ACFs are simple as much as infinite sets: An introduction to quantifier elimination

Junguk Lee
KAIST
January, 14th, 2022

- My goal is to convince that algebraically closed fields are simple as much as infinite sets (in the view of their syntax).
- I will introduce a notion of quantifier elimination (QE) from model theory.
- In the term of QE, the syntax of an algebraically closed field, as a field, is simple as like
- an infinite set as a structure equipped with equality only,
- a real closed field as an ordered field,
- a differentially closed fields as a differential field.
- Fix a first order language \mathcal{L}, which is countable for simplicity. Let T be a complete \mathcal{L}-theory.
- Write x, y, z, \ldots for tuples of variables.
- Let ω be the set of natural numbers.
- We say that a formula $\varphi(x)$ is quantifier-free if it has no quantifiers in φ.
- We say that T has quantifier elimination (QE) if for any formula $\varphi(x)$, there is a quantifier-free formula $\psi(x)$ such that

$$
T \models \forall x(\varphi(x) \leftrightarrow \psi(x))
$$

that is, any formula is equivalent to a quantifier-free formula modulo T.

Example

Let T be the theory of real closed fields in the ordered ring language. Let

$$
\varphi(a, b, c) \equiv a \neq 0 \wedge \exists x\left(a x^{2}+b x+c=0\right)
$$

Then, φ is equivalent (modulo T) to the following quantifier-free formula

$$
\psi(a, b, c) \equiv b^{2}-4 a c \geq 0
$$

- Even though QE is defined syntactically, it has a semantic criterion, which is very useful.

Theorem

T has $Q E$ if and only if for a \aleph_{0}-saturated and \aleph_{1}-strongly homogeneous model \mathfrak{C} of T, the following holds: For an isomorphism $f: A \rightarrow B$ between finitely generated substructures A and B of \mathfrak{C} and $a \in \mathfrak{C}^{1}$, there is $b \in \mathfrak{C}^{1}$ such that the map $f \cup\{(a, b)\}$ is extended into an isomorphism between finitely generated substructures of \mathfrak{C}.

- A structure \mathfrak{C} is called \aleph_{0}-saturated if the following holds: Let $\Sigma(x)$ be a countable set of $\mathcal{L}(\mathfrak{C})$-formulae in the variable x of countable length. Suppose any finite subset Σ_{0} of Σ has a solution in \mathfrak{C}. Then, there is a solution of Σ.
- A structure \mathfrak{C} is called \aleph_{1}-strongly homogeneous if for any tuples \bar{a} and \bar{b} of elements in \mathfrak{C} of countable length,

$$
\bar{a} \equiv \bar{b} \Rightarrow(\exists \sigma \in \operatorname{Aut}(\mathfrak{C}))(\sigma(\bar{a})=\bar{b})
$$

where $\bar{a} \equiv \bar{b}$ means $\mathfrak{C} \models \varphi(\bar{a}) \Leftrightarrow \mathfrak{C} \models \varphi(\bar{b})$ for all formulas $\varphi(x)$. 5/20

- Let $\mathcal{L}=\emptyset$ and let T be the theory of infinite sets.
- Then, T has QE.
- Let \mathfrak{C} be a \aleph_{0}-saturated and \aleph_{1}-strongly homogeneous infinite set.
- Note that any subset of \mathfrak{C} is a substructure because thee are no function symbols.
- Let $f: A \rightarrow B$ be an isomorphism between finite subsets of \mathfrak{C} with $|A|=|B|=n<\omega$.
- That is, f is just a bijection between A and B.
- Take $a \in \mathfrak{C}$ arbitrary. If $a \in A$, then $f \cup\{(a, f(a))\}$ does work.
- Suppose $a \notin A$. Since \mathfrak{C} is infinite and B is finite, there is $b \in \mathfrak{C} \backslash B$. Then, the map $f \cup\{(a, b)\}$ does work.
- Let $\mathcal{L}=\{<\}$ and let T be the theory of linear orders without endpoints.
- Then, DLO has QE.
- Let \mathfrak{C} be a \aleph_{0}-saturated and \aleph_{1}-strongly homogeneous DLO.
- Note that any subset of \mathfrak{C} is a substructure because thee are no function symbols.
- Let $f: A \rightarrow B$ be an isomorphism between finite subsets of \mathfrak{C} with $|A|=|B|=n<\omega$.
- That is, f is an increasing bijection between A and B.
- Write $A:=\left\{a_{0}<a_{1}<\cdots<a_{n-1}\right\}$ and $B:=\left\{b_{0}<b_{1}<\cdots<b_{n-1}\right\}$ with $b_{i}=f\left(a_{i}\right)$.
- Take $a \in \mathfrak{C} \backslash A$ arbitrary.
- Then, there are essentially $(n+1)$-many cases:
(1) $a<a_{0}$.
(2) For some $0 \leq i<n-1$,

$$
a_{i}<a<a_{i+1}
$$

(3) $a>a_{n-1}$.

- Suppose $a_{0}<a<a_{1}$.
- Then, since \mathfrak{C} is dense, there is b such that $b_{0}<b<b_{1}$, and the map $f \cup\{(a, b)\}$ does work.
- For the first and third cases, it comes from the fact that \mathfrak{C} has no endpoints.
- Let $\mathcal{L}_{\text {ring }}=\{+, \cdot, 0,1\}$ be the ring language and $A C F_{p}$ be the theory of algebraically closed fields of characteristic p.
- Then, $A C F_{p}$ has QE.
- Let \mathfrak{C} be a \aleph_{0}-saturated and \aleph_{1}-strongly homogeneous model of $A C F_{p}$.
- For a subset A of \mathfrak{C}, the substructure generated by A is the field generated by A.
- Let $f: A \rightarrow B$ be an isomorphism between finitely generated subfields of \mathfrak{C}.
- The isomorphism f can be extended into an isomorphism between the algebraic closure of A and B.
- WLOG, we may assume that A and B are algebraically closed.
- Take $a \in \mathfrak{C} \backslash A$ arbitrary. Then a is transcendental over A.
- We can take $b \in \mathfrak{C}$ which is transcendental over B because \mathfrak{C} is \aleph_{0}-saturated and B is countably generated.
- Then, there is an isomorphism

$$
f^{\prime}: A(a) \cong_{A} A(X) \cong B(X) \cong_{B} B(b), a \mapsto a
$$

extending f.

- The similar process works for the theory $D C F_{0}$ of differentially closed fields of characteristic 0 in the differential ring language.
- In this case, we work with
- Differential polynomials analogous to polynomials,
- Differential ideals analogous to ideals,
- The Kolchin topology, which is Noetherian, analogous to the Zariski topology.
- QE is very much dependent on the choice of a language.
- Consider the field \mathbb{R} of reals.
- Let T_{1} be the theory of \mathbb{R} in the ring language $\mathcal{L}_{1}:=\mathcal{L}_{\text {ring }}$ and let T_{2} be the theory of \mathbb{R} in the ordered ring language

$$
\mathcal{L}_{2}:=\mathcal{L}_{\text {ring }} \cup\{<\} .
$$

- $\ln \mathbb{R},<$ is definable in the ring language, that is,

$$
\mathbb{R} \models \forall x, y\left(x<y \leftrightarrow \exists z\left(y=z^{2}+x\right)\right) .
$$

- So, \mathbb{R} has the exactly same definable sets or the same 'expressing' power in both languages of \mathcal{L}_{1} and \mathcal{L}_{2}. More generally, the same thing holds for all real closed fields.
- A field F is called real closed if
- it is formally real, that is, -1 is not a sum of squares,
- any polynomial over F of odd degree has a zero in F.
- We will show that T_{1} has no QE in \mathcal{L}_{1} but T_{2} has QE in \mathcal{L}_{2}.
- Let \mathfrak{C} be a real closed fields which is \aleph_{0}-saturated and \aleph_{1}-strongly homogeneous so that it is as a model of T_{1} and of T_{2}.
- T_{1} has no QE in $\mathcal{L}_{1}=\mathcal{L}_{\text {ring }}$:
- Consider an ring isomorphism

$$
f: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(-\sqrt{2}), \sqrt{2} \mapsto-\sqrt{2} .
$$

- Take $a=\sqrt[4]{2} \in \mathfrak{C}$. Then, we can not find $b \in \mathfrak{C}$ such that there is an ring isomorphism between finitely generated subfields of \mathfrak{C}, extending $f \cup\{(a, b)\}$.
- Why? Suppose there is such a 'b'.

$$
a^{2}=\sqrt{2} \Rightarrow b^{2}=-\sqrt{2}
$$

- In the real closed field \mathfrak{C},

$$
0<b^{2}=-\sqrt{2}<0
$$

a contradiction.

- QE of ACF implies Chevalley's theorem on constructible sets.

Theorem

The set of constructible sets on \mathbb{C} is closed under taking projection.

- An algebraic subset of \mathbb{C}^{n} is a zero of polynomial equations over \mathbb{C}.
- A subset of \mathbb{C}^{n} is called constructible if it is a boolean combination of algebraic subsets.
- Chevalley's theorem says that given a constructible subset A of \mathbb{C}^{n+1}, the projection $\pi[A]$ is also constructible, where $\pi:\left(x_{0}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right)$.
- By definition, a subset of \mathbb{C}^{n} is constructible if and only if it is definable by a quantifier-free formula over \mathbb{C}.
- Let $A \subseteq \mathbb{C}^{n+1}$ be constructible.
- So, there is a quantifier-free formula $\varphi\left(x_{0}, \ldots, x_{n}\right)$ such that

$$
A=\left\{\bar{a} \in \mathbb{C}^{n+1}: \mathbb{C} \models \varphi(\bar{a})\right\}
$$

- Then,

$$
\pi[A]:=\left\{\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{C}^{n}: \exists x_{0} \in \mathbb{C}\left(\left(x_{0}, b_{1}, \ldots, b_{n}\right) \in A\right)\right\}
$$

- That is, for $\psi\left(x_{1}, \ldots, x_{n}\right) \equiv \exists x_{0} \varphi\left(x_{0}, x_{1}, \ldots, x_{n}\right)$,

$$
\pi[A]:=\left\{\bar{b} \in \mathbb{C}^{n}: \mathbb{C} \models \psi(\bar{b})\right\}
$$

- By QE, ψ is equivalent to a quantifier-free formula, and so $\pi[A]$ is again constructible.
- Hilbert's 17 th problem (theorem) says that given a polynomial $p(T) \in \mathbb{R}[T]$ with $|T| \geq 1$, if $p(a) \geq 0$ for all $a \in \mathbb{R}$, then p is a sum of squares of rational polynomials in $\mathbb{R}(T)$.
- It was first proved by Artin in 1927.

Example

Motzkin provided an example of polynomial having non-negative values for reals but not sum of squares of polynomials over \mathbb{R} :
$x^{4} y^{2}+x^{2} y^{4}+1-3 x^{2} y^{2}=\frac{x^{2} y^{2}\left(x^{2}+y^{2}+1\right)\left(x^{2}+y^{2}-2\right)^{2}+\left(x^{2}-y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{2}}$.

- Using QE of RCF, we will give a model theoretic proof of Hilbert's 17th problem (by Robinson in 1955).
- QE of RCF implies that RCF is model-complete:
- For $M, N \models R C F$ with $M \subseteq N$, then M is an elementary substructure of N, denoted by $M \prec N$, that is, for any for any formula $\varphi(x)$ and $a \in M^{|x|}$,

$$
M \models \varphi(a) \Leftrightarrow N \models \varphi(a) .
$$

- Suppose there is a polynomial $p(T) \in \mathbb{R}[T]$ with $T=\left(T_{0}, \ldots, T_{n-1}\right)$ such that
- $p(a) \geq 0$ for all $a \in \mathbb{R}^{n}$,
- $p \neq q_{0}^{2}+\cdots+q_{m}^{2}$ for all $q_{0}, \ldots, q_{m} \in \mathbb{R}(T)$.

Fact

For a field F and $a \in F$, suppose -1 is not a sum of squares in F and a is not a sum of squares in F. Then, there is a linear order $<$ on F such that $(F,<)$ is an ordered field with $a<0$.

- By the above fact, there is a linear order $<^{\prime}$ on $\mathbb{R}(T)$ such that $\left(\mathbb{R}(T),<^{\prime}\right)$ is an ordered field with $p(T)<^{\prime} 0$.
- Note that $<^{\prime}$ is extending the linear order $<$ on \mathbb{R} because for any real number a, either a or $-a$ is a square of real number.

Fact

Any formally real field F has a real closure (unique up to isomorphism over F), which is a real closed algebraic extension of F.

- Let $\left(F,<^{\prime}\right)$ be the real closure of $\left(\mathbb{R}(T),<^{\prime}\right)$, extending $(\mathbb{R},<)$
- By model-completeness, $\left(F,<^{\prime}\right)$ is an elementary extension of $(\mathbb{R},<)$.
- By the choice of $p \in \mathbb{R}[T]$, we have that

$$
(\mathbb{R},<) \models \forall x(p(x) \geq 0)
$$

- Since $\mathbb{R} \prec F$, we have that

$$
\left(F,<^{\prime}\right) \models \forall x(p(x) \geq 0),
$$

- Since $T_{0}, \ldots, T_{n-1} \in \mathbb{R}(T) \subseteq F$, for $T:=\left(t_{0}, \ldots, t_{n-1}\right)$

$$
\left(F,<^{\prime}\right) \models 0 \leq^{\prime} p(T)
$$

which contradicts with $p(T)<^{\prime} 0$.
[1] E. Artin,
Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 100-115.
[2] D. Marker,
Model Theory: An Introduction, Graduate Texts in Mathematics 217, Springer, 2002.
[3] A. Robinson,
On ordered fields and definite functions, Math. Ann. 130 (1955), 257-271.
[4] A. Tarski,
A decision method for elementary algebra and geometry, 2nd ed. University of California Press, 1951.
[5] K. Tent and M. Ziegler,
A course in model theory, Lecture Notes in Logic, 40, Cambridge University Press, 2012, 248 pp.

Thank you for your listening Happy Logic Day

