm}^{-1}$.

Compound AM13, the second limonoid isolated, has spectroscopic properties similar to those of atalantolide, compound AM12 (Table 23). Immediately recognizable are the β-substituted furan, $\mathrm{H}-17, \mathrm{H}-15, \alpha, \beta$-unsaturated methyl ester, $\mathrm{H}-9(\delta 3.24)$ and a singlet signal at $\delta 4.63$ attributable to H-7. The appearance of four tertiary methyl ${ }^{1} \mathrm{H}$ NMR signals and two doublets ($\delta 3.78$ and $4.13, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}-$ 19) suggested a carbon skeleton related to that of a limonin with an ether bridge from $\mathrm{C}-19$ to $\mathrm{C}-4$. This arrangement was further supported by a one-proton singlet at δ 3.01, attributable to $\mathrm{H}-5$. Consideration of the chemical shift of $\mathrm{H}-15(\delta 4.19)$ and $\mathrm{H}-$ 17 (δ 5.43) in compound AM13 and comparison with the data for atalantolide (compound AM12) also suggested an epoxy lactone moiety. The ${ }^{13} \mathrm{C}$ NMR spectrum of atalantin (see Table 23) was in accord with this assignment. The ${ }^{13} \mathrm{C}$ NMR signals at $\delta 67.8$ (C-14), 52.1 (C-15), 166.9 (C-16) and 77.7 (C-17) confirmed the presence of a ring D epoxy lactone system. This result was also supported by a HMBC experiment (Figure 15). Based on these data, the structure of AM13 was assigned as atalantin (Sabata et al., 1977).

Figure 15 Selected HMBC correlation of AM13

Table $23{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM13 (acetone- d_{6})

Position	$\delta_{\text {c }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, \boldsymbol{J}, \mathrm{Hz})$	HMBC
1	163.4	CH	6.74 (d, $J=12.5)$	C-3
2	119.5	CH	5.89 ($\mathrm{d}, \mathrm{J}=12.5$)	C-10, C-27
3	166.2	C		
4	83.8	C		
5	65.0	CH	3.01 (br s)	C-4, C-19, C-25
6	208.8	C		
7	80.0	CH	4.63 (s)	C-8, C-14, C-24
8	43.7	C		
9	41.0	CH	3.24 (m)	C-5, C-8, C-11, C-12
10	54.0	C		
11	20.3	CH_{2}	1.85 (m), 1.74 (m)	C-8, C-9, C-12
12	31.0	CH_{2}	1.88 (m), 1.33 (m)	C-11, C-13, C-18
13	37.8	C		
14	67.8	C		
15	52.1	CH	4.39 (s)	C-8, C-14, C-16
16	166.9	C		
17	77.7	CH	5.43 (s)	C-18, C-20, C-22

Table 23 (continued)

Position	$\boldsymbol{\delta}_{\mathbf{C}}$		$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\mathbf{H M B C}$
18	19.5	CH_{3}	$1.17(\mathrm{~s})$	$\mathrm{C}-12, \mathrm{C}-13, \mathrm{C}-17$
19	74.4	CH_{2}	$4.13,3.78,(\mathrm{~d}, J=10.0)$	$\mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-9$
20	120.7	C		
21	143.1	CH	$7.48(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-22, \mathrm{C}-23$
22	110.1	CH	$6.42(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-23$
23	141.4	CH	$7.54(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-21, \mathrm{C}-22$
24	11.3	CH_{3}	$0.81(\mathrm{~s})$	$\mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-14$
25	29.9	CH_{3}	$1.14(\mathrm{~s})$	$\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-26$
26	24.6	CH_{3}	$1.20(\mathrm{~s})$	$\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-25$
27	51.2	CH_{3}	$3.59(\mathrm{~s})$	$\mathrm{C}-2, \mathrm{C}-3$

Table 24 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM13 and atalantin $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}), \mathrm{AM13}$	$\delta_{\mathrm{H}}(\mathrm{mult}, \boldsymbol{J}, \mathrm{Hz}), \mathrm{R}$
1	6.74 (d, $J=12.5)$	6.62 (d, $J=12.0)$
2	5.89 (d, $J=12.5)$	5.90 (d, $J=12.0)$
3		
4		
5	3.01 (s)	3.11 (br s)
6		
7	4.63 (s)	4.77 (br s)
8		
9	3.24 (m)	3.34 (m)
10		
11	1.85 (m), 1.74 (m)	1.68 (m)
12	1.88 (m), 1.33 (m)	1.83 (m)
13		
14		
15	4.39 (s)	4.44 (s)
16		
17	5.43 (s)	5.53 (s)
18	1.17 (s)	1.24 (s)
19	4.13, 3.78, (each d, $J=10.0$)	4.17, 3.79, (each d, $J=9.5$)
20		
21	7.48 (br s)	7.41 (m)
22	6.42 (br s)	6.36 (m)
23	7.54 (br s)	7.41 (m)
24	0.81 (s)	0.89 (s)
25	1.14 (s)	1.30 (s)
26	1.20 (s)	1.36 (s)
27	3.59 (s)	3.57 (s)

Table 25 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM13 and atalantin $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	$\delta_{\text {c }}$, AM13	$\delta_{\mathrm{C}}, \mathbf{R}$
1	163.4	163.3
2	119.5	120.1
3	166.2	165.9
4	83.8	84.4
5	65.0	64.5
6	208.8	209.1
7	80.0	80.0
8	43.7	43.9
9	41.0	40.2
10	54.0	52.7
11	20.3	20.4
12	31.0	30.6
13	37.8	38.1
14	67.8	68.5
15	52.1	52.9
16	166.9	167.7
17	77.7	78.1
18	19.5	19.7
19	74.4	75.0
20	120.7	120.5
21	143.1	141.1
22	110.1	110.0
23	141.4	143.0
24	11.3	12.5
25	29.9	31.3
26	24.6	25.0
27	51.2	51.9

3.1.14 Compound AM14

Compound AM14 was obtained as yellow crystals, m.p. 308-310 ${ }^{\circ} \mathrm{C}$. The IR spectrum of compound AM14 indicated the presence of a hydroxyl at 3390 cm^{-1} and two carbonyl absorptions at 1733 and $1693 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AM14 were comparable with AM13, except that AM13 had an α, β-unsaturated methyl ester group attached at $\mathbf{C}-10$ but compound AM14, had a cyclopent-2-enone ring. The ${ }^{1} \mathrm{H}$ NMR signals of an α, β unsaturated methyl ester group in AM13 shown as two doublets at $\delta 6.74$ and 5.89 (J $=12.5 \mathrm{~Hz}$) and $\mathrm{O}-\mathrm{Me}$ at $\delta 3.59$ were replaced by signals of a cyclopent-2-enone ring in AM14 which appeared as two doublets at $\delta 7.99$ and $6.15(J=5.7 \mathrm{~Hz})$ and no evidence of O-Me singlet signal. Besides a proton singlet signal at $\delta 3.01(\mathrm{H}-5)$ as shown in AM13 was not shown in AM14. The ${ }^{13} \mathrm{C}$ NMR ester signal in AM13 at δ 166.2 was replaced by a carbonyl signal at $\delta 200.6$ in AM14. Compound AM14 could be formed from cyclization of AM13. This result was also supported by a HMBC experiment (Figure 15). Based on these data, the structure of AM14 was assigned as cycloepiatalantin (dreyer et al., 1976).

Figure 16 Selected HMBC correlation of AM14

Table $26{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM14 (acetone- d_{6})

Position	$\delta_{\text {C }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC
1	169.4	CH	7.99 (d, $J=5.7)$	C-2, C-3, C-5, C-9
2	129.4	CH	$6.15(\mathrm{~d}, J=5.7)$	C-10, C-27
3	200.6	C		
4	84.8	C		
5	71.9	C		
6	200.0	C		
7	76.2	CH	3.39 (s)	C-8, C-14, C-24
8	43.3	C		
9	33.0	CH	$3.02(\mathrm{q}, J=6.6)$	C-5, C-8, C-11, C-12
10	61.0	C		
11	15.9	CH_{2}	2.27 (m), 1.93 (m)	C-8, C-9, C-12
12	25.7	CH_{2}	1.88 (m), 1.50 (m)	C-11, C-13, C-18
13	38.0	C		
14	69.1	C		
15	56.9	CH	3.86 (s)	C-8, C-14, C-16

Table 26 (continued)

Position	$\delta_{\mathbf{C}}$		$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{m u l t}, \boldsymbol{J}, \mathbf{H z})$	$\mathbf{H M B C}$
16	166.9	C		
17	77.7	CH	$5.60(\mathrm{~s})$	$\mathrm{C}-18, \mathrm{C}-20, \mathrm{C}-22$
18	17.3	CH_{3}	$1.22(\mathrm{~s})$	$\mathrm{C}-12, \mathrm{C}-13, \mathrm{C}-17$
19	69.5	CH_{2}	$4.02,3.89$ (eachd, $J=9.6)$	$\mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-9$
20	120.9	C		
21	143.2	CH	$7.59(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-22, \mathrm{C}-23$
22	110.0	CH	$6.50(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-23$
23	141.6	CH	$7.68(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-21, \mathrm{C}-22$
24	15.1	CH	$1.10(\mathrm{~s})$	$\mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-14$
25	28.3	CH_{3}	$1.13(\mathrm{~s})$	$\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-26$
26	24.5	CH_{3}	$1.31(\mathrm{~s})$	$\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-25$

Table 27 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM14 and cycloepiatalantin $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}$), AM14	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz}$), R
1	7.99 (d, $J=5.7)$	7.72 (d, $J=6.0)$
2	6.15 (d, $J=5.7)$	6.24 (d, $J=6.0)$
3		
4		
5		
6		
7	3.39 (s)	3.46 (s)
8		
9	3.02 (q, $J=6.6)$	3.02 (m)
10		
11	2.27 (m), 1.93 (m)	2.18 (m)
12	1.88 (m), 1.50 (m)	1.85 (m)
13		
14		
15	3.86 (s)	3.89 (s)
16		
17	5.60 (s)	5.58 (s)
18	1.22 (s)	1.24 (s)
19	$4.02,3.89$ (each d, $J=9.6$)	$4.01,3.86$ (each d, $J=10.0$)
20		
21	7.59 (br s)	$7.42(\mathrm{t}, J=1.0)$
22	6.50 (br s)	6.33 ($\mathrm{d}, \mathrm{J}=1.0)$
23	7.68 (br s)	7.45 (m)
24	1.10 (s)	1.10 (s)
25	1.13 (s)	1.20 (s)
26	1.31 (s)	1.36 (s)

Table 28 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data between compounds AM14 and cycloepiatalantin $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	$\delta_{\text {c }}$, AM14	$\delta_{\mathrm{C}}, \mathbf{R}$
1	169.4	169.5
2	129.4	129.8
3	200.6	201.3
4	84.8	85.2
5	71.9	71.9
6	200.0	200.3
7	76.2	75.9
8	43.3	43.1
9	33.0	32.8
10	61.0	60.9
11	15.9	16.2
12	25.7	25.5
13	38.0	37.9
14	69.1	69.3
15	56.9	56.9
16	166.9	167.4
17	77.7	77.8
18	17.3	17.7
19	69.5	69.6
20	120.9	120.6
21	143.2	143.3
22	110.0	110.1
23	141.6	141.5
24	15.1	15.5
25	28.3	28.8
26	24.5	25.1

3.1.15 Compound AM15

Compound AM15 was obtained as yellow crystals, m.p. $115-117{ }^{\circ} \mathrm{C}$. The IR spectrum of compound AM15 indicated the presence of a two carbonyl bands at 1736 and $1693 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound AM15 (Table 29) were closely related to those of AM14, except that the hydroxyl group at C-7 in AM14 was replaced by an acetate group in AM15 shown as a methyl singlet at $\delta 1.91$ and carbons signals at $\delta 19.7$ (C-28) and 167.6 (C-27). The carbinol resonance (H-7) previously observed at $\delta 3.39$ in AM14 was shifted downfield to $\delta 4.59$ in compound AM15. An acetate group was placed at C-7 due to HMBC correlation of H-7 ($\delta 4.59$) with the carbons at $\delta 167.6(\mathrm{C}-27)$ and protons of methyl acetate $(\delta 1.91,3 \mathrm{H}-28$,) with the carbons at $\delta 76.1$ (C-7) (Table 29). Based on these data, the structure of AM15 was assigned as cycloepiatalantin acetate (dreyer et al., 1976).

Figure 17 Selected HMBC correlation of AM15

Table $29{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM15 (acetone- d_{6})

Position		δ_{C}	$\delta_{\mathrm{H}}(\mathrm{mult}, \boldsymbol{J}, \mathrm{Hz})$	HMBC
1	170.5	CH	8.13 (d, $J=5.4)$	C-2, C-3, C-5, C-9
2	129.3	CH	6.27 (d, $J=5.4)$	C-10, C-27
3	200.6	C		
4	84.9	C		
5	73.0	C		
6	195.3	C		
7	76.1	CH	4.59 (s)	C-8, C-14, C-24, C-27
8	43.0	C		
9	34.4	CH	3.01 (m)	C-5, C-8, C-11, C-12
10	61.3	C		
11	15.9	CH_{2}	2.34 (m), 2.05 (m)	C-8, C-9, C-12
12	25.4	CH_{2}	1.96 (m), 1.57 (m)	C-11, C-13, C-18
13	38.3	C		
14	68.6	C		

Table 29 (continued)

Position	δ_{C}		$\delta_{\mathbf{H}}($ mult, $J, \mathbf{H z})$	HMBC
15	56.1	CH	$3.67(\mathrm{~s})$	$\mathrm{C}-8, \mathrm{C}-14, \mathrm{C}-16$
16	166.2	C		
17	77.7	CH	$5.64(\mathrm{~s})$	$\mathrm{C}-18, \mathrm{C}-20, \mathrm{C}-22$
18	17.6	CH_{3}	$1.21(\mathrm{~s})$	$\mathrm{C}-12, \mathrm{C}-13, \mathrm{C}-17$
19	69.4	CH_{2}	$4.05,3.96($ each d, $J=9.9)$	$\mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-9$
20	120.6	C		
21	143.3	CH	$7.59(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-22, \mathrm{C}-23$
22	110.0	CH	$6.49(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-23$
23	141.7	CH	$7.62(\mathrm{br} \mathrm{s})$	$\mathrm{C}-20, \mathrm{C}-21, \mathrm{C}-22$
24	14.8	CH	$1.11(\mathrm{~s})$	$\mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-14$
25	27.9	CH_{3}	$1.13(\mathrm{~s})$	$\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-26$
26	24.3	CH_{3}	$1.33(\mathrm{~s})$	$\mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-25$
27	167.6	C		
28	19.7	CH_{3}	$1.91(\mathrm{~s})$	$\mathrm{C}-7$

Table 30 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM15 and cycloepiatalantin acetate $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position		$\delta_{\mathrm{H}}(\mathrm{mult}, \boldsymbol{J}, \mathrm{Hz}$), R
1	8.13 (d, $J=5.4)$	7.76 (d, $J=6.0)$
2	$6.27(\mathrm{~d}, ~ J=5.4)$	6.26 (d, $J=6.0)$
3		
4		
5		
6		
7	4.59 (s)	4.62 (s)
8		
9	3.01 (m)	2.91 (m)
10		
11	2.34 (m), 2.05 (m)	2.21 (m)
12	1.96 (m), 1.57 (m)	1.85 (m)
13		
14		
15	3.67 (s)	3.67 (s)
16		
17	5.64 (s)	5.58 (s)
18	1.21 (s)	1.23 (s)
19	4.05, 3.96 (each d, $J=9.9$)	$4.00,3.88$ (each d, $J=10.0)$
20		
21	7.59 (br s)	$7.42(\mathrm{t}, ~ J=1.0)$
22	6.49 (br s)	6.30 (d, $J=1.0)$
23	7.62 (br s)	7.45 (m)
24	1.11 (s)	1.15 (s)
25	1.13 (s)	1.17 (s)
26	1.33 (s)	1.38 (s)
27		
28	1.91 (s)	1.94 (s)

3.1.16 Compound AM16

Compound AM16 was obtained as white crystals, m.p. $71-73{ }^{\circ} \mathrm{C}$. The UV-Vis spectrum exhibited the absorption bands at 205, 252 and 323 nm typical of a coumarin nucleus. The IR absorption indicated the presence of a carbonyl ($1710 \mathrm{~cm}^{-1}$) group.

The ${ }^{1} \mathrm{H}$ NMR spectrum of compound AM16 showed two AB systems of ring A at $\delta 7.64,6.25$ (1 H each, $d, J=8.0 \mathrm{~Hz}, \mathrm{H}-4, \mathrm{H}-3$, respectively) and three aromatic proton signals of ring B, ABM pattern at $\delta 7.37(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 6.85(1 \mathrm{H}$, $d d, J=8.0,3.0 \mathrm{~Hz})$ and $6.82(1 \mathrm{H}, d, J=3.0 \mathrm{~Hz})$ attributing to $\mathrm{H}-5, \mathrm{H}-6$, and $\mathrm{H}-8$, respectively, which were characteristic of the 7 -substituted coumarin skeleton. The substituent was identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy as the oxy-geranyl group according to these signals at $\delta 5.47\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7^{\prime}\right)$, $4.61\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$, 2.11 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}-5^{\prime}$ and $2 \mathrm{H}-6^{\prime}$), 1.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-9^{\prime}$), $1.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10^{\prime}\right)$ and $1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}\right)$. The oxy-geranyl side chain was placed at C-7 due to HMBC correlation of $\mathrm{H}^{\prime} 1^{\prime}(\delta 4.61)$ with the carbon at $\delta 162.5$ (C-7). The assignment was also supported by a HMBC experiment (Table 31). Based on these data, the structure of AM16 was assigned as auraptene (Muñoz et al., 1982, Jiménez et al., 2000).

Figure 18 Selected HMBC correlation of AM16

Table $31{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM16 $\left(\mathrm{CDCl}_{3}\right)$

Position		$\delta_{\text {C }}$	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz})$	HMBC
2	161.0	C		
3	113.5	CH	6.25 (d, $J=8.0)$	C-2, C-4a
4	143.5	CH	7.64 (d, $J=8.0)$	C-2, C-4a, C-8a
5	129.6	CH	7.37 (d, $J=8.0)$	C-6, C-7
6	112.0	CH	6.85 (dd, $J=8.0,3.0)$	C-4a, C-7, C-8
7	162.5	C		
8	101.5	CH	$6.82(\mathrm{~d}, ~ J=3.0)$	C-4a, C-6, C-7, C-8a
4a	112.5	C		
8a	156.0	C		
1^{\prime}	65.5	CH_{2}	4.61 (br d, $J=6.6)$	C-7, C-2', C-3'
2^{\prime}	118.6	CH	5.47 (br t, $J=6.6$)	C-1 ${ }^{\prime}$, C-5'
3^{\prime}	142.5	C		
4^{\prime}	18.8	CH_{3}	1.60 (s)	C-2', C-3', C-5'
5^{\prime}	39.0	CH_{2}	2.11 (m)	C-2', C-3', C-7',
6^{\prime}	26.5	CH_{2}	2.11 (m)	C-3', C-5', C-8'
$7{ }^{\prime}$	124.0	CH	5.10 (m)	C-5', C-6', C-10'
8^{\prime}	132.1	C		
9^{\prime}	17.5	CH_{3}	1.76 (s)	C-7', C-8', C-10'
10^{\prime}	25.5	CH_{3}	1.66 (s)	C-7', C-8', C-9'

Table 32 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM16 and auraptene $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	$\begin{gathered} \text { AM16 } \\ \delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \hline \mathrm{R} \\ \delta_{\mathrm{H}}(\text { mult }, J, \mathrm{~Hz}) \end{gathered}$
2		
3	6.25 (d, $J=9.0)$	6.25 (d, $J=10.0)$
4	7.64 (d, $J=9.0$)	7.65 (d, $J=10.0)$
5	7.37 (d, $J=8.0)$	7.43 (d, $J=7.0)$
6	6.85 (dd, $J=8.0,3.0)$	6.87 (dd, $J=7.0,3.0)$
7		
8	6.82 (d, $J=3.0)$	6.82 ($\mathrm{d}, \mathrm{J}=3.0$)
4a		
8a		
1^{\prime}	4.61 (br d, $J=6.6)$	4.63 (d, $J=7.0)$
2^{\prime}	5.47 (br t, $J=6.6$)	$5.50(\mathrm{t}, J=7.0)$
3^{\prime}		
4^{\prime}	1.60 (s)	1.80 (s)
5^{\prime}	2.11 (m)	2.20 (m)
6^{\prime}	2.11 (m)	2.20 (m)
$7{ }^{\prime}$	5.10 (m)	5.10 (m)
8^{\prime}		
9^{\prime}	1.76 (s)	1.75 (s)
10^{\prime}	1.66 (s)	1.65 (s)

3.1.17 Compound AM17

Compound AM17 was obtained as white solid, m.p. 86-88 ${ }^{\circ} \mathrm{C}$. The UV-Vis spectrum exhibited the absorption bands at 206, 229, 253, 294 and 345 nm typical of a coumarin nucleus. The IR absorption indicated the presence of a carbonyl ($1725 \mathrm{~cm}^{-1}$) group.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AM17 (Table 33) were similar to those of AM16 (Table 33) except for the disappearance of the signal of the aromatic proton at $\delta 6.85(1 \mathrm{H}, d d, 8.0,3.0 \mathrm{~Hz})$ and the appearance of $\mathrm{O}-\mathrm{Me}$ singlet signal at $\delta 3.86$ indicating that this aromatic proton was replaced by a methoxyl group. The location of the methoxyl group at C-6 was assigned by HMBC correlations (Figure 18) of the methoxyl protons at $\delta_{\mathrm{H}} 3.86$ (3H-9) to the carbons at $\delta_{\mathrm{C}} 146.8$ (C-6) and 109.0 (C-5). The complete HMBC data were summarized in Table 33. Therefore, compound AM17 was identified as 7-O-geranylscopoletin (Rubal et al., 2007, Torres, et al., 1979).

Figure 19 Selected HMBC correlation of AM17

Table $33{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM17 (acetone- d_{6})

Position	$\delta_{\text {c }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz})$	HMBC
2	160.4	C		
3	112.8	CH	$6.21(\mathrm{~d}, ~ J=9.3)$	C-2, C-4a
4	143.7	CH	7.87 (d, $J=9.3)$	C-2, C-5, C-8a
5	109.0	CH	7.18 (s)	C-4, C-6, C-7, C-8a
6	146.8	C		
7	152.3	C		
8	101.0	CH	6.94 (s)	C-4a, C-6, C-7, C-8a
9	55.6	CH_{3}	3.86 (s)	C-5, C-6
4a	111.3	C		
8a	149.9	C		
1^{\prime}	65.7	CH_{2}	4.73 (br d, $J=6.6)$	C-7, C-2', C-3'
2^{\prime}	119.2	CH	$5.52(\mathrm{br} \mathrm{t}, J=6.6)$	C-1', C-5', C-4'
3^{\prime}	141.2	C		
4^{\prime}	15.8	CH_{3}	1.80 (s)	C-2', C-3', C-5'
5^{\prime}	39.2	CH_{2}	2.13 (m)	C-2', C-3', C-7',
6^{\prime}	26.0	CH_{2}	2.13 (m)	C-3', C-5', C-8'
$7{ }^{\prime}$	123.7	CH	5.11 (m)	C-6'
8^{\prime}	131.2	C		
9^{\prime}	16.8	CH_{3}	1.60 (s)	C-7', C-8', C-10'
10^{\prime}	24.6	CH_{3}	1.63 (s)	C-7', C-8', C-9'

Table 34 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data between compounds AM17 and 7-Ogeranylscopoletin ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\begin{gathered} \hline \text { AM17 } \\ \delta_{\mathrm{H}}(\text { mult, } J, \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \delta_{\mathrm{H}}(\mathrm{mult}, J, \mathrm{~Hz}) \end{gathered}$
2		
3	$6.21(\mathrm{~d}, J=9.3)$	6.26 ($\mathrm{d}, \mathrm{J}=9.0$)
4	7.87 (d, $J=9.3$)	7.63 (d, $J=9.5$)
5	7.18 (s)	6.85 (s)
6		
7		
8	6.94 (s)	6.82 (s)
9	3.86 (s)	3.83 (s)
4a		
8 a		
1^{\prime}	4.73 (br d, $J=6.6)$	4.71 ($\mathrm{d}, J=6.5$)
2^{\prime}	5.52 (br t, $J=6.6$)	$5.47(\mathrm{t}, J=6.5)$
3^{\prime}		
4^{\prime}	1.80 (s)	1.76 (d, $J=1.0)$
5^{\prime}	2.13 (m)	2.20 (m)
6^{\prime}	2.13 (m)	2.20 (m)
$7{ }^{\prime}$	5.11 (m)	5.10 (m)
8^{\prime}		
9^{\prime}	1.60 (s)	$1.61(\mathrm{~d}, J=1.0)$
10^{\prime}	1.63 (s)	1.65 (d, $J=1.0)$

3.1.18 Compound AM18

Compound AM18 was isolated as an yellow crystals. The UV-Vis spectrum exhibited the absorption bands at 221, 252, 264, 285 and 434 nm , characteristic of a conjugated quinone system, which was supported by IR absorption maxima indicating the presence of hydroxyl $\left(3380 \mathrm{~cm}^{-1}\right)$ and a chelated carbonyl $\left(1646 \mathrm{~cm}^{-1}\right)$ groups.

The ${ }^{1} \mathrm{H}$ NMR spectral data of AM18 (Table 35) showed two chelated hydroxyl groups at $\delta 12.31$ and 12.10 , which were assigned to carbons at $\mathrm{C}-1$ and $\mathrm{C}-8$ from HMBC experiment (Table 35). The appearance of two broad singlet aromatic protons at $\delta_{\mathrm{H}} 7.60$ and 7.07 were attributed to meta splitting of $\mathrm{H}-5$ and $\mathrm{H}-7$ and long range coupling with an aromatic methyl protons at $\delta_{\mathrm{H}} 2.45$ ($3 \mathrm{H}, s$, Me-6). The COSY cross-peaks were shown between H-5/H-7 and Me-6 (Table 35). The lower-field aromatic proton at $\delta_{\mathrm{H}} 7.60$ was assigned to $\mathrm{H}-5$ due to its location in the deshielding region of carbonyl functionality. The ${ }^{1} \mathrm{H}$ NMR spectral data also showed two signals of meta-coupled aromatic protons at $\delta_{\mathrm{H}} 7.35(1 \mathrm{H}, d, 2.4 \mathrm{~Hz})$ and $6.67(1 \mathrm{H}, d, 2.4 \mathrm{~Hz})$ and the lower-field aromatic proton was assigned to $\mathrm{H}-4$ due to the anisotropic effect from a carbonyl group. Moreover, the ${ }^{1} \mathrm{H}$ NMR spectral data (Table 35) showed a singlet signal of a methoxyl group at $\delta 3.88$ ($3 \mathrm{H}, s, 3-\mathrm{OMe}$), whose location at $\mathrm{C}-3$ was assigned by its HMBC correlation (Figure 19) to a carbon at $\delta 166.6$ (C-3). The complete HMBC data were summarized in Table 35. Therefore, compound AM18 was identified as physcion (Chu, 2005).

Figure 20 Selected HMBC correlations of AM18

Table $35{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound AM18 $\left(\mathrm{CDCl}_{3}\right)$

Position	$\delta_{\text {c }}$		$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J}, \mathrm{Hz})$	HMBC
1-OH	165.2	C	12.31 (s)	C-1, C-2, C-9a
2	106.8	CH	$6.67(\mathrm{~d}, J=2.4)$	C-1, C-3, C-4, C-9a
3	166.6	C		
4	108.2	CH	7.35 (d, $J=2.4)$	C-2, C-3, C-10, C-4a, C-9a
5	121.3	CH	7.60 (br d, $J=1.5$)	C-7, C-10, C-8a, 6-Me
6	148.4	C		
7	124.5	CH	7.07 (br s)	C-5, C-8, C-8a, 6-Me
8-OH	162.5	C	12.10 (s)	C-6, C-7, C-8, C-8a
9	190.8	C		
10	182.0	C		
4a	135.3	C		
5a	133.2	C		
8a	113.7	C		
9a	110.3	C		
$3-\mathrm{OMe}$	56.1	CH_{3}	3.88 (s)	C-3
6-Me	22.2	CH_{3}	2.45 (br s)	C-5, C-6, C-7

3.1.19 Compounds AM19 and AM20

AM19

AM20

The mixture of AM19 and AM20 was obtained as colorless crystals. The ${ }^{1} \mathrm{H}$ NMR spectra showed an oxymethine proton at $\delta 3.57-3.47$ (m) and three olefinic protons at $\delta 5.36-5.34(d, J=5.1 \mathrm{~Hz}), 5.16(d d, J=8.4,15.1 \mathrm{~Hz})$ and 5.01 $\left(d d, J=8.4,15.1 \mathrm{~Hz}\right.$). The ${ }^{1} \mathrm{H}$ NMR spectral data of this compound corresponded to a previous reported data (Thongdeeying 2005). Thus, the mixture was identified as β sitosterol (AM19) and stigmasterol (AM20).

3.2 Bioactivities of isolated compounds from the roots of A. monophylla

In this research, several compounds belonging to acridone alkaloids, limonoids and coumarins groups have been isolated. This plant has been reported to exhibit several biological activities (Panda 2004). However, only anti-allergic, antibacterial and cytotoxic activities were chosen according to positive activity of the crude extracts.

3.2.1 Anti-allergic activity

The results were shown in Table 36. Of all metabolites evaluated, buxifoliadine-E (AM8) possessed the most potent anti-allergic activity against cell degranulation in RBL-2H3 cells with an IC_{50} value of $6.1 \mu \mathrm{M}$, followed by citrusinine-I $\left(\mathbf{A M 1 0}, \mathrm{IC}_{50}=18.7 \mu \mathrm{M}\right)$, whereas other compounds displayed moderate effects $\left(\mathrm{IC}_{50}=34.0-40.1 \mu \mathrm{M}\right)$ or inactive $\left(\mathrm{IC}_{50}>100 \mu \mathrm{M}\right)$. Buxifoliadine-E (AM8, $\left.\mathrm{IC}_{50}=6.1 \mu \mathrm{M}\right)$ displayed six-fold higher effect than ketotifen fumarate $\left(\mathrm{IC}_{50}=47.5\right.$ $\mu \mathrm{M})$, a clinically used drug. The compounds were also tested on β-hexosaminidase activity to clarify whether their effects were due to the inhibition of enzyme activity or of degranulation. As a result, these isolated compounds were inactive against the enzyme activity of β-hexosaminidase (Table 36).

Table 36 Anti-allergic activities of compounds (AM1, AM2, AM5, AM7, AM8, AM10, AM12, AM16-AM18) from the roots of A. monophylla

Compounds	$\mathbf{I C}_{\mathbf{5 0}}(\boldsymbol{\mu} \mathbf{M})$	Enzyme inhibition at $\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{M}$
N-methylatalaphylline (AM1)	>100	22.5
atalaphylline (AM2)	>100	19.6
N-methylcycloatalaphylline-A (AM5)	40.1	23.4
N-methylataphyllinine (AM7)	>100	18.9
buxifoliadine-E (AM8)	6.1	21.3
citrusinine-I (AM10)	18.7	19.9
atalantolide (AM12)	35.1	22.1
auraptene (AM16)	73.2	18.2
$7-O$-geranylscopoletin (AM17)	>100	21.7
physcion (AM18)	34.0	18.0
ketotifen fumarate	47.5	15.8

Each value represents mean \pm S.E.M. of four determinations.

3.2.2 Antibacterial activity

The results of antibacterial activity of the tested compound were given in Table 37. Only compound AM7 exhibited significant antibacterial activity against B. subtilis and S. aureus whereas compound AM1 was moderately active against S. aureus. Compounds AM2, AM9, AM12-AM16, and AM18 were inactive against all microorganisms tested.

3.2.3 Cytotoxic activity

From cytotoxicity result shown in Table 38, all limonoids isolated, compounds AM12-AM15 were moderately active against all cancer cell lines tested as compare to camptothecin. Compounds AM1, AM2, AM7, AM9, AM16 and AM18 were found to be inactive (Table 38).

Table 37 Antibacterial activity of the compounds isolated from the roots of A. monophylla

Compound	Minimum Inhibitive Concentration ($\mu \mathrm{g} / \mathrm{ml}$)						
	B. subtilis	$\begin{gathered} S . \\ \text { aureus } \end{gathered}$	E. faecalis	$\begin{gathered} S . \\ \text { thypi } \end{gathered}$	S sonnei	P. aeruginosa	$C .$ albicans
AM1	-	31.25	-	-	-	-	-
AM2	-	-	-	-	-	-	-
AM7	7.8	7.8	-	-	-	-	-
AM9	-	-					-
AM12	-	-	-	-	-	-	-
AM13	-	-	-	-	-	-	-
AM14	-	-	-	-	-	-	-
AM15	-	-	-	-	-	-	-
AM16	-	-					-
AM18	-	-	-	-	-	-	-
Vancomycin	<3.906	<3.906	-	2500	625	78.12	-

- = Inactive at $>50.1 \mu \mathrm{~g} / \mathrm{ml}$

MIC $<1.1 \mu \mathrm{~g} / \mathrm{ml}$	highly active
MIC $=1.25-5.0 \mu \mathrm{~g} / \mathrm{ml}$	very active
MIC $=5.1-10.0 \mu \mathrm{~g} / \mathrm{ml}$	active
MIC $=10.1-35.0 \mu \mathrm{~g} / \mathrm{ml}$	moderately active
MIC $=35.1-50.0 \mu \mathrm{~g} / \mathrm{ml}$	weakly active
MIC $>50.1 \mu \mathrm{~g} / \mathrm{ml}$	inactive

Table 38 In vitro cytotoxic activity of the compounds isolated from the roots of A. monophylla

Compound	Cell lines			
	$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{ml})$			
	MCF-7	HeLa	HT-29	KB
AM1	-	-	-	-
AM2	-	-	-	-
AM7	-	-	-	-
AM9	-	-	-	-
AM12	25.4	25.7	26.3	23.4
AM13	10.9	11.2	11.6	10.9
AM14	22.7	25.3	25.6	20.2
AM15	24.2	25.7	26.3	23.4
AM16	-	-	-	
AM18	-	-	-	-
camptothecin	$0.2-2.0$	$0.2-2.0$	$0.2-2.0$	$0.2-2.0$

- = Inactive at $>50.1 \mu \mathrm{~g} / \mathrm{ml}$

MIC $<1.1 \mu \mathrm{~g} / \mathrm{ml}$	highly active
MIC $=1.25-5.0 \mu \mathrm{~g} / \mathrm{ml}$	very active
MIC $=5.1-10.0 \mu \mathrm{~g} / \mathrm{ml}$	active
MIC $=10.1-35.0 \mu \mathrm{~g} / \mathrm{ml}$	moderately active
MIC $=35.1-50.0 \mu \mathrm{~g} / \mathrm{ml}$	weakly active
MIC $>50.1 \mu \mathrm{~g} / \mathrm{ml}$	inactive

CHAPTER 4

CONCLUSION

Three new acridone alkaloids, named cycloatalaphylline-A (AM4), N -methylcycloatalaphylline-A (AM5) and N-methylbuxifoliadine-E (AM9) and seven teen known compounds, eight acridones: N-methylatalaphylline (AM1), atalaphylline (AM2), buxifoliadine-A (AM3), yukocitrine (AM6), N-methylataphyllinine (AM7), buxifoliadine-E (AM8), citrusinine-I (AM10) and junosine (AM11), four limonoids: atalantolide (AM12), atalantin (AM13), cycloepiatalantin (AM14) and cycloepiatalantin acetate (AM15); two coumarins: auraptene (AM16) and 7-Ogeranylscopoletin (AM17); one anthraquinone: physcion (AM18) and two steroids: a mixture of β-sitosterol (AM19) and stigmasterol (AM20) were isolated from the roots of A. monophylla. Their structures were elucidated by spectroscopic methods. The structure of AM7 was additionally confirmed by X-ray diffraction analysis. It was found that two acridone alkaloids : buxifoliadine-E (AM8) possessed the most potent anti-allergic activity against cell degranulation in RBL-2H3 cells with an IC_{50} value of $6.1 \mu \mathrm{M}$, followed by citrusinine-I (AM10, $\mathrm{IC}_{50}=18.7 \mu \mathrm{M}$), whereas physcion (AM18), atalantolide (AM12), N-methylcycloatalaphylline-A (AM5) and auraptene (AM16) displayed moderate effects with IC_{50} values of $34.0,35.1,40.1$ and 73.2, respectively. Compounds AM1, AM2, AM7 and AM17 were found inactive. Only N methylataphyllinine (AM7) exhibited significant antibacterial activity against B. subtilis and S. aureus. For cytotoxic activity, limonoids: atalantolide (AM12), atalantin (AM13), cycloepiatalantin (AM14) and cycloepiatalantin acetate (AM15) were moderately active against MCF-7, HeLa, HT-29 and KB cell lines.

REFERENCE

A wikimedia projects. 2007. Atalantia genus. http://species.wikimedia.org/wiki/Atalantia_genus. (accessed 07/29/08).
Ahmad, J., Shamsuddin, K. M. and Zaman, A. 1984. A pyranocoumarin from Atalantia ceylanica. Phytochemistry 23(9), 2098-2099.
Auzi, A. A., Hartley, T. G., Waigh, R. D. and Waterman, P. G. 1996. Acridone alkaloids from Bosistoa transversa. Phytochemistry 42(1), 235-238.

Bacher, M., Brader, G., Hofer, O. and Greger, H. 1999. Oximes from seeds of Atalantia ceylanica. Phytochemistry 50(6), 991-994.

Bahar, M. H., Shringarpure, J. D., Kulkarni, G. H. and Sabata, B. K. 1982. Structure and synthesis of atalaphylline and related alkaloid. Phytochemistry 21(11), 2729-2731.

Banerji, J., Das, A. K., Ghoshal, N. and Das, B. 1988a. Studies on Rutaceae. Part VIII. Chemical investigation on the constituents of Atalantia wightii Tanaka, Aegle marmelos Correa ex Koen, Ruta graveolens Linn. and Micromelum pubescens Blume. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry 27B(6), 594-596.

Banerji, J., Ghoshal, N., Sarkar, S. and Kumar, M. 1982. Studies on Rutaceae. Part II. Chemical investigations of the constituents of Atalantia wightii, Limonia crenulata, Feronia limonia, Citrus limon and synthesis of luvangetin, xanthyletin, and marmin. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry 21B(5), 496-498.

Banerji, A., Luthria, D. L. and Prabhu, B. R. 1988b. Prenylated compounds from Atalantia racemosa: isolation and synthesis of two pyranoflavones. Phytochemistry 27(11), 3637-3640.
Barua, A. K., Banerjee, S. K., Basak, A., Chakravarti, S., Ghosh, S., Sethi, K. and Bose, P. K. 1974. Coumarins from Atalantia missionis. Phytochemistry 13(9), 2017.

Basa, S. C. 1975. Atalaphyllinine, a new acridone base from Atalantia monophylla. Phytochemistry 14(3), 835-836.

Basu, D. and Basa, S. C. 1972. N-methylbicycloatalaphylline, a new alkaloid from Atalantia monophylla Correa. Journal of Natural Products (37), 3035-3036.

Bennett, R. D., Hasegawa, S. and Wong, R. Y. 1994. Limonoids from Atalantia zeylanica. Phytochemistry 36(1), 163-166.
Chansakaow, S., Ruangrungsi, N. and Ishikawa, T. 1996. Isolation of pyropheophorbide a from the leaves of Atalantia monophylla (Roxb.) Corr. (Rutaceae) as possible antiviral active principle against herpes simplex virus type 2. Chemical \& Pharmaceutical Bulletin 44(7), 1415-1417.

Chatterjee, A. and Ganguly, D. 1976. Alkaloids of Atalantia monophylla. Phytochemistry 15(8), 1303-1304.

Chu, X., Sun, A. and Liu, R. 2005. Preparative isolation and purification of five compounds from the Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography. Journal of chromatography A (1097), 33-39

Chukaew, A., Fun, H. K., Chantrapromma, S. and Ponglimanont, C. 2007. Nmethylataphyllinine. Acta Crystallographica, Section E 63(4), o3723-o3724.

Dreyer, D. L., Benneti, R. D. and Basa, S. C. 1976. Limonoids from Atalantia monophylla isolation structure. Tetrahedron (32), 2367-2373.

Dreyer, D. L. 1965. Citrus bitter principles-II application of NMR to structural and stereochemical problems. Tetrahedron (21), 75-87.

Dreyer, D. L., Rigod, J. F., Basa, S. C., Mahanty, P. and Das, D. P. 1980. Chemotaxonomy of the RUTACEAE-XII ${ }^{\mathrm{a}}$ the occurrence of severine in Atalantia monophylla and Hesperethusa crenulata a revised structure for severine . Tetrahedron (36), 827-829.

Fraser, A. W. and Lewis, J. R. 1973. Two novel acridone alkaloids from Atalantia ceylanica. Journal of the Chemical Society, Chemical Communications (17), 615-616.

Govindachari, T. R., Viswanathan, N., Pai, B. R., Ramachandran, V. N. and Subramanium, P. S. 1970. Alkaloids of Atalantia monophylla Correa. Tetrahedron (26), 2905-2910.

Itoigawa, M., Ito, C., Wu, T-S., Enjo, F., Tokuda, H., Nishino, H. and Furukawa, H. 2003. Cancer chemopreventive activity of acridone alkaloids on EpsteinBarr virus activation and two-stage mouse skin carcinogenesis. Cancer Letters (193), 133-138.

Jiménez, B., Grande, M. C., Anaya, J., Torres, P. and Grande, M. 2000. Coumarins from Ferulago capillaries and F. brachyloba. Phytochemisry (53), 1025-1031.

Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M., Takemura, Y., Ju-ichi, M., Ito, C. and Furukawa, H. 1999a. Acridones as inducers of HL-60 cell differentiation. Leukemia Research (23), 263-269.

Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M., Takemura, Y., Ju-ichi, M. and Ito, C., Furukawa, H. 1999b. The antiproliferative effect of acridone alkaloids on several cancer cell lines. Journal of Natural Products (62), 587589.

Kulkarni, G. H., Haribal, M. M. and Sabata, B. K. 1980. Constituents of the heartwood Atalantia monophylla. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry 19B(5), 424-425.
Kulkarni, G. H. and Sabata, B. K. 1981. An acridone alkaloid from the root bark of Atalantia monophylla. Phytochemistry (20), 867-868.
Matsuda, H., Morikawa, T., Tao, J., Ueda, K. and Yoshikawa, M. 2002. Bioactive constituents of Chinese natural medicines. VII. Inhibitors of degranulation in RBL-2H3 cells and absolute stereostructures of three new diarylheptanoid glycosides from the bark of Myrica rubra. Chemical \& Pharmaceutical Bulletin (50), 208-215.
Muñoz, M. A., Torres, R. and Cassels, B. K. 1982. Aurapten and flindersine from Zanthoxylum coco. Journal of Natural Products 45(3), 367-369.

Murray, R. D. H. and Hall, D. A. 1985. Structure revision of the coumarin, ceylantin. Phytochemistry 24(10), 2465-2466.
Okorie, D. A. 1982. Chromones and limonoids from Harisonia abyssinica. Phytochemistry 21(9), 2424-2426.
Panda, H. 2004. Handbook on medicinal herbs with uses. Asia Pacific Business Press Inc: Delhi India pp.166-167.
Rubal, J. J., Moreno-Dorado, F. J., Guerra, F. M., Jorge, Z. D., Saouf, A., Akssira, M., Mellouki, F., Romero-Garrido, R. and Massanet, G. M. 2007. A pyran-2-one and four meroterpenoids from Thapsia transtagana and their implication in the biosynthesis of transtaganolides. Phytochemistry (68), 2480-2486.
Sabata, B., Connolly, J. D., Labbe, C. and Rycroft, D. S. 1977. Tetranortriterpenoids and related substances. Part19. Revised structure of atalantolide and atalantin, limonoids from the root bark of Atalantia monophylla Correa (Rutaceae). Journal of the Chemical Society, Perkin Transactions 1: Organic and BioOrganic Chemistry (16), 1875-1877.

Shah, J. S. and Sabata, B. K. 1981. Chemical constituents of Atalantia monophylla (Correa). Journal of the Indian Chemical Society 58(11), 1123-1124.

Shah, J. S. and Sabata, B. K. 1982. Acridone alkaloids of Atalantia monophylla (Correa). Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry 21B(1), 16-19.

Shringarpure, J. D. and Sabata, B. K. 1975. Chemical constituents of root bark of Atalantia monophylla. Indian Journal of Chemistry 13(1), 24-28.

Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R. 1990. New colourimetric cytotoxicity assay for anticancer-drug screening. Journal of National Cancer institute (82), 1107-1112.

Smittinan, T. 2001. Thai Plant Names. Prachachon Publisher: Bangkok.
Talapatra, S. K., Bhattacharya, S. and Talapatra, B. 1970. Terpenoid and related compounds. VI. Terpenoid and coumarin constituents of Atalantia monophylla. Journal of the Indian Chemical Society 47(6), 600-604.

Thakar, M. R. and Sabata, B. K. 1969. Atalantin, a new tetranortriterpenoid from root bark of Atalantia monophylla. Indian Journal of Chemistry 7(9), 870-872.

Thongdeeying, P. 2005. Chemical constituents from the leaves of Ceriops decandra (Griff.) Ding Hou. Master of Science Thesis in Organic Chemistry, Prince of Songkla University.

Torres, R., Monache, D. M. and Marini-Bettolo, G. B. 1979. Coumarins and cinnamic acid from Gymnophyton isatidicarpum. Journal of Natural Products 42(3), 532-533.

Wu, T-S. and Chen, C-M. 2000. Acridone alkaloids from the root bark of Severinia buxifolia in Hainan. Chemical \& Pharmaceutical Bulletin (48), 8590.

Wu, T-S., Chen, C-M. and Lin, F-W. 2001. Constituents of the root bark of Severinia buxifolia collected in Hainan. Journal of Natural Products (64), 1040-1043.

Wu, T-S. and Furukawa, H. 1983. Acridone alkaloids VII. Constituents of Citrus sinensis osbeck var brasiliensis Tanaka. Isolation and characterization of three new acridone alkaloids, and new coumarin. Chemical \& Pharmaceutical Bulletin 31(3), 901-906.

Wu, T-S., Kuoh, C-S. and Furukawa, H. 1982. Acridone alkaloids from

Severinia buxifolia. Phytochemistry (21), 1771-1773.

APPENDIX

Figure 21 UV (MeOH) spectrum of compound AM1

Figure 22 IR (KBr) spectrum of compound AM1

Figure $23{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM1

Figure $24{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- $\left.d_{6}\right)$ spectrum of compound AM1

Figure 25 DEPT 135° (acetone- d_{6}) spectrum of compound AM1

Figure 26 DEPT 90° (acetone- d_{6}) spectrum of compound AM1

Figure 27 2D COSY (acetone- d_{6}) spectrum of compound AM1

Figure 28 2D HMQC (acetone- d_{6}) spectrum of compound AM1

Figure 29 2D HMBC $\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM1

Figure 30 UV (MeOH) spectrum of compound AM2

Figure 31 IR (KBr) spectrum of compound AM2

Figure $32{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM2

Figure $33{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM2

Figure 34 DEPT 135° (acetone- d_{6}) spectrum of compound AM2

Figure 35 DEPT 90° (acetone- d_{6}) spectrum of compound AM2

Figure 36 2D COSY $\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM2

Figure 37 2D HMQC (acetone- d_{6}) spectrum of compound AM2

Figure 38 2D HMBC (acetone- d_{6}) spectrum of compound AM2

Figure 39 UV (MeOH) spectrum of compound AM3

Figure 40 IR (neat) spectrum of compound AM3

Figure $41{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM3

Figure $42{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM3

Figure 43 DEPT 135° (acetone- d_{6}) spectrum of compound AM3

Figure 44 DEPT $90^{\circ}\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM3

Figure 45 2D COSY $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM3

Figure 46 2D HMQC $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM3

Figure 47 2D HMBC (acetone- d_{6}) spectrum of compound AM3

Figure 48 UV (MeOH) spectrum of compound AM4

Figure 49 IR (KBr) spectrum of compound AM4

Figure $50{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM4

Figure $51{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM4

Figure 52 DEPT 135° (acetone- d_{6}) spectrum of compound AM4

Figure 53 DEPT $90^{\circ}\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM4

Figure 54 2D $\operatorname{COSY}\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM4

Figure 55 2D HMQC (acetone- d_{6}) spectrum of compound AM4

Figure 56 2D HMBC $\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM4

Figure 57 2D NOESY $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM4

Figure 58 EIMS spectrum of compound AM4

Figure 57 2D NOESY (acetone- d_{6}) spectrum of compound AM4

Figure 58 EIMS spectrum of compound AM4

Figure 59 HREIMS spectrum of compound AM4

Figure 60 UV (MeOH) spectrum of compound AM5

Figure 61 IR (KBr) spectrum of compound AM5

Figure $62{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM5

Figure $63{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM5

Figure 64 DEPT 135° (acetone- d_{6}) spectrum of compound AM5

Figure 65 DEPT $90^{\circ}\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM5

Figure 66 2D COSY $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM5

Figure 67 2D HMQC (acetone- d_{6}) spectrum of compound AM5

Figure 68 2D HMBC (acetone- d_{6}) spectrum of compound AM5

Figure 69 2D NOESY (acetone- d_{6}) spectrum of compound AM5

Figure 70 EIMS spectrum of compound AM5

Figure 71 HREIMS spectrum of compound AM5

Figure 72 UV (MeOH) spectrum of compound AM6

Figure 73 IR (neat) spectrum of compound AM6

Figure $74{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM6

Figure $75{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM6

Figure 76 DEPT 135° (acetone- d_{6}) spectrum of compound AM6

Figure 77 DEPT 90° (acetone- d_{6}) spectrum of compound AM6

Figure 78 2D COSY $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM6

Figure 79 2D HMQC (acetone- d_{6}) spectrum of compound AM6

Figure 80 2D HMBC $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM6

Figure 81 UV (MeOH) spectrum of compound AM7

Figure 82 IR (neat) spectrum of compound AM7

Figure $83{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM7

Figure $84{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM7

Figure 85 DEPT 135° (acetone $-d_{6}$) spectrum of compound AM7

Figure 86 DEPT 90° (acetone- d_{6}) spectrum of compound AM7

Figure 87 2D COSY $\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM7

Figure 88 2D HMQC (acetone- d_{6}) spectrum of compound AM7

Figure 89 2D HMBC (acetone- d_{6}) spectrum of compound AM7

Figure 90 UV (MeOH) spectrum of compound AM8

Figure 91 IR (neat) spectrum of compound AM8

Figure $92{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- $\left.d_{6}\right)$ spectrum of compound AM8

Figure $93{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM8

Figure 94 DEPT 135° (acetone- d_{6}) spectrum of compound AM8

Figure 95 DEPT $90^{\circ}\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM8

Figure 96 2D COSY $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM8

Figure 97 2D HMQC (acetone- d_{6}) spectrum of compound AM8

Figure 98 2D HMBC (acetone- d_{6}) spectrum of compound AM8

Figure 99 UV (MeOH) spectrum of compound AM9

Figure 100 IR (KBr) spectrum of compound AM9

Figure $101{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM9

Figure $102{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM9

Figure 103 DEPT 135° (acetone- d_{6}) spectrum of compound AM9

Figure 104 DEPT 90° (acetone- d_{6}) spectrum of compound AM9

Figure 105 2D COSY $\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM9

Figure 106 2D HMQC (acetone- d_{6}) spectrum of compound AM9

Figure 107 2D HMBC (acetone- d_{6}) spectrum of compound AM9

Figure 108 2D NOESY (acetone- d_{6}) spectrum of compound AM9

Figure 109 EIMS spectrum of compound AM9

Figure 110 HREIMS spectrum of compound AM9

Figure 111 UV (MeOH) spectrum of compound AM10

Figure 112 IR (neat) spectrum of compound AM10

Figure $113{ }^{1}$ H NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM10

Figure $114{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM10

Figure 115 DEPT 135° (acetone- d_{6}) spectrum of compound AM10

Figure 116 DEPT 90° (acetone- d_{6}) spectrum of compound AM10

Figure 117 2D COSY (acetone- d_{6}) spectrum of compound AM10

Figure 118 2D HMQC (acetone- d_{6}) spectrum of compound AM10

Figure 119 2D HMBC $\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM10

Figure 120 UV (MeOH) spectrum of compound AM11

Figure 121 IR (neat) spectrum of compound AM11

Figure $122{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM11

Figure $123{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- $\left.d_{6}\right)$ spectrum of compound AM11

Figure 124 DEPT 135° (acetone- d_{6}) spectrum of compound AM11

Figure 125 DEPT 90° (acetone- d_{6}) spectrum of compound AM11

Figure 126 2D COSY (acetone- d_{6}) spectrum of compound AM11

Figure 127 2D HMQC (acetone- d_{6}) spectrum of compound AM11

Figure 128 2D HMBC $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM11

Figure 129 UV (MeOH) spectrum of compound AM12

Figure 130 IR (neat) spectrum of compound AM12

Figure $131{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12

Figure $132{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{A M 1 2}$

Figure 133 DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12

Figure 134 DEPT $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12

Figure 135 2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12

Figure 136 2D HMQC ($\left.\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12

Figure 137 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM12

Figure 138 UV (MeOH) spectrum of compound AM13

Figure 139 IR (neat) spectrum of compound AM13

Figure $140{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM13

Figure $141{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM13

Figure 142 DEPT 135° (acetone- d_{6}) spectrum of compound AM13

Figure 143 DEPT 90° (acetone- d_{6}) spectrum of compound AM13

Figure 144 2D COSY $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM13

Figure 145 2D HMQC (acetone- d_{6}) spectrum of compound AM13

Figure 146 2D HMBC (acetone- d_{6}) spectrum of compound AM13

Figure 147 UV (MeOH) spectrum of compound AM14

Figure 148 IR (neat) spectrum of compound AM14

Figure $149{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM14

Figure $150{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM14

Figure 151 DEPT 135° (acetone- d_{6}) spectrum of compound AM14

Figure 152 DEPT $90^{\circ}\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM14

Figure 153 2D COSY $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM14

Figure 154 2D HMQC $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM14

Figure 155 2D HMBC $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM14

Figure 156 UV (MeOH) spectrum of compound AM15

Figure 157 IR (neat) spectrum of compound AM15

Figure $158{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM15

Figure $159{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM15

Figure 160 DEPT 135° (acetone- d_{6}) spectrum of compound AM15

Figure 161 DEPT $90^{\circ}\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM15

Figure 162 2D COSY $\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM15

Figure 163 2D HMQC (acetone- d_{6}) spectrum of compound AM15

Figure 164 2D HMBC $\left(\right.$ acetone $\left.-d_{6}\right)$ spectrum of compound AM15

Figure 165 UV (MeOH) spectrum of compound AM16

Figure 166 IR (neat) spectrum of compound AM16

Figure $167{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16

Figure $168{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16

Figure 169 DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16

Figure 170 DEPT $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16

Figure 171 2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16

Figure 172 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16

Figure 173 2D HMBC ($\left.\mathrm{CDCl}_{3}\right)$ spectrum of compound AM16

Figure 174 UV (MeOH) spectrum of compound AM17

Figure 175 IR (neat) spectrum of compound AM17

Figure $176{ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) spectrum of compound AM17

Figure $177{ }^{13} \mathrm{C}$ NMR (75 MHz) (acetone- d_{6}) spectrum of compound AM17

Figure 178 DEPT 135° (acetone- d_{6}) spectrum of compound AM17

Figure 179 DEPT 90° (acetone- d_{6}) spectrum of compound AM17

Figure 180 2D COSY $\left(\right.$ acetone- $\left.d_{6}\right)$ spectrum of compound AM17

Figure 181 2D HMQC (acetone- d_{6}) spectrum of compound AM17

Figure 182 2D HMBC (acetone- d_{6}) spectrum of compound AM17

Figure 183 UV (MeOH) spectrum of compound AM18

Figure 184 IR (neat) spectrum of compound AM18

Figure $185{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18

Figure $186{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{A M 1 8}$

Figure 187 DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18

Figure 188 DEPT $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18

Figure 189 2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM18

Figure 190 2D HMQC (CDCl_{3}) spectrum of compound AM18

Figure 191 2D HMBC (CDCl_{3}) spectrum of compound AM18

Figure $192{ }^{1} \mathrm{H}$ NMR (300 MHz$)\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AM19-AM20

