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ABSTRACT

Over the past several years, new advances in computing hardware and artificial intelligence

techniques have allowed deep learning to rapidly develop as a key tool in a broad range of

fields. In medical imaging, significant attention has been devoted to exploring how these

technologies can improve radiological workflow, including more efficient and more accurate

image reading and serving as a rapid, objective reader acting concurrently with human

radiologists. However, several challenges exist in applying typical deep learning technologies

to CT scans. In this dissertation research, we consider three thoracic CT use cases and

evaluate novel deep learning techniques to improve clinical utility.

The first aim of this dissertation was to develop a deep learning algorithm to evaluate

coronary artery calcification (CAC) on low-dose thoracic CT (LDCT) scans. Coronary heart

disease is the leading cause of death globally and CAC scores serve as a strong predictor

for adverse events related to coronary heart disease. To automatically score LDCT scans,

we developed a novel image segmentation network, CACU-Net, which identifies CAC on

LDCT scans and classifies lesions based on the coronary artery branch. CACU-Net was able

to identify which LDCT scans and individual arteries contain CAC and classify scans into

clinically relevant categories based on severity of CAC, outperforming similar segmentation

approaches.

A second algorithm was developed to detect emphysema on LDCT scans using a transfer

attention-based multiple instance learning (TAMIL) approach. This novel technique evalu-

ates slices individually using a transfer learning feature extraction algorithm that requires

no additional network training. The slice features are then aggregated through a learned

attention-based pooling method that both improves performance and provides interpretable

information which a radiologist can utilize to understand model decision-making and identify

cases in which the model may fail to perform. The TAMIL and CACU-Net pipelines have the

xiv



potential to be added to the screening clinical workflow for a rapid, objective augmentation

of radiologist findings.

When the COVID-19 pandemic began in 2019 and CT served as a potential method of

evaluation for severe COVID-19 patients, the techniques developed here were adjusted for

COVID-19 evaluation. Thus, the final aim of this dissertation was to develop a multi-modal

model which could aid clinicians in identifying when patients should undergo corticosteroid

administration during their course of treatment. This algorithm included 1) a novel segmen-

tation architecture, 2) an investigation of an improved TAMIL algorithm, and 3) comorbidity

data. The proposed model demonstrates comparable classification performance compared

to the unimodal variants with added interpretability. This technique could improve patient

care during future waves of COVID-19, particularly in those patients that are immunocom-

promised and may require more aggressive treatment.

The research provided in these three aims has the potential to improve thoracic CT eval-

uation by providing more flexible, modality-appropriate models that may augment human

readers at various stages of the clinical workflow. The application of such deep learning

algorithms has significant potential to enhance clinical efficiency and to ultimately improve

patient outcomes.
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CHAPTER 1

INTRODUCTION

Over the past decade, new developments in computing hardware and artificial intelligence

(AI) techniques have revolutionized the use of computers for a wide variety of medical tasks.

While many groups had already developed computer-aided diagnosis (CAD) algorithms,

the AI revolution garnered extreme interest in exploring applications in medical imaging

ranging from relatively straightforward tasks, e.g., detecting visual presence of disease, to

much more complex algorithms that can perform tasks with performance unmatched by any

human reader, such as aggregating multispectral imaging data to identify patients at high

risk for cancer. There are many factors that impact the development of AI techniques for

medical imaging, including the amount and type of imaging data available, the clinical task

in question, and the computing resources available. In this dissertation, we explore multiple

thoracic conditions that may be evaluated with the use of AI. We first provide necessary

background on machine learning technologies then briefly discuss lung cancer screening in

Chapter 2 to motivate Chapters 3 and 4. Each of the three primary projects is then discussed:

• automatic segmentation and classification of coronary artery calcifications on low-dose

thoracic CT (Chapter 3)

• emphysema characterization through multiple instance transfer learning in lung cancer

screening CT (Chapter 4)

• prognosis and treatment recommendations for COVID-19 patients through deep learn-

ing on thoracic CT (Chapter 5)

In these aims, we attempt to develop robust, applicable methods that can be applied ul-

timately in radiology practices. We also investigate other key issues of CAD systems in

radiology, such as model interpretability, and provide suggestions for future direction on

1



Figure 1.1: CT scan acquisition. (a) view within the CT scanner bore with x-rays traveling
from the source, through the patient, and detected by the detector ring. Multiple acquisitions
must be acquired by rotation of the x-ray source. (b) Scanning of different heights of the
body by sliding the patient bed through the detector ring during acquisition.

each of these topics. The work presented in this dissertation lies at the intersection of imag-

ing science, medical physics, medicine, and computer science, thus, this introductory chapter

provides background knowledge of AI techniques, with focus on supervised deep learning for

computer vision applied for CT scan evaluation.

1.1 Computed Tomography

In 1972, computed tomography (CT) became the first medical imaging modality to provide

slice-based compositional information of the internal human body in the clinic [6]. This

technology revolutionized medical imaging and plays a critical role in modern medicine,

including radiology [6–8]. Briefly, CT images are acquired by detecting x-rays after projection

through the human body at several angles and reconstructing voxel information in the form

of Hounsfield Units (HU), which provide compositional information in each voxel based on

the linear attenuation coefficient of the material in that voxel (Figure 1.1) [6–9].
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Table 1.1: Common Hounsfield values

Tissue/Material Hounsfield Unit Value

Air -1000

Lung -600

Fat -100

Water 0

Soft Tissue 20 to 40

Blood 40

Calcium/Bone 100+

Metal 3000+

Following the HU scale, image read-

ers are able to relate CT image voxels to

human anatomy/pathology by compari-

son to standard HU values for different

anatomies (Table 1.1) [9]. The founda-

tional work for the development of CT

imaging resulted in the joint awarding

of the 1979 Nobel Prize for Medicine to

Hounsfield and Cormack [9–11].

In the 50 years since its inception,

CT imaging technology has progressed

immensely, providing images faster, at a higher quality, and with reduced radiation risk

to the patient [12]. Because of this, CT is now a powerful, flexible tool for radiological

evaluation and is a primary cog in the management of a variety of diseases and patient

conditions (Figure 1.2).

1.2 Computer-Aided Diagnosis

In addition to improvements in CT image acquisition and reconstruction, new technologies

in CAD have recently emerged that can aide radiologists in accurate, consistent image read-

ing. While these technologies range from intuitive, human-engineered methods to complex,

large-scale deep learning approaches, their key goal is to improve a reader’s (e.g., a radiolo-

gist’s) ability to provide objective, consistent diagnoses through quantitative image analysis.

CAD systems have been implemented with increasing frequency over the last decade as

computational hardware and algorithms have improved, a trend that is likely to continue in

coming years. Many CAD technologies stem from non-medical applications, such as natural

language processing (NLP), natural image classification, and bioinformatics [13–16]. How-
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Figure 1.2: Examples of CT sections for a variety of anatomical regions. Featuring the (a)
head, (b) upper thorax, (c-d) mid thorax with images presented with different window levels
to emphasize/diminish certain information, (e) abdomen.

ever, there are several challenges in applying these technologies in medical image evaluation,

including ethical considerations, data restrictions, and differences in image content [17–19];

for example, the physical context of pixel information and the 3-dimensional aspect of CT

are often not compatible with standard natural image machine learning architecture. Thus,

the primary goal of this dissertation is to explore novel CAD systems applied to CT imaging

for a variety of disease evaluations with a focus on thoracic abnormalities.

1.3 Artificial Intelligence and Medical Imaging

AI broadly describes a variety of algorithms that attempt to mimic human intelligence and

solve problems through pattern recognition [13], including those early methods used in CAD.

In radiology practice, several tasks have been shown to be automatable through AI, including

disease detection, prognostic prediction, and biomedical image segmentation, among others,

stemming from recent significant advances made by the machine learning and medical imag-

ing communities [1, 13, 20, 21]. These AI systems are trained through machine learning

(ML) algorithms, which attempt to identify patterns within structured data, e.g., medical

images. ML algorithms can be generally categorized as either supervised or unsupervised

learning based on the method of model evaluation/adjustment during training. Supervised

learning is much more common in medical imaging, following a paradigm in which each

input datum has an associated reference label/class that the model aims to predict; during
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training, model predictions are compared to the reference standard through a loss func-

tion and model parameters are updated based on the loss to improve performance for the

given task. Supervised learning schemes are advantageous in many situations given that

they are relatively straightforward to train and can produce high-performing, task-specific

models. Alternatively, unsupervised learning algorithms do not focus on a particular pre-

diction task; rather, they are developed by clustering the training data based on identified

trends/similarities within the data without explicit task bias. Thus, unsupervised learning

schemes tend to trade performance on a specific task for generalizability [22, 23]. Impor-

tantly, both paradigms require a large, representative training data set to achieve acceptable

widespread implementation.

1.4 Convolutional Neural Networks

Currently, the most common type of ML model in medical image analysis is the convolutional

neural network (CNN). This class of AI architectures utilizes learned convolutional filters as

the backbone of the architecture; by utilizing several optimized convolutions both in parallel

and in series in combination with other operations (e.g., pooling), a CNN is able to extract

multi-scale quantitative features that can be used for predictive modelling. There are several

CNN architectural design decisions that can play a role in performance and flexibility in data

structure. For convolutional layers, these include filter size, stride, and padding, which are

described with advantages and disadvantages in Fig 1.3, among others, while pooling layer

selections impact the way in which feature maps are reduced, e.g., by either mean or argmax

operations. Importantly, all layers contain an activation function, which injects nonlinearity

into the model and plays a key role in allowable values during task prediction (Fig 1.4).

The number of parameters in typical medical imaging CNNs can range from 104 − 107;

this is generally far greater than the amount of data available, causing the model optimization

problem to be underdetermined. As noted in Section 1.2, this causes CNNs to require large
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amounts of well-annotated data to appropriately capture information relevant to the given

task and avoid overfitting. To emphasize this, consider an AI model tasked with predicting

presence/absence of lung cancer based on color information of a dermatological image (e.g.,

optical camera). Suppose that the patient cohort used for model training only contained

patients with white/Caucasian skin color; regardless of architectural design selections and

training paradigms (supervised vs. unsupervised learning), it is likely that the model would

fail to generalize to non-white patients with strong performance. This type of bias caused

by overfitting to the training data is incredibly common in machine learning, especially in

the medical imaging domain in which data is relatively heterogeneous and data is limited.

1.5 Transfer Learning

While there are many strategies that attempt to minimize the likelihood of overfitting bias

including regularization, class weighting, and feature selection, one proposed solution that

has been widely implemented both in medical imaging and elsewhere is transfer learning

[4, 13, 24–27]. Transfer learning describes the application of a model that was pre-trained

for task T1 in domain D1 to a related task T2 in a potentially new domain D2. One

assumes that the features learned for D1 will, to some extent, generalize to D2 and be

applicable to the new task T2, providing improved baseline performance than a randomly

parameterized model. Transfer learning is commonly utilized in medical imaging via pre-

training for classification on the ImageNet database, a collection of millions of natural,

everyday images [28, 29]. Strong performance on this database requires a deep learning model

to characterize potentially generalizable information such as object shape, color intensity,

etc., which are also likely to be important in the medical imaging task.

However, feature transfer is usually suboptimal compared to directly training in the task

domain D2. Often, differences between the two domains can be problematic and may require

image pre-processing that would otherwise be unnecessary or nonsensical for deep network
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Figure 1.3: Depictions of changing parameters in (a) convolutional filter size, (b) stride, and
(c) padding. Selections in each of these parameters can heavily impact model performance
and generalizability. For example, larger convolutional filters can capture a larger area
(receptive field) of the input image but require increased parameterization that exposes the
model to overfitting. Other selections can impact network structure and may restrict or
enhance the type of task for which an architecture can be applied.
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Figure 1.4: Example activation functions common to neural networks, including (left) linear
activation, (middle) rectified linear unit (ReLU) activation, and (right) hyperbolic tangent
activation. The selection of activation plays a role in the complexity of model which the
network can achieve. As the layer output is determined from the activation function, activa-
tion selection may be dictated by prediction task, e.g., classification may require hyperbolic
tangent or softmax activation while hidden layers may utilize ReLU activation.

analysis. Consider the prior example; the natural image domain D1 input space requires 3-

channel (i.e., RGB) images as input but the D2 medical images are grayscale. The grayscale

images must be converted to a 3-channel input (often by copying the grayscale image 3 times

as different “channels”), but the 3-channel filters learned for the task T1 that consider the

interaction between channel dimensions may be nonsensical for the task T2, leading to a

suboptimal model.

In practice, there are several strategies that allow for improved transfer such as training

a new classifier utilizing features extracted from the transfer learned model. This and other

aspects of transfer learning will be discussed further in Chapters 4 and 5 during their specific

application.

1.6 Challenges for AI in CT

Practically, there are several challenges that arise when machine learning techniques are

applied to CT. The most obvious and potentially most impactful is that CT images are
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3-dimensional (3D) while most other domains design models that are structured to only

evaluate 2-dimensional (2D) information. While many investigators choose to simply apply

2-D models to individual CT sections, this fails to incorporate the rich 3-D information that

may improve classification performance and generalization. Further, evaluating CT scans

slice-by-slice is not clinically relevant unless the slice predictions can be sensibly aggregated

to form a reasonable scan prediction. Additionally, even if models could be developed that

incorporate fully 3D information, there are other issues that arise due to non-isotropic res-

olution and unequal image sizes between patients. These can cause problems during deep

network construction and will be discussed in further detail in Chapters 4 and 5 where the

proposed multiple instance model schemes may mitigate undesirable effects.

1.7 Explainability and Interpretability of AI in Medical Imaging

Another aspect of machine learning for medical imaging that has been of high interest in the

past years is the lack of transparency in technology, including ML systems, contributing to

critical decisions [30–32]. Because of the perception of ML algorithms as “black box” algo-

rithms which require little or no explicit human intervention, it can be difficult to ethically

justify their use in high-stakes decisions, especially because this type of technique lends little

indication of when it is likely to fail [30–34]. Thus, the investigation of methods that can

explain why an AI system provided a particular prediction is critically important.

In medical imaging, machine learning is typically applied to improve medical image as-

sessment and workflow [13, 14, 21, 35–49]. The choice in ML method is dictated by the

imaging task, which then influences which interpretability techniques may be appropriate.

We reviewed several approaches that provide interpretable radiological AI systems.

The terms “explainability” and “interpretability” have been increasingly discussed in the

AI community, particularly as they pertain to AI performance and ethics, and have raised

several important questions [50–52]. Will radiologists more heavily weigh AI output with im-
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Figure 1.5: Example questions regarding “explainability” and “interpretability” as used in
this dissertation work. While the two are extremely similar, the intended audience and
implementation of the model output is not equivalent [1].

proved interpretability? Can the incorporation of explainable techniques also benefit model

performance? Who is responsible when inappropriate decisions are made based on AI out-

put? These and similar questions have instigated several attempts to define “explainability”

and “interpretability” in AI; however, many definitions have considerable overlap or clash

[50–52]. In this dissertation, we utilize “explainability” to refer to techniques applied by a

developer or researcher to explain and improve the AI system while “interpretability” refers

to understanding algorithm output for end-user implementation. Questions portraying the

intended meaning of each term are given in Fig. 1.5 [1].

Several groups have provided extensive surveys of explainable AI and visualization [30,

51, 53–57]. However, these reviews focus on more general problems in both medical and

non-medical disciplines (e.g., non-image assessments).

In general, a tradeoff exists between the complexity/depth of an AI system and its in-

terpretability, with classical, shallow algorithms, such as decision trees, providing more ex-
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Figure 1.6: Portrayal of the tradeoff between learning performance, which is often associ-
ated with the number of learned parameters, and explainability. Note that deep networks
are among the most common techniques for ML-based medical image evaluation, but also
have generally low interpretability. There has been a strong push in recent years to develop
techniques for general explanation of neural network predictions. Image acquired from Gun-
ning (publicly available presentation with open distribution)[2].

plainable output with a potentially reduced performance [2, 57, 58]. Figure 1.6 depicts this

phenomenon for several commonly used algorithms. It is important to note that finding

the optimal operating point between system performance, which will improve patient man-

agement, and system interpretability, which will lead to more frequent implementation and

trust in radiological practice, is critical.

AI interpretation techniques can be generally partitioned into two categories: post-hoc

interpretability and inherent interpretability. During the initial rise of AI techniques in the

2010s, post-hoc techniques dominated the interpretability space due to limitations in com-

puting and because of the success that several of these methods demonstrated, culminating

with gradient-weighted class activation maps (Grad-CAM) in 2017 [59]. However, several

studies have demonstrated failures of post-hoc methods, in particular showing non-sensical
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explanations (e.g., identifying regions with no imaging content such as a zero-masked region

as providing high influence to the classification decision) and have led many to distrust such

methods (Fig 1.7).

More recently, interpretability methods that are inherent to model classification and

performance have been of high interest to the AI community, specifically through attention

modules. Attention modules are named as such because they are components of a machine

learning architecture that attempt to guide the “focus” of a model to correctly identify signal

that is relevant to the classification task. This is aptly demonstrated by the first successful

use of attention applied to the U-Net architecture in which Oktay utilized attention to

emphasize feature information relevant to the pancreas and diminish extraneous information.

Inherent interpretability techniques have demonstrated such strong performance that entire

networks can now be composed of these attention modules. In this dissertation, both post-

hoc and inherent interpretability techniques are utilized in an attempt to understand model

performance and identify problematic cases, which may be key in eventual clinical translation

of such models. In this dissertation research, two different attention modules are utilized

to improve model performance and provide interpretable output through attention-based

multiple instance pooling (Section 4.5). The inclusion of such techniques allows for improved

algorithm validation and trust and can be leveraged to increase the likelihood of clinical

translation.
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Figure 1.7: Examples of post-hoc heatmaps generated with Grad-CAM for a COVID-19
classification task. Note that while the heatmaps are sometimes readily interpretable as in
(a), other examples are more difficult to understand, particularly when information outside
the relevant anatomy or even outside the body area are determined to be influential.
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CHAPTER 2

LUNG SCREENING AND THE LOW-DOSE CT DATASET

While the AI algorithms that have been developed for this study are generally applicable

to any type of slice-based imaging modality, Chapters 3 and 4 of this dissertation utilize

low-dose CT (LDCT) acquisitions that present unique challenges related to the given AI

tasks. Because of this, it is important to understand the context of these images and why

we choose to utilize LDCT scans for use cases.

2.1 The Rise of Lung Screening

The Center for Disease Control’s (CDC) most recent report on cancer statistics reported that

lung cancer was the leading cause of cancer death in 2019 at approximately 139,000 deaths

with approximately 221,000 new cases [60]. One of the most important aspects of lung cancer

mortality is the stage of detection, with earlier detection leading to a significantly improved

chance of survival as the earlier stage generally increases the chances of curative treatment

and positive outcomes [61–64]. The primary risk factor for lung cancer is significant smoking

history, and while the number of heavy smokers has been reduced in recent years and led to

reduced rates of lung cancer, there are still many current and former smokers that remain

at an increased risk of lung cancer, particularly as they reach old age [65–67].

In the late 1990s, the Early Lung Cancer Action Program (ELCAP) evaluated annual

lung cancer screening in high-risk populations via chest radiograph and LDCT acquisition

in an attempt to identify non-calcified pulmonary nodules in patients with no prior cancer

[63]. The results of this study found that the LDCT images significantly improved detection

of such nodules at earlier stages, thus allowing for increased flexibility and probability of

success in treating malignant findings [63]. This study initiated widespread interest in lung

screening via LDCT with several other groups beginning large-scale investigations in the
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mid-2000s, including the National Lung Screening Trial (NLST)[62], several European efforts

(e.g., NELSON, LUSI, MILD)[68–70], and the expansion of the original ELCAP to include

international members (I-ELCAP). In each of these follow-up studies, the screening trials

demonstrated significantly reduced risk of lung cancer-associated mortality and, in the case

of the NLST, reduced risk of overall mortality.

Recently, the United States Preventative Services Task Force (USPSTF) recommended

expanded eligibility criteria for lung screening to include all individuals aged 50 to 80 years

old (previously 55-80 years old) who have a smoking history of 20 pack-years (previously 30

pack-years) and are either current smokers or have quit within the past 15 years [71]. These

individuals should be annually scanned by LDCT acquisition until they either no longer fit

the criteria or another health problem significantly reduces the likelihood that lung cancer

detection would benefit the patient. Considering this and the fact that national uptake of

lung cancer screening remains low and there are continued efforts to increase implementation,

it is highly likely that lung screening will experience widespread increases in implementation

in the coming years.

While the primary goal of LDCT screening is to detect lung cancer, there are a variety of

other thoracic diseases that can be visualized within the LDCT scan range, namely within

the heart and lungs [72–75]. Radiologists evaluate for all potential diseases during reading,

but this process is arduous and time-consuming. Given the rise of deep learning technology

and applications in medical imaging, it is prudent to develop algorithms that can serve as

concurrent readers and mitigate any reading errors or variability.

This chapter reviews the LDCT dataset utilized in Chapters 3 and 4 for the evaluation

of additional findings in lung screening patients.
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Table 2.1: LDCT database information

Number of Cases 865 (70%Train/10%Val/20%Test)

Dates of Acquisition 1997 - 2017

Sex at Birth Male (384) Female (431) NA (50)

Smoking Status
Current (257) Former (469)

Never (89) NA (50)

Age Mean (66.8) SD (11.4) Range (33-39)

Pack-Years of Smoking Mean (36.2) SD (30.8) Range (0-199)

Scanner Manufacturer GE Medical Systems Siemens

Exposure Time Range(250-2100)

kVp (100, 120, 140)

Slice Thickness Range (0.5mm - 10mm)

MSOS: None: 0 255 (31.3%)

Mild: 1-3 371 (45.6%)

Moderate: 4-6 114 (14.0%)

Severe: 7-12 74 (9.1%)

Emphysema: None: 500 (58.1%)

Mild/Moderate: 243 (28.3%)

Severe: 117 (13.6%)

2.2 Low-dose CT Acquisition and Dataset

While LDCT is utilized globally for lung screening, there is no established specific definition

for what constitutes “low-dose” [76]. Most screening protocols suggest scan parameters

between 120-140 kVp and 30-100 mAs; the I-ELCAP protocol, under which the data used

in this research were acquired, is within this range at 120 kVp and 40 mAs at most [76]. All

images utilized in this dissertation research were acquired with no contrast enhancement,

no electrocardiogram-gating (ECG-gating), and reconstructed utilizing a standard kernel.

Other information related to the acquisition of the LDCT scans is located in Table 2.1.
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2.3 Additional Disease Findings in LDCT Screening: Coronary

Artery Calcium

Coronary artery calcium (CAC) is typically scored following the Agatston criteria developed

in 1990 [77]. This technique evaluates calcified plaques within the coronary arteries on CT

slices of 3 mm thickness defined as lesions with peak value greater than 130 HU with an

area greater than at least 1 mm2. The Agatston score is then calculated by a weighted sum

of lesion areas; the weighting factor is based on the peak density of a given lesion with the

following ranges:

130 − 199 HU = 1, 200 − 299 HU = 2, 300 − 399 HU = 3, > 400 HU = 4

Based on this weighted sum, the Agatston score has five clinically relevant categories:

None : 0, Minimal : 1 − 10, Mild : 11 − 100, Moderate : 101 − 400, Severe :> 400

Recent research has investigated more complex cardiac risk models, incorporating either the

Agatston score or other CAC scoring techniques [78–80].

Currently there are very few options to reduce the risk of CAC, all of which have im-

proved success when applied prior to severe progression [81, 82]. The most effective solution

is lifestyle change during early stages that reduces the development of CAC, but other treat-

ments include statins, anticoagulants, and more invasive procedures such as coronary an-

gioplasty and coronary artery bypass graft (CABG). Unfortunately, CAC does not typically

coincide with relevant symptoms until it reaches progressive disease stages, thus dedicated

screening programs and additional risk factor disease detection are the primary methods of

CAC scoring.
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Additionally, coronary artery disease has several shared risk factors with lung cancer,

including the two primary lung screening criteria of smoking history and old age [72, 80, 83–

85]. It is thus fitting and appropriate to score CAC on LDCT scans for lung screening.

However, the Agatston score may be inappropriate for application on LDCT scans because

it was defined on only 3 mm scans acquired at standard dose with ECG-gating; the LDCT

scans were acquired at 0.5 mm slice thickness with reduced dose and no cardiac gating [74].

Instead, an alternative ordinal scoring system, the Mount Sinai Ordinal Score (MSOS),

can be utilized that has demonstrated comparable performance to the Agatston score while

maintaining flexibility in application to LDCT scans [74, 86]. The MSOS is identified as

an addition of severity scores assigned to each of the four main coronary artery branches:

left main (LM), left anterior descending (LAD), circumflex (CFx), and right coronary artery

(RCA). Examples of calcium present within each branch as well as other noted potential

sources of calcium are presented in Fig 2.1. Each branch is assigned a score from 0-3 based

on the extent of CAC within that branch, with a score of 0 corresponding to no CAC

present, 1 corresponding to CAC in less than 1/3 of the length of the artery, 2 corresponding

to between 1/3 and 2/3 of the artery length filled with CAC, and 3 corresponding to greater

than 2/3 of the length presenting calcification. The sum of the branch scores provides the

MSOS CAC score, ranging from 0-12. Similar to the Agatston score, the MSOS can be

stratified into clinically relevant categories regarding the risk and treatment of coronary

heart disease (Table 2.2).

The research utilized in Chapter 3 attempts to automatically provide the MSOS CAC

score on LDCT scans. The prevalence of the MSOS categories in the database used for this

research can be found in Table 2.1. Note that 51 cases were excluded from CAC evaluation

due to evidence of prior knowledge of CHD either through visual presence of stent or CABG,

resulting in a total of 814 cases utilized for the CAC AI research.
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Table 2.2: MSOS and Agatston CAC score comparison

MSOS Range Agatston Score Range Clinical Recommendation

0 0 Low probability of CHD, no treatment
recommended

1-3 1-100 Mild to moderate probability of CHD,
potential use of statins

4-12 >100 High probability of CHD, use of statins
and additional medications, potential
invasive procedure required

Figure 2.1: Examples of CAC on LDCT scans. Green arrows indicate positive detections of
CAC in the LMA (a) and in the RCA, CFX, and LAD in (b) while red arrows indicate false
detections in the aortic root (a), aortic valve (b), and ribs (a-b) and in the descending aorta
in (a).
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2.4 Additional Disease Findings in LDCT Screening:

Emphysema

Emphysema is a lung condition in which the inner lining of the alveolar walls of the pul-

monary lobule, the location of gas exchange within the lungs, break down, restricting the

lungs’ compliance and ability to contract properly [87]. Because of this, gas can no longer

be expelled from the lungs, leaving no volume for oxygen to fill upon inhalation. The Amer-

ican Lung Association reports that over 2 million individuals have been diagnosed with

emphysema, of which one of the primary causes is smoking history along with other genetic

dispositions and air contaminants; thus, a significant proportion of the lung screening popu-

lation is likely to have some degree of visible emphysema upon LDCT presentation [72, 85].

Similar to CAC, there is no current cure to emphysema, so early detection and treatment

can significantly mitigate progression and improve patient quality of life.

On CT scans, airspace enlargement and the trapped air caused by a patient’s inability to

exhale properly appear as regions of hypoattenuation throughout the lungs, with prevalent

regions of emphysema impacted by the dominant phenotype. The three phenotypes are

centrilobular emphysema (CLE), panlobular emphysema (PLE), and paraseptal emphysema

(PSE), examples of which are shown in Fig 2.2 [88–91]. In the case of a lung screening

population, the most dominant phenotype is CLE, which is commonly found in asymptomatic

elderly patients (similar to the motivation for lung cancer detection). CLE typically presents

with an upper lung lobe predominance with a patchy distribution throughout the lungs and

visual hypoattenuation in the central part of the pulmonary lobule. Alternatively, PLE has

a lower lobe predominance with a more uniform distribution across the pulmonary lobules,

and PSE predominates with consolidated hypoattenuation towards the periphery of the

pulmonary lobules.
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Figure 2.2: Examples of emphysema phenotypes on CT scans. (a) shows CLE, with patchy,
hypoattenuated regions throughout the upper lungs, (b) shows PSE at the periphery of
the lung with discrete hypoattenuation, and (c) shows PLE, with widespread, homogeneous
hypoattenuation covering a large portion of the lower lungs [3]

Similar to CAC, a scoring system was developed by Mount Sinai to evaluate emphysema

on LDCT scans [92]. The scores range from 0 to 3 describing no, mild, moderate, and severe

emphysema, respectively, and are defined as follows:

• Mild: no discrete regions of hypoattenuation, but other parenchymal abnormalities

suggesting the presence of emphysema.

• Moderate: discrete regions of hypoattenuation present and involved in less than half

of the lung parenchyma.

• Severe: discrete regions of hypoattenuation present and involved in more than half of

the lung parenchyma.

For the purposes of this research, the emphysema severity categories were grouped based on

the presence of hypoattenuated regions (e.g., clear visible signs of emphysema) for a binary

classification problem; a negative scan corresponded to no emphysema while a positive scan

corresponded to mild/moderate/severe. The distribution of emphysema severity categories,

dominant phenotypes, and class distribution can be found in Table 2.1. Note that 5 cases
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Figure 2.3: Proposed pipeline following LDCT acquisition. Note that the automatic evalu-
ation is tailored to the specific condition based on desired output.

were excluded due to scan not encompassing the entire lung parenchyma, resulting in a total

of 860 cases evaluated for the emphysema AI research.

In summary, the work completed in Chapters 3 and 4 fulfills the pipeline proposed in

Fig. 2.3 that can be integrated into the lung screening workflow.
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CHAPTER 3

AUTOMATIC SEGMENTATION AND CLASSIFICATION OF

CORONARY ARTERY CALCIFICATIONS ON LOW-DOSE

THORACIC CT

3.1 Coronary artery calcium

We build upon our knowledge of CAC, as summarized in Section 2.3, to develop machine

learning methods for automatic assessment of CAC. As previously mentioned, there are

several shared risk factors between lung cancer and severe CHD, the leading cause of death

in the United States at an estimated 366,000 deaths per year and present in 18.2 million

adults, thus it is fitting and appropriate to evaluate CAC at LDCT acquisition [72, 80, 83, 84].

However, a manual review of all LDCT scans for precise CAC score would be time-consuming

and susceptible to reader variability errors, thus the goal of this study is the development of

an automatic, rapid, and objective scoring system [93].

Several groups have previously produced machine learning models to evaluate CAC score

on CT scans. Lessmann proposed a pair of deep networks with different receptive field sizes

to identify potential CAC lesions and reduce false positive detections [94]. De Vos registered

cardiac and chest CT scans to a 3D atlas to identify a field of view and relevant slices

then used a CNN to identify CAC lesions, then produced a risk model for cardiovascular

mortality [95, 96]. Zeleznik utilized a series of U-Nets to identify a field of view around

the heart through automatic segmentation, then classified pixels as CAC or not [97]. Cano-

Espinosa manually identified the heart in CT scans and used a 3D CNN to infer the Agatston

CAC score [98]. Wang applied a threshold of 130 HU, as given by the Agatston score

criteria, to identify all potential CAC candidates then classified each using a 3D ResNet

architecture by location/branch as non-CAC, left anterior descending (LAD), circumflex

(LCx), left main (LM), and right coronary (RCA) [99]. In this work, we expand upon prior
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Figure 3.1: Standard U-Net architecture demonstrating an example segmentation of CAC
within a CT section. The U-Net is composed of an encoding path, which utilizes con-
volutional and pooling layers to form an encoded representation of the input 2D image.
The second half of the network then produces a binary segmentation map by decoding the
representation into a probability map indicating if each pixel belongs to the desired struc-
ture/anatomy.

studies by performing segmentation and location-based lesion classification using a single

U-Net based algorithm and providing CAC scores for an ordinal scoring scheme [100].

3.2 Revised U-Net Architecture

The standard U-Net architecture consists of an encoding path, which forms a latent repre-

sentation of the input image, and a decoding path, which utilizes the latent representation to

produce a binary segmentation (Figure 3.1) [101]. A qualitative evaluation of a multi-class

U-Net for CAC lesion segmentation and classification found that the intermediate layers

occasionally failed to maintain the long range spatial information needed for location-based

classification through the late stages of the decoding path. Thus, proposed here is a U-

Net variant called CACU-Net which preserves the information needed for CAC classification

through an additional decoding branch with minimal additional training parameters.

The branch is composed of feature maps extracted from each decoding path level and

combined through successive 2x2 kernel bilinear interpolations for dimensional matching
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and channel-wise concatenation, thus carrying the long-range spatial information to the

classification layer L2 (Fig 3.2) which identifies rough artery regions. Consequently, the

reduced number of operations causes a tradeoff between the precise semantic information

needed for accurate segmentation in this branch; however, this was maintained in the L1

segmentation layer which operates as a standard U-Net decoding path. The L2 layer classified

between 5 location categories, LM, RCA, CFx, LAD, and None, with None indicating that

the lesion was falsely identified as CAC. The L1 and L2 layer outputs were combined through

elementwise multiplication of the L1 output with each channel of the L2 layer (e.g., arteries).

The final artery classification decision was then taken as the channel in which the L2 layer

provided the greatest probability. The full architecture is depicted in Fig 3.2, illustrating

the two architecture branches.

3.3 Training, Testing, and Statistical Analyses

The two architecture branches were trained simultaneously with loss function L = L1 +

L2 where L1 was the binary cross-entropy loss calculated on the segmentation from the

main branch and L2 was the categorical cross-entropy loss calculated between the predicted

classification map and the reference standard artery segmentations. In this way, the L1

classification layer was optimized for sensitivity and segmentation accuracy while the L2

classification layer was optimized for artery classification. There are many potential sources

of false positive CAC detections in LDCT scans and unnecessary patient recall is a key

problem, thus, we utilized ROC analysis to first determine an optimal LDCT scan level

CAC severity decision threshold for each artery [102]. Performance was characterized by

the area under the ROC curve (AUC), with the average area of calcium per CT scan slice

serving as a pseudo-volume score due to varying patient sizes and slice thicknesses.

Five models were trained with different randomly produced training, validation, and

testing sets consisting of 80%, 10%, and 10% of the available cases, respectively, and AUC
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Figure 3.2: Schematic of the proposed deep network architecture, CACU-Net. Note that
the softmax classification layers labelled with loss functions L1 and L2 attempt to match
target outputs, with L1 aiming to segment all lesions and L2 aiming to segment lesions
in each artery branch with different channels represents the different artery branches. A
threshold was then applied to the L1 output to provide a binary segmentation which was
then multiplied in an elementwise manner with each of the artery class probability maps
produced by the L2 prediction layer. Artery class was then determined on a per-pixel basis
by the maximum artery class probability for each pixel (LMA, RCA, CFX, LAD, and None).
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variance was obtained across the five models. AUCs were compared through the DeLong

test on each of the five training passes with the median p-value serving as the metric for

significance [103]. The network was trained with Adam optimization with learning rate 0.01,

batch size 8, and stopping patience of 5 training passes of no improvement. Note that the

architecture chosen for this study is 2D rather than 3D, since, although 3D models have

increased number of parameters with the potential for improved performances, they also

require substantially more data for training.

All machine learning analysis was performed in Python 3.0 using Keras 2.7 with Tensor-

flow backend while image analysis and reference standard segmentations for U-Net training

were provided through MATLAB version 2020b with the MATLAB Image Labeler. Statis-

tical tests also included the Stuart Maxwell test [104].

3.4 ROC Analysis and Severity Evaluation

In the task of determining whether a LDCT scan presents with CAC in any artery, the

CACU-Net performed with an area under the ROC curve of 0.94 (0.03), which demonstrated

comparable performance to the standard U-Net algorithm performance of AUC 0.94 (0.03)

and outperformed the multi-class U-Net variant with AUC 0.90 (0.16). Further, CACU-

Net also showed significant improvements for the task of detecting CAC in the LM, CFx,

and RCA, including improved consistency across all arteries, and failed to demonstrate a

significant difference for the LAD. ROC performance and comparisons are displayed in Table

3.1.

The confusion matrices in Figures 3.3 and 3.4 compare the ability of the three U-Net

variants in the tasks of stratifying LDCT scans and coronary artery CAC scores into clinically

relevant categories. At the coronary artery level, CACU-Net correctly predicted the ordinal

class for 67% of scans for the LAD, 70% for CFx, 74% for RCA, and 80% for the LM. These

results contrast with the ROC performance because the CACU-Net tended to underestimate
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Table 3.1: Scan and Artery Performance AUCs (standard deviation). Bold indicates statis-
tical significance.

Model Scan RCA LMA LAD CFX

Standard U-Net 0.94 (0.03) - - - -

Multi-class U-Net 0.90 (0.16) 0.86 (0.13) 0.62 (0.19) 0.94 (0.05) 0.81 (0.18)

CACU-Net 0.94 (0.03) 0.87 (0.04) 0.77 (0.06) 0.92 (0.04) 0.86 (0.03)

the ordinal score, thus the arteries that had generally lower, less variable scores provided

more accurate severity evaluations. However, the Stuart Maxwell test for each artery did

demonstrate a significant difference between CACU-Net and radiologist scores (p<0.05) for

each of the four coronary artery branches, suggesting further improvement is needed to match

radiologist performance.

3.5 Evaluation of Severe Misclassification

We define the classification error as

ϵij = |yij − f(xij)|

where yij is the radiologist-determined ordinal score for the jth artery of the ith case and

f(xij) indicates the predicted ordinal score. Severe misclassification at the scan level is

defined where
∑

j ϵij ≥ 3, which can be acquired either through a combination of artery level

misclassifications, of which there can be major (ϵij ≥ 2) or minor (ϵij = 1) misclassifications.

Manual review of cases revealed that 11.0% of cases suffered severe misclassification, with

5.0% underscored and 6.0% overscored.

Of the 5% of CT scans (36 scans) that were underscored, 60.0% were caused by major

misclassification in at least one artery, with 28.5% of those also experiencing more than one
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Figure 3.3: Confusion matrices for the individual coronary arteries comparing predicted and
reference standard ordinal scores for each of the four main coronary artery branches.
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Figure 3.4: Confusion matrices for the scan level MSOS comparison with clinically relevant
partitions of no (score: 0), mild (score: 1-3), and marked (score: 4-12) severity. Note that
this is the confusion matrix of only one of the five models, but is representative of the results
from all five.
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major artery misclassification. The remaining 40% were caused by a combination of minor

misclassifications.

Of the 6% of CT scans (43 scans) that were overscored, 86.0% tended to be more impacted

by major misclassifications in at least one artery, with the remaining 14.0% caused by a

combination of minor misclassifications. 32.5% of the overscored cases contained multiple

severe artery misclassifications.

3.6 Example Segmentations

The example images in Fig. 3.5 provide insight into successful and failed model use cases.

Fig. 4a-d depict successful segmentation and classification performance for each artery. Fig.

3.5e-h demonstrate vulnerability to motion artifacts through severe oversegmentation (Fig.

3.5e) or misclassification (Fig. 3.5g,h). There were also occasional instances of completely

missed CAC lesion segmentations as in Fig. 3.5f, which marks a missed RCA lesion, poten-

tially due to close proximity and appearance to the ribs.

3.7 Discussion of CACU-Net and Future Directions

The novel architecture additions proposed in this study showed negligible detrimental effects

on scan level performance compared to the standard U-Net with both demonstrating AUCs

of 0.94 (0.03) despite the additional information extracted in the CACU-Net. The proposed

model also performed more consistently across random testing sets than a more standard

multi-class U-Net variant for each artery. Further, ROC analysis showed that the artery

classifications in order of increasing performance were LMA, CFX, RCA, and LAD.

Based on the ROC and confusion matrix analysis, there is strong potential for clinical

utilization of the proposed architecture for automatic calculation of the ordinal CAC severity

score on LDCT scans. The additional information acquired through the classification branch
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Figure 3.5: Cropped example images and their corresponding automatically produced seg-
mentations. Colors indicate artery classification, with green=LAD, red=LMA, blue=RCA,
cyan=CFX. Image pairs (a-d) display examples of successful identification and classification
for each artery while image pairs (e-h) demonstrate common cases of partial or complete
failure in either segmentation (e-f) or classification (g-h). The red arrow in (f) marks an
RCA lesion that was completely missed.
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of the model holds significant clinical value as recent studies have suggested more effective

cardiovascular risk metrics by including location information to more accurately identify

potentially dangerous lesions [96, 105–107]. For example, de Vos found that TAC deposits

were the most significant predictor of cardiovascular risk [96]. While the currently proposed

model does not account for TAC due to lack of reference standard or inclusion in the ordinal

scoring system, this could be included as an additional class in the L2 classification layer

with retraining.

The confusion matrices support the ROC conclusions, with the LMA demonstrating worst

performance followed by RCA, CFX, and LAD in order of improving performance. The

model had a slight tendency to overpredict severity; qualitative case review demonstrated

that these were often due to motion artifacts, which has been explored in prior literature. The

qualitative review also found few cases where mitral annular calcifications were misclassified

as CFX lesions. This could be due to the inclusion of the long-range spatial information

in CACU-Net classification, but further investigation is needed to confirm this. The major

misclassifications were often caused by severe LMA misclassification, which may be explained

by two factors: 1) the LMA had the lowest CAC prevalence of all lesions in the dataset,

which is potentially desirable because it is representative of a real clinical population but may

have been suboptimal for deep network training purposes, and 2) it is difficult to distinguish

LMA lesions from LAD and CFX lesions in certain situations. This supports the decision in

other studies to combine LAD and LMA lesions in a single class.

This study was limited by a lack of comparison to similar segmentation approaches which

is partially due to the comparison of different datasets, which may be inappropriate, and

more so that this study aimed to calculate the ordinal score instead of the Agatston score.

While the scores have been shown to correlate well, Agatston calculations were not performed

for this study due to a lack of reference standard data, despite the proposed algorithm’s ca-

pability to produce the Agatston score [86, 100]. Further, the reference lesion segmentations
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used for model training were subject to potential errors due to motion artifacts and other

sources of variability; further investigation is required to determine if other methods, such

as the CycleGAN based method proposed by van Velzen, are more effective in addressing

these issues [108]. Finally, as noted, this study only classified CAC lesions as opposed to all

potential sources of calcium within the LDCT scan. While additional classification options

could easily be added to the proposed model, this would require model re-training.

In summary, we developed a novel U-Net variant that segments and classifies CAC lesions

with efficient, effective architectural additions. The proposed model was able to identify scans

which contained clinically relevant CAC with high performance in a population of LDCT

cases, demonstrating strong clinical potential for this method. Further, this approach could

be used for the development of improved cardiovascular risk metrics, specifically those that

incorporate CAC volume, density, and location, and may aid in reducing variability during

radiologist reporting.
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CHAPTER 4

EMPHYSEMA CHARACTERIZATION THROUGH

MULTIPLE INSTANCE TRANSFER LEARNING IN LUNG

SCREENING CT SCANS

4.1 Multiple Instance Learning

In this chapter, we attempt to characterize emphysema to complete the LDCT evaluation

pipeline. As discussed in Section 2.4, this problem significantly differs from CAC scoring,

requiring characterization of regions including all lung tissue rather than identification of

individual lesions.

Multiple instance learning (MIL) is a deep learning scheme commonly used in digital

pathology that utilizes weak annotations to train models by evaluation of instances (e.g.,

CT sections) to form a collective classification decision of a bag (e.g., CT scan) [109]. Wang

discussed key MIL schemes, mi-Net and MI-Net, which classify scans based on individual

instance classifications and pooled instance representations, respectively [110]. Ilse improved

MIL schemes through attention-based multiple instance learning, which utilizes attention

mechanisms to identify and more heavily weight key instances of whole slide images for

cancer detection [5].

Deep learning, including MIL schemes, have been utilized to automate emphysema evalu-

ation in standard diagnostic and lung screening CT scans. Humphries utilized a convolutional

neural network and long short-term memory architecture to classify visual emphysema pat-

tern on CT and Oh used the same model to compare visual emphysema progression with

functional impairment and mortality [111, 112]. Negahdar automatically segmented lung

volumes on chest CT and classified patches of lung tissue based on visual emphysema pat-

tern to quantify severity [113]. Chepylgina and Orting utilized human-engineered features

based on histogram features acquired from filtered lung ROIs in a multiple instance learning
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scheme to characterize COPD and emphysema, respectively, in low-dose CT scans [114, 115].

Tennakoon expanded their work to incorporate deep MIL on 3D LDCT patches to classify

emphysema presence [116].

In our work, we utilize deep MIL with transfer learning and attention-based pooling

(Transfer AMIL) to evaluate emphysema in LDCT scans and compare performances in clas-

sification of disease.

4.2 Transfer Multiple Instance Learning

Typically, MIL is posed as a binary classification problem in which the data are composed

into bags Xi = {xi1, xi2, ..., xiN} each of which is composed of N instances xij [5, 110].

The corresponding instance truths yij ∈ {0, 1} are unknown, but the bag truth is determined

from the instance truths by the binary decision rule.

Yi =


0, iff

∑N
j yij = 0

1, otherwise

(4.1)

MIL can be broken down into three key steps as: 1) extraction of instance representations,

2) transformation from instance representations to bag representation through MIL pooling,

and 3) classification of bag representation for clinically relevant decision [117]. In all, the

process is described by

Ŷi = g(Pf(Xi))

where Ŷi is the predicted bag label, Xi is the set of input CT sections (images) that are

transformed to instance representations via f , pooled via matrix P, and transformed to a

bag prediction via g [117].

In our study, instant representations f(Xi) of CT sections are acquired through transfer

learning from a pre-trained VGG19 architecture [118]. Transfer learning utilizes large models
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with deep, hierarchical features after pre-training for a similar task, in this case image

classification but on the ImageNet database set of natural objects [13, 14, 119]. In situations

where little training data are available, transfer learning allows for the extraction of more

complex, rich data representations than can be achieved by training a model from scratch.

In this study, we utilized a VGG-19 architecture to extract quantitative features similar to

the scheme proposed by Antropova [4].

The instance representations were then input to two fully connected layers with ReLU

activation with a dropout rate of 0.5.

Attention mechanisms have been widely utilized in deep learning to both improve per-

formance and provide interpretability of model predictions [120]. In our study, the pooling

matrix P was constructed through the MIL attention mechanism in which a bag represen-

tation was acquired through a weighted average of instance representations:

z =
N∑
n=1

anxn (4.2)

an =
exp(wT tanhVxTn )∑N
j=1 exp(wT tanhVxTj )

(4.3)

for learned parameters w ∈ R128 and V ∈ R128x512 with N input instances xTn with di-

mension 512 and hidden dimension 128. The attention weights also provided interpretable

output inherent to the decision task in the form of influential instances (i.e., slices), which

were evaluated separately for model validation and interpretability.

The attention weights for different scan classes (dominant emphysema phenotypes of

centrilobular, panlobular, and paraseptal) were evaluated by scaling attention weights for a

given scan to the range [0,1] and plotting as a function of the axial depth to determine regions

of high and low influence. Influence was quantified by three metrics: 1) depth maximum

37



attention of fit curve, 2) weighted average of slice depths weighted by attention, and 3) range

of fit curve attention values. The full workflow of Transfer AMIL is provided in Fig 4.1.

The attention weights for different scan classes (dominant emphysema phenotypes of

centrilobular, panlobular, and paraseptal) were evaluated by scaling attention weights for a

given scan to the range [0,1] and plotting as a function of the axial depth to determine regions

of high and low influence. Influence was quantified by three metrics: 1) depth maximum

attention of fit curve, 2) weighted average of slice depths weighted by attention, and 3) range

of fit curve attention values. The full workflow of Transfer AMIL is provided in Fig 4.1.

4.3 Training, Testing, and Statistical Analyses

All models were trained in Keras (2.2.4) with Tensorflow backend (2.2.0) in Python (3.7) and

optimized by binary cross entropy loss calculated for bag predictions. Adam optimization

was utilized with parameters β1 = 0.9 and β2 = 0.99 and initial learning rate of 0.0001.

Early stopping was initiated if the validation loss did not improve after 7 iterations. All

learned parameters were initialized by sampling a normal distribution.

Models were trained through 5-fold cross validation by case with 60%, 20%, and 20% of

the available cases serving for training, validation, and testing, respectively, in each evalua-

tion fold. The mean and variance of the area under the ROC curve (AUC) were obtained

across the five models. AUCs were compared through the DeLong test on each of the five

training passes with the median p-value serving as the metric for significance [103].

We compared Transfer AMIL to other approaches which required only scan annotations.

A 3D CNN classifier was trained by interpolating to a fixed input size of 128 slices and scan

presence of emphysema serving as binary class. Additionally, a standard 2D classifier was

trained by assigning the scan class label to all slices within the scan regardless of emphysema

presence within that slice; this caused noisy labels during training, particularly with many

false positive slices for severe emphysema cases.
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Figure 4.1: Model workflow of the Transfer AMIL approach. This includes feature extrac-
tion of CT images through an ImageNet pre-trained model based on methods developed by
Antropova et. al. followed by attention-based MIL pooling based on methods developed
by Ilse et. al. [4, 5]. Two outputs are generated for each LDCT scan input, the attention
weights which identify influential slices for the classification task and the scan prediction for
the presence of emphysema.
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Table 4.1: Emphysema classification assessment

Algorithm
AUC from

ROC Analysis

Human-
Engineered

Features
Deep CNN
Features Interpretable

Transfer
Learning

Transfer AMIL 0.94 +/- 0.04 X X X

Noisy 2D Classifier 0.85 +/- 0.06 X

Fully 3D Classifier 0.58 +/- 0.16 X

AMIL 0.69 +/- 0.05 X X

Mean Pooling 0.90 +/- 0.02 X X

Max Pooling 0.88 +/- 0.02 X X

Cheplygina 0.78 +/- 0.04 X X

Orting 0.88 +/- -.—- X

Tennakoon 0.95 +/- -.—- X

4.4 Binary Classification Performance

In the task of determining if a CT scan presented with emphysema or not, the Transfer AMIL

approach yielded an area under the ROC curve of 0.94 +/- 0.04, which was a statistically

significant improvement compared to other methods evaluated in our study following the

DeLong Test with correction for multiple comparisons (Table 4.1). Transfer AMIL performed

better than or similar to other published work, including shallow, human-engineered MIL

methods, as well as other deep MIL approaches, although it is important to note that others’

evaluations were on different datasets.

4.5 Attention Weight Interpretability Analysis

Attention weight curves were calculated to demonstrate the influence of disease type localized

throughout the lung. The attention weights demonstrated a stronger influence for slices in the

upper lung in all scan classes, indicating that the model prioritized upper lobe information
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Table 4.2: Quantitative attention weights from Figure 4.2

Scans Evaluated
Maximum Attention

Lung Depth (%)
Weighted Average
of Lung Depth (%)

Range of
Attention Values (%)

Positive Scans 15.6 38.5 33.6

Negative Scans 32.9 38.7 47.2

Positive: Centrilobular 19.3 39.1 34.8

Positive: Panlobular 17.2 46.2 20.0

Positive: Paraseptal 12.8 37.6 24.1

(Table 4.2, Figure 4.2). This agrees with published literature trends that note an upper

lobe predominance for emphysema, particularly centrilobular, the most common phenotype

in this dataset [88–91]. Recall, influence is quantified by three metrics: 1) depth maximum

attention of fit curve, 2) weighted average of slice depths weighted by attention, and 3) range

of fit curve attention values.

By phenotype, the centrilobular and paraseptal attention average depths (39.1%, 37.6%)

aligned with expected upper lobe predominance compared to panlobular (46.2%). Further,

the panlobular scans tended to more heavily influence slices throughout the lung range

as demonstrated by the reduced range of attention values (20.0%) compared to the other

phenotypes (34.8%, 34.1%). Note that any given scan did not necessarily present with only

one phenotype; for example, the scans labeled panlobular-dominant may also present with

other phenotypes. This and the model’s learned predisposition to more highly weight the

upper lobe slices (as conveyed by the quantification of negative scan attention) may account

for the relative importance of the upper lobes even in the panlobular-dominant scans.

The top-k influential slices according to attention weights were evaluated to determine

which CT imaging features drew the most attention and to identify potential sources of

misclassification. The prevalence of image features that were present in the top-k selected

attention weighted slices are shown in Fig 4.3. Different features were likely to have differ-

ent prevalence within each scan (e.g., nodules were local abnormalities while architectural
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Figure 4.2: Attention weight curves illustrating the fit of attention weights from CT slices as
a function of height in the lungs for (top) positive (red) and negative (green) LDCT scans and
(bottom) for different dominant phenotypes of emphysema: centrilobular (blue), panlobular
(pink), and paraseptal (turquoise). Since patients’ CT scans have variable number of slices
covering the lung region, in these plots, the range has been normalized to fit between Lung
Top and Lung Bottom.
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distortions were generally more widespread structural changes), thus the prevalence of each

imaging feature as identified by a radiologist is presented for comparison. Bronchial disease

and architectural distortions demonstrated the largest change in importance for the top-k

attended slices compared to the human reader with changes of 23.7% +/- 0.03% and 22.7%

+/- 0.01%, respectively. The prevalence of each feature did not significantly change when

including more slices in the attention analysis; however, bronchial disease and architectural

distortion features were attended to much more frequently than their frequency in entire

scans while the opposite occurred for ground glass opacities. This may suggest that the

model was balanced between identifying features indicative of emphysema presence, such as

regions of hypoattenuation and structural changes, while maintaining a general representa-

tion of the entire CT scan.

4.6 Discussion and Future Directions

In this study, we present a novel CT slice-based Transfer AMIL approach for evaluating

emphysema on LDCT scans acquired for lung screening. The model provides strong clas-

sification performance compared to models with similar label constraints, including models

evaluated for this study and those published in the literature. The attention module also

provides interpretable information for verifying model performance by identifying slices that

were most influential to the classification decision. Indeed, the attention weight trends for

different subsets of the LDCT scans agreed with expectations in terms of the most likely

regions to find emphysema, including when different classes of emphysema were dominant.

A further investigation into the attention weights also revealed which CT image features

were most useful for the model prediction and may provide insight into what potential cases

will be problematic for automatic evaluation, particularly considering the lung screening

population.

43



Figure 4.3: Evaluation of common thoracic imaging features. The prevalence of each feature
within the entire CT scan as identified by a radiologist and when selected by the top-k
attention weighted slices. Note key differences between whole slice prevalence and selected
prevalence: bronchial disease and architectural distortions were more heavily weighted while
ground glass opacities are diminished. Further, the consistent representation across the top-k
slices for different k demonstrates the model’s tendency to more heavily weight slices with
similar extracted representations.
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Importantly, the developed model requires a relatively small amount of computing power

compared to other modern deep learning computer vision tasks. The AUC performance

achieved by the Transfer AMIL was either comparable or outperformed other models in this

study, including standard 2D classification models with noisy labels and 3D image classifiers.

Note that this performance may only hold true for the data available for this study; a large

amount of data would likely improve the non-transfer learning models more than transferred

models because during training the number of training images approaches the number of

trainable parameters.

The pre-trained VGG19 feature extraction model parameters (20M) were fixed from the

pre-training task with no additional training; additional training would further underdeter-

mine the model considering the limited dataset of 860 scans. With the feature extractor

fixed, the additional fully connected layers and attention module require only 1.15M train-

able parameters; still an underdetermined system, but at a greatly reduced risk of overfitting.

While larger standard architectures such as ResNet50 and DenseNet121 could be utilized for

feature extraction, this study demonstrates that even the use of smaller, less complex mod-

els can achieve competitive performance. Note, these architectures were evaluated but no

performance gain was observed thus the least computationally expensive model was utilized.

Further, the reduced model capacity and use of transfer learning with a common architecture

encourage wider implementation of this technique because the compute power needed to run

the model is generally attainable by today’s standards and feature extractor does not require

local training.

While the attention module interpretable output validates model performance compared

to other published studies, it also encourages clinical implementation as the attention weights

can be added as an optional part of the lung screening workflow for a radiologist to further

investigate the classification decision, specifically by review of the slices influential to the

classification decision. This review process can lead to radiologist trust and understanding
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of clinical implementation of the algorithm and has the potential to improve clinical workflow

in terms of both reading time and performance, although this would require a prospective

reader study to confirm.

The theme of improved performance also aligns with the attention module’s ability to

identify which cases may be problematic for classification. For example, the model tended

to more heavily weight slices with bronchial disease and architectural distortions, which are

nonspecific to emphysema patients, and which often appear similar to typical presentation

of emphysema (e.g., regions of hypoattenuation and structural changes). This also suggests

that patients with these presentations caused by non-emphysematous conditions may be

difficult for the model to classify.

Future work should prospectively utilize this model in a reader study to evaluate its im-

pact on radiologist performance and radiological workflow as well as include images acquired

from multiple institutions to assess model generalizability. This is especially important as

the data in this study were limited (single institution, single scanner manufacturer, limited

N). Further, this study only evaluated binary classification decisions and does not consider

relationships between slices when calculating attention weights; multi-class variants of MIL

as well as more complex attention-based pooling functions. Despite these limitations, the

Transfer AMIL method achieved strong performance as determined from ROC analysis and

the attention weight investigations performed in this study demonstrated strong potential

for clinical implementation.
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CHAPTER 5

PROGNOSIS AND TREATMENT RECOMMENDATION FOR

COVID-19 PATIENTS THROUGH DEEP LEARNING ON

THORACIC CT

In the final aim of this dissertation research, we veer from the LDCT domain to evaluate CT

scans of patients who have been infected with SARS-CoV-2, the virus causing COVID-19. In

this chapter, we begin with a discussion of the epidemiological impact of COVID-19 and how

medical imaging has been utilized to evaluate COVID-19 patients, particularly during the

recent pandemic. We then present two separate but related studies: 1) our preliminary study

which utilized a rudimentary MIL approach on a limited dataset from early in the pandemic,

and 2) our more recent study that expanded the MIL approaches related to COVID-19 on

a significantly larger, more representative dataset. The deep network models developed in

this aim have the potential to improve COVID-19 patient management, through assessment

of disease severity and prediction of outcomes for both hospital resource management and

treatment options.

5.1 COVID-19 and Medical Imaging

The recent outbreak of the 2019 novel coronavirus has disrupted the global economy, ex-

hausted medical resources, and adversely affected millions of individuals [121–123]. The

associated disease (COVID-19) typically manifests through pulmonary dysfunction, includ-

ing development of acute respiratory distress syndrome through COVID-19 pneumonia [124].

Steroid administration has been widely implemented by clinicians to treat severe cases of

COVID-19 despite the many side effects that have been recognized [125, 126]. In particular,

methylprednisolone and dexamethasone are common steroids used for COVID-19 treatment

due to their demonstrated impact in treating inflammatory symptoms in other respiratory
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infections [127, 128]. However, patient reaction to steroid administration is variable, de-

pending on many factors including patient age, smoking history, and other comorbidities.

Thoracic imaging through chest CT is used clinically to aid in differential diagnoses, moni-

tor disease progression/severity, and, in the case of steroid administration, inform treatment

regimen, which is especially critical for COVID-19 due to the significant burden that this

disease places on medical resources. Deep transfer learning methods may have a role in

identifying the amount and type of medical resources that will be needed throughout patient

hospitalization.

The primary finding of COVID-19 patients on CT scans is peripheral and patchy or

nodular/mass-like ground-glass opacities (GGO), typically presenting bilaterally with a pre-

dominance for lower lung lobes [129, 130]. The typical pattern is often reminiscent of or-

ganizing pneumonia. As the disease progresses to a severe state, GGO is observed more

centrally, with infiltration and consolidation [129]. The visualization of COVID-19 through

CT is strongly dependent on the amount of time between virus contraction and scan acqui-

sition, potentially causing inaccurate diagnosis during image reading [131]. However, CT

has been used by clinicians as the most effective way to visualize the progress of treatment

for many pulmonary diseases, including lung cancer and pneumonia, by assessing changes in

diseased tissue size, shape, and density. However, these evaluations are often qualitative and

subjective, leading to inconsistent judgments and, potentially, detrimental consequences in

patient care. Exploring quantitative metrics such as volume and density has shown improved

evaluation accuracy, however these measurements depend on accurate, consistent delineation

of the diseased tissue which requires consensus from radiologists to draw, reconcile, and pri-

oritize their delineation. Deep learning has the potential to overcome these difficulties and

provide quantitative assessments of disease progression.

48



5.1.1 COVID-19 Databases

Two datasets were collected from COVID-19 infected populations. The first dataset, COVID-

Set1 (CS1), was acquired in the early days of the pandemic, February 2020-March 2020, prior

to the discovery of effective treatment methods, and thus this set of 41 patients all reached

severe disease stage and were referred to the Renmin Hospital of Wuhan University for treat-

ment, including the use of ventilators, antivirals, and steroids. In particular, the decision

to administer steroids was reached based on a combination of symptom severity and disease

presentation on CT imaging, with 27 of the 41 patients determined by an expert intensivist

as severe enough to necessitate steroid administration. For each of these patients, multi-

ple CT scans were acquired throughout their course of treatment to monitor response and

disease progression. However, the cases in this cohort were limited; i.e., all of the patients

were responsive to administered treatments, thus none of them died. Further, as previously

discussed in Chapter 2, deep learning models perform at their best when large amounts of

data are provided, thus the total number of 41 patients greatly exposed any deep learning

training to model overfitting and will be revisited in Section 2.4. The demographics and

imaging information related to this cohort, which will be referred to as COVIDSet1 (CS1),

are given in Table 5.1.

For CS1, to demonstrate that the medical resources needed to adequately treat patients

who needed steroids and those who did not were notably different, Kaplan-Meier survival

analysis was performed with time of hospitalization exchanged for time of survival (Fig-

ure 5.1) [132]. Particularly, patients who demonstrated a higher pneumonia severity index

(PSI) grade experienced much longer hospitalization times than those with a lower PSI

[133, 134]. This demonstrated the need for appropriate, consistent management and treat-

ment of patients who progressed to severe disease stages, especially during peak resurgences

of COVID-19 when a heavy burden is placed on medical systems to replenish and maintain

resources [135, 136].
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Table 5.1: COVIDSet1 Database Information

Pre-treatment Analysis During Treatment Analysis

Number of Cases 41 Scans 221 Scans (41 Cases)

Number of CT
Scans Acquired (N) NA

3 Scans (3 Cases)

4 Scans (7 Cases)

5 Scans (10 Cases)

6 Scans (14 Cases)

7 Scans (6 Cases)

8 Scans (1 Case)
Average Number

of Timepoints NA Mean (5.39) SD (1.21)

Dates of Acquisition Feb 01, 2020 - March 30, 2020

Sex at Birth Male (19) Female (22)

Age Mean(63.8) SD (11.5) Range(40-87)

Scanner Manufacturer GE Medical Systems

kVp 120

Pitch Range (0.9844 - 1.750)

Slice Thickness 0.625 mm, (211 Scans) 5 mm (10 scans)
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Figure 5.1: Kaplan-Meier survival analysis assessing the duration of hospitalization with
changing treatment and initial PSI score. In general, patients who received steroid treatments
were hospitalized for longer periods of time, with particularly long stays for patients with
more severe initial symptoms. This is expected, as more severe cases require increased
treatment and recovery time.
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The second set of data, COVIDSet1 (CS2), was acquired over a much longer time period,

November 2019 – December 2020, resulting in a much larger, more diverse data set. In

contrast to the prior data, this cohort contained patients who did not progress to severe

disease, had a larger range of outcomes (including patient death), and included additional

comorbidity information that could be incorporated into machine learning models. The

characteristics of this second cohort, COVIDSet2 (CS2), are described in Table 5.2.

5.2 Preliminary Study: Cascaded Transfer Learning with

COVIDSet1

Early in the pandemic, administration of corticosteroids, particularly dexamethasone and

methylprednisolone, served as the primary treatment option for patients who progressed to

severe COVID-19 infection due to their impact in treating inflammatory symptoms in other

respiratory infections [126, 127, 137]. However, patient reaction to steroid administration

is variable, depending on many factors including patient age, smoking history, and other

comorbidities. For COVID-19 treatment, thoracic imaging through chest CT may be used

to inform treatment regimen, which is especially critical for COVID-19 due to the significant

burden that this disease can place on medical resources.

As discussed in Section 2.3, transfer learning is a machine learning technique that allows

for complex, hierarchical features to be extracted from imaging data, even in cases of limited

data, by applying a pre-trained model to a new domain at the expense of utilizing potentially

sub-optimal model parameters for the new domain task [4, 13]. One common strategy to

overcome this is a process called fine tuning in which some subset of model parameters may

be frozen (e.g., not trainable/adjustable) and the model is trained with a small learning rate

to optimize the non-frozen parameters to the new domain task. Our first study utilized such

a strategy, with a novel cascaded transfer learning technique for prognostic and temporal

evaluations of CT scans obtained from COVID-19 patients in CS1.
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Table 5.2: COVIDSet2 Database Information

Number of Cases
864 Cases

1842 Total Scans
Average Number

of Timepoints Mean (1.92) SD (1.19)

Dates of Acquisition Nov 14, 2019 - Dec 4, 2020

Sex at Birth Male (392) Female (472)

Age Mean (53.5) SD (16.7) Range (8-90+)

Age Ranges
<30 (58 Cases)

30-65 (567 Cases)

>65 (239)

Scanner Manufacturer

GE Medical Systems (929 Scans)

Siemens (599 Scans)

Philips (83)

United (161)

FMI (148)

Comorbidities

HBP (174 Cases)

Liver Disease (87 Cases)

Renal Disease (54 Cases)

Neoplastic Disease (32 Cases)

Cerebrovascular Disease (29 Cases)

Congestive Heart Failure (13 Cases)

COPD (7 Cases)

Patient Outcomes

Cured (261 Cases)

Improving (526 Cases)

Died (45 Cases)

Other/Unknown (32 Cases)
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The VGG19 architecture, a technique from the ImageNet competition, is commonly used

in transfer learning through pre-training on a collection of millions of natural images. In

Chapter 4, fine tuning of the ImageNet-trained VGG19 network had been conducted in the

task of emphysema detection. In this COVID-19 study, CT slices were input to the fine-

tuned VGG19 network and features were extracted for additional transfer learning using

a technique similar to that described by Antropova et. al. in which information is taken

from the max-pooling layers of the architecture (Figure 5.2a) [4]. These extracted features

were then averaged in the axial scanning direction (e.g., individual slice features combined

to form a CT-scan-level representation) and principal component analysis was performed

on the extracted COVID-19 scan features for dimensional reduction to obtain the most

dominant features corresponding to COVID-19. Final classification was then conducted on

these dominant features using a support vector machine (SVM).

Due to the limited size of this CS1, a leave-one-out-by-case scheme was used to train

the SVM for the classification between cases that required steroid administration and those

that did not [138]. To attain a prognostic evaluation of COVID-19 patients, only the initial

CT scan obtained for each patient was evaluated, at which point the patients presented

with varying degrees of disease severity. The leave-one-out evaluation approach used 40

cases for SVM training and 1 case for testing; this was repeated 41 times so that each case

belonged to the testing set exactly once. Over the 41 iterations, the SVM produced an output

“prediction score”, related to the likelihood of requiring steroid treatment, for each case. The

prediction score yielded an estimate of the likelihood that a patient would require steroids

for treatment based on their CT scan (higher prediction score indicates higher likelihood of

recommendation for steroid treatment). The classification performance was evaluated using

ROC analysis on the prediction scores by comparison with the actual treatment as had been

clinically determined by an expert intensivist. The AUC served as the figure of merit in this
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Figure 5.2: (a) Schematic of the pretrained VGG19 network feature extraction approach
operating on a 2D CT section. Max pooling layer features with the given dimensions were
averaged and concatenated to produce a representative feature vector for each slice. (b)
Full cascaded transfer learning workflow for pre-treatment assessment and during-treatment
monitoring analysis. The feature extraction scheme displayed in (a) is utilized at the “Deep
Transfer Learning: VGG19 Feature Extraction” stage of (b).
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analysis. The full workflow of the cascaded transfer learning technique is shown in Figure

5.2.

In addition to predicting which patients should require steroids, it is also important to

monitor disease progression throughout hospitalization. Thus, the cascaded transfer learning

technique was also applied to the CT scans obtained at all timepoints; the only difference

between this during-treatment assessment technique and the pre-treatment assessment tech-

nique is that the linear SVM classifier for during-treatment assessment was trained using

features from all longitudinally-acquired CT scans, not only the initial scan of each case.

After each of the CT scans within a case underwent deep transfer learning feature extrac-

tion and subequent PCA feature reduction, the SVM was trained again using the leave-one-

out-by-case paradigm based on receiving steroids or not with incorporation of all timepoints

in both training and testing. Thus, each patient received a set of model prediction scores,

one prediction score for each timepoint’s CT scan. The time of steroid administration was

eliminated as a confounding factor by adjusting the class label for a given scan based on

whether or not steroids were utilized at any point after that scan’s acquisition. For example,

a case with 5 timepoints could have a timepoint class label of 1 at timepoints 1, 2, and 3 and

class label of 0 at timepoint 4 and 5, indicating no steroids were administered after the 4th

scan acquisition; this can be represented as a set 1,1,1,0,0. The SVM prediction score at a

mid-treatment timepoint can then be interpreted as a prediction of whether the patient will

undergo steroid treatment at any point after that mid-treatment scan. Note that during the

leave-one-out process, all CT scans of a given case were held out from training when it was

used for testing.

The assessment of temporal changes throughout hospitalization was performed through

least squares fitting. All patients within the study cohort began with moderate severity

and advanced to a more serious condition, followed by recovery and subsequent hospital

discharge. This was observed for both cases who were treated with steroids and those who
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were not. Thus, the least squares technique was used to fit second-order polynomials which,

to some degree, match the expected progression for both groups.

5.2.1 Results from ROC Analysis and Temporal Analysis

In the predictive analysis of the initial (pre-treatment) CT scans, the cascaded transfer

learning technique produced an AUC of 0.85+/−0.10 based on proper binormal ROC analysis

in the task of distinguishing between cases that were recommended for steroid administration

and those that were not, demonstrating a statistically significant improvement in comparison

to a random chance AUC of 0.5 (p = 0.002) (Figure 5.3a). By analyzing the distribution

of the deep learning scores based on the true steroid administration (Figure 5.3b-c), there

were 2 outliers within the distribution of cases that received steroid treatments. These two

outliers belonged to patients with low PSI scores and were young compared to the mean

population age (ages 41 and 48).

Preliminary longitudinal analysis was completed through least squares fitting of the raw

data (Figure 5.4). Due to the variable initial disease state, rate of progression, and treatment

schedules, there was substantial variation across patients, thus the wide coverage of the

shaded regions denoting a one standard deviation range above and below the fit line. Based

on ROC analysis in the task of identifying patients who required steroid treatments or not,

and the longitudinal trends obtained through least squares fitting, the cascaded transfer

learning approach showed strong potential for clinical patient management through informing

treatment decisions and monitoring patient progression.

While preliminary, this technique demonstrated potential to estimate a likelihood that a

patient will progress to a disease stage that is severe enough to necessitate steroid adminis-

tration during their course of treatment. This holds potential value for allowing hospitals to

obtain sufficient medical resources for adequate patient care, including maintenance of steroid

supplies, utilization of life-saving equipment such as ventilation, extracorporeal membrane
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Figure 5.3: (a) The ROC curve demonstrating the classification ability of the cascade trans-
fer learning method for estimating the likelihood that a COVID-19 patient would be recom-
mended for steroid treatment or not. AUC = 0.85 + / − 0.10 with the accompanying 95%
TPF confidence interval. (b) Distribution of deep learning scores of those patients who re-
ceived steroids and those who did not. Note, this was obtained only based on the initial CT
scan. Based on this plot, the method suggests steroid administration more frequently than
the experienced intensivist (using a cutoff of 0.5). The red lines denote the median scores,
the blue boxes include 50% of scores, while the black whiskers include all scores within 2σ
of the mean. (c) Further demonstration of the separation/overlap of the deep learning score
between the two classes.
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Figure 5.4: The SVM-output prediction score assessed temporally through least squares fits.
The x-axis indicates the full duration of hospitalization, with Ti referring to the time of
initial CT acquisition and Tf referring to the time of final CT acquisition, which generally
occurred shortly before discharge. The shaded regions denote one standard deviation above
and below the fit line. Intuitively, this figure follows the example training case discussed in
Section 2.3 which had early timepoints after which steroids were utilized and late acquisitions
after which no steroids were administered.
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oxygenation, and planning for hospital bed occupancy. These are challenges that stressed

the medical system during the COVID-19 pandemic, thus this predictive tool could be useful

in future resurgences of COVID-19 or other emerging respiratory infectious diseases. Fur-

ther, this deep transfer learning technique might not only benefit allocation of resources, it

could also potentially improve patient management through treatment guidance as indicated

by the temporal results matching the treatment decision of the experienced intensivist who

provided the reference standard in this study.

Use of deep transfer learning for monitoring treatments may be useful for estimating the

amount of resources that will be required throughout patient treatment as demonstrated in

our preliminary longitudinal analysis shown in Figure 4, including hospital beds, ventilators,

and medication. The SVM prediction score for this analysis may be interpreted as an expec-

tation of whether that patient will require steroids at any point after input CT acquisition.

Consequently, if a patient is already experiencing corticosteroid injections for treatment and

receives a high prediction score, this suggests that they should continue steroid treatments

for some period.

Importantly, the fit lines can not be used as a direct indicator of disease severity obtained

at any individual timepoint during this study; if this were the case, then the fit lines would

both demonstrate, on average, a concave mirroring effect showing that the prediction score

increases as time progresses, and then decreases as treatment takes effect until a very low

level is reached as the disease subsides. This expectation of concave mirroring prediction

score is due to the disease progression manifested by radiological findings of COVID-19 in

CT scans; with increasing severity, the CT findings exhibit GGOs, more central infiltration,

and consolidation, then a return to primarily peripheral GGO as the patient recovers. This

mirroring effect is not observed for either classification. The failure to demonstrate a mirror-

ing effect for fit line from steroid administration can be explained by the class label used for

model training, which was a decision to treat with steroids or not at some point after scan
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acquisition. While this is inherently related to disease severity, this treatment decision was

not solely based on imaging findings; it also considered clinical symptoms and other factors

(e.g., age). Thus, the fit line does not directly translate to a temporal assessment of severity

during this study.

Instead, the trends should be interpreted as a recommendation for steroid administration.

On average, the cases that required steroids demonstrated a larger prediction score for scans

acquired upon hospitalization. However, as time after hospitalization increased, the two

curves converged, indicating that the recommendation for steroid administration grew weaker

over time for those who already received steroids, and demonstrated nearly complete overlap

at the termination of hospitalization. This matched expected results because the clinical

outcomes of all patients in this cohort were the same, i.e., recovery and subsequent discharge,

thus all patients should demonstrate a similar recommendation for steroids upon discharge.

This validated the prediction score as a potentially useful clinical measurement.

Clinically, the longitudinal aspect of this study can be used by physicians as a comparison

to guide treatment decisions and, in a way, assess treatment response (e.g., is the model

recommendation for steroid administration getting stronger or weaker?). Further, consider

a patient that has been administered corticosteroids that now produces a CT scan with a

low prediction score (e.g., 0.3). According to the temporal fits in Figure 4, this suggests

that the patient is likely nearing the end of their hospitalization period and that cessation

of steroid administration may be suitable. Alternatively, it is possible that some patients

will not follow a progression of prediction scores similar to the fit lines; in this case, the

temporal assessments may not be applicable and the clinician should be more reliant on other

data (e.g., clinical symptom severity) to determine steroid treatment termination. Thus,

the cascaded transfer learning approach in this study demonstrated potential in guiding

treatment decisions, monitoring patient progression, and managing medical resources.
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5.3 Further Study: Deep Learning with COVIDSet2

As discussed in Section 1.2, it is common for machine learning algorithms to be biased to

the training set distribution. Thus, we directly applied the model developed on CS1 to CS2

to determine if it would successfully generalize to a larger population.

Despite the strong performance achieved in the preliminary study, the developed prog-

nostic model failed to reach the same performance on the larger, more diverse CS2. In direct

application for the same pre-treatment prediction task, the AUC was reduced from 0.85

+/- 0.10 to 0.68 +/- 0.04 (p=0.02); while this AUC did maintain a statistically significant

difference from guessing AUC of 0.5 (p=0.0001) it likely is no longer a clinically relevant

performance. There are several potential contributing factors, including potential treatment

decision differences between the acquisition periods in CS1 and CS2, the variability between

individuals making treatment decisions (e.g., only one clinician provided treatments in CS1

while CS2 had many different leading clinicians making those decisions), the more diverse

imaging acquisition characteristics including scans acquired from devices from different scan-

ner manufacturers (Table 5.2). Further, there could be an algorithmic shortcoming; cross

validation tends to overestimate performance compared to a truly independent train, valida-

tion, and test strategy; thus, the independent evaluation conveyed a more realistic clinical

performance. Regardless of the root cause, the model no longer achieved promising results.

In an attempt to develop a more generalizable model with comparable performance to

the initial study, three potential improvements were investigated: 1) evaluation of improved

feature extraction models, 2) investigation of novel slice-to-scan pooling methods (including

the attention-based pooling presented in Section 5.2), and 3) incorporation of additional,

non-imaging information in the form of comorbidity data. Thus, we performed three further

studies to determine the best feature extraction, pooling, and fusion methods for the steroid

prediction task.
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In Chapter 4 all transfer learning models utilized for CT slice feature extraction were

initialized with pre-trained weights from the ImageNet classification challenge which, as

discussed in Section 2.3, is potentially suboptimal for application in the new task domain.

In the prior study, the cascaded transfer learning approach aimed to bridge the domain

gap by tuning the model for the LDCT emphysema classification task; while this was an

improvement that allowed transfer to the medical imaging domain, the transferred model

prioritized information that was specific to the emphysema imaging task and may have

been biased for other imaging characteristics of the LDCT dataset, including presentation

of emphysema, lower acquisition dose, and single scanner manufacturer, and thus extracted

suboptimal features for the COVID-19 classification task. Recently, a set of medical imaging

transfer learning models, RadImageNet, were published to facilitate application of transfer

learning technology in medical imaging [139]. These models can replace standard ImageNet-

trained models (e.g., ResNet50, DenseNet121) in machine learning workflows and are trained

directly for medical imaging classification tasks, potentially improving feature relevance for

classification. As opposed to the original model, the RadImageNet dataset consists of images

from several different medical imaging modalities, including radiography, MRI, and CT, and

thus the pre-trained models aim to extract imaging features that are generally informative

and can utilize newly trained classifiers for specific tasks. In the original publication, the

RadImageNet models outperformed ImageNet models for several transfer learning tasks in

the medical imaging domain for direct classification tasks. Thus, in this revised study,

we evaluated if RadImageNet models would also outperform ImageNet models for a more

complex machine learning paradigm, i.e., MIL, in the task of COVID-19 patient prediction

of steroid administration.

While the ImageNet to RadImageNet transition impacted the feature extraction stage of

MIL, we also explored alternatives to the CT slice pooling stage. In Chapter 5, we utilized

attention-based pooling to incorporate a learned, optimized method for aggregating slice
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information, and here we use attention-based pooling again for the COVID-19 prediction

task [5]. Additionally, we investigated a more complex, novel approach to slice aggregation

through a transformer-based self-attention module.

5.3.1 Transformer Architectures

In recent years, transformer architectures have dominated the natural language processing

deep learning space and have begun to experience increased application in computer vision

tasks [140, 141]. The fundamental unit of the transformer architecture is self-attention, or an

attention mechanism which evaluates how different parts of a sequence interact and influence

each other. The application of such a technique in natural language processing is intuitive;

a word may impact the meaning/interpretation of other words in the sequence. We apply

this same technique to multiple instance learning pooling by treating the extracted CT slice

features similarly to word embeddings and allow the attention module to learn the optimal

method for the slice features to interact and determine which slices are/are not important for

the classification task [117]. This is achieved by mapping each CT slice to learned query (Q),

key (K), and value (V) embeddings which, in brief, represent how a slice should influence

other slices (Q), how a slice should be influenced by the Q embeddings (K), and how the

information from the original embedding should be carried to the next layer (V). This process

is visualized in Figures 5.5 and 5.6, including how several self-attention layers can work in

series to form the deep network architecture utilized in this study.

5.3.2 Incorporation of Human-Engineered Features and Clinical

Presentation of COVID-19

The final adjustment from the prior study came in the form of adding non-deep learning

information, i.e., human-engineered radiomic features and clinical comorbidity data. Two

major shortcomings of the original model were the lack of non-imaging clinical information
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Figure 5.5: Depiction of the self-attention module utilized in transformers a) Demonstrates
the generation of attention weights for slice 1 via mapping each input representation w to Q
and K representations, then interacting the relevant Q representation (in this case, q1) with
the K representations of other slice representations. b) Shows the aggregation of attention
weights with each V representation to form the output representation of slice 1, c1.
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Figure 5.6: Depiction of how transformers may be utilized for CT scan evaluation. By first
embedding the images to a feature representation via a convolutional neural network, self-
attention modules can be utilized in parallel and in series to evaluate the image features and
form a classification decision.

(which would generally be considered in a treatment decision) and the lack of model inter-

pretability. We account for both of these by developing additional models for prediction and

feature fusion with the MIL approach and evaluate how these additional models impact the

steroid prediction performance.

First, we automatically segmented the lungs and presentation of COVID-19 within the

lungs on individual CT slices utilizing a novel dual-headed U-Net architecture. Intensity-

based human-engineered features were extracted from the segmentations, e.g., mean pixel

value and ratio of COVID-19 involved tissue to healthy lung tissue. In past studies, deep

network features have been shown to outperform radiomics features for several medical imag-

ing tasks at the expense of interpretability; here, we only include features that were readily

interpretable by a clinical reader and will add interpretability to the greater MIL model.

These features will be referred to as segmentation-based radiomic (SBR) features, with the

full extraction workflow given in Figure 5.7.
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Figure 5.7: Workflow for the extraction of SBR features from CT scans. We first segment the
lung and COVID-19 infection within individual CT slices using a novel dual-headed U-Net
model, then extract intuitive features including intensity-based and volume ratio features.
The full list of features is provided in Table 5.3.

As previously mentioned, comorbidities play a key role in identifying individuals at high

risk for severe COVID-19 infection [142, 143]. Thus, the second additional source of non-

deep learning information was tabular, binary comorbidity data indicating diagnoses of high

blood pressure (HBP), liver disease, renal disease, neoplastic disease, cerebrovascular disease,

congestive heart failure, and chronic obstructive pulmonary disease (COPD). These features

will be referred to as tabular comorbidity (TC) features. The full list of SBR and TC features

is given in Table 5.3.

The MIL, SBR, and TC features were aggregated in two approaches, prediction fusion

and feature fusion. Prediction fusion trained individual classifiers for each feature type to

individually predict the COVID-19 steroid administration task. Notably, different classifier

approaches are appropriate for each feature type, thus the trained classifiers were 1) a random

forest for the TC features, 2) a SVM for the SBR features, and 3) an artificial neural network

for the MIL features. The individual predictions were then averaged to determine the scan

prediction. Additionally, a feature fusion scheme in which all features were concatenated

into a single, scan level representation and classified utilizing an artificial neural network

was compared. This workflow is depicted in Figure 5.8.
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Table 5.3: List of Incorporated SBR and TC Features for

COVID-19 Steroid Prediction Task

Feature Name Target and Side of Body Feature Category

Age N/A TC

COPD N/A TC

HBP N/A TC

Congestive Heart Failure N/A TC

Cerebrovascular Disease N/A TC

Renal Disease N/A TC

Liver Disease N/A TC

Neoplastic Disease N/A TC

Pixel Mean Lung/Left SBR

Pixel Mean COVID-19/Left SBR

Pixel Mean Lung/Right SBR

Pixel Mean COVID-19/Right SBR

Pixel Mean Lung/Both SBR

Pixel Mean COVID-19/Both SBR

Pixel Standard Deviation Lung/Left SBR

Pixel Standard Deviation COVID-19/Left SBR

Pixel Standard Deviation Lung/Right SBR

Pixel Standard Deviation COVID-19/Right SBR

Pixel Standard Deviation Lung/Both SBR

Pixel Standard Deviation COVID-19/Both SBR

Pixel Minimum Lung/Left SBR

Pixel Minimum COVID-19/Left SBR
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Table 5.3: Continued

Feature Name Target/Side of Body Feature Category

Pixel Minimum Lung/Right SBR

Pixel Minimum COVID-19/Right SBR

Pixel Minimum Lung/Both SBR

Pixel Minimum COVID-19/Both SBR

Pixel Maximum Lung/Left SBR

Pixel Maximum COVID-19/Left SBR

Pixel Maximum Lung/Right SBR

Pixel Maximum COVID-19/Right SBR

Pixel Maximum Lung/Both SBR

Pixel Maximum COVID-19/Both SBR

Pixel 25% Distribution Lung/Left SBR

Pixel 25% Distribution COVID-19/Left SBR

Pixel 25% Distribution Lung/Right SBR

Pixel 25% Distribution COVID-19/Right SBR

Pixel 25% Distribution Lung/Both SBR

Pixel 25% Distribution COVID-19/Both SBR

Pixel 75% Distribution Lung/Left SBR

Pixel 75% Distribution COVID-19/Left SBR

Pixel 75% Distribution Lung/Right SBR

Pixel 75% Distribution COVID-19/Right SBR

Pixel 75% Distribution Lung/Both SBR

Pixel 75% Distribution COVID-19/Both SBR

Ratio: diseased
tissue volume to

total lung volume Left SBR
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Table 5.3: Continued

Feature Name Target/Side of Body Feature Category

Ratio: diseased
tissue volume to

total lung volume Right SBR

Ratio: diseased
tissue volume to

total lung volume Both SBR

5.3.3 Statistical Data Analyses

Similar to the prior study, the prediction task was evaluated through ROC analysis with the

AUC as the performance metric, statistical comparison through the DeLong test, and the

Bonferroni-Holm correction was applied to account for multiple comparisons [103, 144].

5.4 Results on COVIDSet2

In repeating the pre-treatment task of predicting which patients would require steroids in

CS2, the results are shown displayed in Tables 5.4. The first study section to determine the

utility of RadImageNet pre-training compared to ImageNet pre-training revealed detrimental

effects introduced by the RadImageNet model substitution. The top-performing feature

extractor was ResNet50 with ImageNet pretraining, statistically significantly outperforming

the RadImageNet counterpart by ∆AUC of 0.12 (p ≪ 0.001) while the DenseNet121 also

demonstrated a statistically significant difference between the ImageNet and RadImageNet

pretraining with ∆AUC = 0.04 (p ≪ 0.001). Because ResNet50 demonstrated the best

performance, it was utilized as the feature extractor for the other ablation analyses.

Similarly, the incorporation of vision transformer modules for pooling failed to demon-

strate an improvement compared to attention-based pooling (Table 5.6) with a performance
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Figure 5.8: Full feature fusion workflow of the MIL, SBR, and TC feature pipeline for each
of the 5 cross validation folds. The artificial neural network classifier can be replaced with
individual classifiers for each feature type to visualize the prediction fusion approach.
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Table 5.4: Comparing ImageNet and RadImageNet Feature Extraction

Feature Extraction Architecture Pre-training Weights AUC

ResNet50 ImageNet 0.76 +/- 0.08

ResNet50 RadImageNet 0.64 +/- 0.09

DenseNet121 ImageNet 0.68 +/- 0.12

DenseNet121 RadImageNet 0.64 +/- 0.09

Table 5.5: Statistical testing for ImageNet vs. RadImageNet (p-values); bold indicates
statistical significance

Model/
Pre-training Weights

ResNet50/
ImageNet

ResNet50/
RadImageNet

DenseNet121/
ImageNet

ResNet50/RadImageNet <<0.001 - -

DenseNet121/ImageNet <<0.001 <<0.001 -

DenseNet121/RadImageNet <<0.001 0.10 <<0.001

difference of ∆AUC = 0.25 (p ≪ 0.001). Transformer pooling failed to show a statistical

different from a random guessing AUC.

Table 5.6: Transformer pooling vs. attention-

based pooling

Pooling Mechanism AUC

Attention-based Pooling 0.76 +/- 0.08

Transformer Pooling 0.51 +/- 0.06

Finally, when incorporating the addi-

tional SBR and TC features through fea-

ture fusion and prediction fusion methods,

the prediction task again failed to produce

a statistically significant difference com-

pared to the use of MIL features alone (Ta-

ble 5.7). Individually, the MIL model out-

performed the TC features by a statisti-

cally significant difference of ∆AUC = 0.21 (p ≪ 0.001). In Figures 5.9 and 5.10, we

compare the model predictions for different selections of Table 5.7 to determine the influence

of incorporating different feature types.
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Table 5.7: Incorporating additional feature types for steroid treatment classification predic-
tion

Included Feature Types Model
Number

Fusion
Method AUCMIL:

Deep
Features

TC:
Comorbidity

Features

SBR:
Radiomics
Features

X 1 None 0.76 +/- 0.08

X 2 None 0.55 +/- 0.04

X 3 None 0.74 +/- 0.06

X X 4 Feature 0.77 +/- 0.08

X X 5 Feature 0.76 +/- 0.07

X X X 6 Feature 0.77 +/- 0.07

X X 7 Prediction 0.78 +/- 0.08

X X X 8 Prediction 0.74+/- 0.04

Table 5.8: Statistical testing for incorporation of additional feature; bold indicates statistical
significance; Model numbers listed in Table 5.6

Model
Number 1 2 3 4 5 6 7

2 <<0.001 - - - - - -

3 0.058 <<0.001 - - - - -

4 0.69 <<0.001 0.048 - - - -

5 0.87 <<0.001 0.60 0.69 - - -

6 0.14 <<0.001 0.21 0.078 0.083 - -

7 0.0056 <<0.001 <<0.001 0.15 0.95 0.0016 -

8 0.023 <<0.001 0.75 0.022 0.032 0.22 <<0.001
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Figure 5.9: Comparison of predictions in the task of predicting COVID-19 steroid admin-
istration based upon initial patient CT scan and Bland-Altman plots from different models
in ablation studies with patients who received steroids (red) and those who did not (green).
(a) Compares predictions between the two ResNet50 and DenseNet121 models trained with
ImageNet pre-training and attention-based MIL pooling (Table 5.4). Note that in one of the
5 cross-validation folds, the DenseNet121 model failed to converge to a useful set of param-
eters and the model produced a constant output regardless of input. This is observed with
the unusual line of points through the center of the plot. (b) Compares the MIL model with
SBR model. While both achieved similar AUCs, the SBR model seems to be recall cases
at a much lower rate. (c) Comparing the same MIL model with the TC model. The poor
performance of the TC features is prevalent here with relatively little structure visualized
here. (d) Comparing the MIL model to the same model with feature fusion. The fused model
tends to slightly underpredict cases compared to the model using MIL features alone; this
may potentially be credited to the inclusion of the SBR features in the fused model.
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Figure 5.10: Comparison of predictions in the task of predicting COVID-19 steroid admin-
istration based upon initial patient CT scan and Bland-Altman plots from different models
in ablation studies with patients who received steroids (red) and those who did not (green).
(a) Compares predictions between the two ResNet50 and DenseNet121 models trained with
ImageNet pre-training and attention-based MIL pooling (Table 5.4). Note that in one of the
5 cross-validation folds, the DenseNet121 model failed to converge to a useful set of param-
eters and the model produced a constant output regardless of input. This is observed with
the unusual line of points through the center of the plot. (b) Compares the MIL model with
SBR model. While both achieved similar AUCs, the SBR model seems to be recall cases
at a much lower rate. (c) Comparing the same MIL model with the TC model. The poor
performance of the TC features is prevalent here with relatively little structure visualized
here. (d) Comparing the MIL model to the same model with feature fusion. The fused model
tends to slightly underpredict cases compared to the model using MIL features alone; this
may potentially be credited to the inclusion of the SBR features in the fused model.
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5.5 Discussion and Conclusions

In the analysis of CS2, the best-performing model utilized a ResNet50 architecture for fea-

ture extraction, attention-based MIL feature pooling, and utilized the SBR features in a

prediction fusion scheme achieving an AUC of 0.78 +/- 0.08. The primary gains in model

performance seem to stem primarily from the selection of feature extraction architecture and

the pooling mechanism while the additional non-MIL feature incorporation did not impact

AUC regardless of feature fusion method.

Surprisingly, the use of RadImageNet as a feature extractor did not improve performance

compared to ImageNet pre-trained models in either the ResNet50 or DenseNet121 models

despite reduced shift between the original task domain (e.g., 2D medical image classifica-

tion for several modalities) and the new application domain. We hypothesize three potential

causes. First, the RadImageNet database consists of only 5 million images spread across sev-

eral imaging modalities (radiographs, PET, MRI, CT, ultrasound) compared to the larger

ImageNet database of 14 million images; it is feasible that the reduced number of train-

ing images affected the generalizability of the features. Second, it is likely that differences

in image preprocessing (e.g., windowing, normalization, etc.) existed between the original

RadImageNet data and the application domain, particularly considering it would be im-

possible to process the non-CT images in RadImageNet identically to this task. Finally,

the RadImageNet features may be unsuited for extension to the non-standard MIL scheme

utilized in this task. Typically, MIL schemes train the model end-to-end from scratch, in-

cluding the feature extractor in the training process, and while we have shown that strong

performance can be achieved in Chapter 4 with fixed ImageNet model parameters, the same

generalizability of RadImageNet parameters is yet to be demonstrated.

In the second stage ablation study, the transformer module was unable to match the per-

formance of the attention-based approach. As a relatively new technology still being explored

for the natural and medical imaging spaces there have been some examples of successful use
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of transformers in MIL, but there are several potential causes for the poor performance for

transformer pooling. Foremost, transformers are much more heavily parameterized than

the attention-based pooling method; thus, data limitations may have played a role in the

performance loss. Further, the transformers utilized in this study consisted of many more

parameters than typical vision transformers per layer; a layer is typically limited in either

the number of tokens (i.e., CT slices) or the size of those tokens (i.e., the number of features

extracted per image in the prior stage). For example, the original vision transformers only

utilized 9 input tokens, whereas our study utilized >150 across experiments with compa-

rable token size. Transformer variants that attempt to mitigate effects caused by such a

phenomenon have been explored in the NLP community (e.g., Nystromformers), which we

will explore for this task in future work [145].

The utilization of additional feature information failed to demonstrate a statistical dif-

ference in model performance according to the DeLong Test. Individually, the TC features

did not demonstrate strong predictive power, thus limiting their potential impact on the

fused model prediction performance. However, the SBR features were able to achieve strong

individual performance that failed to demonstrate a statistically significant difference from

the MIL models (p = 0.58). Evaluating Figures 5.9 and 5.10, we see that there is strong

agreement between the ImageNet-based feature extraction techniques, but a failure to con-

verge in one of the cross-validation folds drastically reduced the DenseNet121 performance

and resulted in the consistent line of points around y=0.5 stretching from x=0 to x=0.7.

This demonstrates a potential weakness of the MIL approach compared to the SBR and TC

approaches; with a lack of interpretability, it is difficult to determine why the model failed

to converge for only one of the 5 training scenarios.

In Figures 5.9 and 5.10 (b) and (c), the SBR features demonstrated a potential improve-

ment compared to the MIL model while TC features seem to contribute only minimally to

model performance. If a clinician desired a more conservative approach to steroid adminis-
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tration, the SBR model may outperform the MIL model as very few false positives would

be called at a decision threshold of 0.5; this would come at the expense of false negatives as

well (as depicted by the many red points below the 0.5 threshold).

Finally, in Figures 5.9 and 5.10 (d), we compared the MIL model with the feature fusion

model consisting of all three feature types. Notably, the fused model predictions were slightly

reduced compared to the MIL features alone, but much closer than the difference observed

in 5.9 and 5.10 (b). This difference may be attributed to the inclusion of the SBR features

in the fused model, but the strong agreement for many of the cases suggests that the MIL

features were the dominant feature in the fused model prediction. In the feature fusion

model, the number of features contributed by TC (8) and SBR (39) were fewer than the

number of MIL features (64) and were not trained end-to-end for optimization; this may

explain the MIL feature dominance. Importantly, the additional features allow for improved

model interpretability. We demonstrate this in Figure 5.11 with two successful predictions,

one in which the patient received steroids and one which did not. We observe substantial

differences between the features of the two cases (e.g., age difference, difference in ratio

of disease volume to total lung volume) and gain intuition for why the model successfully

reached the prediction decision.

In all, we have demonstrated the potential for machine learning technology to evaluate

CT scans acquired from patients diagnosed with COVID-19 and predict both pre-treatment

and mid-treatment decisions related to steroid administration. In the CS1 analysis, the

simple MIL technique achieved strong performance with an AUC of 0.85 +/- 0.10 while

also providing temporal predictions that matched clinical expectations (e.g., the fit curves

were separate upon hospitalization and converged nearing end of hospitalization). However,

this performance was not maintained on a larger dataset, thus we investigated potential

improvements to the model through improved feature extraction, pooling, and fusion tech-

niques. Our findings failed to demonstrate significant improvement with these additions but
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Figure 5.11: Example of two cases with successful prediction. (top) Patient received steroids.
Investigating features reveals potentially contributing factors, including age, relatively small
difference between mean disease and mean lung value, and large relative volume of disease.
(bottom) Patient did not receive steroids, and based on the feature characteristics of ex-
tremely little diseased tissue volume and large difference between diseased and total lung
pixel values, it becomes more clear why the model successfully reached the negative predic-
tion decision.
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provide a path for further investigations to improve our model. These methods may augment

clinical decision-making and, ultimately, improve patient management and outcomes.
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CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

In summary, the major contributions of this work are in the development of novel deep learn-

ing approaches to CT scan evaluation for the applications of CAC scoring and emphysema

characterization on LDCT scans and for assessing COVID-19 patients leading to potential

treatment recommendations and monitoring tools. These technologies could directly im-

prove the quality of care and patient outcomes if successfully integrated as a component

of the radiology clinical workflow for either lung screening protocols or severe COVID-19

patient evaluation, respectively.

When a high-risk patient is screened for lung cancer, a variety of other abnormalities can

be visualized but would be time-consuming and tedious for a radiologist to review. Consid-

ering the typically heavy workload of radiologists, variability in subjective assessments, and

potential errors that can be introduced by additional reading, automated tools to aid in the

detection and diagnosis of non-lung cancer abnormalities are highly desirable.

In Chapter 3, we investigated automatic CAC scoring on LDCT scans, a task complicated

by the lack of a standardized scoring system on screening scans and by other factors related to

the LDCT acquisition, e.g., non-ECG gating, no contrast enhancement, and increased noise.

The proposed CACU-Net can serve as a concurrent reader with a radiologist to reduce the

variability in CAC score resulting from these complications. CACU-Net performs semantic

segmentation on LDCT sections via a revised U-Net architecture with two branches, one

focused on fine lesion information for accurate segmentation and one prioritizing coarser

information regarding coronary artery branch location. With this model, we were able to

demonstrate strong performance compared to other segmentation techniques both in the

detection of CAC at the artery and case levels and in providing the ordinal CAC score. This

was supported by ROC analysis, confusion matrices, and other error analyses.
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In the future, there are several potential paths to investigate to improve the CACU-Net.

In particular, the model optimization strategy did not target CAC scoring, the clinical end-

goal, but was focused on accurate segmentation. While this initial strategy provided strong

performance, it relies on human delineation of CAC lesions to serve as the reference standard;

there is significant reader variability for reading CAC on LDCT scans, thus removing this

bias as a major potential source of improvement and generalizability (although this would

come at a reduction of score interpretability). Additionally, the error analysis found that

many major model mistakes were caused by either lesion misclassification or by score infla-

tion due to motion artifact. The impact of these could potentially be reduced by utilizing

ensemble methods that were trained either on delineations provided by different radiologists

or by combining multiple segmentation approaches that prioritize different information (e.g.,

one model focused on distinction between LMA and LAD lesions ensembled with another

model focused on AVC rejection). And as with all deep learning studies, further testing on

larger, more diverse, multi-institutional data would be a beneficial investigation to under-

stand model generalizability. The inclusion of these investigations could potentially allow for

more successful, generalizable CAC scoring on LDCT scans and may expand clinical options

when significant CAC is discovered.

Chapter 4 investigated LDCT scans via deep attention-based multiple instance transfer

learning to determine presence vs. absence of emphysema. This novel approach extracts

quantitative feature information from individual LDCT sections then aggregates slice infor-

mation to form a scan representation and classify between emphysema classes. Further, the

attention weights used for slice aggregation were investigated as an interpretable model out-

put through novel AWCs, which validated model performance based on expected trends be-

tween emphysema phenotypes and identified potentially important/confusing image features

as identified by a radiologist. The combination of interpretable attention output, general-

izability through transfer learning, and comparable performance to other published models,
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the TAMIL approach demonstrated strong potential for clinical implementation, but further

work must be completed prior to translation. As before, one of the most critical points

of investigation is evaluation on a multi-institutional, diverse dataset. In addition, there

have been more recent publications that utilize MIL such as the transformer-based approach

investigated in Chapter 5; these may improve the performance for emphysema evaluation

at the cost of increased parameterization. Finally, the model variants in this dissertation

research were only trained for binary classification tasks, but more complicated training

schemes including both unsupervised MIL and multi-class MIL for emphysema extent and

phenotype may be beneficial investigations.

Finally, in Chapter 5, we investigated conventional and novel MIL schemes in the task

of COVID-19 patient CT scan evaluation to provide pre-treatment and mid-treatment rec-

ommendations. A preliminary study found that a conventional MIL technique was able to

achieve strong performance for both tasks on a small, limited dataset but failed to general-

ize to out-of-distribution data in the larger, more diverse database. Thus, we investigated

three potential improvements to the cascaded transfer learning algorithm including the use

of RadImageNet for transfer learning CT slice feature extraction, the use of transformers

as an MIL pooling mechanism, and the use of multi-modal features. While the RadIma-

geNet and transformer techniques failed to improve performance for the COVID-19 steroids

administration classification task, we were able to evaluate the impact of different types of

features and identify potential improvements for the future.

In the future, to augment this study, it would be clinically relevant to go beyond the

initial classification task of steroid treatment initiation by predicting which patients are

likely to respond/benefit from steroid treatments. The current model was trained with

the assumption that the clinician’s decision to treat was correct, a potentially inaccurate

assumption with limited applicability; incorporation of patient responsiveness and outcome

would significantly improve clinical utility but would require objective definition of patient
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condition (e.g., Is a patient’s response to treatment limited to visual regression of COVID-19

infection on imaging? Should additional clinical metrics be taken into account?). Similarly,

the interpretable model output may be able to aid in identifying which imaging features

are associated with good/poor outcomes to improve human-engineered feature production

and, thus, multi-modal models. Finally, new advances in multi-modal approaches including

representational gradient boosting may improve performance, particularly investigating the

interaction between the different feature types.

In conclusion, this work demonstrates the strong potential for AI algorithms in CT scan

evaluation including CAC scoring and emphysema characterization on lung cancer screening

scans and COVID-19 treatment evaluations via diagnostic CT scans. For each use case, the

AI approach achieved strong performance that suggests potential translation to the clinic

following further validation. Overall, the development of novel deep learning architectures

in this dissertation for a variety of use cases has demonstrated the potential for automated

image reading for CT scan analysis; this technology may ultimately enhance clinical radiology

workflow and improve patient care.
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[93] Jurica Šprem, Bob D. de Vos, Nikolas Lessmann, Pim A. de Jong, Max A. Viergever,
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