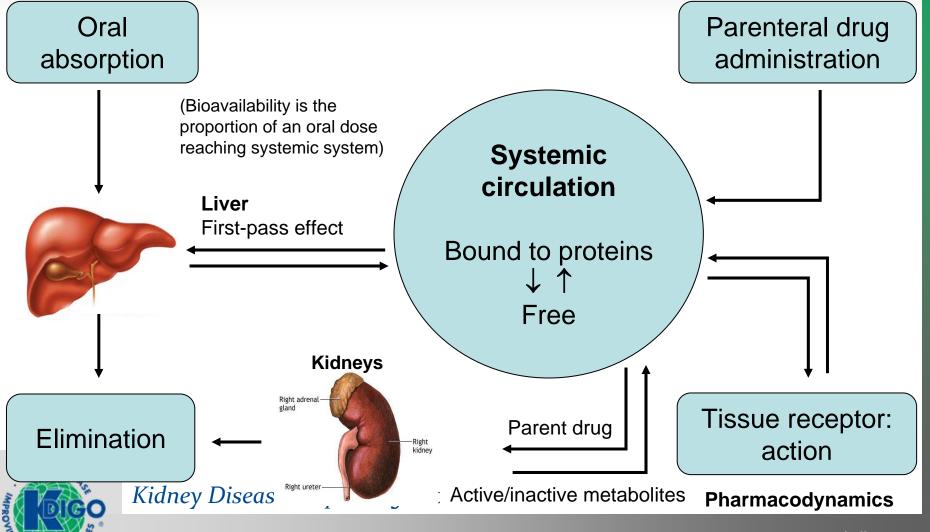
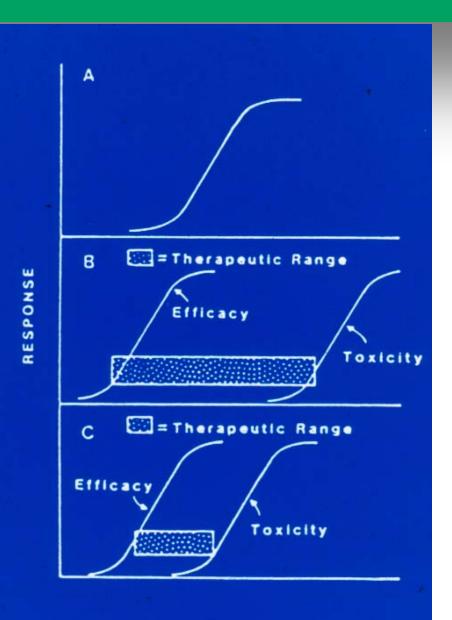
Drug Prescribing in Kidney Disease: Initiative for Improved Dosing


Effects of impaired kidney function on drug pharmacokinetics and pharmacodynamics


Section Leaders: William Bennett and Domenic Sica

Kidney Disease: Improving Global Outcomes

Passage of a Drug Dose Through the Body (Pharmacokinetics)

Kidney Disease: Improving Global Outcomes

Effects of Age and Renal Dysfunction on Pharmacokinetics and Pharmacodynamics

- All processes affected by both variables in complex ways
- Drug elimination primarily affected by ↓ GFR (age +/- CKD)
- Formulae for GFR estimation not validated for drug dosing purposes
- Biologic readouts better than kinetic surrogates ie. blood levels vs. BP, INR, etc.
- Drug interactions multiple and personal

Pharmacokinetic Parameters Affected by Age/GFR

Parameter (abbreviation) Bioavailability (F)

Volume of Distribution (VD)

Clearance (Cl) Half-life (T1/2)

Clinical Application

Determines the amount of drug reaching the systemic circulation and therefore the amount at the site of action

Determines the size of a loading dose

Determines the maintenance dose Determines the amount of time needed to reach steady state serum concentrations or eliminate the drug (four times the T1/2)

Effect of Renal Dysfunction on Drug Usage

- Accumulation of drugs "normally" excreted
- Accumulation of "active" metabolites
- Change in drug distribution protein binding
- Decrease in renal drug metabolism

Goals of Therapy

• Maintain efficacy

Avoid accumulation and toxicity

Kidney Disease: Improving Global Outcomes

Prescribing for a Patient with Renal Dysfunction

- Ascertain level of renal function (estimated GFR/C_{Cr})
- Establish integrity of liver metabolism
- Establish loading dose
- Maintenance dose dose reduction vs. interval extension
- Check for drug interactions
- Decide whether blood level monitoring is indicated

Estimated GFR – MDRD Formula

- eGFR (mL/min/1.73 m²) = 175 [Serum Creatinine (umol/L) x 0.0113]^{-1.154} x age (years)^{-0.203}
- If female, multiply the result by 0.742
- If African American, multiply the result by 1.21
- Not valid for eGFR > 60
- Not valid for very fat, very thin, paraplegics, elderly

Cockroft-Gault Equation

140-age x (lean body weight) x 0.85 (if female)

72 x serum creatinine

Kidney Disease: Improving Global Outcomes

References Regarding GFR Estimation for Drug Dosing

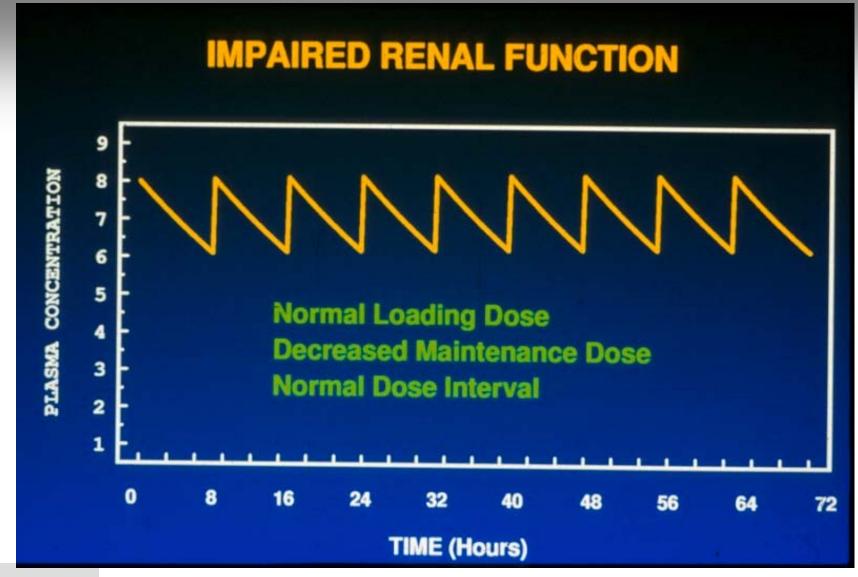
- Wango et al., Comparison of MDRD and CG equations for antimicrobial dose adjustments. Ann Pharmacother 2006, 40:1248.
- Stevens et al., Comparison of drug dosing recommendations based on measured GFR and estimating equations. Am J Kidney Dis 2009, 54:33.

The Loading Dose

Loading dose = desired $Cp_{SS} \times V_D \times P_D$ a patient's weight

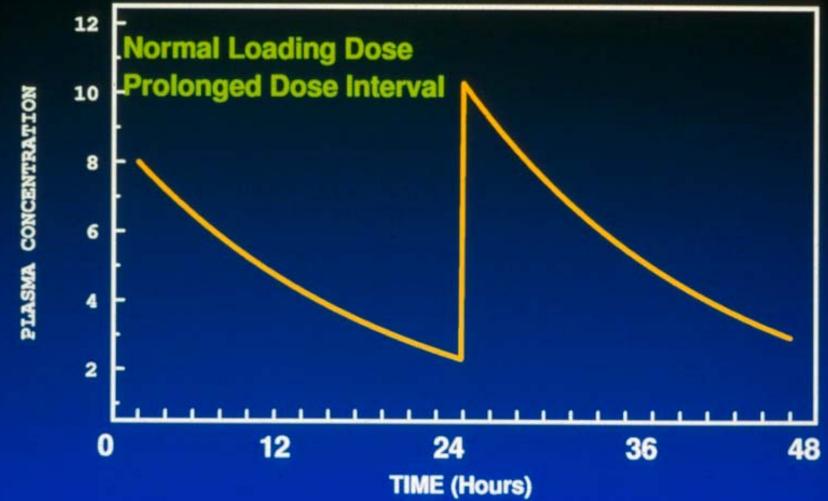
Cp_{SS} = plasma concentration of the drug desired at steady state

 V_D = volume of distribution


Kidney Disease: Improving Global Outcomes

Methods of Drug Dose Adjustment in Patients with CKD

Constant Dose Varying Interval Constant Interval Varying Dose


Kidney Disease: Improving Global Outcomes

Kidney Disease: Improving Global Outcomes

IMPAIRED RENAL FUNCTION

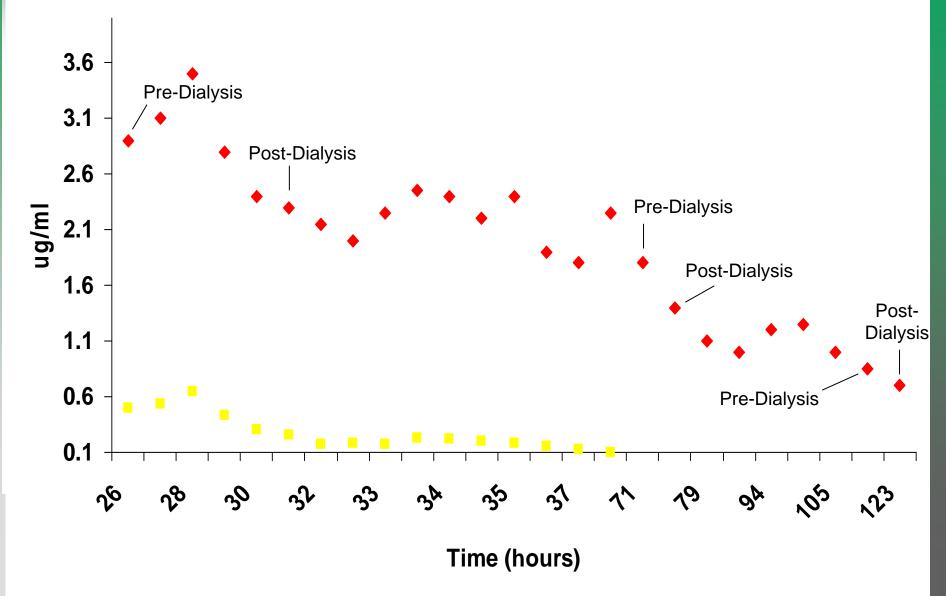
Kidney Disease: Improving Global Outcomes

Examples of Renally Excreted Metabolites in CKD

Active

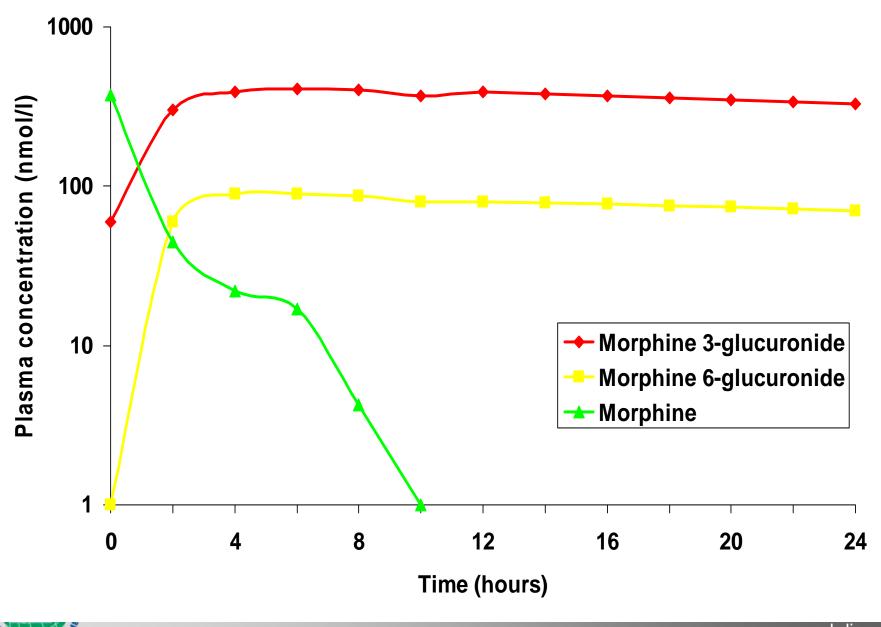
Diazepam → Desmethyldiazepam

Toxic


Meperidine → Normeperidine

Additive

 $Procainamide \rightarrow NAPA$


N-Acetyl Procainamide (NAPA) - Procainamide

Specific Drugs with Renal Dysfunction

- Narcotics
- Antibiotics/Antivirals
- LMW Heparins

CLOBAL OUTCO

Antibiotics to be Adjusted*

- Cephalosporins Imipenems: Syndromes of neurotoxicity described
- Penicillins: Neurotoxicity/seizures
- Acyclovir/Ganciclovir: Leukopenia, neurotoxicity, renal dysfunction
- Minimal Adjustments: Fluoroquinolones, sulfonamides

Low Molecular Weight Heparin (LMWH) in CKD) Lim et al. Annals of Int Med 2006

- LMWH excreted by kidneys
- eGFR < 30 mL/min lengthens t^{1/2} and increases anticoagulant anti-X_a
- Increased risk of major bleeding not easily reversed
- Need for downward dose adjustment

Rules of Thumb for Changing Maintenance Drug Dosage

- Available options:
 - Decrease the dose, keeping the interval constant
 - Increase the dose interval, keeping the dose constant
- Decide the appropriate dosage regimen for the patient as if renal function were normal
- Determine the fraction of drug and active metabolite that is excreted unchanged by the kidneys
- Calculate the dosage adjustment factor. This factor is the ratio of the half-life of the drug in the patient to the half-life of the drug in the normal person

Rules of Thumb for Changing Maintenance Drug Dosage (cont'd)

- Use the dosage adjustment factor in one of the following ways after considering which is most appropriate for the individual drug:
 - Divide the dose you determined for normal renal function by the dosage adjustment factor and continue with the same dosage interval
 - Continue with the same dose but multiply the dosage interval you determined for normal renal function by the dosage adjustment factor
 - A regimen of combined dose reduction and dose interval prolongation may maintain a more uniform serum concentration

Drug Level Monitoring

Drug toxicity is serious and occurs at levels close to "therapeutic"

Therapeutic and biologic end points are not easily defined

Problems with Current Data

- Kinetic studies performed in few stable CKD patients without comorbidities, acute illness
- Liver and non-renal metabolism varies (age, genetics, illness, other drugs)
- No "cookbook" to make rational individual patient decisions;
 Requires Wisdom

Conclusions

- Prescribing in CKD is an art not science at this point
- No substitute for knowing the drug pharmacology and the individual patient
- Individualize. "Go Low/Go Slow" is a good general rule
- Review med lists including OTC "supplements" at each visit
- Watch for nephrotoxins

Breakout Group 1: Discussion Questions/Objectives

Kidney Disease: Improving Global Outcomes

Effects of impaired kidney function on drug PK and PD

Breakout Group 1: Clinical Recommendations

Kidney Disease: Improving Global Outcomes

Effects of impaired kidney function on drug PK and PD

Breakout Group 1: Research & Regulatory Recommendations

Kidney Disease: Improving Global Outcomes

Effects of impaired kidney function on drug PK and PD