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ABSTRACT

The thermal history of the Higgs boson and its connection with electroweak symmetry break-

ing play an important role in the production of cosmological relics. In this thesis, I study

different patterns of the electroweak symmetry at finite temperatures to build a bridge con-

necting particle cosmology, Higgs phenomenology and physics beyond the Standard Model,

that may provide answers to some of the open questions in particle physics. I carefully

scrutinize the experimental probes, e.g. measurements of the properties of the Higgs boson

and gravitational wave detection, that can directly or indirectly provide information on the

validity of the theories I investigate and their early universe electroweak symmetry behavior.

The existence of a strong first order electroweak phase transition in the early universe is

a necessary building block of the electroweak baryogenesis mechanism, that can explain the

matter-antimatter asymmetry of the universe. I investigate representative extensions of the

Standard Model Higgs sector, which allow for a strong first order electroweak phase transition

and open opportunities for new Higgs decay channels at colliders. I study the electroweak

phase transition dynamics, and the relevance of nucleation in models with an additional

singlet, both in theories with SM gauge symmetries and in the case of supersymmetry. I also

propose a novel scenario, where the electroweak symmetry remains broken up to very high

temperatures, thereby allowing to evade strong experimental bounds from CP violation that

otherwise plays important limitations on electroweak baryogenesis scenarios.

Dynamics of Higgs field bubbles can directly affect the power spectrum of the gravita-

tional wave signals generated during a strong first order phase transition. I perform a first

study of the speed of the Higgs bubble wall, and show that it can be significantly slowed

down by friction from particles in the hot plasma with resumed soft and collinear radiations.
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CHAPTER 1

INTRODUCTION

The discovery of the Higgs boson [1,2], as the last missing piece of the Standard Model [3–14],

is a great triumph of particle physics. The spontaneous electroweak symmetry breaking,

that is induced by the non-zero expectation value of the Higgs boson, is a cornerstone of the

Standard Model and is responsible for the masses of most massive elementary particles that

we have detected, with the possible exception of neutrinos.

After the Higgs boson discovery, the next step has become understanding the Higgs bo-

son properties and its possible departures from the Standard Model predictions. Numerous

ongoing and proposed high-energy explorations are targeted to this. Although the Stan-

dard Model has been successfully predicting most of the experimental observations, there

exist evidence and unsolved questions in particle physics indicating new physics beyond the

Standard Model. As perhaps the least understood and the only fundamental scalar particle,

looking for deviations from the Standard Model in the Higgs sector is at the frontier of new

physics searches. In addition, the thermal history of the Higgs field plays an important role in

cosmology, determining the dynamics of the electroweak symmetry breaking in the early uni-

verse. Most relevantly, it has the potential of affecting the production of various cosmological

relics, including the matter-antimatter asymmetry [15], topological defects [16], primordial

magnetic fields [17], and a stochastic background of gravitational wave radiation [18]. Thus,

studying the Higgs thermal history serves as a bridge connecting particle cosmology with

Higgs phenomenology, and may provide answers to some of the open questions in particle

physics.

In this chapter, we give an introduction and overview to establish the relevant role played

by the electroweak symmetry in the hot early universe, determined by the Higgs thermal his-

tory, as well as its connections to the ongoing efforts in understanding the Higgs boson prop-

erties. We introduce one of the major motivations, i.e. the generation of matter-antimatter
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asymmetry, for exploring alternative behaviors of the electroweak symmetry in the early

universe beyond what is expected in the Standard Model. A particularly interesting early

universe phenomenon associated with the electroweak phase transition, will be introduced,

along with its potential role in the production of the cosmological relics mentioned above.

1.1 The thermal Higgs and electroweak symmetry in the early

universe

As the first part of this section, we will give a brief introduction to the Higgs field, its

role in the Standard Model (SM) of particle physics, and its behavior in today’s universe.

The SM is constructed based on the SU(3)C×SU(2)L×U(1)Y gauge group, which predicts

force mediators to be massless. However, people first noticed that the weak interaction,

which is unified with the electromagnetism and together described by the SU(2)L×U(1)Y

electroweak (EW) gauge group, is short range, indicating massive mediators. Indeed, ex-

periments have confirmed that the W± and Z bosons, the force mediators of the weak

interaction, have finite masses [19], since when, how the weak interaction is screened at long

distances has been a theoretical difficulty. A solution was eventually proposed independently

by Brout, Englert and Higgs [20–23], which is known as the Higgs mechanism, by introduc-

ing a scalar degree of freedom (the only option without breaking the Lorentz invariance)

acquiring a non-zero vacuum expectation value (vev), which spontaneously breaks the EW

gauge symmetry. Formally, in the SM, the scalar degree of freedom is embedded in a complex

doublet [7],

φ =
1√
2

χ1 + iχ2

h+ iχ3

 , (1.1)

2



that is charged under the EW gauge group. The potential for such a doublet, that is gauge

invariant and renormalizable, reads

V (φ) = −µ2φ†φ+ λ(φ†φ)2. (1.2)

In the case where the squared mass parameter µ2 is positive, i.e. µ2 > 0, the global minimum

of such a potential is at |φ|2 = µ2

2λ . As an illustration, one could visualize such a potential

in the ’zero T’ panel in Figure 1.1, assuming a complex singlet, which exhibits a ’sombrero’

shape. In this two dimensional field space along the real and imaginary direction of the

singlet, there are infinite number of degenerate minima with the same value in the radial

direction, namely a Higgs mode, and arbitrary values (averaged to be zero) in the tangent

direction, namely a massless Nambu-Goldstone mode. Generalizing to the case of a complex

doublet, there are, in total, four scalar degrees of freedom, with one Higgs mode acquiring a

non-zero vev and three massless Nambu-Goldstone modes with zero vev. Choosing which

one of the four degrees of freedom in the Higgs doublet parametrization shown in Equa-

tion (1.1) to be the Higgs direction is arbitrary, and conventionally, one chooses h(x) to be

the Higgs field with

v ≡ 〈h〉 =

√
µ2

λ
. (1.3)

The perturbation theory should be expanded around such a vacuum, at which the EW

symmetry is spontaneous broken. Non-zero masses for gauge bosons thus are generated

through the Higgs kinematic term

LHiggs ⊃ Dµφ
†(x)Dµφ(x), (1.4)

3



where the covariant derivative for the EW gauge group reads

Dµ = ∂µ − igT aW a
µ − ig′Y Bµ (1.5)

by expanding the h(x) component of the doublet φ(x) around its vev,

h(x) = v +H(x). (1.6)

The perturbative degree of freedom H(x) is the Higgs boson, which was eventually discovered

by Large Hadron Collider (LHC) in 2012 after decades’ hunt, confirming this proposed Higgs

mechanism. Notice that the non-zero vev of the Higgs field also generates finite masses for

leptons and quarks in the SM through Yukawa coupling interactions.

In summary, in today’s universe, the existence of the Higgs boson and the signature of

the Higgs potential, induce the spontaneous breaking of the EW symmetry, which is the

cornerstone to the SM’s success. Moreover, if one traces back to early times in the universe,

the Higgs potential and the EW symmetry behavior at finite temperatures, could be a bridge

to new physics, that is in need to answer open questions the SM fails to explain, which will

be the subject of this thesis.

As opposed to today’s universe where most elementary particles have decoupled and

are confined into hadrons, at early times in the universe, particle degrees of freedom were

unbounded and kept in thermal equilibrium by rapidly interacting with each other (given the

interaction rates much larger than the universe’s expansion rate), which can be characterized

by finite densities and temperatures. The relation between the time and temperature in the

early universe can be estimated as

T ∝ g
−1/3
∗S a(t)−1, (1.7)

4



Figure 1.1: History of the universe with the Higgs potential and electroweak symmetry at
early times of the universe.

where g∗S is the effective number of relativistic degrees of freedom for entropy and a(t) is

the scale factor at time t. At finite temperatures, the Higgs potential receives radiative

thermal corrections from degrees of freedom interacting with the Higgs doublet, resulting

in a different vacuum location and potentially a different EW symmetry behavior. As has

been discussed above, the Higgs potential has a ’sombrero’ shape today, where the vacuum

is at a non-zero field value of the Higgs and the EW symmetry is broken. However, as

is shown in Figure 1.1, with thermal corrections, the (effective) Higgs potential at finite

temperatures may have a different signature where the vacuum is at the origin and the EW

symmetry was preserved/restored, provided with a negative thermal corrected square mass

parameter in Equation (1.2), µ2 → µ2
thermal ≤ 0. Based on theoretical calculations, this is

5



indeed the case in the SM [24–27], given the SM particle content interacting with the Higgs

and sizes of the corresponding coupling constants as have been measured by experiments.

Alternatively, the Higgs potential could have maintained its zero temperature signature with

EW symmetry broken given BSM degrees of freedom interacting with the SM Higgs and/or

EW gauge bosons. As the subject of chapter 4, we will discuss such a possibility with a

well-defined SM Higgs sector extension.

If the EW symmetry was restored in the early universe, as is in the SM, there would be

a time/temperature when the universe converted from the EW preserving phase to the EW

broken phase, which is called the Electroweak Phase Transition (EWPT). The nature

of the EWPT has important impacts on the production of various thermal relics, and may

provide solutions to one of the open questions in particle physics, the generation of the

matter-antimatter asymmetry, through an electroweak baryogenesis mechanism, which will

be the topic for the next two sections.

1.2 Matter-antimatter asymmetry and electroweak baryogenesis

In today’s universe, there is more matter than antimatter. This is both a fact that one

may observe in daily life, and a property that has been confirmed and precisely measured

by scientific experiments. Formally, the asymmetry between matter and antimatter, namely

the baryon asymmetry of the universe (BAU), is characterized by the ratio

η =
nB − nB̄

nγ
, (1.8)

where nB (nB̄) is the number density of (anti)baryons and nγ is the number density of

photons. Notice that such a quantity is a good measure as it stays almost constant during

late times of the universe’s expansion. In early times, instead, one may choose to use the

quantity defined in case of the entropy s for convenience,
nB−nB̄

s , which has a conversion

6



Figure 1.2: Determination of the baryon asymmetry of the universe η. Left panel: abun-
dances of light elements as a function of η from BBN [28]; Right panel: CMB temperature
power spectrum with different values of η in comparison with the WMAP data [29].

factor of ∼ 1/7 to η.

Currently, we have a good knowledge of the value of the BAU η from theoretical pre-

diction and experimental observations. The BAU was first determined by the big bang

nucleosynthesis (BBN), where the value of η should give the correct abundances of 3He,

4He, D, 6Li and 7Li, which can be measured by experiments. The left panel in Figure 1.2

shows abundances of these light elements as a function of η, as predicted by the SM of

BBN, and boxes indicate observed values of the abundance. Accordingly, the value of η is

constrained to be [28]

BBN : 4.7× 10−10 ≤ η ≤ 6.5× 10−10 (95% CL), (1.9)

as one may read out from the orange shaded bin in the figure. In comparison, the blue shaded

7



bin on the left panel in Figure 1.2 shows the value of η determined by Cosmic Microwave

Background (CMB) measurements, which is an independent and more precise measurement

of η developed later [30]. The CMB provides information on the shape and content of the

universe, where η will affect the relative sizes of the Doppler peaks in the CMB temperature

anisotropies, as shown in the right panel of Figure 1.2. Based on the Wilkinson Microwave

Anisotropy Probe 7-year (WMAP) data, CMB constrains η to be [31]

CMB : η = (6.16± 0.15)× 10−10. (1.10)

One can see that these two independent determinations have very good agreement.

Despite the confident observation of the BAU, there exits no explanation of such a number

either within the SM or within the standard cosmology. If there was no baryon asymmetry

in the beginning of the universe, the BAU that we could observe today, due to the fact

that baryons and antibaryons won’t annihilate perfectly after freezing out, is of the order

of 10−20 [32], which is far below the observed BAU shown above. If instead, the BAU

is assumed to be an initial condition before the big bang, it would be diluted during the

inflation because of the entropy. Thus, a dynamical generation of the baryon asymmetry

prior to the BBN is the only option to explain the BAU, named as baryogenesis, which

was first realized in 1967 by A. Sakharov [33]. Perhaps more importantly, also proved in

this ground-breaking paper are the three necessary conditions for baryogenesis, known as

the Sakharov conditions:

• baryon (B) violation;

• charge conjugate (C) and charge conjugate and parity (CP) violation;

• departure from thermal equilibrium.

It is natural to see the need for B violation. Interestingly, B violation processes actually

exist in the SM, e.g. sphaleron process in the EW sector that is associated with the structure
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Figure 1.3: Electroweak baryogenesis in the vicinity of the Higgs bubble wall [34].

and anomaly of the gauge group. We will discuss the sphaleron process with more details

in the next section. For the second condition, the C violation is needed in the sense that,

in the case where C is a symmetry, any B violation process and its C conjugate process

will have the same rate, and would result in zero net B creation, as the net B creation rate

is proportional to their difference. Similar argument applies to the need for CP violation,

where CP conjugate process would remove any asymmetries in the quark sector. Last but not

least, departure from thermal equilibrium is necessary, otherwise any net B created through

a B violation process would be destroyed by its inverse process, which has the same rate in

thermal equilibrium.

As has been mentioned above, one can find B violation source in the SM that can be rapid

at high temperatures. There also exit C and CP violation in the SM, e.g. in the CKM matrix

in the SM quark sector. Of course, either the small CP violation phase in the CKM matrix

is enough to create the amount of asymmetry that we observed today needs more careful

investigation based on the specifics of the asymmetry generation. It is, however, tricker to

realize departure from thermal equilibrium. Naively, ways of creating out of equilibrium
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environment mainly fall into two categories [35]

• through a first order phase transition (PT);

• during the decay of heavy particles.

Interestingly, as has been introduced in the last section, an EWPT would take place in

the early universe based on the SM prediction, and if it is strong first order, the universe

would depart from thermal equilibrium. Thus, it is natural to propose an Electroweak

Baryogenesis mechanism [15,36,37], that happes during the epoch of EWPT, provided with

all necessary ingredients readily existing within the SM. Figure 1.3 provides an illustration

of such a mechanism. A first order EWPT, with more details to be presented in the next

section, proceeds through the nucleation, growth, and percolation of bubbles. Outside of the

bubbles, the expectation value of the Higgs field vanishes, i.e. 〈h〉 = 0, and EW symmetry

is restored. Inside of the bubbles, the average Higgs field has a nonzero value, i.e. 〈h〉 6= 0,

giving mass to the quarks, charged leptons, and weak gauge bosons. A differential vacuum

pressure across the phase boundary drives the bubbles to expand and collide, on time scales

typically much less than one Hubble time, filling all of spacetime with the broken-symmetry

phase. The EWBG, as shown in Figure 1.3, took place in the vicinity of the phase boundaries,

i.e. the bubble wall. In the first step of EWBG, C and CP violation interactions between

quarks and the Higgs will bias the scattering of quarks off the bubble wall, resulted in more

left handed quarks and right handed antiquarks in the broken phase, and more right handed

quarks and left handed antiquarks in the symmetric phase, i.e. C and CP asymmetries in

particle number density are generated. In the second step, the EW sphaleron process, which

violates the B and is only active in the symmetric phase, converts the CP asymmetry to be

the B asymmetry. Lastly, the B asymmetry in the symmetric phase diffuses into the broken

phase as the bubble expands, where it will be preserved until today because of the inactive

sphalerons associated with the strong first order nature of the EWPT, that will be further

defined and quantified in the next section. On top of the Sakharov conditions, a successful
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Figure 1.4: The Higgs potential at different temperatures. Left panel: the electroweak phase
transition proceeded in a first order nature; Right panel: the electroweak phase transition
proceeded in a cross over/second order nature.

EWBG further requires: 1. sufficient amount of CP violation; 2. the EWPT being strong

first order. In reality, neither of these two requirements can be satisfied in the SM, that is

why although all ingredients exist in the SM, it doesn’t give rise to a successful explanation of

the BAU. Accordingly, BSM physics compatible with EWBG needs to introduce additional

CP violation source and renders a strong first order electroweak phase transition

(SFOEWPT). Notice that sectors responsible for these two inputs are typically separated,

where the former typically originates from fermionic sectors while the latter is determined by

the nature of the scalar sector. Thus, one is entitled to discuss these two aspects separately.

As the focus of this thesis, we will concentrate on discussing the phenomenon of SFOEWPT

while leaving the CP violation discussion for other interesting works.

1.3 Electroweak phase transition

We have introduced the concept of EWPT and its role in EWBG from a schematic point of

view. In this section, we will take a closer look to its dynamics and investigate some of its

properties quantitively, that will be relevant to determine if the EWBG can be successful.

The nature of the EWPT is determined by the Higgs potential at finite temperatures,
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which is illustrated in Figure 1.4 corresponding to different natures of the EWPT projected

into the Higgs direction of the Higgs doublet. A characteristic temperature is when the

symmetry vacuum is degenerate with the broken vacuum,

V (h = 0, Tc) = V (h = vc, Tc), (1.11)

that is called the critical temperature Tc, and the vev of the Higgs field at the critical

temperature is noted as vc. Above such a temperature, the global minimum of the potential

is the symmetric phase, while below such a temperature, the broken phase becomes deeper

and the global minimum. Either the value of vc is zero or not serves as an important criterial

categorizing the nature of the transition:

• vc = 0: the phase transition is second order or a cross over ;

• vc 6= 0: the phase transition is first order.

A first order PT exhibits discontinuity in the first order derivative of the system’s free energy,

namely the order parameter, which, in the case of EWPT reads

ξ =
vc
Tc
. (1.12)

One may trivially read out that vc 6= 0 corresponds to a discontinuity in the order parameter,

and the Higgs potential for such a case can be found on the left panel in Figure 1.4, where

the two vacua are separated in the field space by a barrier in between. On the contrary,

the order parameter of a second order PT or a cross over is continuous, and a discontinuity

appears only in the second order derivative of the free energy for the former, while the free

energy is continuous in any orders of its derivative for the latter. Nevertheless, for either a

second order EWPT or a cross over, vc = 0, and the Higgs potential is illustrated on the

right panel in Figure 1.4, where the vacuum smoothly rolls down from the symmetric phase
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to the broken phase. Because there is latent heat released during the process, the universe

will remain adiabatically and not depart from thermal equilibrium. This is one of the reasons

the successful EWBG requires a first order EWPT, during which there will be a tunneling

from the false vacuum to the true vacuum, that actually took place at a lower temperature

compared to Tc, namely the nucleation temperature Tn, when the tunneling probability is

roughly one per Hubble volume and Hubble time. We will give a more detailed discussion on

such a temperature in section 3.3. Because of the latent heat released during the tunneling,

the universe will depart from thermal equilibrium.

In addition, the created B asymmetry should be preserved against the sphaleron process,

which will wash out any asymmetry in the B+L direction, where L is the net lepton number.

Sphalerons refer to static and saddle point solutions to the field equations of the Higgs and

EW gauge fields, that is the top points of barriers separating equivalent EW vacua in the

Chern-Simons number space of the gauge group. The sphaleron process is a non-perturbative

finite temperature process of hopping over the barriers provided with enough thermal energy.

Based on a semi-classical evaluation of path integral, the rate for such a process for the EW

gauge theory reads [38,39]

Γ

V
= 4πω−NtrNrotT 3

(
vEW(T )

T

)6

κ exp
[
−Esph(T )/T

]
, (1.13)

where parameters involved in the equation will be discussed with more details in section 4.2.

Here, we would emphasis the most relevant quantity to the EWPT in the sphaleron rate

equation, the sphaleron energy Esph(T ) at finite temperatures, which is linear on the vev

of the Higgs field, that gives

Esph(T ) = Esph(T = 0)
v(T )
v(T=0)

= 4π
g B v(T ), (1.14)

where B is a constant and again we will discuss it in section 4.2. Manifestly one can see that
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Figure 1.5: Phase diagram of electroweak phase transition in the Standard Model (SM)
based on lattice simulation [40].

a large ratio between v(T ) and the temperature T in the broken phase would suppress the

sphaleron rate such that the generated B asymmetry can be preserved. Based on the SM

Higgs structure, v(T )/T in the broken phase has its largest value at the time of the phase

transition. Accordingly, a requirement on the order parameter of the phase transition,

ξ =
vc
Tc

& 0.8− 1.3, (1.15)

should be imposed to guarantee suppressed sphaleron rate to be much slower than the

universe’s expansion rate, which is the commonly implemented criterial for a SFOEWPT in

the literature.

However, in the SM, the EWPT has been predicted to be a cross over, given the measured

Higgs mass of 125 GeV. Figure 1.5 shows the phase diagram of the EWPT based on lattice

simulation [41–43], where the order parameter is shown as a function of the SM Higgs mass.
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One can read easily from the diagram that the possibility of a first order EWPT is ruled out

with a Higgs mass above ∼ 72 GeV, and the mass of the Higgs is pushed down to ∼ 10 GeV

for the possibility of a SFOEWPT. The existence of a light Higgs was quickly excluded and

with the final Higgs discovery in 2012, showing a Higgs mass of 125 GeV, the possibility of

a succesful EWBG within the SM was ruled out.

Nevertheless, EWBG still remains to be an appealing candidate explaining the mystery of

BAU going beyond the SM, as it is the only baryogenesis mechanism where all the ingredients

readily exist in the SM [44] along with other features. Given the lack of strong experimental

deviations from the SM, it is likely that the new physics solution lies near the SM regime.

Thus it is an interesting subject to explore the possibility of a SFOEWPT provided with BSM

inputs, those are compatible with experimental probes, especially on the Higgs properties.

At the same time, understanding the electroweak history of the universe, and if there was

a SFOEWPT, also remains a relevant question. In the following chapters of this thesis, we

will dedicate to these questions and present our investigations.
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CHAPTER 2

FINITE TEMPERATURE EFFECTIVE POTENTIAL

In this chapter, I review the perturbative method, i.e. the effective potential approach with

appropriate improvements, to study the Higgs field thermal history and the dynamics of the

electroweak phase transition, that will be used for the rest of this thesis.

The effective potential includes radiative corrections to the scalar potential from zero

temperature loop effects, as well as from thermal effects, where the latter are calculated

based on the finite temperature field theory [45–58]. Both types of contributions are derived

from the background field method [59], and are functionals of field-dependent masses of

particles in the plasma, those interacting with the scalar fields (e.g. the SM Higgs, BSM

singlets, multiplets etc). In section 2.1, following [39], we review the basic method and show

the resulting general formulas for the zero and finite temperature effective potential at one

loop order. We will also discuss features of the formulas that are relevant for analytical and

numerical analysis for the thermal history and the electroweak phase transition.

In some regions of the field and temperature space, the perturbative convergence of

the fixed-order calculation becomes compromised, for both the zero and finite temperature

effective potential. In section 2.2, we introduce the thermal resummation methods to sys-

tematically include higher loop thermal contributions which are the most divergent in the

infrared region, and discuss the associated theoretical uncertainties. In section 2.3, we in-

troduce the renormalization group improvements of the effective potential to systematically

resum higher order logarithms beyond the leading order logarithm included in the one loop

zero temperature effective potential, those become relevant in certain regions in the field and

temperature space.
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2.1 The effective potential at zero and finite temperatures

The effective potential (EP) method has been introduced to study the spontaneous symmetry

breaking associated with scalar fields acquiring none-zero vev that is determined by the

potential shape including radiative corrections [48,60,61].

For a translationally invariant theory, the EP as a function of a constant scalar field

φ̂ = φ̄(x) can be calculated order by order as

Veff(φ̂) =
∞∑
n=0

Vn(φ̂) with Vn(φ̂) = − 1

n!
φ̂nΓ(n)(pi = 0), (2.1)

where Γn(pi) is the n−th order contribution to the effective action expanded in powers of

φ̂ in the momentum space. The effective action is the Legendre transform of connected

generating functional (vacuum-to-vacuum amplitude) given a Lagrangian density for the

scalar field, that can be written in a Green function representation expanding in powers of

the source. The zeroth order contribution to the EP, V0, is the tree level potential. At loop

order, the zero temperature contribution is computed based on the regular Green functions

as ordered product of the field operators, while at finite temperatures, the Green functions

should be taken as the grand canonical average of the ordered product, the so-called thermal

Green function.

At zero temperature, the one loop contribution V1 was first computed by Coleman and

Weinberg thus commonly known as Coleman-Weinberg (CW) potential [49]. Considering

a scalar sector composed by Ns complex scalar fields φa, the contribution to V1 from the

scalars with the Lagrangian

L = ∂µφa∂µφ
†
a − V0(φa, φ

†
a) (2.2)
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reads

V scalars
1 =

1

2
Tr

∫
d4p

(2π)4
log
[
p2 +M2

s (φ̂a, φ̂
†
b)
]
, (2.3)

where

(
M2
s

)a
b
≡ ∂2V

∂φ
†
a∂φb

, (2.4)

as a function of constant values of the scalar fields is called the field-dependent mass (matrix)

of the scalar fields. Similarly, the contribution to V1 from fermions ψa with the Lagrangian

L = iψ̄aγµ∂
µψa − ψ̄a(Mf )abψ

b, (2.5)

where (Mf )ab as a function of constant values of the scalar fields is the field-dependent mass

(matrix) of the fermions, reads

V fermions
1 = −2λ

1

2
Tr

∫
d4p

(2π)4
log
[
p2 +M2

f (φ̂a, φ̂
†
b)
]
, (2.6)

where λ = 1(2) for Weyl (Dirac) fermions. Lastly, the contribution to V1 from gauge bosons

with the Lagrangian

L = −1

4
Tr(FµνF

µν) +
1

2
Tr(Dµφa)†Dµφa + · · · , (2.7)

which contains the interacting/mass term 1
2

(
M2
gb

)
αβ
AαµA

µβ , reads

V
gb
1 = (Tr∆)

1

2
Tr

∫
d4p

(2π)4
log
[
p2 +M2

gb(φ̂
a, φ̂
†
b)
]
, (2.8)

where Tr∆ is the number of degrees of freedom of massive gauge bosons. Notice that here
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we work in the Landau gauge, in which case there are no ghosts. We will stop here at one

loop order, higher loop corrections can be found, e.g. in [51, 62].

The above expressions are ultraviolet divergent. Formalism of the EP after the renormal-

ization depends on the renormalization scheme one chooses. However, any physical results,

for example, the location of the vacuum determined by the EP, should be independent of the

renormalization scheme, which needs more detail investigation and treatments. The scheme

dependence would introduce uncertainty, although typically small and negligible, to the rel-

evant calculation. The two commonly used renormalization schemes for the EP are the MS

scheme and the on-shell scheme. Under the MS scheme, after the renormalization, the CW

potential reads

V MS
CW =

1

64π2

∑
i=B,F

nim
4
i (φ̂

a, φ̂
†
b)

[
log

m2
i (φ̂

a, φ̂
†
b)

µ2
R

− Ci
]
, (2.9)

where i runs over all mass eigenstates in the boson and fermion sector, ni is the number of

degrees of freedom for each eigenstate, Ci = 5
6

(
3
2

)
for gauge boson (scalars and fermions)

and µR is the renormalization scale. As one can see, the EP, and potential physical quan-

tities derived from the EP, depend on the choice of the renormalization scale, which can be

treated by renormalization group (RG) improvement. If physical scales of the problem are

close, choosing a µR close to the physical scale will minimize the dependence and introduce

only small and negligible uncertainties. However, if there is large scale separation, the RG

improvement would become essential, which will be discussed in detail in a later section 2.3.

Another scheme that is commonly used in the literature is the on-shell scheme, which has the

benefit of not shifting the vacuum from the tree level location. Under the on-shell scheme,
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the CW potential reads

V OS
CW =

1

64π2

∑
i=B,F

ni

m4
i (φ̂

a, φ̂
†
b)

log
m2
i (φ̂

a, φ̂
†
b)

m2
i

(
〈φ̂a〉, 〈φ̂†b〉

) − 3

2

+ 2m2
i (φ̂

a, φ̂
†
b)m

2
i

(
〈φ̂a〉, 〈φ̂†b〉

) ,

(2.10)

where related notations have been introduce above, and 〈φ̂a〉 denotes the vacuum expecta-

tion value of the scalar fields. Notice the feature of the EP under such a scheme is that

∂V OS
1 /∂φ̂a|vacuum = 0 at the vacuum location, thus it doesn’t contribute to the extreme

condition determining the location of the vacuum. However, such a scheme is ill-defined

when there are massless particles in the theory, where the logarithm dependent on the phys-

ical masses m2
i

(
〈φ̂a〉, 〈φ̂†b〉

)
diverges at any location in the field space. In comparison, the

CW potential under the MS scheme in Equation (2.9) is safe from the massless degrees of

freedom in the sense that it is well defined away from the vacuum, and in the vacuum, the

divergence only appears in the second order derivatives of the EP, which can be treated by

introducing a small infrared regulator [63,64].

At finite temperatures, the thermal Green function is defined as the grand canonical

average, where the product of the field operators should be ordered along a path on the

analytically continued complex plane of time. The path can be parametrized along the

imaginary time axis, which is called the imaginary time formalism, or along the real time

axis, i.e. the real time formalism. The two formalisms give rise to the same results for the

finite temperature EP. Here we list the Feynman rules at finite temperatures based on the

imaginary time formalism

• boson propagator: i
p2−m2 ; pµ = [2niπβ−1, ~p]

• fermion propagator: i
γµpµ−m ; pµ = [(2n+ 1)iπβ−1, ~p]

• loop integral: i
β

∑∞
n=−∞

∫ d3p
(2π)3
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• vertex function: −iβ(2π)3δ∑
i ωi
δ(3)(

∑
i ~pi),

based on which, one loop contribution to the finite temperature EP from a scalar reads

V
β,scalar
1 =

1

2β

∞∑
n=−∞

∫
d3p

(2π)3
log(ω2

n + ω2), (2.11)

where β = 1/T , ωn is the bosonic Matsubara frequency and ω2 = ~p2 + m2(φ̂) with m(φ̂) is

the field-dependent mass of the scalar. The one loop EP from a scalar in Equation (2.11) con-

tains a temperature independent part, which is the same piece that’s been derived in Equa-

tion (2.3), and a temperature dependent part, which reads

V
T,scalar
1 =

1

2π2β4
JB

(
m2(φ̂)β2

)
, (2.12)

where the thermal bosonic function JB is defined as

JB(m2β2) =

∫ ∞
0

y2 ln
[
1− e−

√
y2+m2β2

]
dy. (2.13)

The temperature dependent contribution to the one loop EP from gauge bosons can be

derived in the same way, and the formalism reads the same as in Equation (2.11) where

the field-dependent masses should be replaced by the masses of gauge bosons, as well as a

multiplier given by the corresponding number of degrees freedom:

V
T,gb
1 = (Tr∆)

1

2π2β4
JB

(
m2
gb(φ̂)β2

)
. (2.14)

For fermions,

V
β,fermion
1 = −2λ

2β

∞∑
n=−∞

∫
d3p

(2π)3
log(ω2

n + ω2), (2.15)
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where ωn is the fermionic Matsubara frequency and ω2 = ~p2 + m2
f (φ̂), and after summing

over n, the temperature dependent part reads

V
T,fermion
1 = −2λ

1

2π2β4
JF

(
m2
f (φ̂)β2

)
, (2.16)

with the thermal fermionic function JF defined as

JF (m2β2) =

∫ ∞
0

y2 ln
[
1 + e−

√
y2+m2β2

]
dy. (2.17)

Summarizing contributions from scalars, gauge bosons and fermions, the temperature

dependent one loop EP reads

V T
1 =

T 4

2π2

[∑
i=B

niJB

(
m2
i (φ̂)

T 2

)
+
∑
i=F

niJF

(
m2
i (φ̂)

T 2

)]
. (2.18)

The JB/F functions can be evaluated numerically. In the mean time, to gain analytical

understanding of the thermal history, a high-temperature expansion can be used to obtain

an analytical expression for the thermal potential:

J
high−T
B (y) = −π

4

45
+
π2

12
y − π

6
y

3
2 − 1

32
y2 log

(
y

ab

)
+ · · · ,

J
high−T
F (y) =

7π4

360
− π2

24
y − 1

32
y2 log

(
y

af

)
+ · · · ,

(2.19)

where ab = 16π2 exp(3/2−2γE), af = π2 exp(3/2−2γE) and γE is the Euler constant. The

high-temperature expansion in Equation (2.19) guarantees a good convergence for values

of the argument of the JB/F functions up to 2 − 5, while values are constrained to be

below/about 1 without inclusion of the logarithmic terms. As the field-dependent squared

masses m2
i (φ̂) can go negative at some field values, where the J functions have unphysical

complex values, the functions should be regulated by taking their real parts [65], which are
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oscillating functions. A common practice in the literature, is taking the central value of

the oscillating function (asymptotically becomes zero with large function arguments), which

would result in a stable function, as well as make good prediction as at the physical vacuum,

the field-dependent squared masses shouldn’t have large negative tree level values when

their loop corrected values should be positive definite. In some numerical packages instead,

e.g. CosmoTransitions [66], the treatment is assigning constant values after a certain large

cut-off value of the function argument.

Evaluation of the JB/F functions beyond the high temperature expansion needs to be

performed numerically. Moreover, common numerical packages in the market, e.g. Cosmo-

Transitions, BubbleProfiler [67] etc, also contain algorithms tracing phases given the EP of

a model, finding degeneracy conditions (the critical behavior) between phases, as well as

calculating the bounce action to find tunneling path and predict bubble nucleation, for a

EWPT. Numerical simulations of the thermal history in works included in this thesis are

performed using CosmoTransitions. Notice that even with numerical tools, exact evalua-

tion of the JB/F functions is highly time consuming. Therefore, CosmoTransitions uses

spline interpolation of JB/F functions based on pre-computed look-up tables for numerical

evaluation, which we have checked to have good agreement with the exact evaluation results

using benchmark points of our model, which will be introduced in the next chapter.

2.2 Thermal resummation

As it is well understood in the literature, at finite temperatures, the self energy of a particle

receives higher loop corrections from daisy diagrams, e.g. see [68, Fig. 3a]. Such corrections

at N -loop order contain powers of a field- and temperature-dependent parameter α (up to
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a normalization factor) [26,68–71],

αN = λNi
T 2N

m2N
i (φ̂)

, (2.20)

where λi is the coupling corresponding to mi(φ̂) in the theory. At large temperatures, such

contributions exhibit severe IR divergence for some field values such that mi(φ̂) � T , for

example around the origin, where higher loop contributions dominate and convergence of

the fixed-order calculation becomes problematic. Various treatments have been proposed to

resum higher loop thermal contributions and solve the associated IR problem [26,68–74]. A

full dressing daisy resummation involves adding thermal corrections to the tree level effective

masses in the EP. For the one loop EP it follows,

VCW({m2
i (φ̂)};µ2

R) + V T1 ({m2
i (φ̂)};T )→

VCW

(
{m2

i (φ̂) + Π2
i };µ2

R

)
+ V T1

(
{m2

i (φ̂) + Π2
i };T

)
, (2.21)

where Π2
i is the squared thermal mass for the specie “i”. Such a procedure effectively

resums higher order corrections from daisy diagrams. There are several relevant discussions

in the literature, e.g. [73–75], pointing out different types of finite temperature contributions

due to the different implementation of thermal mass effects, including full vs partial daisy

resummation, as well as higher order loop corrections from finite temperature resummations

such as those coming from superdaisy, lollipop and sunset diagrams.

The squared thermal masses Π2
i are in general field- and temperature-dependent and can

be solved by gap equations. At one-loop level the gap equations read

Π2
i,gap =

∂2

∂φ̂2
i

∑
k

V T1−loop

(
{m2

k(φ̂) + Π2
k,gap};T

)
, (2.22)

where the degree of freedom i appears as a background field in the EP. A truncated treatment
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involves doing an expansion of the right hand side of the gap equation with respect to Π2
k

and truncate to a given order. To the leading order, the truncated squared thermal mass

reads

Π2
i,trunc =

∂2

∂φ̂2
i

∑
k

V T1−loop

(
{m2

k(φ̂)};T
)
. (2.23)

If the thermal potential is evaluated to leading order in high-temperature expansion, one

obtains the well known field-independent form of the squared thermal masses

Π2
i,hT = ciT

2. (2.24)

The ci are constant coefficients dependent on couplings determined by the theory.

2.3 Renormalization group improvements

The fixed-order EP at finite temperature, including both the zero temperature and thermal

contributions, depends on the scale µR at which the theory is renormalized. For example,

at one loop order, using the high-temperature expansion in eq. (2.19), the potential has a

logarithmic dependence on the renormalization scale as

log

(
T 2

µ2
R

)
, (2.25)

where the log(m2
i (φ̂) + Π2

i ) piece is cancelled between the CW and logarithmic term in the

high-temperature expansion of the thermal potential contribution. By implementing RG

improvement, where the parameters, fields and vacuum energy of the potential are evaluated

at the scale µR, one would cancel the scale dependence to the order of the calculation [76–81].

As we only calculate the EP and the RG improvement at one-loop order, the scale µR needs

to be chosen wisely to avoid un-resummed large logarithms from higher-order loop effects.
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Formally, at T = 0 with a convenient choice of the renormalization scale, the L-loop EP with

an RG improvement at (L + 1)-loop order, is exact up to L-th-to-leading log order [76–78].

At finite temperature, the choice of the renormalization scale, should vanish or minimize the

un-resummed logarithms such as logN
(
m2
i (φ̂)+Π2

i

µ2
R

)
for N ≥ 2 [73, 75]. For models with

multiple degrees of freedoms, therefore, there is no single choice of the scale to make all the

logarithms negligible [77,78,82–86]. One may make a convenient choice close to one physical

scale as long as there is no large separation between scales of the particles’ masses, including

the thermal mass contribution, as well as between the particle masses and the temperature.

The CW potential further includes polynomial contributions of the radiative corrections. It

also partially accounts for multi-scale particle threshold effects beyond the one single scale

threshold taken into account through the RG improvement. 1

1. Notice that here the RG improvement does not involve temperature flow as has been proposed, for
example in [87–89], where they treat temperature as an independent scale that participates in the RG flow
and thermal diagrams, like daisy and super-daisy, would have been resumed as a result.
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CHAPTER 3

ELECTROWEAK PHASE TRANSITION IN NEW PHYSICS

MODELS

In order to generate the observed baryon asymmetry, for a successful electroweak baryogen-

esis, out-of-equilibrium processes and sources of CP violation beyond those found in the SM

must be realized in nature. One interesting possibility to achieve the latter is via a strong

first order electroweak phase transition, as well as to assure that the baryonic asymmetry

generated during the bubble nucleation would not be erased by the sphaleron process. In this

chapter, we discuss how beyond the Standard Model physics could enhance the electroweak

phase transition offering new possibilities for electroweak baryogenesis, and investigate two

representative extensions to the SM which allow for a strong first order electroweak phase

transition as well as their theoretical and experimental signatures.

In section 3.1, we start by discussing the electroweak phase transition in the SM, and

give an analytical understanding of its strength, based on which, from an effective theory

point of view, we provide general perspectives on the impact from new physics degrees of

freedom.

In section 3.2, we investigate a simple, representative extension of the SM with a new

real singlet degree of freedom, the sector of which undergoes a spontaneous Z2 breaking.

We perform analytical and numerical calculations that systematically include one-loop ther-

mal effects, CW corrections, and daisy resummation, as well as the evaluation of bubble

nucleation. We study the rich thermal history and identify the conditions for a strong first

order electroweak phase transition with nearly degenerate extrema at zero temperature. This

requires a light scalar with mass below 50 GeV. Exotic Higgs decays, as well as Higgs cou-

pling precision measurements at the LHC and future collider facilities, will test this model.

Additional information may be obtained from future collider constraints on the Higgs self-

coupling. Gravitational-wave signals could potentially be probed by future gravitational

27



wave experiments. The work of this section was performed in collaboration with Marcela

Carena and Zhen Liu. It has been published in Journal of High Energy Physics [90].

In section 3.3, we study the Next-to-Minimal Supersymmetric Standard Model (NMSSM),

whose scalar sector contains two SU(2) doublets and one gauge singlet. Importantly, we

compare the phase transition patterns suggested by the vacuum structure at the critical

temperatures, at which local minima are degenerate, with those obtained from computing

the probability for nucleation via tunneling through the barrier separating local minima.

Heuristically, nucleation becomes difficult if the barrier between the local minima is too

high, or if the distance (in field space) between the minima is too large, where the NMSSM

is an example of a model exhibiting such behavior. We find that the calculation of the

nucleation probabilities prefers different regions of parameter space for a strong first order

electroweak phase transition than the calculation based solely on the critical temperatures.

Our results demonstrate that analyzing only the vacuum structure via the critical tempera-

tures can provide a misleading picture of the phase transition patterns, and, in turn, of the

parameter space suitable for electroweak baryogenesis. The work of this section was per-

formed in collaboration with Sebastian Baum, Marcela Carena, Nausheen Shah and Carlos

Wagner. It has been published in Journal of High Energy Physics [91].

3.1 Electroweak phase transition: from the SM to beyond

In this section, we start by analyzing the strength of the EWPT in the SM using a leading

order perturbative approach under a high temperature expansion to the finite temperature

effective Higgs potential, leading to the discussion of general perspectives on enhancing the

strength of the EWPT introducing BSM degrees of freedom.

The finite temperature EP of the SM Higgs receives contributions from particle degrees

of freedom in the hot plasma which couple to the SM Higgs. In the SM, particles which

couple to the Higgs as well as the size of their couplings are known. Thus, one could
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calculate the finite temperature EP using perturbative method, or simulate the dynamics

of the phase transition using lattice gauge theory. We have discussed the phase diagram of

the EWPT based on lattice simulation in section 1.3, which shows that with a Higgs mass

of 125 GeV, the EWPT is rather a cross over. In order to gain an analytical understanding

of the properties of EWPT, importantly of their dependence on the model particle content

and parameters, which would provide information on how BSM degrees of freedom would

affect the strength of the EWPT, one could use the perturbative EP method under high

temperature approximation to arrive at analytical expressions of the PT properties.

Using the one loop thermal potential in Equation (2.18) and keeping up to the logarith-

mic order of the high temperature expansions in Equation (2.19), whose validity has been

discussed in section 2.1, along with the tree level potential , the effective SM Higgs potential

at finite temperatures up to one-loop order reads

VSM(h;T ;µR) ≈ −1

2

[
µ2
h(µR)− cSM

h T 2
]
h2 − ESMTh3 +

1

4
λh(T ;µR)h4, (3.1)

where µR is the renormalization scale for the CW potential, µ2
h(µR) is the squared mass

parameter for the SM Higgs with effective zero temperature loop correction from CW

potential, whose tree level value is µ2
h,tree = (125 GeV)2/2, and λh(T ;µR) is the SM Higgs

quartic with effective radiative corrections from both thermal and CW potential, whose tree

level value is λh,tree = 1252/(2× 2462). The coefficients cSM
h and ESM in Equation (3.1) are

temperature induced, which read

cSM
h =

1

48

(
9g2 + 3g

′2 + 12h2
t + 24λh

)
,

ESM =
1

32π

(
2g3 +

√
g2 + g

′2
3
)
,

(3.2)

where ht is the SM top Yukawa coupling, g and g′ are the SM gauge couplings, and we have

only included the top contribution in the SM fermion sector because of the relative small
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size of other Yukawa couplings. Based on the potential in Equation (3.1), one can solve for

the order parameter of the EWPT, that has been introduced in section 1.3,

vc
Tc

∣∣∣∣
SM
≈ 2ESM

λh(Tc;µ)
. (3.3)

Such a value in the SM is of the order of 0.2 which renders a weakly first order phase tran-

sition. Although lattice simulation further improves the result and predict a cross over, one

can read from this expression why the EWPT in the SM is not strong first order. Firstly, a

SFOEWPT relies on a large barrier in between the false and the true vacuum, which is char-

acterized by a large value of the coefficient ESM of the thermal trilinear (in case of the Higgs

field) term. However, in the SM, such a coefficient only receives contribution from massive

gauge bosons (and a small negligible contribution from the Higgs and Goldstone bosons),

such that its value is only of the order of 10−2. Secondly, the denominator λh(Tc;µR)

in Equation (3.3), whose tree level value is associated with the Higgs mass, has a relative

large value in the SM. The lighter the SM Higgs, the smaller the value of λh(Tc;µR), the

stronger the EWPT, which is consistent with the prediction from the EWPT phase diagram

Figure 1.5 from lattice simulation.

Now going beyond the SM by introducing new degrees of freedom coupling to the SM

Higgs, taking an effective theory point of view by integrating out these particles, Equa-

tion (3.3) could already give information on how the EWPT can be enhanced with different

classes of effects, which are [92]

• Tree level effect

New scalar degrees of freedom which couple to the SM Higgs could introduce new

terms to the tree level Higgs potential. These new terms can lead to an explicit

tree level barrier between the true and the false vacuum. For example, a new scalar

S with a none-zero vacuum expectation value couples to the SM Higgs through a
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trilinear term λ3〈S〉h3 would induce a tree level barrier whose size is characterized by

the dimensionful coefficient λ3〈S〉 effectively added to the numerator in Equation (3.3),

which being large enough would onset a SFOEWPT. These terms could also change the

location and depth of the physical vacuum at zero temperature, leading to a different

critical temperature compared to the SM case, resulted in a stronger EWPT. As an

example, we will show next in section 3.2 that how this is realized through a real singlet

extension of the SM, where at zero temperature, the singlet acquires a non-zero vev

spontaneously thus the physical vacuum is shifted and lifted from its SM location.

Both of these effects rely on non-zero vevs of the BSM scalar fields developing when

the EWPT happened.

• Loop effects (zero temperature)

At zero temperature, radiative corrections could modify values of the Higgs potential

parameters, as well as terms of the form h4 log h2, which effectively change the size of

the denominator in Equation (3.3). A well-known example is the CW mechanism for

spontaneous symmetry breaking [49].

• Thermal effects

Thermal loop effects could introduce new contributions to the thermal trilinear coeffi-

cient E compared to its SM value. For example, a new scalar S couples to the SM Higgs

with a quartic term λmh
2S2 introduces a contribution to E of the size of ∼ λ

3/2
m , thus

a sizable mixing coupling could induce a SFOEWPT. Notice that such a contribution

relies on a zero/tiny mass parameter for the scalar, which can be resulted from the

interplay between the zero temperature mass parameter and the thermal correction.

An example for such an effect is in the minimal supersymmetric model, where the

thermal mass and tree level mass parameter of the stop cancels and a contribution of

the size of h
3/2
t is added to the thermal trilinear coefficient. New gauge bosons couple
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to the SM Higgs would also add contribution of the size of g
3/2
D to E, where gD is the

gauge coupling of the new gauge group. Notice that the thermal trilinear term doesn’t

have contributions from fermions, thus thermal effects from fermions would enter in a

more subtle way.

Lastly, one can also perform the study using non-renormalizable operators [65,93–99], which

is beyond the scope of this thesis, thus is included in the discussion here. Now we have

some qualitative perspectives on the ways the EWPT can be enhanced with new BSM

degrees of freedom. However different contributions have different quantitive contribution,

and importantly, the new degrees of freedom would also change the Higgs properties at

zero temperature, which have been the hunting target of high energy experiments since the

discovery of the Higgs. Thus how the requirement of a SFOEWPT can be compatible with

current and future constraints on the Higgs phenomenology needs explicit investigation given

the nature of the new particles as well as the way they couple to the SM Higgs, which will

be the subject for the remainder of this chapter.

3.2 Electroweak phase transition with spontaneous Z2 breaking

Singlet extensions of the SM provide a unique opportunity to generate a SFOEWPT [100–

121], and are the subject of exploration in this section. These extensions, however, are

relatively difficult to test, in comparison with other SM particle extensions with particles

charged under the SM gauge groups. On the other hand, dark sector model building, in-

volving a hidden sector with dark matter, often invokes spontaneously broken dark gauge

symmetries. The simplest scalar sector charged under the dark symmetries would be a com-

plex scalar, which is a singlet under the SM gauge groups. The effects from the dark Higgs,

which obtains a vev, on the EWPT can be approximated by a singlet extension of the SM

with spontaneous Z2 breaking, after rescaling the parameters by the corresponding degrees

of freedoms. Given the above picture, in this section, we consider a comparative study of
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a real singlet extension of the SM and its impact on the strength of the EWPT, in the

presence of spontaneous Z2 breaking, through a detailed inclusion of various thermal and

zero temperature quantum corrections to the tree-level potential.

Before moving on to details of this study, it is useful to review our current understanding

of the EWPT in singlet extensions of the SM. The strictly Z2-preserving version of this model

has been studied to great detail in Ref. [100–106], presented as the so-called ‘nightmare

scenario’ for its challenges in testing it at future colliders. These scenarios generally enhance

the EWPT through loop effects of the singlet via the large quartic couplings (O(few)) between

the singlet and Higgs pairs. This, however, occurs in the regime where perturbative unitarity

is in question, where the one-loop corrections are large, and further studies are needed.

A special mechanism, where the EWPT is enhanced by tree-level effects through a two-

step phase transition, can also be realized in these scenarios [102–106]. However, once the

requirement of a non-relativistic bubble wall motion is imposed, solutions under this category

only exist in a narrow region of parameter space. For general Z2-explicit breaking models,

the large number of free parameters often requires numerical studies which can provide

benchmark point solutions [102–104,107–113]. The solutions in these scenarios often invoke

additional tree-level barriers from the explicit Z2 breaking terms.

For the well-motivated scenario we are considering, where the Z2 is spontaneously broken,

it is a priori not clear if a sufficiently strong first-order EWPT can be in place. First, a large

mixing quartic coupling between the singlet pairs and the Higgs pairs is generically disfavored

by Higgs precision tests, as this term will generate a sizable singlet-Higgs mixing when the

singlet acquires a non-zero vev. A small mixing quartic, instead, precludes a possible large

loop effect from the singlet, which is one of the main mechanisms to enhance the EWPT.

Second, one might expect that the spontaneous Z2 breaking singlet vev could add additional

trilinear terms and generate the |H†H|n or higher-order operators that could modify the

Higgs potential directly via these tree-level couplings. Due to the relations among couplings
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in the spontaneous Z2 breaking theory, it turns out that these operators are only generated

at loop-level as if the Z2 symmetry were not broken [122]. Hence this property prevents

tree-level modifications to the Higgs potential that would be sizable enough to enhance the

first-order EWPT strength.

The above considerations imply that it is far from trivial to anticipate the behavior of the

EWPT in singlet SM extensions with spontaneously discrete symmetry breaking. Under-

standing the situation and the possible region of allowed parameter space for a strong first

order EWPT demands a detailed study, which is the purpose of this work.1 As we shall show,

we obtain a particular type of solutions that enhances the EWPT via engineering nearly de-

generate zero temperature vacua in a very predictive manner. The section is organized as

follows: In subsection 3.2.1 we introduce the SM extension and write down the expressions

for the full one-loop potential and the daisy resummation. In subsection 3.2.2 we classify

the possible thermal histories, utilizing semi-analytic solutions that guide the understanding

of our results. We also show the allowed region of parameter space for a strong first order

EWPT, and further check the robustness of our results against a nucleation calculation. An

unavoidable, distinctive feature of our study is the prediction of a light singlet-like scalar.

We present the phenomenological consequences of this model studying the implications for

the Higgs exotic decays, Higgs precision measurements, double Higgs production, and gravi-

tational wave signatures in subsection 3.2.3. Finally, we reserve subsection 3.2.4 to conclude

and Appendices A-D to show some specific details of our analysis.

1. It is well known that domain wall problems are associated with the existence of multiple vacua in
theories with spontaneous Z2 breaking. However, domain wall problems can be alleviated by allowing
for highly suppressed higher-dimensional operators that will minimally break the Z2 symmetry explicitly.
Such highly suppressed contributions will not affect the discussion about phase transitions and their related
phenomenology. We will not consider this issue any further in this work.
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3.2.1 Singlet extension of the SM with spontaneous Z2 breaking

Tree-level potential

We start with the tree-level Higgs boson potential with an additional real singlet s:

V0 = −µ2
hH
†H + λh(H†H)2 +

1

2
µ2
ss

2 +
1

4
λss

4 +
1

2
λms

2(H†H) + VSM. (3.4)

There is an important discrete Z2 symmetry in the singlet sector, under which s→ −s and

the rest of the fields remain unchanged. The singlet scalar field s can spontaneously break

this symmetry.

The SM Higgs doublet H is written as

H =
1√
2

χ1 + iχ2

h+ iχ3

 , (3.5)

where χ1, χ2, χ3 are three Goldstone bosons, and h is the Higgs boson. The tree-level

potential of h and s in the unitary gauge reads

V0(h, s) = −1

2
µ2
hh

2 +
1

4
λhh

4 +
1

2
µ2
ss

2 +
1

4
λss

4 +
1

4
λms

2h2. (3.6)

At zero temperature, there are four non-degenerate extrema, with the possibility of the

scalars having zero or non-zero vevs. Amongst these four extrema, only two of them are

consistent with the Higgs doublet obtaining a non-zero vev. In this section, we are in

particular interested in the case where the singlet also acquires a vev. The vevs of the

Higgs doublet and the real singlet in terms of the bare parameters of the potential can be
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written as

v|T=0 = vEW =

√
2(2λsµ2

h + λmµ2
s)

4λhλs − λ2
m

, w|T=0 = wEW =

√
2(−2λhµ

2
s − λmµ2

h)

4λhλs − λ2
m

. (3.7)

The physical scalar masses are obtained by diagonalizing the squared mass matrix evaluated

at the physical vev,

M2 =

 ∂2V
∂h2

∂2V
∂h∂s

∂2V
∂h∂s

∂2V
∂s2

∣∣∣
(vEW,wEW)

=

3h2λh − µ2
h + 1

2λms
2 λmhs

λmhs
1
2λmh

2 + µ2
s + 3λss

2

∣∣∣
(vEW,wEW)

.

(3.8)

Electroweak Symmetry Breaking (EWSB) requires that the physical vev (vEW, wEW) is

the deepest minimum of the potential. For (vEW, wEW) to be a minimum,

DetM2 = v2
EWw2

EW

(
4λhλs − λ2

m

)
≥ 0, (3.9)

rendering 4λhλs − λ2
m ≥ 0 a necessary condition for EWSB at tree level.

There are five bare parameters {µ2
h, µ

2
s, λh, λs, λm} in the tree-level potential. They can

be traded by five physical parameters, two of which, the Higgs vev and the Higgs mass mH ,

are fixed by boundary conditions

vEW = 246 GeV, mH = 125 GeV. (3.10)

The remaining three physical parameters are related to the singlet vev, the singlet mass

and the mixing angle of the mass eigenstates, and we defined tan β = wEW/vEW. Detailed

discussion of the parametrization can be found in subsection 3.A.1.
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One-loop effective potential at finite temperature

As has been introduced in chapter 2, the one-loop effective potential at finite temperatures

is calculated in the background of the Higgs and singlet fields. Effective masses of all degrees

of freedom in the plasma dependent on the background fields are:

m2
W (h, s) =

g2

4
h2, m2

Z(h, s) =
g
′2 + g2

4
h2, m2

t (h, s) =
1

2
h2
th

2,

m2
χ1,2,3

(h, s) = −µ2
h + λhh

2 +
1

2
λms

2,

m2
h(h, s) = −µ2

h + 3λhh
2 +

1

2
λms

2,

m2
s(h, s) = µ2

s +
1

2
λmh

2 + 3λss
2,

m2
sh(h, s) = λmhs,

(3.11)

where χ1,2,3 are the Goldstone bosons and the particle degrees of freedom are:

nW = 6, nZ = 3, nt = −12, nh = 1, nχ1,2,3 = 1, ns = 1. (3.12)

For the Higgs and singlet degrees of freedom, mass eigenvalues entering the effective potential

are

m2
ϕ1,ϕ2

(h, s) =
1

2

{
(3λh + λm/2)h2 + (3λs + λm/2)s2 − µ2

h + µ2
s

±
√[

(3λh − λm/2)h2 + (−3λs + λm/2)s2 − µ2
h − µ2

s

]2
+ 4λ2

ms
2h2
}
,

(3.13)

where ϕ1, ϕ2 are the Higgs and singlet mass eigenstates with particle degrees of freedom

nϕ1,ϕ2 = 1.

In this study we work in the Landau gauge and the Goldstone modes contribute separately

in addition to the massive bosons. There has been ample discussion in the literature on the

issue of gauge dependence in perturbative calculations of the effective potential, both at
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zero and finite temperature [51, 52, 80, 81, 123–128]. In that sense, we understand that our

treatment is not manifestly gauge invariant. We expect, however, that our analysis provides

a realistic estimate of the EWPT strength.2

In this section, the numerical study is performed using a modified version of CosmoTran-

sitions [66], where spline interpolation is implemented. For better analytical control, we

use high-temperature expansion for analytical analyses in the next section, based on which

(up to leading order in T), without the CW potential and daisy resummation contributions

to be introduced below, the field-dependent part of the one-loop EP at finite temperature

reads

V (h, s, T ) = V0(h, s) + V T1−loop(h, s, T )

≈ −1

2
(µ2
h − chT 2)h2 − ESMTh3 +

1

4
λhh

4

+
1

2
(µ2
s + csT

2)s2 +
1

4
λss

4 +
1

4
λms

2h2 − E(h, s)T,

(3.14)

where

ch ≡
1

48
[9g2 + 3g

′2 + 2(6h2
t + 12λh + λm)],

ESM ≡ 1

32π

[
2g3 +

√
g2 + g

′2
3]
,

cs ≡
1

12
(2λm + 3λs),

E(h, s) ≡ 1

12π

[(
m2
ϕ1

(h, s)
)3/2

+
(
m2
ϕ2

(h, s)
)3/2

+ 3
(
− µ2

h + λhh
2 +

1

2
λms

2)3/2],
(3.15)

and m2
ϕ1,2

is given in Eq. (3.13).

The temperature-independent part of the EP at one-loop order is included in the CW

potential as has been discussed in chapter 2, where in this section we used the MS renormal-

2. The reason for this is that gauge dependence appears at loop level in perturbation theory, while, as
will be discussed later in the section, in our model the important enhancement of the EWPT strength,
vc/Tc > 1, is due to tree level effects in the potential that come into play once the finite temperature barrier
turns on. Indeed, as we will discuss in Section subsection 3.2.2, the thermal contributions are subdominant.
We however intend to study the effects of gauge dependence further in a future work.
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ization scheme with the renormalization scale chosen to be Q = 1000 GeV. In our numerical

studies, we perform a 5-dimensional scan of the bare model parameters, selecting those

consistent with the SM Higgs vev vEW ' 246 GeV and the Higgs-like particle mass mϕi

' 125 GeV, with i = 1 or 2 depending on the mass hierarchy between mass eigenstates,

where we allow for an uncertainty of ±2 GeV in the vev and the mass value, respectively.

Observe that adding the CW contributions is required to perform a consistent one-loop cal-

culation, but significantly decreases the efficiency of the numerical scanning in comparison

to the only one-loop thermal potential approximation, for which the number of scanning

parameters is reduced to three.

Lastly, corrections from daisy resummation of ring diagrams are included in the full

one-loop potential using the truncated full dressing implementation to ensure validity of the

perturbative expansion, where the leading order resummation results give thermal corrections

of Πi = diT
2 to effective masses with [105]

dL
W±,3 =

11

6
g2, dT

W±,3 = 0, dLB =
11

6
g
′2, dTb = 0,

dχ =
3

16
g2 +

1

16
g
′2 +

1

2
λh +

1

4
y2
t +

1

24
λm,

dhh =
3

16
g2 +

1

16
g
′2 +

1

2
λh +

1

4
y2
t +

1

24
λm, dss =

1

4
λs +

1

6
λm, dsh ≈ 0.

(3.16)

3.2.2 Enhancing the Electroweak phase transition

In this section, we analyze all possible electroweak phase transition patterns appearing in

our real singlet scalar extension of the SM. The thermal history could be very rich, as

depicted in Figure 3.1. We highlight the cases for which a strong first order electroweak

phase transition that is consistent with current SM EW and Higgs precision data is feasible.

Before proceeding with a more detailed analysis, we shall briefly described the possible

thermal histories for the scalar potential defined in the previous section. The spontaneous

Z2 breaking singlet extension of the SM differs from the Z2-preserving case significantly
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Figure 3.1: Schematic picture of the thermal histories with different phase transition pat-
terns. Left: restoration scenarios, where the thermal history starts from the symmetric
phase at (0, 0). Right: non-restoration scenarios, where the thermal history starts from the
Z2 non-restored phase at (0, w̃). Phases are represented by bubble areas: the high tem-
perature phase by a black bubble, the zero temperature phase by a hatched bubble, and
the intermedia phases by gray bubbles. Phase transition steps are represented by arrow
lines with a color code depicting the different scenarios: magenta for scenario A, orange for
scenario A-NR, teal for scenario B/B-NR, respectively. The dashed arrow line scenario is
discussed in subsection 3.A.2.

through the allowed size of the mixing quartic coupling λm. Large λm certainly helps with

enhancing the EWPT by enhancing the thermal barrier term ETh3 since the singlet is a

new bosonic degree of freedom. However, in the spontaneous Z2 breaking case, λm is not an

independent free parameter, but rather proportional to the Singlet-Higgs mixing angle sin θ,

which in turn is constrained by LHC Higgs precision data to be smaller than 0.4. Hence, in

the spontaneous Z2 breaking case, the smaller size of λm implies that a sufficiently strong

first-order EWPT is only achievable via more subtle effects in the potential.

For scenarios of our interests, both the electroweak symmetry and the Z2 symmetry are

broken at zero temperature. At high temperatures, instead, the electroweak symmetry is

preserved (high-temperature restoration of the EW symmetry), and the Z2 symmetry can

be either broken or restored. As a result, we will show how the path to the zero temperature

electroweak physical vacuum can involve a one- or two-step phase transition.

In the following, we shall focus on the following four relevant scenarios:
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• Scenario A: Two-step phase transition

(0,0)→(0,w̃)→(v,w)

• Scenario B: One-step phase transition

(0,0)→(v,w)

and their corresponding counterparts with Z2 non-restoration (NR) at high temperatures:

• Scenario A-NR: One-step phase transition

(0,w̃)→(v,w)

• Scenario B-NR: Two-step phase transition

(0,w̃)→(0,0)→(v,w)

The correspondence between the restoration and non-restoration scenarios is defined by them

sharing the same final path towards the electroweak physical vacuum. All the minima defined

above are temperature dependent, and different vevs are associated with different paths in

the thermal history.

There exist other possible scenarios, in which although the final step towards the true

EW vacuum can involve a strong first order phase transition, it occurs when the sphalerons

are already inactive. In such cases, the temperature at which the sphalerons are still active

is associated with a previous step in which the EW symmetry breaking yields a false EW

breaking vacuum and does not involve a sufficiently strong first order phase transition. These

scenarios are:

(0,0)→(ṽ,0)→(v,w)

(0,w̃)→(0,0)→(ṽ,0)→(v,w)

For completeness, they are briefly discussed in subsection 3.A.2, however, they are not of

interests to our study.
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Scenario A: (0,0)→(0,w̃)→(v,w)

We shall show that the electroweak phase transition can be strong first order if the tran-

sition occurs from a Z2 breaking/EW preserving vacuum, (0, w̃), to the true EW physical

vacuum with Z2 breaking, (v, w). This behavior can develop in two different ways: the one

discussed in this subsection, scenario A, that involves a two-step transition in which at high

temperatures the system is in a symmetric vacuum (0, 0), and then evolves to a spontaneous

Z2 breaking/EW preserving vacuum at lower temperatures, to final transition to the true

EW physical vacuum with Z2 breaking. A different, one step phase transition path, that

we call scenario A-NR, in which the system starts directly at a Z2 breaking/EW preserving

vacuum at high temperatures and then transitions to the true EW physical vacuum with Z2

breaking, will be discussed in detail in section 3.2.2.

First, we start considering a high-temperature expansion to show analytically the be-

havior. Under the high-temperature expansion, the finite temperature potential (without

CW potential and daisy resummation) is given in Equation (3.14). The complicated field-

dependent term −E(h, s)T can enhance the trilinear coefficient E beyond the SM value used

in Equation (3.17) below, due to the effect of the additional quartic couplings. For simplicity,

however, we shall neglect such subdominant effects in the following analytical considerations.

Without such a term, the effective potential reads

V (h, s, T ) ≈ 1

2
(−µ2

h + chT
2)h2 − ESMTh3 +

1

4
λhh

4 +
1

2
(µ2
s + csT

2)s2 +
1

4
λss

4 +
1

4
λms

2h2,

(3.17)

where relevant coefficients are given in the Equation (3.15).

For scenario A, the electroweak symmetry breaking proceeds through the second step

from a Z2 breaking/EW preserving vacuum, (0, w̃), to the true EW physical vacuum with

42



Z2 breaking, (v, w), at a critical temperature Tc given by

T 2
c =

2λsµ
2
h + λmµ

2
s

2chλs − csλm − 16
(ESM)2λ2

s
4λhλs−λ2

m

, (3.18)

where both vacua coexist and are degenerate. In the Z2 breaking/EW preserving vacuum,

the singlet has a temperature dependent vev that at Tc reads

w̃(Tc) =

√
−µ2

s − csT 2
c

λs
, (3.19)

while in the true EW physical vacuum with Z2 breaking, both the Higgs and the singlet

fields have non-zero temperature dependent vevs which at Tc respectively read

vc ≡ v(Tc) =
8ESMλs

4λhλs − λ2
m
Tc, w(Tc) =

√
−µ2

s

λs
− T 2

c

[ cs
λs

+ 32
(ESM)2λsλm
4λhλs − λ2

m

]
. (3.20)

The phase transition strength is determined by the ratio

vc
Tc

=
2ESM

λh − λ2
m/(4λs)

=
2ESM

λSM
h

[
1 + sin2 θ

m2
H −m2

S

m2
S

]
, (3.21)

where a sufficiently strong first-order phase transition requires vc
Tc

& 1. Accordingly, the

EWPT strength can be enhanced by having smaller singlet scalar mass mS compared to

the Higgs boson mass mH . The lighter the singlet scalar and the larger the Higgs-singlet

mixing parameter, sin θ, the stronger the phase transition. In terms of the bare parameters,

we observe that the strength of the phase transition is governed by the magnitude of the

effective quartic coupling defined as

λ̃h ≡ λh − λ2
m/(4λs). (3.22)
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Notice that the EWSB condition shown in Equation (3.9) requires λ̃h ≤ 0, which ensures vc
Tc

being positive definite, without constraining its absolute value. λ̃h & 0 is the near criticality

condition for EWSB, which at the same time yields maximal enhancement of the strength

of the EWPT.

In the following we discuss the behavior of the potential at zero temperature, that will

provide information of the potential energy difference between the true EW physical vacuum

and the Z2 breaking/EW preserving extremum at zero temperature, which in turn has

information on the magnitude of the critical temperature, and hence on the strength of

the EWPT. Moreover, to better understand the EWPT behavior, we shall further discuss

the dependence of the relevant quantities at the critical temperature in terms of the model

parameter λ̃h that governs them.

At zero temperature, the tree-level potential difference between the true vacuum, (vEW, wEW),

and the Z2 breaking/EW preserving extremum, (0, w̃|T=0) is given by,

∆VA ≡ V (0, w̃|T=0, T = 0)− V (vEW, wEW, T = 0) =
v4

4

(
λh −

λ2
m

4λs

)
=
v4

4
λ̃h. (3.23)

This zero temperature potential energy difference reduces to the SM value, ∆V SM = V SM(0)−

V SM(vEW) =
v4

EW
4 λSM

h , in the limit in which the singlet decouples. Equation (3.23) depicts

the proportionality between ∆VA and λ̃h, and implies that near criticality, for which λ̃h is

small, ∆VA is small as well. Given Equation (3.21), we see that a small value of ∆VA is

naturally associated to a large value of vc
Tc

.

When the Z2 breaking/EW preserving extremum and the true vacuum have less potential

energy difference at zero temperature, the critical temperature is lower. We consider now

the specific dependence of the critical temperature on the model parameter λ̃h. The ther-

mal evolution of the two zero temperature extrema is controlled by temperature dependent

coefficients in the thermal potential. More specifically, we rewrite the critical temperature
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Figure 3.2: Results for the electroweak phase transition in a spontaneous Z2 breaking singlet
extension of the SM, with full numerical study of the one-loop thermal potential. EWPT
information of scenario A and A-NR are shown in black dots and scenario B and B-NR are
shown in green dots. Upper panel: vc/Tc versus the effective quartic coupling λ̃h. Lower
panel: vc and Tc versus λ̃h.
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in Equation (4.2.29) as

T 2
c = v2 λ̃2

h(
ch − λm

2λs
cs

)
λ̃h − 2(ESM)2

, (3.24)

where (ESM)2 ∼ 10−4 and ch− λm
2λs

cs ≈ 0.33+ 1
2λh−

λm
12

(
1 + λm

λs

)
. Numerically, the (ESM)2

term is negligible and we shall drop it. This corresponds to the fact that the temperature

dependent quadratic terms dominate the thermal evolution. The critical temperature then

reads

Tc '
v√

ch − λm
2λs

cs

λ̃
1
2
h . (3.25)

We observe that near criticality, the critical temperature is very close to zero. Meanwhile,

the Higgs vev at the critical temperature is larger and closer to the zero temperature vev

of 246 GeV. More specifically,

vc =
2ESM

λh − λ2
m

4λs

Tc ' 2ESM v√
ch − λm

2λs
cs

λ̃
−1

2
h . (3.26)

Notice that the ESM factor here, or else the trilinear term in the thermal potential, is required

to give a non-zero value of vc. E
SM is not essential to render a low critical temperature, but

does ensure that the phase transition is first-order instead of second-order.

In summary, we have determined all relevant quantities to the phase transition strength

at the critical temperature in terms of the effective quartic coupling λ̃h, that controls our

model behavior, as

∆VA ∝ λ̃h, Tc ∝ λ̃
1
2
h , vc ∝ λ̃

−1
2

h ,
vc
Tc
∝ λ̃−1

h . (3.27)

Within the mean field analysis considered, the effective quartic coupling λ̃h is bounded from
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above by the Higgs quartic coupling λh , and from below at 0 by EWSB requirements. The

near criticality condition, which corresponds to small values of λ̃h, yields low values of the

critical temperature and, therefore, a strong first order phase transition (SFOEWPT).

Figure 3.2 shows numerical results obtained with CosmoTransitions with full consid-

eration of the one-loop thermal potential, as shown by the scattered black points. The

dependence of vc, Tc, and the transition strength vc/Tc on the effective quartic coupling λ̃h,

shows excellent agreement with our analytical results 3 derived within a high-temperature

expansion of the one-loop thermal potential, as shown in Equation (3.27). Figure 3.2 also

includes results for other scenarios that will be discussed below.

The enhancement of the phase transition strength due to the reduction of the potential

depth at zero temperature has been discussed in the literature in other contexts triggered by

loop effects [101,105,106,129]. However, when such a sizable reduction of the potential depth

is due to loop effects, it requires sizable couplings, which in turn may break perturbativity,

or it needs multiple singlets. In our scenarios, the potential depth reduction at zero temper-

ature arises at tree level, similar to some other SM extensions [129–131], and relies on the

spontaneous breaking of the Z2 symmetry. These effects could be sizable even for sufficiently

small coupling constants, which open a window to interesting Higgs phenomenology.

In Figure 3.3, we show the same data set from the numerical scan as in Figure 3.2, but

depicted in the cs − µ2
s plane of model parameters, where cs ≡ 1

12(2λm + 3λs) is a param-

eter controlling the boundary between high temperature Z2 restoration and non-restoration

behaviors, as will be discussed in detail in section 3.2.2. Scenario A is shown in burgundy,

and regions rendering SFOEWPT are shown with a burgundy darker shade. In this figure,

we also show the approximated boundaries for SFOEWPT, in burgundy solid and dashed

lines, that are obtained from the mean field analysis with λ̃h ∼ 0.06, that is the value of λ̃h

3. The agreement is excellent in the low λ̃h region, while for larger values of λ̃h other effects, for example
those from thermal trilinear terms, start to contribute and dominate over the tree-level effect associated with
small λ̃h. Such effects could possibly enhance the EWPT; however, we did not find a relevant enhancement.
Thus we do not further discuss them in the remaining of this section

47



at which vc/Tc ≈ 1, as obtained from numerical estimation (see Figure 3.2). The contours

agree well with the dark region of SFOEWPT from the numerical scanning. Points inside

the burgundy solid and dashed lines are for values of λ̃h . 0.06 as required for SFOEWPT.

We shall discuss this figure in further detail when considering the other scenarios, including

those with non-restoration of the Z2 symmetry.

Scenario B: (0,0)→(v,w)

A direct one-step phase transition from a fully symmetric phase to the physical vacuum could

be realized in restricted regions of parameter space, while allowing for a strong first-order

EWPT. As we shall discuss in the following, such a one-step transition requires a comparable

critical temperature for the (0, 0)→ (ṽ, 0) and (0, 0)→ (0, w̃).

In Figure 3.3, we show in green a scan of points for scenario B (and its non-restoration

counterpart, scenario B-NR to be discussed later on), whereas regions rendering SFOEWPT

are shown in a darker green shade. As we observe in Figure 3.3, the scenario B lies within a

narrow restricted region where

√
−µ2

s
cs
∼ 140 GeV (shown as a black line in the figure). This

can be understood in the sense that

√
−µ2

s
cs

features the temperature of Z2 breaking, while

140 GeV features the temperature of the electroweak breaking in the limit of decoupling the

singlet. When these two temperatures are comparable, the Z2 symmetry and the electroweak

symmetry may break simultaneously, which is realized in scenario B through the phase

transition step (0, 0)→ (v, w). Observe that, given our knowledge of EWPT in the SM, we

would need the actual temperature of simultaneous Z2/EW breaking to be below

√
−µ2

s
cs
∼

140 GeV, if we expect this scenario to allow for a sufficiently strong first-order EWPT. We

shall study this in the following. Using the high temperature expansion of the effective

potential, Equation (3.17), we can compute analytically, for scenario B (and similarly for
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Figure 3.3: Parameter space on the cs-µ
2
s plane with different phase transition scenarios.

Color scheme of the scattered points for different scenarios: magenta for scenario A: two step
phase transition with cs ≥ 0; orange for scenario A-NR: one step phase transition with cs < 0;
teal for scenario B/B-NR: one/two step phase transition with positive/negative cs. Darker
regions correspond to regions rendering strong first-order electroweak phase transitions for
specific scenarios. Rough boundaries of λ̃h ∼ 0.06 for strong first-order EWPT are shown.
The solid red boundary is a boundary under the limit of mS → 0 when λ̃h ∼ 0.06. The
dashed red boundary is a boundary at sin θ = 0.4 (corresponds to mS ≈ 44 GeV provided
λ̃h ∼ 0.06). Points inside the burgundy solid and dashed lines are for values of λ̃h . 0.06 as
required for SFOEWPT (corresponding to nearly degenerate minima at zero temperature).

The fine tuned region for scenario B is featured by the condition
−µ2

s
cs
∼ (140 GeV)2 (shown

in black line).
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scenario B-NR), the strength of the phase transition by solving for the ratio,

vc
Tc

=
2ESM

λ̃h +
(µ2
s/T

2
c +cs)2

λs

[
v(Tc)
Tc

]4 .
(3.28)

In the above, λ̃h is defined as in Equation (3.23) and Tc is the critical temperature at which

the Z2/EW symmetric vacuum, (0, 0), is degenerate with the physical vacuum, (v, w). Since

both terms in the denominator are positive definite (without one-loop CW correction), they

must be sufficiently small for the transition to be strong first order. Indeed, the second term

in the denominator, (µ2
s/T

2
c + cs)

2/(λs

[
v(Tc)
Tc

]4
), is numerically small for scenario B, and

one can then approximate the vc/Tc ratio by

vc
Tc
' 2ESM

λ̃h
, (3.29)

showing identical behavior, mainly controlled by the parameter λ̃h as in scenario A above.

Observe that the difference between the vc/Tc expression in scenarios A and B, Equa-

tion (3.21) and (Equation (3.28), is correlated with the difference between ∆VA defined

in Equation (3.23), and the corresponding quantity for scenario B,

∆VB ≡ V (0, 0, T = 0)− V (vEW, wEW, T = 0) =
v4

4
λ̃h +

(µ2
s)

2

4λs
. (3.30)

Equation (3.29) is a reflection that ∆VA and ∆VB only differ by the term
(µ2
s)

2

4λs
, which again

is small for Scenario B with SFOEWPT.

The numerical results shown in Figure 3.2, highlight scattered points for scenario B (and

scenario B-NR) in green. According to our discussion above, the quantity vc/Tc (upper

panel) follows closely the expected behavior as a function of λ̃h, in a very good agreement

with Equation (3.29). We observed that the data are scattered more downward compared
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with scenario A, and this is due to the small correction from the additional second term in

the denominator of Equation (3.28).

Z2 Non-restoration scenarios

In scenarios A and B discussed above, the phase transition, either one-step or two-steps,

starts from the trivial phase (0, 0) at high temperatures. Interestingly, it is also possible to

consider that the Z2 symmetry is not restored at high temperatures.

Using the same high temperature approximation as in Equation (3.17), when the coef-

ficient ch is negative, h will acquire a non-zero vev at high temperatures, which has been

recently discussed in [132,133]. For ch to be negative, a relevant negative contribution to it

from λm is required (see Equation (3.15)), and this can be in general achieved in models with

multiple singlets. However, since, in our case, we only have one singlet, such large negative

contributions will require a large value of λm. Thus, the electroweak symmetry is always

restored at high temperatures 〈h〉hT = 0 in our one-singlet extension of the SM.

With 〈h〉 = 0 at high temperatures, the singlet phase reads

w̃(T ) ≡ 〈s(T )〉h=0 =

(−µ2
s − csT 2

λs

)1/2

. (3.31)

For cs ≥ 0, with µ2
s ≥ 0, the phase (0, w̃) does not exist throughout the thermal history;

while with µ2
s < 0, the finite temperature phase (0, w̃) can undergo Z2 symmetry restoration

into the trivial phase (0, 0) at a higher temperature

TZ2
r =

(−µ2
s

cs

)1/2

. (3.32)

The case cs ≥ 0 and µ2
s < 0 is what drives Scenario A. Observe that for Scenario B we

also consider cs ≥ 0 (see Equation (3.31)), and because the transition is from (0, 0) to

(v, w), it also requires a positive defined TZ2
r which in turn needs to be of same order of the
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TEWr ≈ 140GeV. Hence scenario B also requires µ2
s < 0 as clearly shown in Figure 3.3.

For cs < 0, which can be achieved with negative λm, Eq. (3.31) shows that the Z2

symmetry remains non-restored at very high temperatures. This allows for thermal histories

that start from a (0, w̃) phase and can lead to extending scenarios A and B to their Z2

non-restoration corresponding cases. For both signs of µ2
s, depending on its magnitude and

the one of cs, one obtains the one-step phase transition that leads to scenario A-NR. If,

however, µ2
s ≥ 0, the Z2 symmetry is temporarily restored at the temperature TZ2

r , given

in Equation (3.32), and it is broken again to a different vacuum state, (v, w), during a later

phase transition at a yet lower temperature. This is the path for scenario B-NR.

In summary, the novel condition of a SFOEWPT with Z2-NR explored in this section

demands a negative value of cs, while different thermal histories are possible depending on

the value of µ2
s, as specify in Equation (3.33) below and more clearly shown in Figure 3.3,

Z2 − R : cs ≥ 0 Z2 − NR : cs < 0.

A : (0, 0)→ (0, w̃)→ (v, w) =⇒ A− NR : (0, w̃)→ (v, w)

B : (0, 0)→ (v, w) =⇒ B− NR : (0, w̃)→ (0, 0)→ (v, w).

(3.33)

The correspondence between the restoration and non-restoration scenarios is defined by

them sharing the same final path towards the electroweak physical vacuum. Thus, the

enhancement effects on the transition strength from the singlet contribution can be described

in the same manner. This implies that the ratio of vc/Tc for scenario A-NR is described

by the same Equation (3.21) as in the scenario A. Analogously, vc/Tc for scenario B-NR

is described by Equation (3.28), that after simplification becomes Equation (3.29) as in

scenario B, and therefore the same result as for scenario A. This also agrees with the fact

that ∆VA ≈ ∆VB for the points with SFOEWPT, as discussed before, and it is clearly

apparent from Figure 3.2 where there is a significant overlap of data points in the vc/Tc -
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Figure 3.4: Parameter space on the λs-λm plane with different phase transition scenar-
ios, zoomed into the small λs region. Color scheme for different scenarios is the same as
in Figure 3.3.

λ̃h plane, both for scenarios A and B as well as for the Z2 restoration and non-restoration

cases.

The separation between the Z2 restoration and non-restoration cases is clear in Fig-

ure 3.3, corresponding to the positive and negative cs regions, respectively. We have already

described the restrictive region of scenario B. For scenario B-NR,

√
−µ2

s
cs

is the tempera-

ture scale where Z2 is temporarily restored from the high temperature Z2 non-restoration

phase, provided µ2
s > 0. For a strong electroweak phase transition to happen in the step of

(0, 0) → (v, w) in scenario B-NR, this temperature needs to be below the 140 GeV scale,

i.e.

√
−µ2

s
cs

< 140 GeV, otherwise after Z2 symmetry restoration to the trivial phase, the

transition to an electroweak breaking vacuum (ṽ, 0) will develop at a temperature around

140 GeV, which will imply a small perturbation to the SM situation that we already know

does not produce a SFOEWPT. In addition, we expect this will result in scenario B-NR

transitioning from (0, 0)→ (v, w) at a temperature significantly below 140 GeV, rendering a

SFOEWPT. In Figure 3.3, this can be seen in the dark green shade points with negative cs.
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Also observe from Figure 3.3 that there is no SFOEWPT points for the Z2 restored scenario

B.

In Figure 3.4, we show the same data set as in Figure 3.2 and Figure 3.3 for all the sce-

narios, now projected in the λs-λm plane of the quartic couplings, zoomed into the small λs

region. As the Higgs quartic λh varies within a small numerical range, the EWSB condition

λ̃h ≥ 0 corresponds to the outer parabolic boundary of the dark region, and the SFOEWPT

condition λ̃h . 0.06 corresponds to the inner parabolic boundary of the dark region. Differ-

ent scenarios are coded by color in the same way as in Figure 3.3 with dark shaded points

corresponding to a SFOEWPT. The points inside the rectangle are compatible with current

bounds on the Higgs exotic decays, as will be discussed in section 3.2.3.

Full one-Loop study and nucleation

In this section, we shall show the results of the numerical scanning after implementing

the CW and daisy resummation corrections introduced in section 3.2.1. All scanning results

satisfy the Higgs mass and Higgs vev boundary conditions. Other bounds will be introduced

and shown in the following discussions.

Figure 3.5 shows the parameter space rendering SFOEWPT after implementation of the

full one-loop effective potential, including the one-loop thermal and CW potential, and the

daisy resummation, projected on the physical parameter space of the singlet mass mS and

the mixing angle sin θ. Observe that the sign of sin θ is opposite of the sign of λm for

values of mS < mH , as those of relevance in this study, see Equation (3.A.96). In addition,

positive (negative) values of λm are correlated to restoration (non-restoration) scenarios

with SFOEWPT (e.g. see Figure 3.4). As a result, it follows that all the solutions with

SFOEWPT and sin θ < 0 in Figure 3.5 correspond to the thermal history of scenario A

(with Z2 restoration), while solutions for sin θ > 0 in Figure 3.5 correspond to the thermal

histories of scenarios A-NR (black) and B-NR (green), respectively. Our study shows that
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the valid parameter region rendering SFOEWPT has been reduced after including the full

one-loop results and features smaller singlet mass values. Importantly, including the full

one-loop effective potential with daisy resummation still allows for all types of solutions that

existed in the thermal only analysis.

The CW correction to the scalar potential effectively accounts for the one-loop running

of the tree-level potential parameters [76, 79–81, 134, 135]. The top quark Yukawa coupling

yields the most relevant contribution in the running of the quartic couplings, with the pos-

sibility of rendering them negative at large scales. Furthermore, as we have discussed in

detail in section 3.2.2, the effective quartic λ̃h(vEW), which is directly related to the phase

transition strength, is required to be small to yield a SFOEWPT. Hence the stronger the

first-order phase transition, the smaller the effective quartic λ̃h(vEW) and the most likely it

is to be rendered negative at large scales, through the effects of the top Yukawa coupling in

its running. This implies that after including the CW potential in the analysis, the points

with stronger first-order phase transition strength in the thermal only analysis will be more

likely to become unstable (acquire a negative effective quartic coupling) and will be discarded

from the accepted solutions. If instead, one would implement a RG improvement of the CW

potential, this will include the effects of running of the top quark Yukawa coupling itself,

diminishing its value at large scales and, hence, also its impact in rendering the effective

quartic coupling unstable. As a result, the inclusion of the one-loop CW without the RG

improvement has the effect of reducing the parameter space of SFOEWPT as shown in Fig-

ure 3.5, beyond what would be the case with a more comprehensive analysis. In this sense

the results presented in Figure 3.5 are conservative. We shall postpone a full study of the

RG-improved effective one-loop scalar potential, as well as exploration of gauge dependence

effects, for future work.

It is crucial to check that our results are robust against the nucleation calculation. Fig-

ure 3.6 shows the nucleation calculation results including the full one-loop effective potential
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Figure 3.5: Parameter space for SFOEWPT in the mS - sin θ plane, after including the full
potential up to one loop order ( tree-level potential, one-loop thermal potential and one-loop
zero temperature CW potential) plus finite temperature daisy resummation (darker shaded
points in green and black for the B-NR and A/A-NR cases, respectively). Also shown are
the points with SFOEWPT when only the tree-level with one-loop thermal potential is
considered (gray scattered points).
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Figure 3.6: Nucleation calculation results at a full one loop level with daisy resummation
corrections. Black: scenario A and A-NR. Green: scenario B and B-NR.

and the daisy resummation correction, we observe that the actual transition strength at

nucleation temperatures is stronger than the strength evaluated at the critical temperatus-

res. For computational efficiency, all the previous calculations have been done at the critical

temperature that gives a good indication of the actual transition strength at the nucleation

temperature. Therefore, Figure 3.6 indicates that it is sufficient to require vc/Tc & 0.8 as

criteria for a SFOEWPT.

3.2.3 Phenomenology

The analysis of the thermal history of the spontaneous Z2 breaking singlet extension of

the SM leads to a firm prediction of a light singlet-like scalar mass eigenstate. The viable

parameter space can be tested through various phenomenological probes. First of all, the

spontaneous Z2 breaking will result in mixing between the singlet scalar and the doublet

Higgs boson. The Higgs precision measurements and electroweak precision measurements
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constrain the mixing angle sin θ to be smaller than 0.4 for light singlets.4 This constraint

has been applied directly to our numerical scans. Furthermore, the precision Higgs program

will improve with the full HL-LHC dataset [136,137], and even more with data from future

colliders [138–145].

In this section, we discuss three leading observational aspects of the model in regions of

parameter space compatible with a SFOEWPT. First of all, the 125 GeV Higgs-like boson

can decay to a pair of singlet-like scalars that can be directly searched for at the HL-LHC

and/or at a future collider Higgs factory. Second, the Higgs trilinear coupling is modified

when compared with the SM one. Third, the strong first order phase transition can be

potentially probed by the next generation of gravitational wave detectors. In the following

discussions we do not attempt to disentangle between the different possible thermal histories

of the spontaneous Z2 breaking singlet extension of the SM. For the collider phenomenology

one would need to identify the signal dependence on the sign of the mixing angle sin θ. This

would require to perform a more involved phenomenological study beyond the scope of this

work. Such a study will be relevant in case high precision LHC data points towards a Higgs

exotic decay signal and an anomalous Higgs trilinear coupling.

Higgs exotic decays

Since the singlet consistent with SFOEWPT should have a mass well below half of the

SM-like Higgs boson one, the Higgs boson will decay into a pair of the new singlet scalars,

H → SS. The singlet-like scalar S will then decay back to SM particles, dominantly into a

bb̄ final state, if mS is greater than 10 GeV, and into other fermions and hadrons for lower

singlet-like scalar masses [147]. The partial width of the SM Higgs decaying to the light

singlet-like scalar S is

Γ(H → SS) =
Λ2
HSS

32πmH
βS , (3.34)

4. The constrain improves to 0.2 for heavy singlets. For more details, see the appendix of Ref. [122].
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Figure 3.7: The Higgs decay branching fractions to S pairs for points consistent with
SFOEWPT, where vc/Tc & 0.8. The gray region includes one-loop thermal potential only.
The red region in addition, include the one-loop CW potential and daisy resummation. The
blue and green regions are compatible with cos θ > 0.95, while the green region additionally
requires cos θ > 0.995, which are the HL-LHC and the future lepton-collider Higgs factory
expected precision sensitivities on the Higgs-singlet mixing angle θ [145]. The upper and
middle dashed lines define the lower value of the current and HL-LHC projected sensitivities
to H → SS → 4j searches. The lower dashed line corresponds to constraints from direct
exotic Higgs decay searches at future lepton colliders [146].
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where ΛHSS is the dimensionful coupling of the term HSS in the mass basis. ΛHSS can be

expressed as (without CW corrections),

ΛHSS =
(m2

H + 2m2
S)(− cos θ + tan β sin θ) sin 2θ

4 tan β v
. (3.35)

and βS =
√

1− 4m2
S/m

2
H .

The current LHC Higgs exotic decay searches constrain the BR(H → SS) to be smaller

than around 25% from a global fit [148–151] and 30-50% from direct searches [152,153]. This

translates into a constraint on the HSS coupling ΛHSS to be smaller than about 3 GeV.

Given that for a large part of the parameter space, the size of this coupling reaches values

up to O(100) GeV, the Higgs exotic decay bounds provide an important constraint on this

model.

Figure 3.7 shows the allowed values in the log10BR(H → SS)−mS parameter space for

different calculations of the SFOEWPT, with vc/Tc & 0.8. The gray region includes only

the tree-level and one-loop thermal contributions to the scalar potential. The full one-loop

results, including the CW corrections as well as the daisy resummation, are shown as the red,

blue, and green regions for different requirements on the value of the Higgs-singlet mixing

angle θ. The HL-LHC Higgs precision measurements will be able to probe deviations of the

Higgs boson couplings at the 5% level, and this is shown by the blue and green regions.

A future Higgs precision program at a prospective Higgs factory will measure the Higgs

couplings at the 0.5% level, which would limit the Higgs-singlet mixing angle cos θ to be

greater than 0.995, and is shown by the green region.5 Above the dashed lines in Figure 3.7

are regions constrained by direct searches of the Higgs decaying to a singlet scalar pair: from

top to bottom, the dashed lines represent the current LHC coverage, the corresponding HL-

5. Note that the colored regions show allowed solutions without implying any assumptions on the density
of such solutions, since this would be correlated to the density of scanned points, implying a highly prior
dependent result. The same consideration is valid for Figure 3.8.
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LHC coverage, and projections for a future electron-positron collider [146], respectively. As

shown in Figure 3.7, imposing the future Higgs precision bounds implies a strong preference

towards low singlet masses, however, we expect that a more intense numerical scan targeted

to specific mass regions may expand the mass values allowed.6 The boundary is also affected

by the renormalization scale choice of the CW potential . We argue that the HL-LHC

will be able to actively probe a significant region of the SFOEWPT parameter space in a

spontaneous Z2 breaking singlet extension of the SM and that a future Higgs factory could

compellingly test this model.

Higgs pair production

The Higgs pair production process provides a unique handle in exploring the vacuum struc-

ture of the Higgs potential [122,154,155]. The HL-LHC program can probe the Higgs trilinear

coupling through double Higgs boson production with an accuracy of 50% [136], whereas it

could be measured at the 40% level at a low energy lepton collider [156], and at the 5-7%

level at the FCC-hh [144] as well as at CLIC [138].

The Higgs pair production receives three contributions: the triangle diagram of an s-

channel off-shell singlet S through a SHH vertex, the triangle diagram of an s-channel

off-shell H through a HHH vertex, and a top-quark box diagram with double top Yukawa

insertions. The first contribution from the s-channel off-shell scalar S is additional to the

other SM ones, while the SM diagrams in turn are modified by mixing effects. The couplings

governing the Higgs pair production are

ΛHHH =
m2
H

(
− sin3 θ + tan β cos3 θ

)
2 tan β v

ΛSHH =
(2m2

H +m2
S)(sin θ + tan β cos θ) sin 2θ

4 tan β v
. (3.36)

6. Note that for these results on a five-dimensional parameter space, we performed scans with approxi-
mately 105 CPU hours. We have a total of 107 points, of which 105 are compatible with SFOEWPT, and
104 satisfy the current Higgs precision and exotic decay constraints.
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Figure 3.8: Left: Plane of the trilinear Higgs boson coupling and the singlet scalar-di-Higgs
coupling, normalized to the SM Higgs boson vev. Right: Departure of the effective trilinear
coupling ΛEff

HHH from its SM value as a function of the mixing angle sin θ. For both figures
the color coding is as follows: The gray region corresponds to results including the tree-level
and one-loop thermal potential only. The red, blue and green disks, include the one-loop
CW potential and daisy resummation. The blue and green disks further require cos θ > 0.95,
while the green disks additionally require cos θ > 0.995. The horizontal gray line indicates
the SM value of the y-axis parameter.
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A further simplification can be made due to the fact that mS is much smaller than twice

the Higgs mass. For the double Higgs production at hadron colliders such as the LHC and

FCC-hh, within a good approximation, one can define an effective trilinear coupling that

combines the two triangle diagrams via

ΛEff
HHH =

2

3
sin θ

ŝ2

(ŝ−m2
S)2 + iΓSmS

ΛSHH + cos θ
ŝ2

(ŝ−m2
H)2 + iΓHmH

ΛHHH(3.37)

' 2

3
sin θΛSHH + cos θΛHHH . (3.38)

The determination and measurement of the trilinear Higgs coupling uses the differential

information of the process as a result of the different diagrams and the interferences between

the SM di-Higgs box diagram and the effective triangle diagram. Indeed, given the smallness

of the singlet mass, the double Higgs production is far off-shell and can be absorbed into

the above effective Higgs trilinear redefinition, which is valid at the differential cross-section

level.

We show the contributing trilinear couplings, ΛHHH and ΛSHH , in the mass basis in

the left panel of Figure 3.8. The modified Higgs trilinear coupling ΛHHH varies broadly

between 0.08 to 0.20. There is, in general, a positive correlation between ΛHHH and the

singlet scalar-di-Higgs trilinear coupling ΛSHH . Such a positive correlation follows from

Equation (3.36) for a subdominant contribution of the negative sin3θ term in ΛHHH , which

corresponds to the mixing quartic coupling contribution. The case of negative correlation,

instead, follows from the dominance of the negative sin3θ term over the positive second term

in ΛHHH . The shading and color choices are the same as in Figure 3.7. We can see that

as we restrict the Higgs-singlet mixing parameter sin θ to be smaller, the Higgs trilinear

coupling is also reduced to be closer to the SM value (which is shown as a gray reference

line). The right panel of Figure 3.8 shows the departure of the effective trilinear coupling

ΛEff
HHH from its SM value as a function of the mixing parameter sin θ. We have defined the
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ratio

κ
Eff
HHH ≡

Λ
Eff
HHH

ΛSMHHH
,

with Λ
Eff
HHH defined in Equation (3.38) and, again, the color code is the same as in Figure 3.7.

We observe that for negative values of the mixing parameter sin θ, the effective Higgs trilinear

coupling can be suppressed as much as 30%, while for positive values, the suppression is at

most of the order 10%. These changes in the Higgs trilinear coupling are beyond the current

reach of colliders and set a compelling challenge for the di-Higgs boson search program and

related precision measurements at future colliders.

A SFOEWPT can general Gravitational Wave (GW) signals those can potentially be

probed in current and future experiments, as an example, where we will leave the discussion

of the GW signatures of this extension to chapter 5.

3.2.4 Summary and outlook of the section

In this section, we show a systematic study of a SFOEWPT driven by a real singlet degree

of freedom coupled to the SM Higgs considering the unique scenario of spontaneous Z2

breaking, including one-loop thermal effects with daisy resummation and the CW potential

corrections. We identify several very distinctive features of the spontaneous Z2 breaking

model:

• A variety of thermal histories can be generically achieved. We classify them according

to the number of steps to achieve the EWPT. We define scenario A (section 3.2.2) for

(0, 0) → (0, w̃) → (v, w) (two steps) and scenario B (section 3.2.2) for (0, 0) → (v, w)

(one step). We also consider the possibility that at high temperatures there is non-

restoration of the Z2 symmetry and define scenario A-NR for (0, w̃) → (v, w) (one

step), and scenario B-NR for (0, w̃) → (0, 0) → (v, w) (two steps) (section 3.2.2).

The relation between the restoration and non-restoration scenarios is defined by them
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sharing the same final path towards the electroweak physical vacuum;

• Our study shows that scenario A, A-NR and B-NR lead to solutions with strong first-

order EWPT;

• We derive simple analytical relations for such scenarios and perform detailed numerical

simulations. Our study has the potential to be generalized to other scalar extensions of

the SM with novel phenomenology, e.g., in the limit of EW symmetry non-restoration;

• We find that in the spontaneous Z2 breaking singlet extension of the SM, due to an

upper bound on the singlet Higgs mixing quartic λm, the enhanced EWPT can only

be achieved via a particular scenario of nearly degenerate extrema. As shown in detail

in this section, having an extremum close in vacuum energy to the global minimum

at zero temperature yields a low critical temperature and a large critical EW vev,

enabling strong first-order EWPT. Furthermore, we check our results performing a

nucleation calculation and found vn/Tn larger than vc/Tc for these solutions, further

validating our results;

• The realization of a strong first-order EWPT in this model predicts a light singlet-

like scalar with a mass smaller than 50 GeV, which allows for a rich phenomenology.

Special properties of the model can be tested through Higgs exotic decays and via

Higgs coupling precision measurements at current and future collider facilities. The

trilinear Higgs boson coupling is modified and can be enhanced or suppressed with

respect to its SM value. Future constraints on the Higgs boson self-coupling could

shed light on the physics of the EWPT. In addition, the strong first order EWPT

transition can generate gravitational-wave signals, which are a challenging target for

future gravitational wave experiments such as LISA and BBO.

The above points summarize distinctive aspects of the spontaneous Z2-breaking, singlet

extension of the SM. The existence of a light scalar with accessible collider signatures are
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common features that can also be present in more general models connecting the SM to a

plausible dark sector via a Higgs portal.

3.3 Nucleation is more than critical: a case study of the NMSSM

To study the phase transition patterns of models with extended Higgs sectors, most previous

works solely rely on analyses of the temperature-dependent vacuum structure via the com-

putation of the critical temperature, Tc, at which two (distinct) local minima of the effective

potential become degenerate. While the critical temperature is indicative of the thermal

history since it is the temperature at which the role of the global minimum passes from

one vacuum phase to another, this calculation does not account for the probability of the

associated phase transition actually taking place. First order phase transitions proceed via

bubble nucleation, and the probability of the system transitioning from the false vacuum to

the (new) true vacuum is computed via the bounce action, the Euclidean space-time integral

over the effective Lagrangian, see, e.g., ref. [157] for a review.

Heuristically, bubble nucleation becomes difficult if the barrier separating two local min-

ima becomes too high, or if the distance (in field space) separating the minima is too large.

These conditions occur most readily if multiple scalar fields participate in the phase transi-

tion. For the EWPT, the possibility of a SM gauge singlet field participating in the phase

transition is particularly interesting. While electroweak precision data tightly constrains the

couplings and vevs of any fields charged under the electroweak symmetry, such constraints

do not apply to gauge singlets. Since its couplings are free parameters, a gauge singlet field

can radically alter the shape of the effective potential, enabling a SFOEWPT. On the other

hand, a gauge singlet may induce large barriers separating local minima and acquire a large

vev during the EWPT, increasing the distance between the local minima and reducing the

nucleation probability. Therefore, a careful analysis of these effects is necessary in order to

determine the region of parameter space leading to a successful SFOEWPT.
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The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) [158,

159] is a well-motivated example of physics beyond the SM that may solve the hierarchy

problem of the electroweak scale [160–164] and provide a dark matter candidate [165–175].

Its scalar sector contains a (complex) gauge singlet and two SU(2) doublets, thus, it is

well-suited for a case study of the comparison of the phase transition patterns suggested

by the critical temperature calculation and those obtained from calculating the nucleation

probabilities. Moreover, the NMSSM provides a range of possibilities for C and CP violation

beyond what is found in the SM. For example, CP violation can occur in the Higgs sector,

or between the superpartners of the SM particles. Assuming the latter, CP violation in the

Higgs sector is induced only via (small) quantum corrections, and one can study the EWPT

in the CP-conserving limit of the scalar potential.

The EWPT in the NMSSM has been studied previously in the literature. To the best

of our knowledge, Pietroni [176] was the first to consider electroweak baryogenesis in the

NMSSM, noting that the dimensionful coupling of the singlet to the Higgs doublets, Aλ,

allows for shapes of the scalar potential suitable for a SFOEWPT at tree level. This is to

be contrasted with the situation in the MSSM, where a barrier between the trivial and the

physical minimum necessary for a SFOEWPT arises only from thermal effects. Subsequent

work on the EWPT in the NMSSM includes refs. [130,177–189], and work on closely related

models can be found in refs. [190,191]. Many of these papers focused on numerical scans of

the NMSSM parameter space, aiming at identifying regions of parameter space suitable for

realizing a SFOEWPT. Analytic studies have been carried out in refs. [130,176,179–181,183].

A common idea in these works was to use parameters shaping the potential in the singlet-only

direction to characterize the EWPT.

In the NMSSM, in general, there are ten degrees of freedom in the Higgs sector. In

practice it suffices to consider the three-dimensional subspace spanned by the CP-even neu-

tral scalar degrees of freedom. Nevertheless, computing the bounce action in this three-
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dimensional field space is still numerically expensive, and, until now, results for the phase

transition based on the nucleation calculation have only been presented for a few benchmark

points in parameter space, see, e.g., refs. [178, 181, 184, 187, 189]. These studies mainly re-

ported small-to-moderate supercooling, i.e. nucleation temperatures not much smaller than

the corresponding critical temperatures for their benchmark points. More importantly, the

thermal histories indicated by the critical temperatures agree with the ones obtained by the

nucleation calculation. The notable exception is the recent work of Athron et al. [189], where

results for the nucleation temperatures of four benchmark points were presented: For two

of those four points, the authors reported small-to-moderate supercooling, while for the two

remaining points the authors found that the nucleation condition could not be satisfied and,

hence, the transition pattern indicated by the calculation of the critical temperatures was

not a good indicator of the thermal history.

In this section, we present results for the EWPT in the NMSSM based on the nucleation

calculation for a broad scan of the parameter space. We use CosmoTransitions [66] for the

calculation of the bounce action, and support our results with analytic studies.7 We focus

on the region of parameter space where alignment-without-decoupling is realized in the Higgs

sector, and on small-to-moderate values of tan β, the ratio of the vevs of the scalar SU(2)

doublets. This is motivated by the phenomenology of the 125 GeV Higgs boson observed

at the Large Hadron Collider (LHC). In the NMSSM, a mass of 125 GeV of the SM-like

Higgs boson can be achieved in the low-to-moderate tan β . 5 regime without the need for

large radiative corrections. The couplings of this state to SM particles are SM-like if it is

(approximately) aligned with the interaction eigenstate that couples like the SM Higgs boson

7. In this work, we use the nucleation temperature, defined as the temperature at which the tunneling
probability from the false to the true vacuum is one per Hubble volume and Hubble time, as a proxy for
successful nucleation of a phase transition. We do not compute the percolation temperature, defined as
the temperature at which a given fraction (often taken to be 1/e ∼ 37 %) of the Universe’s volume has
transitioned to the true vacuum. Sizable differences between the nucleation and percolation temperature
can appear in the case of very large supercooling, however, a calculation of the percolation temperatures is
beyond the scope of this work.
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to other SM particles. In the NMSSM, there are two ways to achieve such alignment: i)

the decoupling limit, that requires the non-SM-like interaction eigenstates to have masses

much larger than the SM-like interaction state, and ii) the alignment-without-decoupling

limit, where the parameters of the theory conspire to suppress the mixing of the SM-like

interaction state with the non-SM-like interaction states [192]. The latter is of particular

interest for realizing a SFOEWPT in the NMSSM: in the alignment-without-decoupling limit

the non-SM-like states can have masses comparable to that of the SM-like Higgs boson, and

hence, they can easily alter the shape of the scalar potential in ways relevant for the EWPT.

The null-results from searches for superpartners at the LHC suggests that the squarks and

gluinos are heavy and decoupled from the EWPT. We use an effective field theory approach,

integrating out all superpartners except for the neutralinos and charginos. This leaves the

full SM particle content, an augmented scalar sector consisting of two SU(2) doublets and

a complex singlet, and the electroweakinos (composed of the superpartners of the photon,

the Z- and W -bosons, the two Higgs doublets, and the scalar singlet) as dynamical degrees

of freedom; similar approaches have been taken in refs. [184, 189, 191]. In order to maintain

the location of the physical minimum in field space, the mass of the SM-like Higgs boson,

and the alignment of the singlet-like and SM-like interaction eigenstates after including the

radiative corrections to the effective potential from these remaining dynamical degrees of

freedom, we add a set of (finite) counterterms, see refs. [185–187] for similar schemes.

The outline of our work is as follows: We begin by discussing the scalar sector of the

NMSSM in subsection 3.3.1. In section 3.3.1 we discuss the radiative corrections to the scalar

sector of the NMSSM, and the thermal corrections. After analyzing the zero-temperature

vacuum structure of the NMSSM in subsection 3.3.2, we discuss the phase transition behavior

of the NMSSM in subsection 3.3.3, in particular, we identify the relevant characteristics of the

transition patterns for a SFOEWPT, and develop some analytical intuition for the regions

of parameter space where phase transitions can successfully nucleate. In subsection 3.3.4, we
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present our numerical results. In section 3.3.4 we study the region of parameters in which

the proper physical minimum is obtained. We compare the results for the phase transitions

obtained from the nucleation calculation with the transition patterns suggested by the critical

temperature analysis in section 3.3.4. In section 3.3.4 we comment on the collider and dark

matter phenomenology in the region of parameter space where we find SFOEWPTs. We

summarize and present our conclusions in subsection 3.3.5. Explicit formulae for the field-

dependent masses, the finite temperature corrections to the masses, and the equations we

use to fix the counterterms are listed in appendices 3.B.1, 3.B.2, and 3.B.3, respectively.

Additional discussion on model benchmark points can be found in the original paper.

The code used to perform our calculations is available at https://github.com/sbaum90/

NMSSM_CosmoTrans.git.

3.3.1 The Next-to-Minimal Supersymmetric Standard Model and the

effective potential

The Next-to-Minimal Supersymmetric Standard Model augments the particle content of the

MSSM by a SM gauge-singlet chiral superfield Ŝ, see refs. [158, 159] for reviews. The best-

studied version of the NMSSM is the Z3-NMSSM. In this model, an additional discrete sym-

metry is imposed, under which all left-handed chiral superfields transform as Φ̂ → e2πi/3Φ̂

and all gauge superfields transform trivially. An interesting consequence of the Z3 symmetry

is that it renders the superpotential of the NMSSM scale invariant; in particular the Higgsino

mass parameter µ arises from the vev of the scalar component of the singlet superfield, S.

Thus, the NMSSM alleviates the MSSM’s µ-problem.

Of greater phenomenological interest is that the NMSSM can accommodate a 125 GeV

SM-like Higgs boson without the need for large radiative corrections to its mass. Further-

more, the presence of the scalar gauge singlet makes a SFOEWPT easily achievable in the

NMSSM [130,176–189,191,193]. This should be contrasted with the situation in the MSSM,
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where, in the presence of a 125 GeV SM-like Higgs, the scalar potential is constrained such

that a SFOEWPT is only possible if the stops are very light [194–200]. Such stops have been

virtually ruled out by the LHC, not only via direct searches but also by the fact that such

light stops would lead to a variation of the Higgs production cross section and decay branch-

ing ratios that are in conflict with current Higgs precision measurement data [201–207]. This

places severe pressure on the possibility of electroweak baryogenesis in the MSSM. In the

NMSSM, the presence of the singlet S, the bosonic component of Ŝ, allows for radically

different shapes of the scalar potential, which make a SFOEWPT possible in the NMSSM

without the need for light stops.

The superpotential of the Z3-NMSSM is given by

W = λŜĤu · Ĥd +
κ

3
Ŝ3 +WYuk , (3.39)

where λ and κ are dimensionless parameters that can be chosen manifestly real in the CP-

conserving case. The superfields Ĥd =
(
Ĥ0
d , Ĥ

−
d

)T
and Ĥu =

(
Ĥ+
u , Ĥ

0
u

)T
are the usual

SU(2)-doublet Higgs superfields, we use a dot-notation for SU(2) products

Ĥu · Ĥd = Ĥ+
u Ĥ
−
d − Ĥ

0
uĤ

0
d , (3.40)

and WYuk indicates the Yukawa terms which are identical to those in the MSSM [208].

Including F -, D- and soft SUSY-breaking terms, the scalar potential reads

V0 = m2
Hd
|Hd|2 +m2

Hu
|Hu|2 +m2

S |S|2 + λ2 |S|2
(
|Hd|2 + |Hu|2

)
+
∣∣∣λHu ·Hd + κS2

∣∣∣2
+
(
λAλSHu ·Hd +

κ

3
AκS

3 + h.c.
)

+
g2

1 + g2
2

8

(
|Hd|2 − |Hu|2

)2
+
g2

2

2

∣∣∣H†dHu∣∣∣2 ,

(3.41)

where m2
i and Ai are soft SUSY-breaking parameters of dimension mass-squared and mass,
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respectively, and g1 and g2 are the U(1)Y and SU(2)L gauge couplings.

The Higgs fields have large couplings amongst themselves, to the electroweak gauge

bosons, and to third generation (s)fermions. These couplings lead to sizable radiative cor-

rections to V0, to which we return in section 3.3.1. However, many of the properties of the

scalar potential can already be seen from the tree level potential, Equation (3.41).

In order to be compatible with phenomenology, the NMSSM must preserve charge. While

in the MSSM the scalar potential is sufficiently constrained to make charge-breaking min-

ima very rare (see, e.g., ref. [209]), the additional freedom of the NMSSM’s scalar potential

makes such minima a much larger problem. However, ref. [210] demonstrated numerically

that, while charge-breaking minima may be present in the NMSSM, they are virtually al-

ways accompanied by additional charge-conserving minima, and the tunneling rate from

the metastable physical minimum to these charge-conserving minima is larger than to the

charge-breaking minima. Hence, we can neglect such charge-breaking minima; in the follow-

ing we will assume that for all phenomenologically relevant vacua the vevs can be rotated

to have the form

〈Hd〉 =

vd
0

 , 〈Hu〉 =

 0

vu

 , 〈S〉 = vS , (3.42)

breaking SU(2)L × U(1)Y → U(1)em. Without loss of generality, one can furthermore take

all vevs to be real-valued: While the Z3-NMSSM does allow for stationary points in the

scalar potential which spontaneously break CP, at tree level such points are either saddle

points or local maxima [211]. In summary, it suffices to allow the neutral real components

of Hd, Hu, and S to take non-trivial vevs8 when studying the vacuum structure of the

NMSSM. This reduction from a ten-dimensional to a three-dimensional field space makes

the task considerably more tractable.

8. Observe that in general the sfermions can get non-trivial vevs as well, potentially giving rise to charge
and/or color breaking vacua. We will not entertain this possibility further in this work.
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In order to ensure that the scalar potential has a stationary point at the physical mini-

mum, we use the minimization conditions

∂V

∂Hd

∣∣∣∣Hd=vd
Hu=vu
S=vS

=
∂V

∂Hu

∣∣∣∣Hd=vd
Hu=vu
S=vS

=
∂V

∂S

∣∣∣∣Hd=vd
Hu=vu
S=vS

= 0 , (3.43)

replacing the squared mass parameters m2
Hd

, m2
Hu

, and m2
S with the vevs vd, vu, and vS in

Equation (3.41). In practice, it is convenient to re-parameterize the vevs,

v ≡
√
v2
d + v2

u , tan β ≡ vu/vd , µ ≡ λvS . (3.44)

The observed mass of the electroweak gauge bosons is reproduced by fixing v = 174 GeV,

removing one of the NMSSM’s free parameters.

In order to account for the constraints on the NMSSM imposed by the SM-like couplings

of the observed 125 GeV Higgs boson, it is useful to write the Higgs fields in the extended

Higgs basis [192,212–218]9

Hd =

 1√
2

(
cβH

SM − sβHNSM
)

+ i√
2

(
−cβG0 + sβA

NSM
)

−cβG− + sβH
−

 , (3.45)

Hu =

 sβG
+ + cβH

+

1√
2

(
sβH

SM + cβH
NSM

)
+ i√

2

(
sβG

0 + cβA
NSM

)
 , (3.46)

S =
1√
2

(
HS + iAS

)
. (3.47)

HSM, HNSM, and HS are the three neutral CP-even interaction states of the Higgs basis,

ANSM and AS are the CP-odd states, and H± is the charged Higgs. The neutral and charged

9. Note, that there are different conventions in the literature for the Higgs basis differing by an overall
sign of HNSM and ANSM.
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Goldstone modes are denoted by G0 and G±, respectively, and we used a shorthand notation

sβ ≡ sin β , cβ ≡ cos β . (3.48)

In this basis, the couplings to pairs of SM particles take a particularly simple form.

Focusing on the CP-even states, the couplings to pairs of down-type and up-type fermions

and pairs of vector bosons (VV) are

HSM(down, up ,VV) = (gSM, gSM, gSM) , (3.49)

HNSM(down, up ,VV) = (−gSM tan β, gSM/ tan β, 0) , (3.50)

HS(down, up ,VV) = (0, 0, 0) , (3.51)

where gSM is the corresponding coupling of the SM Higgs boson to pairs of such particles.

Thus, HSM has the same couplings to pairs of SM particles as the SM Higgs boson. Further-

more, HSM is the only Higgs boson which couples to pairs of vector bosons. HNSM has tan β

enhanced (suppressed) couplings to pairs of down-type (up-type) SM fermions, and HS does

not couple to pairs of SM particles. Note that at the physical minimum, only 〈HSM〉 =
√

2v

and 〈HS〉 =
√

2vS take non-trivial vevs, while 〈HNSM〉 = 0.

The interaction states mix into mass eigenstates. We denote the CP-even mass eigenstates

as {h125, H, hS}, where h125 is identified with the 125 GeV state observed at the LHC, H is

the non-SM-like state with the largest HNSM component, and hS the state with the largest

HS component. Similarly, the CP-odd interaction states ANSM and AS mix into two mass

eigenstates, which we denote as A and aS .

In order to ensure compatibility with the observed Higgs boson phenomenology, the h125

state must be dominantly composed of HSM. Denoting the squared mass matrix for the CP

even states asM2
S in the basis

{
HSM, HNSM, HS

}
, the tree-level mass of the SM-like state
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is given by

m2
h125
'M2

S,11 = m2
Z cos2(2β) + λ2v2 sin2(2β) , (3.52)

where m2
Z = v2

(
g2

1 + g2
2

)
/2 is the Z-boson mass. While mh125

receives sizable radiative

corrections via the stops, see section 3.3.1, it is interesting to note that the term proportional

to λ2v2 allows one to obtain mh125
= 125 GeV already at tree level for small values of

tan β . 3 if λ takes values 0.7 . λ . 1. Thus, there is no need for large radiative corrections

to the mass of the SM-like Higgs, i.e. no need for heavy stops, in the NMSSM. Including

moderate corrections from the stops, the required value for the mass of the SM-like Higgs

boson is obtained for 0.6 . λ . 0.8 in the small-to-moderate tan β . 5 regime.

In order to ensure that the mass eigenstate h125 is dominantly composed of HSM, the

mixing angles of HNSM and HS with HSM must be suppressed. The mixing of HSM with

HNSM is suppressed if ∣∣∣M2
S,12

∣∣∣� ∣∣∣M2
S,22 −M2

S,11

∣∣∣ , (3.53)

and similarly, the mixing of HSM with HS is suppressed if

∣∣∣M2
S,13

∣∣∣� ∣∣∣M2
S,33 −M2

S,11

∣∣∣ . (3.54)

Here, the M2
S,ij again are the entries of the squared mass matrix for the CP-even states

in the basis
{
HSM, HNSM, HS

}
. There are two possibilities to achieve such (approximate)

alignment of h125 with HSM: either, the entries of the squared mass matrix corresponding

to such mixing are small, or, the right hand sides of Equation (3.53) and Equation (3.54)

become large. The latter option is the so-called decoupling limit. Realizing alignment in this

way implies
{
mH ,mhS

}
� mh125

. As we will see below, a relatively light singlet-like state

gives the scalar potential a favorable shape for SFOEWPT. Thus, the former option, the

so-called alignment without decoupling limit, is more interesting for electroweak baryogenesis.

At tree-level, alignment between the two states originating from the Higgs doublets,
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Equation (3.53), is achieved for

M2
S,12 = −

(
m2
Z − λ2v2

)
sin(2β) cos(2β)→ 0 . (3.55)

It is convenient to instead rewrite this condition as

M2
S,12 =

1

tan β

[
M2

S,11 −m2
Z cos(2β)− 2λ2v2 sin2 β

]
→ 0 , (3.56)

because this form is robust against radiative corrections [192]. Identifying M2
S,11 = m2

h125
,

one obtains the alignment condition

λ2 =
m2
h125
−m2

Z cos(2β)

2v2 sin2 β
. (3.57)

For small to moderate values of tan β, this condition yields 0.6 . λ . 0.7. It is interesting

to note that, for moderate values of tan β . 5, this range of λ coincides with the range for

which one obtains mh125
= 125 GeV without the need for large radiative corrections.

Suppressing the mixing of HSM with HS, Equation (3.54), yields a second alignment

condition from demanding M2
S,13 → 0, namely

M2
A =

4µ2

sin2(2β)

(
1− κ

2λ
sin 2β

)
, (3.58)

where we introduced the parameter

M2
A =

2µ

sin 2β

(
Aλ +

κµ

λ

)
. (3.59)

M2
A is the (squared) mass parameter of ANSM and controls the mass scale of the mostly

doublet-like CP-even and CP-odd mass eigenstates as well as the mass scale of the charged

Higgs boson. The alignment condition Equation (3.58) gives rise to a mass spectrum where,
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provided κ < λ, the doublet-like mass eigenstates have approximate masses mH ,mA,mH± ∼

2µ/ sin 2β [219,220].

In the remainder of this section, we will consider the NMSSM in the alignment limit,

choosing parameters to satisfy Equation (3.57) and Equation (3.58). While current data [150,

221] allow for some deviation from perfect alignment, the phenomenological impact of such

departures on the EWPT in the NMSSM is small. Note also that in refs. [219, 220] it was

demonstrated that, in random parameter scans where the alignment conditions are not a

priori enforced, requiring compatibility with the phenomenology of the observed 125 GeV

Higgs boson selects the region of parameter space where Equation (3.57) and Equation (3.58)

are (approximately) satisfied.

The NMSSM parameter space is constrained by a number of additional arguments. Let

us briefly discuss two of them here, while we derive constraints arising from the stability

of the electroweak vacuum in subsection 3.3.2. It is well known, that large values of the

dimensionless parameters λ and κ lead to Landau poles. Avoiding the appearance of Landau

poles below the GUT scale [QGUT ∼ O(1016) GeV] entails constraining the values of the

NMSSM’s couplings, at the electroweak scale, to [159]

√
λ2 + κ2 . 0.7 . (3.60)

As discussed above, both the SM-like nature of the observed Higgs boson and its mass value

lead to a preference of sizable values of 0.6 . λ . 0.7 in the NMSSM. Hence, avoiding

Landau poles below QGUT limits the value of |κ| . 0.3 in the alignment limit. Note that

the NMSSM with larger couplings (and Landau poles between the TeV and the GUT scale)

is known as λ-SUSY, see, for example, refs. [222–224].

The parameter space is also constrained by avoiding tachyonic masses. The most relevant

constraint arises from the singlet-like CP-odd mass eigenstate aS . Taking into account first-
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order mixing effects, its mass is approximately [192]

m2
aS ' 3κv2

[
3λ

2
sin(2β)−

(
µAκ
λv2

+
3κµ2

M2
A

)]
. (3.61)

Recalling that alignment requires M2
A ' 4µ2/ sin2(2β), we can deduce the condition the

NMSSM parameters must satisfy to keep aS from becoming tachyonic:

κµAκ
v2

.
3κλ2 sin(2β)

2

[
1− κ sin(2β)

2λ

]
. (3.62)

For small-to-moderate values of tan β and in the alignment limit, where 0.6 . λ . 0.7,

the right-hand side of Equation (3.62) is approximately κ × O(1). Hence, equation Equa-

tion (3.62) implies µAκ . v2 for κ > 0, while for κ < 0 the condition becomes µAκ & v2; in

particular, disfavoring sgn(µAκ) = −1 for κ < 0.

Radiative and thermal corrections

The scalar potential receives sizable radiative corrections from the large couplings between

the Higgs bosons themselves as well as from their large couplings to the electroweak gauge

bosons and the (s)fermions, in particular the (s)tops, see, for example, refs. [159, 225–227].

Since the precise interplay between the higher-order corrections to the Higgs mass and the

mass values of the SM particles and their superpartners does not play a relevant role in

our study of the EWPT, we shall take only the dominant one loop corrections into account

in this work. The null-results from SUSY searches at the LHC suggest that all squarks

as well as the gluinos have masses & 1 TeV. LHC constraints on new states neutral under

QCD are less stringent. Furthermore, to yield a scalar potential sufficiently different from

that of the SM to accommodate a SFOEWPT, the Higgs bosons’ masses should not be

much larger than the electroweak scale. These considerations motivate studying a scenario
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in which all sfermions10 and the gluinos are heavy and can be integrated out, yielding an

effective theory where the remaining dynamical degrees of freedom are the SM particles, the

new Higgs bosons
{
H, hS , A, aS , H

±}, the five neutralinos χ̃0
i , and the two charginos χ̃±i ;

see refs. [184, 189, 191] for similar approaches. The parameters of this effective theory are

obtained by matching onto the full theory (containing all the NMSSM’s degrees of freedom)

at an intermediate scale. The leading operator one obtains from this procedure is

∆L = −∆λ2

2
|Hu|4 , (3.63)

arising from stop loops. At one loop, the coefficient ∆λ2 is related to the parameters of the

stop sector via [228–231]

∆λ2 =
3

8π2
h4
t

[
log

(
M2
S

m2
t

)
+
A2
t

M2
S

(
1− A2

t

12M2
S

)]
, (3.64)

where ht is the top Yukawa coupling determined from the (running) top quark mass mt =

htv sin β, MS is the geometric mean of the stop masses, and At is the soft trilinear stop-Higgs

coupling. We note that for small to moderate values of tan β, the top quark superfield has

a sizable coupling only to Ĥu in the superpotential. After the singlet acquires a non-trivial

vev, an effective µ-term is generated and additional effective quartic couplings, which involve

not only Hu but also Hd, arise via stop loops. However, these contributions are suppressed

by powers of µ/MS . We shall work in a region of parameter space where |µ| � MS and,

hence, the dominant contribution induced by integrating out the stop sector is given by

Equation (3.63). At higher loop orders, the exact relation between ∆λ2 and the parameters

in the stop sector is modified, but, for small values of |µ|, the stop radiative corrections can

still be effectively parametrized by ∆λ2 (see, for example, refs. [229,231,232]).

10. For simplicity we also take the sleptons to be heavy here. Because the couplings of sleptons to the
scalar sector are much smaller than the gauge couplings and the top Yukawa coupling, lighter sleptons would
not lead to large radiative corrections to the scalar sector.
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The scalar potential of this effective theory is then given by

V eff
0 = V0 +

∆λ2

2
|Hu|4 . (3.65)

This new contribution gives sizable corrections to the Higgs mass matrix. In particular, the

mass of the SM-like Higgs state is given by

m2
h125
'M2

S,11 = m2
Z cos2(2β) + λ2v2 sin2(2β) + 2∆λ2v

2 sin4 β . (3.66)

Note that the alignment conditions in Equation (3.57) and Equation (3.58) are not modified

by ∆λ2. While the value of ∆λ2 is in principle controlled by the soft parameters in the stop

sector, see Equation (3.64), in the remainder of this section we use Equation (3.66) to set

∆λ2 to reproduce the observed mass of the SM-like Higgs boson, mh125
= 125 GeV.

The radiative corrections to the effective potential from the remaining dynamical degrees

of freedom are given by the CW potential We denote the field-dependent masses computed

from V eff
0 by

m̂2
i = m̂2

i (H
SM, HNSM, HS) , (3.67)

and work in the Landau gauge; explicit expressions for the m̂2
i are collected in appendix 3.B.1.

The bosonic fields entering Equation (2.9) are B =
{
hi, ai, H

±, G0, G±, Z,W±
}

with nB =

{1, 1, 2, 1, 2, 3, 6} degrees of freedom, respectively. Here, hi and ai denote the three neutral

CP-even and two CP-odd Higgs bosons, H± the charged Higgs, G0 and G± the neutral and

charged Goldstone modes, and Z and W± the electroweak gauge bosons. The fermionic

fields entering the CW potential are11 F =
{
χ̃0
i , χ̃
±
i , t
}

with nF = {2, 4, 12}, where χ̃0
i

and χ̃±i denote the five neutralinos and two charginos, respectively, and t is the top quark.

We have chosen mt as the renormalization scale, implying that the parameters are defined

11. We neglect the (small) radiative corrections from the SM fermions other than the top quark.

80



at such scale. In order to guarantee the one-loop renormalization scale independence and

preserve the supersymmetric relations, the parameters at the scale mt must be related with

those at higher energies, up to the supersymmetry breaking scale, by including all particles

in the effective theory in the running to higher energies.

Note that since the Goldstone modes’ masses vanish at the physical minimum, their

contributions to the CW potential lead to divergent contributions to physical masses and

coupling coefficients computed from derivatives of the loop-corrected effective potential. This

divergence is an artifact of the perturbative calculation [63,64] and can be dealt with by shift-

ing the masses of the Goldstone modes by an infrared regulator, m̂2
G → m̂2

G + µ2
IR. In our

numerical calculations, we use a value of µ2
IR = 1 GeV2; note, however, that in numerical cal-

culations numerical errors on m̂2
G typically suffice to “regulate” the logarithmically divergent

contribution from m̂2
G → 0, even before including an explicit infrared regulator.

The CW corrections alter the location of the minima as well as the physical masses. We

include a set of counterterms

δL = −δm2
Hd

|Hd|2 − δm2
Hu
|Hu|2 − δm2

S
|S|2 − δλAλ (SHu ·Hd + h.c.)− δλ2

2
|Hu|4 , (3.68)

to keep the location of the physical minimum at
{
HSM, HNSM, HS

}
=
√

2 {v, 0, µ/λ}, ensure

M2
S,13 → 0, preserving alignment, and maintain mh125

= 125 GeV. Note that these countert-

erms correspond to a redefinition of the soft SUSY-breaking terms12, see refs. [185–187] for

similar approaches. We list equations for the fixing of the counterterms in appendix 3.B.2.

The input parameters for our model are thus

tan β , µ , κ , Aκ . (3.69)

12. The counterterm δλ2
corresponds to a soft SUSY-breaking term in the sense that it can be understood

as a counterterm shifting the soft parameters in the stop sector and, in turn, the threshold correction ∆λ2

that we obtain from integrating out the stops.
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All other parameters are fixed by the various conditions we impose on the model, namely, λ

and M2
A are determined by alignment, ∆λ2 by setting mh125

= 125 GeV, and the countert-

erms are fixed by the conditions discussed in the previous paragraph.

The thermal corrections are taken into account with the one-loop finite temperature

potential introduced in section 2.1, and we have included the daisy corrections re-summing

hard thermal loops with

m̃2
i ≡ m̃2

i (H
SM, HNSM, HS;T ) = m̂2

i (H
SM, HNSM, HS) + ciT

2 . (3.70)

where the daisy coefficients for the relevant fields in appendix 3.B.3. Including the CW and

the thermal corrections, the temperature-dependent effective potential at one-loop order is

given by

V1(T ) = V eff
0 + V CW

1−loop(m̃2
i ) + V

T 6=0
1−loop(m̃2

i ) . (3.71)

3.3.2 Zero-temperature vacuum structure

While the NMSSM’s scalar potential is subject to radiative as well as thermal corrections as

discussed in section 3.3.1, one can already learn much about the possibility of a SFOEWPT

from considering the effective potential, V eff
0 , obtained after integrating out all sfermions

and the gluinos and prior to including the CW and thermal corrections. In this section, we

derive the most interesting regions of NMSSM parameter space for realizing a SFOEWPT

from V eff
0 . As we shall show later on, these regions of parameter space are only mildly

affected by radiative corrections. Recall that in order to study the vacuum structure of the

NMSSM, it suffices to consider the three-dimensional field space spanned by the neutral

CP-even fields
{
HSM, HNSM, HS

}
,

V
eff,3
0 (HSM, HNSM, HS) ≡ V eff

0

∣∣∣ANSM=0
AS=0
H±=0

, (3.72)
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where V eff
0 is the potential given in Equation (3.65).

As discussed above, the singlet plays a special role for realizing a SFOEWPT. Its cou-

pling to the Higgs doublets, λ, and its self-coupling, κ, are free parameters, while the quartic

couplings between the Higgs doublets are governed by the gauge couplings (and ∆λ2). Fur-

thermore, as a consequence of U(1)Y symmetry, V
eff,3
0 is invariant under the transformation

HSM → −HSM, HNSM → −HNSM, HS → HS. This residual Z2 symmetry ensures that

any extrema in the singlet-only direction, i.e. where HSM = HNSM = 0, are also extrema (or

saddle points) of V
eff,3
0 . In the alignment limit (or, more specifically, as long as the second

alignment condition, Equation (3.54), is satisfied) the scalar potential in the singlet-only

direction is given by

V
eff,3
0 (0, 0, HS)→ −κ2µ

λ

(
µ

λ
+
Aκ
2κ

)
(HS)2 +

κAκ

3
√

2
(HS)3 +

κ2

4
(HS)4 . (3.73)

This potential has extrema at

HS =

{
0 ,

√
2µ

λ
, −

√
2

(
µ

λ
+
Aκ
2κ

)}
. (3.74)

The first of these field values corresponds to the trivial minimum of the scalar potential

HSM = HNSM = HS = 0, and the second value coincides with the vev of HS at the

physical minimum vS = µ/λ. The third field value marks a new special location in HS

space, which, in the following, we refer to as

v′S ≡ −
(
µ

λ
+
Aκ
2κ

)
. (3.75)

Recall that since we used the minimization conditions, Equation (3.43), to replace the m2
i

parameters in the scalar potential with v, tan β, and µ, the physical minimum
{
HSM, HNSM

, HS
}

=
√

2 {v, 0, µ/λ} is also guaranteed to be a stationary point of the scalar potential.
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Hence, in the alignment limit, all first-order derivatives of V
eff,3
0 vanish at

{
HSM, HNSM, HS

}
= {0, 0, 0} ∨

{
0, 0,
√

2v′S
}
∨
{

0, 0,

√
2µ

λ

}
∨
{
√

2v, 0,

√
2µ

λ

}
. (3.76)

The potential V
eff,3
0 may have additional stationary points; we will return to the possibility

of such minima below.

In order to constrain the allowed parameter space, we consider the value of the potential

at the field values given in Equation (3.76) and demand the physical minimum to be the

global minimum. As we will see, the |µ| vs. v′S/vS plane is a useful projection of the

parameter space. In the alignment limit, the potential at the physical minimum takes the

value

V
eff,3
0 (

√
2v, 0,

√
2µ

λ
) = −

m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2s4
β

4
v2 − κ2µ3

λ3

(
µ

λ
+
Aκ
3κ

)
(3.77)

= −1

4
m2
h125

v2 − 1

3

κ2µ4

λ4

(
1− 2

v′S
vS

)
, (3.78)

where we used Equation (3.66) and Equation (3.75) for the second equality.

We can derive a first constraint on the parameter space by demanding the physical mini-

mum to be deeper than the trivial minimum. The scalar potential vanishes at the trivial min-

imum, V
eff,3
0 (0, 0, 0) = 0. Thus, in the alignment limit, demanding V

eff,3
0 (

√
2v, 0,

√
2µλ) <

V
eff,3
0 (0, 0, 0) yields the condition

v′S
vS

<
1

2

(
1 +

3

4

λ4

κ2

m2
h125

v2

µ4

)
. (3.79)

At
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2µ/λ
}

the potential takes the value

V
eff,3
0 (0, 0,

√
2µ

λ
) = −κ

2µ3

λ3

(
µ

λ
+
Aκ
3κ

)
= −1

3

κ2µ4

λ4

(
1− 2

v′S
vS

)
. (3.80)
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Comparing with Equation (3.78), we see that this stationary point of the potential is never

deeper than the physical minimum;
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2µ/λ
}

is a saddle point

of the scalar potential in the alignment limit.

On the other hand, at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

, the scalar potential (in the

alignment limit) takes the value

V
eff,3
0 (0, 0,

√
2v′S) = −κ

2

3

(
µ

λ
+
Aκ
2κ

)3(3µ

λ
+
Aκ
2κ

)
=

1

3

κ2µ4

λ4

(
v′S
vS

)3(
2− v′S

vS

)
. (3.81)

Demanding this minimum to be shallower than the physical minimum, V
eff,3
0 (0, 0,

√
2v′S) >

V
eff,3
0 (

√
2v, 0,

√
2µ
λ ), yields the condition

(
v′S
vS
− 1

)3(
v′S
vS

+ 1

)
<

3

4

λ4

κ2

m2
h125

v2

µ4
, (3.82)

defining a range of v′S/vS for which the physical minimum is deeper than the minimum at{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

.

As we noted above, the potential may feature additional stationary points beyond those

listed in Equation (3.76). In particular, minima deeper than the physical minimum can easily

appear in the NMSSM for field configurations where HNSM and HSM take non-zero vevs.

Such minima break the electroweak symmetry, and, unless 〈HNSM〉 = 0 and 〈HSM〉 =
√

2v,

do not lead to electroweak physics compatible with observations. In general, V
eff,3
0 does

not have stationary points in the HNSM-only direction, V
eff,3
0 (0, HNSM, 0), except for the

trivial point HSM = HNSM = HS = 0. Instead, both HNSM and HSM (and sometimes HS)

take non-vanishing values at these additional electroweak symmetry breaking minima. Such

field configurations are very challenging to identify analytically, thus, we resort to numerical

techniques to infer the constraints on the NMSSM parameter space arising from demanding
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Figure 3.9: The white region indicates the region of NMSSM parameter space where (in the

alignment limit) the physical minimum
{
HSM, HNSM, HS

}
=
√

2
{
v, 0, v′S

}
is the global

minimum of the potential. In the gray region labeled as m2
aS < 0, the singlet-like CP-odd

state becomes tachyonic, see Equation (3.83). In the orange region labeled as HNSM 6= 0,
there exist minima with HNSM 6= 0 that are deeper than the physical minimum (they are
only found numerically). In the blue region labeled

{
0, 0,
√

2v′S
}

, there exists a minimum at{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

deeper than the physical minimum, see Equation (3.82).

Similarly, in the green region labeled {0, 0, 0}, the trivial minimum is deeper than the physical
minimum, see Equation (3.79). The regions are shaded on top of each other in the order
described in this caption; the dashed lines of the respective colors mark the edges of the
respective regions where overlapping. In the figures, we chose tan β = 1.5 (tan β = 3) for
the left (right) panel, and κ/λ = −0.1 for both panels.
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Figure 3.10: Same as Figure 3.9 but for κ/λ = 0.1.

the physical minimum to be deeper than any minima where HNSM 6= 0.13

Finally, the parameter space of the NMSSM is also constrained by avoiding tachyonic

masses. As discussed in subsection 3.3.1, the most relevant constraint arises from avoiding the

singlet-like neutral CP-odd state, aS , becoming tachyonic. In terms of v′S/vS , the constraint

arising from Equation (3.62) can be rewritten as

v′S
vS

+ 1 & −3

4

λ2v2

µ2
sin(2β)

[
λ

κ
− sin(2β)

2

]
. (3.83)

Figure 3.9–Figure 3.11 show the allowed region of parameter space in the |µ| vs. v′S/vS

plane for values of tan β = {1.5, 3} and κ/λ = {−0.1, 0.1, 0.3}. The different shaded re-

gions are excluded by the constraints from Equation (3.79) (green shade), Equation (3.82)

(blue shade), and numerical results (orange shade). Correspondingly, these constraints come

from avoiding the trivial minimum, the minimum at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

, or

minima with HNSM 6= 0, becoming deeper than the physical minimum. We also show

13. We use the package HOM4PS2 [233] to solve the system of first derivatives of V eff,3
0 (HSM, HNSM, HS) to

identify the stationary points, and then check numerically if the global minimum is the physical minimum.
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Figure 3.11: Same as Figure 3.9 but for κ/λ = 0.3.

the region where the singlet-like CP-odd mass eigenstate aS becomes tachyonic, Equa-

tion (3.83), with the gray shade. Note that overlapping regions are marked by dashed

lines of the corresponding colors. In all figures, we truncate the x-axis at |µ| = 100 GeV;

smaller values of |µ| are disfavored by null results of chargino searches at LEP. Since we

imposed alignment (without decoupling), the scalar potential is uniquely specified by v′S/vS

(see Equation (3.75)), µ, tan β, and κ/λ, and the potential is insensitive to the sign of µ.

As we can see from Equation (3.79) and Equation (3.82) (the green and blue shaded re-

gions, respectively), the conditions stemming from the trivial minimum and the minimum

at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

becoming deeper than the physical minimum do not

depend on the sign of κ and are relatively insensitive to the value of |κ|.

For large values of
∣∣κµ2

∣∣, Equation (3.79) implies that the physical minimum is deeper

than the trivial minimum for v′S/vS < 1/2. Equation Equation (3.82) on the other hand im-

plies, for large
∣∣κµ2

∣∣, that v′S/vS > −1 to avoid the minimum at
{
HSM, HNSM, HS

}
={

0, 0,
√

2v′S
}

becoming deeper than the physical minimum. These constraints relax for

smaller values of
∣∣κµ2

∣∣, i.e. where the term proportional to m2
h125

v2 in Equation (3.78)
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becomes relevant. As can also be seen from Equation (3.79) and Equation (3.82), the range

of v′S/vS opens up for
∣∣κµ2

∣∣ . λ2mh125
v. With λ ∼ 0.65 in the alignment limit, we find√

λmh125
v ∼ 120 GeV. In Figure 3.9–Figure 3.11 we can observe the corresponding change

in the blue and green shaded bounds for |µ| . 120 GeV/
√
|κ/λ|.

Finally, as discussed above, the region of parameter space where minima with HNSM 6= 0

are deeper than the physical minimum can only be inferred by numerically investigating the

vacuum structure. From Figure 3.9–Figure 3.11 we see that such constraints become more

stringent with larger |κ| and depend on the value of tan β. Furthermore, the constraints

arising from avoiding such minima are sensitive to the sign of κ; for κ < 0, avoiding minima

with HNSM 6= 0 effectively sets a lower limit on the value of v′S/vS , while for κ > 0, avoiding

these minima sets an upper bound on the value of v′S/vS .

3.3.3 Thermal history: analytical understanding

In this section, we explore the possible phase transition patterns in the NMSSM. We first

discuss the effective potential at very high temperatures, which gives guidance on the starting

point of the thermal evolution. Then, we discuss the requirements a phase transition must

satisfy to provide favorable conditions for electroweak baryogenesis via a SFOEWPT. We

continue by discussing specific phase transition patterns which appear in the NMSSM, and

fix a shorthand notation we will use to identify them. We close this section by discussing

the regions in parameter space where we expect to observe different transition patterns, in

particular, the regions in which we expect the nucleation probabilities of first order phase

transitions to be sufficiently large for such transitions to complete.

Let us start with the vacuum structure at very high temperatures. In the limit T 2 � m̂2
i ,

and neglecting the Daisy coefficients, the finite temperature potential can be written as

V
T 6=0
1−loop −−−−−→

T 2�m̂2
i

T 4 [. . .] +
T 2

48

(
2
∑
i=B

nim̂
2
i +

∑
i=F

nim̂
2
i

)
+ T 4 ×O

∣∣∣∣∣m̂2
i

T 2

∣∣∣∣∣
3/2
 . (3.84)
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The ellipsis [. . .] in Equation (3.84) indicates terms which are independent of the field values.

It is straightforward to see that in this limit, the field-dependent terms of the thermal

potential are parameterized by the Daisy coefficients, (see Equation (3.B.34))

V
T 6=0
1−loop →

[
cHSMHSM

2

(
HSM

)2
+ cHSMHNSMH

SMHNSM +
cHNSMHNSM

2

(
HNSM

)2

+
cHSHS

2

(
HS
)2
]
T 2 + . . .

(3.85)

where the ellipsis now includes both the field-independent and higher-order terms. Explicit

expressions for the cij can be found in appendix 3.B.3. Note that the symmetries of the

NMSSM enforce this particular form of the high-temperature potential. In particular, the

Z3 symmetry (and gauge symmetry) ensures that terms linear in the fields (such as µiH
iT 2,

where µi is a coefficient of dimension mass) cancel, while gauge symmetry forbids terms

mixing one doublet with one singlet state, i.e. HSMHST 2 and HNSMHST 2.

Since all coefficients cij are positive, and cHSMHSMcHNSMHNSM > c2
HSMHNSM throughout

the parameter space, the trivial minimum
{
HSM, HNSM, HS

}
= {0, 0, 0} is guaranteed to

be the global minimum of the effective potential at very high temperatures. Thus, any

phase transition patterns in the NMSSM will begin in the trivial phase. In order to give rise

to acceptable phenomenology, the (chain of) phase transition(s) must end in the physical

minimum,
{
HSM, HNSM, HS

}
=
√

2 {v, 0, vS}. If the transition pattern involves multiple

steps, the most relevant property of the intermediate phase(s) for electroweak baryogenesis is

if the electroweak symmetry is broken, i.e. if HSM or HNSM acquires a non-trivial vev, or if,

instead, HSM = HNSM = 0 and the electroweak symmetry is conserved in the intermediate

phase(s).

A phase transition must satisfy certain requirements in order to give rise to favorable

conditions for electroweak baryogenesis: In order for a baryon asymmetry to be produced

in the transition, and such asymmetry not to be subsequently washed out in the low tem-
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perature phase, electroweak sphalerons must be active in the high-temperature phase and

suppressed in the low temperature phase. Estimating the rate of the sphaleron suppression

is a notorious problem in the perturbative approach to the phase transition calculation, see,

for example, refs. [34, 127, 128], and even more so if the electroweak symmetry is broken in

multiple steps, see, for example, ref. [234].

We shall demand


√〈

HSM
lT

〉2
+
〈
HNSM
lT

〉2
T

> 1

 ∧


√〈

HSM
hT

〉2
+
〈
HNSM
hT

〉2
T

< 0.5

 , (3.86)

as conditions for a SFOEWPT. Here, 〈ΦhT 〉 (〈ΦlT 〉) is the value of Φ in the high (low) tem-

perature phase at the temperature T where the phase transition occurs. The first condition

ensures that electroweak sphalerons are inactive in the low-temperature phase, while the

second condition requires the sphalerons to not be unduly suppressed in the high tempera-

ture phase. We stress that while the numerical thresholds for the order parameters we chose

in Equation (3.86) are indicative for the possibility of generating the baryon asymmetry

through a SFOEWPT [127], obtaining the exact conditions would require a gauge-invariant

evaluation of the sphaleron profile through the bubble wall which is beyond the scope of this

work.

In the remainder of this section, we use a shorthand notation to classify the phase tran-

sition patterns we observe in the NMSSM:

• We use an integer (1, 2, . . .) to denote the number of steps in the transition patterns.

• For 2-step transitions (we don’t observe transition patterns with more than 2 steps in

our data) we use a roman number to classify the intermediate phase:

– “(I)” denotes an intermediate phase in the singlet-only direction, i.e. where〈
HSM

〉
=
〈
HNSM

〉
= 0 and electroweak symmetry is conserved,
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– “(II)” denotes an intermediate phase in which electroweak symmetry is broken,

i.e. where at least one of the fields HNSM or HSM acquires non-trivialvev.

• We use a lower case letter to denote the strength of any transitions in which electroweak

symmetry is broken in the low-temperature phase,

– “a” denotes a SFOEWPT,

– “b” denotes a first order phase transition that is not a SFOEWPT, i.e does not

satisfy one (or both) of the conditions in Equation (3.86),

– “c” denotes a second order phase transition.

Thus, for example, “1-a” denotes a direct one-step SFOEWPT from the trivial phase to the

electroweak phase. “2(I)-b” denotes a two-step transition pattern, where the first step is from

the trivial phase to a singlet-only phase (since electroweak symmetry is not broken in this

intermediate phase, we do not differentiate the pattern with respect to the strength of this

first transition), and the second step is a first order (but not SFOEWPT) transition from the

singlet-only to the electroweak phase. “2(II)-ca” on the other hand denotes a two-step phase

transition pattern, where the first transition is a second order phase transition into a phase

in which electroweak symmetry is broken (but which is distinct from the electroweak phase),

and the second transition is a SFOEWPT from this intermediate phase to the electroweak

phase.

We can get some intuition about the different regions of parameter space suitable for the

respective phase transition patterns from the shape of the effective potential. While thermal

effects alter the shape of the potential at finite temperatures, the zero-temperature vacuum

structure still indicates the relative importance of the different possible local minima for the

thermal history. Thus, we expect the results from subsection 3.3.2 to be indicative for the

transition patterns suggested by the critical temperature calculation. For example, we can

expect direct one-step transition patterns to most prominently be realized in the parameter
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region close to where the trivial minimum becomes the global minimum at zero temperature

(green shade in Figure 3.9–Figure 3.11). Similarly, we can expect “2(I)” transition patterns

to appear in the parameter regions adjacent to where
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

becomes the global minimum at zero temperature (blue shade), and “2(II)” transitions are

expected to appear in regions close to those where the global minimum has non-trivial vev

of HNSM 6= 0 (orange shade).

The vacuum structure gives however little information about the tunneling probability

from one local minimum to another, i.e. if a first order phase transition suggested by the

critical temperature calculation can actually nucleate. The tunneling rate is controlled by the

height of the barrier and the distance (in field space) between the respective local minima.

The higher the barrier, and the larger the distance between the minima, the lower the

nucleation probability. Although the shape of the potential is modified by thermal effects, we

can learn some lessons from the zero-temperature potential. As discussed above, the trivial

minimum is the global minimum of the effective potential at very high temperatures. Thus,

any phase transition pattern starts at HSM = HNSM = HS = 0. The distance between

the trivial and the physical minimum (at zero temperature) is given by
√

2v2 + 2µ2/λ2.

Since the values of v = 174 GeV and λ ∼ 0.65 are fixed by electroweak precision data and

the alignment conditions, respectively, the distance between the trivial and the physical

minimum is controlled by |µ|. The distance increases with the value of |µ|, hence, nucleation

proceeds more easily for small |µ|.

The height of the barrier around the trivial minimum can be inferred from the squared

mass parameters of the fields HSM, HNSM, and HS around the trivial point, i.e. the field-

dependent masses given in appendix 3.B.1 at HSM = HNSM = HS = 0. In order for a phase

transition to occur, the smallest of the eigenvalues of the squared mass matrix should be

approximately zero, implying a flat direction around the trivial point at zero temperature.

If the smallest eigenvalue is too large, the barrier around the trivial minimum is large, and
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hence the tunneling rate will be too small to allow for successful nucleation. If the smallest

squared mass eigenvalue is negative, the trivial minimum is a saddle point of the potential

(at zero temperature). Finite temperature effects can still give rise to a barrier between the

trivial and the physical minimum required for a SFOEWPT in this situation, but only if the

absolute value of the smallest squared mass parameter is not too large, such that thermal

effects can overcome the zero-temperature shape of the potential.

At the trivial point HSM = HNSM = HS = 0, the matrix of the squared mass parameters

is diagonal in the basis {Hd, Hu, S}, see Equation (3.41). Thus, we can directly infer the

presence and height of the barrier around the trivial point from the parameters m2
Hd

, m2
Hu

,

and m2
S . In the alignment limit, m2

Hu
− m2

Hd
= M2

A cos(2β). Note that cos(2β) < 0 for

tan β > 1 and hence, m2
Hu

is the smaller of the doublet-like eigenvalues. In the alignment

limit,

m2
Hu

= M2
A cos2 β − µ2 −

m2
h125

2
≈ µ2

tan2 β

(
1− κ

λ
tan β

)
−
m2
h125

2
. (3.87)

This equation yields a critical value of |µ|, for which m2
Hu
≈ 0. This critical value of |µ|

is increasing with larger values of tan β and of κ/λ. For example, for tan β = 1.5 and

κ/λ = −0.1, the critical value is |µ| ≈ 125 GeV, while for the larger value κ/λ = 0.3

Equation (3.87) implies m2
Hu
≈ 0 for |µ| ≈ 180 GeV. Instead, for a larger value of tan β = 3

and κ/λ = −0.1, the critical value is |µ| ≈ 235 GeV. For values of |µ| larger than the critical

value, we expect large barriers around the trivial minimum in the Hu direction, while for

smaller values of |µ|, m2
Hu

becomes negative and the trivial point becomes a saddle point at

zero temperature.

A flat direction can also arise in the HS direction. The squared mass parameter of HS

at HSM = HNSM = HS = 0, see Equation (3.73), is

m2
S = 2

κ2

λ2
µ2v
′
S

vS
. (3.88)
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The alignment conditions enforce sizable values of λ ∼ 0.65, thus, the value of m2
S is con-

trolled by κ2µ2(v′S/vS). Since the temperature corrections to m2
S , eq. (3.B.39), are of or-

der 0.2T 2, one would expect that at the characteristic temperature of the EWPT of order

100 GeV, the tunneling rate could only be large enough for successful nucleation if the squared

mass parameter controlling the barrier m2
S � (100 GeV)2. This condition can be achieved

in two ways: either,
∣∣v′S/vS∣∣� 1, or |κµ| � 100 GeV.

Note that the conditions m2
Hu
≈ 0 or m2

S ≈ 0 are indicative for the possibility of a first

order phase transition to successfully nucleate at finite temperature since they imply the

presence of an approximately flat direction around the trivial minimum at zero temperature.

However, this analysis does not predict the transition pattern, which is determined by the

shape of the potential away from the trivial minimum (at the transition temperature). The

bounce solution of the fields (the trajectory in field space connecting the local minima) is,

in general, not a straight line in field space; in particular, m2
S ≈ 0 does not necessarily lead

to “2(I)” transition patters, and m2
Hu
≈ 0 does not directly imply “2(II)” patterns.

3.3.4 Numerical results

In order to explore the EWPT in the NMSSM, and, in particular, find which regions of pa-

rameter space give rise to phase transition patterns suitable for electroweak baryogenesis, we

perform an extensive numerical study using CosmoTransitions v2.0.5 [66]. As discussed in

subsection 3.3.1, in the alignment limit, the Higgs sector of the NMSSM can be described by

the four parameters
{

tan β, κ/λ, µ, v′S/vS
}

, and we perform random scans in this parameter

space. We show the results of our numerical scans in Figure 3.12–Figure 3.18. In this sec-

tion, we started with discussing the regions of the parameter space where points satisfy the

boundary conditions we implement in our CosmoTransitions calculation, followed by dis-

cussing the phase transition patterns suggested by the critical temperature calculation and

we compare these results with the thermal histories obtained by calculating the nucleation
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rate. As we shall see, the phase transition patterns obtained from the nucleation calculation

differ substantially from those indicated by the critical temperature calculation, and thus,

computing only the critical temperatures provides a misleading picture of the regions of pa-

rameter space favorable for electroweak baryogenesis. Lastly in this section, we comment on

the collider and dark matter phenomenology in the region of parameter space promising for

baryogenesis via a SFOEWPT.

We focus our study on the region of parameter space where alignment without decoupling

is realized, i.e. the region of parameter space for which the NMSSM features a Higgs mass

eigenstate which (at tree-level) couples to SM particles like the SM Higgs boson. As discussed

in subsection 3.3.1, the alignment conditions fix the values of λ and M2
A (or, equivalently,

Aλ), leaving {tan β, µ, κ,Aκ} as the four free parameters which control the effective potential.

We fix the mass and mixing parameters of the stop sector (parameterized by the threshold

correction ∆λ2 in V eff
0 , see section 3.3.1) to obtain mh125

' 125 GeV for the mass of the

SM-like Higgs boson. As discussed in subsection 3.3.2, we use v′S/vS to re-parameterize Aκ.

Here, vS = µ/λ is the vev of the CP-even singlet interaction state at the physical minimum,〈
HS
〉

=
√

2µ/λ, and v′S = − (µ/λ+ Aκ/2κ) is the location of an extremum of V eff
0 in the

singlet-only direction,
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

. In summary, we use

tan β , µ ,
κ

λ
,

v′S
vS

, (3.89)

as input parameters for our numerical evaluation. Note that throughout our calculations,

we fix the bino and wino mass parameters, which enter the radiative corrections from the

charginos and neutralinos (see Equation (3.B.23) and Equation (3.B.24)), to M1 = M2 =

1 TeV.

The |µ| vs. v′S/vS plane lends itself particularly well to characterizing the vacuum struc-

ture of the NMSSM as discussed in subsection 3.3.2. We perform two-dimensional scans

over slices of the parameter spaces for fixed values of tan β and κ/λ, varying the values of µ
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and v′S/vS by means of (linear-)flat distributions. While we have included counterterms to

maintain the location of the physical minimum after including the CW potential (including〈
HS
〉

=
√

2vS =
√

2µ/λ), we have not included a counterterm which would similarly keep

the location of the tree-level extremum at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

fixed. As a

result, the location of the corresponding minimum of the effective potential after including

V CW
1−loop is no longer

{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

, but changes to a new location we

denote by
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S,CW

}
. We find the value of v′S,CW by numeri-

cally solving

∂V1(T = 0)

∂HS

∣∣∣∣ HSM=0
HNSM=0

= 0 . (3.90)

This equation yields three solutions: HS = 0 and two non-trivial solutions. Of these two

non-trivial solutions, we identify the one further away (in HS space) from vS = µ/λ as

v′S,CW. We plot our numerical results in the |µ| vs. v′S,CW/vS plane.

For each randomly drawn parameter point, we first demand a number of boundary con-

ditions:

• We check compatibility with the phenomenology of the observed SM-like 125 GeV

Higgs boson by checking that (after including the radiative corrections and the coun-

terterms discussed in section 3.3.1) the parameter point features a CP-even Higgs mass

eigenstate with mass 122 < mh125
/GeV < 128, and admixtures of the non-SM-like in-

teractions states less than
∣∣∣CNSM
h125

∣∣∣ tan β < 0.05 and
∣∣∣CS
h125

∣∣∣ < 0.1,14 where the C
j
i

denote the mixing angles in the extended Higgs basis,

h125 = CSM
h125

HSM + CNSM
h125

HNSM + CS
h125

HS . (3.91)

14. Admixtures of HNSM and HS of this size modify the production cross sections and branching ratios
of h125 by . 10 % compared to the SM prediction. The currently best-measured production cross section of
the observed Higgs boson is via the gluon-fusion mode with a 1σ uncertainty of ∼ 15 % [150,221]. Similarly,
the largest branching ratios of the observed Higgs bosons are measured with ∼ 15 % uncertainty [150,221].
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Note that since we fix λ and M2
A via the alignment conditions, Equation (3.57)

and Equation (3.58), and include a counterterm to preserve the HSM–HS alignment

after including the CW corrections, see Equation (3.68), most of our parameter points

have admixtures of HNSM and HS to h125 much smaller than these thresholds. The

exception are points where the mass parameters of the interaction eigenstates HSM

and HS are approximately degenerate; in this case, relatively small off-diagonal entries

in the CP-even squared mass matrix can still lead to sizable mixing of HSM and HS.

• In order to ensure compatibility with the null-results from chargino searches at the

Large Electron Positron collider (LEP) (see, for example, refs. [235, 236]) we exclude

the parameter region |µ| < 100 GeV. Recall that the alignment conditions lead to a

mass scale of the doublet-like Higgs bosons of |MA| ∼ 2 |µ| / sin(2β). Thus, such values

of |µ| allow for doublet-like Higgs bosons as light as |MA| ∼ 200 GeV if tan β ' 1, which

potentially are in conflict with null results from direct searches for non-SM-like Higgs

bosons at the LHC. We will return to this issue in section 3.3.4. Note that searches

for neutralinos and charginos at the LHC do not constrain the parameter space for

|µ| & 100 GeV in a relevant way, see, for example, ref. [237].

• We check that, at zero temperature, the physical minimum is the global minimum of

the effective potential.15

For each point satisfying all boundary conditions, we compute the phase transition pattern

with CosmoTransitions as discussed above.

Figure 3.12–Figure 3.17, to be discussed in detail in section 3.3.4 and section 3.3.4, show

the results from our parameter scans for tan β = {1.5, 3} and κ/λ = {−0.1, 0.1, 0.3} in the

|µ| vs. v′S,CW/vS plane; these are the same slices of parameter space for which we have

15. Thus, in this study we exclude the region of parameter space where the physical minimum is a
metastable vacuum (with sufficiently long lifetimes to allow for feasible cosmology). While interesting in
its own right, considering this scenario is beyond the scope of this work.
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shown constraints from the zero-temperature vacuum structure of the effective tree-level

potential, V eff
0 , in Figure 3.9–Figure 3.11. In order to compare the results of the respective

calculations, we color-code the points according to the transition patterns indicated by the

critical temperature calculations in the left panels of Figure 3.12–Figure 3.17, while in the

right panels, points are color-coded according to the thermal history obtained from the

full nucleation calculation; see subsection 3.3.3 for our shorthand notation of the phase

transition patterns. Points violating the boundary conditions described above are labeled

“failed BC” in Figure 3.12–Figure 3.17. Points which satisfy all boundary conditions, but for

which CosmoTransitions fails to return a phase transition pattern starting from the trivial

minima at high temperature and ending in the physical minimum at zero temperature are

labeled “no transitions”. Note that the left and right panels show the same set of points in

parameter space, the only difference is the color-coding of the points.

Boundary conditions

Let us begin the discussion of the results of our parameter scans with the regions of parameter

space where points fail to satisfy the boundary conditions. The boundary conditions are

independent of the thermal calculation, hence, the same points are labeled “failed BC” in

the left and right panels of Figure 3.12–Figure 3.17.

We observe that, for large values of |µ|, the range of v′S,CW/vS where points satisfy the

boundary conditions is −1 . v′S,CW/vS . 0.5. This range is only weakly dependent on the

values of tan β and κ/λ; only in the case of κ/λ = −0.1, shown in Figure 3.12 and Figure 3.13,

we observe a different lower bound on v′S,CW/vS at large |µ|, being v′S,CW/vS & −0.5 for

tan β = 1.5 and v′S,CW/vS & −0.8 for tan β = 3. The range of v′S,CW/vS where points satisfy

the boundary conditions widens at small values of |µ|, and here, the behavior depends more

strongly on the values of κ/λ and tan β, as we can see by comparing the different slices of

parameter space shown in Figure 3.12–Figure 3.17. We note that the boundary conditions
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widen for values of |µ| . 120 GeV/
√
|κ/λ|. Furthermore, we observe that for κ/λ = −0.1 and

tan β = 1.5 (Figure 3.12), points fail the boundary conditions for |µ| . 150 GeV regardless

of the value of v′S,CW/vS , while we do not observe such a lower bound on the value of |µ|

for the other slices of parameter space.

This behavior can largely be understood from the discussion of the zero-temperature

vacuum structure in subsection 3.3.2, see also Figure 3.9–Figure 3.11. The analysis of the

vacuum structure in subsection 3.3.2 was based on V eff
0 , the potential of our effective model

after integrating out all sfermions and the gluinos, but prior to including the CW corrections.

We indicate the region of parameter space for which, per the analysis in subsection 3.3.2,

the physical minimum is the global minimum of V eff
0 at zero temperature with the thin

black contours in Figure 3.12–Figure 3.17. Since these contours are derived from V eff
0 , the

y-axis for these contours is v′S/vS , where v′S = − (µ/λ+ Aκ/2κ) is the tree-level value.

We see that, although these contours are derived from V eff
0 , they describe well many of the

features of the boundary conditions seen in our parameter scan, which incorporates radiative

corrections. The largest deviations appear for κ/λ = −0.1, see Figure 3.12 and Figure 3.13.

While the contours here allow only a narrow range of v′S/vS values, we see that the points

from our parameter scan satisfy the boundary conditions for a much wider range of values

of v′S,CW/vS than what the contours suggest. Comparing with Figure 3.9, we see that this

discrepancy occurs in regions of parameter space where the analysis of V eff
0 suggested that

a minimum with 〈HNSM〉 6= 0 was the global minimum of the potential (indicated by the

orange shade in Figure 3.9). This constraint was derived numerically in subsection 3.3.2,

and hence is challenging to understand quantitatively. However, it is not surprising that

the region of parameter space disfavored by vacua with 〈HNSM〉 6= 0 becoming the global

minimum of the potential changes considerably after including the CW corrections: the

potential is subject to larger radiative corrections in the doublet-like directions of the effective

potential than in the singlet-like direction, and furthermore, the HNSM direction is affected
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by the counterterms we have included to maintain the location of the physical minimum,{
HSM, HNSM, HS

}
=
√

2 {v, 0, µ/λ}.

Before moving to the discussion of the phase transition patterns we observe for points

satisfying the boundary conditions in section 3.3.4, let us briefly mention a few features visible

in Figure 3.12–Figure 3.17. First, we can see a gap in the points around v′S,CW/vS ≈ 1,

which widens for small values of |µ|. This gap is due to numerical difficulties in our algorithm

to find v′S,CW if v′S,CW ≈ vS . Identifying the value of v′S,CW is particularly challenging for

small |µ|, because |µ| controls the size of vS = µ/λ.

Second, an arc of points failing the boundary conditions crosses the region of parameter

space consistent with the physical vacuum being the global minimum at zero temperature,

starting at small values of |µ| and negative v′S,CW/vS and ending at larger values of |µ| and

positive v′S,CW/vS . This feature is particularly pronounced for tan β = 1.5, and is due to the

mass parameters of the interaction states HSM and HS becoming approximately degenerate

for those points. As discussed below Equation (3.91), in this situation, even small deviations

from the alignment conditions lead to a sizable HS component of h125, and thus, these points

are forbidden by our requirement
∣∣∣CS
h125

∣∣∣ < 0.1.

Neither of these issues is related to the thermal history of a given parameter point, and

these issues do not occur in regions of parameter space which are of special interest for the

phase transition calculation. Hence, we ignore them in the following.

We also note that in the left panels of Figure 3.12–Figure 3.17, where we show the results

of the critical temperature calculation, points labeled “no transition” appear. As discussed

in subsection 3.3.3, the trivial minimum is guaranteed to be the global minimum of the po-

tential at high temperatures, and for any point passing the boundary conditions, the physical

minimum is the global minimum at zero temperature. For points labeled “no transition”,

CosmoTransitions failed to return a transition pattern starting in the trivial minimum at

high temperatures and ending in the physical minimum at zero temperatures. This is due
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to numerical errors arising in the second step of the numerical calculation described above,

i.e. the step in which CosmoTransitions attempts to trace the local minima of the effective

potential with changing temperatures. We have investigated these numerical issues, and

have not found any indication that they bias our results towards particular regions of pa-

rameter space. Thus, we expect that our scanning over a large number of points throughout

the parameter space gives an accurate picture of the regions of parameter space suitable for

electroweak baryogenesis.

Comparison of critical temperature and nucleation results

In this section, we compare the phase transition patterns obtained from the nucleation

calculation with the ones suggested by the analysis of the temperature-dependent vacuum

structure at the critical temperatures. In Figure 3.12–Figure 3.17, the color-coding of the

points in the left panels shows the phase transition patterns suggested by the critical tem-

perature calculation. In the right panels of Figure 3.12–Figure 3.17, we color-code the points

according to the thermal histories obtained from the nucleation calculation. Comparing the

left and right panels, we see that the thermal histories obtained from the nucleation calcu-

lation differ significantly from those the critical temperature analysis suggests, leading to a

marked shift in the regions of parameter space which allows for a SFOEWPT.

Let us begin by discussing the results for tan β = 1.5 and κ/λ = −0.1, shown in Fig-

ure 3.12. For the critical temperature results, shown in the left panel, we observe that

one-step SFOEWPT patterns (“1-a”, dark green points) occur at the upper range of the

values of v′S,CW/vS allowed by the boundary conditions, and that the range of v′S,CW/vS

for which we find such “1-a” transition patterns becomes wider for smaller values of |µ|.

For smaller values of v′S,CW/vS and larger values of |µ|, we find two-step transition patterns

where the intermediate phase is in the singlet-only direction (“2(I)”, blue points). How-

ever, except for a few “2(I)-a” points at values of µ ' 250–300 GeV and small values of
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Figure 3.12: Results from our parameter scans in the |µ| vs. v′S,CW/vS plane for the same

slice of parameter space as shown in the left panel of Figure 3.9: tan β = 1.5 and κ/λ =
−0.1. The left panel shows points categorized according to the phase transition patterns
suggested by the critical temperature calculation. In the right panel, points are instead
categorized by the thermal histories obtained from the nucleation calculation. For points
labeled “no transition”, CosmoTransitions did not return a transition chain starting in
the trivial minimum at high temperatures and ending in the physical minimum at zero
temperature, and points labeled “failed BC” do not satisfy our boundary conditions defined
in the text. The solid lines enclose the region of parameter space for which we find feasible
zero-temperature vacuum structure in subsection 3.3.2. These bounds are obtained from tree-
level relations, hence, for these bounds, the y-axis is v′S/vS , where v′S = − (µ/λ+ Aκ/2κ) is

the location of an extremum of V eff
0 in the singlet-only direction.

∣∣∣v′S,CW/vS

∣∣∣, the EWPT for these points is weakly first order (“2(I)-b”) or a second order

transition (“2(I)-c”) as indicated by the lighter blue shades of the points.

Qualitatively, the patterns suggested by the critical temperature calculation can mostly

be understood from the discussion of the zero-temperature vacuum structure in subsec-

tion 3.3.2. The left panel of Figure 3.9 shows the different constraints on the zero-temperature

vacuum structure (at tree level) for the same slice of parameter space as Figure 3.12. At

large values of v′S/vS , the trivial minimum is deeper than the physical minimum, indicated

by the green shade in Figure 3.9. Thus, towards large v′S,CW/vS , we expect the trivial
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minimum to play a large role in the thermal history, and accordingly, we find one-step tran-

sitions from the trivial to the physical minimum in this region of parameter space in the left

panel of Figure 3.12. Similarly, for small values of v′S/vS , the minimum in the singlet-only

direction is deeper than the physical minimum (blue shaded region in Figure 3.9), hence,

the singlet-only phase plays a larger role in the thermal history, explaining the appearance

of “2(I)” transition patterns for smaller values of v′S,CW/vS .

Focusing now on the results of the nucleation calculation, we should recall that elec-

troweak baryogenesis requires a SFOEWPT, i.e. one of the phase transition patterns labeled

with an “a” in our shorthand notation. The only such patterns we observe for tan β = 1.5

and κ/λ = −0.1 in the right panel of Figure 3.12 are direct one-step transitions (“1-a”, dark

green points), that occur for a narrow range of values v′S,CW/vS ∼ 0. At small values of

|µ|, the range of values of v′S,CW/vS for which we find SFOEWPTs widens slightly, before

being truncated by the boundary conditions. For values of v′S,CW/vS just below the “1-a”

patterns, we find one-step transitions from the trivial to the physical minimum which are

not strong first order (“1-b” and “1-c”, lighter green colors). For even smaller values of

v′S,CW/vS , we find two-step transitions where the intermediate phase is in the singlet-only

direction and where the second transition step, in which electroweak symmetry is broken,

is weakly first order or second order (“2(I)-b” or “2(I)-c”, light blue points). Note that

outside of these bands in v′S,CW/vS , we do not find points for which the nucleation calcula-

tion indicates thermal histories ending in the physical minimum. This should be contrasted

with the phase transition patterns suggested by the critical temperature calculation, where

we observe “1-a” patterns at much larger values of v′S,CW/vS . The nucleation calculation

points to a very different region of parameter space for SFOEWPTs than the critical tem-

perature calculation, except for a small overlap of the “1-a”-regions at
∣∣∣v′S,CW/vS

∣∣∣� 1 and

the smallest values of |µ| allowed by the boundary conditions.

The reason for the mismatch between the critical temperature and nucleation results
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was discussed in subsection 3.3.3: While the behavior of the critical temperatures can be

understood from the zero-temperature vacuum structure, the nucleation probability is con-

trolled by the height of the barrier separating the local minima, and the distance in field

space between the local minima. For all parameter points, the thermal evolution starts in

the trivial minimum at high temperatures. For large values of v′S/vS , the barriers around

the trivial minimum are large, making the tunneling probability prohibitively small. Hence,

for larger values of v′S/vS , the fields are “stuck” at HSM = HNSM = HS = 0, even if at

zero temperature the trivial minimum is no longer the global minimum of the potential as

required by the boundary conditions. For v′S/vS → 0, the zero-temperature effective po-

tential becomes flat in the singlet direction around the trivial point, and for v′S/vS < 0 the

trivial point turns into a saddle point of the potential, see Equation (3.88). For small values

of
∣∣v′S/vS∣∣, thermal effects can still give rise to a barrier around the trivial minimum at

finite temperatures, while for large negative values of v′S/vS , thermal effects can no longer

overcome the zero-temperature shape of the potential to give rise to the barrier required for

a SFOEWPT. This behavior of the barrier explains why the nucleation calculation singles

out the region around v′S,CW/vS = 0 for a SFOEWPT in the right panel of Figure 3.12.

For tan β = 3, shown in Figure 3.13, we find similar results as for tan β = 1.5. Beginning

with the critical temperature results (left panel), the main difference is that for the larger

values of tan β, we observe that two-step transition patterns (“2(II)”, orange and magenta

points) appear at small values of |µ|. This is somewhat difficult to understand from the

analysis in subsection 3.3.2. The constraints coming from local minima in the doublet-like

directions (orange shade in Figure 3.9) are the only vacuum structure constraints depending

on the value of tan β. However, as mentioned in section 3.3.4, the doublet-like directions

are subject to large radiative corrections, explaining the mismatch between the region where

“2(II)” patterns appear in our numerical results and the orange shaded region of the tree-level

vacuum structure analysis in Figure 3.9. The appearance of the “2(II)” patterns can however
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Figure 3.13: Same as Figure 3.12, but for tan β = 3 and κ/λ = −0.1

be understood from the region of parameter space for which m2
Hu

< 0, Equation (3.87). In

subsection 3.3.3, this condition was discussed in the context of the zero-temperature barrier

in the Hu-direction disappearing for m2
Hu

. 0, leading to large tunneling rates at finite

temperature. To understand the critical temperature results, it is more relevant to note that

for m2
Hu

< 0, the trivial point HSM = HNSM = HS = 0 becomes a saddle point in the

Hu-direction, suggesting that a local minimum should appear in the doublet-like direction.

For tan β = 3 and κ/λ = −0.1, at tree-level, m2
Hu

. 0 for |µ| . 230 GeV, explaining the

appearance of “2(II)” patterns in the small-|µ| region of the left panel of Figure 3.13. For

tan β = 1.5 and κ/λ = −0.1, shown in Figure 3.12, instead, m2
Hu

. 0 for |µ| . 125 GeV.

Such small values of |µ| are forbidden by the boundary conditions, and thus, we do not see

“2(II)” patterns appear in Figure 3.12.

Comparing the nucleation calculation results for κ/λ = −0.1 and tan β = 1.5 with those

for tan β = 3, shown in the right panel of Figure 3.12 and Figure 3.13, respectively, we

see that the preferred region of parameter space for a SFOEWPT is almost independent of

the value of tan β. The main difference is that for tan β = 3, points with smaller values
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of |µ| satisfy the boundary conditions, leading to the band of points around v′S,CW/vS = 0

for which we find SFOEWPTs (“1-a”, dark green points) extending to lower values of |µ|

than for tan β = 1.5. For tan β = 3, we also see the emergence of two-step transition

patterns, where electroweak symmetry is broken in the intermediate phase, (“2(II)”, orange

and magenta points) for positive values of v′S,CW/vS and small values of |µ|. As discussed

around Equation (3.87), for small values of |µ|, the barrier around the trivial point in the

Hu direction disappears. Note however that these points (except for one parameter point at

v′S,CW/vS ∼ 0) do not feature a SFOEWPT step, but both steps are weakly first order or

second order.

Let us now discuss the results for κ/λ = 0.1, shown in Figure 3.14 and Figure 3.15 for

tan β = 1.5 and tan β = 3, respectively. Comparing the κ/λ = −0.1 critical temperature

results (left panels) with those for κ/λ = 0.1, we find that many of the features remain

the same. The two main differences are that the boundary conditions relax for small values

of |µ|, allowing a larger range of values for v′S,CW/vS , and that for tan β = 3, “2(II)”

patterns appear even more prominently in the low |µ| region. The behavior of the boundary

conditions is discussed in section 3.3.4, hence, we focus on the latter difference here. As for

the κ/λ = −0.1 case, the appearance of “2(II)” patterns can be understood from the region

of parameter space where m2
Hu

< 0. From Equation (3.87), we find that, for tan β = 3 and

κ/λ = −0.1, the mass parameter for Hu becomes tachyonic for |µ| . 230 GeV, while for

κ/λ = 0.1, this critical value increases to |µ| . 320 GeV. Accordingly, we see that “2(II)”

patterns appear for larger values of |µ| for tan β = 3 and κ/λ = 0.1 (left panel of Figure 3.15)

than for κ/λ = −0.1 (left panel of Figure 3.13).

Let us now concentrate on the nucleation results for κ/λ = 0.1. For tan β = 1.5, see the

right panel of Figure 3.14, we find SFOEWPTs in the same regions of parameter space as for

κ/λ = −0.1 (Figure 3.12), with the exception of the |µ| . 150 GeV region, in which points

failed the boundary conditions for κ/λ = −0.1. For κ/λ = 0.1, the boundary conditions
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Figure 3.14: Same as Figure 3.12, but for tan β = 1.5 and κ/λ = 0.1.

Figure 3.15: Same as Figure 3.12, but for tan β = 3.0 and κ/λ = 0.1.
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are satisfied in this region of parameter space, and we see that for these small values of |µ|,

one-step SFOEWPT patterns (“1-a”, dark green points) appear for virtually the entire range

of v′S,CW/vS allowed by the boundary conditions. As discussed above, for small values of |µ|,

the barrier in the Hu direction can become small. More important for the small |µ| region in

this slice of the parameter space, the barrier in the singlet direction also becomes small for

|κµ| � 100 GeV, since m2
S ∝ κ2µ2(v′S/vS), see Equation (3.88), allowing for a SFOEWPT

even if v′S,CW/vS takes values far from zero.

For tan β = 3, we likewise find similar behavior for κ/λ = 0.1 (right panel of Figure 3.15)

and for κ/λ = −0.1 (right panel of Figure 3.13). Here, the main difference is that for κ/λ =

0.1, two-step transition patterns where electroweak symmetry is broken in the intermediate

phase (“2-II”) play a larger role than for κ/λ = −0.1, restricting the values for which we

find SFOEWPTs to a narrower band of values of v′S,CW/vS . This can again be understood

from the range of values for which Hu becomes tachyonic around the trivial point. Note

that the presence of this tachyonic direction in the effective potential (at zero temperature)

makes it more difficult to achieve transition patterns favorable for baryogenesis, which we

see reflected in the absence of “1-a” transition patterns for |µ| . 200 GeV in the right panel

of Figure 3.15.

Considering finally the critical temperature results for κ/λ = 0.3 (left panels of Fig-

ure 3.16 and Figure 3.17), we find that compared to the results for smaller values of κ/λ,

two-step transition patterns play a much larger role. Comparing Equation (3.78) with Equa-

tion (3.81), we see that the depth of the singlet-like minimum is much more sensitive to

the value of κ/λ than the depth of the physical minimum, and thus, the minimum in the

singlet-only direction plays a larger role in the thermal history for larger values of κ/λ,

leading to “2(I)” patterns (blue points) appearing more prominently for κ/λ = 0.3 than

for κ/λ = −0.1 and 0.1. Likewise, we see “2(II)” patterns (orange and magenta points)

appearing more prominently in the region of parameter space not ruled out by the boundary
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Figure 3.16: Same as Figure 3.12, but for tan β = 1.5 and κ/λ = 0.3.

Figure 3.17: Same as Figure 3.12, but for tan β = 3.0 and κ/λ = 0.3.
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conditions. For tan β = 1.5 and κ/λ = 0.3, we find from Equation (3.87) that m2
Hu

< 0 (at

zero temperature) for |µ| . 180 GeV, while for κ/λ = 0.3, the critical value is |µ| . 840 GeV.

Regarding the nucleation results, for tan β = 1.5 and κ/λ = 0.3, shown in the right panel

of Figure 3.16, we find SFOEWPTs for small values of |µ| and
∣∣∣v′S,CW/vS

∣∣∣. The scaling of the

depths of the respective local minima with v′S/vS becomes faster the larger the value of |κ/λ|,

making the change in phase transition behavior with the value of v′S,CW/vS more rapid for

this larger value of κ/λ than what we have observed for lower values of κ/λ. Thus, the range

of v′S,CW/vS leading to (one-step) SFOEWPTs is smaller for all values of |µ| than what we

found for κ/λ = ±0.1. Furthermore, we observe that “2(II)” transition patterns appear for

small values of |µ| due to the disappearance of the barrier in the Hu direction. This behavior

is even more pronounced for tan β = 3 and κ/λ = 0.3, see the right panel of Figure 3.17. In

this slice of parameter space, m2
Hu

< 0 (at zero temperature) for |µ| . 840 GeV, and we do

not find any parameter points with a SFOEWPT.

We stress that for all slices of parameter space shown in Figure 3.12– Figure 3.17, the

region providing favorable conditions for electroweak baryogenesis via a SFOEWPT differs

markedly when the thermal history is inferred from the nucleation calculation instead of

the simpler calculation of studying only the vacuum structure at the critical temperatures.

While the critical temperature results can be explained from the zero-temperature vacuum

structure, the regions of parameter space where SFOEWPTs actually nucleate can only be

understood when considering the barriers of the effective potential. We find that SFOEWPTs

can only nucleate if
∣∣∣v′S,CW/vS

∣∣∣ � 1 and |κ/λ| is not too large, leading to a small barrier

in the singlet direction. If |κµ| is significantly smaller than the weak scale, larger values of

v′S,CW/vS can still lead to a small barrier in the singlet direction and a successful SFOEWPT.

For larger values of κ/λ and tan β, the barrier in the Hu direction disappears in the small

|µ| region, leading to multi-step phase transition patterns where electroweak symmetry is

broken in the intermediate phase, and typically, no SFOEWPT is realized.
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A collection of five benchmark points which exemplify the different types of phase tran-

sition behavior we observe in the different regions of the parameter space can be found in

the original paper.

In Figure 3.18, we collect the results of our scans over the different slices of parameter

space shown separately in Figure 3.12– Figure 3.17. As before, we classify points based on the

thermal histories suggested by the critical temperature calculation in the left panels, while in

the right panels, parameter points are color-coded according to the results of the nucleation

calculation. In order to highlight the region of parameter space for which the respective

calculations indicate a SFOEWPT, we show only the points falling in one of the transition

patterns “1-a”, “2(I)-a”, “2(II)-aa”, “2(II)-ab”, “2(II)-ac”, “2(II)-ba”, or “2(II)-ca” in Fig-

ure 3.18. In the upper panels, we show results in the |µ| vs. v′S,CW/vS plane. Comparing

the left and the right panels, it is evident that the critical temperature calculation gives a

misleading picture of the parameter space favorable for electroweak baryogenesis. We note

also that a one-step SFOEWPT (“1-a”, green points) is by far the most generic possibility

to realize a SFOEWPT in the NMSSM. While multi-step transitions including a SFOEWPT

step can occur in the NMSSM, our results suggest that such transition patterns require very

particular combinations of parameters, making them rare in a (random) parameter scan.

Collider and dark matter phenomenology

In this section we discuss the prospects for collider searches to cover the region of parameter

space where we find SFOEWPTs and comment on the possibility of realizing a dark matter

candidate in this parameter space.

In the lower panels of Figure 3.18, we show the points from our parameter scans for which

we find a SFOEWPT in the plane of the masses of the two non-SM-like neutral CP-even

Higgs bosons. Recall that we denote the state with the largest HS component by hS , and

the state with the largest HNSM component by H. Comparing the left and the right panels,
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Figure 3.18: Points collected from our combined parameter scans (tan β = 1.5, 3 and κ/λ =
−0.1, 0.1, 0.3) for which the critical temperature calculation (left panels) or the nucleation
calculation (right panels) indicates a SFOEWPT. In the upper panels, we plot the points in
the same plane as in Figure 3.12–Figure 3.17, while in the lower panels we show parameter
points in the plane of the masses of the non-SM-like CP-even Higgs mass eigenstates.
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we observe that, similar to what we saw in the |µ| vs. v′S,CW/vS plane, the results based

on the full nucleation calculation lead to a considerably tighter relation between mH and

mhS for points with SFOEWPTs than the results of the critical temperature calculation, as

well as a significant shift of the preferred region of parameter space. As we have seen above,

SFOEWPTs occur in the region of parameter space where
∣∣v′S/vS∣∣� 1, or |κµ| � 100 GeV.

In this limit, the mass of the singlet-like mass eigenstate (at tree-level and in the alignment

limit), is approximately given by

m2
hS
≈ sin2(2β)

{
κ2

λ2

M2
A

2
+ λ2v2

[
1− κ

λ

(
1 + 2 cos2(2β)

sin(2β)

)]}
, (3.92)

while the mass of the doublet-like mass eigenstate is approximately

m2
H ∼M2

A ∼ 4µ2/ sin2(2β) . (3.93)

Due to the overall dependence mhS ∝ MA sin(2β)|κ/λ|, the mass of hS decreases with

growing values of tan β. Furthermore, mhS grows faster with mH for larger |κ/λ| values,

and the dependence of mhS on the sign of κ/λ is small unless |κ/λ| takes large values.

These properties, together with the distribution of points in the |µ|–v′S,CW/vS plane for the

respective values of κ/λ and tan β shown in Figure 3.12–Figure 3.17, allow us to understand

the relation betweenmH andmhS visible in the lower right panel of Figure 3.18. For instance,

points on the right, for which one obtains the largest values of MH and the smallest values

of mhS for a given MH , correspond to tan β = 3 and κ/λ = ±0.1. The points on the left,

which correspond to tan β = 1.5, separate in two branches. The branch with the lowest

values of mhS corresponds to κ/λ = ±0.1, while the branch with the largest values of mhS

correspond to κ/λ = 0.3.

While we leave a study of the collider phenomenology of the region of parameter space

where we find a SFOEWPT for future work, we can make some broad statements. As we
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have seen in section 3.3.4, see also Figure 3.12–Figure 3.18, SFOEWPTs can be realized in

the NMSSM for small values of |κ/λ| and tan β, and not too large values of |µ|, leading to

relatively light non-SM-like Higgs bosons. From Equation (3.93) we find that the doublet-

like state can be as light as mH ∼ 200 GeV for tan β = 1.5 and |µ| ∼ 100 GeV, as shown

in the lower right panel of Figure 3.18. Similarly, the singlet-like state can be as light

as mhS ∼ 70 GeV for tan β = 3, κ/λ = 0.1, and |µ| ∼ 100 GeV. Despite the relatively

small masses, this region of parameter space is challenging to probe at colliders: The direct

production cross section of the singlet-like state is suppressed by its small doublet component,

we find
∣∣∣CNSM
hS

∣∣∣ . 10 % for the points featuring a SFOEWPT. The doublet-like state H has

sizable production cross sections. However, its decay patterns make it challenging to probe

for the small values of tan β preferred by a SFOEWPT. Considering the decays into pairs

of SM fermions, due to the small value of tan β, the decay mode into top-quark pairs will

dominate if kinematically accessible. Thus, for mH & 350 GeV, the branching ratio into pairs

of top quarks will be large and this final state is very challenging to probe at hadron colliders

such as the LHC [238–245]. For mH . 350 GeV on the other hand, the H → τ+τ− channel

could provide some sensitivity. However, due to the preference for small values of |µ| and

|κ/λ|, the Higgsinos and singlinos will be relatively light; their mass parameters are µ and

2κµ/λ, respectively. Thus, decays of H into pairs of neutralinos will be kinematically allowed

in the parameter region preferred by a SFOEWPT, and the associated branching ratios will

be sizable, suppressing H → τ+τ− decays. The final states arising from decays of H into

neutralinos are challenging to probe at the LHC, see, for example, refs. [237, 243, 246–249].

Out of the di-boson final states, decays of H into two SM(-like) states, e.g. h125h125, ZZ,

and W+W− will be strongly suppressed due to alignment [192,250]. However, the branching

ratios into final states containing at least one singlet-like boson, such as h125hS or aSZ, will

be sizable if kinematically allowed [192,219,220,250–257], making these channels a promising

means to explore the region of parameter space preferred for a SFOEWPT.

115



Considering the neutralino sector, we find that the region of parameter space where a

SFOEWPT is realized features light singlinos. However, a singlino-like neutralino is only a

good dark matter candidate if its spin-independent cross section is suppressed by the so-called

blind-spot cancellations, see, for example, refs. [165,167,173]. For a singlino-like dark matter

candidate, the blind-spot condition in the NMSSM is 2κ/λ ≈ sin 2β, requiring larger values

of κ/λ or tan β than those for which we find SFOEWPTs. On the other hand, the value of the

bino mass parameter M1 has practically no influence on the SFOEWPT16. Thus, the most

promising dark matter scenario in the region of parameter space where we find SFOEWPTs

is a bino-like lightest neutralino. The interaction cross sections of such a bino-like neutralino

can be sufficiently small to be compatible with the null results from direct detection type

experiments without requiring additional (blind-spot) cancellations [173, 258]. However, its

couplings are too small to provide the correct dark matter relic density via standard thermal

production. For |M1| & mt, the correct relic density for a bino-like lightest neutralino can

be achieved via co-annihilation with the singlino-like neutralino in the so-called new well-

tempered scenario, where |M1| ∼ |2κµ/λ| [173]. The bulk of the region of parameter space

where we find SFOEWPTs features smaller values of |µ|. There, the correct relic density for a

bino-like lightest neutralino could be achieved via resonant annihilation through the singlet-

like CP-even or CP-odd states, hS or aS , requiring the mass of the lightest neutralino χ1 to

satisfy mχ1 ' mhS/2 or mχ1 ' maS/2, respectively. Alternatively, the NMSSM neutralinos

may be unstable (on cosmological scales) and the dark matter may be provided by particles

not included in the NMSSM, like axions and axinos (see, for example, ref. [259]).

16. In our calculation, M1 enters only via the radiative corrections, see Equation (3.B.23). Any effect on
the phase transition pattern of a given parameter point from changing the value of M1 can be counteracted
by, e.g., modifying the value of M2.
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3.3.5 Summary and conclusions of the section

Calculating the phase transitions in models of new physics is numerically expensive, and

hence, most studies in the literature content themselves with studying the vacuum structure

at the critical temperatures. At the critical temperature, the role of the global minimum of

the potential passes from one local minimum to another, hence, this calculation ensures that

a necessary condition for a first order phase transition is met. However, the critical tem-

perature calculation does not ensure that the (quantum-mechanical) tunneling rate through

the barrier separating the false from the true vacuum is large enough for such a first order

phase transition to occur. In this section, we have investigated if a more complete calcu-

lation including the computation of the nucleation probability is necessary to understand

the phase transition patterns in models of new physics. As an example model, we chose the

Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM).

We focused our case study of the NMSSM on the region of parameter space where

alignment-without-decoupling is realized. For the purposes of the phase transition, the

remaining four-dimensional parameter space is well described by the set of parameters κ/λ,

tan β, |µ|, and v′S/vS , where v′S is the vev of the singlet HS at an extremum of the effective

potential in the singlet-only direction, and vS is the vev of HS at the physical minimum.17

Using extensive parameter scans, we have demonstrated that successful nucleation of a

SFOEWPT occurs mostly in a narrow region of parameter space where
∣∣v′S/vS∣∣ takes small

values, and that the range of v′S/vS leading to a SFOEWPT becomes increasingly narrow

for larger values of κ/λ, tan β, and |µ|. This region of parameter space differs markedly

from what one would have inferred from the critical temperature calculation alone, that, in

general, suggests a SFOEWPT for much larger values of v′S/vS . The difference between the

two results can be understood from the shape of the effective potential. In the region of the

17. We will suppress the subscript “CW” which we use to differentiate between the vev of the tree-level
potential (v′S) and of the effective potential after including radiative corrections (v′S,CW) in the main text
here. We refer the reader to subsection 3.3.4 for a more detailed discussion of our results.
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parameter space suggested by the critical temperature calculation, the barriers around the

trivial minimum, where the thermal evolution of the model begins at very high temperatures,

are large, leading to prohibitively small tunneling rates. However, the barrier in the singlet

direction diminishes for small values of
∣∣v′S/vS∣∣, enabling tunneling from the trivial minimum.

As we have shown, the requirement on the values for v′S/vS loosens for values of |κµ| far below

the weak scale. The dependence of the parameter region where we find a SFOEWPT on

the value of tan β arises mainly from the disappearance of the barrier in the Hu-direction,

triggering a phase transition which tends to lead to thermal histories incompatible with

electroweak baryogenesis. The barrier in the Hu-direction disappears for small values of |µ|,

and the range of values of |µ| for which this occurs is broader for larger values of tan β and

κ/λ.

Note that our findings are obtained in a perturbative expansion of the effective poten-

tial (to one loop, improved by relevant resummations), and, hence, may be affected by the

well-known shortcomings associated with this expansion [75,196,260–268]. Nonetheless, our

results stress the relevance of computing the nucleation probability to obtain the regions

of parameter space promising for electroweak baryogenesis via a SFOEWPT. Our compu-

tations strongly rely on the accuracy of CosmoTransitions, thus, they would profit from

corroboration with an independent calculation of the tunneling rate.

While we have focused on the phase transitions, the region of parameter space where a

SFOEWPT occurs also leads to interesting collider and dark matter phenomenology. We

find masses of the singlet-like state 70 GeV . mhS . 200 GeV. The mass of the new doublet-

like Higgs H, on the other hand, depends more strongly on tan β. At moderate values of

tan β, we find mH & 350 GeV, and hence, H decays prominently into pairs of top quarks.

For smaller values of tan β ∼ 1.5, H can be lighter than the top pair production threshold.

Although in principle this enhances the branching ratio into tau leptons, collider searches in

conventional SM decay modes of these non-SM-like Higgs bosons are quite challenging due
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to the presence of decays into light non-standard Higgs, neutralino, and chargino states. The

most promising search channels seem to arise via the so-called Higgs cascade decays, e.g.,

H → h125 + hS . We reserve a more detailed study of the collider phenomenology for future

investigation.

The preference for small values of κ/λ for a SFOEWPT implies the presence of a light

singlino in the spectrum. While the spin-independent cross section of such a singlino is

too large to be compatible with the null results from direct detection experiments in the

region of parameter space where we find a SFOEWPT, a viable dark matter candidate could

be realized via a bino-like lightest neutralino, if its annihilation cross section is enhanced

through co-annihilation or resonant annihilation.

In closing, we would like to stress that arguably the most important result of this section

is that the nucleation calculation yields qualitatively different results for the phase transition

patterns in the NMSSM than what the simpler analysis based only on the vacuum structure at

the critical temperatures suggests. While our numerical results are obtained in the NMSSM,

we expect similar behavior to appear in other models where multiple scalar fields participate

in the EWPT. Our results emphasize that, in order to infer the regions of parameter space

where electroweak baryogenesis can be realized, it is critical to compute the thermal histories

based on the nucleation probabilities.

3.A Appendices for the electroweak phase transition with

spontaneous Z2-breaking

3.A.1 Parameterization

There are five bare parameters in the tree-level potential, {µ2
h, µ

2
s, λh, λs, λm}, that can be

traded with five physical parameters {vEW,mH , tan β,mS , sin θ}. The Higgs vev vEW and
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the Higgs mass mH are fixed by boundary conditions

vEW = 246 GeV, mH = 125 GeV, (3.A.94)

whereas the remaining three parameters are the mass of the singlet-like eigenstate, the ratio

of the singlet field vev to the Higgs field vev and the mixing between the mass eigenstates,

respectively:

mS , tan β(≡ wEW

vEW
), sin θ. (3.A.95)

The tree-level relations between these two sets of parameters are given by

µ2
h =

1

4

(
2m2

H cos2 θ + 2m2
S sin2 θ + (m2

S −m2
H) tan β sin 2θ

)
,

µ2
s = −1

4

(
2m2

H sin2 θ + 2m2
S cos2 θ + (m2

S −m2
H) cot β sin 2θ

)
,

λh =
m2
H cos2 θ +m2

S sin2 θ

2v2
EW

,

λs =
m2
H sin2 θ +m2

S cos2 θ

2 tan2 βv2
EW

,

λm =
(m2

S −m2
H) sin 2θ

2 tan βv2
EW

.

(3.A.96)

These tree-level relations provide a guidance for the understanding of the parametric depen-

dence of the EWPT strength, although such relations are modified after considering the CW

corrections.

3.A.2 Spontaneous Z2-breaking: other phase transition patterns

Another type of phase transitions that could occur in the thermal history is

(0,0)→(ṽ,0)→(v,w)
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(0,w̃)→(0,0)→(ṽ,0)→(v,w),

where the two scenarios differ from each other by the fact that the Z2 symmetry is restored

or non-restored at high temperatures. Otherwise, they share the same final path towards the

electroweak physical vacuum. In both scenarios, the electroweak symmetry is first broken

through the step

(0, 0)→ (ṽ, 0), (3.A.97)

where (ṽ, 0) is an intermediate phase at which the electroweak symmetry is broken while the

Z2 symmetry remains preserved. Since the singlet does not acquire a vev, it plays no major

role in perturbing the potential depth at tree-level. Therefore the phase transition strength

in this step is not largely affected by the existence of the extended singlet sector. Solving

the finite temperature effective potential under the high temperature approximation, given

in Equation (3.17), the strength of such a step is

ṽ(Tc)

Tc
=

2ESM

λh
=

2ESM

λSM
h

[
1− sin2 θ

m2
S −m2

H

m2
H cos2 θ +m2

S sin2 θ

]
. (3.A.98)

The transition is enhanced when mS < mH . However, the enhancement is bounded from

above by constraints from Higgs precision measurements, which roughly set the mixing angle

| sin θ| . 0.4. Accordingly, the transition strength is bounded as

ṽ(Tc)

Tc
≤ 2ESM

λSM
h

[
1 + tan2 θ

]
. 1.2

(
2ESM

λSM
h

)
≈ 0.36. (3.A.99)

This upper bound on the transition strength is far below the requirement of SFOEWPT. Af-

ter including the CW potential and the daisy resummation corrections, such a step still yields

small values of
ṽ(Tc)
Tc

, provided the couplings still fulfill perturbative unitarity conditions.

From the temperature Tc, at which the (ṽ, 0) is present, the thermal history proceeds
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Figure 3.19: Higgs vev to temperature ratios of the high temperature phase and low tem-
perature phase for the transition step (ṽ, 0) → (v, w) at a critical temperature T ′c. Results
are obtained from numerical scanning with effective potential including tree-level and one-
loop thermal potential. The sub figure shows phase transition strength of the previous step
(0, 0) → (ṽ, 0) at a critical temperature Tc, where the electroweak symmetry is first broken
and the Higgs obtains its non-zero vev ṽ.

to the next phase transition step, (ṽ, 0) → (v, w), at a lower temperature T ′c, which breaks

Z2 and may further change the value of the electroweak symmetry breaking vacuum. Such

a step is either a smooth cross over, or a first-order phase transition. If it is of first-order

nature, the singlet field can play a role in rendering the strength of the phase transition

strong first order. As shown in Figure 3.19, such is the case for
v(T ′c)
T ′c

& 1 at T ′c, for which

the sphaleron rate inside the bubble is suppressed. However, we observe that the sphaleron

rate outside the bubble is also suppressed during the bubble nucleation whenever the ratio

of the high temperature phase
ṽ(T ′c)
T ′c

& 1. Therefore although the step (ṽ, 0) → (v, w) can

evolve a strong first order phase transition, no net baryon asymmetry can be created during

the bubble nucleation.

In summary, although this type of thermal history occupies a sizable parameter space,

it is not of special interests for modeling electroweak baryogenesis. The first electroweak

breaking step (0, 0) → (ṽ, 0) is weakly first-order, and any baryon asymmetry created is to
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be erased. For the following step (ṽ, 0)→ (v, w), although the phase transition can be strong

first order, the sphaleron process is suppressed both inside and outside the bubble through

the transition, therefore, no baryon asymmetry can be sourced.

3.B Appendices for NMSSM

3.B.1 Field-dependent masses

In this appendix, we present explicit expressions for the field-dependent masses after inclusion

of the leading stop corrections, but without corrections from the CW potential. As argued in

subsection 3.3.1, it suffices to study the potential as a function of the three neutral CP-even

degrees of freedom
{
HSM, HNSM, HS

}
.

Let us begin by presenting the expression for the field-dependent (squared) masses in the

scalar sector. These can be directly obtained from the scalar potential,

m̂Φi,Φj = m̂i,j(H
SM, HNSM, HS) ≡ ∂2V

∂Φi∂Φj

∣∣∣∣ HSM 6=0
HNSM 6=0
HS 6=0

. (3.B.1)

The entries involving the CP-even interaction states are

m̂2
HSM,HSM =

(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2s4
β

)1 +
3
[
(HSM)2 − 2v2

]
4v2


+
λ2

2

(
1− κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)

+
(HNSM)2

4v2

[
m2
Zs

2
2β + λ2v2c22β −

(
m2
Z − λ2v2

)
c4β

]
− 3HSMHNSM

4v2

(
m2
Z − λ2v2

)
s4β

+
3HNSM

4v
∆λ2vsβs2β

(
2HSMsβ +HNSMcβ

)
, (3.B.2)
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m̂2
HSM,HNSM = −

(
m2
Z − λ2v2 −∆λ2v

2
s2
β

c2β

)
s2βc2β

1 +
3
[
(HSM)2 − 2v2

]
4v2


+
HSMHNSM

4v2

[
m2
Z

(
1− 3c4β

)
+ λ2v2 (1 + 3c4β

)
+ 3∆λ2v

2s2
2β

]
+

3(HNSM)2

4v2

(
m2
Z − λ2v2 + ∆λ2v

2
c2β
c2β

)
s2βc2β

− λ

2
c2β

(
κHS +

M2
A√
2µ
s2β

)(
HS −

√
2µ

λ

)
, (3.B.3)

m̂2
HSM,HS = 2λvµ

[
HSM
√

2v

HS
√

2µ/λ
− M2

A

4µ2

HSM
√

2v
s2
2β

−κ
λ

(
HSM
√

2v
s2β +

HNSM
√

2v
c2β

)(
1

2
+
HS −

√
2µ/λ√

2µ/λ

)]

−
√

2λM2
A

8µ
HNSMs4β , (3.B.4)
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m̂2
HNSM,HNSM = M2

A +

(
m2
Z − λ2v2 +

∆λ2v
2

2

)
s2
2β

+
[
m2
Z

(
1− 3c4β

)
+ λ2v2 (1 + 3c4β

)
+ 3∆λ2v

2s2
2β

] (HSM)2 − 2v2

8v2

+
λ2

2

(
1 +

κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
+

λ√
2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)

+
3HSMHNSM

4v2

(
m2
Zs4β − λ2v2s4β + 2∆λ2v

2s2βc
2
β

)
+

3(HNSM)2

4v2

(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2c4β

)
, (3.B.5)

m̂2
HNSM,HS = −H

SM
√

2
λµc2β

κλ
1 +

2
(
HS −

√
2µ/λ

)
√

2µ/λ

+
M2
A

2µ2
s2β


+
√

2HNSMλµ

M2
A

4µ2
s2
2β +

λ√
2µ
HS +

κ

2λ
s2β

1 +
2
(
HS −

√
2µ/λ

)
√

2µ/λ

 ,

(3.B.6)

m̂2
HS,HS =

λ2v2

2
s2β

{
M2
A

2µ2
s2β −

κ

λ

[
1 +

(HSM)2 − 2v2

v2

]}

+
κµ

λ

Aκ
1 +

2
(
HS −

√
2µ/λ

)
√

2µ/λ

+ 4
κµ

λ

[
1 +

(HS)2 − 2µ2/λ2

4µ2/3λ2

]
+ λ2v2 (HSM)2 − 2v2

2v2
− λκHNSM

2

[
2HSMc2β −HNSM

(
λ

κ
+ s2β

)]
.

(3.B.7)
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The entries involving the CP-odd states are

m̂2
ANSM,ANSM = M2

A (3.B.8)

+
[
λ2v2 (3 + c4β

)
− 2m2

Zc
2
2β + ∆λ2v

2s2
2β

] (HSM)2 − 2v2

8v2

+
λ2

2

(
1 +

κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
+

λ√
2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)

+
(
λ2v2s2

2β +m2
Zc

2
2β + 2∆λ2v

2c4β

) (HNSM)2

4v2

−
(
λ2v2s4β −m2

Zs4β − 2∆λ2v
2s2βc

2
β

) HSMHNSM

4v2
, (3.B.9)

m̂2
ANSM,AS = λv

HSM
√

2v

[
M2
A

2µ
s2β − 3

κµ

λ

(
1 +

HS −
√

2µ/λ

3µ/
√

2λ

)]
, (3.B.10)

m̂2
ANSM,G0 = −

(
m2
Zc2β − λ2v2c2β −∆λ2v

2s2
β

)
s2β

(HSM)2 − 2v2

4v2

+
(
m2
Zc2β − λ2v2c2β + ∆λ2v

2c2β

)
s2β

(HNSM)2

4v2

+

(
m2
Z − λ2v2 +

∆λ2v
2

2

)
s2
2β
HSMHNSM

2v2

− λκ

2
c2β

[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
c2β

(
HS −

√
2µ

λ

)
,

(3.B.11)
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m̂2
AS,AS =

λ2v2

2
s2β

(
M2
A

2µ2
s2β +

3κ

λ

)
− 3κµAκ

λ

+ κ2
[
(HS)2 − 2µ2

λ2

]
−
√

2κAκ

(
HS −

√
2µ

λ

)

+ λ2v2
(

1 +
κ

λ
s2β

) (HSM)2 − 2v2

2v2
+ λ2v2

(
1− κ

λ
s2β

) (HNSM)2

2v2

+ λκc2βH
SMHNSM , (3.B.12)

m̂2
AS,G0 = λHNSM

(
κHS +

κµ√
2λ
− M2

A

2
√

2µ
s2β

)
, (3.B.13)

m̂2
G0,G0 =

(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2s4
β

) (HSM)2 − 2v2

4v2

−
[
2m2

Zc
2
2β − λ2v2 (3 + c4β

)
−∆λ2v

2s2
2β

] (HNSM)2

8v2

−
(
m2
Zc2β − λ2v2c2β −∆λ2v

2s2
β

)
s2β

HSMHNSM

2v2

+
λ2

2

(
1− κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)
.

(3.B.14)

Note that as required, at the physical minimum, i.e. where m̂ΦiΦj

(
HSM, HNSM, HS

)
→

m̂ΦiΦj

(√
2v, 0,

√
2µ/λ

)
≡ mΦiΦj ,

mG0,G0 = mANSM,G0 = mAS,G0 = 0 , (3.B.15)

or in words, the neutral Goldstone mode G0 is massless and decouples from the other CP-odd

neutral states ANSM and AS.
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The elements involving the charged states are

m̂2
H+,H− = M2

A − λ2v2 +m2
W

−
(
m2
Zc

2
2β + λ2v2s2

2β − 2m2
W −

∆λ2v
2

2
s2
2β

)
(HSM)2 − 2v2

4v2

+
(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2c4β

) (HNSM)2

4v2

+
(
m2
Zc2β − λ2v2c2β + ∆λ2v

2c2β

)
s2β

HSMHNSM

2v2

+
λ2

2

(
1 +

κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
+

λ√
2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)
,

(3.B.16)

m̂2
H+,G− = m̂2

H−,G+ = −
(
m2
Zc2β − λ2v2c2β −∆λ2v

2s2
β

)
s2β

(HSM)2 − 2v2

4v2

+
(
m2
Zc2β − λ2v2c2β + ∆λ2v

2c2β

)
s2β

(HNSM)2

4v2

+

(
m2
Zs

2
2β + λ2v2c22β −m2

W +
∆λ2v

2

2
s2
2β

)
HSMHNSM

2v2

− λκ

2
c2β

[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
c2β

(
HS −

√
2µ

λ

)
, (3.B.17)

m̂2
G+,G− =

(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2s4
β

) (HSM)2 − 2v2

4v2

−
(
m2
Zc

2
2β + λ2v2s2

2β − 2m2
W −

∆λ2v
2

2
s2
2β

)
(HNSM)2

4v2

−
(
m2
Zc2β − λ2v2c2β −∆λ2v

2s2
β

)
s2β

HSMHNSM

2v2

+
λ2

2

(
1− κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)
.

(3.B.18)
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At the physical minimum, we again find

mG+G− = mH+,G− = mH−,G+ = 0 , (3.B.19)

or in words, the charged Goldstone mode G± is massless and decouples from the charged

Higgs H±.

The remaining entries of the (symmetric) (10×10) matrix of the m̂Φi,Φj not listed above

vanish due to CP- and charge conservation.

The field-dependent masses for the electroweak gauge bosons are given by

m̂2
W± =

g2
2

4

[
(HSM)2 + (HNSM)2

]
, (3.B.20)

m̂2
Z =

g2
1 + g2

2

4

[
(HSM)2 + (HNSM)2

]
, (3.B.21)

with the weak mixing angle cos θW = g2/
√
g2

1 + g2
2 = mW /mZ . The masses of the vector

bosons at the physical minimum are related to the gauge couplings as

g1 =
√

2 sin θW
mZ

v
, g2 =

√
2
mW

v
. (3.B.22)

For the 5 neutralinos, the (symmetric) matrix of field-dependent masses in the basis
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{
B̃, W̃ 3, H̃0

d , H̃
0
u, S̃

}
can be written as

M̂χ0 =



M1 0
−g1

2

(
cβH

SM

−sβHNSM
) g1

2

(
sβH

SM

+cβH
NSM

) 0

M2

g2
2

(
cβH

SM

−sβHNSM
) −g2

2

(
sβH

SM

+cβH
NSM

) 0

0 − λ√
2
HS − λ√

2

(
sβH

SM + cβH
NSM

)
0 − λ√

2

(
cβH

SM − sβHNSM
)

√
2κHS



.

(3.B.23)

In the basis ψ±i =
{
W̃+, H̃+

u , W̃
−, H̃−d

}
the field-dependent mass terms for the charginos

can be written as

L ⊃ −1

2
(ψ±)T

 0 X̂T

X̂ 0

ψ± + h.c. , (3.B.24)

where

X̂ =

 M2
g2√

2

(
sβH

SM + cβH
NSM

)
g2√

2

(
cβH

SM − sβHNSM
)

λ√
2
HS

 . (3.B.25)

Finally, the field-dependent mass of the top quark is given by

m̂t =
1√
2
ht

(
sβH

SM + cβH
NSM

)
, (3.B.26)

where the Yukawa coupling ht is related to the (running) top quark mass mt via ht = mt/sβv.

We compute the contributions to the CW potential as well as to the thermal potential

in the Landau gauge. This is useful since in the Landau gauge the ghosts decouple and we

do not have to include them in our calculations. The quantities entering the CW and the

thermal potential are the eigenvalues of the respective mass matrices. Recall that the number
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of degrees of freedom are ni = 1 for the three neutral CP-even and three neutral CP-odd

states, ni = 2 for the two charged Higgs states, ni = 6 for the W± bosons, and ni = 3

for the Z-boson. Out of the fermions, the top quark has ni = 12 and the five neutralinos

have ni = 2 each. Since we wrote the chargino mass matrix, Equation (3.B.24), in terms of

four Majorana states (which combine to two physical Dirac fermions), the four eigenvalues

of Equation (3.B.24) enter with ni = 2 each.

3.B.2 Counterterm coefficients

In order to maintain the location of the physical minimum at
{
HSM, HNSM, HS

}
=

√
2 {v, 0, µ/λ}, preserve mh125

= 125 GeV, and M2
S,13 → 0 (i.e. alignment of HS and HS)

after including the CW corrections, we include the counterterms given in Equation (3.68).

The solutions for the counterterms to satisfy these conditions are

δm2
Hd

= − 1

2v

(√
2
∂V1

∂HSM
−
√

2 tan β
∂V1

∂HNSM
− µ

λ cos2 β

∂2V1

∂HSM ∂HS

)
, (3.B.27)

δm2
Hu

=
1

2v sin2 β

[
cos(2β)− 2√

2

∂V1

∂HSM
− sin(2β)√

2

∂V1

∂HNSM

+v

(
∂2V1

∂HSM ∂HSM
−m2

h125

)
+
µ

λ

∂2V1

∂HSM ∂HS

]
, (3.B.28)

δm2
S

= − λ

2µ

(√
2
∂V1

∂HS
− v ∂2V1

∂HSM ∂HS

)
, (3.B.29)

δλAλ =
1

v sin(2β)

∂2V1

∂HSM ∂HS
, (3.B.30)

δλ2
=

1

2
√

2v3 sin4 β

[
∂V1

∂HSM
+
√

2v

(
m2
h125
− ∂2V1

∂HSM ∂HSM

)]
, (3.B.31)

where

V1 = V1(T = 0) = V eff
0 + V CW

1−loop , (3.B.32)

is the effective potential including the CW corrections V CW
1−loop at zero temperature, all

derivatives are evaluated at the physical minimum,
{
HSM, HNSM, HS

}
=
√

2 {v, 0, µ/λ},
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and mh125
is an input parameter which sets the mass of the HSM interaction eigenstate of

the Higgs basis.

3.B.3 Daisy coefficients

The Daisy coefficients ci for the thermal masses

m̃2
i = m̂2

i + ciT
2 , (3.B.33)

can be obtained from the high-temperature limit of the thermal corrections to the effective

potential,

cij =
1

T 2

∂2V
T 6=0
1−loop(m̂2)

∂φi ∂φj

∣∣∣∣∣∣
T�m̂2

. (3.B.34)

Note that for the derivation of the Daisy coefficient, V
T 6=0
1−loop = V

T 6=0
1−loop(m̂2

i ) is computed

with the temperature independent field-dependent masses m̂2
i , while when computing the

temperature-dependent effective potential, the Daisy-resummation improved thermal masses

m̃2
i are inserted in V

T 6=0
1−loop as well as in the CW potential.

Note also that while we gave explicit expressions for the m̂2
i as a function of the three

neutral CP-even Higgs boson interaction states, HSM, HNSM, and HS, in appendix 3.B.1,

when computing the Daisy coefficients via Equation (3.B.34), the field-dependent masses

must be inserted as a function of all bosonic fields, i.e.

m̂2
i,j = m̂2

i,j(H
SM, HNSM, HS, ANSM, AS, H±, G0, G±, Z0,W±) . (3.B.35)
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The non-vanishing coefficients involving the neutral Higgs bosons are

cHSMHSM = cG0G0 =
λ2

4
+
m2
Z + 2m2

W

4v2
+
m2
t

4v2
+

∆λ2

4
s2
β , (3.B.36)

cHSMHNSM = cANSMG0 =
m2
t

4v2

1

tβ
+

∆λ2

8
s2β , (3.B.37)

cHNSMHNSM = cANSMANSM =
λ2

4
+
m2
Z + 2m2

W

4v2
+
m2
t

4v2

1

t2β
+

∆λ2

4
c2β , (3.B.38)

cHSHS = cASAS =
λ2 + κ2

2
, (3.B.39)

and those involving the charged Higgs bosons are

cH+H− =
λ2

6
+
m2
Z + 2m2

W

6v2
+
m2
t

4v2

1

t2β
+

∆λ2

4
c2β , (3.B.40)

cH+G− = cHSMHNSM (3.B.41)

cG+G− =
λ2

6
+
m2
Z + 2m2

W

6v2
+
m2
t

4v2
+

∆λ2

4
s2
β . (3.B.42)

The Daisy coefficients for the longitudinal modes of the gauge bosons are [269,270]

cW+
LW

−
L

= cW 3
LW

3
L

=
5

2
g2

2 = 5
m2
W

v2
, cBLBL =

13

6
g2

1 . (3.B.43)

Note that the photon gets a temperature-dependent mass. In order to properly account for

this appearance of the longitudinal degree of freedom of the photon, the Daisy resummation

improved thermal masses of the neutral electroweak gauge bosons must thus be included as
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the eigenvalues of mass matrix,

m̃2
ZL,AL

(HSM, HNSM, HS;T ) =
(HSM)2 + (HNSM)2

4

 g2
2 −g1g2

−g1g2 g2
1


+ T 2

5g2
2/2 0

0 13g2
1/6

 .

(3.B.44)

After removing the contribution from the neutralinos and charginos to V
T 6=0
1−loop(m̂2), these

results agree with the results in ref. [189] (where the neutralino and chargino contribution

were neglected).
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CHAPTER 4

AN ALTERNATIVE THERMAL HISTORY: ELECTROWEAK

SYMMETRY NON-RESTORATION

In the SM, the EW symmetry was restored at temperatures above the EW scale. With

input from new physics sectors those couple to the SM Higgs, such a restoration behavior

could have been changed. It is interesting to explore an alternative thermal history - the

EW symmetry remains broken at temperatures well above the EW scale, which has several

intriguing implications for (electroweak) baryogenesis, early universe thermal histories and

Higgs phenomenology.

In this chapter, an introduction to electroweak symmetry non-restoration will be pre-

sented in section 4.1. In section 4.2, we propose a new approach for electroweak symmetry

non-restoration via an inert Higgs sector that couples to the SM Higgs as well as an extended

scalar singlet sector. We implement renormalization group improvements and thermal re-

summation, necessary to evaluate the effective potential spanning over a broad range of

energy scales and temperatures. We present examples of benchmark scenarios that allow

for electroweak symmetry non-restoration all the way up to hundreds of TeV temperatures,

and also feature suppressed sphaleron washout factors down to the electroweak scale. Higgs

and collider phenomenology, which provides important scrutinization of such a scenario will

also be discussed. This work was performed in collaboration with Marcela Carena, Claudius

Krause and Zhen Liu. It is under review in Physical Review D [271].

Last but not least, in section 4.3, we provide an outlook for an ultraviolet completion

of such a scenario, where EWBG at hundreds of TeV could be realized, evading severe low

energy constraints, e.g. from electron dipole moment.
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4.1 Introduction

The phenomenon of symmetry broken/non-restoration due to temperature effects has been

studied a long time ago. In 1974, Weinberg first discussed spontaneous symmetry breaking

driven by finite temperature effects considering an O(n) × O(n)-invariant theory with two

independent scalar multiplets [26]. With different values of the quartic couplings in the

two scalar sectors, such a toy model exhibits rich symmetry breaking patterns from zero

temperature up to high temperatures. Later on, various studies appeared applying the idea

to symmetries tackling problems such as CP violation, domain wall, monopole, etc [272–278].

For example, in [274], the authors pointed out that GUT symmetry could remain broken at

finite temperatures in SU(5) theory. Without a phase transition from the symmetry phase

to the broken phase, the overproduction of monopoles can be avoided thus being consistent

with cosmological constraints.

Only recently, the idea of symmetry non-restoration has been applied to the electroweak

symmetry [90,132,133,279–283], which has interesting implementations on models generating

the BAU. With new physics inputs, in contrast to the SM case, the EW symmetry can

remain broken, say non-restored, up to temperatures well above the EW scale. Taking a

bottom-up approach, we called these scenarios: i) delayed restoration, if the electroweak

symmetry is restored at very high temperatures, or ii) non-restoration if the electroweak

symmetry remains broken all the way up to some high energy scale Λ of validity of the theory.

Electroweak non-restoration (EWNR) or delayed restoration scenarios have advantages in

modeling mechanisms for baryogenesis, as it allows for the asymmetry creation to happen

at a scale much above the EW scale. For example, in the case of EWBG, one important

advantage is that the additional, required sources of CP violation will only be effective at

high energies and, therefore, will avoid current electric dipole moment experimental bounds.

In particular, new ideas of electroweak non-restoration or delayed restoration have been

discussed [132,133,281,282] by extending the SM Higgs sector with additional singlet scalars
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that couple to the SM Higgs and provide it with a negative thermal mass at very high

temperatures. Such models typically require several hundreds of new scalar fields. On top of

the new scalar sectors, for models with delayed restoration, the ultraviolet (UV) completions

typically require additional scalar and/or fermion fields that couple with the EW sector and

yield electroweak symmetry restoration, as well as a strong first-order phase transition, at

very high temperatures [132,281,282].

In the next section, we propose a new mechanism to realize EWNR, where the EW

symmetry breaking at high temperatures are driven by an inert Higgs field acquiring non-

zero vev. With such a construction, a minimally coupled scenario, where the only non-zero

coupling between the BSM sector and the SM section at tree level is the gauge coupling

between the inert Higgs doublet and the SM gauge bosons, can be compatible with the

EWNR as well as suppressed sphaleron processes through the thermal history.

4.2 A new approach to electroweak symmetry non-restoration

In this section, we explore the electroweak symmetry non-restoration or delayed restoration

with an extended-Inert Two Higgs Doublet Model (I2HDM) [284,285], where, instead of the

SM Higgs, it is the inert Higgs who acquires a non-zero vev up to very high temperature by

coupling to an additional scalar sector. Such a model requires minimal couplings between

the new scalar fields and the SM Higgs boson, and opens the window to different realizations

for baryogenesis at very high energy scales. Due to the lack of large Yukawa couplings to the

inert sector, the number of scalars required to achieve negative thermal masses is somewhat

reduced. Specific new physics models for high scale EW baryogenesis in the context of

extensions of the I2HDM will be the topic of a forthcoming publication.

The EWNR sets the boundary conditions at high temperatures (. TUV), while the

observed EW vacuum defines them at zero temperature; see the top row of Figure 4.1 for a

schematic view. For intermediate temperatures, the I2HDM allows different phase histories
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Figure 4.1: Schematic illustration of the phase values of Higgs and Inert scalar at the global
minimum for non-restoration and delayed restoration. The top panel shows the global view
up to very high temperatures, where the non-retoration can either persist or the symmetry
becomes eventually restored (depicted by dashed lines). The lower panel zooms into the gray
region and shows three different scenarios of the transition between the two doublets.

that we depict in the bottom row of Figure 4.1. There could either be a temperature range

(between T cH and T cΦ - to be precisely defined below) for which the global minumum is

given by non-vanishing vevs of both the Higgs and the inert fields (left plot), or there could

be a discrete jump between the Higgs and the inert phases at a critical Temperature Tc

(central plot). A third option is given by a scenario in which the Higgs vev goes to zero

at a restoration temperature T rH lower than the temperature T rΦ above which the inert vev

starts to grow (right plot). In the temperature range between T rH and T rΦ the system is in a

EW preserving vacuum.
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In this work, we utilize the EP method to calculate the finite-temperature phase struc-

ture and quantities relevant to the baryon asymmetry. However, unlike for typical EWPT

calculation’s for which the electroweak symmetry breaking takes place close to the EW scale,

here we need to take into account important effects due to the large scale separation between

the high temperatures (& O(1 − 100) TeV)- high field values and the EW scale, which re-

quires careful treatment and improvement of the perturbative calculation. For this purpose,

we will implement RG improvement and daisy resummation of the EP to ameliorate the

perturbative convergence.

This section is organized as follows: in subsection 4.2.1, we introduce our model and

discuss its zero temperature constraints. Based on a mean-field approach, we present an

analytical study of the possible thermal histories. In subsection 4.2.2, we set up schemes for

an improved perturbative calculation, and present results of the full numerical computation

of the finite-temperature phase structure for two benchmark (BM) scenarios. In subsec-

tion 4.2.3, we discuss the baryon washout conditions, based on baryogenesis model building

considerations, and consider them in light of the thermal history results for the two BM sce-

narios. In subsection 4.2.4, we discuss phenomenological constraints in this type of model.

Various technical aspects will be collected in appendices of this thesis.
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4.2.1 The model and a mean field analysis to the thermal history

The effective potential at tree level

We consider an extension of the SM Higgs sector that includes an Inert Higgs Doublet with

additional singlet scalars. In such case, the most general Z2-symmetric potential reads 1,

VZN+I2HDM =− µ2
HH

†H + λH(H†H)2 (4.2.1)

+ µ2
Φ(Φ†Φ) + λΦ(Φ†Φ)2 + λHΦ(H†H)(Φ†Φ) + λ̃HΦ(H†Φ)(Φ†H) (4.2.2)

+
µ2
χ

2
χ2
i +

λ̃χ
4
χ4
i +

λχ
4

(χiχi)
2 +

λΦχ

2
χ2
i (Φ
†Φ) +

λHχ
2

χ2
i (H

†H),

where the two Higgs doublets are written as

H =

 G+

1√
2
(h+ iG0)

 (4.2.3)

Φ =

 φ+

1√
2
(ϕ+ iφ0)

 , (4.2.4)

and the fields χi represent N real, singlet scalars. Assuming that extra sources of CP

violation will come from a new sector, once we study the complete UV theory, we impose CP

invariance in the Higgs sector and define all model parameters to be real. The assumed Z2-

symmetry forbids couplings of the type µ2
12(H†Φ), λ6(H†ΦH†H), and λ7(H†ΦΦ†Φ). Portal

couplings of the form (Φ†H)(Φ†H) and (H†Φ)(H†Φ) are allowed by the Z2 symmetry and

are related to the operator (H†Φ)(Φ†H) by custodial symmetry [286]. However, assuming

1. Here Z2 is defined as H → H, χi → −χi, and Φ → −Φ. As we shall discuss later, instead of the
Z2, we require a continuous global U(1) symmetry on the doublet Φ to ensure it being inert, which forbids
additional terms that we omitted here in the potential.
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a U(1)-symmetry on (one of the) doublets forbids these additional portal couplings and

simplifies the potential. Given the custodial symmetry and the additional U(1)-symmetry,

we can set the coupling λ̃HΦ to 0 as well. However, this is not stable under RG-running,

as the hypercharge gauge coupling breaks custodial symmetry. We therefore keep track of

the operator with the coefficient λ̃HΦ for future RG improvement of the EP. In addition,

to better accommodate phenomenological constraints, we set λHχ = 0, although, similarly

to λ̃HΦ this coupling will also be induced by the renormalization group evolution (RGE),

and we will keep track of its effects. Finally, observe that λ̃χ = 0 is protected by an SO(N)

symmetry of the singlet sector, and we shall impose such symmetry. In the case of a potential

with generic values of λ̃χ, the singlet sector exhibits a discrete ZN symmetry.

To summarize, parameters in the above potential can be separated as follows:

• fixed parameters: {µ2
H , λH},

• free parameters: {µ2
Φ, µ

2
χ, λΦ, λχ, λΦχ, λHΦ, N},

• free parameters set to zero: {λ̃HΦ, λHχ, λ̃χ},

• RGE induced parameters: {λ̃HΦ, λHχ},

where the two fixed parameters are given by the current observation of the EW vev v0 = 246

GeV and the SM Higgs mass mh = 125 GeV.

In general, there could be charge breaking and CP breaking minima in two Higgs doublet

models. However, [287, 288] showed that at tree level, if an EW breaking minimum exists,

any possibly existing charge breaking or CP breaking extremum is necessarily a saddle point

above the EW breaking minimum. Although the validity of this result may not hold after

the inclusion of radiative corrections, and its validation requires a more detailed analysis

beyond the scope of this work, we shall only allow for the neutral CP even components to

develop non-zero vacuum expectation values at any temperature. Therefore, from now on,
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we focus on analyzing the effective potential of the CP-even components of the two Higgs

doublets, and the singlet sector. The tree-level CP even potential reads,

V
ZN+I2HDM
0,CP even =− µ2

H

2
h2 +

λH
4
h4 +

µ2
Φ

2
ϕ2 +

λΦ

4
ϕ4 +

λHΦ + λ̃HΦ

4
h2ϕ2

+
µ2
χ

2
χ2
i +

λ̃χ
4
χ4
i +

λχ
4

(χiχi)
2 +

λΦχ

4
χ2
iϕ

2 +
λHχ

4
χ2
i h

2.

(4.2.5)

The particles in the plasma include bosons {h,G0, G
±, ϕ, φ0, φ

±, χ, γ,W±, Z} with corre-

sponding particle degrees of freedom (d.o.f.) nbos = {1, 1, 2, 1, 1, 2, N, 3, 6, 3}, and fermions,

{t} with corresponding particle d.o.f. nferm = {12} that couple (self-couple) to the dynam-

ical fields. Notice that we work in the Landau gauge so there are no ghost d.o.f. We collect

the effective, field-dependent masses of these particles in appendix subsection 4.A.1.

Zero temperature constraints

In this section, we present the tree-level, zero temperature constraints on our model, in-

cluding the bounded from below (BFB) conditions, and the correct vacuum structure of the

tree-level potential. This study provides guidance, later on, in defining the viable parameter

space for which we shall perform numerical calculations to constrain the model after the

inclusion of radiative corrections.

• Bounded From Below Conditions

The bounded from below (BFB) conditions, which need to be satisfied simultaneously,
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for the generic tree level potential given in eq. (4.2.1) are

λH > 0, λΦ > 0, Λχ,n > 0,

ΛHΦ > −
√

4λHλΦ, λΦχ > −
√

4λΦΛχ,n, λHχ > −
√

4λHΛχ,n, (4.2.6)√
4λHλΦΛχ,n + ΛHΦ

√
Λχ,n + λΦχ

√
λH + λHχ

√
λΦ (4.2.7)

+

√(
ΛHΦ +

√
4λHλΦ

)(
λΦχ +

√
4λΦΛχ,n

)(
λHχ +

√
4λHΛχ,n

)
> 0,

where for simplicity we define the effective couplings

Λχ,n ≡
1

n
λ̃χ + λχ and ΛHΦ ≡ λHΦ + λ̃HΦρ

2. (4.2.8)

There are two variables in these conditions, n ∈ {1, . . . , N} and ρ2 ∈ [0, 1], where

the conditions have to hold for all of their values. Notice that they only enter the

conditions through Λχ,n and ΛHΦ. If λ̃χ > 0, Λχ,n is the smallest when n = N , while

if λ̃χ < 0, the smallest Λχ,n is found for n = 1. Similar considerations apply to ΛHΦ

and ρ. A detailed derivation of these conditions can be found in the appendix B of the

original paper.

• Vacuum Structure

In order to be consistent with the current Higgs and EW precision measurements, as

the inert doublet is charged under the EW gauge group, we consider the case that at

zero temperature, both the inert Higgs and the singlets have zero vev, say the physical

vacuum is

〈{h, ϕ, χ1, · · · , χN}〉 = {v0, 0, 0, · · · , 0}, (4.2.9)

where v0 = 246 GeV, and we require such vacuum state to be the global minimum of
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the zero temperature potential. Firstly, for the physical vacuum to be a minimum, one

needs to avoid tachyonic solutions, which give constraints on the bare mass parameters

of the potential (at tree level)

µ2
Φ +

λHΦ

2
v2

EW ≥ 0, µ2
χ ≥ 0. (4.2.10)

Equation (4.2.10) does not involve the RG-generated parameters, λ̃HΦ and λHχ since

it refers to the couplings at the physical minimum.

As stated above, at tree level, any possibly existing CP or charge breaking extrema are

saddle points lying above the EW vacuum, which, therefore, do not put any further

constraints on the viable parameter space. To secure that the EW vacuum is the

global minimum of the tree-level potential in the subfield space of the two CP even

components and the singlet degrees of freedom, we find all possible extrema of the

polynomial potential (see all possible extrema at tree level in appendix B of our original

paper) and we numerically impose the necessary conditions to establish that for each

extremum either it cannot exist, or it is above the physical one.

Mean field analysis for the thermal history

This section provides an analytical understanding of the model parameter space compatible

with the desired thermal history - the electroweak symmetry stays non-restored in the inert

sector up to temperatures much higher than the EW scale, whereas the agent of the elec-

troweak symmetry breaking changes at temperatures around the EW scale from the inert

Higgs sector to the SM one. In this work, we do not explicitly discuss the UV scale physics

completion that may lead to electroweak symmetry restoration at even higher energies and

hence would allow for the possibility of EWBG. However, we will study the conditions nec-

essary for the suppression of the sphaleron rate as a function of the model parameter space
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through the whole temperature regime for which the electroweak symmetry is broken. More

specifically, we will explore the constraints on the ratio between the electroweak symmetry

breaking vev/s to the temperature that may allow for such a suppressed sphaleron rate.

This will provide a framework for future EWBG model building. If, instead, the new physics

UV completion would directly provide a source of baryon asymmetry at the high scale, such

as, for example, in the case of Leptogenesis, GUT-baryogenesis or Affleck-Dine baryogen-

esis [289], then the requirement on the sphaleron rate could be ignored. A discussion of

possibilities for baryogenesis as well as specific details on the sphaleron rate relevant for our

model will be presented in subsection 4.2.3.

We summarize the above desired thermal history with three conditions as follows

• C1: Non-restoration of the electroweak symmetry

This is realized up to very high temperatures by having a non-trivial inert phase:

〈ϕ〉highT 6= 0;

• C2: Phase transitions from the inert Higgs phase to the SM Higgs phase

This condition secures that the universe is at the SM vacuum at zero temperature,

while being compatible with C1.

• C32: Sufficiently suppressed sphaleron rate after EWSB

This would allow preserving any baryon number density that may be generated through

an EWBG mechanism at the ultraviolet.

To gain an analytical understanding of the model parameter space compatible with the

above conditions, we use a mean-field approximation of the finite temperature effective po-

tential, where the thermal potential is evaluated up to leading order of the high-temperature

2. As discussed above, this condition is optional.
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expansion

V MF
ZN+I2HDM =− 1

2

(
µ2
H − chT 2

)
h2 +

1

2

(
µ2

Φ + cϕT
2
)
ϕ2 +

1

2

(
µ2
χ + cχT

2
)
χ2
i

+
λH
4
h4 +

λΦ

4
ϕ4 +

λ̃χ
4
χ4
i +

λχ
4

(χiχi)
2

+
ΛHΦ

4
ϕ2h2 +

λΦχ

4
ϕ2χ2

i +
λHχ

4
h2χ2

i ,

(4.2.11)

where ci for i = h, ϕ, χ are given in eqs. (4.A.12)–Equation (4.A.14). Such a mean-field

potential is a reliable approximation before considering RG improvement and daisy resum-

mation, especially at high temperatures. We shall include resummations in the next section

for a full numerical study at high field values and temperatures. Here we provide an ana-

lytical study based on the mean-field potential to obtain a coarse understanding of how the

desired thermal history is achieved within our model.

Let us first study the SM and inert Higgs sector phases of the potential in Equa-

tion (4.2.11) . An inert phase PΦ, where only the inert Higgs field has a non-zero field

value, reads

PΦ : 〈(h, ϕ, χ1, · · · , χN )〉 = (0, w(T ), 0, · · · , 0) (4.2.12)

with

w(T ) =

√
−µ

2
Φ + cϕT 2

λΦ
. (4.2.13)

At very high temperatures, T 2 � µ2
Φ, one can approximate

w(T ) ≈
√
− cϕ
λΦ

T. (4.2.14)
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Given the BFB condition that λΦ > 0, a negative thermal mass coefficient cϕ,

cϕ =
λΦ

2
+
λHΦ + λ̃HΦ/2

6
+

3g2 + g′2

16
+N

λΦχ

24
, (4.2.15)

generates a non-zero inert phase at very high temperatures, which is the key to achieve

EWNR (or delayed restoration) in the inert sector in our model. This provides for condition

C1 in the mean field approximation as

C1MF → cϕ < 0. (4.2.16)

The main driver of a negative cϕ is a negative cross quartic between the inert and the singlet

sector λΦχ, whose negative contribution is magnified by the number of singlets N . If the

inert mass parameter µ2
Φ ≥ 0, such a phase where only the inert field has a non-zero vev

would disappear at a temperature T rΦ (either as a global or local minimum), where

T rΦ =

√
µ2

Φ

−cϕ
. (4.2.17)

A low restoration temperature T rΦ facilitates the existence of phase transitions between the

inert and SM Higgs phases as well as the associated condition for a suppressed sphaleron

rate, which will be discussed in more detail below. Instead, if µ2
Φ < 0, this inert phase exists

at zero temperature, which puts a constraint

µ2
Φ > −

√
λΦ

λH
µ2
H (4.2.18)

for it to be above the EW vacuum at T = 0, i.e. V0(0, w(0), 0, · · · 0) > V0(v0, 0, 0, · · · 0), in

addition to condition in Equation (4.2.10).

A SM Higgs phase PH of the potential, where only the SM Higgs has a non-zero field
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value, reads

PH : 〈(h, ϕ, χ1, · · · , χN )〉 = (v(T ), 0, 0, · · · , 0) (4.2.19)

with

v(T ) =

√
µ2
H − chT 2

λH
, (4.2.20)

where at zero temperature it becomes the EW vacuum with v(0) = v0. Such a phase appears

at a temperature

T rH =

√
µ2
H

ch
. (4.2.21)

Another phase that possibly exists during the thermal history is when both the SM Higgs

and the inert Higgs fields acquire simultaneously non-zero values

PHΦ : 〈(h, ϕ, χ1, · · · , χN )〉 = (ṽ(T ), w̃(T ), 0, · · · , 0) (4.2.22)

where

ṽ(T ) =

√
µ̃2
H − c̃hT 2

λ̃H
, w̃(T ) =

√
− µ̃

2
Φ + c̃ϕT 2

λ̃Φ

(4.2.23)

with

µ̃2
H ≡ µ2

H +
ΛHΦ

2λΦ
µ2

Φ, µ̃2
Φ ≡ µ2

Φ +
ΛHΦ

2λH
µ2
H ,

c̃h ≡ ch −
ΛHΦ

2λΦ
cϕ, c̃ϕ ≡ cϕ −

ΛHΦ

2λH
ch,

λ̃H ≡ λH −
Λ2
HΦ

4λΦ
, λ̃Φ ≡ λΦ −

Λ2
HΦ

4λH
,

(4.2.24)
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implying that this phase is governed by the Higgs-Inert mixing coupling ΛHΦ defined in

Equation (4.2.8). An important feature of this phase is that given the potential in Equa-

tion (4.2.11), the potential difference reads

V (PHΦ;T )− V (PH ;T ) ∝ −(4λΦλH − λ2
HΦ)−1

V (PHΦ;T )− V (PΦ;T ) ∝ −(4λΦλH − λ2
HΦ)−1,

(4.2.25)

where the proportionality coefficients are always positive independent of the temperature.

Thus, if 4λΦλH −λ2
HΦ ≤ 0, the Higgs-inert phase PHΦ is irrelevant as it is always shallower

than either the SM or inert Higgs phases. On the contrary, if 4λΦλH − λ2
HΦ ≥ 0, as long

as such a Higgs-inert phase exits, it is deeper than both the SM or inert Higgs phases, thus

becoming the global minimum.

Concentrating on the case where PHΦ is the global minimum at a given temperature,

notice that the situation 4λΦλH − λ2
HΦ ≥ 0 coincides with the BFB condition if λHΦ ≤ 0,

hence for negative/zero cross quartic, the Higgs-inert phase will be the global minimum at

finite temperature. Moreover, at zero temperature, the non-tachyonic condition enforced

in Equation (4.2.10) implies µ̃2
Φ = m2

φ ≥ 0. This yields that whenever 4λΦλH − λ2
HΦ ≥

0 → λ̃Φ ≥ 0, there is no real solution for w̃(0) in Equation (4.2.23), as expected since the

non-tachyonic solution was derived under the assumption that the PH at T = 0 being the

physical vacuum. In addition, let’s recall that at very high temperatures we have restricted

our case to the inert phase PΦ being the global minimum (no electroweak symmetry breaking

in the SM Higgs sector), hence Equation (4.2.23) implies that we voluntarily enforced

c̃h ≥ 0 ∨ c̃ϕ ≥ 0 (4.2.26)

whenever T 2 � µ̃2
H(Φ)

. Given the above constraints (PH and PΦ are the global minimum at

T = 0 and high temperatures, respectively), if the phase PHΦ ever appears, in a temperature
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regime T 2 ∼ µ̃2
H(Φ)

, it develops at a temperature Max{T̃ rH , T̃ rΦ} and must disappear at

a lower temperature Min{T̃ rH , T̃ rΦ}. These two characteristic restoration temperatures are

defined from Equation (4.2.23) demanding that either ṽ(T̃ rH) = 0 or w̃(T̃ rΦ) = 0, respectively.

Observe that, within the mean field approximation we are considering, from eqs. (4.2.13),

Equation (4.2.20) and Equation (4.2.23), it follows w(T cH) = w̃(T cH) and v(T cΦ) = ṽ(T cΦ).

As a consequence, V (PHΦ; T̃ rH) = V (PΦ; T̃ rH) and V (PHΦ; T̃ rΦ) = V (PH ; T̃ rΦ), which implies

that, the critical temperature defining the transition between the PHΦ and PΦ(PH) phases

is given by T cH = T̃ rH (T cΦ = T̃ rΦ), indicating that these transitions are second order within

the mean field approximation. These equalities imply that,

T cH =

√
µ̃2
H

c̃h
, T cΦ =

√
µ̃2

Φ

−c̃ϕ
, (4.2.27)

and their existence demands

µ̃2
H

c̃h
≥ 0 ∧ µ̃2

Φ

−c̃ϕ
≥ 0. (4.2.28)

In the numerical study where we consider the full thermal potential as well as daisy con-

tributions, such phase transitions could be affected and become first order. However, they

would hardly be strongly first order in the absence of large thermal or tree level barriers.

Other possible phases associated with the finite temperature potential Equation (4.2.11)

include the trivial point, which, as long as any of the above phases exist, yields a shallower

value of the potential, as well as phases involving singlets with non-zero field values. The

latter will not be further considered in this section as they are unlikely to participate in the

thermal history. When evaluating the thermal history in the numerical section, however, all

possible phases will be taken into account.

After having considered the existence of all possible phases and some of their properties,

let us now concentrate on the specifics of the phase transitions from the inert sector to the
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SM Higgs sector.

First, we discuss the simpler case where the phase PHΦ either never appears or is irrel-

evant. In such a case, there should be a phase transition from PΦ to PH , as illustrated on

the middle penal of the second row in Figure 4.1. Given the potential in Equation (4.2.11),

such a transition happens at a critical temperature

Tc =

√√√√µ2
H +

√
λH/λΦµ

2
Φ

ch −
√
λH/λΦcϕ

, (4.2.29)

at which the potential becomes degenerate V (PH ;Tc) = V (PΦ;Tc). The condition for such

a Tc to exist reads (with help from the zero temperature constraint Equation (4.2.10))

−
√
λΦ

λH
µ2
H < µ2

Φ < −cϕ
ch
µ2
H , (4.2.30)

and this will have a relevant impact on the allowed values of the inert Higgs boson mass, as

will be discussed later on.

As mentioned in C3, to allow for the possibility of a EWBG after UV completion, we

will look at the conditions on the sphaleron rate at finite temperatures. The dilution of the

baryon number density after the onset of a UV induced EWPT responsible for the EWBG

will be double exponentially suppressed by the ratio of the sphaleron energy to temperature,

see discussion in subsection 4.2.3. Hence successful EWBG in the complete model will require

(see e.g. [39])

ξ(T ) =
vEW(T )

T
≡
√
〈ϕ(T )〉2 + 〈h(T )〉2

T
& 1, (4.2.31)

where ϕ and h are the inert and SM Higgs fields charged under the EW gauge group. This

condition should be satisfied at any temperatures throughout the thermal history from the

creation of baryon asymmetry up to present times. It can be shown that such a condition
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Figure 4.2: Parameter space on the NλΦχ − λHΦ plane compatible with desired thermal
histories based on a mean field analysis. Relevant zero temperature constraints are also
shown. Other parameters are fixed: λΦ = 0.1, NΛχ,n = 2.5, λHχ = 0, λ̃HΦ = 0, and

µ2
Φ ≥ 0 is imposed.

can be satisfied if the phase transition PΦ to PH fulfills

Min

{
w(Tc)

Tc
,
v(Tc)

Tc

}
& 1. (4.2.32)

This follows from the fact that as long as µ2
Φ ≥ 0, as will be implemented in our BM scenarios,

ξ(T ) =
w(T )

T
≥ wc
Tc

for T ≥ Tc, (4.2.33)

ξ(T ) =
v(T )

T
≥ vc
Tc

for T ≤ Tc. (4.2.34)

Next, we discuss the case where the phase PHΦ is relevant and appears as a global min-
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imum in the thermal history, as illustrated on the left panel of the second row in Figure 4.1.

To have a two step phase transition near the EW scale

PΦ
T cH−−→ PHΦ

T cΦ−−→ PH , (4.2.35)

one needs

T cH ≥ T cΦ, (4.2.36)

with

µ̃2
H ≥ 0, c̃h ≥ 0, µ̃2

Φ ≥ 0, c̃ϕ ≤ 0, (4.2.37)

which corresponds to the condition for these two temperatures to exist given by Equa-

tion (4.2.28).

Analogous to the previous case, the condition to avoid baryon asymmetry washout in the

context of a EWBG in an UV completed theory, would require

Min

{
w(T cH)

T cH
,
v(T cΦ)

T cΦ

}
& 1. (4.2.38)

Another thing to notice in this case is the role played by the mixing quartic λHΦ, which

controls the deviation from T cH to T rH and from T cΦ to T rΦ. The smaller the mixing quartic,

which is the region that we are mainly interested in, the smaller the deviations are. Moreover,

in the region of small λHΦ, the phase transition pattern PΦ → PHΦ → PH is most likely to

happen due to the decoupled contributions from the inert and SM Higgs minima to render

the PHΦ minimum in the intermediate temperature range. This is apparent in Figure 4.2 to

be discussed below.

It is also possible to have a temporary electroweak symmetry restoration at temperatures
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between those supporting the two EW breaking phase structures PΦ and PH . This is the case

when T rΦ is higher than T rH , as illustrated on the right penal of the second row in Figure 4.1.

Since in the temperature range between T rH and T rΦ the system is in a EW restoring phase,

this scenario would allow for the EW sphaleron to be active in this regime. The sphaleron

will wash out any baryon asymmetry that could have been generated by high scale EWBG.

At this moment, we will mainly focus on the previous cases that are compatible with an UV

EWBG mechanism.

Another possible case is a more fine-tuned four-step phase transition when T cH ≤ T cΦ

and T rH ≥ T rΦ. This case will require large mixing quartic and significant fine-tuning of the

parameter space. We do not further concentrate on this case.

In Figure 4.2, we show the parameter space spanned by NλΦχ − λHΦ considering the

zero temperature constraints discussed in subsection 4.2.1 and the different thermal his-

tory possibilities discussed above. The region violating condition C1MF is shaded gray,

while the regions satisfying the thermal history patterns and the non-washout conditions are

highlighted with light and dark orange (light and dark maroon) for the transition pattern

PΦ → PH (PΦ → PHΦ → PH), respectively. There is no region that satisfies the rare four-

step phase transition. The conditions for the correct zero temperature vacuum structure are

satisfied on the whole parameter space if we impose µ2
Φ, µ

2
χ ≥ 0. The region giving a tree-

level BFB potential, calculated from conditions Equation (4.2.6), is at the right side of the

black solid lines for different number of singlet scalars N . Notice that, within the mean-field

approximation, the thermal history patterns, as well as the non-washout requirements, are

independent on N as long as the value of NλΦχ is kept a constant. Since both the thermal

histories and non-washout conditions are strongly correlated to the inert mass parameter, the

mass of the inert Higgs boson is in turn also constrained. In Figure 4.2, we show solid blue

lines that determine the maximal value of the inert Higgs boson mass compatible with the

corresponding phase transition patterns for a given value of NλΦχ and λHΦ. Higher values
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of the inert Higgs boson mass can be achieved to the left of the lines. Similar lines for the

suppressed sphaleron rate conditions are shown by the dotted blue lines. Other parameters

have been fixed in Figure 4.2 to be λΦ = 0.1, NΛχ,n = 2.5 and λHχ = 0, λ̃HΦ = 0. The SM

Higgs sector parameters are fixed to satisfy the Higgs vev and mass at the tree level. We

constrain the discussion to the case µ2
Φ ≥ 0, which makes conditions Equation (4.2.32) and

Equation (4.2.38) sufficient to secure a suppressed sphaleron rate within the mean field ap-

proximation as discussed above. In addition, in Figure 4.2, we also show the two benchmark

points A and B 3, which will be discussed in the full numerical study in the next section.

From Figure 4.2, one notices that the region where the cross quartic coupling between

the inert and the SM Higgs sectors almost vanishes, i.e. λHΦ ∼ 0 and hence the SM Higgs

sector is minimally perturbed, can be compatible with the desired thermal history. Main

constraints on the parameter space come from the tension between the BFB and desired

thermal history: the more negative the cross quartic NλΦχ, the easier the non-restoration

and the lower the critical temperatures which yield larger EW vev to temperature ratios

ξ(T ). A more negative cross quartic coupling NλΦχ makes it harder for the potential to be

BFB, as shown in Equation (4.2.6). Moreover, a larger number of singlets in turn helps to

relax the BFB condition on NλΦχ by relaxing its lower bound while increasing the singlet

effective quartic coupling Nλχ. As mentioned above, another constraint is on the mass of

the inert Higgs boson. The restriction on the parameter space is alleviated for a lighter

inert Higgs boson mass, especially in the region where the cross quartic λHΦ is small. This

can be easily understood, for example in the PΦ → PH phase transition pattern, since

a smaller inert mass parameter µ2
Φ yields a lower critical temperature Tc, as is shown in

Equation (4.2.29). A similar argument, although more involved, applies to the two-step

phase transition. The direct correlation between a smaller inert Higgs boson mass and a

smaller inert mass parameter µ2
Φ especially holds in the region of small λHΦ, as the one

3. BM point B has a slightly different value of NΛχ,n than the one used in Figure 4.2. However, the error
of this point’s position in the NλΦχ − λHΦ plane is within the thickness of the point drawn in the plot.
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considered here. Observe however, an inert Higgs boson mass above half of the SM Higgs

mass can be achieved, even with λHΦ ∼ 0, as far as the number of singlets is sufficient to be

in the BFB allowed region.

The analysis in this section is based on the mean-field approach, where we consider

the leading order high-temperature expansion of the thermal potential. For temperatures

well above the EW scale however, including the RG improvement and the daisy resummation

becomes necessary. In the next section, we perform a full numerical study for two benchmark

points and present the results for different approximations.

4.2.2 Numerical implementation and results

In this section, we explore the thermal histories of two model benchmark points based on

numerical calculation of the finite temperature effective potential, including RG improvement

and thermal resummations, which have been introduced in chapter 2. Here we summarize

the relevant contributions, and define the effective potential prescriptions used to perform

the thermal calculation.

At one-loop order, the zero temperature loop correction can be taken into account through

the CW potential under the MS-renormalization scheme, where the field dependent masses

of all degrees of freedom in the plasma for our model are given in appendix subsection 4.A.1.

We work in the Landau gauge [59], which introduces a gauge-dependence of the EP [51, 52,

80, 81, 123–125, 127, 128] 4. The CW potential changes the shape of the zero temperature

potential, introducing deviations from the tree level constraints at zero temperature that we

4. Given that we observe that the high-temperature expansion approximation is in good qualitative
agreement with the full treatment of the temperature effects when considering the EWNR analysis, we
argue that the main results of this work will not be qualitative changed by effects of gauge dependence.
Indeed, the EW non-restoration at high temperatures relies on a negative thermal mass for the inert Higgs
that is governed by the leading order term in the high-temperature expansion, which in turn does not
exhibit gauge dependence. Indeed Ref [127, 128] shows that the gauge dependence appears only in the sub-
leading temperature-dependent terms in the high-temperature expansion. A dedicated study of the gauge
dependence considering a numerical analysis of the full temperature-dependent EP would be necessary to
fully understand the relevance of gauge-dependent effects in the analysis of EW non-restoration, which is
beyond the scope of this work.
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discussed in the last section. Specifically, to accommodate the Higgs vev of 246 GeV and a

125 GeV mass eigenstate the parameters µ2
H and λH have to be adjusted to recover the two

physical conditions at T = 0. Other zero temperature constraints, including the BFB and

correct vacuum structure, also need to be adjusted numerically, as necessary, so that they

remain robust after the inclusion of loop corrections. The leading temperature dependence

is given by the thermal one-loop effective potential.

At very high temperatures and very large field values, which are the relevant scales for the

electroweak symmetry non-restoration or delayed restoration scenarios, perturbative conver-

gence of the fixed-order calculation becomes compromised, for both the CW and the one-loop

thermal potential. To account for higher order thermal loop contributions, we implement

the full dressing daisy resummation which involves adding thermal corrections to the tree

level effective masses in the effective potential, as has been discussed in section 2.2. We

implement the high-T thermal masses in Equation (2.24), the truncated thermal masses in

Equation (2.23), and the gap thermal masses in Equation (2.22) in comparison, to effectively

resum higher-order daisy diagrams. In Figure 4.3, we show the squared thermal mass of the

scalars as a function of the inert field values at a temperature of T = 5000 GeV, computed

with the different levels of accuracy described above, for the BM scenario B to be defined

in Table 4.1. The high-T thermal masses should be independent of the inert field value φ,

however, Figure 4.3 shows a small variation with respect to the field value due to the RG

improvement implementation to be discussed below. The truncated thermal masses have an

enhanced dependence of the inert field value, especially for the inert thermal mass itself, but

a more sizable variation occurs for the gap thermal masses. The differences among thermal

masses for different implementations as shown in Figure 4.3 will end up, however, having a

very small impact on the results relevant for the phase structure of the EW non-restoration

BMs.

We implement the RG improvement of the effective potential for all numerical calculations
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Figure 4.3: Squared thermal mass of the scalars for the BM scenario B as a function of the
inert field values at T = 5000 GeV for different thermal mass implementations.

to account for higher order logarithmic corrections arising from zero temperature loops, as

has been discussed in section 2.3. At finite temperature, the choice of the renormalization

scale, should vanish or minimize the un-resummed logarithms such as logN
(
M2
i (Φ̂)+Π2

i

µ2
R

)
for N ≥ 2 [73,75]. Our model at hand involves multiple degrees of freedoms, therefore, there

is no single choice of the scale to make all the logarithms negligible. In this work, we choose

µ2
R = Max

{
M2
i (Φ̂) + ciT

2; (246 GeV)2
}
, (4.2.39)

where i runs over all degrees of freedom (mass eigenstates) in the plasma and the short-

handed notation has been introduced for the dynamical fields Φ̂ ≡ {h, ϕ, χ1, χ2, · · · , χN}.

This is a convenient choice as long as there is no large separation between scales of the

particles’ masses, including the thermal mass contribution, as well as between the particle

masses and the temperature, as it is the case in our study. The CW potential further
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includes polynomial contributions of the radiative corrections. It also partially accounts for

multi-scale particle threshold effects beyond the one single scale threshold taken into account

through the RG improvement. We collect the one-loop beta functions and wave function

renormalization factors for our model in appendix subsection 4.A.3. 5

Details of our python implementation can be found in Appendix F in our original paper.

The main result of the algorithm is the value of the global minimum at a given temperature.

The set of all global minima at a given set of temperatures defines the phase history we

consider. A phase transition is observed when there is a change of phase pattern (e.g. from

an inert-only-phase to an inert-SM Higgs phase) at a certain temperature6. In this section,

we also explore the value of the EW vev to temperature ratio ξ(T ), which is relevant for

obtaining information on the sphaleron rate.

We define two characteristic benchmark points for our model - benchmark A that has

inert Higgs eigenstates with masses slightly above half of the Z boson mass, and a benchmark

B that has inert Higgs eigenstates with masses slightly above half of the SM Higgs boson

mass. Inert mass eigenstates with masses above 100 GeV can be achieved, but they would

either lead to restoration of the electroweak symmetry at intermediate temperature scales

or would require a number of singlet scalars of order O(1000) or more. The specific values

of the model parameters and masses are given in Table 4.1.

We implement the RG improvement on the BFB conditions of Equation (4.2.6) and find

that, at scales of the order of 105 GeV, these conditions are violated for both BMs 7. Such

an energy scale is of the order of the scale at which the SM Higgs quartic coupling becomes

negative through its SM one loop RGE. This is expected since we consider that the SM

5. Notice that here the RG improvement we perform does not involve temperature flow as has been
proposed, for example in [87–89], where they treat temperature as an independent scale that participates in
the RG flow and thermal diagrams, like daisy and super-daisy, would have been resumed as a result.

6. We leave a detailed scan of the transition using nucleation temperatures instead of critical temperatures
to later work.

7. There is a small dependence on the CW treatment that somewhat perturbs the SM Higgs quartic
coupling as is explained above.
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Higgs only interacts with the extended scalar sector through a tiny inert-Higgs coupling,

and therefore its quartic coupling evolution should be minimally perturbed compared to its

SM behavior. The scale above gives a rough estimate of the energy scales up to which our

results can be trusted. By minimizing the finite temperature potential numerically, we have

checked that the potential remains stable up to high energy scales shown below for both

BMs. We also ran the RGE of the model (see eqs.Equation (4.A.18)) for BMs A and B and

found that Landau poles appear at energies around 2.5·1014 GeV and 1015 GeV, respectively

- well above the scale of validity of the theory at the one-loop RGE level.

Table 4.1: Parameter choices for the BMs A and B. The dimensionful quantities are in units
of GeV.

µ2
H λH µ2

Φ λΦ µ2
χ λχ λHΦ λ̃HΦ

BM A 8994.45 0.119 2500 0.1 100 0.01 -0.001 0
BM B 8991.84 0.119 5800 0.1 5000 0.004 0.01 0

λΦχ λ̃χ λHχ N mh mφ mχ

BM A -0.06 0 0 250 125 48.47 9.8
BM B -0.0375 0 0 600 125 84.58 68.87

In Figure 4.4 and Figure 4.5, we show the phase structure (upper panel) and EW vev-

temperature ratio (lower panel) for BMs A and B, respectively, and for different imple-

mentations of the finite temperature effective potential as introduced in ??. In the phase

structure plot, we are showing as a function of the temperature the field values of the SM

Higgs (red), inert Higgs (blue), and singlet (green) 8 at the global minimum. In the vev-

temperature ratio plot, we show the value of ξ(T ), as defined in eq. (4.2.31), as a function of

the temperature. To showcase the uncertainties associated with different finite temperature

implementations, we show results obtained with no daisy resummation (solid lines), daisy

resummation with high-T thermal masses, as in eq. (2.24), (dashed lines), and daisy resum-

8. We assume all singlets have the same vev — it’s either all or none. Given that λ̃χ = 0, which we
chose at tree level and is protected against RGE, we have the SO(N) symmetry that we can use to rotate
in that form.
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Figure 4.4: Phase structure (upper panel) and EW vev-temperature ratio (lower panel) as
a function of temperature, for different finite temperature implementations, for BM point A
as defined in Table 4.1

mation with truncated thermal masses, as in eq. (2.23), (dashed-dotted lines). In addition,

we have included the RG improvement for all calculations, and consider the uncertainties
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related to the CW potential, which takes care of multi-scale issues beyond the RG improve-

ment. In the figures, we use the same type of lines to represent a given finite temperature

approximation with or without the CW contribution. Hence the space in between the lines

shows the uncertainty related to the CW effects. It is apparent from the figures that this

accounts for a small effect, and we will not discuss it any further.

In Figure 4.4, for BM A, one observes that the major uncertainty is caused by the effects

of daisy resummation and the impact of different thermal mass treatments within the daisy

resummation. However, the most important feature of these results is that the qualitative

behavior of the phase structure, in Figure 4.4 upper panel, and the EW vev-temperature

ratio affecting the sphaleron rate, in Figure 4.4 lower panel, is not significantly modified by

the different finite temperature treatments. In fact, BM A exhibits both the feature of EW

non-restoration until high energies and ξ(T ) > 1. The plots of BM A are shown up to the

temperature of 105 GeV, after which the potential becomes unbounded from below. Observe

that there is a kink below/about 200 GeV, which is due to the phase transition pattern from

the PΦ phase to the PHΦ phase, and it is a physical effect. In addition, there is a spike at

T ∼ 110 GeV for the daisy resummation with truncated thermal masses, which is, however,

a defect of this finite temperature implementation. We expect this effect to be smoothed

out when implementing an improved treatment of the thermal masses 9.

In Figure 4.5, we show similar results as for Figure 4.4, but for a heavier inert Higgs

boson mass of the order of mh/2 that will allow for different phenomenology. Same as BM

A, BM B exhibits both the feature of EW non-restoration until high energies and ξ(T ) > 1.

The plots are shown up to the temperature of T = 4 · 104 GeV, after which the potential

becomes unbounded from below. For the BM B, there is a kink above/about 100 GeV, which

9. This spike is a defect associated with the truncated thermal mass calculation, where the second deriva-
tive of the thermal potential diverges when its argument, M2/T 2, is close to 0. Indeed, such an effect
does not happen for implementation with high-T thermal masses, as the divergence does not exist for the
thermal potential within this approximation. Using the full gap equation, where the IR divergence is cured
by including the thermal correction prior to performing the derivative, we expect the spike artifact shown
in Figure 4.4 lower panel to disappear.
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is due to the phase transition from the PHΦ phase to the PH phase. In addition, analogs to

BM A, there is a spike at around 300− 400 GeV for the daisy resummation with truncated

thermal masses, which we understand is the same type of artifact as discussed above and

will be cured by implementing an improved treatment of the thermal masses.

As described above, using the gap equation, eq. (2.22), to derive the thermal masses is the

most robust procedure. However, solving the gap equation at every step in the minimization

of the potential is computationally extremely expensive and is beyond the scope of this

work. However, in order to secure that the non-restoration behavior at high temperatures

survives the most precise treatment of the thermal masses through the gap equation, we

checked for several high-temperature values all the way down close to the EW scale, that

the non-restoration behavior and ξ(T ) > 1 survive for both BM scenarios.

4.2.3 Baryogenesis and sphaleron rate

An important additional issue related to the high energy EWBG mechanism in the framework

of delayed electroweak symmetry restoration, is that one needs to secure that a strong first-

order phase transition takes place at the time of electroweak symmetry breaking. This is

required by the out-of-equilibrium condition of Sakharov. Here, it is possible to exploit the

existence of an inert fermion sector that suppresses the strength of the inert self-coupling

and thereby enhances the strength of the phase transition.

As it is clear from the above discussion, a successful UV model of high-temperature

EWBG will demand detailed model building, which we leave for future publication. In the

following, we will concentrate on the EW non-restoration case at hand, where the SM Higgs

sector is minimally perturbed, to discuss details of the sphaleron rate.

Once the UV completion allows for the creation of the baryon asymmetry through an

EWGB mechanism at high temperatures, one needs to evaluate the sphaleron washout factor

to preserve the asymmetry all the way down to zero temperatures. Our model generically
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Table 4.2: Dilution factors fw.o. = 1 − nB(tnow)/nB(thigh) for our benchmark models as
defined by the integral in eq. (4.2.42). The upper limit of the integration, Thigh, is taken
as the highest temperatures in Figure 4.4 and Figure 4.5 respectively. The three entries per
cell correspond to uncertainty choices of κ as 0.01κ / κ / 100κ. Top and bottom row per
BM refer to using the CW contribution (top) or not (bottom).

no th. mass high-T th. mass

BM A
< 10−16 / 10−16 / 10−14 10−11 / 10−9 / 10−7

< 10−16 / 4 · 10−15 / 4 · 10−13 2 · 10−11 / 2 · 10−9 / 2 · 10−7

BM B
9 · 10−10 / 9 · 10−8 / 9 · 10−6 4 · 10−5 / 4 · 10−3 / 0.296

4 · 10−12 / 4 · 10−10 / 4 · 10−8 2 · 10−8 / 2 · 10−6 / 2 · 10−4

truncated th. mass

BM A
8 · 10−11 / 8 · 10−9 / 8 · 10−7

10−12 / 10−10 / 10−8

BM B
7 · 10−5 / 7 · 10−3 / 0.498

10−4 / 0.012 / 0.694

predicts a slowly varying ξ = vEW(T )/T up to high temperature, as well as a low scale phase

transition between the inert doublet and the SM Higgs doublet phases near the weak scale.

Following a high-scale SFOPT triggered by a UV completion of the model, the sphaleron

will become inactive quite fast after that transition, but there will be some dependence on

its rate on the model parameters. To properly compute the washout (dilution) of the baryon

number density, one should integrate the effects of the sphaleron rate over a large range of

temperatures (a large period of time), instead of the usual assumption that the washout

factor is dominated near the vicinity of the phase transition and is treated as a constant.

Specifically, the amount of sphaleron induced washout is determined by two quantities:

the product of prefactors entering in the sphaleron rate and the energy of the sphaleron that

appears in one of the exponentials. The latter is straightforward to compute and largely

depends on the gauge structure of the theory. We provide the necessary steps to get the

sphaleron energy [290, 291] in detail in appendix subsection 4.A.4. The computation of the

prefactors of the sphaleron rate are more model dependent. There are two different sources of
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deviations from the SM results. First, we have an extended scalar sector and the additional

particles might contribute through indirect effects in the prefactors. Second, we focus on

the inert doublet, and its quartic coupling is different than the quartic of the SM Higgs. We

therefore discuss the specifications of the prefactors from the SM values [38,292] in detail in

appendix subsection 4.A.4.

The sphaleron rate can be written as

Γ

V
= 4πω−NtrNrotT 3

(
vEW(T )

T

)6

κ exp
[
−Esph(T )/T

]
, (4.2.40)

where the evaluation of the prefactors ω−,Ntr,Nrot, and κ are explained in detail in ap-

pendix subsection 4.A.4 and in Figure 4.6.

The survival rate of the baryon number density at any given time t, after the onset of

the transition at t = 0 is [39, 127,293]

nB(tnow)

nB(0)
= exp

[
−

13nf
2

∫ tnow

0
dt

Γ(T (t))

V T 3(t)

]
, (4.2.41)

where we consider present time, t = tnow, and with nf the number of fermion families.

In a radiation dominated Universe, changing the integration variable from time to tem-

perature, the above equation reads

nB(tnow)

nB(thigh)
= exp

[
−

13nf
2

∫ Thigh

0
dT

Γ(T )

V T 6
MPl

√
90

8π3g∗

]
, (4.2.42)

where MPl is the Planck mass and g∗ is the number of relativistic degrees of freedom. In

our case, it is g∗ = 106.75 + 4 +N for the range of temperatures under consideration.

Based on the calculation presented above, we can define the washout or dilution factor

as fw.o. = 1 − nB(tnow)
nB(thigh)

. In Table 4.2 we show the values of fw.o. for our two benchmarks.
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We see that BM A has a negligible washout factor for all choices of parameters, even for the

most aggressive assumption for the fluctuation determinant κ, which is a factor 100 larger

than the value suggested in [294]. BM B shows sub-percent or even negligible washout for

the majority of approximations. Only for the most aggressive choice of κ, we observe values

that can be as high as 70%, which can be compensated by producing an initial asymmetry

about three times larger than the asymmetry we observe now. If we consider the central

value for κ, we see a washout of at most 1.2%. We also note that the washout factor

governed by eq. (4.2.42) is much less sensitive to Thigh than to effects at temperatures close

to the EW scale. This is the case since at higher temperatures the double exponential in

eq. (4.2.42) is larger than at EW temperatures. Indeed, at temperatures around the EW

scale, there is an enhancement from the inverse of the Hubble expansion rate, as well as from

the exponent proportional to exp [−ξ(T )], where ξ(T ) has its lowest values. That makes the

double exponent in eq. (4.2.42) to take its smallest values for temperatures close to the

EW scale. Hence at such temperatures is when the main effect of the exponential washout

takes place. In other words, the relevant contribution to the washout factor is only at scales

between the EW scale and around 500 GeV, while at high temperatures the exponential

washout remains negligible. This holds as long as ξ(T ) does not fall fast below 1 at high

temperatures, which is the case for our BMs. This ensures that high-temperature EWBG

could build in through a proper UV completion of our model.

4.2.4 Phenomenology implementations

In this session, we discuss the general particle physics phenomenology considerations for our

model framework, including Higgs and Z boson invisible decays, disappearing tracks, Higgs

global coupling shifts, as well as Higgs diphoton coupling shifts. We note that our benchmark

choices in the previous section are explicitly set to satisfy these constraints. Still, the content

in section provide estimation of current physics constraints and future perspectives for this
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model.

There are several phenomenological implications for our benchmark scenarios. At the

zero temperature EW vacuum, there exists an additional discrete Z2 symmetry under which

the new scalar fields Φ and χi are odd and the SM fields are even. This renders the χi and

the neutral components of the inert doublet scalar Φ stable and invisible once produced.

The possible existence of light scalars, Φ and χi will open the possibilities of the SM

Higgs decaying into invisible particles, via the generic portal couplings

L ⊃ λHΦ(H†H)(Φ†Φ) + λ̃HΦ(H†Φ)(Φ†H) + λHχχ
2
i (H

†H). (4.2.43)

The generic Higgs decay width into new scalars via this portal coupling is (per scalar

degree of freedom):

Γ(h→ ss) =
λ2
Hsv

2
0

32πmh

√
1− 4m2

s

m2
h

, (4.2.44)

where the coupling λHs can be one of the above quartics, λHΦ, λ̃HΦ or λHχ, and ms can

be the mass of the Φ or χ states, respectively.

The current LHC 95% confidence level (C.L.) limit on Higgs invisible decays is 26% [295,

296] and the HL-LHC projection is 5.6% [137]. When ms � mh, the phase space suppression

is negligible and this translates into an upper limit for the SM-new scalars mixing quartics.

The current and future limits on the mixing quartics read

√
Nλ2

Hχ + 2(λHΦ + λ̃HΦ)2 + 2λ2
HΦ 6 0.015 (0.007) (4.2.45)

for LHC (HL-LHC). In the above, by including 2λ2
HΦ, we also include the Higgs decays into

a pair of the charged states from the inert doublet.

In the absence of other mass splitting generating interactions, e.g. λ̃HΦ being zero, one-

loop SM effects generate mass splittings between the charged and neutral eigenstate of the
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inert doublet of about 360 MeV [297]. The charged state will decay back to the neutral

state via a soft charged pion, or via the three-body decay mediated by an off-shell W boson.

The typical lifetime is independent of the inert doublet mass and is a few mm. Hence,

this charged state can also be treated as invisible at colliders. In fact, precision Z boson

measurements of its invisible decays exclude all inert masses below 45 GeV, and hence we

shall only consider inert masses beyond the 45 GeV value [298].

Still, one can attempt to look for signals beyond the missing energy at colliders. At high

energy colliders, such as the LHC, although challenging, one can look for the disappearing

track signatures from the charged eigenstate of the inert doublet. However, it is well-known

that this channel is difficult for Higgsinos, to which our inert doublet model signature re-

sembles most. The current sensitivity from LHC disappearing track searches can exclude

pure Higgsinos up to 78 GeV [299]. The inert doublet production rate from the Drell-Yan

process is roughly a factor of four lower than that of Higgsino production, due to the inert

charged Higgs being a scalar rather than a fermion. Furthermore, for small mixing quartics

such as λ̃HΦ, one can arrange additional contributions to the mass splitting between the

neutral and charged inert doublet states. This will make the charged state decay promptly

and therefore the disappearing track searches will no longer apply. Given the above, we are

entitled to ignore the disappearing track search limits and only comply with the LEP Z

invisible bounds for our benchmark scenarios. Future tests on disappearing tracks could still

shed light on our model.

Summarizing, considering direct search constraints for our electroweak symmetry non-

restoring model, we observe that the mixing quartics λHΦ and λHχ are bounded by con-

straints on invisible SM Higgs decay rates. This can give a strong handle for testing possible

benchmarks, but at the same time there are models, like our BMs, in which they happen to

have neglibible values. In this sense, the more direct and inevitable probe for our model at

colliders are through the invisible Z decays, relying only on the gauge coupling structure.
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Disappearing charged track searches open a new window of opportunity, if not undermined

by parameter choices of the various mixing quartic couplings.

There are additional U(1) global symmetries in the inert sector Φ as well as Z2 symmetries

under which the singlet fields χi are odd, that prevent direct mixings between these states

with our SM Higgs doublet. There are, however, loop-induced corrections to the SM that

can be probed through precision observables. The leading contribution to the electroweak

precision observables (EWPO) is from the custodial symmetry breaking term λ̃HΦ, inducing

an operator contributing to the T-parameter [300]

OT = 1
2(H†

↔
DµH)2, cT =

λ̃2
HΦ

192π2µ2
Φ

. (4.2.46)

For an inert doublet mass scale µΦ around half the Higgs mass, the EW precision measure-

ment constrains the T-parameter with uncertainty 0.07 [301,302], constraining |λ̃HΦ| < 0.36

at 95% C.L. Although this estimation is subject to sizable corrections due to the fact that

µΦ is of the order the Higgs mass, this gives an estimate of the bounds on λ̃HΦ not being

very stringent coming from one-loop suppressed effects. For our benchmarks, we simply set

λ̃HΦ to zero at tree level.

The next set of constraints comes from the Higgs boson coupling precision measurements,

through the coefficient of the operator,

OH =
1

2
(∂µ|H|2)2, (4.2.47)

cH =
4λ2
HΦ + 4λHΦλ̃HΦ + λ̃2

HΦ +Nλ2
Hχµ

2
Φ/µ

2
χ

192π2µ2
Φ

.

This results in an overall reduction of the Higgs couplings by 1/2cHv
2
0. We note here that

this EFT matching is subject to large corrections and higher-order terms since the scales µ2
Φ

and µ2
χ are not far from the Higgs mass squared. On the other hand, our non-restoration

mechanism has limited dependence on these parameters. In particular, we have set λ̃HΦ and
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λHχ to be zero in our BM scenarios, leaving only a shift of the Higgs couplings of about

−1/2cH = −λ2
HΦv

2
0/(96π2µ2

Φ). For an inert doublet with µΦ around half the Higgs mass,

it yields a global shift in the Higgs couplings of around −λ2
HΦ/(6π

2), bounding |λHΦ| < 1.1

(at 95% C.L.) if we were to achieve 1% Higgs coupling precision at the HL-LHC [136]. This

constraint is much weaker when we compare it to bounds from direct invisible Higgs decay

searches discussed earlier in this section. It could however be relevant for scenarios with

heavy inert masses, since the Higgs invisible decay bound no longer applies. However, in

such case, as we shall see next, the precision measurements on Higgs to diphoton coupling

provide a stronger constraint than the one derived from eq. (4.2.47).

The EW charged inert doublet also radiatively modifies Higgs couplings to EW gauge

bosons, through

OBB = g′2|H|2BµνBµν , cBB =
2λHΦ + λ̃HΦ

768π2µ2
Φ

,

OWW = g2|H|2WµνW
µν , cWW =

2λHΦ + λ̃HΦ

768π2µ2
Φ

,

OWB = 2gg′H†τaHW a
µνB

µν , cWB =
λ̃HΦ

384π2µ2
Φ

. (4.2.48)

Here τa are the SU(2) generators. Consequently, the Higgs diphoton coupling is modified

by

1− κγγ ' 10π2v2
0 (cBB + cWW − cWB) , (4.2.49)

where κγγ ≡ ghγγ/g
SM
hγγ . Due to the fact that the SM Higgs to diphoton coupling is loop-

induced, this provides a strong constraint on |λHΦ| to be smaller than 0.04 (at 95% C.L.)

for a 1.9% precision [136] on the Higgs to diphoton coupling at HL-LHC. The current Higgs

precision uncertainty of 17% [303] translates to a constraint on |λHΦ| < 0.4 (at 95% C.L.).

Again, in deriving this limit, we assume that λ̃HΦ = 0, µΦ being half the Higgs mass, and

ignore the deviation of the form factor from unity from the inert doublet running in the loop.
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Beyond the above, the model also generate less constraining effects on EWPO (W and

Y parameter) and Higgs self-coupling [300, 304], whose current and future perspective sen-

sitivities can be found in Refs. [156, 304, 305]. This may provide, in the future, further

complementary information about the model.

4.3 Outlook: electroweak baryogenesis at hundreds of TeVs

In this section, we give an outlook for possibilities of high-scale baryogenesis scenarios based

on 1) EW-symmetry non-restoration up to scales as high as the GUT/Planck scale or 2)

electroweak symmetry restoration around a UV scale of the order of validity of our model at

which a new UV theory is in place. In the latter case, we expect to build a UV theory that

allows for EWBG. Hence, in this case, we would like to explore in more detail the sphaleron

washout constraints in our BM scenarios to preserve the created asymmetry down to zero

temperature.

If the EW symmetry, through a specific UV completion, were to remain broken well

above the scale of validity of our current model 10, possibly up to the GUT or Planck

scale, this would enable baryogenesis mechanisms with little dependence on how the EWSB

is triggered. In such case, the baryon asymmetry can be generated by a mechanism that

creates a source of B-L 6= 0, such as, for example, GUT-genesis, leptogenesis, or Afflect-Dine

baryogenesis ( [306] and references therein). Recall that, sphaleron processes preserve B-

L, and hence an asymmetry will subsist once generated. However, they tend to wash out

B+L as long as they remain active, thereby enabling conversion of Baryon (anti-Baryon)

number into anti-Lepton (Lepton) number. For any specific B-L 6= 0 mechanism, there will

be additional model-building considerations for successful baryogenesis, including specifics of

the new sources of CP violation and out of equilibrium conditions. It is important to notice

10. Our study is only including one-loop RGEs, but in analogy to the SM, we expect the validity of our
model to be extended to higher energies by considering higher-order loop RGEs.
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that the two BMs we consider in this work imply that the sphaleron rate is suppressed

during the broken-electroweak symmetry epoch, hence a mechanism such as Leptogenesis,

that requires active sphalerons to convert Leptons into antiBaryons will not work. Other

BMs could be studied that allow for sphalerons to become active at some intermediate

energy scale during the temporary restoration of the EW symmetry, as in the lower right

panel of Figure 4.1. Exploring these new ideas for baryogenesis will be the subject of future

work.

In the case of a UV completion that induces a restoration of the EW symmetry at high

energy scales of the order of the validity of our model, one can also require that such UV

theory induces a strong first order phase transition and enables EWBG. Although building

such UV theory will remain a topic of future work, let us briefly comment on the various

ways that we can picture such a scenario.

In our minimal model, the restoration can occur through the RGE of the quartic cou-

plings. Under the high-temperature expansion, one can visualize this possibility through

the thermal coefficient cϕ given in eq. (4.2.15). If cϕ, which at lower temperatures has a

negative value, were to become positive at a given high scale through the RGEs, this will

render EW restoration at high temperatures. For simplicity, let’s consider the limit where in

the IR the mixing quartics λHΦ, λ̃HΦ, and λHχ are zero, and neglect the leading log impact

of these mixing quartics. The running of the thermal coefficient is then determined by the

running of the linear combination of λΦ/2 + (3g2 + g′ 2)/16 + NλΦχ/24. In our model the

inert doublet self-coupling λΦ generically becomes larger at higher scales, while the mixing

quartic λΦχ, whose initial value is negative, could also increase, depending on the specific

region of parameter space. However, we checked that the latter is not fulfilled for our BMs,

hence, additional effects will be needed to restore the EW symmetry in these cases. There

are indeed different ways to change the running behavior of cϕ, to allow for EW restoration.

For instance, one can consider that the inert doublet is charged under some new sponta-
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neously broken U(1) gauge group with coupling g′′. This will affect cϕ directly by adding

a g′′ 2/16 term after crossing the scale where the new U(1) is restored, rendering its gauge

boson massless such that it starts contributing to the thermal mass of the inert doublet.

Similarly, one can also introduce some heavy vector-like fermions (under SM gauge groups)

that have Yukawa couplings to the inert doublet. When above the heavy fermion mass scale,

this will add new positive contributions to the thermal coefficient cϕ by y2
FNF /12, where

NF is the color-factor or the specifies of new heavy fermions.

Beyond directly changing the thermal coefficient cϕ above some mass threshold scale,

one can also modify the running of the couplings contributing to cϕ, by adding new gauge

and/or matter content. The minimal and simplest implementation would be to charge the

χ field under some new SU(N) gauge group. It directly contributes positively to the beta

function of λΦχ, which is the only source of negative quantities in the thermal coefficient

cϕ, helping restore the EW symmetry at a higher scale. On the contrary, matter fields

interacting with the inert Higgs field seem to contribute negatively to the beta functions of

the quartics contributing to cϕ, although, as discussed below, they may be required to secure

a strong first-order phase transition. An additional source of symmetry restoration could be

to add scalar fields that directly couple to the inert field and acquire masses at high energies

at which restoration would take place [132].

4.4 Summary of the chapter

The exploration of EWPT patterns leading to EW symmetry breaking allows us to envision

plausible paths for EWBG, as well as details of the cosmological history of our universe. In

particular, the possibility of EWNR up to high energy scales, conceivably up to the GUT or

Planck scale, or the opportunity for delayed EW symmetry restoration up to scales of the

order of 100 TeVs, open new windows for baryogenesis mechanisms.

In this section, we first proposed a novel approach to realize new thermal histories, by
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enabling the agent of EWSB to be an inert doublet that yields electroweak symmetry non-

restoration up to high temperatures. These possibilities allow for diverse thermal histories

with multi phase transition patterns, involving the SM Higgs, the inert Higgs and the SM-

inert Higgs mixing phases at finite temperatures. Our new approach for EWNR at high

energies has interesting computational requirements. Since the thermal history of our model,

as defined in subsection 4.2.1, spans over large scale separations from the EW scale to

high temperatures, in our study we carefully implement the effects of RGE and thermal

resummation, as detailed in subsection 4.2.2. When considering daisy resummation, we

compute thermal masses with different approximations and observe that they lead to similar

quantitively results. In subsection 4.2.1 we perform an analytical study at leading order in the

high-temperature (mean field) approximation that helps us zoom in into the promising region

of parameter space for our numerical study. In subsection 4.2.2, we report our numerical

calculations for two benchmark points, and show that our results are robust under various

treatments of thermal resummation while including RGE effects. Most importantly, the non-

restoration patterns can hold at least up to high scales of the order of 105 GeV, within the

one loop RG resumed effective potential. An UV completion of our model could take place

at higher energy scales. In subsection 4.2.3, we present a detailed study of the sphaleron

washout effects over a broad range of temperatures, and show that for our two benchmark

scenarios, the washout rates are such that high temperature EWBG could be realized after

a proper UV completion. Observe that the crucial ingredient of our BM scenarios is that the

EW symmetry is non-restored from high temperatures all the way down to the EW scale.

Most importantly, our mechanism for transmitting broken electroweak symmetry from

the SM sector to an inert sector has a specific interesting feature: It can work even if one

decouples the two Higgs sectors in the tree level scalar potential, implying that the effect

of the new doublet enters our zero-temperature particle physics tests at the electroweak-

loop level. This enables the existence of large model parameter space compatible with
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experimental constraints and at the same time calls for new precision tests of the SM. As

discussed in subsection 4.2.4, our model will find scrutiny at the HL-LHC through electroweak

and Higgs precision tests, invisible decays and searches for disappearing tracks.

At high temperatures, our model opens up to possible UV completions that would enable

various baryogenesis mechanisms, as has been discussed in section 4.3. If we go through

EWBG, where a SFOEWPT is necessary, it would give rise to gravitational wave signals.

The peak frequency, instead of populating around the LISA band (mHZ), will increase to

higher frequencies, at reach of facilities [307,308] such as BBO, DECIGO, and even aLIGO.

Moreover, the additional singlets χ in our study can themselves go through phase transitions,

further enriching the possible thermal histories of our universe. Beyond all the above, one

can also explore such relay of the EW-broken phase between the SM Higgs and scalars under

other EW representations.

4.A Appendices for the chapter

4.A.1 Effective field-dependent masses

In this appendix, we list field-dependent masses of all degrees of freedoms in the plasma,

those are relevant calculating one-loop effective potentials. The field-dependent scalar mass

matrix squared m2(Φ̂) is defined as

m2
ab(Φ̂) ≡ δ2V

(δΦa)(δΦb)

∣∣∣∣
Φ=Φ̂

, (4.A.1)

where we introduced a short-handed notation Φ ≡ {h, ϕ, χ1, χ2, · · · , χN}, and a caret is

used to indicate background fields. The field-dependent gauge field mass matrix squared is

given by [59]

M2(Φ̂)ab = gagb(TaΦ̂)(TbΦ̂), (4.A.2)
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with ga the gauge coupling and Ta the generator of the ath gauge field11. The field-dependent

fermion mass matrix squared is mm†(Φ̂) where m(Φ̂) is defined in the Lagrangian as

L = Ψ̄amab(Φ̂)Ψb + . . . . (4.A.3)

All contributions to the CW-potential are formally taken as traces of the squared mass ma-

trices, which in practice can be diagonalized and the potential is then evaluated for the

eigenvalues. Next, we list all field-dependent mass matrices squared in our model.

In the space of
(
h, −i√

2
(G+ −G−), 1√

2
(G+ +G−),−G0, ϕ,

−i√
2
(φ+ − φ−), 1√

2
(φ+ + φ−)

,−φ0, χi), the symmetric field dependent mass matrix squared of the scalar sector is given

by

m2(ĥ, ϕ̂, χ̂i) =


M2
H M2

HΦ M2
Hχ

M2
HΦ M2

Φ M2
Φχ

M2
Hχ M2

Φχ M2
χ

 (4.A.4)

11. It might has to be symmetrized in a and b
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with

M2
H(ĥ, ϕ̂, χ̂i) =

−µ2
H + 3λH ĥ

2

+λHΦ
2 ϕ̂2 + λ̃HΦ

2 ϕ̂2

+
λHχ

2

∑
i χ̂

2
i

−µ2
H + λH ĥ

2

+λHΦ
2 ϕ̂2

+
λHχ

2

∑
i χ̂

2
i

−µ2
H + λH ĥ

2

+λHΦ
2 ϕ̂2

+
λHχ

2

∑
i χ̂

2
i

−µ2
H + λH ĥ

2

+λHΦ
2 ϕ̂2

+ λ̃HΦ
2 ϕ̂2 +

λHχ
2

∑
i χ̂

2
i



, (4.A.5)
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M2
Φ(ĥ, ϕ̂, χ̂i) =

µ2
Φ + 3λΦϕ̂

2

+λHΦ
2 ĥ2 + λ̃HΦ

2 ĥ2

+
λΦχ

2

∑
i χ̂

2
i

µ2
Φ + λΦϕ̂

2

+λHΦ
2 ĥ2 +

λΦχ
2

∑
i χ̂

2
i

µ2
Φ + λΦϕ̂

2

+λHΦ
2 ĥ2 +

λΦχ
2

∑
i χ̂

2
i

µ2
Φ + λΦϕ̂

2 + λHΦ
2 ĥ2

+ λ̃HΦ
2 ĥ2 +

λΦχ
2

∑
i χ̂

2
i



,

(4.A.6)

M2
χ(ĥ, ϕ̂, χ̂i)

=



3λ̃χχ̂
2
1 + λχ(

∑
i χ̂

2
i + 2χ̂2

1)

+
λΦχ

2 ϕ̂2 +
λHχ

2 ĥ2 + µ2
χ

2λχχ̂1χ̂2 . . . 2λχχ̂1χ̂N

2λχχ̂2χ̂1
. . . . . .

...

...
. . . . . . 2λχχ̂N−1χ̂N

2λχχ̂N χ̂1 . . . 2λχχ̂N χ̂N−1

3λ̃χχ̂
2
N + λχ(

∑
i χ̂

2
i + 2χ̂2

N )

+
λΦχ

2 ϕ̂2 +
λHχ

2 ĥ2 + µ2
χ


,

(4.A.7)
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M2
Hφ(ĥ, ϕ̂, χ̂i) =



(λHΦ + λ̃HΦ)ĥϕ̂

λ̃HΦ
2 ĥϕ̂

λ̃HΦ
2 ĥϕ̂

0


, (4.A.8)

M2
Hχ(ĥ, ϕ̂, χ̂i) =



λHχĥχ̂1 · · · λHχĥχ̂N

0 · · · 0

0 · · · 0

0 · · · 0


, (4.A.9)

M2
φχ(ĥ, ϕ̂, χ̂i) =



λΦχϕ̂χ̂1 · · · λΦχϕ̂χ̂N

0 · · · 0

0 · · · 0

0 · · · 0


, (4.A.10)

where cells left blank are zero, while cells represented by dots are following previous cells’

pattern. In addition, we have [309,310]

m2
W =

g2

4
(ĥ2 + ϕ̂2), m2

Z =
g2 + g′2

4
(ĥ2 + ϕ̂2), m2

t =
y2
t

2
ĥ2. (4.A.11)

4.A.2 Leading order daisy coefficients

As stated in the main text, at high temperatures, there will be sizable higher loop thermal

contributions which may break the perturbative validity at some field values. In order to

resum such contributions, a naive treatment is to include a thermal mass contribution on top
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of the tree level effective mass. Formally, the thermal mass should be calculated using the gap

equation. However, if one truncates the thermal potential at leading order in the expansion

of the thermal mass, as well as in the leading order in the high-temperature expansion, one

would obtain analytical leading order thermal mass contributions to each degree of freedom.

Here we quote such leading order contributions of our model.

Π0,h = Π0,G = chT
2 =

(
λH
2

+
λHΦ

6
+

3g2 + g′2

16
+
y2
t

4
+
λ̃HΦ

12
+
N

24
λHχ

)
T 2 (4.A.12)

Π0,ϕ = Π0,φ = cϕT
2 =

(
λΦ

2
+
λHΦ

6
+

3g2 + g′2

16
+
λ̃HΦ

12
+
N

24
λΦχ

)
T 2 (4.A.13)

Π0,χi = cχT
2 =

(
λχ
12

(N + 2) +
λΦχ

6
+
λHχ

6
+
λ̃χ
4

)
T 2. (4.A.14)

For later convenience, we define constants ci = Π2
i /T

2
∣∣
ĥ=ϕ̂=0

. The thermal masses of W

and Z are as given in [309,310], they only contribute to the longitudinal components:

Π0,WL
= 2g2T 2 (4.A.15)

Π0,ZL,AL = −g
2 + g′2

8
(ĥ2 + ϕ̂2) + (g2 + g′2)T 2 ±∆ (4.A.16)

∆2 =

(
g2 + g′2

8

)2 (
ĥ2 + ϕ̂2 + 8T 2

)2
− g2g′2T 2

(
ĥ2 + ϕ̂2 + 4T 2

)
. (4.A.17)

4.A.3 RGEs

RG improvement is necessary to resum large log contributions at large field values. To

compute the RGEs, we follow the steps discussed in [311], using the real representation of

the SU(2)-doublets discussed in [312]. This approach utilizes the background-field method

and super-heat-kernel expansion. Our results have been checked in the SM limit [313] and

the pure inert 2HDM limit presented in [309], as well as two independent computations. Note

that the wavefunction renormalizations are gauge dependent (therefore there is a difference
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compared to [313]). This is another manifestation of the gauge-dependence of vEW(T ) that

was discussed in [51, 52, 80, 81, 123–125, 127, 128]. Given the Lagrangian of eq. (4.2.1), we
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find the β-functions, defined as β(c) ≡ 16π2 d
d logµR

c, to be:

β(gs) = −7g3
s (4.A.18)

β(g) = −3g3 (4.A.19)

β(g′) = 7g′3 (4.A.20)

β(µ2
H) = −4λHΦµ

2
Φ − 2λ̃HΦµ

2
Φ − µ2

H(−12λH + 3
2(3g2 + g′2)− 6y2

t )−Nµ2
χλHχ

(4.A.21)

β(µ2
Φ) = −4λHΦµ

2
H − 2λ̃HΦµ

2
H − µ2

Φ(−12λΦ + 3
2(3g2 + g′2))−Nµ2

χλΦχ (4.A.22)

β(µ2
χ) = 4µ2

ΦλΦχ + 6λ̃χµ
2
χ − 4µ2

HλHχ + 2(N + 2)µ2
χλχ (4.A.23)

β(λH) = 2λ2
HΦ + 2λHΦλ̃HΦ + λ̃2

HΦ + 24λ2
H − 3λH(3g2 + g′2)

+
3

8
(3g4 + 2g2g′2 + g′4) + 12λHy

2
t − 6y4

t + N
2 λ

2
Hχ (4.A.24)

β(λΦ) = 2λ2
HΦ + 2λHΦλ̃HΦ + λ̃2

HΦ + 24λ2
Φ − 3λΦ(3g2 + g′2)

+
3

8
(3g4 + 2g2g′2 + g′4) + N

2 λ
2
Φχ (4.A.25)

β(λχ) = 2λ2
Φχ + 2λ2

Hχ + 16λ2
χ + 12λ̃χλχ + 2Nλ2

χ (4.A.26)

β(λHΦ) =
3

4
(3g4 − 2g2g′2 + g′4) + 4λ2

HΦ + 2λ̃2
HΦ + 4λ̃HΦ(λH + λΦ)

+ λHΦ(12λΦ + 12λH − 3(3g2 + g′2)) + 6λHΦy
2
t (4.A.27)

β(λ̃χ) = 18λ̃2
χ + 24λ̃χλχ (4.A.28)

β(λΦχ) = (−3
2(3g2 + g′2) + 12λΦ + 6λ̃χ + 4λΦχ + 2Nλχ + 4λχ)λΦχ

+ 4λHΦλHχ + 2λ̃HΦλHχ (4.A.29)

β(λHχ) = (−3
2(3g2 + g′2) + 12λH + 6λ̃χ + 4λHχ + 2Nλχ + 4λχ + 6y2

t )λHχ

+ 4λHΦλΦχ + 2λ̃HΦλΦχ (4.A.30)

β(λ̃HΦ) = 3g2g′2 − 3λ̃HΦ(3g2 + g′2) + 6λ̃HΦy
2
t + 4λ̃HΦ(λH + λΦ)

+ 8λHΦλ̃HΦ + 4λ̃2
HΦ (4.A.31)

β(yt) = −8ytg
2
s − 9

4ytg
2 − 17

12ytg
′2 + 9

2y
3
t . (4.A.32)
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As mentioned in subsection 4.2.1, the couplings λ̃HΦ and λHχ are not protected by a sym-

metry (hypercharge breaks the custodial symmetry of λ̃HΦ) and will run away from their

initial, vanishing value. The wave function renormalization of the scalar fields are

γH = −3g2 − g′2 + 3y2
t , (4.A.33)

γΦ = −3g2 − g′2, (4.A.34)

γχ = 0. (4.A.35)

4.A.4 Details on the sphaleron rate calculation

In this section, we give some details on calculating the sphaleron rate across a large range of

temperatures, which would prove essential in evaluating the baryon asymmetry in a model

with UV EWBG. The sphaleron rate per unit volume is [38,292]

Γ

V
=
ω−
2π
Ntr(NV )rot

(
αwT

4π

)3

α−6
3 κ exp

[
−Esph(T )/T

]
. (4.A.36)

This rate depends on the profile functions of the sphaleron solution that can be obtained

by solving the equations of motion for the SU(2) and U(1) gauge bosons, and Higgs dou-

blets [290, 291]. In the limit of neglecting the U(1) gauge coupling, g′ = 0, a spherically

symmetric ansatz gives a system of differential equations that can be numerically solved, for

example, using the Newton-Kantorovich method as done in [314]. Given the uncertainties of

the thermal potential calculation, we use the values of λ/g2 as shown in Figure 4.6, where

g = g(µR) is the SU(2) gauge coupling, and we consider λ = λH(µR) when we are in the

phase PH , and λ = λΦ(µR) when we are in the phases PΦ or PHΦ. This is justified by

the fact that the sphaleron solution depends on the SU(2) structure of the theory, and our

model mostly has either the SM Higgs or the inert Higgs taking a vev.

The sphaleron energy is then given by Esph(T ) = Esph(T = 0)
vEW(T )
vEW(T=0)

= 4π
g B vEW(T ),
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where the energy prefactor B can be obtained by performing the volume integral of the stress-

energy tensor using the previously obtained profile functions. Our choice of B as a function

of λ/g2 is shown in Figure 4.6, which is consistent with [39].

Ntr and Nrot are the normalization of the zero-frequency translation and rotation modes

[292]. They can be computed from small fluctuations around the sphaleron solution. The

resulting formula depends again on the profile functions and can therefore be either computed

numerically or read off from [292, Fig. 5]. We pursue the latter and show the values we use

in Figure 4.6.

ω− is the frequency of the unstable mode [292, 315]. It can be found as a negative

eigenvalue of a system of equations that also depends on the profile functions. We use the

values of [292, Fig. 6] directly and show them in Figure 4.6 (Note that this plot shows ω2
−

in units of (gv)2).

κ is the fluctuation determinant. A first numerical evaluation was given in [38], and

later improved in [294, 316–318]. We use the values given in [294] and assume a rather

large uncertainty of [0.01κ, 100κ] to also partially parametrize uncertainties in the other

prefactors [314].

Finally, Vrot = 8π2 is the volume of the rotation group; αw = g2/4π2 is the weak

coupling constant; and α3 = αw/(gξ(T )) is the weak coupling in the three-dimensional

high-temperature effective theory.
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Figure 4.5: Phase structure (upper panel) and EW vev-temperature ratio (lower panel) of
BM B. Model parameters of the BM are given in Table 4.1
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Figure 4.6: Input values for the sphaleron decay rate in eq. (4.2.40). Ntr and Nrot are taken
from [292, Fig. 5], ω− is taken from [292, Fig. 6], and κ is taken from [294], including
uncertainties as explained in the text, and the energy prefactor B is computed also as
discussed in the text. All quantities are plot against λ/g2, the ratio of the corresponding
quartic to the gauge coupling.
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CHAPTER 5

ELECTROWEAK PHASE TRANSITION AND

GRAVITATIONAL WAVES SIGNALS

The development of gravitational wave observatories provides a new window to understand

the thermal history of the electroweak symmetry. If there was a first order electroweak phase

transition in the early universe, the departure from thermal equilibrium during the bubble

nucleation process, would provide a suitable environment for production of gravitational

wave radiation, that has the potential to be detected by the next generation of gravitational

wave experiments [319–322].

In this chapter, we first give a brief introduction to the simulation of gravitational wave

signals generated by a first order electroweak phase transition in section 5.1, followed by an

example in the singlet extension of the SM with spontaneous Z2 breaking, where we provide

a rough estimate of the gravitational wave signatures of the various underlying thermal

histories and evaluate the opportunities to observe them at current and future gravitational

wave detection experiments.

Next in section section 5.2, we focus on the bubble wall speed during a first order elec-

troweak phase transition by analyzing the Higgs condensate bubble expansion, which plays

a key role in determining the gravitational wave signals in a model independent way. The

interaction of particles with the bubble wall can be accompanied by the emission of multiple

soft gauge bosons. When computed at fixed-order in perturbation theory, this process ex-

hibits large logarithmic enhancements which must be resummed to all orders when the wall

velocity is large. We perform this resummation both analytically and numerically at leading

logarithmic accuracy. The numerical simulation is achieved by means of a particle shower

in the broken phase of the electroweak theory. The two approaches agree to the 10% level.

For fast-moving walls, we find the scaling of the thermal pressure exerted against the wall to

be P ∼ γ2T 4, independent of the particle masses, implying a significantly slower terminal
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velocity than previously suggested. The work was performed in collaboration with Stefan

Hoeche, Jonathan Kozaczuk, Andrew J. Long and Jessica Turner. It has been published in

Journal of Cosmology and Astroparticle Physics [323].

5.1 Gravitational waves from strong first order cosmological

phase transitions

5.1.1 Introduction

Cosmological phase transition processes can induce gravitational wave (GW) radiations

through bubble collisions, dubbed as Ωφ, propagation of the sound wave, dubbed Ωsw,

and the decay of magnetohydrodynamic (MHD) turbulence, dubbed ΩMHD, respectively

[18, 319, 320, 324]. The stochastic GW background power spectrum is the summation of

these three sources,

h2ΩGW (f) ' h2Ωφ(f) + h2Ωsw(f) + h2ΩMHD(f), (5.1.1)

whose specific strengths are determined by specifics of the cosmological phase transition

(PT). However, contributions from these sources commonly depend on a few characteristic

properties of the PT:

• The inverse duration of the PT, which is characterized by

β ' Γ̇/Γ (5.1.2)

with Γ being the bubble nucleation rate. Conventionally, it is normalized by the Hubble
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parameter when simulating the GW signal, which reads

β

H∗
∼ T

d(S3/T )

dT

∣∣∣∣
T=T∗

, (5.1.3)

where S3/T is the O(3)-symmetric bounce Euclidean action, T∗ denotes the temper-

ature of the thermal bath when the GW was generated, and H∗ is the corresponding

Hubble parameter at temperature T∗. For a strong first order phase transition with-

out significant reheating, T∗ is approximately the nucleation temperature Tn. As will

be shown later, the bubble collision generated power spectrum is suppressed by two

powers of the duration of the PT, H∗/β, while the corresponding spectra generated by

the sound waves and turbulences last longer and are suppressed by only one power of

the duration of the PT.

• Fraction of vacuum energy released during the transition with respect to the radiation

bath, which specifically reads

α =
ρvac

ρrad|T=T∗
. (5.1.4)

The radiation energy density, ρrad, is approximately given by g∗π2T 4∗ /30, where g∗

is the number of relativistic degrees of freedom in the plasma at T∗. Note that as

mentioned in Ref. [319,320], α also approximately coincides with the latent heat of the

PT in the limit of a strong PT and large supercooling.

• Bubble wall velocity. If the wall velocity is small, then the GW spectrum is suppressed

and hence less detectable. Detailed understanding of bubble wall velocity is, however,

difficult, although one generically expects the plasma and matter reflection effects to

let the bubble reach a relativistic terminal velocity [319]. In the next section, we will

study such a quantity explicitly, and showcase the important effect of particles in the

plasma slowing down a relativistic bubble wall by emitting soft and collinear radiations

passing through the bubble wall.
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• Fraction of vacuum energy that gets converted into bulk motion of the fluid and into

gradient energy of the Higgs-like field,

κv =
ρv
ρvac

, κφ =
ρφ
ρvac

, (5.1.5)

respectively.

With these quantities, following Ref. [320], power spectra of the GW from different sources

can be simulated as

• Bubble collision

The GW contribution from the bubble collision can be treated using the envelope

approximation, where

h2Ωφ(f) = h2Ωenv(f)|κ=κφ , (5.1.6)

with

h2Ωenv(f) = 1.67× 10−5
(
H∗
β

)2 ( κα

1 + α

)2 (100

g∗

)1
3
(

0.11v3
w

0.42 + v2
w

)
Senv(f).

(5.1.7)

Senv(f) parametrizes the spectral shape, witch based on simulation data reads

Senv(f) =
3.8 (f/fenv)2.8

1 + 2.8 (f/fenv)3.8
, (5.1.8)

where the peak frequency today fenv is red-shifted from the peak frequency at T∗ as

fenv = 16.5 × 10−3mHz

(
f∗
β

) (
β

H∗

) (
T∗

100GeV

) ( g∗
100

)1
6
, (5.1.9)

and the peak frequency f∗ is determined by the time scale of the PT based on simulation
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as

f∗
β

=
0.62

1.8− 0.1vw + v2
w

; (5.1.10)

• Sound waves

The GW contribution from sound waves, as bulk motion in the fluid produced by

percolation, can be fitted as

h2Ωsw(f) = 2.65× 10−6
(
H∗
β

) (
κvα

1 + α

)2 (100

g∗

)1
3

vw Ssw(f), (5.1.11)

where the power spectrum shape

Ssw(f) = (f/fsw)3
(

7

4 + 3 (f/fsw)2

)7/2

, (5.1.12)

and a conservative estimate of the peak frequency today fsw reads

fsw = 1.9 × 10−2mHz
1

vw

(
β

H∗

) (
T∗

100GeV

) ( g∗
100

)1
6

; (5.1.13)

• MHD turbulence

The GW contribution from turbulence in the plasma can be modeled as

h2Ωtrub(f) = 3.35× 10−4
(
H∗
β

) (
κturbα

1 + α

)3
2
(

100

g∗

)1
3

vw Sturb(f), (5.1.14)

where κturb is the fraction of latent heat that is transformed into MHD turbulence,

and the power spectrum shape

Sturb(f) = (f/fsw)3 1

(1 + (f/fsw))11/3 (1 + 8πf/h∗)
, (5.1.15)
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and a conservative estimate of the peak frequency today fturb reads

fturb = 2.7 × 10−2mHz
1

vw

(
β

H∗

) (
T∗

100GeV

) ( g∗
100

)1
6
. (5.1.16)

The behavior of the bubble wall, say either it runs away, and if it runs away, either that is

driven by vacuum or plasma effects, play a crucial role in determining the relative importance

of different contributions, and in estimating the fraction of latent heat that is transformed

into different sources. We will not illustrate details for different situations here. Instead, as

an explicit example of the GWs generated by a SFOEWPT, in the next subsection, we show

the potential for detectability of GW in the singlet extension of the SM with spontaneous Z2

breaking, that has been introduced in section 3.2. In this study, we assumed the bubble wall

speed to be 0.5 of the speed of light, corresponding to non-runaway bubbles in the plasma.

In such a case, the energy from the scalar field is negligible, and the sound wave contribution

to the GW signal dominates.

5.1.2 GWs from SFOEWPT with spontaneous Z2 breaking

In Figure 5.1 we show the GW spectral density associated to the strong first order electroweak

phase transition for various scenarios in comparison to the corresponding LISA [325], DE-

CIGO [326], BBO [327] and Einstein Telescope (ET) [328] projected power-law integrated

sensitivities [307, 308]. Other GW observatories such as Taiji [329] and TianQin [330] have

similar sensitivities to LISA but different frequency bands, and future ones can further extend

the GW sensitivities [321,331,332]. The green and orange curves correspond to scenarios A

and B, respectively, in the tree-level plus one-loop thermal calculation, for a sufficiently strong

first order phase transition and allowing for nucleation. The dark red curves represent the

calculation including Coleman-Weinberg potential and daisy resummation, containing both

scenario A and B points, again requiring nucleation. Given the smallness and indetectability
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Figure 5.1: The gravitational wave (GW) power spectra generated during SFOEWPT as a
function of frequency for model points of the singlet extension of the SM with spontaneous
Z2 breaking. The green and orange curves correspond to scenarios A and B, respectively,
including the tree-level and one-loop thermal calculation. The dark red curves correspond
to the full 1-loop evaluation plus the daisy resummation. Also shown are the power-law
integrated sensitivities of the LISA, BBO, DECIGO and ET projections, obtained from
Ref [308]. The transparency of the green curves further indicates the strength of the EWPT
for the corresponding GW spectrum; the less transparent, the stronger the EWPT.
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of these sets of signals, we do not distinguish among the different scenarios in the figure.

Observe that in our study, the temperature of the thermal bath at the time when GWs are

produced is close to the nucleation temperature, since the system does not undergo a large

supercooling, and hence we use T∗ = Tn in the calculations. The GW signal is generated

during the final or single step that gives place to the EWPT. In the cases of a two-step phase

transition (scenarios A and B-NR), where relevant definitions can be found in section 3.2,

the first step always involves a second order phase transition.

Now we comment on the several important aspects and underlying parameters of these

GW spectra. We conservatively assume that the contribution from the MHD turbulence

represents about 5% of the total sound wave energy. The nucleation temperature mainly

spans over the range of 50 to 100 GeV for all the scenarios considered in this study. However,

for the thermal-only calculation of scenario A and A-NR, the nucleation temperature can

extend to values as low as a few GeV. For the green curves, the GW parameter α spans

through the whole range from 5× 10−4 to 100, 1 which strongly correlates with the strength

of EWPT. The larger the α, the stronger the EWPT and as well the lower the nucleation

temperature. β/H spans over the range 5×102 to 105, with higher density of results around

103. The β/H anti-correlates with the strength of the EWPT. We use the transparency of

the green curves to indicate the corresponding strength of the EWPT and to highlight the

connection between the strength of the EWPT and the parameters α and β/H: the less

transparent the green curves, the stronger the EWPT. The stronger the phase transition,

the lower the nucleation temperature and β/H, and the higher the value of α. These facts

lead to the strongest GW spectrum with a peak frequency around 3 mHz. We observe that

the nucleation calculation effectively removes many model parameter points in scenario B

with strong EWPT, and with our current statistics, scenario B spreads over α between 0.005

1. For strong-transitions, with α of order 1 or larger, the dynamics of the GW becomes more complex
and the GW strength computation has a large uncertainty that requires an improved treatment [333]. We
note that the strongest four GW spectra shown by the green upper curves in Figure 5.1 correspond to this
case.
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and 0.02, and β/H between 7× 104 and 5× 105. For the full calculation with CW and daisy

resummation, which corresponds to the dark red curves, α spans over the range 0.003 to

0.007 and β/H over the range 3× 103 to 4× 105. The points are more scattered around due

to the enhanced complexity of the model parameter space due to the higher order radiative

corrections to the scalar potential, with no obvious correlations. As argued earlier, the CW

plus daisy resummation calculation, as well as the nucleation calculation, leaves model points

with higher nucleation temperature, above 50 GeV, together with higher value of β/H. This,

in turn, corresponds to a higher peak frequency at Hz level but suppressed strength of the

GW signals for dark red and orange curves.

Our present results show that future GW experiments such as LISA and BBO would have

limited sensitivity to detect GW signals associated to the EWPT in models with spontaneous

Z2 breaking. As explained above, the dark red curves correspond to the full one-loop with

daisy resummation study, and this renders a much weaker GW signal. This is related to

the loss of points with very strong first order phase transition, that, in the tree level plus

one-loop thermal analyses (green and orange curves), are associated with smaller values of

λ̃h. In turn, smaller values of λ̃h will be more likely to become unstable (acquire negative

values with RG running at large scales) and will be discarded from the accepted solutions.

We already discussed this in detail in section 3.2.2. The reason that in Figure 5.1 we

are showing both sets, those with the tree level plus one-loop thermal potential and those

including the full one-loop corrections with daisy resummation, is because we anticipate

that a further improvement in the computation of the scalar potential, namely the RG-

improved CW potential, will affect the running of λ̃h and stabilize some of the discarded

solutions, therefore yielding stronger GW signals. In fact, we expect that an RG improved

effective potential treatment will yield results that lie somewhere in between the dark red

and the thermal-only contours. This will require an additional comprehensive analysis that

we postpone for a future work.
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5.2 Bubble wall speed: towards an all-order calculation

It is important to understand the dynamics of Higgs-field bubbles during the PT [334], as they

directly affect the production of various cosmological relics including the matter-antimatter

asymmetry, topological defects, primordial magnetic fields, and a stochastic background of

GW radiation.

A first order electroweak phase transition proceeds through the nucleation, growth, and

percolation of bubbles. As the bubbles are expanding, their speed is controlled by a balance

of pressures. A vacuum pressure, resulting from the underlying symmetry-breaking Higgs

potential, “pushes” the bubble walls outward. Meanwhile a thermal pressure, resulting from

the interactions of the wall with the ambient plasma, retards the bubble’s expansion, and

acts as a source of friction. If the vacuum pressure exceeds the thermal pressure, then the

bubble wall will “runaway” with its velocity approaching the speed of light [335]. On the

other hand, if the thermal pressure balances the vacuum pressure then the wall reaches a

(possibly ultrarelativistic) terminal velocity [336]. Therefore, to understand the dynamics of

Higgs-phase bubble walls during a first order electroweak phase transition, a key quantity of

interest is the thermal pressure induced by the plasma of Standard Model particles.

Thermal pressure arises, in general, from the scattering of particles whose masses or

couplings vary across the bubble wall. The authors of Ref. [336] argued that for fast moving

walls, the pressure is dominated by the emission of soft vector bosons when particles cross

the wall, a phenomenon known as transition radiation. For example, in the Standard Model

an incident top quark can be put off-shell through a momentum transfer with the wall and

may radiate soft Z-bosons to return to its mass shell. In Ref. [336] the authors calculated the

corresponding thermal pressure assuming a single emission of the soft vector boson. They

found that this channel dominates the non-radiative process, due to its enhancement in the

infrared (IR) region. In this work, we note that the appearance of infrared singularities and

the associated large logarithms implies that the fixed-order calculation underestimates the
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pressure and resummation of soft radiation is necessary to obtain an accurate result when

the wall velocity is large.

In this section, I present the work where we calculate the thermal pressure that results

from the scattering of Standard Model particles on an ultrarelativistic Higgs-phase bub-

ble wall while accounting for multiple soft emissions that collectively comprise a particle

shower. We begin in subsection 5.2.1 with the definition of thermal pressure and motivate

the need for resummation of soft radiation. Further, in subsection 5.2.2 we establish the

framework for our calculation and the relation to Ref. [336]. In subsection 5.2.3 we compute

the logarithmically enhanced radiative corrections and perform an analytic resummation.

In addition to the analytic result, we simulate a particle shower in the broken Higgs phase

in subsection 5.2.4. We find that the results agree well with the analytic calculation. The

cosmological implications are presented in subsection 5.2.5 and we discuss and conclude

in subsection 5.2.6.

5.2.1 Thermal pressure and why Higgs bubbles need a shower

In this section, we provide an intuitive understanding of the (net) thermal pressure exerted

against the wall, P ≡ F/A (the retarding force per unit area) and we review several fixed-

order calculations of P from the literature. We argue that the fixed-order calculations

must break down for sufficiently large wall velocities γ � 1, and thus we motivate an all-

orders calculation which is carried out in the following sections using well-known analytic

resummation and numerical techniques based on QCD parton showers.

Consider a Higgs-phase bubble in a plasma with weak-scale temperature T ∼ 100 GeV.

On the length scales of interest, the curvature of the bubble can be neglected, and the

local bubble wall can be treated as planar. For concreteness let ~vw = −v ~ez with v > 0

be the velocity of the wall in the rest frame of the plasma, and let γ = 1/
√

1− v2 be the

corresponding Lorentz factor. We are interested in ultrarelativistic walls for which γ � 1,
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and typically γ ∼ 10 − 1000. In this regime, all SM particles are assumed to enter the

broken phase with negligible reflection probability, the flux of particles passing the wall from

inside the bubble is exponentially suppressed, and the distributions of the incoming particles

are just the usual Bose-Einstein or Fermi-Dirac equilibrium distributions. Throughout this

article we work in a frame where the bubble wall is at rest, and the plasma has an average

velocity ~vpl = v ~ez. In this frame, particles from the plasma are incident on the wall with

boosted energies E ∼ γT and fluxes F ∼ γT 3. As γT � 100 GeV, there is no kinematic

restriction toward producing a large number of weak-scale particles when a particle interacts

with the wall. The thermal pressure P can be written schematically as the product,

P = F × 〈∆p〉 , with 〈∆p〉 = ∆pz × P , (5.2.1)

where F is the thermal flux of incident particles on the wall (number per area per time)

and 〈∆p〉 is the average momentum transferred to the wall by each incident particle. For

each particle that hits the wall, multiple scattering channels are possible and P represents

the probability for a given scattering while ∆pz is the longitudinal momentum transfer of

that scattering. We are particularly interested in how the thermal pressure scales with the

Lorentz factor γ, as it will be compared against the vacuum pressure that scales as Pvac ∼ γ0.

Since F ∼ γ1 in general, we only need to determine how 〈∆p〉 scales with γ.

Generally, 〈∆p〉 is given by a sum over all possible scatterings with each weighted by its

associated probability. Ref. [335] considered the pressure that results from a particle entering

the bubble and acquiring mass m, without any other emission. Based on simple kinematics,

one can show ∆pz ∼ m2/(2E), which scales as E−1 ∼ γ−1. Additionally taking P = 1,

since nearly all particles are transmitted into the bubble, Ref. [335] found that the pressure

for such 1-to-1 transitions scales like P ∼ γ0 since F ∼ γ1. The same authors revisited the

calculation of thermal pressure in Ref. [336], and allowed the incident particle to emit an

additional particle, which they refer to as a 1-to-2 transition. They argue that the pressure
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is dominated by a region of phase space in which the emitted particle is soft with transverse

momentum close to its mass. This leads to ∆pz ∼ msoft, where msoft is the on-shell mass of

the emission, and P ∼ α γ0, where α = g2/4π is the appropriate three-particle coupling. As

such, Ref. [336] found P ∼ γ1, implying that the thermal pressure grows as the wall speeds

up. Since the vacuum pressure does not grow with increasing γ, a balance of pressures is

inevitable, and a terminal velocity will be reached.

Such a possibility naturally leads to the question: what is the effect of 1-to-many transi-

tions? To estimate whether these channels could be relevant, we can calculate the probability

for a 1-to-2 transition in the soft region of phase space favored by Ref. [336]. Here there is

both a soft and a collinear enhancement, each of which contribute a logarithmic factor. The

probability is parametrically given by (see for example section 5.2.3, Eq. (5.2.62))

P1→2 ≈ P1→1 ×
∑
i

Ci
αi
2π

log2 p
2
uv

p2
ir
, (5.2.2)

where we sum over different emission channels with the appropriate couplings αi = g2
i /4π

and charges Ci (see App. 5.A.1 for notation). Additionally, puv ∼ γT is the energy of

the incident particle, pir ∼ m ∼ T is the mass of the emitted particle, and P1→1 is the

probability of the 1 → 1 transition. The factorization of P1→2 into P1→1 and a doubly-

logarithmic enhanced contribution from the 1 → 2 splitting process is a universal feature

of gauge theories in the high-energy limit that is rooted in the soft singular behavior of

classical dipole radiation. If γ � 1, then there is a large hierarchy between the UV and

IR energy scales, and the probability ratio may become P1→2/P1→1 = O(1) due to the

large logarithms. A probability of order 1 would invalidate the fixed-order calculation and

imply that 1-to-many channels should be taken into account. Using the approximate formula
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above, we find that P1→2 > P1→1 in the regime

γ > exp

[√
π

2
∑
iCiαi

]
. (5.2.3)

For example, if the coupling is αi ≈ 0.01, the charge is Ci ≈ 1, and there are ∼ 10 channels

in the sum, then we estimate that the fixed-order 1-to-2 calculation should break down when

γ & O(10− 100). As the fixed-order calculation in Ref. [336] implies γ ∼ 100− 1000 at the

terminal velocity, the 1-to-many channels play an important role and this is what we study

in the remainder of the article.

5.2.2 Perturbative computation of the thermal pressure

In this section we introduce the framework for the computation, following the methods

developed in Ref. [336]. We also establish the notation that will allow us to compute radiative

corrections in subsection 5.2.3.

Kinematics and one-particle states

We begin by defining the relevant kinematic variables. We work in the rest frame of the

bubble wall, which is assumed to be planar and located at z = 0. In the rest frame of

the plasma, the wall’s velocity is ~vw = −~v = −v ~ez, and in the rest frame of the wall,

the plasma’s velocity is ~vpl = ~v = v ~ez; the associated Lorentz factor is γ = 1/
√

1− v2.

We assume that particles of type a have a mass ma,s in front of the wall (z < 0, symmetric

phase) and a mass ma,h behind the wall (z > 0, Higgs phase). This mass-varying background

breaks spatial-translation invariance in the direction normal to the wall. Noether’s theorem

implies that the z-component of momentum is not conserved, and there is an ambiguity

in the construction of a complete Fock space because we cannot label single-particle states

by their x-, y-, and z-momentum, since the last one is not a good quantum number. To
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address this ambiguity we follow Ref. [336]. One-particle states of flavor a are defined to be

momentum eigenstates in the symmetric phase, and are therefore labeled by the momentum

~pa,s = (pa,x, pa,y, pa,z,s) a particle has in the symmetric phase, based on its energy and

transverse momentum. They are normalized according to [337]

〈~p ′a,s|~pa,s〉 = (2π)3 2Ea δ
(3)(~p ′a,s − ~pa,s) ,

∫
d3~pa,s

(2π)3

1

2Ea
|~pa,s〉〈~pa,s| = 1 , (5.2.4)

where ~pa,⊥ = (pa,x, pa,y, 0) and p2
a,z,s = E2

a − ~p 2
a,⊥ − m2

a,s. If the particle in question is

located in front of the wall (z < 0), and ~pa is the particle’s three momentum, then we have

the dispersion relation E2
a = ~p 2

a +m2
a,s, and the projection

〈~x |~pa,s〉 =
√

2Ea exp{i~pa,⊥~x⊥}χ(z) , (5.2.5)

is a plane wave, i.e. χ(z) = exp{ipa,z,sz}, because the label momentum, ~pa,s, agrees with

the kinematical momentum. If the particle is instead located behind the wall (z > 0), we

have E2
a = ~p 2

a +m2
a,h, and the free particle states must be found by solving the associated

evolution equation in the presence of the bubble wall, because the label momentum does

not agree with the kinematical momentum. This can be achieved by using the WKB ap-

proximation [336] to determine the mode functions χ(z), leading to the zeroth order result

χ(z) = exp{ipa,z,hz}, where p2
a,z,h = E2

a − ~p 2
a,⊥ − m2

a,h. In summary, the functional form

of χ(z) agrees with the vacuum case for all z if χ(z) is evaluated with the kinematical z-

momentum, χ(z) = exp{ipa,zz}.2 Note in particular that the δ functions in Eq. (5.2.4) do

not imply z-momentum conservation. Written in terms of conserved kinematical quantities

2. This result can be understood from a different perspective: The relative phase shift between the WKB
solution and a plane wave amounts to the relative momentum transfer of a free particle to the bubble wall,
which is given by ∆pz/(γT ) ≈ ∆m2/(γT )2. In the high-energy limit γT � ma,h the amplitude of the wave
function is unaltered, because a small momentum change will not cause the particle to be reflected off the
wall. Hence the free-particle momentum eigenstate at z > 0 is simply the plane wave solution in Eq. (5.2.5)
with the appropriate dispersion relation for z > 0.
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they read instead

δ(3)(~p ′a,s − ~pa,s) =
pa,z,s
Ea

δ(E′a − Ea) δ(2)(~p ′a,⊥ − ~pa,⊥) . (5.2.6)

Definition of thermal pressure

We can now define the thermal pressure, P , and proceed to derive a master formula that

allows us to calculate this pressure from scattering amplitudes. First we write

P =
∑
a∈S

Pa , (5.2.7)

where Pa is the pressure resulting from incident particles of species a specifically. We sum a

over the set of massive Standard Model particle species, S. Next we can write

Pa =

∫
dFa 〈∆pν〉aNν , (5.2.8)

whereNµ is a space-like four-vector normal to the wall, dFa = dj
µ
aNµ is the flux of incident a-

particles, dj
µ
a is the differential a-particle-number current density, and 〈∆pµ〉a is the average

four-momentum transfer to the wall when a single a-particle is incident. To construct the nor-

mal vector, Nµ, suppose that the wall is parametrized by a scalar field m2
a(xµ) that represents

the inhomogeneous squared mass of a-particles; then we define Nµ = ∂µm
2
a/
√
−(∂m2

a)2,

which is evaluated at the wall, implying Nµ = {0, 0, 0, 1} in the frame where the wall is at

rest and m2(xµ) increases from m2
a,s at z → −∞ to m2

a,h at z → +∞. The differential

current density can be written as

dj
µ
a = νa

d3~pa
(2π)3

fa
p
µ
a

Ea
, (5.2.9)
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where νa counts the redundant internal degrees of freedom (e.g., color and spin), and fa is the

phase space distribution function of a-particles. The plasma in front of the wall is assumed

to be in thermal equilibrium at temperature T . If the wall moves ultrarelativistically, as

we assume throughout our study, the distribution functions for bosons and fermions are

the equilibrium Bose-Einstein and Fermi-Dirac distributions, respectively, boosted from the

plasma frame to the wall frame:

fa =
1

ep
µupl

µ /T ± 1
=

1

e(γEa−γ~pa·~vpl)/T ± 1
, (5.2.10)

where u
pl
µ is the four-velocity of the plasma that equals u

pl
µ = {γ, 0, 0, γ~vpl} in the rest frame

of the wall. Eq. (5.2.10) generates average momenta of pa,z ∼ γT � pa,x ∼ pa,y ∼ T . We

also assume γT � ma such that Ea ∼ γT and parametrically the flux is Lorentz-boosted,

dFa ∼ γT 3.

The average momentum transfer from incident a-particles, 〈∆pµ〉a, can be written as

〈∆pµ〉a =
∞∑
n=1

∑
{b}∈S

∫
dPa→b1b2···bn ∆pµ , (5.2.11)

where dPa→b1b2···bn is the differential probability for a single a-particle with momentum ~pa

to create a shower of n particles of species {b} and label momenta {~pb,s}. The probability is

weighted by the four-momentum transferred to the wall, which we write as

∆pµ = p
µ
a −

n∑
i=1

p
µ
bi
. (5.2.12)

The probability density dPa→b1···bn enforces energy and transverse momentum conservation

(see Eq. (5.2.6)), hence we find that ∆pµNµ = pa,z −
∑
i pbi,z. We can write the differential
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probability as [337]

dPa→b1···bn =

[
n∏
i=1

d3~pbi,s

(2π)32Ebi
(1± fbi)

] ∣∣〈~pb1,s · · · ~pbn,s|iT̂ |ψa(~pa)〉
∣∣2 , (5.2.13)

where d3~pbi,s/((2π)32Ebi) is the Lorentz-invariant differential phase space volume element

for the final-state particle i, (1±fbi) accounts for Bose enhancement (if bi is a boson) or Pauli

blocking (if bi is a fermion), and 〈~pb1,s · · · ~pbn,s|iT̂ |ψa(~pa)〉 is the transition matrix element

for particle a represented by the state |ψa(~pa)〉 to scatter into n particles. We will assume

that the occupation numbers are small and thus approximate 1± fbi ≈ 1 in our calculation.

The incoming wave packet is defined in terms of the wave function ψ(~p ′a,s; ~pa) of particle a

with momentum ~pa as

|ψa(~pa)〉 =

∫
d3~p ′a,s
(2π)3

1

2E′a
ψ(~p ′a,s; ~pa) |~p ′a,s〉 , (5.2.14)

which leads to the proper normalization 〈ψa(~pa)|ψa(~pa)〉 = 1. The transition amplitude can

then be written as

〈~pb1,s · · · ~pbn,s|iT̂ |ψa(~pa)〉 =

∫
d3~p ′a,s

(2π)32E′a
ψ(~p ′a,s; ~pa) 〈~pb1,s · · · ~pbn,s|iT̂ |~p

′
a,s〉 . (5.2.15)

It can be expressed in terms of the corresponding scattering amplitudeMa→b1···bn as follows3

〈~pb1,s · · · ~pbn,s|iT̂ |~pa,s〉 = (2π)3 δ(3)(~pa,s −
n∑
i=1

~pbi,s) iMa→b1···bn(~pa,s, ~pb1,s, · · · ~pbn,s) .

(5.2.16)

Both the transition matrix element and the scattering amplitude depend on the particles’

spins, which we have suppressed to avoid unnecessary notation. Spins of final-state particles

are summed, and the spin of the initial-state particle is averaged. Note that we only factor

3. Our normalization convention for M differs from Ref. [336] by a factor pa,z,s/Ea due to Eq. (5.2.6).
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off three Dirac delta functions in Eq. (5.2.16), rather than the usual four [337], because the

z-component of momentum is not conserved in a background with inhomogenous particle

masses. The combination of Eqs. (5.2.15) and (5.2.16) leads to two initial-state phase-space

integrals, one of which can be evaluated trivially using three of the δ functions. We obtain

∣∣〈~pb1,s · · · ~pbn,s|iT̂ |ψa(~pa)〉
∣∣2

=

∫
d3~p ′a,s
(2π)3

∣∣ψ(~p ′a,s; ~pa)
∣∣2

(2E′a)2
(2π)3 δ(3)(~p ′a,s−

n∑
i=1

~pbi,s)
∣∣Ma→b1...bn

∣∣2 . (5.2.17)

We now use the fact that the wave function ψ(~p ′a,s; ~pa) is tightly peaked around ~pa because

the incident particle has a well defined momentum. Formally, we can write |ψ(~p ′a,s; ~pa)|2 =

(2π)3 2Ea δ
(3)(~p ′a,s−~pa). The integral over ~p ′a,s is again trivial, and we obtain the differential

probability [336]

dPa→b1···bn =
1

2Ea

[
n∏
i=1

d3~pbi,s

(2π)32Ebi

]
(2π)3 δ(3)(~pa,s −

n∑
i=1

~pbi,s) |Ma→b1···bn|
2 . (5.2.18)

By combining Eqs. (5.2.7)-(5.2.9), (5.2.11), (5.2.12), and (5.2.18), and further assuming the

high-energy limit, such that pa,z,s/Ea ≈ 1 in Eq. (5.2.9), one obtains a “master formula” for

the thermal pressure,

P =
∑
a∈S

νa

∫
d3~pa

(2π)32Ea
fa(~pa)

∞∑
n=1

∑
{b}∈S

[
n∏
i=1

∫
d3~pbi,s

(2π)32Ebi

]

× (2π)3 δ(3)(~pa,s −
n∑
i=1

~pbi,s) |Ma→b1···bn|
2(pa,z − n∑

i=1

pbi,z
)
,

(5.2.19)

that allows it to be calculated by specifying scattering processes and calculating the associ-

ated scattering amplitudes.
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Transition radiation splitting

As a first example, we will determine the 1 → 1 transition matrix element to leading order

in the perturbative expansion. This is given quite simply by the normalization condition in

Eq. (5.2.4)

〈~pb,s|~pa,s〉(0) = (2π)3δ(3)(~pa,s − ~pb,s)M
(0)
a→b = (2π)32Eaδ

(3)(~pa,s − ~pb,s) , (5.2.20)

leading to M(0)
a→b = 2Ea. The extension to fermion and vector fields is straightforward

and yields identical results due to identical normalization of the one-particle eigenstates.

Inserting the result into Eq. (5.2.19) leads to the pressure formula for 1 → 1 transitions

which was derived in Ref. [335].

In what follows, the quantities we compute will be normalized to the leading order matrix

elementM(0)
a→b for particle a interacting with the wall and producing particle b. This allows

us to formulate the radiative corrections to the leading order a→ b process probabilistically.

The fact thatM(0)
a→b = 2Ea implies that all incoming particles which couple to the Standard

Model Higgs condensate will interact with the bubble wall with a probability of unity, inde-

pendent of the size of their Yukawa coupling. This is analogous to the more familiar situation

of a charged particle interacting with the material in a detector: as long as the length of the

detector along the direction of propagation is substantially longer than the particle’s mean

free path, the probability for interaction (and the initiation of a shower) is unity. In the case

of particles impinging on a bubble of Higgs condensate, determining a mean free path would

require a microscopic description of the interactions with Higgs quanta in the wall, which is

beyond the scope of our study. Our assumption therefore corresponds to assuming a small

mean free path for massive SM particles’ interactions with the wall relative to the length

scale associated with plasma interactions, which can also dissipate the incoming particle’s

momentum. Note that this is also implicitly assumed in Refs. [335, 336]. We emphasize,
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〈φ〉 = 0 〈φ〉 = ϕ0

pa

〈φ〉 = 0 〈φ〉 = ϕ0

pb

pc

v v

Figure 5.2: Sketch of the real-emission kinematics. The bubble wall is shown in blue and
moves in the −z-direction with speed v in the rest frame of the plasma in front of the
wall. The Higgs vacuum expectation value is denoted as 〈φ〉. The incoming particle a has a
light-like four momentum pa in the wall’s rest frame. The scattered particle b and the soft
emission, c, have four momenta pb and pc.

however, that in scenarios beyond the SM, this assumption may no longer apply. For ex-

ample, a decoupled hidden sector particle will have zero probability of interacting with the

wall and should not be counted as contributing to the pressure: even though naively one

still hasM(0)
a→b = 2Ea, the interpretation ofM(0)

a→b as a matrix element for interacting with

the wall no longer holds, since there is no coupling to the Higgs condensate in this case. We

do not consider such scenarios further, and instead concentrate on the massive SM degrees

of freedom.

To discuss the transition radiation process computed in [336], it is useful to introduce

the Sudakov parametrization of the 1→ 2 kinematics sketched in Fig. 5.2 [338]. We work in

light-cone coordinates, which make the cylindrical symmetry of the problem manifest. We

define two light-like auxiliary vectors, n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1), which parametrize

the forward (+) and backward (−) directions. All momenta can then be written in terms of

their forward, backward, and transverse components,

p
µ
+ =

p+

2
nµ , p

µ
− =

p−
2
n̄µ , p

µ
⊥ = pµ − pµ+ − p

µ
− , (5.2.21)
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where the scalar light-cone momenta p+ and p− are given by

p+ = n̄p , p− = np . (5.2.22)

Scalar products of four momenta can be written in terms of light-cone momenta and trans-

verse momenta as pµqµ = ( p+q− + p−q+)/2 + p
µ
⊥q⊥µ. The final-state momenta pb and pc

can now be written as

p
µ
b = z̃ p

µ
a +

~k2
⊥ +m2

b

z̃ 2pan̄
n̄µ + k

µ
⊥ , p

µ
c = (1− z̃) p

µ
a +

~k2
⊥ +m2

c

(1− z̃) 2pan̄
n̄µ − kµ⊥, (5.2.23)

where z̃ = pb,+/pa,+ is the forward light-cone momentum fraction carried by particle b, and

mb and mc are the final-state masses of the particles b and c, respectively. From Eq. (20)

of Ref. [336], we obtain the following form of the leading order 1 → 2 particle scattering

amplitude

M(0)
a→bc = 2iEa

(
Vh
Ah
− Vs
As

)
, (5.2.24)

where Vh = Vs = V are the vertex functions. They are related to the Altarelli-Parisi splitting

functions [339–342] as4

|V |2 = 2g2 t Pab(z̃) , where t =
k2
⊥

z̃(1− z̃)
. (5.2.25)

The kinematical quantities Ah and As are defined as

A = (pa − pb − pc)− = m2
a −

k2
⊥ +m2

b

z̃
− k2
⊥ +m2

c

1− z̃ , (5.2.26)

where the appropriate “s” or “h” subscripts on the masses are implied. In the soft limit,

4. We follow the convention in Tab. I of Ref. [336]. We also changed the notation x→ 1− z̃, and swapped
the particle labels b and c in order to agree with the notation in subsection 5.2.2.
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k⊥ → 0, z̃ → 1, the squared matrix element reduces to

|M(0)
a→bc|

2 = (2Ea)2 |V |2 (Ah − As)2

A2
hA

2
s

≈ (2Ea)2 |V |2 z̃
2(1− z̃)2

k4
⊥

m4
c

(k2
⊥ +m2

c)
2
≈ (2Ea)2 |V |2

t2
.

(5.2.27)

Inserting the soft limit of Eq. (5.2.25) yields the factorized form of the 1 → 2 matrix ele-

ment [339–342] (see also [343])

|M(0)
a→bc|

2 = (2Ea)2 8πα

t
P

(soft)
ab (z̃) = |M(0)

a→b|
2 8πα

t
P

(soft)
ab (z̃) , (5.2.28)

where the soft enhanced part of the massive Altarelli-Parisi kernels for vector boson emission

is given by [344]

P
(soft)
ab (z̃) = Ca

(
2

1− z̃ −
m2
a

papc

)
. (5.2.29)

The factorized form of the phase space, which corresponds to Eq. (5.2.28) and will allow to

recover the result of [336], is given in Eq. (5.A.11). Combining this with Eq. (5.2.28) we

obtain, to leading order and in the soft limit,

dPa→bc = dPa→b
∫

dt

t

∫
dz̃i

∫
dφi
2π

α

2π
P

(soft)
ab (z̃) . (5.2.30)

We will not proceed to derive the pressure here. In the following section, we will instead

derive the above formulae based on a much simpler, semi-classical approximation and deduce

a consistent treatment of the infrared enhancement that will enable us to resum the radiative

corrections to all orders in the leading logarithmic approximation.

5.2.3 Factorization and resummation of radiative corrections

It was highlighted in Ref. [336] that the transition radiation effects discussed in section 5.2.2

significantly alter the pressure transfer in the 1 → 1 transition. The changes originate in

logarithmically-enhanced radiative corrections to the light-to-heavy current parametrizing
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a fast particle that crosses the domain wall. For massless emissions, these logarithms will

become infrared poles, which are canceled to all orders by the virtual corrections to the

light-to-heavy transition. The appropriate treatment for such effects is Sudakov resumma-

tion [338]. Running coupling effects can easily be incorporated in the calculation [345], and

certain higher-logarithmic corrections may be resummed for simple observables as well [346].

In this section we will develop the formalism and compute an analytic estimate of the pressure

at leading logarithmic accuracy.

Fixed-order perturbative computation

We derive the leading logarithmic approximation of the emission rate using source theory.

Due to the universal structure of the matrix elements in the soft gauge boson limit, our

eventual result will resemble the treatment of infrared divergences in QED [343]. The formal

derivation here is strictly valid only for non-flavor-changing reactions, but it can easily be

extended to flavor-changing processes. We will also find that non-flavor-changing reactions

of QCD type provide the largest contribution to the overall momentum transfer in the

Standard Model, which can be traced back to the relatively large number of degrees of

freedom, νq = 2 × 3 for quarks and the large number of quarks (see Tab. 5.1 for details).

This may seem somewhat surprising, given the small Yukawa couplings of the light quarks

to the Higgs condensate, but follows from taking the probability for all massive SM species

to interact with the bubble wall to be unity.

We begin with a classical vector current associated with the moving charge of the incom-

ing particle a. This will allow us to treat the radiative corrections for scalars, fermions and

vector bosons in a unified way. The classical current is parametrized as

jµ(x) = g

∫
ds
dyµ(s)

ds
δ(4)(x− y(s)) . (5.2.31)
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In this context, g is the coupling, yµ(s) is the particle’s location, ds is the differential line

element, and we integrate along the particle’s trajectory. In momentum space, this current

reads

jµ(k) =

∫
d4x eikx jµ(x) = g

∫
ds
dyµ(s)

ds
eiky(s) . (5.2.32)

For simplicity, throughout our analysis we will consider the thin wall limit, mLw � 1, with

Lw the wall width, for which the bubble profile can be approximated as a step function at

z = 0. We can then parametrize the line element as ds = dz, and write yµ(s) = z pµ(z)/p0(z)

where we have p(z)→ pa if z < 0 and p(z)→ pb if z > 0. This parametrization leads to5

jµ(k) = g

∫ 0

−∞
dz

p
µ
a

pa,0
exp

{
i
pak

pa,0
z

}
+ g

∫ +∞

0
dz

p
µ
b

pb,0
exp

{
i
pbk

pb,0
z

}
. (5.2.33)

Upon inserting a regulator, we obtain the classical current

jµ(k) = g

∫ 0

−∞
dz

p
µ
a

pa,0
exp

{
i

(
pak

pa,0
− iε

)
z

}
+ g

∫ +∞

0
dz

p
µ
b

pb,0
exp

{
i

(
pbk

pb,0
+ iε

)
z

}

= ig

(
p
µ
b

pbk + iε
− p

µ
a

pak − iε

)
.

(5.2.34)

Eq. (5.2.34) could alternatively be obtained by matching the result of the full QFT to

the soft limit [347], and by rewriting the factorized form of the matrix element M(1)
a→b in

Sec. 5.2.2 [348]. We now proceed to compute the radiation field Aµ(x) of this current. Note

that only the cross section for radiation of massless vector boson fields exhibits a double

logarithmic enhancement in the soft region (a double pole in dimensional regularization).

If we work in the soft approximation we therefore do not need to consider the radiation of

5. Note that Eq. (5.2.33) is structurally equivalent to Eq. (20) in Ref. [336] in the soft limit, z̃ → 1.
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scalars and fermions. Let us consider the interaction Hamiltonian density

Hint(x) = jµ(x)Aµ(x) , (5.2.35)

which we require to derive the vacuum persistence amplitude,

Wa→b = 〈0|T
[
exp

{
i

∫
d4x jµ(x)Aµ(x)

}]
|0〉 . (5.2.36)

The probability of no emission off the classical current is given by |Wa→b|2. Note that the

only dynamical degrees of freedom in this calculation are the vector bosons radiated by

the fast, classical particle, hence the above notion of a “vacuum” persistence amplitude is

justified. In terms of the matrix elements used in Eq. (5.2.19), we find, in the soft limit

|Wa→b|2 =
|Ma→b|2

|M(0)
a→b|2

, (5.2.37)

where M(0)
a→b is given by Eq. (5.2.20). The vacuum persistence amplitude can be expanded

into a power series in the coupling constant, g, as Wa→b =
∑
W

(n)
a→b/n!, with W

(n)
a→b ∝ gn.

The zeroth order term is trivially W
(0)
a→b = 1. The first order term vanishes, as 〈0|Aµ(x)|0〉 =

0. The second-order term is the first non-trivial result and gives

W
(2)
a→b = −

∫
d4x

∫
d4y jµ(x)jν(y)〈0|T

[
Aµ(x)Aν(y)

]
|0〉

= −
∫

d4x

∫
d4y jµ(x)i∆F,µν(x, y)jν(y) .

(5.2.38)

This is a very intuitive result, as it describes the emission and re-absorption of a soft field

quantum by the same classical current after propagation from x to y. The propagation is
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described by the time-ordered Green’s function i∆F (x, y). It can be written as

i∆
µν
F (x, y) = Θ(y0 − x0)〈0|Aν(y)Aµ(x)|0〉+ Θ(x0 − y0)〈0|Aµ(x)Aν(y)|0〉

=

∫
d3~k

(2π)3 2Ek

[
Θ(y0 − x0)e−ik(y−x) + Θ(x0 − y0)eik(y−x)

] ∑
λ=±

ε
µ
λ(k, l)εν ∗λ (k, l) ,

(5.2.39)

where ~k is the soft particle’s momentum, and Ek is determined by the dispersion relation

E2
k = ~k2+m(z)2, with m(z) the position dependent mass of the soft emission. We will discuss

this position dependence further below. The polarization vectors ε
µ
λ can be constructed for

example by using the Weyl-van-der-Waerden spinor formalism [349,350]. For massless vector

bosons they obey the relation

∑
λ=±

ε
µ
λ(k, l) εν ∗λ (k, l) = −gµν +

kµlν + kν lµ

kl
, (5.2.40)

where l represents a light-like auxiliary vector, that must not be parallel to k. Eq. (5.2.40)

will be sufficient for computing helicity summed amplitudes in the remainder of this section.

We note that for massive bosons one instead obtains the polarization sum

∑
λ=±,0

ε
µ
λ(k, l) εν ∗λ (k, l) = −gµν +

kµkν

k2
, (5.2.41)

where the individual polarization vectors in depend on l, while their sum does not. Eq. (5.2.41)

applies to all massive gauge bosons of the Standard Model in the high-energy limit E � m

due to the Goldstone boson equivalence theorem [351, 352]. Both polarization sums lead to

the same results when squared matrix elements are computed using the soft current defined

in Eq. (5.2.34).

The on-shell mass m(z) of the emitted vector boson may change at the domain wall,

which affects Ek by means of the dispersion relation. However, this is a dynamical effect,
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which must be described by (resummed) higher-order corrections in the vev insertion ap-

proximation [199,353,354]. We neglect these corrections here, because they are suppressed by

O(1/(α log2(γT/m))) and therefore irrelevant in the high-energy limit γ � 1. The suppres-

sion factor will be justified further below, where we will find that the radiative corrections

involving vector boson emission scale like α log2(γT/µ), with µ a mass scale of order m. In

contrast, mass insertions scale like the leading-order terms in Sec. 5.2.2, and are therefore

γ-independent. Note that our approximation is equivalent to the choice Vh = Vs in Eq. (23)

of Ref. [336]. In subsection 5.2.4 we will nevertheless include all kinematic effects for mc 6= 0

(cf. App. 5.A.2), which leads to the exact quantities Ah and As in Eq. (20) of Ref. [336] by

means of our Eqs. (5.2.34) and (5.2.23).

Using these approximations, we obtain the massless Feynman propagator

∆
µν
F (x, y) =

∫
d4k

(2π)4

e−ik(y−x)

k2 + iε

∑
λ=±

ε
µ
λ(k)εν ∗λ (k) . (5.2.42)

Inserting Eq. (5.2.42) into Eq. (5.2.38) yields

W
(2)
a→b = − i

∫
d4x

∫
d4y

∫
d4k

(2π)4

e−ik(y−x)

k2 + iε

∑
λ=±

(
j(x)ελ(k)

)(
j(y)ελ(k)

)∗
= − i

∫
d4k

(2π)4

1

k2 + iε

∑
λ=±

(
j(k)ελ(k)

)(
j(k)ελ(k)

)∗
.

(5.2.43)

Inserting the soft current of Eq. (5.2.34) and using the completeness relation, Eq. (5.2.40)

or (5.2.41) we obtain

W
(2)
a→b = − i |g|2

∫
d4k

(2π)4

1

k2 + iε

(
2papb

(pak)(pbk)
− m2

a

(pak)2
− m2

b

(pbk)2

)
. (5.2.44)

Note that while Eq. (5.2.40) was derived in a light-like axial gauge, the result is actually

gauge independent. The infrared divergent part of Eq. (5.2.44) can be computed using
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dimensional regularization in D = 4−2ε dimensions. For one massive particle, b, we obtain,

in the MS scheme (cf. App. 5.A.3)

W
(2) IR
a→b = −α

π
Cabc

(
1

2ε2
− 1

2ε

(
1 + log

(2papb)
2

µ2p2
b

)
+

1

4
log2 (2papb)

2

µ2p2
b

− 1

2
log2 2papb

p2
b

+ . . .

)
.

(5.2.45)

The quantity 4πα = |g|2 is the coupling squared for the transition a → bc, and Cabc is

an associated charge factor in the collinear limit (see App. 5.A.1 for details). We have

only listed the poles and leading logarithmic terms, as the subleading logarithmic and finite

contributions are irrelevant for the resummation we intend to perform. Note that, as p2
b → 0,

Eq. (5.2.45) develops an additional infrared singularity. Comparing with Eq. (5.A.18), one

finds that the leading pole is then doubled, which agrees with the intuitive notion that two

massless charged particles will radiate twice as many gauge bosons as a single particle.

We now proceed to compute the real-emission corrections. The all-orders single emission

amplitude squared is

dW 2
a→bc(pc) =

d3~pc
(2π)3 2Ec

∣∣∣∣〈~pc|T [exp

{
i

∫
d4x jµ(x)Aµ(x)

}]
|0〉
∣∣∣∣2 . (5.2.46)

It is related to the matrix elements used in Eq. (5.2.19) in the soft limit as

dW 2
a→bc(pc) =

d3~pc
(2π)3 2Ec

|Ma→bc|2

|M(0)
a→b|2

, (5.2.47)

where M(0)
a→b is given by Eq. (5.2.20). Eq. (5.2.46) can be expanded into a power series in

the coupling constant, g, as dWa→bc(pc) =
∑

dW
(n)
a→bc(pc)/n!, with dW

(n)
a→bc(pc) ∝ gn. The

zeroth order term vanishes, as 〈~pc|0〉 = 0. The first order term is the first non-trivial result
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and gives

dW
2 (1)
a→bc(pc) =

d3~pc
(2π)3 2Ec

∣∣∣∣ i ∫ d4x jµ(x)〈~pc|Aµ(x)|0〉
∣∣∣∣2

= − d3~pc
(2π)3 2Ec

∑
λ=±

(
j(pc)ελ(pc)

)(
j(pc)ελ(pc)

)∗
,

(5.2.48)

which we integrate over the full final-state phase space in order to obtain the correction to

the inclusive rate:

∫
dW

2 (1)
a→bc = |g|2

∫
d3~pc

(2π)3 2Ec

(
2papb

(papc)(pbpc)
− m2

a

(papc)2
− m2

b

(pbpc)
2

)
. (5.2.49)

The infrared divergent part of Eq. (5.2.49) can be extracted using dimensional regularization

in D = 4− 2ε dimensions. We obtain (cf. App. 5.A.4)

∫
dW

2 (1) IR
a→bc = +

α

π
Cabc

(
1

2ε2
− 1

2ε

(
1 + log

(2papb)
2

µ2p2
b

)
+

1

4
log2 (2papb)

2

µ2p2
b

−1

2
log2 2papb

p2
b

+ . . .

)
.

(5.2.50)

Using the first order expansion of Wa→b and
∫

dW 2
a→bc, we find the no-emission and inte-

grated one-emission probability are

PIR (1)
a→b =

∣∣∣ 1 +
W

(2) IR
a→b
2!

+O(α2)
∣∣∣2 = 1 +W

(2) IR
a→b +O(α2) ,∫

dPIR (1)
a→bc =

∫
dW

2 (1) IR
a→bc +O(α2) = −W (2) IR

a→b +O(α2) .

(5.2.51)

The singular terms in the amplitudes cancel at first order in perturbation theory6. Similar

6. Note that the cancellation of singularities can be derived more elegantly. The loop integrand can be
rewritten using

1

k2 + iε
= PV

1

k2
− iπδ(k2) , (5.2.52)

where PV stands for the principal value. This implies that Eq. (5.2.50) can be obtained from Eq. (5.2.45)
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results will be obtained at all higher orders, but we will not proceed to compute these

terms. Instead, we will use Eq. (5.2.38) to construct the analytic resummation formalism

in section 5.2.3 and a numerical simulation in subsection 5.2.4.

We conclude this section by noting that it is not sufficient to compute only the real-

emission corrections to the 1→ 1 transition. This is apparent in the case where a massless

particle becomes massive, as outlined above. The situation is more subtle when both the

incoming and the outgoing particle is massive. However, we will show in section 5.2.3 that

in the limit γT � min(ma,mb) the differential real-emission amplitude squared dW 2
a→bc

vanishes as the gauge boson transverse momentum tends to zero. This result is qualita-

tively different from the behavior in [336], where the amplitude tends to infinity instead.

The difference is due to the fact that we consider the transition radiation process to be a

quantum correction to the zeroth order light-to-heavy form factor, |M(0)
a→b|2, while in [336]

it is considered to be a leading-order reaction by itself.

All-orders result

To derive the all-orders result, we start from Eq. (5.2.36). Terms of order 2n + 1 in the

expansion vanish, since 〈0|A(x1) . . . A(x2n+1)|0〉 = 0. The 2n-th order term is given by

W
(2n)
a→b =

[ 2n∏
i=1

i

∫
d4xij

µi(xi)
]
〈0|T

[ 2n∏
i=1

Aµi(xi)
]
|0〉 . (5.2.53)

and vice versa [343,355,356].
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One can use the decomposition of the time-ordered product into Feynman propagators and

the symmetry of the integrand in the currents to show that

W
(2n)
a→b

(2n)!
=

(2n− 1)(2n− 3) . . . 3 · 1
(2n)!

[ 2n∏
i=1

i

∫
d4xij

µi(xi)
] n∏
i=1

〈0|T
[
Aµ2i(x2i)Aµ2i+1(x2i+1)

]
|0〉

=
1

2nn!

(
−
∫

d4x

∫
d4y jµ(x)i∆µν(x, y)jν(y)

)n
=

1

n!

(
W

(2)
a→b
2

)n
.

(5.2.54)

Summing all orders in α, we obtain the vacuum persistence amplitude squared

Pa→b = |Wa→b|2 =

∣∣∣∣ ∞∑
n=0

1

n!

(
W

(2)
a→b
2

)n∣∣∣∣ 2 = exp
{
W

(2)
a→b

}
. (5.2.55)

Using Eqs. (5.2.45) and (5.2.50), we obtain to leading logarithmic accuracy

PIR
a→b = exp

{
W

(2) IR
a→b

}
= exp

{
−
∫

dW
2 (1) IR
a→bc

}
. (5.2.56)

A similar calculation leads to

dPIR
a→bc = dW 2 IR

a→bc(k) = dW
2 (1) IR
a→bc (k) exp

{
−
∫

dW
2 (1) IR
a→bc

}
. (5.2.57)

Note that these results still exhibit unphysical IR divergences, which are canceled in the

matching to the fragmentation function of the incoming and outgoing particle. The matching

can be interpreted as an experimental resolution, which requires a photon to be of sufficient

energy and sufficiently separated in angle from the classical particle in order to be resolved

as transition radiation. In dimensional regularization, the fragmentation functions are pure

IR divergences, hence for the light-to-massive transition we obtain the renormalized emission
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amplitude in the MS scheme

∫
dW

2 (1)
a→b, r =

α

2π
Cabc

(
1

2
log2 (2papb)

2

µ2p2
b

− log2 2papb
p2
b

+ . . .

)
, (5.2.58)

where the dots stand for higher-logarithmic and finite contributions. In this context, µ

plays the role of the experimental resolution scale which regularizes the above expression.

In our case of interest, this implies the bubble wall is not sensitive to emissions which

are arbitrarily soft. Eqs. (5.2.55) and (5.2.57) are then related to the zero and one-event

probabilities according to a Poisson distribution with mean value
∫

dW
2 (1)
a→b, r. Using this

result, the all-orders computation can be performed by means of QCD-based resummation

techniques or parton showers.

Momentum transfer at leading logarithmic accuracy

In this section we estimate the average momentum transfer to the wall per incident particle.

The structure of the perturbative result in section 5.2.3 allows us to derive a resummation for-

malism similar to the techniques employed for the computation of collider observables [357].

We work in the leading logarithmic approximation, hence the collinear anomalous dimen-

sions can be set to zero. We also assume that particle masses are small compared to the

particle’s energies, and can therefore be neglected. Numerical studies will be carried out

in subsection 5.2.4 using the full kinematical mass dependence. Here we focus instead on

the qualitative predictions at γT � max(ma,mb) and for fixed coupling.

We begin by computing the so-called radiator function [357], which corresponds to the

sum of the integrated S-matrix elements
∫

dW
2 (1) IR
a→bc and W

(2) IR
a→b . However, instead of

being an inclusive quantity, the radiator function implements the physical constraint that

the momentum transfer in any branching a → bc cannot be larger than the eventually

observed value of the momentum transfer for all emissions in the resummed theory. This
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restriction is most easily implemented by working in the leading logarithmic approximation

and using the fact that the 1/ε2 and 1/ε poles cancel between
∫

dW
2 (1) IR
a→bc and W

(2) IR
a→b . This

implies that instead of computing the finite difference between two individually IR divergent

quantities, we may compute the finite remainder directly by making use of the unitarity

constraint. In practice, it is achieved by placing a lower bound on the relative momentum

transfer per splitting

V (pa, pb, pc) =
qz
γT
≈
p2
c,⊥/(pan̄)2

1− z̃ , (5.2.59)

where the last equality holds in the soft limit. In terms of V (pa, pb, pc), the radiator function

R(V ) for any given value of V is given by

Rabc(V ) = |g|2
∫

d3~pc
(2π)3 2Ec

2papb
(papc)(pbpc)

Θ(ηc)Θ(V (pa, pb, pc)− V ) , (5.2.60)

where ηc = log[pc,⊥/(γT )/(1− z̃)] is the rapidity of the emitted soft particle c of momentum

pc with respect to the emitting antenna spanned by particles a and b. The constraint Θ(ηc)

arises from the requirement that the emitted particles must enter the Higgs condensate.

Using the Sudakov parametrization in section 5.2.2, we can rewrite Eq. (5.2.60) as

Rabc(V ) =

∫ 1

V

dV ′

V ′

∫ 1

0
dz̃

α

2π

2Cabc
1− z̃ Θ

(
log

1− z
V ′

)
, (5.2.61)

Performing the integrals we obtain

Rabc(V ) =
α

2π
Cabc L

2 , where L = log
1

V
. (5.2.62)

Up to running coupling effects, this corresponds to the well-known radiator function for the

thrust in e+e− annihilation [358,359]. To leading logarithmic accuracy, the resummed cumu-

lative cross section at V is given by the vacuum persistence amplitude squared, Eq. (5.2.55),

with W
(2)
a→b replaced by R(V ) [357]. This can be understood in the following intuitive way:
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The radiator function Rabc(V ) corresponds to a probability for the decay of particle a into

the two final states b and c. However, in order for particle a to produce a relative momentum

transfer of V , it must not have produced a relative momentum transfer V (pa, pb, k) > V ,

as otherwise it would not exist anymore in its present state. This is analogous to a nuclear

decay process, where the nucleus can decay at any given time only if it has not decayed

at earlier times. This “survival probability” is encapsulated in an exponential suppression

factor conventionally called the Sudakov factor, which can be read off Eq. (5.2.56)

∆a(V ) = exp
{
−
∑
b

Rab(V )
}
, where Rab(V ) =

∑
c

Rabc(V ) . (5.2.63)

The rate at which particle a branches into any particles b and c is eventually given by

1

Na

dNa(V )

dV
=
∑
b

dRab(V )

dV
∆a(V ) = −d∆a(V )

dV
, (5.2.64)

which, at leading logarithmic accuracy, leads to the normalized cumulative cross section [357]

1

σ

∫ 1

V
dV ′

dσ(V ′)
dV ′

= ∆a(V ) . (5.2.65)

The average relative momentum transfer from all branchings is obtained by weighted sum-

mation over particle species, where the weight is given by the incident flux, times the cross

section for interaction with the Higgs condensate. The leading-order cross section in the

high-energy limit is identical for all massive Standard Model particles, which we denote as

the set S (cf. Eq. (5.2.8)). We can thus write

〈∆pz
γT

〉
=

∫
dV V

d

dV

∏
a∈S

∆a(V ) . (5.2.66)

Phase-space restrictions play a significant role for the agreement between analytic and nu-
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meric resummation of event shape observables [360]. This problem is amplified here, because

we compute the average value of V , which is impacted significantly by modest changes of

the differential cross section at large V . If no fixed-order matching is performed, the proper

definition of V is therefore of vital importance. The simplest solution is to replace V → V/2

in the weighting factor of Eq. (5.2.66), which introduces an overall factor of 1/2. This redef-

inition corresponds to a single-logarithmic correction which is beyond the formal accuracy

of our approach. At fixed coupling, the modified Eq. (5.2.66) is then given by

2
〈∆pz
γT

〉
FC

=

∫
dLe−L

(αC)Σ

π
L exp

{
− (αC)Σ

2π
L2
}
, where (αC)Σ =

∑
a,b∈S

αabcCabc ,

(5.2.67)

where αabc is the coupling associated to the splitting a → bc. The relevant couplings are

listed in App. 5.A.1. Equation (5.2.67) has the solution

2
〈∆pz
γT

〉
FC

= 1− e
1
2ζ

√
π

2ζ
Erfc

(
1√
2ζ

)
≈ ζ , where ζ =

(αC)Σ

π
. (5.2.68)

The linear approximation is very simple and works up to relative pressures of 〈V 〉FC ≈ 1%.

It can alternatively be obtained from the fixed-order expansion of Eq. (5.2.67)

2
〈∆pz
γT

〉
FC,FO

=

∫
dLe−L

(αC)Σ

π
L = ζ . (5.2.69)

Running coupling effects should be included to obtain a more reliable resummed result. They

induce a mild change in the scaling behavior of the radiator function. The corresponding

expressions can be found in App. A of [357]. For the qualitative discussion in this section,

it is sufficient, however, to consider Eq. (5.2.68).

Note in particular that 〈∆pz〉 ∝ γT , independent of the particle masses, as long as

γT � m. This is in contrast to [336], where a γ-independent value was obtained for the

average pressure transfer, which implies P ∼ γ1 once the flux factor is taken into account,
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cf. subsection 5.2.2. This result was derived based on the assumption that the dominant

contribution to the integral is obtained from the region kT ≈ m, and by cutting off the

divergent kT -integral at this value. A similar procedure would turn Eq. (5.2.69) into

2
〈∆pz
γT

〉(cut)

FC,FO
= ζ

m

γT

(
1 + log

γT

m

)
. (5.2.70)

The logarithmic contribution has been neglected in [336], which indeed results in 〈∆pz〉 ∝ m.

The origin of the discrepancy is the fundamentally different treatment of the divergence in

the real radiative matrix element at kT = 0. We emphasize that regularizing the singularity

by such an unphysical cutoff will lead to unitarity violations for large γ when higher-order

radiative corrections are not included, as is evident from Eq. (5.2.50).

5.2.4 Numerical simulation

In the following we establish the connection of the above formalism to parton showers,

which can be used at leading logarithmic accuracy to simulate the physics encapsulated

in Eqs. (5.2.55), (5.2.57), and the corresponding equations for higher particle multiplicity.

Again, it is important to note that the renormalized counterparts of these equations de-

scribe the distribution of emissions according to a Poissonian with average value
∫

dW
2 (1) IR
a→bc,r .

The regularization of dW
2 (1) IR
a→bc,r in the parton shower follows the procedure outlined in sec-

tion 5.2.3 and may be performed in any way that allows for an infrared and collinear safe

simulation, such as using a transverse momentum cutoff at scales k⊥,0 � γT . We can define

the transverse momentum-dependent radiator function for the parton shower as

RPS
abc

(
2k⊥,0
γT

)
= |g|2

∫
d3~pc

(2π)3 2ωc

2papb
(papc)(pbpc)

Θ(pc,⊥ − k⊥,0) . (5.2.71)

As long as the cutoff is small compared to the average transverse momentum generated

by Eq. (5.2.57), the results of infrared and collinear safe observables such as the relative
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z-momentum transfer will be independent of k⊥,0. We can rewrite Eq. (5.2.71) as

RPS
abc(t, Q

2) =

∫ Q2/4

t

dt̄

t̄

∫ z̃+

z̃−
dz̃
∑
a,b

α

2π

2Cabc
1− z̃ , (5.2.72)

where t ∝ k2
⊥ is called the parton-shower evolution variable, and Q/2 = γT is the kinematical

boundary. The quantity 4πα = |g|2 is the coupling squared for the transition a → bc, and

Cabc is an associated charge factor in the collinear limit (see App. 5.A.1 for details). The

integration boundaries z̃± are determined by the constraint k⊥ > k⊥,0. They are given by

z̃± =
1

2

(
1±

√
1−

4k2
⊥,0
Q2

)
. (5.2.73)

We can then generate emissions by setting the Sudakov factor ∆a(t, Q2) equal to a random

number and solving for the evolution variable t where

∆a(t, Q2) = exp

{
−
∑
b,c

RPS
abc(t, Q

2)

}
. (5.2.74)

In addition, we select the light-cone momentum fraction z̃ according to 2/(1− z̃) and sample

the azimuthal angle from a uniform distribution. For QCD partons, we also choose a color

configuration. The kinematics mapping is described in App. 5.A.2, and more details of the

algorithm are given in [361–363]. Our numerical implementation is based on the QCD parton

shower published in [364]. The evolution variable t is chosen to be the relative transverse

momentum in the collinear limit (cf. App 5.A.2), and we solve the soft double-counting

problem [365] by means of phase-space partitioning in the dipole rest frame [357]. We have

checked that this gives similar results as angular ordered evolution, using the formalism

of [366].

We have implemented the above described algorithm in a numerical program based on the
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〈∆pz/(γT )〉FC
Particle nf νa analytic numeric

l± 2× 3 2 0.44% 0.36%
u 2× 3 2× 3 1.18% 0.96%
d 2× 3 2× 3 1.17% 0.95%
W± 2 2 1.32% 1.10%
Z 1 2 1.04% 0.88%
h 1 1 0.57% 0.46%
GW± 2 1 0.57% 0.46%
GZ 1 1 0.57% 0.46%

Table 5.1: Average relative momentum transfer per degree of freedom, 〈∆pz/(γT )〉FC, as-
suming that a particle of the given species is incident on the wall, and allowed to shower
into the full SM. We compare analytic results from Eq. (5.2.66) and the numerical simulation
described in subsection 5.2.4. We have chosen γ = 106, αs = 0.04 and α = 0.01, and we have
fixed the couplings in order to satisfy the assumptions leading to Eq. (5.2.66). Differences
are due to flavor-changing effects, which are not taken into account in Eq. (5.2.66), and due
to the definition of the momentum transfer in terms of the initial- and final-state momenta.
This is computed in the soft approximation in 5.2.3 and treated exactly in the numerical
simulation [360]. We also list the number of flavors of this type, nf , and the number of the
corresponding degrees of freedom, νa, per flavor in Eq. (5.2.19).

QCD simulation published in [364], which was validated against the public event generator

Sherpa [367]. We employ a 2-loop running strong coupling with threshold matching up to

nf = 6 and αs(MZ) = 0.118. The electroweak input parameters are α(0) = 1/137, mW =

80.385 GeV, mZ = 91.1876 GeV and mH = 125 GeV, leading to sin2 θW = 1−(mW /mZ)2 =

0.223. The relative flux factors for incident particles are given simply by the number of

degrees of freedom of the particle. This can be understood by computing the (trivial) leading-

order transition amplitudes in section 5.2.2 in a vev-insertion approximation [199,353,354].

Due to the exact kinematics in the numerical simulation, the results display significant

threshold effects at small momentum transfer (∆pz ≈ T ), which become irrelevant as γ →∞

due to the parametric behavior derived in Eq. (5.2.68). This leads to a slight distortion of the

scaling behavior, which goes beyond running coupling effects. In addition, the computation

of the observable with exact kinematics induces a shift in the average pressure, but does not

change the qualitative behavior. Table 5.1 shows a comparison between the analytic results
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Figure 5.3: Comparison between fixed-order and resummed result for the relative momentum
transfer distribution in the full Standard Model using the parton-shower approximation. The
number of emissions is limited to one. Note that the fixed-order result is not normalized to
the total rate, as the rate tends to infinity in this case.

from Eq. (5.2.66) and the numerical simulation for the most relevant particle species. Given

the simplicity of the analytical estimate, the two results agree very well.

Fig. 5.3 exemplifies the structural difference between the fixed-order and all-orders re-

summed predictions for the relative momentum transfer distribution in the parton-shower

approximation. While the fixed-order result diverges as ∆pz/(γT ) → 0 (cf. Eqs. (5.2.50)

and (5.2.62)), the resummed result remains finite and approaches zero (see section 5.2.3).

This leads to a cutoff-dependence in the average relative momentum transfer at fixed-order in

the method of Ref. [336] which changes the scaling behavior with γ (cf. Eq. (5.2.70)). In re-

summed perturbation theory the average relative momentum transfer is cutoff-independent,

and is primarily determined by the coupling strength, cf. Eq. (5.2.68). This is tested in detail

in Fig. 5.4, which shows the cutoff dependence of the relative momentum transfer spectrum

in the parton-shower approximation at γ = 108. Note that the cutoff is varied over three

orders of magnitude with no significant effect on the spectrum on a linear scale (Fig. 5.4

left). The corresponding values for the average relative momentum transfer are given by

〈∆pz/(γT )〉 = 0.832%− 0.835%. Similar results are obtained for all values of γ.

Fig. 5.5 shows the change in the relative momentum transfer with changing γ, which is

relatively mild. Note in particular the features in the spectrum at γ = 10, which originate
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Figure 5.4: Cutoff-dependence of the relative momentum transfer in the parton-shower ap-
proximation.
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Figure 5.5: Boost factor dependence of the relative momentum transfer in the parton-shower
approximation.

in kinematic effects when top-quarks, Higgs bosons, Z bosons and W± bosons are put on-

shell or produced in 1 → 2 splittings at threshold. The net result are monochromatic lines

and discontinuities in the momentum transfer spectrum which account for a larger average

momentum transfer at small γ. However, in this region the soft approximation breaks down,

and a more precise calculation should be performed. Such a calculation is not needed in

order to determine the scaling behavior of the relative momentum transfer with γ. In the

ultrarelativistic scenario, for 102 . γ . 1016, we can fit the numerical results for the average
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momentum transfer in the full Standard Model at T = 100 GeV to the following form

〈∆pz
γT

〉
=1.70(3)%− 0.24(1)% log10 γ + 0.024(1)% log2

10 γ

+ 0.0012(1)% log3
10 γ + 0.000023(1)% log4

10 γ ,

(5.2.75)

where the numbers in parentheses are uncertainties on the last digit, determined from cutoff-

and ordering parameter variations. Even for smaller γ, the above fit is accurate to within

a factor of 2 down to γ ∼ 10, where several of our other approximations begin to break

down. Our numerical simulations confirm the analytic result of section 5.2.3. The mild

modifications that are due to running coupling effects are captured by Eq. (5.2.75), and the

threshold effects only increase the average relative momentum transfer.

Note that our numerical simulations assumed particles in the broken phase to have masses

set by their T = 0 values. In a realistic phase transition, 〈φ〉 6= 246 GeV, and so the broken

phase masses depend non-trivially on the details of the Higgs finite-temperature effective

potential. However, for sufficiently large velocities such that γT � m (required by several

of the approximations we have made), the precise values of the broken phase masses are not

important and the relative momentum transfer is still expected to be ∼ 1%× γT , with the

scaling determined by Eq. (5.2.68).

5.2.5 The bubble wall velocity and its implications for cosmology

Using the above results, we can obtain an estimate for the terminal wall velocity as a function

of the phase transition strength. The bubble wall reaches a terminal velocity when the

pressure difference between the interior and exterior vanishes. The total pressure difference,

∆Ptot is given by

∆Ptot = −∆V + P , (5.2.76)
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where P is the thermal pressure exerted against the wall arising from particles impinging

on it and showering as computed in Secs. 5.2.3-5.2.4, and ∆V is the difference in vacuum

energy between the two phases. From Eqs. (5.2.11), (5.2.18), and (5.2.19), we can relate

the thermal pressure to the average momentum transfer obtained from either the analytic

or numerical treatments above. We find:

P =
∑
a∈S

νa

∫
d3~pa

(2π)3Ea
fa(~pa) p2

a,z

〈∆pz
γT

〉
, (5.2.77)

which, up to log γ effects stemming from thresholds and the running of the couplings, is

simply a constant times the total z-direction wall-frame plasma pressure in the symmetric

phase from particles coupled to the Higgs. In other words, we have found that in the limit of

large wall velocities, the net thermal pressure experienced by the bubble wall in its rest frame

is simply a constant fraction (∼ 1%) of the total pressure of the gas of symmetric-phase

particles that couple directly to the wall. We can approximate

P ' P1→1 + γ2 × lim
γ→∞

(
PFC

γ2

)
, (5.2.78)

where

P1→1 ≡
∑
a∈S

∫
d3~pa

(2π)32Ea
fa(~pa)∆m2

a , (5.2.79)

is the 1 → 1 pressure and the ‘FC’ subscript denotes the fixed-coupling approximation of

the relative momentum transfer, 〈∆pz/(γT )〉 ≈ 〈∆pz/(γT )〉FC in Eq. (5.2.77) (the results

will not be very sensitive to the precise scale chosen).

To obtain a parametric estimate of the terminal wall velocity, Eq. (5.2.76) indicates that

P should be compared against the quantity ∆V , which is model-dependent. However, in

many cases of interest, it is set roughly by the energy density of the radiation bath during
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the transition. We can define the following parameters

αθ ≡
∆V

ρrad
, α∞ ≡

P1→1

ρrad
≈ 5× 10−3 〈φ〉2

T 2
, αeq ≡ lim

γ→∞

(
PFC

γ2

)
1

ρrad
≈ 1× 10−2 ,

(5.2.80)

where ρrad = π2/30g∗(T )T 4 with g∗(T ) ≈ 100, and the numerical values in Eq. (5.2.80)

assume SM-like plasma content with 〈∆pz/(γT )〉 ≈ 〈∆pz/(γT )〉FC ≈ 1% evaluated from

Table. 5.1. The quantity αθ parametrizes the strength of the phase transition, and appears

often in the GW literature (see e.g. Ref. [319] for an in-depth discussion). Models for which

αθ > α∞ would satisfy the original runaway wall condition of Ref. [335] if transition radiation

was not taken into account. Inserting Eqs. (5.2.77), (5.2.80) into Eq. (5.2.76) and requiring

∆Ptot = 0, we find the terminal velocity, expressed in terms of the equilibrium value of γ is

γeq =

(
αθ − α∞
αeq

)1/2

≈ 10
√
αθ , (5.2.81)

where the final approximation applies for αθ � α∞ as is the case when γT � m (i.e. where

our analysis remains self-consistent). Note that, for strong phase transitions, the terminal

velocity depends on the strength of the phase transition and the gauge boson couplings,

but not the particle masses. This is a strikingly different result than that implied by the

fixed-order calculation of Ref. [336].

Throughout our analysis we have assumed γT � m for all massive SM particles in the

plasma7. This allowed us to neglect the reflection of particles back into the symmetric

phase, the transmission of particles from the broken into the symmetric phase, and the

plasma interactions which drive the distributions back to equilibrium, which substantially

complicate the calculation (see Refs. [368–374] for calculations in this slow-wall regime).

For an electroweak-scale transition with T & O(10) GeV and a SM-like plasma where the

7. We also worked in the thin-wall limit, mLw � 1, which can be violated by the heaviest SM degrees of
freedom if Lw is sufficiently thick. However, Lw depends on the underlying effective potential and implicitly
on the terminal velocity itself, and so this criterion should be checked on a model-by-model basis.
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largest masses areO(100) GeV, the approximations we have made break down for γ . O(10).

Meanwhile, for many models with SM-like plasma content, one finds αθ . 1 (see e.g. [319]

and the corresponding benchmark points compiled at ptplot.org), implying that γeq . 10

in these conventional cases. Although our approximations break down for these relatively

small values of γ, we can still interpret our result as an upper bound on γeq: if γeq were in

fact larger than O(10), then our approximations would be justified and we would find no

self-consistent solution for the terminal velocity, implying that the true value of γeq must

fall within the regime where our analysis breaks down. For BSM scenarios with large values

of αθ, our predicted value of γeq will become increasingly accurate.

It is illuminating to compare our results for the terminal velocity to those obtained from

the earlier fixed-order results of Ref. [336]. To do so, we follow the approach of Ref. [375],

which amounts to using 〈∆pz/(γT )〉(cut)
FC,FO in place of 〈∆pz/(γT )〉 and neglecting the loga-

rithmic term. Eq. (5.2.76) then becomes

Ptot ' −∆V + P1→1 + P
FO,NL
1→2 , (5.2.82)

where

P
FO,NL
1→2 ≡

∑
a∈S

∫
d3~pa
(2π)3

fa(~pa) γT
〈∆pz
γT

〉(cut)

FC,FO
, (5.2.83)

with the logarithmic term dropped in 〈∆pz/(γT )〉(cut)
FC,FO. In analogy with Eq. (5.2.80), we

can define

α
FO,NL
eq ≡ P

FO,NL
1→2

γ ρrad
≈ 7× 10−5 〈φ〉

T
, (5.2.84)

where the numerical value again assumes SM-like plasma content and only accounts for the

electroweak gauge boson contributions, as in Ref. [375]. The analog of Eq. (5.2.81) is

γeq =
αθ − α∞
α

FO,NL
eq

≈ 1× 104
(〈φ〉
T

)−1

× αθ, (fixed order, no logarithm) , (5.2.85)
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Figure 5.6: Comparison of the terminal Lorentz factor from our analysis (black) compared
to those inferred from a fixed-order calculation (blue). We show predictions for different
values of the order parameter 〈φ〉/T , with 〈φ〉/T = 1, 3, 5 for the set of black curves
from top to bottom, and similarly for the blue curves. For large αθ (strong transitions), our
results predict significantly slower walls than implied by previous analyses, with the terminal
velocity independent of the particle masses. For an electroweak-scale phase transition in a
SM-like plasma, several of the approximations made break down for γeq . 10, rendering the
predictions in the shaded pink region unreliable. There, our result should be interpreted as
an upper bound on the terminal Lorentz factor, indicated by the dashed black line and the
arrows.

with the last approximation again holding for αθ � α∞. In this approximation, the terminal

velocity in the large-αθ limit scales as αθ instead of
√
αθ, and further depends on the order

parameter of the phase transition due to the mass cutoff in the integration.

We compare our result for the terminal Lorentz factor to the fixed-order prediction in

Fig. 5.6. We show the corresponding results for 〈φ〉/T = 1, 3, 5. For strong transitions,

our resummed result implies significantly slower walls than suggested by the fixed-order

calculation. One should bear in mind, however, that for γeq . 10 or so (for a SM-like

plasma) several of the approximations we have made break down - this is indicated by the

shaded pink region of Fig. 5.6. In this regime, we instead interpret our results as an upper

bound on the wall velocity, indicated by the black dashed line and the arrows: applying our

analysis for larger γ would be self-consistent and predict a thermal pressure overwhelming

the vacuum energy difference, indicating that such velocities are never reached. We discuss
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the implications of these results for cosmology in the remainder of this section.

Cosmological implications

If the cosmological electroweak phase transition was first order in nature, the dynamics of

the Higgs-phase bubble walls affect the production of various cosmological relics. In this

subsection we briefly discuss the implications of our work for several possible relics.

• Gravitational wave radiation

The departure from thermal equilibrium during a first order electroweak phase tran-

sition provides a suitable environment for production of GW radiation. GWs arise

predominantly from three sources [18, 319, 320, 324]: the collisions of bubble walls,

sound waves that are produced when bubble walls push through the plasma, and the

decay of magnetohydrodynamic turbulence that is produced when bubbles collide. If

the bubble walls were able to runaway, such that γ →∞ as v → 1 without bound be-

fore colliding with other bubbles, then the latent heat of the phase transition would be

transferred predominantly to the kinetic energy of the bubble walls and their collisions

would provide the dominant source of GW energy. However, when the bubble walls

reach a terminal velocity before they collide with each other, then the kinetic energy of

the bubble walls saturates and most of the energy of the phase transition is transferred

into the kinetic motion of the plasma [376]. In this case, the sound waves and turbu-

lence are the dominant sources of GW radiation. The scalar field, sound wave, and

turbulence contributions to the GW background differ in terms of their spectral shapes

and dependence on the phase transition parameters. This implies that the detection

prospects of the corresponding signal can depend quite strongly on which source(s)

dominates.

To assess the impact of our results on GW predictions, note that at early stages of

expansion when the friction is negligible, the bubble expands as in vacuum, for which
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the radius grows as

R ∼ γR0 , (5.2.86)

where R0 is the initial radius, which itself is usually close to the critical radius Rc. The

average size reached by the bubbles at collision, R∗, is set by the typical separation

between bubble centers [319],

R∗ ' (8π)1/3β−1 , (5.2.87)

for fast walls, where β parametrizes the duration of the PT and is typically ∼ O(10−

1000)H∗ for models predicting a sizable GW signal with SM-like field content, with

H∗ the Hubble parameter at the transition (see Ref. [319] for a detailed discussion

and examples). Eqs. (5.2.86) and (5.2.87) can be combined to define a characteristic

Lorentz factor at collision in the absence of significant friction [375]:

γ∗ ≡
(8π)1/3

Rcβ
&

10−3

RcH∗
, (5.2.88)

for models with β/H∗ . 103 as typically required for detection at LISA [319]. This

Lorentz factor should be compared with our prediction for γeq: if γ∗ . γeq, the bubbles

effectively run away and the GW signal is dominated by the scalar field contributions. If

γ∗ & γeq, then the fluid sources (sound waves and turbulence) dominate. For thermal

transitions, one typically expects Rc ∼ 1/T , H∗ ∼ T 2/MPl with MPl the reduced

Planck mass. Then

γ∗ & 10−3MPl

T
∼ 1013 , (5.2.89)

where the last approximate equality holds for EW-scale transitions with T ∼ 100 GeV.

From these considerations, we find that the GW signal will be completely dominated

by contributions from the fluid for transitions with γeq � 1013 in models of interest.
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From Fig. 5.6, we observe that for electroweak phase transition scenarios with SM-like

potentials and α ∼ O(1) or so, both our result and the earlier 1→ 2 estimates predict

γeq � γ∗, so the qualitative picture does not change once higher-order effects are

accounted for. However, there exist models with phase transitions arising from non-

polynomial potentials, which can feature extremely large values of α (see [319,375,377–

392] for examples). In these cases, our results will likely yield substantially different

predictions for the GW signal. It could be the case that due to the P ∝ γ2 scaling,

models which were previously thought to exhibit γeq > γ∗, and hence a large scalar

field contribution to the GW signal, do not once higher order effects are accounted for.

We intend to apply our methods to such BSM scenarios in future work.

• Matter-antimatter asymmetry

The cosmological excess of matter over antimatter may have arisen at the electroweak

phase transition through the physics of electroweak baryogenesis [36,393] (see Ref. [34]

for a review). There are various implementations of electroweak baryogenesis.

Theories of non-local electroweak baryogenesis [15] rely on the transport of charge

(particle number asymmetries) from the Higgs-phase bubble wall, where CP is violated,

to the symmetric phase in front of the wall, where B is violated. These theories require

the non-relativistic wall velocities, as the CP-violating source becomes suppressed for

walls moving significantly faster than the speed of sound in the plasma8, cs ≈ 1/
√

3 '

0.577. Otherwise, charge simply enters the bubble without diffusing into the symmetric

phase, and there is insufficient time for B-violation to act. Our results imply that the

friction from Standard Model particles in the plasma will lead to a relativistic wall with

γ = O(10) for SM-like electroweak transitions with αθ ∼ 1, which does not provide

the necessary environment for non-local electroweak baryogenesis [395,396]. However,

8. Ref. [394] recently showed that the resulting baryon asymmetry does not necessarily vanish for velocities
exceeding cs, however it is still generally suppressed relative to the subsonic case and vanishes as v → 1.
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a viable scenario can be obtained for smaller values of αθ or by lowering the wall’s

terminal velocity by introducing new species of particles in the plasma to raise the

thermal pressure beyond the Standard Model prediction.

Alternatively, theories of local electroweak baryogenesis [397] implement both CP and

B violation at the Higgs-phase bubble wall. For instance, the passage of bubble walls

through regions of plasma with nonzero gauge-Higgs field winding will trigger these

configurations to unwind and generate an anomalous B number. A related idea was

proposed recently in Ref. [398] where the collisions of ultrarelativistic bubble walls

creates heavy particles that decay out of equilibrium to generate the baryon asymmetry.

In these theories, there is no upper limit on the wall’s speed, and baryogenesis may be

viable even for ultrarelativistic walls. However, our results preclude the possibility of

runaway bubbles at SM-like electroweak transitions, which could impact the viability

of mechanisms like that proposed in Ref. [398], depending on the details of the plasma

content and potential assumed.

• Primordial magnetic fields

The collisions of Higgs-phase bubble walls at the electroweak phase transition are ex-

pected to generate a primordial magnetic field [399]. For instance, bubble collisions

stir up the charged constituents of the plasma [400], and the associated magnetohydro-

dynamic turbulence leads to a magnetic field with coherence on the scale of the bubble

radius.

The subsequent evolution of this primordial magnetic field from the electroweak phase

transition until today can be studied with the theory of magnetohydrodynamics, for

instance using numerical lattice simulations [401,402]. This cosmological magnetic field

is expected to survive in the Universe today where it may play an important role in

the generation of galactic magnetic fields and may be probed by various cosmological

and astrophysical observations; see Ref. [403] for a general review, and see Ref. [404]
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for a discussion of the electroweak phase transition, in particular. We are not aware

of any studies that specifically address how the primordial magnetic field’s strength

depends on the bubble wall’s speed in the regime where γ � 1, and this would be

interesting to investigate further. Nevertheless, it is reasonable to expect some level of

magnetic field creation for any γ, since electromagnetic radiation can arise even for a

vacuum electroweak phase transition [405], which corresponds to the regime γ → ∞

with a runaway bubble wall.

5.2.6 Summary and discussion of the section

We have presented an all-orders calculation of the pressure exerted by Standard Model par-

ticles on fast-moving bubble walls produced during a first order electroweak phase transition

in the early Universe. We built on and extended the pioneering works of Refs. [335] and [336]

which calculated the pressure induced from 1→ 1 and 1→ 2 processes respectively. These

fixed-order calculations receive large corrections in the limit of large wall velocities, moti-

vating an all-orders calculation in the leading-logarithmic approximation, which we have

performed for the first time.

We carried out a fixed-order calculation where we parametrized the radiating particle in

terms of a classical current. From this, the vacuum persistence amplitude was calculated,

at leading logarithmic accuracy, for both the real emissions and virtual corrections. This

is necessary as infrared divergences cancel once the virtual corrections and real emissions

are combined at the same order in perturbation theory. The vacuum persistence amplitude

squared is exponentiated to calculate the resummed average momentum transfer, 〈∆pz〉,

to the wall. This calculation closely follows the resummation of the thrust observable at

colliders. As seen in Eq. (5.2.68), we found 〈∆pz〉 ∼ γT , where the coefficient depends on the

coupling of the incident particle species to the radiated particle. The corresponding pressure

is given by Eqs. (5.2.7) and (5.2.8). In addition to the analytic resummation we numerically
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simulated a particle shower inside the bubble and extracted the average momentum transfer

to the wall. We found the numerical and analytical resummation results to be consistent

with each other at the 10% level and exhibit the same parametric dependence on the the

boost factor; see Table. 5.1.

For a wall with Lorentz factor γ � 1, both approaches indicate an average momentum

transfer of ∼ 1%×γT . The results in Table. 5.1 show that the pressure is dominated by both

incoming vector bosons and quarks. Interestingly, gluon emission from light quarks presents

a non-negligible contribution to the pressure due to the number of degrees of freedom for

quarks and the magnitude of the strong coupling. This is in contrast with previous work,

which found that the pressure is always dominated by the showered particles receiving the

largest mass at the transition. As the pressure is a product of the incident particle flux

and the average momentum transfer, our results indicate that the net thermal pressure

experienced by the wall is parametrically P ∼ γ2T 4 in its rest frame, and is simply a

constant fraction (∼ 1%) of the total pressure of the ideal gas of symmetric-phase particles

that couple directly to the wall. This result in fact matches the scaling of the pressure in

a different class of scenarios for which local thermal equilibrium is maintained across the

wall, as shown recently in [374]. However, P ∼ γ2T 4 is in contrast with Ref. [336], which

instead found P ∼ γ∆mT 3 with ∆m the change in mass of the emitted gauge bosons. We

trace this difference back to an ad-hoc cutoff of the momentum integrals and the neglect of

large logarithms in Ref. [336], which must be resummed. As such, we conclude that Higgs-

phase bubble walls at strong electroweak phase transitions reach significantly slower terminal

velocities than previously thought.

Our results have implications for various cosmological observables. Of particular interest

is their impact on the scaling of the terminal bubble wall velocity with γ and the strength

of the phase transition, as this affects the associated gravitational wave (GW) spectrum. In

Fig. 5.5, we show the terminal Lorentz boost factor (γeq) of the bubble wall as a function of
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the vacuum energy difference normalized to the thermal energy of the bath (αθ). The scaling

we calculated is shown in black while the scaling of [336] is shown in blue. This figure demon-

strates that for a given value of αθ, incorporation of off-shell effects significantly reduces the

bubble wall velocity and results in γeq ∝ √αθ as opposed to ∝ αθ. This is important as

slower moving bubble walls imply the predominant source of GWs stems from the fluid. As

a result, the GW spectrum in models with large αθ can have a markedly difference shape

than in the case where the contribution from collisions is assumed to dominate.

Our work has focused on first order electroweak phase transitions where the plasma

content is dominated by SM particles. This led to gluon and electroweak gauge boson

emission being the dominant source of momentum transfer at the wall. This is not necessarily

the case in other models of interest from the standpoint of GW production. It would be

interesting to extend our analysis to these scenarios in the future.

5.A Appendices for the bubble wall speed

5.A.1 Vertex functions

In this appendix we compute the charge factors needed to evaluate Eq. (5.2.68) and to

perform the numerical simulations in subsection 5.2.4. For strong interactions, we extract

the strong coupling g2
3 = 4παs. Ignoring subleading Nc contributions, the charge factors are

then given by the color Casimir operators

Cqqg = CF =
N2
c − 1

2Nc
, Cggg = CA = Nc . (5.A.1)

The relevant electroweak couplings can be obtained from existing approaches to electroweak

showers [351, 406–408]. We give the helicity averaged results, which are sufficient for the

target accuracy in our calculation. We denote cos θW = mW /mZ as cW and sin θW as

sW . We extract the electromagnetic coupling as g2
1 = 4πα. This leaves the following charge
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factors for bosonic interactions [351]

CW±W∓γ = CGW±GW∓γ
= 1 , CW±W∓Z =

c2W
s2
W

, CGW±GW∓Z
=

(
c2W − s2

W

2cW sW

)2

,

ChGW±W
∓ = CGZGW±W

∓ =
1

4s2
W

, ChGZZ =
1

4c2W s2
W

.

(5.A.2)

For radiation off of fermions we obtain

Cfifjγ = Q2
f δij , CfifjZ =

(
Qf

sW
cW

)2
δij +

(
Qf

sW
cW
−

I3
f

cW sW

)2
δij ,

CūidjW+ =
1

4s2
W

|Vij |2 , Cν̄iljW+ =
1

4s2
W

δij ,

(5.A.3)

where Qf and I3
f are the electric charge and third component of weak isospin for the fermion

f , and where V is the CKM matrix.

5.A.2 Kinematics mapping and phase-space factorization

The algorithm for constructing the splitting kinematics in the numerical simulation is mod-

eled on Ref. [409]. We use the following variables for a dipole splitting {ĩj, k̃} → {i, j, k}

with momentum configuration p̃ij + p̃k → pi + pj + pk:

z̃i =
pipk

pipk + pjpk
, sij = (pi + pj)

2 , and Q = pi + pj + pk . (5.A.4)

The variable z̃i corresponds to the splitting variable of the parton shower, while the invariant

mass sij is computed from the evolution and splitting variable as (cf. Sec. 5.2.4)

sij = t ×


(
z̃i(1− z̃i)

)−1
if t = k2

T cf. [410]

z̃i(1− z̃i) if t = q̃2
T cf. [366]

. (5.A.5)
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The spectator particle k serves as a source of anti-collinear momentum, but is otherwise

unaffected by the splitting of the mother particle ĩj into the daughter particles i and j. For

primary branchings, i.e. those where the particle ĩj radiates coherently with the incoming

particle pa, we choose p
µ
k = (M,~0), where M � γT . This corresponds to the reaction with

the wall being modeled as a fixed-target collision, with an energy transfer that is suppressed

by (∆p)2/2M2 compared to the momentum transfer ∆p, such that it can be neglected.

For secondary branchings we use the standard parton shower assignment of pk [364]. The

kinematics mapping proceeds as follows

1. Determine the new momentum of the spectator parton as

p
µ
k =

(
p̃
µ
k −

Q · p̃k
Q2

Qµ
) √√√√ λ(Q2, sij ,m

2
k)

λ(Q2,m2
ij ,m

2
k)

+
Q2 +m2

k − sij
2Q2

Qµ , (5.A.6)

with λ denoting the Källen function λ(a, b, c) = (a− b− c)2 − 4 bc

and sij = yij,k (q2 −m2
k) + (1− yij,k) (m2

i +m2
j ).

2. Construct the new momentum of the emitter parton, pi, as

p
µ
i = z̄i

γ(Q2, sij ,m
2
k) p

µ
ij − sij p

µ
k

β(Q2, sij ,m
2
k)

+
m2
i + k2

⊥
z̄i

p
µ
k −m2

k/γ(Q2, sij ,m
2
k) p

µ
ij

β(Q2, sij ,m
2
k)

+ k
µ
⊥ ,

(5.A.7)

where β(a, b, c) = sgn(a − b − c)
√
λ(a, b, c), 2 γ(a, b, c) = (a − b − c) + β(a, b, c) and

p
µ
ij = Qµ − pµk .

The parameters z̄i and k2
⊥ = −k2

⊥ of this decomposition are given by

z̄i =
Q2 − sij −m2

k

β(Q2, sij ,m
2
k)

[
z̃i −

m2
k

γ(Q2, sij ,m
2
k)

sij +m2
i −m2

j

Q2 − sij −m2
k

]
,

k2
⊥ = z̄i (1− z̄i) sij − (1− z̄i)m2

i − z̄im2
j ,

(5.A.8)

241



3. The transverse momentum is constructed using an azimuthal angle, φai

k
µ
⊥ = k⊥

(
cosφai

n
µ
⊥
|n⊥|

+ sinφai
l
µ
⊥
|l⊥|

)
,

where n
µ
⊥ = ε

0µ
νρ p̃

ν
ij p̃

ρ
k , l

µ
⊥ = ε

µ
νρσ p̃

ν
ij p̃

ρ
k n

σ
⊥ .

(5.A.9)

In kinematical configurations where ~̃paij = ±~̃pk, n⊥ in the definition of Eq. (5.A.9)

vanishes. It can then be computed as n
µ
⊥ = ε

0 iµ
ν p̃

ν
aij , where i may be any Lorentz

index that yields a nonzero result.

The phase-space factorization was derived in [411], App. B. Standard s-channel factorization

over pij gives [412,413]

∫
dΦ(pi, pj , pk|Q) =

∫
dsij
2π

∫
dΦ(pij , pk|Q)

∫
dΦ(pi, pj | pij)

=

∫
dsij
2π

√√√√ λ(Q2, sij ,m
2
k)

λ(Q2,m2
ij ,m

2
k)

∫
dΦ(p̃ij , p̃k|Q)

∫
dΦ(pi, pj | paij)

=

∫
dΦ(p̃ij , p̃k|Q)

∫ [
dΦ(pi, pj | p̃ij , p̃k)

]
(5.A.10)

where dΦ(pi1 , . . . , pin|Q) is given by the n-particle final-state phase space integral in Eq. (5.2.13),

times a 4-momentum conservation constraint in the form (2π)4δ(4)(Q− pi1 − . . .− pin). We

can rewrite Eq. (5.A.10) as

∫ [
dΦ(pi, pj | p̃ij , p̃k)

]
=

∫
dsij
2π

√√√√ λ(Q2, sij ,m
2
k)

λ(Q2,m2
ij ,m

2
k)

∫
dΦ(pi, pj |pij)

=

∫
dsij
2π

1√
λ(q2,m2

ij ,m
2
k)

∫
dsik dφi
4(2π)2

=
JFF

16π2

∫
dsij

∫
dz̃i

∫
dφi
2π

,

(5.A.11)
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where sik = (pi + pk)2, and where we have defined the Jacobian factor

JFF =
Q2 − sij −m2

k√
λ(Q2,m2

ij ,m
2
k)
. (5.A.12)

Note that for massless partons, JFF takes the simple form JFF = 1 − sij/Q2 [414]. In the

soft limit, we have JFF = 1.

5.A.3 Soft virtual integrals

In D = 4− 2ε dimensions, Eq. (5.2.44) reads

W
(2)
a→b = − 4i |g|2µ2ε

(
I1(pa, pb)− I2(pa)− I2(pb)

)
, (5.A.13)

where we have defined the basic integrals

I1(p, q) =

∫
dDk

(2π)D
1

k2

2pq

(2pk)(2qk)
, I2(p) = Θ(p2)

∫
dDk

(2π)D
1

k2

p2

(2pk)2
. (5.A.14)

Note that these integrals are both IR and UV divergent. Naive evaluation using dimensional

regularization would yield an ill-defined result. However, we are interested only in the

cancellation of the IR singularities, which can be separated out at the integrand level. Using

the decomposition I1/2(p, q) = I1/2,UV(p, q) + I1/2,IR(p, q), we define

I1,IR(p, q) =

∫
dDk

(2π)D
1

k2

2pq

(2pk + k2)(2qk + k2)
, I2,IR(p) =

∫
dDk

(2π)D
1

k2

p2

(2pk + k2)2

(5.A.15)
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We use Feynman parameters to write the integrand of I1,IR as

1

k2(2pk + k2)(2qk + k2)
=

∫ 1

0
dx

∫ 1

0
dy

2x

[K2 − C2]3
, where

K = k + C

C = x(yp+ (1− y)q)

(5.A.16)

with the obvious change C → xp in the case of I2,IR. Using the basic integral

∫
dDK

(2π)D
1

[K2 − C2]M
=

i(−1)M

(16π2)D/4
B(D/2,M −D/2)

Γ(D/2)(C2)M−D/2
(5.A.17)

we obtain, in the massless case

I1,IR(p, q) = − i

16π2

(4π)ε

Γ(1− ε)
(2pq)−ε

ε2

Γ(1− ε)3Γ(1 + ε)

Γ(1− 2ε)
(5.A.18)

For one massive leg, p, we obtain

I1,IR(p, q) = − i

16π2

(4π)ε

Γ(1− ε) (2pq)−ε
(

1

2ε2
+

log µ2
p

2ε
−

log2 µ2
p

4
− Li2(1− µ2

p) +
π2

12
+O(ε)

)

I2,IR(p) =
i

16π2

(4π)ε

Γ(1− ε)
(p2)−ε

2ε
Γ(1− ε)Γ(1 + ε)

(5.A.19)

where we have defined µ2
p = p2/(2pq).

5.A.4 Soft real-emission integrals

In D = 4− 2ε dimensions, Eq. (5.2.49) reads

∫
dW

2 (1)
a→bc = − 4|g|2µ2ε

(
Ĩ1(pa, pb)− Ĩ2(pa, pb)− Ĩ2(pb, pa)

)
, (5.A.20)
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where we have defined the basic integrals

Ĩ1(p, q) =

∫
dDk

(2π)D−1

2pq

(2pk)(2qk)
δ+(k2) , Ĩ2(p, q) = Θ(p2)

∫
dDk

(2π)D−1

p2

(2pk)2
δ+(k2) .

(5.A.21)

We use the Sudakov parametrization of Eq. (5.2.21). At leading power, we may neglect recoil

effects and obtain

dDk = nn̄ dα dβ dD−2kT , where α =
n̄k

nn̄
, β =

nk

nn̄
. (5.A.22)

We redefine the light-like momenta n and n̄ as the solutions of

p = n+
p2

2nn̄
n̄ , q = n̄+

q2

2nn̄
n , where 2nn̄ = pq

(
1 + vp,q

)
, vp,q =

√
1− p2q2

(pq)2
.

(5.A.23)

The transverse momentum integral can be solved with the help of the on-shell condition

∫
dD−2kT δ

+(k2) =
2π1−ε

Γ(1− ε)
1

2
(2nn̄)−ε

(
αβ
)−ε

. (5.A.24)

This leads to the following result for the massless case

Ĩ1(p, q) = − 1

16π2

(4π)ε

Γ(1− ε)
(2pq)−ε

ε2
. (5.A.25)
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In the case of one massive leg, p2 > 0, we obtain instead

Ĩ1(p, q) = − 1

16π2

(4π)ε

Γ(1− ε) (2pq)−ε
(

1

2ε2
+

log µ2
p

2ε
−

log2 µ2
p

4
− Li2(−µ2

p)−
π2

12
+O(ε)

)

Ĩ2(p, q) =
1

16π2

(4π)ε

Γ(1− ε) (2pq)−ε
(

1

2ε
−

log µ2
p

2
+ log(1 + µ2

p) +O(ε)

)
.

(5.A.26)
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