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Abstract

Pelvic fins are a characteristic structure of the vertebrate Bauplan. Yet, pelvic fin loss

has occurred repeatedly across a wide diversity of other lineages of tetrapods and at

least 48 times in teleost fishes. This pelvic finless condition is often associated with

other morphological features such as body elongation, loss of additional structures,

and bilateral asymmetry. However, despite the remarkable diversity in the several

thousand cichlid fish species, none of them are characterized by the complete

absence of pelvic fins. Here, we examined the musculoskeletal structure and

associated bilateral asymmetry in Midas cichlids (Amphilophus cf. citrinellus) that lost

their pelvic fins spontaneously in the laboratory. Due to this apparent mutational

loss of the pelvic girdle and fins, the external and internal anatomy are described in a

series of “normal” Midas individuals and their pelvic finless sibling tankmates. First,

other traits associated with teleost pelvic fin loss, the genetic basis of pelvic fin loss,

and the potential for pleiotropic effects of these genes on other traits in teleosts

were all reviewed. Using these traits as a guide, we investigated whether other

morphological differences were associated with the pelvic girdle/fin loss. The mean

values of the masses of muscle of the pectoral fin, fin ray numbers in the unpaired

fins, and oral jaw tooth numbers did not differ between the two pelvic fin

morphotypes. However, significant differences in meristic values of the paired traits

assessed were observed for the same side of the body between morphotypes.

Notably, bilateral asymmetry was found exclusively for the posterior lateral line

scales. Finally, we found limited evidence of pleiotropic effects, such as lateral line

scale numbers and fluctuating asymmetry between the Midas pelvic fin morpho-

types. The fast and relatively isolated changes in the Midas cichlids suggest minor

but interesting pleiotropic effects could accompany loss of cichlid pelvic fins.
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1 | INTRODUCTION

The pelvic fins of teleost fishes and the hind limbs of tetrapods are

one of the most evolutionarily conserved and characteristic

structures of the vertebrate Bauplan (Don et al., 2013, 2016;

Kuznetsov, 2022; Lennox, 2002; Lin et al., 2016; Ogle, 1882; Romer

& Parsons, 1986; Starck, 1959, 1979; Yamanoue et al., 2010).

However, the paired pelvic appendages have also been lost

numerous times in many lineages of tetrapods, as well as in at least

26 of the ~70 extant orders of teleost fishes (Charest et al., 2018;

Don et al., 2013; Jackson et al., 2018; Lin et al., 2016; Nelson

et al., 2016; Tanaka et al., 2005). In eels, limbless lizards, and snakes,

this type of pelvic fin (and pectoral) girdle reduction has permitted

extensive organismal diversification into completely new lifestyles

(Infante et al., 2018; Jackson et al., 2018; Leal & Cohn, 2018;

Pincheira‐Donoso et al., 2013; Saxena & Cooper, 2021).

Several Midas cichlid (Amphilophus cf. citrinellus) species have

been maintained in the laboratory for many decades, and loss of the

pelvic fins has never been observed previously. However, when an

aquarium containing a mixture of Midas cichlids was culled, we

observed what we inferred to be a recent loss of the pelvic fins

(Figure 1) in a number of these individuals. Therefore, we describe

the musculoskeletal changes associated with this pelvic fin loss and

examine its potential association with internal and external morpho-

logical and meristic changes in other anatomical structures.

The pelvic fins are anatomically and functionally relatively

simple and evolutionarily quite malleable in teleosts (Jackson

et al., 2018; Standen, 2008; Wicaksono et al., 2016). For instance,

the pelvic base in cichlids is formed from only two thickened bony

plates fused at their anterior end into a structure known as the

basipterygium (Hilton, 2011; Standen, 2017). Like other Acantha-

morph teleosts, the pelvic fins in cichlids often have an anterior

spine accompanied by several softer fin rays (Barlow, 2002; Nelson

et al., 2016; Saemi‐Komsari et al., 2018; Figure 2). Usually, the

teleost pelvic fin musculature is comprised of six muscles (three

analogous muscles lying on each side of the pelvis): two adductors,

two abductors, and two arrectors (Siomava & Diogo, 2017;

Winterbottom, 1974; Yamanoue et al., 2010). Although these

appendages increase maneuverability and control during locomo-

tion (Hilton, 2011), the pelvic fin's influence on powered movement

through the aquatic environment has traditionally been considered

to be least important among teleost fins (Gosline, 1971;

Standen, 2008; Yamanoue et al., 2010). These paired appendages

have also been coopted into many other functional structures, such

as sucking disks (gobies), walking structures (frogfishes), stationary

elements (ipnoids), flying structures (four‐wingers), enhanced

defensive elements (rockfishes and sticklebacks), brood pouches

(ghost pipefishes) and can often be colorful and used in courtship

(e.g., cichlids), or as intromittent organs (e.g., poecilids, goodeids,

and anablepids) in many teleost lineages (Baldauf et al., 2010; Cole

& Ward, 1969; Helfman et al., 2009; Nelson et al., 2016; Salzburger

et al., 2007; Yamanoue et al., 2010). The structural simplicity,

reduced importance during movement, and frequent cooption into

other functional structures suggest that the pelvic fins might not be

highly constrained during teleost evolution.

Although cichlid fishes and many other groups have never

completely lost their pelvic fins, the pelvic fins have been lost

independently in at least 48 lineages across teleost fishes (Costa

et al., 2023; Jackson et al., 2018). Despite many of these lineages

having an eel‐like body (e.g., Anguilliformes and Saccopharyngi-

formes), some members of more “typical” percomorph‐bodied

lineages (e.g., Percopsiformes, Cyprinodontiformes, Perciformes,

and Carangiformes), and Siluriformes have also lost their pelvic fin

(Costa et al., 2023; Gregory & Conrad, 1937; Jackson et al., 2018;

Nelson et al., 2016). Several of these lineages have also evolved

characteristic traits that could have changed to compensate for their

lack of pelvic fins (Table 1). However, some of these morphological

changes could have also been due to the pleiotropic effects of the

same underlying genomic changes that led to pelvic fin reduction or

loss (Tables 2 and 3, respectively). For example, characteristics such

as body elongation, increased number of vertebrae, and the number

of remaining pterygiophores could all be pleiotropically modified by

genes that also alter pelvic fin anatomy (Ledford & Webb, 2020;

McCosker & Ho, 2015; Nelson et al., 2016; Reis & de Pinna, 2019;

Tanaka et al., 2005; Zhang et al., 2002). The loss of pelvic fins in many

fish groups might be heavily constrained by pleiotropic effects on

other anatomical structures.

However, population‐level adaptive reduction of the pelvic fins

has been inferred to have occurred many times independently,

intraspecifically, and rapidly in species such as stickleback fishes

(Gasterosteus aculeatus, Pungitius pungitius, and Culaea inconstans)

that have lost their pelvic fin numerous times across their large

Nearctic distributions (Bell et al., 1993; Chan et al., 2010; Jones

et al., 2012; Klepaker et al., 2013; Xie et al., 2019). These convergent

losses of pelvic fins have naturally occurred in many recently

deglaciated freshwater habitats within the last ~20,000 years (Bell

et al., 1993; Elmer & Meyer, 2011; Klepaker et al., 2013; Laurentino

et al., 2020; McPhail & Lindsey, 1970; Shapiro et al., 2006). A large

proportion of the evolution that takes place when oceanic stickleback

invades freshwater ecosystems can happen in less than 50 genera-

tions after colonization (Lescak et al., 2015). Interestingly, pelvic fin

reductions have also been documented to occur in approximately a

dozen generations under experimental conditions (Chan et al., 2010).

Similarly, the loss of pelvic fins in genetically modified zebrafish

(Danio rerio) has also occurred rapidly in the laboratory (Don

et al., 2011, 2016; Lin et al., 2016). Pelvic fin loss could be a

relatively easy and quick evolutionary transition in many groups of

fishes.

Despite the repeated ease with which pelvic fins could be lost in

some fishes, losing these fins could substantially affect other

anatomical structures. This could commonly constrain the loss of

these fins. For instance, several conserved limb genes underlying

pelvic fin reduction have been identified (Table 2) that likely influence

multiple other anatomical structures (Infante et al., 2018; Lettice

et al., 2014; Sagai et al., 2005; Thompson et al., 2018). The genetic

basis of pelvic fin loss has previously been shown to occur due to
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modifications of regulatory genes such as Hoxd9, Pitx1, Pitx2, Shh,

and Tbx4 (Chan et al., 2010; Chen et al., 2019; Don et al., 2016; Lin

et al., 2016; Marcil et al., 2003; Tanaka et al., 2005; Yamada

et al., 2021). These genes are also expressed widely in many other

structures during development (Table 3). For instance, Hoxd9

influences the positioning of the dorsal, pectoral, and anal fins (Chen

et al., 2017a; Mazurais et al., 2009; Tanaka et al., 2005) and Shh

patterns scales, spines, and teeth (Fraser et al., 2008, 2009; Höch

et al., 2021; Hulsey et al., 2019; Sire & Akimenko, 2004). The

pleiotropic effect of these genes could provide a guide to investigate

F IGURE 1 Normal (left side) and pelvic finless (right side) morphotypes. The green boxes indicate the location of the pelvic fins in normal
individuals, and the red boxes show where the spontaneous appendage loss occurred. Grayscale photograph of the ventral and lateral view
(a)–(d). X‐ray images showing the osteology of both morphotypes (e) and (f). The basipterygium is evident in the normal morphotype
(e); however, it is missing in the pelvic finless specimens (f). The cleared and stained pelvic skeletal structures (g) and their absence in the
morphotype without the pelvic fins are shown (h). All photographic backgrounds were digitally removed.
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other anatomical phenotypes that might change in concert when the

pelvic fins are lost.

Pelvic fin loss could also influence the bilateral symmetry of

organisms. For instance, the genes Pitx1 and Pitx2 that influence

pelvic fin loss are also related to deviations from bilateral symmetry in

paired structures (Coyle et al., 2007; Graham et al., 2010;

Graham, 2021; Gurnett et al., 2008; Marcil et al., 2003; Shapiro

et al., 2006). These types of deviations from left versus right lateral

symmetry have been influential in fish evolution, ecology, feeding,

reproduction, and locomotion (Campbell et al., 2020; Chapleau, 1993;

Kusche et al., 2012; Munroe, 2014; Raffini & Meyer, 2019; Takeuchi

& Hori, 2008; Torres‐Dowdall et al., 2019). For example, the teleost

order Pleuronectiformes (including flounders, turbots, and soles)

contains several cases of asymmetry in fishes. After larval metamor-

phosis, these fish rearrange their eye positions, pigmentation, and

paired fin locations (Chen et al., 2017b; Nelson et al., 2016).

F IGURE 2 Pelvic girdle anatomy in a Midas cichlid. The lateral view of the left pectoral and pelvic fins is shown following removal of scales
and skin (a). The exposed pectoral and pelvic muscles are also highlighted after removal of the abdominal muscles (b). The dorsal view of the
pelvic girdle musculature is shown once the girdle is removed from the fish (c) and (d). The ventral view of the pelvic girdle musculature is also
displayed (e) and (f). The background of the photographs was digitally removed. A subset of the pectoral muscles, the abductor superficialis (ABS)
and the abductor superficialis pars profunda (ABSp) highlight the close proximity of the pectoral fin to the pelvic girdle. The pelvic girdle's
basipterygium (Bp) is formed from the fusion of two thickened bony plates. Substantial connective tissue links the pelvic fin rays to the Bp. The
eight muscles normally found in the intact pelvic girdle include the abductor superficialis pelvicus (ABSP), abductor profundus pelvicus (ABPP),
adductor superficialis pelvicus (ADSP), adductor profundus pelvicus (ADPP), arrector dorsalis pelvicus (ARRDP), arrector ventralis pelvicus
(ARRVP), protactor ischii (PI), and the retractor ischii (RI). Virtually all of this pelvic fin musculoskeletal structure was absent in the pelvic finless
Midas cichlids.
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However, the pelvic fins in Midas are the last fins to develop during

ontogeny (Molina‐Arias, 2011), so any genetic changes affecting

these structures could have a limited impact on the morphological

divergence and symmetry in other structures. Therefore, it is unclear

whether the spontaneous loss of pelvic fins we observed in Midas

cichlids could have either significant pleiotropic effects on other

structures or influence bilateral symmetry in these fishes.

In this study, we anatomically described a spontaneous loss of

the pelvic girdle and its associated external fins in a Nicaraguan Midas

cichlid reared in our laboratory stocks. The musculoskeletal anatomy

and several meristic traits were compared between the two pelvic fin

morphotypes to assess whether there were any pleiotropic morpho-

logical effects associated with the loss of the pelvic fins. We

quantified the number of abdominal as well as the caudal vertebrae,

the number of rays in the caudal, dorsal, anal, pectoral, and pelvic

fins, the oral teeth in the first row, the cranial sensory pores, the

upper lateral line scales, and lower lateral line scales. Lateral

asymmetry in both pelvic fin morphotypes was also investigated by

measuring the number of pectoral rays, the cranial sensory pores, and

the number of upper and lower lateral line scales on both the left and

right sides of the fish. Using these anatomical measurements, we

determined how the spontaneous loss of the pelvic appendages

might have pleiotropically influenced other Midas cichlid musculo-

skeletal structures as well as external left‐right asymmetry.

2 | MATERIALS AND METHODS

2.1 | Midas cichlid fish specimens

All 67 Midas cichlids specimens (A. citrinellus) used were young adult

size. Of these, 29 had the pelvic fins and girdle (Figure 1), what we

termed the “normal” morphotype ranging between 80.2 and 130.2

(x̄ = 94.9 ± 11.7) mm standard length (SL). Meanwhile, 38 lacked

these pelvic structures, what we termed the “pelvic finless” morpho-

type (Figure 1), and spanned a range of 60.7–140.7 (x̄ = 105.0 ± 17.4)

mm SL. All of the fish were siblings and were initially housed in the

same aquarium. These fish were obtained from an aquarium

population recently culled by animal care technicians (~1 week prior).

The loss of the pelvic fins went undetected for the first year of their

lives as these fish grew. These were fed daily, and no obvious

disadvantages in swimming ability were observed between the pelvic

TABLE 1 Divergence in morphological traits in teleost fish that have lost their pelvic fins.

Trait Teleost lineage Morphological divergence References

Increased number of vertebrae Anguilliformes Up to 220 Huang et al. (2021); McCosker and Ho (2015)

Syngnathidae Up to 50 Short and Trnski (2021); Small et al. (2016)

Pentaecidae Up to 44 Nelson et al. (2016)

Increased dorsal fin spines
and rays

Eumecichthys fiski Up to 382 Kukuev et al. (2020)

Gymnarchidae Up to 230 Hu et al. (2006); Olopade and Taiwo (2013)

Anal fin Japigny kirschbaum Decreased fin rays Meunier et al. (2011)

Sternopygidae Increased fin rays Dutra et al. (2014); Meunier et al. (2014)

Pectoral fins Trichomycterus aleterus Decreased Fernandez and Andreoli‐Bize (2017); Ledford
and Webb (2020)

Lucigobius adapel Decreased fin rays Okiyama (2001)

Channa nox Decreased fin rays Zhang et al. (2002)

Giganturidae Fins high on the body Johnson (1991)

Xiphias gladius Fins low on the body Gregory and Conrad (1937); Nelson
et al. (2016)

Empetrichthyinae Wide pectoral base Nelson et al. (2016)

Carangidae Extended rays Nelson et al. (2016)

Lateral line system Lucigobius adapel Decreased lateral line scales Okiyama (2001)

Amblyopsidae Lateral line absent in many cavefish Poly and Proudlove (2004)

Cryptacanthodidae Increased number of cephalic pores Nelson et al. (2016); Schnell and Hilton (2015)

Teeth Xiphias gladius Toothless in adults Nelson et al. (2016)

Syngnanthidae Toothless Nelson et al. (2016); Short and Trnski (2021);
Small et al. (2016)

Note: Morphological aspects of these same structures were quantified in the normal and pelvic finless Midas cichlid morphotypes.
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finless morphotypes and their normal siblings. Additionally, since the

groups did not differ in their body sizes, it seems both groups

increased in length equally well. Once discovered, a series of both

pelvic fin morphotypes were preserved in 70% ethanol (EtOH) for

long‐term storage.

2.2 | Pelvic and pectoral fin osteology and muscles

To examine the internal calcified structures of the fishes, X‐ray plates

were produced using a ZooMax Digital X‐ray machine set at values of

52 kV peak and 4–7 mAs. X‐rays were obtained from the lateral view

of 40 specimens (n = 20 normal; n = 20 pelvic finless). The pelvic

morphotype was confirmed based on the presence of the basipter-

ygium. Additionally, the pelvic fin musculature presence and absence

was examined in both morphotypes. The distal and proximal insertion

of the arrector ventralis pelvicus (ARRVP), arrector dorsalis pelvicus

(ARRDP), abductor superficialis pelvicus (ABSP), abductor profundus

pelvicus (ABPP), adductor superficialis pelvicus (ADSP), adductor

profundus pelvicus (ADPP) protactor ischii (PI), and retractor ischii (RI)

(Figure 2) were examined following Winterbottom (1974) and

Siomava and Diogo (2017).

The X‐ray images were also used to investigate any pleiotropic

effects on vertebrae numbers. To quantify vertebrae numbers, both

the abdominal (vertebrae bearing ribs) and caudal vertebrae (with

hemal spine), according to Nikiforidou et al. (2020) were counted. In

addition, the X‐ray images allowed us to count the proximal

pterygiophores of the dorsal, anal, and caudal fins of each specimen.

As we initially hypothesized that the loss of the pelvic fins might

influence the pectoral fin morphology, the right pectoral girdle and fin

of 20 specimens (n = 10 normal; n = 10 pelvic finless) were carefully

removed from the fish. Under a dissection microscope and using

forceps and a scalpel, these fins were detached from the body at the

supracleithrum and postcleithrum joints. Then, each muscle was

TABLE 2 Genes associated with pelvic fin absence (A) and
reduction (R) in different fish species.

Gene Species Reference(s)

Hoxd9 Takifugu rubripes (A) Tanaka et al. (2005)

Dicentrarchus labrax (A/R) Mazurais et al. (2009)

Pitx1 Gasterosteus acuelatus (A/R) Chan et al. (2010); Cole et al.

(2003); Coyle et al. (2007);
Shapiro et al. (2006);

Thompson et al. (2018)

Pungitius pungitius (A/R) Shapiro et al. (2006)

Pitx2 Gasterosteus acuelatus (A/R) Cole et al. (2003)

Shh Danio rerio (R) Letelier et al. (2018)

Oryzias latipes (R) Letelier et al. (2018)

Tbx4 Danio rerio (A) Cole et al. (2003); Don et al.
(2016); Lin et al. (2016)

Syngnathus spp. (A) Lin et al. (2016); Small
et al. (2016)

Hippocampus spp. (A) Lin et al. (2016)

Corythoichthys sp. (A) Lin et al. (2016)

Anguilla japonica (A) Chen et al. (2019)

Takifugu spp. (A) Chen et al. (2019)

Tetraodon nigroviridis (A) Chen et al. (2019)

Pampus argenteus (A) Zhang, Zhang, et al. (2022)

TABLE 3 Anatomical structures associated with genes linked to pelvic fin absence or reduction in fish.

Pleiotropic structures Species Gene(s) References

Scales Danio rerio Shh Sire and Akimenko (2004)

Danio rerio Tbx cluster Zhang, Ji, et al. (2022)

Teeth Syngnathus scovelli Pitx1 Small et al. (2016)

Malawi Cichlid species Hox, Pitx2, Shh Fraser et al. (2008, 2009)

Danio rerio Pitx2 Square et al. (2021)

Gasterosteus acuelatus Pitx2 Square et al. (2021)

Pectoral fin G. acuelatus, Takifugu rubripes Hoxd9 Tanaka et al. (2005)

Danio rerio, Oryzias latipes Shh Letelier et al. (2018)

Dorsal and anal spines Paralichthys olivaceus Hoxd9 Chen et al. (2017a)

Pelteobagrus fulvidraco Tbx4 Chen et al. (2019)

Scorpaeniformes Tbx4 Chen et al. (2019)

Spiny and soft rays Astatotilapia burtoni Shh Höch et al. (2021)

Ribs Syngnathus scovelli Hox, Pitx, Tbx Small et al. (2016)

Note: These candidate structures that potentially could have been modified were examined in our two Midas cichlid pelvic fin morphotypes.
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dissected following Winterbottom (1974), Thorsen and Westneat

(2005), Standen (2010), and Hulsey et al. (2013). The abductor

superficialis (ABS), abductor superficialis pars profunda (ABSp), arrector

ventralis (ARRV), and abductor profundus (ABP) that all pull the fin

anteriorly were first carefully separated and removed from the

pectoral girdle. Then, the arrector dorsalis (ARRD), adductor radialis

(ADR), adductor profundus (ADP), and adductor superficialis (ADS) that

pull the pectoral fin posteriorly were removed. Finally, each dissected

muscle was blotted dry twice on paper towels and subsequently

weighed (±0.0001 g). We then calculated the percentage of the mass

of each individual pectoral muscle that contributed to the combined

total pectoral muscle mass to determine if there were differences in

individual pectoral muscle masses between the pelvic finless and

normal morphotypes.

2.3 | Skeletal clearing and staining

Due to the limited ability of X‐rays to capture changes in less calcified

structures (e.g., cartilage), particularly in the pelvic fins, two

specimens of each morphotype were also cleared and stained. Alcian

blue and alizarin red staining was employed, according to Dingerkus

and Uhler (1977) and Potthoff (1984). In brief, specimens were fixed

in 7% formalin for approximately 1 week. After several washes with

deionized water, the samples were postfixed in 70% EtOH for at least

72 h. Next, the cartilage structures of the specimens were stained

using 20mg of alcian blue diluted in 30% glacial acetic acid (HAc) and

70% pure EtOH for 6 − 8 h. Then, the fish were placed in an EtOH/

HAc wash for 1 h and transferred to 70% EtOH and water for 24 h.

Next, specimens were put into a solution of 1% pork pancreas trypsin

1:250 (Genaxxon Bioscience) and 30% saturated sodium borate until

the blue‐stained cartilages were visible. Specimens were then

transferred to distilled water with 2–5 drops of 30% hydrogen

peroxide for at least 24 h. Subsequently, calcified fish structures were

stained using alizarin red dissolved in 0.5% potassium hydroxide

(KOH) solution for 24 h and transferred to a 0.5% KOH solution for

1 day. After several washes with a 0.5% KOH solution, fish were

gradually transferred to 100% glycerol for final storage. All dissec-

tions and visualization in this study were performed under a ZEISS

Stemi SV 11 stereoscope and photographed with a Zeiss AxioCam

MRc camera.

2.4 | Morphometric and meristic data

To quantify the external anatomy, morphometric analyses of selected

traits were performed on the left side of all specimens. Three

measurements were taken using an analog caliper (±0.1mm). These

measurements were the SL from the snout to the tail‐end of

the vertebral column, the pectoral fin base height estimated at the

cartilage pad section, and the pectoral fin length from the origin of

the fin to the tip of the longest ray. These data were size‐

standardized as a percentage of the SL for statistical analyses. The

number of teeth in the first row of the upper and lower jaw was also

quantified from the left side of 20 individuals of each morphotype.

When present, the paired pectoral and pelvic fin rays were counted

on both fins. In addition, the pores running along the anterior lateral

line system, particularly on the mandibular‐preopercular and the

infraorbital canal, were counted on both sides of the fish (Edgley &

Genner, 2019). As cichlids have a divided posterior lateral line

(Nelson et al., 2016; Recknagel et al., 2013; Scott et al., 2023), both

the upper and lower lateral line scales were counted for all specimens

on the right as well as the left sides of the fish.

Finally, we evaluated the degree of asymmetry between the

Midas pelvic fin morphotypes for several traits: (1) pectoral ray fins,

(2) mandibular‐preopercular canal pores, (3) infraorbital canal pores,

(4) upper lateral line scales, and (5) lower lateral line scales. Paired

test comparisons were performed on the meristic values for the same

side of the body between the morphotypes. To quantify if the degree

of asymmetry differed between the two morphotypes, we followed

the methodology suggested by Graham (2021), Graham et al. (2010),

and Palmer and Strobeck (1986). In brief, the value of d (d =

left − right) was estimated for each specimen and assessed by

subtracting the meristic values of the left side and the value of its

right. Then, E was estimated (E = | d − 0 |). This absolute value was

used to compare the extent of asymmetry in the two pelvic fin

morphotypes with a paired test. Normality and homogeneity of

variance assumptions were assessed using Shapiro and Leven's tests,

respectively. Based on the results, paired t‐tests or Wilcoxon rank‐

sum tests were selected for the comparisons. Statistical analyses

were performed using the software PAST version 4.09 (Hammer

et al., 2001).

3 | RESULTS

The presence and absence of the external pelvic girdle structures

were clearly evident in both morphotypes after removing the scales

and skin (Figure 1). The protactor ischii tendon located along the

ventral midline was thicker in the normal specimens compared to the

pelvic finless individuals (Figure 1a,b). Additionally, muscle striations

of the protactor and retractor ischii could not be histologically or

visually confirmed in the pelvic finless individuals. Therefore, any

homology of this thin membrane to these putative muscles is

tenuous. The pelvic fins and the basipterygium that inserts anteriorly

near the cleithrum of the pectoral fin were clearly evident in the

normal morphotype and absent in the pelvic finless group

(Figure 1c–h). Remarkably, there was no evidence of either a calcified

(Figure 1f) or cartilaginous (Figure 1h) basipterygium in the specimens

with the pelvic finless morphotype. Furthermore, the pelvic muscles

comprising the ABSP, ABPP, ARRVP, ADSP, ADPP, ARRDP, PI, and RI

were present exclusively in the Midas retaining their pelvic fins

(Figure 2).

All normal and pelvic finless X‐rayed specimens showed a similar

arrangement of calcified structures for the pectoral girdle

(Figure 1e,f), and this was also evident in cleared and stained
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specimens (Figure 1g,h). Additionally, no differences were observed

among the configuration of the bones making up the pectoral girdle.

The cleithrum, scapula, coracoid, and four radials contributing to the

pectoral fin were consistently present in both morphotypes.

Furthermore, the eight muscles dissected from the pectoral girdle

comprised a similar proportion of the total muscle mass (Figure 3a,b),

and the same layout of each of these muscles (Figure 3c–f) was

observed in the two morphotypes. The total mass of the pectoral fin

abductor (48.4% and 47.5%), adductor (40.1% and 40.0%), and the

arrector (11.5% and 12.5%) muscles were broadly similar between

the normal and the pelvic finless morphotypes. The group lacking the

pelvic fins had slightly higher proportions for the ABP, ARRV, ADP,

and ARRD (Figure 3a,b). However, these were not significantly

different (p > .05) from the normal morphotype (Table S1).

The morphometrics of most traits were generally similar between

the two pelvic fin morphotypes. After size‐standardization, the

pectoral base height was slightly higher in the pelvic finless

morphotype (p < .05). However, no differences were observed in

the pectoral fin length between the two groups. The meristic data

were also generally similar between the Midas pelvic fin morphotypes

(Table 4). The numbers of rays in the caudal (22) and dorsal fin (27), as

well as the numbers of the upper first row of teeth (15), were

equivalent and invariable between the pelvic fin morphotypes

(Table 4). Some differences in the anal ray counts, first‐row teeth

in the lower jaw, and vertebrae were found (Table 4), although none

differed substantially between the two morphotypes. For example,

three individuals of each morphotype had 15 anal fin rays, and one

pelvic finless individual had 13 anal fin rays. Additionally, except for

one normal specimen that had 13 abdominal vertebrae instead of 14,

similar meristic variation in the total vertebrae for both morphotypes

was recovered in the caudal vertebrae. In the normal morphotype, 14

(n = 1) and 15 (n = 6) caudal vertebrae were present instead of the

similarly common 16 (n = 13) vertebrae. Eight pelvic finless individuals

had 15 caudal vertebrae instead of the more frequent 16 (n = 12). The

range in the right side first row of teeth in the lower jaw (20–22) was

similar between both morphotypes (Table 4).

The meristics of the structures assessed on both the right and

left sides of all 67 specimens generally overlapped between the

morphotypes but showed interesting patterns. The range in the

number of pectoral fin rays (15–17), mandibular‐preopercular (8–10),

and infraorbital pores canals (3–7) were comparable between the two

morphotypes. Yet, the number of pores along the infraorbital canal

differed significantly (p < .05) between the pelvic fin morphotypes on

the left side (Table 5). Additionally, the upper lateral line scale

numbers ranged extensively from 0 to 28, and the lower lateral line

scales ranged from 0 to 10 (Table 5). Compared to the normal

morphotype, the pelvic finless group had higher mean values for five

traits on the right side and four traits on the left side of the body

(Figure 4 and Table 5). In terms of mean values, a left‐right

asymmetry dominance where higher values on the left side than

the right was observed regardless of the morphotype (Table 5).

Differences in the asymmetry metric E between the morphotypes

were found only for the lower lateral line scales (Table 5). However,

the average number of scales along the upper lateral line differed

substantially (p < .05) between the pelvic fin morphotypes on both

the left and right sides of the body (Table 5).

4 | DISCUSSION

The spontaneous loss of the pelvic girdle and associated fins in lab‐

raised Midas cichlids had pleiotropic effects on the morphology of

other structures and the bilateral symmetry of these Midas cichlids.

As far as we know, a single cichlid species has been recorded as

occasionally lacking a pelvic fin in the wild (Ugbomeh et al., 2022),

although similar spontaneous anomalies in the pelvic fin have been

reported in wild‐caught fishes in many other teleost families such as

Bleniidae, Engraulidae, Lutjanidae, and Nemipteridae (Alvarez‐

León, 1980; Babu‐Rao, 1975; Hettler, 1971; Jawad et al., 2017, 2022;

Jose et al., 2020; Marr, 1945; Menezes, 1961). However, these other

studies generally lack detailed comparative morphological analyses

between fish with and without pelvic fins. The pleiotropic morpho-

logical consequences of the loss of structures like the pelvic fin

should be examined more extensively as they could point to reasons

outside the functional consequences of pelvic fin loss that could help

to maintain the evolutionary retention of these paired appendages.

The causes of many pelvic fin anomalies in teleosts are still

unclear. Frequently, similar biotic (e.g., genetic and poor nutrition),

abiotic (e.g., temperature, pollution, and oxygen), or a combination of

both factors have been hypothesized to cause these types of

anatomical anomalies (e.g., Bengt‐Erik et al., 1985; Ehemann

et al., 2022; Eissa et al., 2021; Gudger, 1930; and Jawad &

Ibrahim, 2018). Additionally, the loss of the pelvic fins defines many

diverse fish lineages, where ecological conditions (e.g., lack of

predators in stickleback freshwater population) may facilitate or

even drive the loss of “unnecessary” fins. The rapid and spontaneous

loss of the pelvic fins in the Midas assessed in this study is unlikely to

be explained by adaptation to abiotic or biotic factors because both

Midas morphotypes were siblings and tankmates and reared under

the same constant conditions. However, the observed loss in aquaria

and its influence on other morphological structures could provide

novel insights into why pelvic fin loss might be uncommon in cichlids

and perhaps other fishes.

The genetic causes of pelvic fin loss or reduction in many fishes

continue to become apparent (Table 2). Our findings support the

growing evidence that pelvic fin loss can occur rapidly (Bell

et al., 1993; Chan et al., 2010; Don et al., 2016; Kratochwil &

Meyer, 2019) and might frequently have a relatively simple genetic

basis (Table 2). The meristic variation in many of the morphological

traits examined (Tables 4 and 5) was similar to normal patterns of

variation observed in other fishes (Tables 1–3). For instance, there

was some variation in traits, such as the number of caudal vertebrae

that commonly show minor variation in fishes (Losada et al., 2014;

Reyes‐Corral & Aguirre, 2019). However, the differences found with

the number of lateral line scales, not only between the morphotypes

but also between sides of the body, suggest that the loss of the pelvic
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F IGURE 3 Individual percentage contribution (summarizing total right pectoral weight) of the muscles assessed in this study for the
normal (a) and pelvic finless (b) groups. General schematic origins, shape, and insertions of the abductor superficalis (ABS), abductor
superficialis pars profunda (ABSp), abductor profundus (ABP), and arrector ventralis (ARRV) on the medial external view (c) and (d). The
adductor superficialis (ADS), adductor profundus (ABP), arrector dorsalis (ARRD), and adductor radialis (ADR) are located on the inner side
of the pectoral girdle (e) and (f).
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fin could have substantial consequences for other morphological

structures. Our results highlight a potential genetic association

between the pelvic fins and the lateral line system in fishes whose

mechanistic relationship should be examined more extensively.

The limited morphological or meristic differences between the

two Midas pelvic fin morphotypes in a number of structures (Tables 4

and 5) could be explained by the general timing of pelvic fin

development (Woltering et al., 2018). The pelvic fins are the last fin

to arise during development in A. citrinellus, with the first rays starting

to form 17 days after fertilization (Molina‐Arias, 2011). Interestingly,

A. citrinellus also shows a slightly slower larval development rate than

other relatively closely related Central American cichlids species,

such as Amatitlania nigrofasciatum, Parachromis managuensis, Para-

chromis dovii, and Herotilapia multispinosa (Molina‐Arias, 2011). If this

slower development especially affects the pelvic fins, this could

restrict the probability of pleiotropic effects on either musculo-

skeletal structures or organ systems. However, heterochronic

TABLE 4 Meristic comparisons of the unpaired morphological
traits gathered from the 20 normal and 20 pelvic finless individuals
of Midas cichlids.

Morphotype Normal Pelvic finless

Variable Range (mean) Range (mean)

Abdominal vertebrae 13–14 (13.9) 14–14 (14.0)

Caudal vertebrae 14–16 (15.6) 15–16 (15.6)

Total vertebrae 28–30 (29.5) 29–30 (29.6)

Caudal fin rays 22 (22.0) 22 (22.0)

Dorsal fin rays 27 (27.0) 27 (27.0)

Anal fin rays 14–15 (14.2) 13–15 (14.2)

First row teeth lower right jaw 20–22 (21.4) 20–22 (21.4)

First row teeth upper right jaw 15 (15.0) 15 (15.0)

Note: Range and mean (within parenthesis).

TABLE 5 Left and right‐side comparisons of the paired structures between the normal (n = 29) and the pelvic finless (n = 38) Midas cichlids.

Left side Right side Asymmetry (E)
Morphotype Normal Pelvic finless Normal Pelvic finless Normal Pelvic finless

PR 15.9 ± 0.1 16.1 ± 0.0 15.9 ± 0.1w* 16.1 ± 0.0w* 0.0 ± 0.0 0.1 ± 0.0

MPC 9.4 ± 0.1 9.3 ± 0.1 9.3 ± 0.1w* 9.7 ± 0.1w* 0.3 ± 0.1 0.4 ± 0.1

ICP 5.5 ± 0.1wt ** 5.9 ± 0.1wt** 5.7 ± 0.1 5.7 ± 0.1 0.3 ± 0.1 0.3 ± 0.1

ULL 14.1 ± 1.0wt* 17.2 ± 0.6wt* 9.1 ± 0.7t** 12.9 ± 0.8t** 5.8 ± 1.0 5.3 ± 0.6

LLL 6.4 ± 0.6 7.7 ± 0.3 3.5 ± 0.6wt*** 6.7 ± 0.4wt*** 3.7 ± 0.6* 1.5 ± 0.3*

Note: Values for the pectoral rays (PR), mandibular‐preopercular canal pores (MPC), infraorbital canal pores (ICP), upper lateral line scales (ULL), and lower
lateral line scales (LLL) are given as mean and stand error for both the left and right sides of each pelvic fin morphotypes. Absolute asymmetry values (E),

interpreted as zero for perfect symmetry, were calculated for traits in each of the two pelvic fin morphotypes, and these values between the morphotypes
were compared with a parametric t test (t) or alternatively with the nonparametric Wilcoxon rank‐sum test (w) to determine if one of the morphotypes
showed evidence of more asymmetry. Welch's t test (wt) was used in case of unequal variance (Levene's test p < .05). Significant differences are marked in
bold font and denoted with asterisks for p < .05 (*), p < .005 (**), and p < .0005 (***).

F IGURE 4 Schematic representation of the meristic variables evaluated on both sides of the normal (a) and pelvic finless (b) morphotypes.
The pectoral rays (PR), mandibular preopercular canal pores (MCP), infraorbital canal pores (ICP), upper lateral line scales (ULL), and lower lateral
line scales (LLL) are depicted. The pelvic finless drawing shows the traits where the meristic mean values were greater (+) or less (−) for each side
of the body (left/right) as compared to the meristics in the normal morphotype (b). Statistical differences (p < .05) are shown in larger and bold
font size.
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changes, atavism, and vestiges of pelvic girdles in some other animals

(e.g., snakes and whales) have also been found (Hall, 2010; Lanzetti

et al., 2023; Sherratt et al., 2019; Stiassny, 1991; Werneburg &

Sánchez‐Villagra, 2015), and suggest that the timing of pelvic fin

development can play a role in their loss. It might be that structures

that form later in development are often the ones that are more

readily lost during evolution and are also those traits that commonly

show limited pleiotropic effects on other anatomy.

The loss of the pelvic fins in the Midas cichlid individuals was

accompanied by substantial left‐right asymmetry in the pelvic finless

morphotype. Interestingly, regardless of the morphotype examined,

higher meristic values tended to be found on the left than on the

right side when asymmetry was detected (Table 5). Similar results

with left dominant asymmetry have also been mentioned for other

fish such as stickleback, four‐eyed fish, zebrafish and also in other

taxa like Cephalochordates, Urochordates, and manatees (Bell

et al., 1985; Boorman & Shimeld, 2002; Hamada, 2020; Lajus

et al., 2019; Parenti, 1986; Reimchen & Bergstrom, 2009; Řežucha &

Reichard, 2015; Seixas et al., 2021; Shapiro et al., 2006; Sinha &

Tilak, 1968; Torres‐Dowdall et al., 2019, 2022; Yasui et al., 2000).

These situations, where body structures on one side (left) are larger

for meristic counts than counts on the other side (right), also called

left‐right asymmetry, have been found to be related to genes such as

Pitx1 (Shapiro et al., 2006) as well as the Nodal‐Pitx2 pathway

(Hamada, 2020; Schreiber, 2013; Table 2). The extent of asymmetry

was considerably higher for the upper and lower lateral lines for both

morphotypes as compared to other traits. The variation observed in

the meristics of the lateral line in these cichlids suggests the

mechanistic links between the pelvic fin and lateral line morphology

should be investigated more extensively in Midas cichlids and other

fish lineages. Future research into the shared developmental genetic

basis of paired appendages and other structures would help to shed

light on the commonalities structuring morphological divergence

among the many disparate lineages that have lost their pelvic fins.

5 | CONCLUSIONS

The loss of the pelvic appendages resulted in changes in the

musculoskeletal morphology and left‐right asymmetry between

normal and pelvic finless Nicaraguan Midas cichlid fishes reared in

captivity. A comparative review of the anatomy and genes associated

with pelvic fin loss in other teleost fishes pointed to several

morphological traits that might also differ in association with the

loss of the pelvic fins. By examining these potential pleiotropic

phenotypes that could change in conjunction with pelvic fin loss, we

were able to find several morphometric differences between the two

Midas cichlid pelvic fin morphotypes. The morphotypes did differ in

meristic traits, such as the fin rays, head pore canals, and lateral line

scales. We also observed left‐right asymmetry in the number of

lateral line scales in both morphotypes. The anatomical differences in

the lateral line system suggest a possible developmental and/or other

mechanistic link between the pelvic fin and the lateral line system

that should be investigated both within a developmental genetic

context as well as with comparative anatomy in other teleost fishes.
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