
THE UNIVERSITY OF CHICAGO

HIGH BRIGHTNESS PHOTOELECTRON BEAMLINES

FOR FEMTOSECOND SCIENCE

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS

BY

MATTHEW A. GORDON

CHICAGO, ILLINOIS

AUGUST 2022



Copyright © 2022 by Matthew A. Gordon

All Rights Reserved



For my family, both in blood and in action.



“If I had more time I would have written a shorter letter” - Attributed to many people



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 An Overview of Time-Resolved Electron and X-ray Beams . . . . . . . . . . 2
1.2 Electrons vs. X-rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 A Brief History of UED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 BEAM DYNAMICS IN LINEAR ACCELERATORS . . . . . . . . . . . . . . . . 7
2.1 Charged Particle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Accelerator Beamline Elements and Mathematical Formulation . . . . 7
2.1.2 Coulomb Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Mean-Field Approximation and Space Charge . . . . . . . . . . . . . 17

2.2 Accelerator Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Emittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Non-Linear Emittance Growth . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Longitudinal Correlations and Emittance Compensation . . . . . . . 24
2.3.3 Density Diluting Effects . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Electron Source Quality . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.5 Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 UED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Coherence Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Mitigating Space Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 STRAY-FIELD CORRECTION IN UED BEAMLINES . . . . . . . . . . . . . . . 36
4.1 Stray Fields in UED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Designing and Building a Sextupole Corrector . . . . . . . . . . . . . . . . . 37
4.3 MEDUSA Beamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 4D Phase Space Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Quadrupole and Skew Quad Correction . . . . . . . . . . . . . . . . . . . . . 45
4.6 Sextupole Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Source of Sextupole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

v



5 POINT-TO-POINT EFFECTS IN HIGH BRIGHTNESS PHOTOELECTRON BEAM-
LINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Failure of the Mean-Field Space Charge Approximation . . . . . . . . . . . . 57
5.2 Point-to-Point Simulation Methods . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Coulomb interactions and Image Charge Model . . . . . . . . . . . . 61
5.2.2 Using 90% RMS Figures of Merit . . . . . . . . . . . . . . . . . . . . 64

5.3 Description of dc and NCRF gun UED beamlines . . . . . . . . . . . . . . . 64
5.4 Macroscopic Beam Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5 Microscopic Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.1 Core Emittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.2 Radial Distribution Function . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.3 Disorder Induced Heating Calculation . . . . . . . . . . . . . . . . . . 76
5.5.4 Disorder Induced Heating Density Dependence . . . . . . . . . . . . . 79
5.5.5 Core Emittance and rms Emittance Contributions from Disorder In-

duced Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Warm Beam Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7 Modified Image Charge Method . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.8 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A WAKEFIELD CALCULATIONWITH A RECTANGULARDIELECTRIC BOUND-
ARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B EMITTANCE COMPENSATION IN APPLICATION . . . . . . . . . . . . . . . 98

C DISPLACED IMAGE CHARGE METHOD . . . . . . . . . . . . . . . . . . . . . 101

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vi



LIST OF FIGURES

1.1 Schematic of the picosecond electron diffraction setup used byWilliamson, Mourou
and Li. A streak camera is used to make a 20 ps electron bunch which would be
accelerated to 25 keV and diffract through an Aluminum sample. . . . . . . . . 4

1.2 UED of melting aluminum done by B.J. Siwick et. al. The disappearance of the
diffraction rings corresponds to the transition to the liquid phase, which is seen
to occur on the time scale of 3.5 ps. . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Depiction of a dipole magnet oriented along the y-axis. . . . . . . . . . . . . . 10
2.2 Depiction of a quadrupole magnet with North poles in quadrants 2 and 4 and

south poles in quadrants 1 and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Depiction of a sextupole magnet with a north pole in the positive y direction. . 12
2.4 Depiction of a simplified electron gun, a diode with a hole in the anode to allow

the electrons to escape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 x−px phase space of a fictitious electron beam. Each red dot represents the x-px

phase space coordinate of a single electron. . . . . . . . . . . . . . . . . . . . . . 20
2.6 x − px phase space of 2 fictitious electron beams. Each red dot represents the

x-px phase space coordinate of a single electron and each blue dot represents its
phase space coordinate after experiencing a linear force. . . . . . . . . . . . . . . 21

2.7 x − px phase space of 2 fictitious electron beams. Each red dot represents the
x-px phase space coordinate of a single electron and each blue dot represents its
phase space coordinate after experiencing a cubic force. . . . . . . . . . . . . . . 22

2.8 x− px phase space of an electron beam with no initial momentum spread before
(red) and after (blue) going through a sextupole. The ellipse in black has an area
equal to the emittance of the beam after the sextupole times π. . . . . . . . . . 23

2.9 x− px phase space of a single fictitious electron beams. Each red dot represents
the x-px phase space coordinate of an electron from one longitudinal slice of the
beam, while each black dot corresponds to a different longitudinal slice of the
same beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.10 x − px phase space of 2 fictitious electron beams. Each red dot represents the
x-px phase space coordinate of a single electron and each blue dot represents its
phase space coordinate after experiencing a density diluting force like an exact
Coulomb force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Depiction of a pump-probe experiment. A pump laser pulse excites dynamics
in a sample. A short time later, ∆t, a probe pulse/beam, of electrons in UED,
interacts with the sample, recording the dynamics at that time delay. . . . . . . 28

3.2 Schematic of changing the pump probe arrival time difference by changing the
path length of the probe laser. A displacement of a mirror by ∆L cause a change
in the laser path length by 2∆L . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Schematic of pump-probe synchronization using a copper TEM grid. A pump
laser hits the copper grid, creating an electron cloud at the location of the laser.
This cloud then deflects the probe electron beam which is at a distance ∆x away 30

vii



3.4 Idealized depiction of the momentum deflection using the copper grid TEM for
different pump delays, ∆t between the pump electron beam and probe laser. For
larger distances between the electron beam and the electron cloud, the peak of
the deflection moves to higher ∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Model of deflection strength vs. time of arrival of electron beam at different
distances away from an electron cloud. . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 A schematic of the MEDUSA ultrafast electron diffraction beamline. . . . . . . 36
4.2 RADIA implementation of the sextupole corrector. Red represents magnetic field

pointing towards the origin from a given tube and blue represents magnetic field
pointing away from the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Magnetic field in y-direction as a function of longitudinal position from the center
of the sextupole. A small transverse offset was used such that the field is non-zero. 40

4.4 Current density needed in the magnet wire as a function of radius to the the inner
edge of the solenoid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 2d packing of circles in a plane, representative of the winding of wires in a solenoid. 42
4.6 Assembly of sextupole mount components created in Autodesk Inventor. Copper

color is representative of the magnet wire and is not included in the mount. . . . 43
4.7 Image of the sextupole corrector after fabrication and winding. . . . . . . . . . . 44
4.8 Field profile of the MEDUSA ultrafast electron diffraction beamline. The longi-

tudinal field of the gun, solenoids, and buncher are shown, as well as the location
of relevant beamline elements. Of particular note are the quadrupole and sex-
tupole correctors, located immediately after the second solenoid. The emittances
and phase spaces measured in this chapter are measured at the sample location. 45

4.9 (a) x-y, (b) x-py, and (c) x-px projections of the reconstructed 4d density matrix
at the sample location with sextupole correction. The dashed line in (b) shows
the correlation between x and py which is seen to be near 0. . . . . . . . . . . . 46

4.10 An example of the effects of the stray quadrupole moments on the (a) beam size
and (b) beam shape. The beam shape is quantified with the skew angle of the
beam profile. The green arrows provide a visualization of the directions associated
with the skew angles. The dashed lines represent fits done with GPT and show
good agreement with the experimental data. Inset: Example of a beam with an
evident skew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.11 A simulated example of the effects of the stray quadrupole moments on entire
beam emittance (blue) and transmission through the final aperture (red). The
stray quadrupole moments found by the fits in Fig. 4.10 were scaled by a global
factor, shown on the x axis, to show the dependence on their strengths. Inset:
The x-py phase space at the nominal quadrupole moments. A clear correlation,
highlighted by the red dashed line, can be seen. Contrast this to the nearly zero
correlation in the x-py phase space of Fig. 4.9b, represented by the green dashed
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



4.12 Simulated emittance at the sample location varying the angle of a sextupole
corrector placed after the second solenoid. The red horizontal line is the emittance
of the beamline with no sextupoles included. The blue horizontal line is the
emittance of the beamline with a sextupole in the buncher and no corrector. The
orange and black curves show the resulting emittance for a corrector current which
best cancels the sextupole moment and is half of the needed current respectively. 50

4.13 Simulated emittance correction for different placements of the sextupole corrector.
At the position of the stray field, about .8m, the cancellation is exact as expected.
The correction is worst at the beam focus where as expected correction is impossible. 51

4.14 Experimental correction of the sextupole moment. From left to right the beam
profiles are taken with: the sextupole corrector off, the sextupole corrector anti-
aligned with sextupole moment at a large current, the sextupole correcter anti-
aligned at a strength to cancel the sextupole moment. . . . . . . . . . . . . . . 52

4.15 (a) Spot size and (b) transverse normalized rms emittance for different choices of
buncher voltage around the optimal bunching voltage. The red line comes from
simulation results assuming a MTE of 70 meV, chosen to best fit simultaneously
the spot size and emittance data. The blue line was made simulating the same
beamline with a sextupole added inside of the rf buncher, with a best-fit strength
of the sextupole chosen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.16 Beam profile with the sextupole buncher turned off and the RF buncher set to a
longitudinal diverging beam phase. The triangle is seen to be inverted compared
to the bunching phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.17 Beam profile in debunching phase with the deflector cavity on. Horizontal beam
width is plotted as a function of the vertical position, in units of the longitudinal
position of the beam in the deflector. . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Cartoon depiction of the failure of Debye screening. For large MTE photocath-
odes, drawing a sphere around a particle with the Debye screening length as the
radius encloses many other particles, a necessary condition for the applicability
of mean field theory. At lower MTE, the Debye screening length becomes less
than the average interparticle distance . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Depiction of PMP 3-step space charge calculation. Filled in ellipses represent
mean-field calculation of electric fields, and ellipses filled with dots represent a
Barnes-Hut calculation of electric fields. . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Layout of the cryocooled dc gun UED beamline used in the following simulations. 64
5.4 Layout of the NCRF gun beamline used in the following simulations. . . . . . . 66
5.5 (a) Spot size and (b) transverse normalized rms emittance comparison between

the PMP method, Barnes-Hut method without a cathode, and mean-field space
charge simulations of the dc UED beamline with 0 meV MTE. . . . . . . . . . . 67

5.6 (a) Spot size and (b) transverse normalized rms emittance comparison between
the PMP method, Barnes-Hut method without a cathode, and mean-field space
charge simulations of the NCRF UED beamline with 0 meV MTE. . . . . . . . 68

ix



5.7 Depiction of emittance vs. particle fraction selection. Ellipses are drawn such
that they represent the phase space area occupied by the beam using only a
given fraction of the total number of particles. Ellipse dimensions are selected
such that the emittance is minimized for each particle fraction. . . . . . . . . . . 71

5.8 Transverse normalized rms emittance vs. particle fraction plots and phase space
comparison between PMP and mean-field simulations of the 2 UED beamlines
at the respective emittance minimum near the end of the beamlines. Subfigures
(a), (c), and (e) correspond to the dc beamline and subfigures (b), (d), and (f)
correspond to the NCRF beamline. Phase space portraits from the mean-field
simulations are shown in subfigures (c) and (d) and for PMP simulations in (e)
and (f) Phase space portraits are shown with linear x− px correlation removed. 72

5.9 Core emittance comparison between PMP and mean-field simulations of the dc
UED beamline with 0 meV MTE. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.10 Core emittance comparison between PMP and mean-field space charge for the
NCRF UED beamline with 0 MTE. . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.11 Radial distribution function comparison between PMP and mean-field simulations
of the NCRF UED beamline with 0 meV MTE ∼ 3mm away from the cathode.
Only a small r portion of the distribution is plotted to show the creation of
the Coulomb hole when point-to-point space charge is used. For comparison,
the distributions were normalized such that the mean of the radial distribution
functions from 1.5µm to 3.0µm is equal to 1. . . . . . . . . . . . . . . . . . . . . 75

5.12 Energy from disorder induced heating as calculated from g(r) in the NCRF beam-
line with 0 MTE and a smaller initial density of 1017 m−3. The density was
reduced by increasing the initial radial size of the electron beam at the cathode. 78

5.13 Radial distribution function comparison between of the NCRF beamline with
an MTE of 0 meV and an initial density of 1017 m−3 before and after the beam
waist. For comparison, the distances were normalized by the average interparticle
distance, a, and the radial distribution functions, g(r/a), were normalized such
that g(r/a = 1.25) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.14 Disorder induced heating as calculated from equation 5.2 compared to the result
calculated from simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.15 Spot size comparison between the PMP method and mean-field space charge
simulations of the dc UED beamline with 150 meV MTE. . . . . . . . . . . . . 83

5.16 Transverse normalized rms emittance comparison between the PMP method and
mean-field space charge simulations of the dc UED beamline with 150 meV MTE. 83

5.17 Core emittance comparison between the PMPmethod and mean-field space charge
simulations of the dc UED beamline with 150 meV MTE. . . . . . . . . . . . . 84

5.18 Spot size comparison between the PMP method and mean-field space charge
simulations of the RF UED beamline with 150 meV MTE. . . . . . . . . . . . . 84

5.19 Transverse normalized rms emittance comparison between the PMP method and
mean-field space charge simulations of the RF UED beamline with 150 meV MTE. 85

5.20 Core emittance comparison between the PMPmethod and mean-field space charge
simulations of the RF UED beamline with 150 meV MTE. . . . . . . . . . . . . 85

x



5.21 Transverse normalized rms emittance comparison for point-to-point, mean-field,
and modified image charge simulations of the dc UED beamline with 0 meV MTE. 89

5.22 Transverse normalized rms emittance comparison for point-to-point, mean-field,
and modified image charge simulations for the NCRF UED beamline with 0 meV
MTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Rectangular beam pipe with dielectric coating one set of opposite walls, the three
marked areas indicate (1) vacuum, (2) dielectric, and (3) conducting wall. . . . . 94

A.2 Root-finding method for the calculation of the eigenvalues for the dielectric wake-
field problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.3 Transverse force on a test particle trailing a particle with x > 0 and y = 0 in the
dielectric structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.4 Longitudinal force on a test particle trailing a particle with x > 0 and y = 0 in
the dielectric structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.1 Generic on-axis electric field Ez (blue) and solenoid field Bz (green) profiles for
the cryogun set-up. The intended sample location is at roughly 1 m. . . . . . . . 98

B.2 The optimal emittance as a function of bunch charge at the sample location
(roughly 1m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.3 Ratio of the beam emittance to the average slice emittance (50 slices) for the two
example charges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C.1 Diagrammatic representation of the displaced image charge method. An electron
is further displaced from its positively charged image by an additional distance,
2rc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xi



LIST OF TABLES

5.1 dc beamline simulation beam parameters . . . . . . . . . . . . . . . . . . . . . . 65
5.2 NCRF beamline simulation beam parameters . . . . . . . . . . . . . . . . . . . 65
5.3 Slice energy spread in 0 meV MTE simulations . . . . . . . . . . . . . . . . . . 70
5.4 Core emittance with 0 meV MTE at sample . . . . . . . . . . . . . . . . . . . . 73

xii



ACKNOWLEDGMENTS

I would like to start by thanking Young-Kee for being my advisor. You have given me a

holistic view of what it means to be a physicist. Your support over the years has driven me

forward and you have focused my priorities on what truly matters.

Thank you Jared Maxson, who over the years has given me the opportunity to work

along side him and his group at Cornell. It has been a challenging but rewarding journey,

and I will treasure it always.

Stas, thank you for all of the life lessons and fun discussions we had over the years. Your

mathematical rigor was only matched by the strength of your morals. I wish the best for

you and your family.

I would like to thank my thesis committee, who helped make my knowledge in accelerators

well rounded. In particular, I would like to given special thanks to Sergei, who has been

vital in the development of my science communication skills.

Brendan, Chih-Kai, Jody, Kyle, Lipi, Mark, Melody, and Nikita, the five plus years I

have gotten to know you all here has been amazing. I couldn’t begin to compare the impacts

you all have had on my life, so I put you in alphabetical order. I consider you all family,

thanks for the crazy times we had.

I would be wrong not to thank the friends I worked along side at Cornell as well. Adam,

Cameron, Chad, Michael, and William, thanks for the crash course on how to be an experi-

mentalist.

I dedicate this dissertation to my family, without which, I would not be who I am today.

I can not thank you all enough for everything you have done for me. I love you all, through

all of the highs and the lows we have had together.

xiii



ABSTRACT

Particle accelerators can be used as cameras, creating bunches of electrons or X-ray pulses

which can produce images of objects smaller than what can be resolved with visible light.

Denser and colder electron bunches create higher resolution images both in space and time.

The development of high brightness photocathodes is a driving force in the improvement of

accelerators used for time resolved science. In this thesis, a fundamental limit in the creation

cold dense electron beams from photocathodes is presented and simulated. Additionally,

methods for preserving the quality of cold dense electron beams in transport are simulated

and experimentally demonstrated in an operating ultrafast electron diffraction beamline.
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CHAPTER 1

INTRODUCTION

Studying matter at atomic resolutions has been made possible through techniques includ-

ing electron diffraction, electron microscopy, x-ray absorption and diffraction. From small

crystals, to biological molecules, such as proteins, DNA, and viruses, these techniques have

advanced our understanding of physics, chemistry, and biology.

But nature does not exist in a static state. A full understanding of the dynamics of

a biological molecule, chemical reaction, or phase transition cannot be understood with a

single image of a structure. Instead, a series of images must be made during the dynamics.

To see what is happening during a process, a series of images needs to be taken. Like a

camera taking pictures of an object in motion, the shutter/integration time of these images

needs to be small or else the images will be blurred.

Images from diffraction and microscopy experiments need to integrate a signal of particles,

either electrons or photons, over an extended period of time. The amount of time needed

for the integration is dependent on the incoming flux of particles, as well as the interaction

probability between the particles and the sample being studied. In state of the art detectors,

the minimum integration time is on the order of microseconds [1].

The timescales for many processes in nature are much smaller than this however. Pro-

cesses like melting and protein folding happen on the time scale of nanoseconds. Phase

transitions, phonon vibrations, breaking and forming chemical bonds happen even faster, on

the time scale of femtoseconds [2, 3, 4]. None of these are possible to study with a continuous

integration of particles used to form images in the techniques described above.

Thus there is a need to create images resolved in space to the atomic scale, but simulta-

neously resolved in time on the femtosecond scale. This additional simultaneous constraint

comes with many challenges, both fundamentally and technologically and necessitated the

creation of a new generation of instruments and techniques that are still being refined today.
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This thesis introduces some solutions to the problems that come with this challenge as well

as details a new issue that will soon need to be addressed as the push for higher resolution

continues.

1.1 An Overview of Time-Resolved Electron and X-ray Beams

Ultrafast electron diffraction(UED), ultrafast electron microscopy(UEM), and the X-ray free

electron laser (XFEL) are three of the most powerful modern tools/techniques for time-

resolved science [5, 6, 7, 8]. This thesis will focus on UED, however, to understand the

role UED has in time-resolved science, it is essential to understand all of the available tools

to be able to compare their strengths and weaknesses. One important difference in these

techniques is the particle type used for imaging, electrons vs. X-rays. The advantages and

disadvantages of using one type of particle vs. the other will be discussed in the next section.

One of the most prevalent methods of producing a short electron beam today is through

shining a light onto a metal surface, known as a photocathode. If the frequency of the

light is large enough for a given metal, electrons in the metal will absorb a photon and be

emitted from the metal in what was coined by Einstein in 1905 as the photoelectric effect

[9]. The development of photocathodes for electron beams was propelled by the invention of

the laser, the first of which was made in 1960 by Theodore Maiman [10]. The development

of short laser pulses, down to the scale of femtoseconds would then allow for the generation

of equally short electron pulses from photocathodes using these lasers. These short electron

pulses from photocathodes allow for the short shutter times needed for UED.

The development of X-ray sources started with the discovery of the X-ray in 1895 by

Wilhelm Röntgen. Within two weeks of the discovery, Wilhelm was able to take a picture

underneath the skin of his wife’s hand. This penetration capability was highly desired

by the medical community and would soon draw interest from the scientific community.

The development of X-ray sources was forever changed with the observation of synchrotron
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radiation in 1947. The radiation of charged particles in circular accelerators was first thought

to be a nuisance, however, the collimated X-ray source quickly was seen as invaluable, and

in the following decades, dedicated machines were made specifically for the generation of

this radiation. However, synchrotron sources still suffered from a lack of high temporal

resolution. Thus, the demand remained for a X-ray laser. This demand would lead to the

development of the XFEL, in which a high energy micro-bunched electron beam is oscillated

in a magnetic device called an undulator, to produce highly coherent X-ray pulses. [11, 12].

1.2 Electrons vs. X-rays

Electrons and X-rays are known to be complementary in their ability to probe matter, both

in the static and ultrafast regimes. X-rays primarily interact with electrons in matter while

electrons as charged particles interact both with electrons and atomic nuclei. Because of

the difference in the nature of their interaction, electrons are much more likely to scatter

from a material, both elastically and inelastically. Electrons at keV energy scales have

a scattering cross-section 104 - 106 times larger than X-rays. While this provides more

useful elastic scattering events per incident particle, the inelastic scattering of electrons

and ejected valence electrons from the sample create additional background in diffraction

images. If energy filtering can be used to separate the background, then using electrons

can result in less radiation damage relative to X-rays, which is advantageous in situations

where sample deterioration inhibits measurement. Additionally, the low energy electron

beams allow UED devices to have a size on the order of meters while XFELs are on the

scale of kilometers. However, electron repulsion limits pulse density/pulse charge, making

simultaneously large spatial and temporal resolution more difficult to achieve. Because of

this, XFELs can typically run at much higher fluxes than electron diffraction devices, 106

times more or higher, making up for the loss in scattering cross section while having higher

temporal resolution [5, 8, 13, 14, 15].
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1.3 A Brief History of UED

The first time-resolved electron diffraction experiments occurred at the University of Rochester

in the mid 1980s. S. Williamson, G. Mourou, and J. C. M. Li. used an optical streak camera

to create electron pulses with pulse lengths of 20 ps, with a final beam energy of 25 keV and

104 electrons per pulse. A schematic of their setup from their original paper [16] is shown

in fig. 1.1. They used this apparatus to study the melting of aluminum. The results of

their experiment, while misinterpreted from the data [17], went on to spark a wide range of

experiments in time-resolved electron diffraction.

Figure 1.1: Schematic of the picosecond electron diffraction setup used by Williamson,
Mourou and Li. A streak camera is used to make a 20 ps electron bunch which would
be accelerated to 25 keV and diffract through an Aluminum sample.

H. E. Elsayed-Ali would join Mourou at the university of Rochester for the next de-

velopment. While the original experiment was done through the diffraction of transmitted

electrons in aluminum, this next experiment would use the diffraction of reflected electrons

from a 250 Angstrom gold film with 150 ps electron pulses. This would allow for the study
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of the first few mono-layers of atoms of a material, without the material needing to be thin

enough for the electron beam to transmit through [18].

J.C. Williamson, M. Dantus, S.B. Kim, and A.H. Zewail from Caltech would make the

next major development. The group was able to bring the electron pulse length, from time

scales of ps, down to tens of femtoseconds using fs scale laser pulses. At high intensities,

coulomb repulsion would extend these short electron pulses up to 10 ps. Nonetheless, for

reversible processes, this provided a way of measuring dynamics on the fs scale [19].

Figure 1.2: UED of melting aluminum done by B.J. Siwick et. al. The disappearance of the
diffraction rings corresponds to the transition to the liquid phase, which is seen to occur on
the time scale of 3.5 ps.

The study of time-resolved non-reversible dynamics would not come until much later, in

2003, where B.J. Siwick, J.R. Dwyer, R.E. Jordan, and R.J. Dwayne Miller would repeat the

time-resolved diffraction of the melting of aluminum, shown in fig. 1.2 from [20], now with a

600 fs electron pulse. With this much shorter electron pulse, they found that the diffraction

rings indicative that the aluminum was solid, would disappear on the time scale of 3.5 ps
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[20]. In the original experiment, the 20 ps electron pulse was much larger than the time it

took for the dynamics to occur, thus making it impossible to measure.

The continued prevalence of UED today is largely due to the advancement of the MeV

UED beamline [13]. At higher beam energies, it has become possible to create fs scale

electron beam lengths with appreciable bunch charges, between 1-100 fC. This has allowed

insights in phenomenon in a large range of materials, from those as ubiquitous as water to

exotic quantum materials [7, 21, 22, 23, 24, 25, 26, 27].

Going to higher energies is not the only method to achieve short dense electron beams.

With the addition of an RF bunching cavity, a longitudinal energy correlation can be made

on the beam, allowing for bunch length compression. With this, UED beamlines are capable

of starting off with a much longer electron beam, mitigating the effects of electron repulsion

to a brief moment when the beam comes to a longitudinal focus near the sample being stud-

ied. This method has allowed keV energy scale UED beamlines to achieve similar temporal

resolution.

UED has room for further improvement today through beamline specialization, increasing

the scope of the processes that can be studied. Samples with larger periodic structures

require electron beams with small momentum spreads. Samples that are difficult to grow

over extended areas need equally small electron beam sizes to study. With a combination of

many devices specialized for studying different types of samples and dynamics, UED remains

a prominent tool in time-resolved science.
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CHAPTER 2

BEAM DYNAMICS IN LINEAR ACCELERATORS

The time-resolved devices described in chapter one are examples of particle accelerators.

Accelerators use electromagnetic fields to accelerate and manipulate charged particles. Un-

derstanding the physics of particle accelerators requires knowledge of classical mechanics,

special relativity, and electromagnetism.

2.1 Charged Particle Dynamics

The dynamics of a charged particle in an electric field E⃗ and magnetic field B⃗ are governed

by the Lorentz force law:

dp⃗

dt
= F⃗ = q(E⃗ + v⃗ × B⃗) (2.1)

where q is the charge of the particle, v⃗ is its velocity and p⃗ is the relativistic momentum of

the particle:

p⃗ = γmv⃗ (2.2)

where m is mass and gamma is the Lorentz factor, γ = 1√
1−v2/c2

, and c is the speed of

light [28]. The relativistic form of the law here is essential as electrons in UED devices are

accelerated to have kinetic energies on the order of, or greater than their rest energy.

2.1.1 Accelerator Beamline Elements and Mathematical Formulation

A charged particle accelerator is composed of a series of elements, including empty beam pipe

segments called drifts, magnets, a particle source like an electron gun, and radiofrequency

(RF) cavities. A description of each of these elements used in UED as well as how they are

used is described here.

The coordinate system used for describing motion of charged particles in linear acceler-
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ators, which will be used throughout this dissertation, aligns the z-axis with the direction

of travel of the electron beam. The origin of the xy-plane is chosen to be the center of

the ideal particle trajectory, typically the center of a round beam pipe. The z-direction is

therefore referred to as the longitudinal direction while the x and y directions are referred

to as transverse directions, in relation to the direction the beam travels.

The terminology of linear accelerator is used to differentiate from circular accelerators.

In a linear accelerator, particles pass through a set of beamline elements once. In a circular

accelerator, particles will go through a periodic structure of beamline elements, often called

a lattice, multiple times. The distinction between these is simple, however, it results in

differences in the mathematical formulation that is best suited to describe the dynamics.

In circular accelerators, particles must by definition return to the same longitudinal

position multiple times. Each time a particle returns to a longitudinal position, it will have

some transverse phase space coordinate, as well as a longitudinal velocity. The collection of

transformations of the phase space coordinates as the particle goes around the accelerator

can be thought of as a map. This formulation is quite fruitful, as a major concern in many

circular accelerators is to prevent the loss of particles over many turns, a problem which in

this formulation corresponds to the region of stability of the map.

In linear accelerators by contrast, particles only travel through each element once. The

idea of maps can still be used on individual elements, although stability over multiple appli-

cations of a map is not as much of a concern, so I will not use that framework. A relativistic

Newtonian framework is sufficient for discussing the beam dynamics for UED beamlines, and

will be used throughout this dissertation.

Drifts

In an ideal drift, there are no external electric and magnetic fields. Therefore, a single electron

traveling through an ideal drift experiences 0 forces. While a drift therefore is not inherently
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an interesting element, it is nevertheless necessary. A force from an applied electric or

magnetic field on a charged particle needs time for a momentum change to result in a change

in the position of the particle. Because these particles are travelling through the accelerator,

any time requirement inherently corresponds to a length requirement. Additionally, drifts

inherently provide a way of measuring the transverse momentum of an electron beam, as

the change of momentum over a drift is 0, thus the change of transverse position over a drift

can be used to directly calculate momentum.

Dipole Magnets

A dipole magnet, depicted in fig. 2.1 consists of 1 pair of north-south poles. For the ideal

dipole magnet depicted, the magnetic field created by the dipole is B⃗ = −Byŷ everywhere

ignoring effects from finite size. For a particle traveling no transverse velocity, v⃗ = vz, the

force that the particle experiences using equation 2.1 is:

F⃗dipole = qvzByx̂ (2.3)

Thus an ideal dipole magnet can be used to move an electron beam uniformly in a transverse

direction perpendicular to the orientation of the dipole [29]. In linear accelerators, one

primary use of dipole magnets is to steer the beam. This is done to bring the beam close to

the beams ideal trajectory in the beam pipe.

Quadrupole Magnets

A quadrupole magnet, depicted in fig. 2.2 has 2 pairs of north south poles with alternating

polarity separated by 90 degrees from its nearest neighbor around the xy-plane. With a

south pole in the positive x, positive y quadrant, the resulting ideal magnetic field is: B⃗ =

K(yx̂ + xŷ) where K is the strength of the quadrupole, again ignoring effects of finite size.
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Figure 2.1: Depiction of a dipole magnet oriented along the y-axis.

This results in a force using equation 2.1 of:

F⃗quadrupole = −qKvz(xx̂− yŷ) (2.4)

For a negatively charged particle, q < 0, and a positive quadrupole strength, K > 0, this

force is linearly defocusing in x and linearly focusing in y. By using pairs of quadrupole

magnets with one rotated 90 degrees respect to the other, it is possible to create a structure,

called a FODO lattice, that if repeated, can contain the beam in both x and y [29]. Rotating

the quadrupole by 45 degrees results in what is called a skew quadrupole. A skew quadrupole

introduces correlations between the x and y axes which can be troublesome in experiment.

Sextupole Magnets

A sextupole magnet, depicted in fig. 2.3 has 3 pairs of north south poles with alternating

polarity separated by 60 degrees from its nearest neighbor around the xy-plane. With a

north pole in the direction of positive y, the magnetic field from the ideal sextupole is

B⃗ = G(2xyx̂+ (x2− y2)ŷ), where G is the sextupole strength. Using equation 2.1, the force
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Figure 2.2: Depiction of a quadrupole magnet with North poles in quadrants 2 and 4 and
south poles in quadrants 1 and 3.

from this sextupole is:

F⃗sextupole = −Gqvz((x
2 − y2)x̂− 2xyŷ) (2.5)

The force from the sextupole is non-linear, and couples the x and y directions. This is

typically bad in accelerators as it can lead to particle loss if not controlled. The main use of

sextupoles is to correct the focusing of quadrupole magnets, which as seen from equation 2.4,

is dependent on the longitudinal velocity of the particle. In a high energy beam of particles,

there is going to be a non-negligible spread in the longitudinal velocity of the beam, which

will result in different parts of an electron beam coming into focus at different longitudinal

positions. Sextupoles can be used to correct for this effect [29].
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Figure 2.3: Depiction of a sextupole magnet with a north pole in the positive y direction.

Solenoids

A solenoid magnet in an accelerator is best described in cylindrical coordinates where r =

x2+y2 and z = z. In this coordinate system a solenoid has a constant current density on its

surface, or bulk in the case of a thick solenoid, in the ϕ direction. The magnetic field from

this solenoid is:

Bz(r, z) = B(z)− r2

4
B′′(z) + ...

Br(r, z) = −r

2
B′(z) +

r3

16
B′′′(z) + ...

(2.6)

where B(z) is an arbitrary field profile [30]. If we assume a hard edge solenoid of length L,

positioned between z=0 and z=L, with a constant field B0 inside, these equations simplify
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to:

Bz(r, z) = B0(H(z)−H(z − L))

Br(r, z) = −r

2
B0(δ(z)− δ(z − L))

(2.7)

where here H is the Heaviside function and I ignore higher order derivatives to the Dirac

delta as changes to momenta of particles will rely on a single integral of B. For a particle

with initial velocity v⃗ = vz ẑ and radius r0 entering the solenoid at z = 0, it will experience

a force of:

dp⃗

dt
=

qB0r0vz
2

δ(z)ϕ̂ (2.8)

Switching variables t = z/vz, and using the relativistic equation for momentum, equation

2.2, and integrating over a small distance around z = 0, the charged particle gets an imparted

velocity of:

∆v⃗ =
qB0r0
2mγ

ϕ̂ (2.9)

In the presence of the magnetic field in the solenoid pointed in the z direction, this will

result in a resulting change in the radial velocity at the end of the solenoid, z = L, which in

the case of a thin lens, vz >> qB0L
2mγ is given in [30] and repeated here:

∆v⃗ ≈ −r
q2B2

0L

4m2γ2v2z
r̂ (2.10)

Thus, a solenoid magnet can act as a linear radially focusing lens. However the focusing

power is proportional to 1/γ2 so this is mainly used on lower energy particles.

Electron Gun

A simplified depiction of a DC electron gun is shown in figure 2.4. In this figure, a negatively

biased cathode is brought close to a grounded anode. Electrons emitted from the cathode
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are accelerated by the gradient of the electrical potential between the cathode and anode.

Electrons are then allowed to escape through a hole in the anode where they then will be

transported through the remainder of the beamline.

e-

-V

Figure 2.4: Depiction of a simplified electron gun, a diode with a hole in the anode to allow
the electrons to escape.

The electron gun thus has two roles, one to house the electron source, which I will be

mainly focusing on photocathodes, and to accelerate the electrons relativistically immedi-

ately after emission, which will be seen to be important when considering the effects of

Coulomb repulsion. The electron gun can be shaped to focus or defocus the produced elec-

tron beam. Additionally, the presence of the cathode boundary condition can have significant

impact on the dynamics of a produced beam, which will be discussed further in chapter 5.

RF Cavities

The final beamline element that will be discussed briefly is the RF cavity. A RF cavity

houses discrete electric and magnetic modes with allowed frequencies determined by the

geometry of the cavity [28]. By sending an electron beam into a RF cavity, it is possible to
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extract or input energy from a mode into the beam. Thus an RF cavity is flexible in its uses,

some examples of these include accelerating electron beams, compressing electron beams

longitudinally, and turning longitudinal correlations in a beam to transverse correlations.

For acceleration, traveling wave cavities provide acceleration to charged particles by

matching the phase velocity of the wave to the particles velocity. By doing so, as the

particle beam travels through the cavity, the beam will remain in a phase with an acceler-

ating electric field. This is primarily done with particles that are already ultra-relativistic,

so that the velocity change the particle experiences does not cause the particles position to

change with respect to the traveling wave. However, RF cavities are capable of accelerating

particles over smaller spaces compared to DC accelerating techniques, so RF acceleration

techniques have been used in electron guns, bringing particles from nearly at rest to rela-

tivistic velocities [31]. This can be done without splitting the beam longitudinally as long

as the total phase drift over the acceleration distance does not result in part of the beam

experiencing a decelerating electric field.

2.1.2 Coulomb Interaction

An electron, as a charged particle, generates an electric field of its own:

E⃗ =
1

4πϵ0

qr̂

r2
(2.11)

where ϵ0 is the permittivity of free space. Therefore, all charged particles experience a

force from all other charged particles as described by the Lorentz force, this force is known

historically as Coulombs law.

F⃗ =
1

4πϵ0

q1q2r̂

r2
(2.12)
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where here q1 and q2 are the charges of the 2 particles, and r is the distance between them

[28].

An electron beam is a collection of densely packed charged particles, and due to the inverse

square nature of Coulomb’s law the forces between particles in a beam can significantly affect

the dynamics of charged particles.

This effect is however suppressed for relativistic particles. To see this, lets assume we

have an infinitely long beam of particles with radius R and charge density ρ0 moving purely

longitudinally at a speed vz. In the co-moving frame, which will be denoted with a ∗, there

are no magnetic fields acting on the beam as all particles are at rest in this frame, and there

are no longitudinal forces due to symmetry. The force created by this beam on a test charge

q at a distance r is:

F ∗
r (r) =


qρ∗0
2ϵ0

r r < R

qρ∗0
2ϵ0

R2

r r < R

(2.13)

Transforming back to the frame in which the beam is moving, the force, F ∗
r = dp∗r/dt

∗ =

dpr/d(t/γ) = γFr. Additionally, ρ∗0 = ρ0/γ due to the longitudinal length contraction.

Looking at the force on an individual particle inside of the beam, r < R thus gives the

formula:

Fr(r) =
qρ0
2ϵ0γ2

r (2.14)

From this equation, it can be seen the transverse space charge force is suppressed by a factor

of 1/γ2. This relativistic suppression of space charge forces enables stability of high density

charge bunches [29].

While ultra-relativistic particles, γ ≫ 1, will therefore not interact strongly through

direct Coulomb interaction, they can interact through the radiation fields. For collections

of particles in the limit of v → c, this interaction will effect particles behind the particle

emitting the radiation. These radiation field effects are the most pronounced when the
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beam pipe is far from a perfect conducting surface, or the cross section of the beam pipe

changes over short longitudinal distances [32]. These radiation fields, scattered off of these

boundaries, often called wakefields, can be both harmful and beneficial. In the worst case,

these fields can cause instabilities, where each electron bunch in an accelerator provides a

transverse kick to the bunch behind it, displacing its transverse position and amplifying the

kick it provides on the bunch behind it, leading to eventual particle loss. However, by careful

calculation and positioning of particle bunches, it is possible for charged bunches to provide

focusing as well as accelerating fields to a trailing bunch, in a technique called wakefield

acceleration [33]. A fast calculation of wakefields in a dielectric structure is discussed in

appendix A.

2.1.3 Mean-Field Approximation and Space Charge

Tracking the individual force contributions from each particle in a beam on every other

particle becomes intractable both analytically and computationally. Instead, it is useful to

consider a beam as a continuum of charge distributed over a region of space. The potential of

this charged fluid can be calculated and from this, and the force acting on each particle can

be approximated from this mean-field potential. These forces are often referred to as space

charge forces. Space charge forces can be used to calculate quantities such as the maximum

current density that can be extracted from a cathode, the Child-Langmuir law, as well as

the effective defocusing of a beam [34].

Mean-field calculations of the electric potential of an electron beam have been essential

to the analytic study of, as well as simulation of accelerators with large beam densities. If

simulating in the time domain, each time step of a simulation requires a calculation of the

Coulomb forces from the particles in the beam. An exact calculation of this scales with the

number of particles in the beam squared O(N2). Comparatively, a mean field calculation of

the forces can scale approximately as O(N) [35].
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2.2 Accelerator Simulations

Accelerators are complicated and diverse machines. They come in sizes of less than a meter

to tens of kilometers. They are used to produce radiation, to collide particles for studying

basic physics, and to produce particles in a large range of energies for various uses. The

difference in scale, complexity, geometry, and application mean that there is not one single

agreed upon simulation code to simulate what is going on in every accelerator. On the

contrary, the number of simulation codes available is in the hundreds [36].

Each code has its own use case and set of physics that it models well. Some codes are

good for circular machines, with simulation techniques that ensure conservation of energy at

every step, which while true in all accelerators, becomes an issue when you track a particles

dynamics over a large number of revolutions. Some codes include computation of space

charge, which as shown in section 2.1.2, is vital for low energy accelerators. Some include

the effects of radiation of accelerated charged particles. The list of differentiating features is

extensive as many codes were designed specifically for one particular beamline or application.

For these reasons, an exhaustive discussion of different accelerator codes is beyond the scope

of this work.

Instead, it is beneficial to discuss what features should be included in a code for simulation

of a UED beamline. The first step of a UED beamline in the creation of the electron beam.

A short laser pulse is used to create the electron pulse. Any simulation tool used for UED

therefore must either allow the generation of an electron beam based on a given laser profile,

or allow the user to input a custom electron distribution created from another tool which

can. One of the biggest limiting factors in the time resolution of UED beamlines is the

Coulomb interaction, so it is vital that some implementation of it is included. Additionally,

the ability to include arbitrary time dependent electromagnetic field maps allows for the

simulation of all the necessary beamline elements discussed in section 2.1.

One class of codes that can meet all of these codes are 3D particle tracking codes, in
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particular, those that work in the time-domain. For each time step in the simulation, the

code propagates the particles forward using the Lorentz force, equation 2.1. Coulomb forces

can be calculated directly for small numbers of particles, or with a mean-field algorithm for

large numbers of particles.

2.3 Emittance

The 6d phase space volume that a beam takes up is a conserved quantity under Liouville’s

theorem, with a few caveats. The number of particles in a beam is not infinite, it is possible

to exchange the phase space positions of particles and holes, possibly decreasing the volume.

Electrons radiate when they are accelerated, this dissapitive force is not covered under Liou-

ville’s theorem. The Coulomb force also violate the assumption of the divergence free nature

of the velocity field. However, if the contribution to the impulse on any given particle is

dominated by the effects of the beam as a whole, instead of nearby particles, the mean-field

approximation can be used, which is divergence free. Despite all of these caveats, the phase

space volume is still closely conserved in many accelerator systems [37]. Furthermore, in

systems with minimal coupling between dimensions, the individual dimensions phase space

volume is conserved as well. The emittance, calculated as an rms quantity, is related to the

phase-space volume, and thus is close to a conserved quantity. The effects of the emittance

being calculated as an rms quantity are discussed in section 2.3.1.

Fig. 2.5 is representative of what the phase space of an electron beam looks like in one

transverse dimension while the beam is defocusing in that direction. The normalized rms

emittance in this transverse dimension is:

ϵn,rms =
1

mc

√
< x2s >< p2x,s > − < xspx,s >2 (2.15)

where in this < u > represents the average of a quantity u and the subscript s indicates that
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the phase space coordinate has its mean subtracted from it. The definition of emittance

is discussed in many textbooks on accelerator physics including [29]. I will suppress the

subscript s going forward to simplify notation with the understanding that all phase space

coordinates of a beam will now be considered with their mean subtracted. Additionally,

quoted values of the emittance will always be the normalized rms emittance, so the rms

subscript will also be dropped. The notion of normalized emittance is in comparison to the

geometric emittance. Multiplying the geometric emittance by a factor of γ results in the

normalized emittance. The normalized emittance will be used in this dissertation as it is

conserved as a beam is accelerated [38].

Figure 2.5: x − px phase space of a fictitious electron beam. Each red dot represents the
x-px phase space coordinate of a single electron.

A linear force acting on a beam of particles will conserve the rms emittance. The effect

of a linear force on a beam, such as from a quadrupole magnet or solenoid, causes the beam

to tilt in phase space. Fig. 2.6 depicts the effect of a linear focusing force which changes

a diverging beam, with positive x − px correlation, into a converging beam, with negative

x − px correlation. Looking at equation 2.15, the linear correlation < xpx > is subtracted
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out in the calculation of the emittance, thus will not effect the emittance calculation.

Figure 2.6: x − px phase space of 2 fictitious electron beams. Each red dot represents the
x-px phase space coordinate of a single electron and each blue dot represents its phase space
coordinate after experiencing a linear force.

We can extend this definition of the emittance to include both transverse directions using

the idea of the covariance matrix. The normalized x emittance, up to a factor of 1/mc is

equal to the square root of the determinant of the 2d, x−px, covariance matrix. Thus we can

define the 4d normalized emittance as the square root of the 4d, x− px − y − py covariance

matrix multiplied by the same factor squared.

ϵn,4d =
1

(mc)2

∣∣∣∣∣∣∣∣∣∣∣∣∣

< x2 > < xpx > < xy > < xpy >

< xpx > < p2x > < ypx > < pxpy >

< xy > < ypx > < y2 > < ypy >

< xpy > < pxpy > < ypy > < p2y >

∣∣∣∣∣∣∣∣∣∣∣∣∣

1/2

(2.16)
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2.3.1 Non-Linear Emittance Growth

Emittance will not be a conserved quantity in the presence of non-linear forces. Fig. 2.7

shows the effect of a cubic force on the phase space of a beam. The phase space volume of

the beam is conserved, however, the tails of the distribution are bent. In a calculation of the

rms emittance, the linear x− px correlation is subtracted from the beam, but the bent tails

will result in inflated values of < x2 > and < p2x > compared to the beam before the cubic

force was applied.

Figure 2.7: x − px phase space of 2 fictitious electron beams. Each red dot represents the
x-px phase space coordinate of a single electron and each blue dot represents its phase space
coordinate after experiencing a cubic force.

The emittance growth from a sextupole will be used to illustrate this effect, and is

depicted in figure 2.8. Assume a beam of particles with a Gaussian spatial distribution in

x with standard deviation σx, with y, px, py = 0 for all particles and a longitudinal velocity

vz. The initial x emittance of this beam is 0 due to having 0 momentum spread. After going

through a thin sextupole of length L, such that position coordinates do not change and the

field of the sextupole is considered constant inside of it and 0 outside, the final momentum
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of each particle using equation 2.5 is: px = −GqLx2. Calculating the x emittance of this

beam, one finds:

ϵn,x =
√
3

e

mc
GLσ3x (2.17)
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Figure 2.8: x− px phase space of an electron beam with no initial momentum spread before
(red) and after (blue) going through a sextupole. The ellipse in black has an area equal to
the emittance of the beam after the sextupole times π.

The emittance of the beam from a sextupole grows as the size of the beam cubed [39].

This super-linear dependence on the beam size should be expected, as the quadratic force

from the sextupole effects large values of x more than small values.

This increase in the emittance while artificial in construction, does effect the beam quality

for several applications, thus is undesirable. Reversing the emittance growth of such a force

is in theory simple. By acting on the beam with a compensating force, the tails of the beam

can be unbent. Doing this for a sextupole nonlinearity in a real UED beamline will be the

focus of chapter 4.
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2.3.2 Longitudinal Correlations and Emittance Compensation

A typical source of transverse emittance growth in an accelerator comes from transverse-

longitudinal correlations. Over the course of an accelerator, different longitudinal slices of

a beam can obtain different x − px correlations, depicted in fig. 2.9. While the emittance

of each longitudinal slice of the beam may have remained constant over transport, the full

beam emittance will have increased.

Figure 2.9: x− px phase space of a single fictitious electron beams. Each red dot represents
the x-px phase space coordinate of an electron from one longitudinal slice of the beam, while
each black dot corresponds to a different longitudinal slice of the same beam.

Fixing this misalignment of longitudinal slices is known in the accelerator physics com-

munity as emittance compensation, a theory of which is described in [40]. In practice,

optimizations of simulated beamlines are sometimes used to achieve this effect, as details

of space charge and misalignment of optics in accelerators can add complications. This is

discussed further in appendix B.
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2.3.3 Density Diluting Effects

Effects discussed up to this point on the emittance have had no impact on the phase-space

volume/density. However, some sources of emittance growth do have a direct relation to the

reduction of phase space density, depicted in fig. 2.10.

Figure 2.10: x− px phase space of 2 fictitious electron beams. Each red dot represents the
x-px phase space coordinate of a single electron and each blue dot represents its phase space
coordinate after experiencing a density diluting force like an exact Coulomb force.

In particular, direct Coulomb interaction in a beam can decrease the phase space density.

This effect from the Coulomb interaction is dependent on the temperature of the beam, with

a colder beam, one with less momentum spread, being impacted more than that of a warmer

electron beam.

2.3.4 Electron Source Quality

In short linear accelerators, the minimum emittance the electron beam can have is set by

the electron source, and can only get worse in transit [41]. The size of the electron beam

coming off of the cathode is determined by the size of the laser on the cathode surface. The
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momentum spread of the electron beam off the cathode is dependent on the photoemission

material and laser wavelength. The momentum spread is characterized by a quantity called

the mean transverse energy (MTE), which is defined as:

MTE =
1

2
me < v2⊥ > (2.18)

where me is the electron mass and v⊥ is the velocity of an electron perpendicular to the

cathode surface.

From the MTE the emittance of the beam coming from the photocathode, called the

thermal emittance can be calculated as:

ϵn,x = σx

√
MTE

mc2
(2.19)

By reducing the MTE of the photocathode, the emittance of the resulting beam can thus

be decreased. At small values of MTE, < 20 meV, the mean field approximation of space

charge breaks down for typical electron densities used in UED and XFELs. This will be the

main focus of chapter 5.

2.3.5 Brightness

While emittance is an often used metric for beam quality, it alone is not enough to char-

acterize an electron beam. UEM, which is typically run with an average of < 1 electron

per pulse often uses sharply tipped sources as they have much smaller emittance then flat

photocathodes at the cost of charge [42]. However, this small number of electrons results in

days of running the microscope in order to get a series of time-resolved images. In UED,

diffraction and changes in diffraction patterns from a laser probe happen to a fraction of

electrons on the scale of 10−4 [43], making single electron sources far less appealing.

An often more important metric then is the number of electrons that fit into a phase
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space volume, or the phase space number density. This is often described through a quantity

called the brightness. The 4d brightness is defined as:

B =
1

8π2
I

ϵxϵy
(2.20)

where I is the current of the electron beam. Depending on the application, the average or

peak brightness of the electron beam will be a more useful metric. The average brightness

uses the average current over many pulses. The peak brightness is defined using the peak

current, defined as the charge of an electron pulse divided by its pulse length. For UED

applications, the average brightness, along with the emittance, can be used to determine

which features can be resolved, and how long it will take running the UED beamline to

make those images.
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CHAPTER 3

UED

UED is a pump-probe style experiment, depicted in figure 3.1. In a pump-probe experiment,

the sample being studied is activated by a pump, which in UED is typically a fs scale laser

pulse. This pump initiates dynamics which are then observed at a later time ∆t by a probe,

which in the case of UED, is a fs scale or smaller electron pulse. The observation is then

recorded by a downstream detector. By repeating this process varying the delay between the

pump and probe, it is possible to observe the sample at different times during its dynamics.

By compiling these observations together, a full description of the dynamics of a system can

be made [44].

Probe

Pump

Δt

Sample

Detector

Figure 3.1: Depiction of a pump-probe experiment. A pump laser pulse excites dynamics in
a sample. A short time later, ∆t, a probe pulse/beam, of electrons in UED, interacts with
the sample, recording the dynamics at that time delay.

The time delay between the pump and the probe can be controlled by changing the

path length of the pump laser. Typically this is done as the probe electron beam is often

compressed through RF cavities, so changing the arrival time of the probe electron beam

would require a simultaneous change of the RF phase, which is more challenging with no
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benefit in many setups. The pump laser path length can be changed through the use of a

motorized mirror which sends the incoming laser in the opposite direction of incidence, with

a transverse displacement, see fig. 3.2. A displacement of this mirror by 150 µm changes

the delay of the pump laser by about 1 ps, allowing for fs level control with a motor with

micron precision in the motor control.

Figure 3.2: Schematic of changing the pump probe arrival time difference by changing the
path length of the probe laser. A displacement of a mirror by ∆L cause a change in the
laser path length by 2∆L

3.1 Synchronization

One of the issues in preforming a pump-probe experiment involves the synchronization of

the pump and the probe. In order to know how long after the laser pulse the electron beam

hit the sample, you need to know the laser path length at which the electron beam and the

pump laser hit the sample at the same time.

One method of doing this synchronization involves the use of a copper transmission

electron microscopy (TEM) grid, see fig. 3.3. By shining the pump laser onto this grid it
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will photoemit electrons in a cloud. The electron beam will then interact with this cloud and

get a slight deflection in its trajectory. By changing the delay of the pump laser compared

to the electron beam, it is then possible to find the time at which the deflection from the

cloud just begins, which is the onset of the formation of the cloud, thus synchronizing the

electron beam and pump laser [45].

Figure 3.3: Schematic of pump-probe synchronization using a copper TEM grid. A pump
laser hits the copper grid, creating an electron cloud at the location of the laser. This cloud
then deflects the probe electron beam which is at a distance ∆x away

An additional complication in this method occurs when the electron beam does not

overlap the electron cloud spatially. What is seen is that the temporal location of the peak

in the deflection is dependent on how far the electron beam is away from pump laser, see

fig. 3.4. If we were to treat the electron cloud as a free ball of electrons, this result makes

no sense. The electron cloud should appear as a point charge to the electron beam at any

arbitrary distance outside of the cloud.

This time delay can be explained from the inclusion of image charge forces, to show
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Figure 3.4: Idealized depiction of the momentum deflection using the copper grid TEM
for different pump delays, ∆t between the pump electron beam and probe laser. For larger
distances between the electron beam and the electron cloud, the peak of the deflection moves
to higher ∆t.

this, I used the following semi-analytic method. I simulated an electron cloud expanding

at a velocity expected from similar experiments. At several different snapshots in time, I

recorded the positions of all of the electrons in the cloud. I treat the electron cloud as static

charges at each snapshot recorded, as the electron beam passing it is moving almost the

speed of light, so on the time scale of the beam passing the cloud, the cloud does not move

much. I then analytically calculated the momentum kick on the beam from an electron (as

well as the kick from the dipole made with its image charge), an arbitrary distance away

from the beam on a path from infinity to the image plane. It is assumed that this momentum

kick is small, and thus does not significantly impact the trajectory of the beam. By then

summing up the effect of this with the positions recorded at different times in the electron

clouds time evolution, the momentum kick at different coincidence times and beam positions

can be calculated.

The resulting momentum kick from the dipole force as a function of time delay is shown
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Figure 3.5: Model of deflection strength vs. time of arrival of electron beam at different
distances away from an electron cloud.

in fig. 3.5. The behavior of the delayed peak in the deflection magnitude is clear and explains

the observed effect.

3.2 Diffraction

A well known property of quantum mechanics is wave-particle duality, in which all particles

and quantum objects can be described as both particles and waves [46]. So not only must

we consider our electron beam as a collection of particles, but as a collection of delocalized

waves.

When a wave passes around the corners of an obstacle or through an opening, it is bent

or distorted around it. The effects of this are more noticeable when the size of the obstacle

or aperture are not large compared to the wavelength of the wave. This collection of effects

is known as diffraction which is talked about in most textbooks on the properties of waves

such as [47].

The diffraction phenomenon of interest to UED is the effect of a wave traveling through
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a lattice. The difference in the incoming and outgoing wavevectors, ∆k⃗ of a wave in a lattice

undergoing elastic scattering must be a linear combination of the reciprocal lattice vectors,

known as Laue’s equations. Simplifying to one dimension, and using a lattice with lattice

constant L, this condition is:

∆kL = 2πn (3.1)

where n is an integer [48]. The lowest magnitude non-zero change in wavevector has n = ±1.

Using k = 2πp/h for a free particle, where h is Planck’s constant, the minimum change of

momentum for a free particle going through the lattice is:

∆p =
h

L
(3.2)

3.2.1 Coherence Length

For diffraction to be observed in a lattice, the momentum kick in a direction, using x as an

example, from the lattice needs to be larger than the momentum spread, σpx , of the beam.

If it is not, the spread of electrons of a single peak on a detector will overlap neighboring

peaks.

Setting σpx to be greater than the momentum kick described in equation 3.2 and solving

for the lattice spacing L:

L <
h

σpx
(3.3)

This expression gives the maximum lattice spacing that an electron beam will be able to

resolve the diffraction pattern for, and is often referred to as the transverse coherence length.

This equation can be rewritten in terms of the emittance at a beam waist, < xpx >= 0 using

equation 2.15:

L <
h

mc

σx
ϵn,x

(3.4)
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This expression for the coherence length is useful because in UED, the necessary coherence

length is set by the sample, and with a conserved emittance, this determines the size that

the electron beam, and thus the sample needs to be bigger than in order to do diffraction

experiments.

3.3 Mitigating Space Charge

Using electrons for time-resolved diffraction involves a dense beam of electrons, short both

longitudinally and transversely. The Coulomb force directly fights against this, and in a

dense beam can irreversibly ruin the emittance and thus coherence length of the electron

beam.

Several methods have been used in order to mitigate the effects of space charge in UED.

Decreasing the charge emitted from the cathode can work, but results in more repeated

measurements to be taken to get a complete and noise resolved diffraction image. Shaping

of the electron beam can be done to make the space charge force mostly linear [49]. In-

creasing the energy of the beam has also been done, which as shown in equation 2.14, can

relativistically suppress the Coulomb interaction [13]. Decreasing the propagation distance

between the cathode and the sample location to the order of cm has been used to minimize

the time space charge forces can distort the beam. Another method involves starting with

an electron beam which is longitudinally long, and using an RF cavity to bring the beam to

a longitudinal focus at the sample location, reducing the time in which space charge forces

are large [8].

For systems that use rf bunching cavities, the size of the electron beam alone is not the

only thing which determines the temporal resolution of a UED beamline. Additionally in

these cases, the jitter in the phase of the RF cavity will cause some bunches to arrive earlier
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or later than others. This uncertainty in the arrival time of the bunch adds in quadrature:

σ2t = σ2tbunch + σ2tjitter (3.5)

where σtbunch is the size of the electron bunch and σtjitter is the size of the temporal of a

single electron due to RF phase jitter. Thus the achievement of high temporal resolution

through compression methods is limited to the quality of the RF electronics, and is not a

complete solution to the mitigation of space charge.
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CHAPTER 4

STRAY-FIELD CORRECTION IN UED BEAMLINES

This chapter is a modified version of this work [50]. The work is based on removing stray

magnetic fields from a UED beamline at Cornell depicted in fig. 4.1, from [43].

Figure 4.1: A schematic of the MEDUSA ultrafast electron diffraction beamline.

4.1 Stray Fields in UED

Doing diffraction on samples the scale of microns, often called micro-diffraction, is necessary

for some materials, as creating crystalline structures of these materials at larger scales can

be impractical [51, 52]. For these experiments, the electron probe must be smaller than the

sample being measured. During emission, where the electrons start nearly at rest, space

charge forces will cause a small electron beam to grow quickly. Attempting to keep the

beam small throughout the entire beamline results in non-linear space charge forces diluting

the final emittance of the beam. So the electron beam must either start at a large size or
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become large over its transport. Then to achieve a small electron beam size at the sample,

an electron beam can be focused by a solenoid close to the sample location. A bigger beam

size in the focusing lens results in a smaller size at the beam waist. Therefore, doing micro-

diffraction results in large beam sizes in optical elements, meaning non-linear fields like those

from sextupoles become more important to control.

Quadrupole stray fields in or prior to solenoids couple the transverse phase spaces and

dilute the two dimensional emittances. The successful correction of these stray quadrupole

fields in solenoid magnets and from rf couplers in photoelectron guns has been well studied

and demonstrated with downstream correction quadrupoles [53, 54, 55, 56, 57]. Previously,

sextupole aberrations in solenoid magnets and their correction have been considered the-

oretically and in simulation, and it was found that a similar correction procedure with a

downstream sextupole corrector magnet would be successful [39].

In this chapter, I show that the MEDUSA beamline’s emittance is sensitive to aberrations

up to sextupole order, and describe in detail the correction procedure. To our knowledge,

this is the first experimental demonstration of stray sextupole correction in a photoinjector.

To diagnose aberrations and beam brightness, we employ a 4-dimensional transverse phase

space mapping system with sub-nm emittance resolution. We then describe the brightness

performance of the device with rf-compressed bunches containing up to 105 electrons, and

show that the measured emittances are in good agreement with aberration-free space charge

simulations.

4.2 Designing and Building a Sextupole Corrector

To fix a stray sextupole moment effecting the beam there are two ways to go about fixing

it. The first method involves finding the source of the sextupole field and removing it.

For example, by removing the source of asymmetry in an RF cavity or solenoid, the stray

field sextupole can be removed [58, 59]. However, this method can be difficult to achieve
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practically, as first, it is necessary to locate the exact cause of the sextupole field. Once it

is found, then it needs to be fixed, and there are limitations to how perfectly something can

be machined and aligned. The second method involves the insertion of a designed sextupole

magnet whose field will undo the effects of the stray sextupole on the beam. This designed

sextupole magnet for the purpose of removing stray sextupole fields is called a sextupole

corrector.

A sextupole corrector has different constraints on it, depending on the beamline it is

used in. In circular accelerators, where the charged beam will pass through the same set of

magnets several times, the position of the sextupole magnet in the beamline is important, as

small errors have the opportunity to build through multiple passes. For linear accelerators

however, sextupole correction can be done as long as the sextupole corrector is placed where

size of the beam in its transverse oscillations is near that where the sextupole originated.

An example of this in simulation is shown in section 4.6.

The first step in designing a sextupole corrector is the electromagnetic design. I did the

electromagnetic design of the sextupole corrector using the three-dimensional magnetostatics

code, RADIA [60]. The goal of this electromagnetic design was to create the sextupole

corrector with dimensions that could fit on the few inches of beam pipe that were available,

with a sextupole field large enough to cancel the observed effect while running at a low

enough current that the sextupole would not require additional cooling.

I composed the sextupole in RADIA with 6 thick solenoids with current flowing in the ϕ

direction in local cylindrical coordinates, see figure 4.2. Neighboring tubes having opposing

current directions to flip the polarity of the polarity of neighboring poles. The radial and

longitudinal sizes of the solenoids, the thickness of the solenoids, and the distance of the

solenoids from the origin are variables to be determined in the design.

The solenoid size was determined by constraints of fitting the corrector on the beamline.

The height of the solenoid was chosen to be 25 mm. The inner solenoid radius was chosen
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Figure 4.2: RADIA implementation of the sextupole corrector. Red represents magnetic field
pointing towards the origin from a given tube and blue represents magnetic field pointing
away from the origin.

to be 25 mm. The outer solenoid radius is determined by the distance of the solenoid to the

solenoid to the origin, such that the solenoids are barely not touching.

The distance of each solenoid from the origin was then optimized, with a minimum

distance set at 25 mm by the minimum outer solenoid radius, which is the inner solenoid

radius. The maximum current density that magnet wire, which will be used to wind the

solenoid, can have running through it without cooling is conservatively estimated to be under

2.5 A/mm2. For multiple choices of distance from the origin the current necessary to produce

a sextupole large enough to cancel the observed sextupole field were found.

In order to find the sextupole strength necessary to cancel out the moment in the beam-

line, the difference in emittance between the measured beam and a simulation of the beam-

line were used. Using equation 2.17, the emittance growth is proportional to the sextupoles

strength multiplied by its length. The length in this equation assumed a constant field
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strength over a length L with 0 field outside, which is not true for this sextupole, so an

effective length must be found.

The effective length of the solenoid was found as follows. A field profile, By was found for

different longitudinal positions from the center of the sextupole, see fig. 4.3. By integrating

the normalized field, I find that the effective length of the solenoid with a constant magnetic

field equal to its value at z=0 value to be about 41 cm.
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Figure 4.3: Magnetic field in y-direction as a function of longitudinal position from the center
of the sextupole. A small transverse offset was used such that the field is non-zero.

With this effective length, the necessary current density of the magnet wire can then be

found. The sextupole strength G at z = 0 is found by doing a quadratic fit of By vs x2

and y2 and taking an average. The strength G then varies with the current density in the

wire, so the necessary current density was found and plotted as a function of the solenoid

distance from the origin, shown in fig. 4.4. The shape of the plot can be understood as

follows. For small radii, the outer radius limits to the inner radius, making the total volume

where current is flowing equal to 0, requiring a diverging current density at 25 mm. For large

distances, the extra volume from increasing the size of the solenoid is at a cost of moving

the solenoid farther from the beam axis, resulting in a a higher current density needed for

the same field near the origin.
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Figure 4.4: Current density needed in the magnet wire as a function of radius to the the
inner edge of the solenoid.

As an additional complication, this calculation assumed that the current density would

be constant throughout the solenoid, which is not true. The solenoid will be composed of

wound circular magnet wire. It is not possible to fill the entirety of the volume inside of

the tube with this wire. Instead, this problem can be thought of as the packing of circles

in a plane, see fig. 4.5 from [61]. The maximum you can fill the solenoid depends on the

lattice structure of the wire. For example hexagonal packing has a packing fraction of about

90.7%, the highest of any packing scheme. Square packing has a lower fill fraction of 78.5%.

My winding is in between these with a packing efficiency of about 81%. Thus the current

density needed has an additional multiplier of 1/.81.

Even with the packing efficiency included, the maximum current density of 2.5 A/mm2

is well above the range of values explored. To allow the solenoid design to be additionally

used for applications outside of the sextupole, a final distance from the solenoid to the origin

of 50 mm was chosen.

After the electromagnetic design was finished, a mount was needed to secure the sextupole

together, and hold it to the beamline. I designed the mount in Autodesk Inventor, see fig.

4.6. The mount consists of a 2 part aluminum core, 6 aluminum solenoid winding mounts, 4
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Figure 4.5: 2d packing of circles in a plane, representative of the winding of wires in a
solenoid.

aluminum straps to hold the core together, and 4 aluminum clamps to secure the sextupole

corrector to the beamline. The parts are held together by 314 steel screws. All materials

were chosen such that the mount was non-magnetic such that it did not produce stray-fields

of its own.

After design, the mount was fabricated in the Cornell Newman Lab machine shop. I

assembled the parts and with the help of M. Kaemingk, wound the 6 solenoids with 1000±3

turns of 24 gauge magnet wire. A final image of the constructed solenoid is shown in fig. 4.7

4.3 MEDUSA Beamline

The experiments presented in this chapter were conducted in the MEDUSA ultrafast electron

diffraction beamline [43]. A schematic is shown in fig. 4.8. The electron beam is produced

by the photoemission of a Na-K-Sb photocathode using a red (650 nm) laser pulse with a full

width at half max of 10 ps. At this wavelength the MTE of the photocathode is expected

to be below 50 meV.

The main operating mode the MEDUSA beamline was designed for is ultrafast electron

micro-diffraction, with final rms probe sizes on the order of a few microns using a 10 micron

probe defining aperture. In order to obtain a sufficient charge on target, typically a few

hundred electrons, the beam must come to a tight focus at the aperture.
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Figure 4.6: Assembly of sextupole mount components created in Autodesk Inventor. Copper
color is representative of the magnet wire and is not included in the mount.

In this operating mode, to achieve maximal transmission through the aperture, the first

solenoid is set to 0 current. When this is done, for bunch charges on the scale of tens of

fC, the beam grows to the size of the buncher aperture, approximately 1.5 mm in diameter,

before reaching the buncher. Thus, the buncher acts as a collimator, clipping large angle

charge far from the beam center. This however makes the beam sensitive to stray fields from

the buncher. Despite this, through the use of quadrupole and sextupole correctors, we are

able to simultaneously achieve high transmission and small emittance at the sample location.

4.4 4D Phase Space Reconstruction

To show the preservation of beam quality throughout the beamline, a measurement of the 4

dimensional transverse phase space is done at the location where UED samples are measured.

At the sample location, a 10 µm pinhole was placed. By focusing the beam at the pinhole

location, scanning the beam across the pinhole using corrector magnets, and recording the
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Figure 4.7: Image of the sextupole corrector after fabrication and winding.

resulting clipped beam at a down stream detector, 4D transverse phase space information

can be reconstructed. Measurements were done taking 13 µm steps and the angle resolu-

tion, determined by the camera pixel size and drift distance between the pinhole and the

downstream YAG, is approximately 40 µrad.

With this 4D density matrix information, the 4D beam matrix can be calculated as

described in section 2.3 To be comparable to 2D measurements of emittance, when values of

the beam emittance are presented in this chapter, the square root of the 4D emittance will

be shown.

In figs. 4.9a, 4.9b and 4.9c, the beams real space, x − py space, and x phase space are

shown respectively, which is done by integrating the 4D density matrix along the unused

axes. This is done with an emitted charge of 10 fC with 8 fC of charge making it to the

pinhole with a buncher voltage around 3.5 kV. The dashed white line in fig. 4.9b shows

the correlation between x and py which is seen to be negligible, which is the result of skew

quadrupole correction in the beamline.
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Figure 4.8: Field profile of the MEDUSA ultrafast electron diffraction beamline. The longi-
tudinal field of the gun, solenoids, and buncher are shown, as well as the location of relevant
beamline elements. Of particular note are the quadrupole and sextupole correctors, located
immediately after the second solenoid. The emittances and phase spaces measured in this
chapter are measured at the sample location.

Calculated values of size and emittance are done using a 90% charge threshold on the 4d

density matrix. This threshold was chosen to remove the contribution to calculated values

from the background noise, which was seen to dominate below 10% of the peak density value.

4.5 Quadrupole and Skew Quad Correction

In the MEDUSA beamline, the primary source of stray quadrupole moments arises from the

two solenoids. The construction method used for the solenoids precluded perfect cylindrical

symmetry, allowing quadrupole moments to develop.

Fig. 4.10 shows the effects of these solenoid quadrupole moments on the transverse beam

profile. Two effects are immediately apparent: the asymmetry in beam size, particularly

near the positive focus, and a significant tilt angle. Using General Particle Tracer (GPT), a

particle tracking PIC code, we are able to fit for the initial beam parameters and the stray

quadrupole moments. We find that the data is well fitted by modeling two components

to the stray quadrupoles moments in each solenoid: a component that scales with solenoid
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Figure 4.9: (a) x-y, (b) x-py, and (c) x-px projections of the reconstructed 4d density matrix
at the sample location with sextupole correction. The dashed line in (b) shows the correlation
between x and py which is seen to be near 0.
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field strength and a constant component arising from hysteresis in the iron yoke. Both are

oriented as normal quadrupoles. The anticipated effects of these quadrupole moments on

final beam quality can be seen in Fig. 4.11. Starting with beam settings optimized for

maximum transmission through the 10 micron probe-defining aperture (530 electrons, 8.6

nm-rad emittance), the stray quadrupole moments obtained by the fits in Fig. 4.10 were

introduced in simulation. A global scale factor was applied to the stray quadrupole moments

of both solenoids, so that the dependence of emittance and transmission could be determined.

The emittance increases roughly linearly with the stray quadrupole strength, while the

transmission drops sharply before leveling off. At the fitted strengths, the emittance has

increased to 41 nm-rad, approximately a factor of 4, while the transmission has dropped to

a mere 27 electrons, nearly a factor of 20.

Dowell has shown in an analytic treatment that these drastic effects on beam quality can

be mitigated with tunable quadrupole correctors [55] and that the only necessary consid-

eration for the locations of the quadrupole correctors is that they have more effect where

the beam is large. As seen in Fig. 4.9a, we put a normal and skew quadrupole corrector

immediately after the second solenoid, where the beam is large. With the correctors in place,

we were able to measure transmissions consistent with our simulations.

4.6 Sextupole Correction

After quadrupole correction, the beam shape is triangular on the detector. The triangular

shape is strong evidence of a stray sextupole field in the beamline. The source of this

sextupole field is the bunching cavity, which is asymmetrically coupled to power at its top.

To correct for this sextupole moment, a designed sextupole magnet is placed just after the

second solenoid, and rotated to produce an opposing sextupole moment.

Using a downstream sextupole corrector to correct emittance growth from a sextupole

in a linear accelerator has been studied previously in simulation [39]. Simulations of the
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Figure 4.10: An example of the effects of the stray quadrupole moments on the (a) beam
size and (b) beam shape. The beam shape is quantified with the skew angle of the beam
profile. The green arrows provide a visualization of the directions associated with the skew
angles. The dashed lines represent fits done with GPT and show good agreement with the
experimental data. Inset: Example of a beam with an evident skew.
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Figure 4.11: A simulated example of the effects of the stray quadrupole moments on en-
tire beam emittance (blue) and transmission through the final aperture (red). The stray
quadrupole moments found by the fits in Fig. 4.10 were scaled by a global factor, shown on
the x axis, to show the dependence on their strengths. Inset: The x-py phase space at the
nominal quadrupole moments. A clear correlation, highlighted by the red dashed line, can
be seen. Contrast this to the nearly zero correlation in the x-py phase space of Fig. 4.9b,
represented by the green dashed line.
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beamline were done putting a sextupole in the buncher and tuning its strength to match the

measured emittance. A second sextupole was then placed after the second solenoid. In fig.

4.12, the simulated emittance of the beam at the sample location is plotted against a varying

sextupole corrector angle. It is shown that an appropriate choice of strength and angle in the

second sextupole corrects the majority of the emittance growth from the buncher sextupole.
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Figure 4.12: Simulated emittance at the sample location varying the angle of a sextupole
corrector placed after the second solenoid. The red horizontal line is the emittance of the
beamline with no sextupoles included. The blue horizontal line is the emittance of the
beamline with a sextupole in the buncher and no corrector. The orange and black curves
show the resulting emittance for a corrector current which best cancels the sextupole moment
and is half of the needed current respectively.

The emittance growth cancellation is not exact, as the correcting field does not overlap

the stray field. The dependence of the emittance calculation on the sextupole corrector

position was found by optimizing the corrector angle and strength at different positions

along the beamline, as shown in figure 4.13. Exact emittance growth cancellation is shown
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to only occur exactly at the buncher location where the stray field originates. However, away

from the beam focus, the uncorrected emittance contribution from the sextupole stray field

is seen to be under 1 nm, close to .5 nm at the actual corrector position, which is sufficient

for the current beam with emittance around 13 nm.
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Figure 4.13: Simulated emittance correction for different placements of the sextupole cor-
rector. At the position of the stray field, about .8m, the cancellation is exact as expected.
The correction is worst at the beam focus where as expected correction is impossible.

To experimentally cancel the sextupole moment, the following procedure is used, which is

shown in fig. 4.14. The triangular shape of the beam is recorded with the sextupole corrector

turned off. The sextupole corrector is then turned on to a large current, such that the beam

is a triangle with orientation determined solely by the sextupole corrector. The sextupole

corrector is then rotated to produce a triangle which is inverted relative to the corrector off

triangle. Lastly the current in the sextupole corrector is turned down until the shape of the

beam is no longer triangular. After sextupole correction, we see the shape of the beam is not

perfectly round, and has evidence of even higher order moments. The magnitude of these

moments are relatively small, so fixing them will not be a focus of this chapter.

At different buncher voltages around the optimal bunching voltage, magnet settings were
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Figure 4.14: Experimental correction of the sextupole moment. From left to right the beam
profiles are taken with: the sextupole corrector off, the sextupole corrector anti-aligned with
sextupole moment at a large current, the sextupole correcter anti-aligned at a strength to
cancel the sextupole moment.

found to optimize the amount of charge making it through the pinhole. This was done

twice, once with the sextupole corrector off and once with it on and optimized. Plots of the

transverse beam size and emittance as a function of the buncher voltage can be seen in figs.

4.15a and 4.15b.

Simulations of the beamline were done using a MTE of 70 meV which was chosen to

best match the results of spot size and emittance simultaneously. With the addition of

the sextupole corrector, the emittance of the beam is lower by around 25% and is fit by

simulation with no sextupoles included. The points with the sextupole corrector turned off

were fit by adding in a sextupole into the simulation, located in the buncher as done before.

Uncertainties in beam size and emittance are chosen based on machine state reproducibil-

ity. The measurements at the operating point for UED, with buncher voltage around 3.8

kV, were repeated 5 times, and the standard deviation of these measurements was used as

the uncertainty.

An uncertainty in the fit MTE can be made by varying the MTE in simulation to the
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Figure 4.15: (a) Spot size and (b) transverse normalized rms emittance for different choices of
buncher voltage around the optimal bunching voltage. The red line comes from simulation
results assuming a MTE of 70 meV, chosen to best fit simultaneously the spot size and
emittance data. The blue line was made simulating the same beamline with a sextupole
added inside of the rf buncher, with a best-fit strength of the sextupole chosen.
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extent that the simulated beam size and emittance vary by one standard deviation. Doing

this gives a fit MTE of 70±20 meV. This is above the expected MTE from this photocathode

of 50 meV. We attribute this increase in MTE to the photocathodes prolonged use.

4.7 Source of Sextupole

To confirm the source of the triangular beam was a sextupole inside of the buncher, the

following procedure was used. First, the buncher phase was changed by 180◦ from a phase

which makes a longitudinally converging beam to a diverging beam. The resulting transverse

profile with the sextupole corrector off is shown in fig. 4.16.

Figure 4.16: Beam profile with the sextupole buncher turned off and the RF buncher set to
a longitudinal diverging beam phase. The triangle is seen to be inverted compared to the
bunching phase.

The inverted triangle from the phase change can be explained by two causes. One possible

cause is that there is a time dependent sextupole in the buncher, and when the RF buncher

phase is changed by 180◦ the sign of the sextupole is flipped. Another possible cause can

come from a longitudinal correlation in the beam, where different longitudinal components of

the beam conspire to make a triangle, and by changing the energy kick given by the buncher,

this effect was inverted. To examine the possibility of this second cause, a deflector cavity

was placed inside the sample chamber of the beamline. The deflector cavity is a RF cavity
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which gives a time dependent transverse kick to the beam depending on its longitudinal

position. Thus the longitudinal profile of the beam can be projected onto a transverse axis,

which we choose to be the vertical axis on the image shown.

The resulting beam distribution after being deflected is shown in fig. 4.17. The variation

of the horizontal beam size over the longitudinal length of the beam is about 20%. The sharp

triangular shape of the beam is not possible with the small observed variation. Therefore, in

combination with the stark agreement between the spot size and emittance agreement with

and without the inclusion of a stray sextupole field, the likely explanation of the phenomenon

is a time-dependent sextupole in the buncher.

Figure 4.17: Beam profile in debunching phase with the deflector cavity on. Horizontal beam
width is plotted as a function of the vertical position, in units of the longitudinal position of
the beam in the deflector.

4.8 Summary and Outlook

Low MTE photocathodes produce high quality electron beams for time-resolved science.

Preserving the quality of these beams from production to application can be non-trivial due
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to the existence of non-linear fields in the beamline. By designing and tuning magnets up

to sextupole, the effects of these non-linear fields on the beam quality were corrected, and

the emittance of the beam is well predicted by simulation. Doing this we find that the beam

is well represented by a cathode with a MTE of 70±20 meV. With the beamline now fully

corrected of stray fields, the transverse coherence length of the beamline is now maximized

as well as the range of phenomenon it can explore.
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CHAPTER 5

POINT-TO-POINT EFFECTS IN HIGH BRIGHTNESS

PHOTOELECTRON BEAMLINES

This chapter is a slightly edited version of my work published in Physical Review: Acceler-

ators and Beams [62], Copyright © 2011 by American Physical Society. All rights reserved.

This work, as opposed to the previous chapter, focuses on issues that UED beamlines will

face in the future, when photocathode technology has sufficiently advanced to produce very

low MTE electron beams.

5.1 Failure of the Mean-Field Space Charge Approximation

The development of high brightness photocathodes is a driving force in the improvement

of electron accelerator technologies such as free electron lasers, energy recovery linacs, and

ultrafast electron diffraction and microscopy (UED and UEM). The brightness of the beams

used in these applications is set at the electron source and can only degrade during fur-

ther acceleration and transport. Consequently, the brightness of the electron source defines

the ultimate limits of the capabilities of these devices [41, 63, 64, 65]. The photocathode

brightness is set by two parameters: the density of electrons emitted from the source, and

their mean transverse energy (MTE), which acts as an effective beam temperature [66, 67].

Increasing the electron density at the source is not always a viable option, as space charge

forces can reduce brightness downstream dramatically. While some of this brightness can be

restored via emittance compensation, some is lost to nonlinear distortions which are chal-

lenging to reverse [40, 68]. However, it has been shown in many modern applications that

reducing the MTE of the photocathode can still lead to large gains in brightness [69].

Reducing the MTE of photocathodes is a very active area of research in which signifi-

cant progress has been made in the last decade. Typical photocathodes used in accelerator
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facilities today have a MTE of a few hundred meV [70, 71, 72] whereas near threshold emis-

sion at room temperature has demonstrated electron beams with an MTE of ∼ 25 meV

[73]. Furthermore, cryocooled photocathodes near threshold have shown the capability to go

down even further to an MTE of ∼ 5 meV [74]. At these low temperatures, point-to-point

interactions play an increasingly important role in the overall beam dynamics, as shown by

the following argument.

The mean-field approximation commonly used in simulation codes is only valid when

there are many particles in a Debye sphere, see fig. 5.1. This Debye screening length is given

by:

λ =

√
ϵ0kT

n0e2
(5.1)

where ϵ0 is the permittivity of free space, k is the Boltzmann constant, T is the temperature

of the beam, n0 is the volume number density of the beam, and e is the charge of the electron.

For kT = 5 meV and a density of 1017m−1/3 (commonly achieved in photoinjectors today),

the Debye screening length is approximately 1.7 µm. However, the average interparticle

spacing, n
−1/3
0 at the same density is 2.2 µm. Thus very few electrons will be within

one Debye screening length of any given electron [75]. This situation has been studied

extensively for ultracold gas-based plasma and electron sources, which exhibit single meV

electron temperatures in photoemission [76, 77, 78, 79, 80, 81, 82, 83].

Brute force calculation of the pairwise Coulomb interaction scales with the square of the

number of electrons, O(N2), making it prohibitively time consuming to exactly simulate

dynamics with large number of electrons. Thus, to accurately capture the beam dynamics,

approximation methods are used which compute pairwise interactions of nearby particles,

while approximating long range interactions using the mean-field approach. These methods

scale as O(N logN) for traditional tree-based methods and O(N) for the fast multipole

method, making them feasible for simulation [84, 85]. We will refer to these methods as

point-to-point methods.
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Figure 5.1: Cartoon depiction of the failure of Debye screening. For large MTE photo-
cathodes, drawing a sphere around a particle with the Debye screening length as the radius
encloses many other particles, a necessary condition for the applicability of mean field the-
ory. At lower MTE, the Debye screening length becomes less than the average interparticle
distance

A critical challenge in employing a classical point-charge force model for a photoelectron

source is the unphysical divergence of the image potential at the cathode surface. The

underlying cause of the problem is that classical equations of motion are not valid at and

very near the cathode surface. In a classical simulation however, the size of the integration

step typically scales inversely proportional to the gradient of the potential. Thus, near a

divergence, the integration step can limit to zero. This produces a scale-matching problem

wherein very small step sizes must be maintained throughout the particle emission process,

which can lead to prohibitively long simulation times. However, as will be shown below,

image charge effects significantly impact beam size and emittance evolution, and cannot be

ignored.

This work aims to extend the work on Coulomb effects in ultracold plasma electron

sources to photocathode guns, which can potentially support even higher beam density.
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We provide a new method to compute the image force which is free of divergences and

tuning parameters. Using this model of the overall beam dynamics, we turn to introduce

new microscopic figures of merit to disentangle the global and local effects of point-to-point

interactions.

To show the generality of the new methods, we examine beam dynamics in two very

different UED beamlines based on archetypes used in practice today: a 200 keV dc gun with

lower total initial beam density (∼ 1017 m−3), and a high gradient 5 MeV RF photoinjector

with higher initial beam density (∼ 1018 m−3). UED is a good test case for examining

point-to-point effects as the number of particles needed per bunch is often relatively small

(105-107) in comparison to synchrotron radiation applications, making it feasible to simulate

every particle in the bunch with modest computing resources. Along with this, the short

bunch lengths, small spot sizes, and long coherence lengths needed to make atomic scale

resolution diffraction patterns with femtosecond time resolution ultimately result in peak

current densities comparable to those in free electron laser injectors [41, 86].

Using our new method of calculating near-photocathode dynamics, we highlight one

unique point-to-point phenomenon called disorder induced heating (DIH) which arises very

near the photocathode. DIH was originally studied in the ultracold plasma community (see

e.g. [87]), but it may have significant implications for cold photoemitted electron beams

[80, 88]. DIH is the thermalization of the initial potential energy stored in the random

positions of near neighbor photoelectrons. Upon thermalization, the particle distribution

develops a characteristic microscopic structure with a lack of near neighbors, and the beam

simultaneously suffers emittance growth due to the increased temperature. For a station-

ary (non-accelerating, no expansion) electron bunch starting with zero temperature, the

temperature rise due to DIH is given by:

kTDIH =
Ce2

4πϵ0a
(5.2)
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where a = (3/4πn0)
1/3 is the Wigner-Seitz radius of the bunch, and k is the Boltzmann

constant. C is a dimensionless constant which can be determined by tabulated plasma

correlation energies to be roughly C ≈ 0.45 [89, 88]. The timescale τ of the thermalization

can be calculated to be a constant fraction of a plasma period [90]. In photoinjectors, this

time is typically of the order of ten picoseconds or less, resulting in thermalization near the

photocathode during initial acceleration. A correct image charge model is thus critical to

understand DIH in photoinjectors. Furthermore, the beam density can change significantly

near the photocathode due to space charge expansion and acceleration. The resulting balance

has not been studied in detail in photocathode guns before.

In this work we introduce new methods for simulating high brightness photoelectron

beamlines. We simulate two UED beamlines with 0 meV MTE with multiple methods of

calculating the electrons interactions to show why these new methods are crucial for accu-

rately determining the capabilities of these devices. Next, we quantify DIH via an analysis of

the resulting microscopic density distribution. We then estimate the rms emittance increase

attributable to DIH, and find that it is the dominant source of emittance dilution in the two

cases under study.

5.2 Point-to-Point Simulation Methods

5.2.1 Coulomb interactions and Image Charge Model

The simulations shown in this chapter were performed with the space charge tracking code

General Particle Tracer (GPT) [91] using three different algorithms. The first is GPT’s mean-

field space charge algorithm, a non-equidistant 3D multi-grid Poisson solver [35], which is

used to calculate the mean-field interaction of the entire bunch, including image charge

effects. The second is the Barnes-Hut algorithm internal to GPT [84], with a Barnes-Hut

angle parameter of 0.3, used to model point-to-point Coulomb interactions. It does this by
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exactly computing the electric fields from near neighbor particles at each time step using

Coulomb’s law whereas long-range interactions are approximated using multipole expansions.

This makes the Barnes-Hut algorithm capable of simulating stochastic effects like disorder

induced heating and Boersch effect, while also taking into account long-range space charge

forces. However, due to divergent fields at the cathode, the Barnes-Hut algorithm does not

allow for simple inclusion of image effects. To include these effects, we developed a third

technique, which we call the Plus-Minus-Plus (PMP) Method.

Image Charge
Cathode

Real Electrons

-

+

=

Figure 5.2: Depiction of PMP 3-step space charge calculation. Filled in ellipses represent
mean-field calculation of electric fields, and ellipses filled with dots represent a Barnes-Hut
calculation of electric fields.

The PMP method approximates the image charge as arising from a mean-field calculation
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and the total space charge force is calculated in a three step process as depicted in Fig. 5.2. In

PMP, GPT’s mean-field space charge algorithm is used to calculate the mean-field interaction

of the entire bunch, including image effects. Subsequently, a second call is made to the mean-

field solver, but this time without the cathode boundary condition. By subtracting this field

from the initial full mean-field space charge calculation, the mean-field approximation of

the image field alone is extracted. The last step in the PMP process adds the stochastic

interactions to the previously obtained mean-field image charges with the stochastic Barnes-

Hut point-to-point method.

In section 5.7 we discuss the accuracy of the assumption of a mean-field image force.

Specifically we compare the PMP method with another image charge method which includes

point-to-point effects via a dynamical image charge potential which does not diverge [92].

The latter requires additional computing time and tuning parameters, and in general we find

good agreement with PMP. Thus PMP is my method of choice throughout the chapter. One

additional method of simulating the image potential is discussed in appendix C

To achieve an accurate accounting of stochastic Coulomb effects, each macroparticle

represents exactly 1 electron in all simulations, and all distributions are pseduo-random,

rather than quasi-random. These same macroparticle settings were used in the mean-field

simulations for consistency.

To test the convergence of GPT’s mean-field space charge algorithm, the same beamline

was simulated multiple times using different space charge solver parameters. We set a conver-

gence limit of 5% relative variation in rms quantities with increasing space charge accuracy.

We found that nearly all default settings for GPT’s mean field space charge solver were

sufficient to satisfy this limit, except for the total number of meshlines which was increased

by 20% such that the variation was below this threshold.
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5.2.2 Using 90% RMS Figures of Merit

Root-mean-squared (rms) figures of merit for beam size/length, energy spread, and emit-

tance are not well-defined in the presence of strong point-to-point Coulomb interactions.

This is due to the presence of large angle scattering which generates long-tailed distributions

for which rms values diverge [93]. To avoid sensitivity to outliers, but retain the sense of

the traditional accelerator figures of merit, all quantities presented in this chapter are cal-

culated using 90% rms values unless otherwise denoted, wherein a subset of the distribution

containing 90% of the particles are chosen such that the metric in question is minimized.

5.3 Description of dc and NCRF gun UED beamlines

Both beamline designs considered here originated from a multiobjective genetic algorithm

(MOGA) optimization study, using the mean-field space charge model, to provide an emit-

tance minimum at the sample plane with realistic constraints on the bunch length and spot

size. These optimizations are described in Refs. [69, 94, 95]. Each case shown here is an

individual from a MOGA Pareto optimal frontier with a MTE of 0 meV. Individuals were

selected containing a charge closest to 105 electrons/pulse, and were then re-evalutated using

the PMP method.

Figure 5.3: Layout of the cryocooled dc gun UED beamline used in the following simulations.
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The lower energy dc beamline, depicted schematically in Fig. 5.3, consists of a cryocooled

200 kV dc gun [96] with an extraction electric field of 11.25 MV/m, followed by a solenoid,

a normal conducting 3.0 GHz buncher cavity of the Eindhoven design [97], and a second

solenoid. The beamline was optimized to have a minimal emittance at a sample location

approximately 1 m from the cathode when emitting an electron beam with 0 meV MTE [94].

Beam parameters are shown in table 5.1.

Table 5.1: dc beamline simulation beam parameters

Parameter Value
Bunch Charge (fC) -14

Transverse rms Size (µm) 8.1
Laser Pulse Length (ps) 9.8

The higher energy NCRF beamline, depicted schematically in Fig. 5.4, consists of a 1.6

cell 2.856 GHz NCRF gun of the BNL/SLAC/UCLA design [98], with a peak electric field

of 100 MV/m, launch phase of 38.6 degrees from peak field, and final beam energy of 5

MeV, followed by a solenoid, a 9 cell buncher cavity, and a second solenoid. The buncher is

modeled using 9 copies of the first cell of the SLAC linac [99]. The beamline was optimized

to have a minimal emittance at a sample location approximately 2.5 m from the cathode

when emitting an electron beam with 0 meV MTE [95]. Beam parameters are shown in table

5.2.

Table 5.2: NCRF beamline simulation beam parameters

Parameter Value
Bunch Charge (fC) -17

Transverse rms Size (µm) 2.5
Laser Pulse Length (ps) 3.2
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Figure 5.4: Layout of the NCRF gun beamline used in the following simulations.

5.4 Macroscopic Beam Evolution

The 90% rms transverse size of the beam along the dc and NCRF UED beamline is shown

in Figs. 5.5a and 5.6a respectively. In all simulations, space charge increases the beam

size, after which the first solenoid matches the beam size into the buncher cavity (which

has a noticeable transverse defocusing), and the second solenoid forms the final waist. As

expected from the emittance compensation process, the emittance minimum occurs very

near the beam size waist.

In the Barnes-Hut simulation without the cathode boundary condition, the initial space

charge blowup leads to a larger spot size at the first solenoid. Because of this, the focusing

elements cause the beam waist to occur earlier than when the image force is included. Thus,

omission of the image force generates significantly different beam dynamics.

The difference between the mean-field and PMP simulation is solely due to point-to-

point effects, as a mean-field image force is included in each. It is interesting to note that

the slightly larger spot size in PMP simulations translates to noticeably stronger focusing

downstream. In the DC gun beamline, the stronger focusing is noted by a smaller beam size

at the focus, and in the NCRF beamline, the beam waist is formed earlier by 5.5 cm.

The evolution of the normalized transverse rms emittance for the dc and NCRF UED

beamline with 0 meV MTE is shown in Figs. 5.5b and 5.6b respectively. Starting at an emit-
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(a)

(b)

Figure 5.5: (a) Spot size and (b) transverse normalized rms emittance comparison between
the PMP method, Barnes-Hut method without a cathode, and mean-field space charge
simulations of the dc UED beamline with 0 meV MTE.
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(a)

(b)

Figure 5.6: (a) Spot size and (b) transverse normalized rms emittance comparison between
the PMP method, Barnes-Hut method without a cathode, and mean-field space charge
simulations of the NCRF UED beamline with 0 meV MTE.
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tance of zero, the emittance quickly grows as the beams experience both the mean-field space

charge phase space shearing, and also a growth in temperature due to the thermalization of

the initial stochastic potential energy stored between near neighbors.

Comparing the transverse 90% rms emittance of the Barnes-Hut method without a cath-

ode to the PMP method, we find that qualitatively they behave similarly. However, due

to the earlier location of the beam waist in the Barnes-Hut simulations, the location of the

emittance minima also shifts to an earlier position.

Although at a higher beam energy, we note the NCRF beamline exhibits a larger relative

effect from point-to-point interactions. Later we will show that this can be explained by the

effects of DIH with a larger initial electron number density. Though the space charge forces

are more heavily suppressed at high energy, the effects of DIH thermalization occur at low

energy near the cathode where relativistic suppression is negligible. The timescale of the

evolution of the thermalization is a constant fraction of the plasma period [88], which in this

case is roughly 30 ps. The value of the emittance is over a factor of 3.7 larger than when

using only the mean-field approximation when including point-to-point effects.

It should be noted that because these beamlines were optimized to minimize the emittance

of the mean-field space charge beam with 0 meV MTE at the sample, the emittance in the

PMP simulation is not necessarily optimized to be maximally compensated at its respective

minimum. Thus, these numbers represent an upper bound to the maximal effect of point-

to-point space charge on the emittance for these UED beamlines. However, as we will show

later, most of the emittance growth above the mean-field case arises from microscopic DIH-

like effects, which are insensitive to small perturbations in the focusing optics.

The slice energy spread results from the two beamlines are shown in table 5.3. In both

beamlines, the slice energy spread slowly varies, except for jumps at their respective gun,

buncher, and beam waist. The energy spread has time dependence affecting the second

significant figure, so only the most significant figure is reported.
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Table 5.3: Slice energy spread in 0 meV MTE simulations

Simulation σE
Ē

Before Buncher σE
Ē

After Buncher

dc(PMP) 5× 10−6 5× 10−5

dc(Barnes-Hut) 5× 10−6 5× 10−5

dc(mean-field) 9× 10−7 5× 10−5

NCRF(PMP) 4× 10−5 3× 10−4

NCRF(Barnes-Hut) 4× 10−5 3× 10−4

NCRF(mean-field) 4× 10−5 3× 10−4

In all simulations, the bunch length is approximately constant until the buncher, after

which it decreases linearly in time. In the dc beamline, the bunch length at the sample

is 0.92 ps in the PMP simulation and 0.91 ps in the mean-field simulation. In the NCRF

beamline, the bunch length at the sample is 0.91 ps in both simulations. Thus, point-to-

point effects do not play a large role in determining bunch length at the sample. We note

here that the bunch lengths at the sample location are higher here than in many UED

setups which achieve temporal resolution well below 1 ps. Optimizations of time-resolved

electron scattering instruments inherently have a tradeoff between transverse emittance and

longitudinal size, and the optimal point on this tradeoff curve depends on the phenomenon

being studied. By choosing a very small transverse emittance at the expense of bunch

length, the longitudinal dynamics are less sensitive to stochastic effects than the transverse

dynamics, making these simulations a more stringent test of DIH.

5.5 Microscopic Evolution

We now move to analyze the microscopic real and phase space distributions in an effort

to determine to what extent they follow simple predictions of beam heating via DIH, and

to what extent this heating determines the total rms emittance growth from point-to-point

effects.
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5.5.1 Core Emittance
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Figure 5.7: Depiction of emittance vs. particle fraction selection. Ellipses are drawn such
that they represent the phase space area occupied by the beam using only a given fraction
of the total number of particles. Ellipse dimensions are selected such that the emittance is
minimized for each particle fraction.

One tool which can be used to analyze the microscopic evolution of a beam is the core

emittance. The core emittance is a measure of the peak transverse phase space density. It is

defined through an emittance vs. particle fraction curve [100]. Starting with the full beam

emittance (particle fraction of 1), particles can be excluded from the emittance calculation

such that the resulting emittance is minimized, see Fig. 5.7. The core emittance is defined

as the limit of the slope of the emittance vs. particle fraction curve as the particle fraction

goes to 0. It is inversely proportional to the peak transverse phase space density:

ϵc =
dϵ

df

∣∣∣
f→0+

=
1

4πρ0
(5.3)

where ϵ is the emittance of the beam for a given fraction of particles, f is the particle

fraction and ρ0 is the peak phase space density. We expect ρ0 to be invariant in mean-field

space charge systems, but the introduction of point-to-point effects can break this invariance.
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Figure 5.8: Transverse normalized rms emittance vs. particle fraction plots and phase space
comparison between PMP and mean-field simulations of the 2 UED beamlines at the re-
spective emittance minimum near the end of the beamlines. Subfigures (a), (c), and (e)
correspond to the dc beamline and subfigures (b), (d), and (f) correspond to the NCRF
beamline. Phase space portraits from the mean-field simulations are shown in subfigures (c)
and (d) and for PMP simulations in (e) and (f) Phase space portraits are shown with linear
x− px correlation removed.
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However, because we compute the core emittance with a finite number of beam particles and

a finite number of bounding ellipses the value will never be exactly zero even if we start with

zero MTE.

In Figs. 5.8a and 5.8b, the emittance vs. fraction curves at the emittance minima are

shown for mean-field and point-to-point space charge for the dc gun and NCRF gun UED

beamlines. Note the sharp increase in rms emittance due to outliers when the particle

fraction approaches unity. As can be seen, for small particle fractions the emittance of the

PMP simulation is significantly higher than that of the mean-field simulation. This shows

that point-to-point effects not only have created more outliers, but have fundamentally

degraded beam quality up to and including the core of the beam, as would be expected

from DIH. To help illustrate this further, phase space portraits are shown at the respective

emittance minima for the two beamlines with mean-field space charge in Figs. 5.8c and 5.8d

and with PMP space charge in Figs. 5.8e and 5.8f. The decrease in core phase-space density

is clearly seen by the increased width in the γβx coordinate in Figs. 5.8e and 5.8f. Note

that the faint diagonal tails in these figures are not outliers due to stochastic interactions,

but the effect of slightly mistuned optics.

The core emittance of the beam was computed at different points along the dc beamline,

see Fig. 5.9, and Fig. 5.10 for the NCRF gun beamline. After a quick initial rise at low

energy, the core emittance in the point-to-point simulations remains far above that of the

mean-field simulation.

The core emittance at the sample of these simulations is shown in table 5.4. As with the

transverse rms emittance, the effects of point-to-point space charge are more distinct in the

NCRF beamline, where the number density of electrons is higher.

Table 5.4: Core emittance with 0 meV MTE at sample

Beamline PMP ϵc (nm) mean-field ϵc (nm)

dc 0.28 0.08
NCRF 0.12 0.020
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Figure 5.9: Core emittance comparison between PMP and mean-field simulations of the dc
UED beamline with 0 meV MTE.

5.5.2 Radial Distribution Function

The radial distribution function, g(r), of a system of particles relates the bulk density of

particles to the local particle density as a function of distance from a reference particle [101].

A microscopically uniform distribution of particles has a constant radial distribution function

excluding effects from finite system size. In this case, a neighbor particle to a given reference

particle is equally likely to be found at any distance. However, due to the divergence of

the Coulomb interaction, the number of very near neighbors to a reference particle in an

electron beam evolves to become zero. This is known as the Coulomb hole and it results

in a decrease of the total potential energy of the system [102]. This release of potential

energy causes disorder induced heating, and we denote the resulting mean kinetic energy

each particle gains from this heating by EDIH.

To calculate g(r), the following procedure is used: Screen based outputs are taken from

chosen positions along the beamline. Because we are interested in the dynamics of the core of
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Figure 5.10: Core emittance comparison between PMP and mean-field space charge for the
NCRF UED beamline with 0 MTE.

PMP

Mean-Field

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r (μm)

g
(r
)

Figure 5.11: Radial distribution function comparison between PMP and mean-field simula-
tions of the NCRF UED beamline with 0 meV MTE ∼ 3mm away from the cathode. Only a
small r portion of the distribution is plotted to show the creation of the Coulomb hole when
point-to-point space charge is used. For comparison, the distributions were normalized such
that the mean of the radial distribution functions from 1.5µm to 3.0µm is equal to 1.
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the beam, only the 10% of electrons which are closest to the longitudinal center of the beam

are used. For each of these particles, the distance to every other selected particle is calculated.

By making a histogram of these distances, we generate a plot of g(r) × ρN × 4πr2∆r as a

function of r , where N is the number of particles, ρ is the bulk volume density of those

particles, and ∆r is the bin size. A statistical uncertainty is assigned to each bin equal to

the square root of the number of particles in the bin. Dividing out the r2 term, g(r) is found

up to numerical prefactors.

The radial distribution function shortly after emission in the case of the NCRF UED

beamline with 0 meV MTE is shown in Fig. 5.11. For distances smaller than 1.5 µm,

the radial distribution function in the case of point-to-point space charge decreases to 0 as

expected, while g(r) of mean-field space charge does not. This same behavior can be seen

for the dc beamline with an MTE of 0 meV.

5.5.3 Disorder Induced Heating Calculation

From the radial distribution function, the potential energy of a particle due to its surrounding

particles can be calculated as:

Epotential =

∫ ∞

0
4πr2ρg(r)u(r)dr (5.4)

where ρ is the bulk volume density of the beam and u(r) is the potential energy of two elec-

trons particles separated by a distance r [103]. Using equation 5.4, EDIH can be calculated

by finding the difference between the potential energy calculated via the radial distribution

function in the point-to-point simulation and a calculation using the same radial distribu-

tion function where the Coulomb hole is artificially filled. Tests with stationary distributions

which have known EDIH show that this estimation method is accurate to within 20%, with

discrepancies arising primarily due to the determination of the peak location of g(r).
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This energy difference would be EDIH for all times after heating if the beam did not change

in size throughout the simulation. Because the beam size changes, additional calculation is

required to recover EDIH. If the beam changes in a self-similar way, such that its aspect

ratio remains constant, the energy found through this subtraction is EDIH multiplied by

the ratio of the initial average interparticle distance (defined below) to the current average

interparticle distance. This can be seen by investigating the radial scaling of equation 5.4

noting that ρ ∝ 1/r3 and u(r) ∝ 1/r. Thus by multiplying by the inverse of this factor,

we can estimate EDIH assuming DIH takes place very near the cathode. Further, it is clear

the assumption of self-similarity is invalid if the beam deviates significantly from its initial

aspect ratio, which can occur when space charge forces cause significant “blowout” (spatial

[104] or longitudinal [105]) and near most beam waists.

The initial interparticle spacing and initial electron density require definition, as at t = 0,

no beam yet exists. To do this, we will approximate the beam as a uniform cylinder with

equivalent rms sizes as at the cathode surface. Assuming a uniform acceleration over the

small length and time scale the beam is being emitted from the cathode, the front of the

beam will travel to a distance of L = 1
2aE0

t2, where aE0
is the acceleration of an electron in

a uniform electric field E0, and t is the difference in time between the first and last particle

emitted. Approximating as a uniform distribution where R = 2σR and t =
√
12σt, the

volume of the beam can be found as:

V = πR2L ≈ 24πeE0

mc2
σ2x(cσt)

2 (5.5)

Using this volume, an initial average interparticle distance can be found as ρ ≈ (V/N)1/3

and initial electron density is n0 ≈ (N/V ).

A plot of the EDIH estimate is shown in Fig. 5.12. There are three main features of this

plot. First there is an initial rise in EDIH corresponding to the time it takes for the Coulomb
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Figure 5.12: Energy from disorder induced heating as calculated from g(r) in the NCRF
beamline with 0 MTE and a smaller initial density of 1017 m−3. The density was reduced
by increasing the initial radial size of the electron beam at the cathode.

hole to form, i.e. the inverse plasma oscillation frequency of the beam:

τ ≈ 0.3
2π

ωp
= 0.6π

(
n0e

2

mϵ0

)−1/2

(5.6)

where n0 is the density of the electron beam [88]. After the initial rise there is a plateau. The

mean value of this plateau is used for the value of EDIH of the simulation, and the standard

deviation of these values is treated as an uncertainty. The drop in EDIH corresponds to the

transverse focus of the beam. During this focusing, not only is the self-similarity assumption

violated, there is another microscopic reorganization in which the Coulomb hole is filled.

This is shown in Fig. 5.13. Please note that this downstream filling in the Coulomb hole

does not have a significant impact on the core emittance of the beam anymore. This is

because near the beam waist, the transverse temperature of the of the beam mc2(ϵ/σx)
2 is

∼ 12 meV and the energy per particle required to fill the Coulomb hole is ∼ 0.3 meV.
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Figure 5.13: Radial distribution function comparison between of the NCRF beamline with
an MTE of 0 meV and an initial density of 1017 m−3 before and after the beam waist. For
comparison, the distances were normalized by the average interparticle distance, a, and the
radial distribution functions, g(r/a), were normalized such that g(r/a = 1.25) = 1.

5.5.4 Disorder Induced Heating Density Dependence

For a stationary electron plasma with a starting temperature of zero, the energy released by

disorder induced heating can be calculated via Eq. 5.2. To test the density dependence of

equation 5.2 in the realistic, non-stationary case, this procedure was repeated on simulations

of the same NCRF beamline with 0 MTE, while changing the radius of the inital beam in

order to alter its density. The result is shown in Fig. 5.14.

For densities of 1016 m−3 and above, the simulation results agree with the simple station-

ary theory within a factor of 2. At a density near 1015m−1/3, the timescale for heating is ∼ 1

ns, which is approximately the time it takes the beam to enter the first solenoid. Because

the beam has had time to change significantly in size and shape, there is no reason to expect

that the approximations used in calculating EDIH remain true, thus it will be ignored in the

following analysis. We find a that EDIH in our simulations scales with density to the power

0.39± 0.02, close the value of 1/3 in Eq. 5.2.
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Figure 5.14: Disorder induced heating as calculated from equation 5.2 compared to the result
calculated from simulation.

5.5.5 Core Emittance and rms Emittance Contributions from Disorder

Induced Heating

From the calculated values of EDIH, we can estimate the expected increase in the core

emittance, and rms transverse emittance from DIH alone. This will help determine to what

extent the Coulomb hole formation determines the growth in core and rms emittance.

For the core emittance, starting from equation 5.3, the density in x-px space at the trans-

verse origin can be calculated assuming a cylindrical beam shape and a Gaussian momentum

distribution:

ϵc =

√
2π

4
σxσpx (5.7)
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The initial spread of momenta can be written in terms of the MTE in the standard way:

σpx =

√
MTE

mc2
(5.8)

For the presented simulations, the initial MTE is 0, but some of the disorder induced

heating energy will be released in the transverse phase space, resulting in a non-zero mo-

mentum spread. In general, the distribution of the heating will depend on the shape of the

beam. However, in the case that the average inter-particle distance is much less than the

smallest length scale of the beam, the bulk heating effect will dominate and the edge effects

can be ignored. In this approximation, the heating is isotropic and 2/3 of the EDIH will

contribute to the MTE of the beam. Assuming that the initial and DIH contributions can

be added in quadrature, the core emittance becomes approximately:

ϵc ≈
√
2π

4
σx

√
MTE+ 2

3EDIH

mc2
(5.9)

In the case of the dc (NCRF) beamline with 0 meV MTE, the initial transverse size of the

beam is 8.2 µm (2.6 µm) and the energy from DIH is 0.65 meV (1.4 meV), so the resulting

core emittance due to EDIH is 0.18 nm (0.070 nm).

To compare these results to those found in the previous sections, we must take into

account the increase of the core emittance in the mean-field space charge simulation from 0,

which is an effect of finite sampling. To do this, we will assume the effects of point-to-point

space charge can be added in quadrature to the mean-field core emittance, analogously

to equation 5.9 and as is valid for independent rms emittance contributions. With this

assumption, the core emittance contribution of point-to-point space charge, ϵc,P2P , can be

found through a quadrature subtraction of the mean-field core emittance from the PMP core

emittance. For the dc(NCRF) gun beamline, ϵc,P2P at the sample is .27 nm (.12 nm). 67%

of ϵc,P2P at the sample in the dc case is explained by EDIH (0.27 nm vs 0.18 nm), and in
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the rf case, 58% of ϵc,P2P at the sample is determined by EDIH (0.12 nm vs 0.070 nm).

For the rms transverse emittance contribution, we will use the intrinsic emittance of the

beamline [67]:

ϵi = σx

√
MTE

mc2
(5.10)

As with the core emittance, adding in 2/3 of the disorder induced heating energy, a

modification is made to the intrinsic emittance equation:

ϵi ≈ σx

√
MTE+ 2

3EDIH

mc2
(5.11)

In the dc (NCRF) beamline, the intrinsic 90% transverse emittance including EDIH is

0.27 nm (0.11 nm). We will compare this to the quadrature subtraction of the 90% transverse

emittance emittance of the mean-field simulation from the PMP simulation, which we will

call ϵP2P . At the emittance minimum, ϵP2P in the dc (NCRF) beamline is 0.40 nm (0.18

nm). The intrinsic emittance contribution from disorder induced heating in the dc (NCRF)

beamline thus accounts for 68% (61%) of ϵP2P . The remaining difference can be attributed

to the effect of large angle scatters which kick particles far from the beam center, seen as

the tails of the emittance fraction curve in Fig. 5.8a.

5.6 Warm Beam Comparison

In this section, the same dc and NCRF UED beamlines were simulated using a initial beam

MTE of 150 meV. By doing so, weaim to show that the PMP and mean-field methods

converge to the same result for a warm photocathode, and that Debye screen effectively

mitigates point-to-point effects.

In Figs. 5.15 and 5.18, the spot size evolution is shown for the dc and NCRF UED

beamlines respectively each with 150 meV MTE. At this higher MTE, the difference between
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Figure 5.15: Spot size comparison between the PMP method and mean-field space charge
simulations of the dc UED beamline with 150 meV MTE.
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Figure 5.16: Transverse normalized rms emittance comparison between the PMP method
and mean-field space charge simulations of the dc UED beamline with 150 meV MTE.
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Figure 5.17: Core emittance comparison between the PMP method and mean-field space
charge simulations of the dc UED beamline with 150 meV MTE.
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Figure 5.18: Spot size comparison between the PMP method and mean-field space charge
simulations of the RF UED beamline with 150 meV MTE.
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Figure 5.19: Transverse normalized rms emittance comparison between the PMP method
and mean-field space charge simulations of the RF UED beamline with 150 meV MTE.
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Figure 5.20: Core emittance comparison between the PMP method and mean-field space
charge simulations of the RF UED beamline with 150 meV MTE.
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the point-to-point and mean-field spot size has been significantly reduced. At the beams

maximal size in the first solenoid, the deviation has been reduced from around 2 µm to .7

µm in the dc beamline and 1.2 µm to .5 µm in the NCRF beamline.

The evolution of the transverse rms emittance for the dc and NCRF beamlines is shown

in Figs. 5.16 and 5.19 respectively. With an MTE of 150 meV, there is no significant

deviation in the transverse rms emittance between the implementations of space charge as

observed at 0 meV. This validates that phtocathodes with high emission temperatures can

be successfully modelled without consideration of point-to-point space charge effects.

The evolution of the core emittance at an MTE of 150 meV is shown in Figs. 5.17 and 5.20

for the dc and NCRF UED beamlines respectively. Outside of fluctuations near the solenoids

the core emittance in all simulations are approximately constant. No significant difference

exists between the core emittance between point-to-point and mean-field simulations at 150

meV.

5.7 Modified Image Charge Method

The majority of this chapter employs a mean-field model of the image force. In this section,

we show this to be a valid approximation. To do this, we analytically investigate a point-like

image model and compare it to PMP.

We first aim to show that for particles much closer to the cathode compared to the average

interparticle distance, the Coulombic repulsion force will be predominantly longitudinal, as

the transverse fields from other charges and their images will largely cancel.

The transverse electric field from an electron a distance d away from an infinite conducting

plane and its image charge in cylindrical coordinates is given by:

Er =
1

4πϵ0

(
−er

(r2 + (z − d)2)3/2
+

er

(r2 + (z + d)2)3/2

)
(5.12)
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We first will consider the effects of particles far away from the cathode on particles which

are recently emitted. At a position much closer to the cathode (z≪d), this expression is

approximately:

Er ≈
1

4πϵ0

−3ezrd

2(r2 + d2)5/2
(5.13)

We compare this to the longitudinal field in cylindrical coordinates:

Ez =
1

4πϵ0

(
−e(z − d)

(r2 + (z − d)2)3/2
+

e(z + d)

(r2 + (z + d)2)3/2

)
(5.14)

In the same limit, z ≪ d:

Ez ≈ 1

4πϵ0

2ed

(r2 + d2)3/2
(5.15)

The magnitude of the ratio of the transverse and longitudinal electric fields in this limit

of z ≪ d is: ∣∣∣∣Er

Ez

∣∣∣∣ ≈ 3zr

4(r2 + d2)
(5.16)

This ratio tends to 0 for small or large r and has a maximum at r = d of:

∣∣∣∣Er

Ez

∣∣∣∣
max

≈ 3z

8d
(5.17)

Because z ≪ d the transverse electric field will be much smaller than the longitudinal field,

and thus proving the Coulombic repulsion force will be predominantly longitudinal.

For an electron beam with an average interparticle distance a, this will apply as long as

a ≫ d. Therefore, for particles that have just been emitted, if we are to model the effects of

the cathode and to avoid divergent fields for small z, we can ignore transverse effects, and

only need to find the time it takes for a particle to travel a longitudinal distance on the order

of the interparticle distance, and its energy at that point.

From dynamical image charge theory, a semi-classical image potential can be computed
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[92], in the approximation that the electron has no velocity parallel to the conducting surface,

the potential energy V is:

V (v, z) = − 1

4πϵ0

e2ω2p
4vωs

f

(
2zωs
v

)
,

f(x) =

∫ ∞

0

e−αx

1 + α2
dα

(5.18)

where ωp is the plasma frequency of the material, ω2p = 2ω2s , v is the velocity of the

electron, and z is its distance from the cathode.

The energy of an electron moving at a velocity v a distance z from the cathode with an

applied electric field Ez is thus:

E =
mv2

2
− 1

4πϵ0

e2ω2p
4vωs

f

(
2zωs
v

)
− eEzz (5.19)

The applied electric field will consist of the field from the gun as well as an approximation

to the longitudinal effects of other particles. The field from the particles in front of a given

particle will be approximated as a uniformly charged cylinder with a transverse size, R, equal

to that of the beam, and longitudinal size, L, equal to the initial bunch length multiplied by

the beam fraction that has left the cathode previously. The image charge contribution from

other particles will be approximated as a positively charged cylinder with equal dimensions

placed directly behind the particle. With this, the equation for the applied electric field on

the jth particle emitted is:

Ez(j) = Egun(z) +
e(j − 1)

πR2ϵ0

(
1 +

R

L(j)
−

√
1 +

R2

L(j)2

)
(5.20)

where L(j) is the length of the bunch in front of the jth particle.

These equations can be self-consistently solved to find the velocity and potential at any

longitudinal position for a given energy E. Calculating the velocity at several locations near
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the cathode, the time it takes to reach a given distance can be calculated as well. Because

the transverse effects of space charge can be ignored in this regime, the external transverse

field near the cathode can be used to approximate the transverse position of particle at a

later distance, although we find this effect to be insignificant for the cases considered in this

manuscript.

With this information, the beam can be initialized in simulation at a position away from

the cathode divergence and thereafter can be modeled using a standard, point-like image

charge method. As long as the position is chosen to be sufficiently far from the cathode and

less than the average particle distance, the resulting simulation should not depend heavily

on the starting distance choice.
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Figure 5.21: Transverse normalized rms emittance comparison for point-to-point, mean-field,
and modified image charge simulations of the dc UED beamline with 0 meV MTE.

Through this analysis, we have shown that the image charges have little effect on the

transverse dynamics of particles until a distance away from the cathode on the order of the

average interparticle distance. Because point-to-point effects are most important for interac-
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Figure 5.22: Transverse normalized rms emittance comparison for point-to-point, mean-field,
and modified image charge simulations for the NCRF UED beamline with 0 meV MTE.

tions at a distance less than the average interparticle distance, a mean-field implementation

of the image charge, such as is done through the PMP method used in this chapter, should

produce correct results as long as the energy modulation of the produced particles by their

images is correct.

In Figs. 5.21 and 5.22, the 0 meV MTE transverse normalized rms emittance results for

the DC and NCRF beamline are shown respectively, now including results from the modi-

fied image charge method discussed in this section. E was chosen such that the minimum

kinetic energy of an electron was 5 meV, on the order of the smallest MTE measured today.

The particles were started at a distance 0.5 µm away from the cathode. Deviations in the

emittance from the PMP method are less than 10% throughout the simulations.
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5.8 Summary and Outlook

In this chapter, I have shown that as photoemitted electron beam temperatures are made

ever smaller, the effects of the point like nature of the Coulomb interaction become crucial

to understanding photoinjector beam dynamics. We have introduced and benchmarked a

simple method to compute the image force in a point-to-point beam dynamics simulations

free of divergences and additional tuning parameters. Using this method, we have quantified

Coulomb scattering effects on the beam phase space density in two UED beamline archetypes.

Using a photocathode with zero intrinsic emittance, the emittance of the beam in both the

rf and dc UED beamlines studied was larger by a factor of at least 2, see Figs. 5.5b and

5.6b, and the core emittance is larger by a factor of at least 3, see Figs. 5.9 and 5.10, when

compared to simulation on the same beamline but assuming mean-field space charge. In

addition, the energy released by disorder induced heating was calculated using the radial

distribution function, and the heating was found to scale with the density to the power of

0.39 ± 0.03, close to the a simple theoretical estimate of 1/3, and was shown to be the

dominant effect in both core and 90% rms emittance growth. We found disorder induced

heating contributed to the emittance of the beamlines studied as shown in equation 5.11.
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CHAPTER 6

CONCLUSION

Ultrafast electron diffraction is one of the prominent tools used in current studies of ultrafast

science. The use of electrons as a probe is both a blessing and a curse, as their strong

interaction with the samples they probe comes at a cost of the electrons strongly interacting

with each other. Managing the trade-off between the degrading effects of space charge and

producing resolved images on a human timescale is a quintessential issue in designing a UED

beamline.

The spatial resolution of the images is determined by the transverse emittance, which

is close to a conserved quantity. The minimum emittance of a UED beamline is set by

the quality of the electron source. However, the quality of the electron source does not

matter if the emittance of the electron beam is not preserved to the sample being studied.

Three causes of emittance dilution, longitudinal-transverse coupling, non-linear forces, and

divergent forces in particular are relevant for UED beamlines.

Non-linear forces in UED beamlines come from two main sources, space charge and stray

fields. The effects of these fields disproportionately impact larger beams, which counter-

intuitively impact UED beamlines which want to diffraction over smaller areas the most.

The non-linearity of space charge can be mitigated through careful shaping or clipping of

the electron beam or by going to higher energies. Stray fields coming from the beamline

elements can be corrected by precisely designing elements to cancel these fields.

To improve the performance of UED beamline operating in the micro-diffraction regime,

a series of corrector magnets up to the sextupole moment were created and installed into the

MEDUSA beamline. The inclusion of the sextupole corrector reduced the emittance of the

stray field corrected beamline by 25% compared to the non-corrected beam and was properly

modeled as a beamline which had no stray fields.

The divergent nature of the Coulomb interaction is most pronounced in cold dense elec-
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tron beams, where electrons which are close to each other, remain close for longer periods

of time. A cold dense beam however has a very large peak brightness, which is necessary

for UED of non-reversible processes. To produce cold dense electron beams, photocathodes

are being developed with very low MTE. While the emittance of very low MTE photocath-

odes can be mostly conserved in simulation, the mean-field approximation used in those

simulations is no longer valid, bringing the results of those simulations into question.

Multiple methods were developed and validated against each other for the fast approx-

imation of a Coulomb interaction which is mean-field at long distances and exact at short

distances in the presence of a photocathode. Using these tools, the evolution of the emittance

of an electron beam in different UED beamlines designs was simulated. For typical densities

used in single shot UED, I found that the emittance of simulated electron beams can grow

to be over twice what is predicted in mean-field simulations, and is properly modeled by the

temperature growth in a stationary electron ball with random initialized positions.

The future of UED depends on the development of high brightness electron sources and

beamlines which can preserve the electron beam quality. Different ultrafast phenomena will

have varying requirements on beam size, emittance, and brightness needed for their study.

For stricter requirements, the magnitudes of different beam degradation effects can become

important. The next effect that will be important to correct in UED is thus linked to the

question, what do people want to study next?
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APPENDIX A

WAKEFIELD CALCULATION WITH A RECTANGULAR

DIELECTRIC BOUNDARY

This appendix will discuss my work in the fast computation of the wakefield generated from

a rectangular beam pipe with one pair of outer walls coated with a thick layer of a dielectric

material, see figure A.1 taken from [106].

Figure A.1: Rectangular beam pipe with dielectric coating one set of opposite walls, the
three marked areas indicate (1) vacuum, (2) dielectric, and (3) conducting wall.

To simulate the effects on particles travelling through this structure, it is necessary to

solve for the wakefields from all particles traveling through the structure and apply those

fields to the trailing particles. The full solution to this problem involve the solving of

an eigenfunction/eigenvalue problem which can be found in [106]. The solutions for the

eigenvalues are in the form of transcendental equations like the following:

µ1k
H
ch tanh(k

H
chb) + kHmd cot(k

H
md(c− b)) = 0

where:

kHch =
√

(1− β2)λH + k2x)
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kHmd =
√
(ϵ1µ1β2 − 1)λH − k2x)

kx = πn/w

Here ϵ1 and µ1 represent the permittivity and permeability of a dielectric inserted into a

waveguide. b,c, and w are parameters controlling the size of the waveguide and dielectric. n

is a positive integer to be iterated over. β is the relativistic velocity of the bunch of particles

traveling through the waveguide. Lastly λH is the eigenvalue that is being solved for. Thus

the problem of calculating the effect of these wakefields begins with the calculations of the

roots of these functions.

These equations are almost periodic and have an infinite number of discontinuities. β

for ultra relativistic particles is very close to 1 which can remove dependence of λH from

kHch. The ratio of cn
w determines how compressed the roots are, and the range of parameters

is quite large: 10−3 < c/w < 103. All of these properties cause many issues in normal fast

root finders. Thus it is necessary to develop a quick root finder that can deal with this class

of equations.

The root finder exploits the near periodic nature of the function to make intelligent

guesses at where the next root will be found. By rescaling the function, the n dependence

of the roots can be mostly removed, further allowing the root finder to take solutions for

previously calculated values of n and use them to quickly calculate the roots for higher n. A

schematic of the root finding algorithm can be seen in fig. A.2

After a sufficient number of eigenvalues are collected from a desired number of modes,

the fields generated from the particles can be found through a summation of eigenfunctions

using these found eigenvalues.

The transverse and longitudinal force from a particle with x > 0, y = 0 using this method

on a trailing test particle with equal transverse coordinates are shown in figs. A.3 and A.4

respectively. The force in the y direction for this position is 0 from symmetry. From these
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Figure A.2: Root-finding method for the calculation of the eigenvalues for the dielectric
wakefield problem.

96



images, the force generated is seen to be defocusing transversely and longitudinally. Particles

trailing the lead particle will be kicked farther from the beam axis and be decelerated.
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Figure A.3: Transverse force on a test particle trailing a particle with x > 0 and y = 0 in
the dielectric structure.
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Figure A.4: Longitudinal force on a test particle trailing a particle with x > 0 and y = 0 in
the dielectric structure.
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APPENDIX B

EMITTANCE COMPENSATION IN APPLICATION

The following subsection is based on work done in [107] and presented at the International

Particle Accelerator Conference 2018.

In [94], MOGA was applied to 3D space charge simulations (using General Particle Tracer

(GPT) [91]) of the cryogun beamline under commissioning at Cornell in order to determine

the limitations of the emittance performance from an extremely low MTE cathode. This

setup features a 225kV DC gun housing a cryogenically cooled cathode with an (projected)

MTE of 5 meV and a 3 GHz normal conducting buncher cavity field map between two

solenoid magnets. The intended sample location is located at roughly 1 m from that cathode

(the exact position varies slightly among the different optimized solutions). A typical field

profile is shown in Fig. B.1.
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Figure B.1: Generic on-axis electric field Ez (blue) and solenoid field Bz (green) profiles for
the cryogun set-up. The intended sample location is at roughly 1 m.

In all simulations, the optimizer varied the beamline parameters, element positions, and

arbitrarily shaped both the transverse and longitudinal laser distributions. The resulting

optimal emittance as a function of bunch charge is shown in Fig. B.2. I will focus on

two example cases from this front corresponding to charges of 105 and 106 electrons. For
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Figure B.2: The optimal emittance as a function of bunch charge at the sample location
(roughly 1m).

these examples the corresponding intended sample locations are 1.0 m and 0.95 m from the

cathode. The initial/final emittance at the sample location was 0.33/0.81 (0.89/5) nm for

the 105 (106) bunch charges, corresponding to an emittance growth of 145%, and 460%,

respectively.

In analyzing the emittance growth in the two example beamlines, I will consider two

contributions, slice misalignment, and slice size mismatch. Here, misalignment refers to the

spread of the slopes in the transverse phase spaces (px vs. x and py vs. y), while mismatch

refers to differences in the rms sizes in each phase space coordinate. Fig. B.3 shows the

combined effect of these two contributions by plotting the ratio of the full emittance to the

average slice emittance. 50 longitudinal slices were used in this calculation. In the 105

electron case, the emittance grows substantially compared to the average slice emittance,

however this is nearly completely compensated. The situation is different for the 106 electron

example, where the ratio grows quickly at the beginning and then is partially compensated

at the end of the beamline. The failure to restore all of the emittance in the beam is due to

the strong non-linear space charge forces in the electron beam.

In order to determine the lowest possible emittance from ideal linear emittance compen-

sation, the extent of slice mismatch and slice misalignment at the end of the beamline have
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Figure B.3: Ratio of the beam emittance to the average slice emittance (50 slices) for the
two example charges.

been computed. To do this, the final beam was sliced into 50 longitudinal slices of equal

length and the x-px and y-py correlations calculated. The values of px and py of each particle

were then adjusted to remove the individual slice slope. Next, the spreads in position and

momentum were calculated for the slices, as well as the full beam. The spread in position

space of each slice was then replaced by the spread in position space of the beam. The spread

in momentum space was then proportionally changed for each slice to preserve individual

slice emittance. Lastly, each particle’s px and py were changed to make each slice’s slope

equal to the beam slope.

Before applying this method, the transverse emittance of the beam in the 105 (106)

electron case was 0.858 nm (4.90 nm) at the end of the beamline. After the removal of

slice effects, this was reduced to 0.727 nm (2.73 nm). This corresponds to a 15.4% (44.4%)

reduction of the final beam emittance if these effects could be removed. This is consistent

with fig. B.3 which at the end of the beamline shows the slice emittance is 17% (47%)

smaller than the beam emittance, showing that in application, it is difficult to fully restore

emittance lost to longitudinal correlations in the beam.
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APPENDIX C

DISPLACED IMAGE CHARGE METHOD

An alternative simulation method for including the effects of image effects without divergence

may be preferable in cases where mean-field image forces are not accessible for the PMP

method, but the more exact method is too computationally expensive. In this case, a

simplified model of point-like images can be used, with one tuning parameter to be chosen,

related to the final energy of the beam.

This method relies on a displaced image charge method, schematically shown in fig.

C.1. In this model, the electron is always assumed to start at a distance rc away from the

cathode. In implementation, this means that the an image charge is placed for each electron

at a distance 2rc further back from the cathode than the distance from the cathode to the

electron.

Figure C.1: Diagrammatic representation of the displaced image charge method. An electron
is further displaced from its positively charged image by an additional distance, 2rc.

The justification of this model follows that done in section 5.7. The main difference being,

in this method you choose a distance scale based on the final desired energy of the electron
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beam, while skipping the mathematically taxing computation. In this sense the method is

easier to work with, but holds less predictive power than the other methods. With an rc

chosen to match the energies predicted in the PMP and modified image charge method, the

simulation results are unchanged from the other methods.

For these reasons it is suggested that this method be used only when a value of rc can

be determined from either experimental deviations in the measurements of the beam size at

distances far from the cathode compared to a mean-field prediction, or with a theoretical

estimation of the expected energy loss from the image potential. Coming up with a heuristic

choice for a value of rc is a topic of future work.
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