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My goal is to convince that algebraically closed fields are simple as
much as infinite sets (in the view of their syntax).

I will introduce a notion of quantifier elimination (QE) from model
theory.

In the term of QE, the syntax of an algebraically closed field, as a
field, is simple as like

an infinite set as a structure equipped with equality only,
a real closed field as an ordered field,
a differentially closed fields as a differential field.
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Fix a first order language L, which is countable for simplicity. Let T
be a complete L-theory.

Write x , y , z , . . . for tuples of variables.

Let ω be the set of natural numbers.

We say that a formula ϕ(x) is quantifier-free if it has no
quantifiers in ϕ.

We say that T has quantifier elimination (QE) if for any formula
ϕ(x), there is a quantifier-free formula ψ(x) such that

T |= ∀x(ϕ(x)↔ ψ(x)),

that is, any formula is equivalent to a quantifier-free formula modulo
T .
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Example

Let T be the theory of real closed fields in the ordered ring language. Let

ϕ(a, b, c) ≡ a 6= 0 ∧ ∃x(ax2 + bx + c = 0).

Then, ϕ is equivalent (modulo T ) to the following quantifier-free formula

ψ(a, b, c) ≡ b2 − 4ac ≥ 0.
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Even though QE is defined syntactically, it has a semantic criterion,
which is very useful.

Theorem

T has QE if and only if for a ℵ0-saturated and ℵ1-strongly homogeneous
model C of T , the following holds: For an isomorphism f : A→ B
between finitely generated substructures A and B of C and a ∈ C1, there
is b ∈ C1 such that the map f ∪ {(a, b)} is extended into an isomorphism
between finitely generated substructures of C.

A structure C is called ℵ0-saturated if the following holds: Let Σ(x)
be a countable set of L(C)-formulae in the variable x of countable
length. Suppose any finite subset Σ0 of Σ has a solution in C.
Then, there is a solution of Σ.
A structure C is called ℵ1-strongly homogeneous if for any tuples ā
and b̄ of elements in C of countable length,

ā ≡ b̄ ⇒ (∃σ ∈ Aut(C))(σ(ā) = b̄),

where ā ≡ b̄ means C |= ϕ(ā)⇔ C |= ϕ(b̄) for all formulas ϕ(x). 5 / 20
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Infinite sets

Let L = ∅ and let T be the theory of infinite sets.

Then, T has QE.

Let C be a ℵ0-saturated and ℵ1-strongly homogeneous infinite set.

Note that any subset of C is a substructure because thee are no
function symbols.

Let f : A→ B be an isomorphism between finite subsets of C with
|A| = |B| = n < ω.

That is, f is just a bijection between A and B.

Take a ∈ C arbitrary. If a ∈ A, then f ∪ {(a, f (a))} does work.

Suppose a /∈ A. Since C is infinite and B is finite, there is b ∈ C \B.
Then, the map f ∪ {(a, b)} does work.
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DLO

Let L = {<} and let T be the theory of linear orders without
endpoints.

Then, DLO has QE.

Let C be a ℵ0-saturated and ℵ1-strongly homogeneous DLO.

Note that any subset of C is a substructure because thee are no
function symbols.

Let f : A→ B be an isomorphism between finite subsets of C with
|A| = |B| = n < ω.

That is, f is an increasing bijection between A and B.

Write A := {a0 < a1 < · · · < an−1} and
B := {b0 < b1 < · · · < bn−1} with bi = f (ai ).
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DLO

Take a ∈ C \ A arbitrary.

Then, there are essentially (n + 1)-many cases:
1 a < a0.
2 For some 0 ≤ i < n − 1,

ai < a < ai+1.

3 a > an−1.

Suppose a0 < a < a1.

Then, since C is dense, there is b such that b0 < b < b1, and the
map f ∪ {(a, b)} does work.

For the first and third cases, it comes from the fact that C has no
endpoints.
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ACF

Let Lring = {+, ·, 0, 1} be the ring language and ACFp be the theory
of algebraically closed fields of characteristic p.

Then, ACFp has QE.

Let C be a ℵ0-saturated and ℵ1-strongly homogeneous model of
ACFp.

For a subset A of C, the substructure generated by A is the field
generated by A.

Let f : A→ B be an isomorphism between finitely generated
subfields of C.

The isomorphism f can be extended into an isomorphism between
the algebraic closure of A and B.

WLOG, we may assume that A and B are algebraically closed.
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ACF

Take a ∈ C \ A arbitrary. Then a is transcendental over A.

We can take b ∈ C which is transcendental over B because C is
ℵ0-saturated and B is countably generated.

Then, there is an isomorphism

f ′ : A(a) ∼=A A(X ) ∼= B(X ) ∼=B B(b), a 7→ a

extending f .

The similar process works for the theory DCF0 of differentially
closed fields of characteristic 0 in the differential ring language.

In this case, we work with

Differential polynomials analogous to polynomials,
Differential ideals analogous to ideals,
The Kolchin topology, which is Noetherian, analogous to the Zariski
topology.
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RCF

QE is very much dependent on the choice of a language.

Consider the field R of reals.

Let T1 be the theory of R in the ring language L1 := Lring and let
T2 be the theory of R in the ordered ring language
L2 := Lring ∪ {<}.
In R, < is definable in the ring language, that is,

R |= ∀x , y
(
x < y ↔ ∃z(y = z2 + x)

)
.

So, R has the exactly same definable sets or the same ‘expressing’
power in both languages of L1 and L2. More generally, the same
thing holds for all real closed fields.

A field F is called real closed if

it is formally real, that is, −1 is not a sum of squares,
any polynomial over F of odd degree has a zero in F .
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RCF

We will show that T1 has no QE in L1 but T2 has QE in L2.

Let C be a real closed fields which is ℵ0-saturated and ℵ1-strongly
homogeneous so that it is as a model of T1 and of T2.

T1 has no QE in L1 = Lring :

Consider an ring isomorphism

f : Q(
√

2)→ Q(−
√

2),
√

2 7→ −
√

2.

Take a = 4
√

2 ∈ C. Then, we can not find b ∈ C such that there is
an ring isomorphism between finitely generated subfields of C,
extending f ∪ {(a, b)}.
Why? Suppose there is such a ‘b’.

a2 =
√

2⇒ b2 = −
√

2.

In the real closed field C,

0 < b2 = −
√

2 < 0,

a contradiction.
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Chevalley’s theorem

QE of ACF implies Chevalley’s theorem on constructible sets.

Theorem

The set of constructible sets on C is closed under taking projection.

An algebraic subset of Cn is a zero of polynomial equations over C.

A subset of Cn is called constructible if it is a boolean combination
of algebraic subsets.

Chevalley’s theorem says that given a constructible subset A of
Cn+1, the projection π[A] is also constructible, where
π : (x0, . . . , xn) 7→ (x1, . . . , xn).
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Chevalley’s theorem

By definition, a subset of Cn is constructible if and only if it is
definable by a quantifier-free formula over C.

Let A ⊆ Cn+1 be constructible.

So, there is a quantifier-free formula ϕ(x0, . . . , xn) such that

A = {ā ∈ Cn+1 : C |= ϕ(ā)}.

Then,

π[A] := {(b1, . . . , bn) ∈ Cn : ∃x0 ∈ C ((x0, b1, . . . , bn) ∈ A)}.

That is, for ψ(x1, . . . , xn) ≡ ∃x0ϕ(x0, x1, . . . , xn),

π[A] := {b̄ ∈ Cn : C |= ψ(b̄)}.

By QE, ψ is equivalent to a quantifier-free formula, and so π[A] is
again constructible.
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Hilbert’s 17th problem

Hilbert’s 17th problem (theorem) says that given a polynomial
p(T ) ∈ R[T ] with |T | ≥ 1, if p(a) ≥ 0 for all a ∈ R, then p is a
sum of squares of rational polynomials in R(T ).

It was first proved by Artin in 1927.

Example

Motzkin provided an example of polynomial having non-negative values
for reals but not sum of squares of polynomials over R:

x4y2+x2y4+1−3x2y2 =
x2y2(x2 + y2 + 1)(x2 + y2 − 2)2 + (x2 − y2)2

(x2 + y2)2
.
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Hilbert’s 17th problem

Using QE of RCF , we will give a model theoretic proof of Hilbert’s
17th problem (by Robinson in 1955).

QE of RCF implies that RCF is model-complete:

For M,N |= RCF with M ⊆ N, then M is an elementary
substructure of N, denoted by M ≺ N, that is, for any for any
formula ϕ(x) and a ∈ M |x |,

M |= ϕ(a)⇔ N |= ϕ(a).
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Hilbert’s 17th problem

Suppose there is a polynomial p(T ) ∈ R[T ] with
T = (T0, . . . ,Tn−1) such that

p(a) ≥ 0 for all a ∈ Rn,
p 6= q2

0 + · · ·+ q2
m for all q0, . . . , qm ∈ R(T ).

Fact

For a field F and a ∈ F , suppose −1 is not a sum of squares in F and a
is not a sum of squares in F . Then, there is a linear order < on F such
that (F , <) is an ordered field with a < 0.

By the above fact, there is a linear order <′ on R(T ) such that
(R(T ), <′) is an ordered field with p(T ) <′ 0.

Note that <′ is extending the linear order < on R because for any
real number a, either a or −a is a square of real number.
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Hilbert’s 17th problem

Fact

Any formally real field F has a real closure (unique up to isomorphism
over F ), which is a real closed algebraic extension of F .

Let (F , <′) be the real closure of (R(T ), <′), extending (R, <)

By model-completeness, (F , <′) is an elementary extension of
(R, <).

By the choice of p ∈ R[T ], we have that

(R, <) |= ∀x (p(x) ≥ 0) .

Since R ≺ F , we have that

(F , <′) |= ∀x (p(x) ≥ 0) ,

Since T0, . . . ,Tn−1 ∈ R(T ) ⊆ F , for T := (t0, . . . , tn−1)

(F , <′) |= 0 ≤′ p(T ),

which contradicts with p(T ) <′ 0.
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Thank you for your listening

Happy Logic Day
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