ACFs are simple as much as infinite sets: An introduction to quantifier elimination

Junguk Lee

KAIST

January, 14th, 2022

- My goal is to convince that algebraically closed fields are simple as much as infinite sets (in the view of their syntax).
- I will introduce a notion of **quantifier elimination** (QE) from model theory.
- In the term of QE, the syntax of an algebraically closed field, as a field, is simple as like
 - an infinite set as a structure equipped with equality only,
 - a real closed field as an ordered field,
 - a differentially closed fields as a differential field.

- Fix a first order language \mathcal{L} , which is countable for simplicity. Let T be a complete \mathcal{L} -theory.
- Write x, y, z, \ldots for tuples of variables.
- $\bullet~$ Let $\omega~$ be the set of natural numbers.
- We say that a formula φ(x) is quantifier-free if it has no quantifiers in φ.
- We say that T has **quantifier elimination** (QE) if for any formula $\varphi(x)$, there is a quantifier-free formula $\psi(x)$ such that

$$T \models \forall x(\varphi(x) \leftrightarrow \psi(x)),$$

that is, any formula is equivalent to a quantifier-free formula modulo $\mathcal{T}\,.$

Example

Let \mathcal{T} be the theory of real closed fields in the ordered ring language. Let

$$\varphi(a, b, c) \equiv a \neq 0 \land \exists x(ax^2 + bx + c = 0).$$

Then, φ is equivalent (modulo T) to the following quantifier-free formula

$$\psi(a, b, c) \equiv b^2 - 4ac \geq 0.$$

• Even though QE is defined syntactically, it has a semantic criterion, which is very useful.

Theorem

T has QE if and only if for a \aleph_0 -saturated and \aleph_1 -strongly homogeneous model \mathfrak{C} of T, the following holds: For an isomorphism $f : A \to B$ between finitely generated substructures A and B of \mathfrak{C} and $a \in \mathfrak{C}^1$, there is $b \in \mathfrak{C}^1$ such that the map $f \cup \{(a, b)\}$ is extended into an isomorphism between finitely generated substructures of \mathfrak{C} .

- A structure 𝔅 is called ℵ₀-saturated if the following holds: Let Σ(x) be a countable set of ℒ(𝔅)-formulae in the variable x of countable length. Suppose any finite subset Σ₀ of Σ has a solution in 𝔅. Then, there is a solution of Σ.

$$ar{a}\equivar{b}\Rightarrow(\exists\sigma\in\operatorname{\mathsf{Aut}}(\mathfrak{C}))(\sigma(ar{a})=ar{b}),$$

where $\bar{a} \equiv \bar{b}$ means $\mathfrak{C} \models \varphi(\bar{a}) \Leftrightarrow \mathfrak{C} \models \varphi(\bar{b})$ for all formulas $\varphi(x)$. 5/20

- Let $\mathcal{L} = \emptyset$ and let \mathcal{T} be the theory of infinite sets.
- Then, T has QE.
- Let \mathfrak{C} be a \aleph_0 -saturated and \aleph_1 -strongly homogeneous infinite set.
- \bullet Note that any subset of $\mathfrak C$ is a substructure because thee are no function symbols.
- Let $f : A \to B$ be an isomorphism between finite subsets of \mathfrak{C} with $|A| = |B| = n < \omega$.
- That is, f is just a bijection between A and B.
- Take $a \in \mathfrak{C}$ arbitrary. If $a \in A$, then $f \cup \{(a, f(a))\}$ does work.
- Suppose $a \notin A$. Since \mathfrak{C} is infinite and B is finite, there is $b \in \mathfrak{C} \setminus B$. Then, the map $f \cup \{(a, b)\}$ does work.

- Let $\mathcal{L} = \{<\}$ and let \mathcal{T} be the theory of linear orders without endpoints.
- Then, DLO has QE.
- Let \mathfrak{C} be a \aleph_0 -saturated and \aleph_1 -strongly homogeneous DLO.
- \bullet Note that any subset of $\mathfrak C$ is a substructure because thee are no function symbols.
- Let $f : A \to B$ be an isomorphism between finite subsets of \mathfrak{C} with $|A| = |B| = n < \omega$.
- That is, f is an increasing bijection between A and B.

• Write
$$A := \{a_0 < a_1 < \cdots < a_{n-1}\}$$
 and $B := \{b_0 < b_1 < \cdots < b_{n-1}\}$ with $b_i = f(a_i)$.

- Take $a \in \mathfrak{C} \setminus A$ arbitrary.
- Then, there are essentially (n + 1)-many cases:

a < a₀.
For some
$$0 \le i < n - 1$$
,

$$a_i < a < a_{i+1}$$
.

3
$$a > a_{n-1}$$
.

- Suppose *a*₀ < *a* < *a*₁.
- Then, since 𝔅 is dense, there is b such that b₀ < b < b₁, and the map f ∪ {(a, b)} does work.
- For the first and third cases, it comes from the fact that \mathfrak{C} has no endpoints.

- Let $\mathcal{L}_{ring} = \{+, \cdot, 0, 1\}$ be the ring language and ACF_p be the theory of algebraically closed fields of characteristic *p*.
- Then, ACF_p has QE.
- Let \mathfrak{C} be a \aleph_0 -saturated and \aleph_1 -strongly homogeneous model of ACF_p .
- For a subset A of C, the substructure generated by A is the field generated by A.
- Let $f : A \to B$ be an isomorphism between finitely generated subfields of \mathfrak{C} .
- The isomorphism *f* can be extended into an isomorphism between the algebraic closure of *A* and *B*.
- WLOG, we may assume that A and B are algebraically closed.

- Take $a \in \mathfrak{C} \setminus A$ arbitrary. Then a is transcendental over A.
- We can take $b \in \mathfrak{C}$ which is transcendental over B because \mathfrak{C} is \aleph_0 -saturated and B is countably generated.
- Then, there is an isomorphism

$$f': A(a)\cong_A A(X)\cong B(X)\cong_B B(b), a\mapsto a$$

extending f.

- The similar process works for the theory *DCF*₀ of differentially closed fields of characteristic 0 in the differential ring language.
- In this case, we work with
 - Differential polynomials analogous to polynomials,
 - Differential ideals analogous to ideals,
 - The Kolchin topology, which is Noetherian, analogous to the Zariski topology.

Quantifier Elimination

- QE is very much dependent on the choice of a language.
- Consider the field ${\mathbb R}$ of reals.
- Let T_1 be the theory of \mathbb{R} in the ring language $\mathcal{L}_1 := \mathcal{L}_{ring}$ and let T_2 be the theory of \mathbb{R} in the ordered ring language $\mathcal{L}_2 := \mathcal{L}_{ring} \cup \{<\}.$
- $\bullet\,$ In $\mathbb{R},\,<\,$ is definable in the ring language, that is,

$$\mathbb{R} \models \forall x, y \left(x < y \leftrightarrow \exists z (y = z^2 + x) \right).$$

- So, ℝ has the exactly same definable sets or the same 'expressing' power in both languages of L₁ and L₂. More generally, the same thing holds for all real closed fields.
- A field F is called real closed if
 - $\bullet\,$ it is formally real, that is, -1 is not a sum of squares,
 - any polynomial over F of odd degree has a zero in F.

Quantifier Elimination 000

- We will show that T_1 has no QE in \mathcal{L}_1 but T_2 has QE in \mathcal{L}_2 .
- Let 𝔅 be a real closed fields which is ℵ₀-saturated and ℵ₁-strongly homogeneous so that it is as a model of *T*₁ and of *T*₂.
- T_1 has no QE in $\mathcal{L}_1 = \mathcal{L}_{ring}$:
- Consider an ring isomorphism

$$f: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(-\sqrt{2}), \sqrt{2} \mapsto -\sqrt{2}.$$

- Take a = ⁴√2 ∈ 𝔅. Then, we can not find b ∈ 𝔅 such that there is an ring isomorphism between finitely generated subfields of 𝔅, extending f ∪ {(a, b)}.
- Why? Suppose there is such a 'b'.

$$a^2 = \sqrt{2} \Rightarrow b^2 = -\sqrt{2}.$$

 \bullet In the real closed field $\mathfrak{C},$

$$0 < b^2 = -\sqrt{2} < 0,$$

a contradiction.

• QE of ACF implies Chevalley's theorem on constructible sets.

Theorem

The set of constructible sets on $\mathbb C$ is closed under taking projection.

- An algebraic subset of \mathbb{C}^n is a zero of polynomial equations over \mathbb{C} .
- A subset of \mathbb{C}^n is called constructible if it is a boolean combination of algebraic subsets.
- Chevalley's theorem says that given a constructible subset A of \mathbb{C}^{n+1} , the projection $\pi[A]$ is also constructible, where $\pi : (x_0, \ldots, x_n) \mapsto (x_1, \ldots, x_n)$.

- By definition, a subset of \mathbb{C}^n is constructible if and only if it is definable by a quantifier-free formula over \mathbb{C} .
- Let $A \subseteq \mathbb{C}^{n+1}$ be constructible.
- So, there is a quantifier-free formula $\varphi(x_0, \ldots, x_n)$ such that

$$A = \{ \bar{a} \in \mathbb{C}^{n+1} : \mathbb{C} \models \varphi(\bar{a}) \}.$$

• Then,

$$\pi[A] := \{ (b_1, \ldots, b_n) \in \mathbb{C}^n : \exists x_0 \in \mathbb{C} ((x_0, b_1, \ldots, b_n) \in A) \}.$$

• That is, for $\psi(x_1, \ldots, x_n) \equiv \exists x_0 \varphi(x_0, x_1, \ldots, x_n)$,

$$\pi[A] := \{ \bar{b} \in \mathbb{C}^n : \mathbb{C} \models \psi(\bar{b}) \}.$$

• By QE, ψ is equivalent to a quantifier-free formula, and so $\pi[A]$ is again constructible.

Applications

- Hilbert's 17th problem (theorem) says that given a polynomial p(T) ∈ ℝ[T] with |T| ≥ 1, if p(a) ≥ 0 for all a ∈ ℝ, then p is a sum of squares of rational polynomials in ℝ(T).
- It was first proved by Artin in 1927.

Example

Motzkin provided an example of polynomial having non-negative values for reals but not sum of squares of polynomials over \mathbb{R} :

$$x^{4}y^{2} + x^{2}y^{4} + 1 - 3x^{2}y^{2} = \frac{x^{2}y^{2}(x^{2} + y^{2} + 1)(x^{2} + y^{2} - 2)^{2} + (x^{2} - y^{2})^{2}}{(x^{2} + y^{2})^{2}}.$$

- Using QE of *RCF*, we will give a model theoretic proof of Hilbert's 17th problem (by Robinson in 1955).
- QE of *RCF* implies that *RCF* is model-complete:
- For $M, N \models RCF$ with $M \subseteq N$, then M is an elementary substructure of N, denoted by $M \prec N$, that is, for any for any formula $\varphi(x)$ and $a \in M^{|x|}$,

$$M\models\varphi(a)\Leftrightarrow N\models\varphi(a).$$

Applications

• Suppose there is a polynomial $p(T) \in \mathbb{R}[T]$ with $T = (T_0, \ldots, T_{n-1})$ such that

•
$$p(a) \ge 0$$
 for all $a \in \mathbb{R}^n$,

•
$$p \neq q_0^2 + \cdots + q_m^2$$
 for all $q_0, \ldots, q_m \in \mathbb{R}(T)$.

Fact

For a field F and $a \in F$, suppose -1 is not a sum of squares in F and a is not a sum of squares in F. Then, there is a linear order < on F such that (F, <) is an ordered field with a < 0.

- By the above fact, there is a linear order <' on ℝ(T) such that (ℝ(T), <') is an ordered field with p(T) <' 0.
- Note that <' is extending the linear order < on ℝ because for any real number a, either a or -a is a square of real number.

Fact

Any formally real field F has a real closure (**unique** up to isomorphism over F), which is a real closed algebraic extension of F.

- Let (F,<') be the real closure of $(\mathbb{R}(T),<')$, extending $(\mathbb{R},<)$
- By model-completeness, (F, <') is an elementary extension of $(\mathbb{R}, <)$.
- By the choice of $p \in \mathbb{R}[T]$, we have that

$$(\mathbb{R},<)\models \forall x (p(x) \geq 0).$$

• Since $\mathbb{R} \prec F$, we have that

$$(F, <') \models \forall x (p(x) \ge 0),$$

Since $T_0, \ldots, T_{n-1} \in \mathbb{R}(T) \subseteq F$, for $T := (t_0, \ldots, t_{n-1})$
 $(F, <') \models 0 \le' p(T),$

which contradicts with p(T) <' 0.

[1] E. Artin,

Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, **5** (1927), 100-115.

[2] D. Marker,

Model Theory: An Introduction, Graduate Texts in Mathematics 217, Springer, 2002.

[3] A. Robinson,

On ordered fields and definite functions, Math. Ann. ${\bf 130}$ (1955), 257-271.

[4] A. Tarski,

A decision method for elementary algebra and geometry, 2nd ed. University of California Press, 1951.

[5] K. Tent and M. Ziegler,

A course in model theory, Lecture Notes in Logic, **40**, Cambridge University Press, 2012, 248 pp.

Thank you for your listening Happy Logic Day