Kazan Federal (Volga Region) University Institute of Fundamental Medicine and Biology Department of Morphology and General Pathology

Articular system II

Zaikina Elvira Ildarovna, *MD, PhD, Senior lecturer*

Cartilages

Hyaline

- Has an intercellular matrix rich in hyaluronic acid and mucopolysaccharides, which are natural lubricants
- Forms the articular cartilage in most joints Provides the anlage for long bone development

<u>Fibrous</u>

- Has an intercellular matrix rich in mucopolysaccharides and bundles of collagenous fibers
- Mucopolysaccharides provide high water content
- Especially resilient and durable form of cartilage
- Forms most symphyses and joint discs

<u>Elastic</u>

- Has an intercellular matrix rich in mucopolysaccharides and bundles of elastic fibers, which provide a strong, yet flexible, support
- Forms the skeletal structure of external ear and the tip of the nose

Classification of the joints

1.Synarthrosis (immovable joint): 1)Syn<u>desmos</u>is 2)Syn<u>chondros</u>is 3)Syn<u>os</u>tosis

2. Diarthrosis (synovial joint, joint)

Complexity of the joints

Simple joint

- two articular surfaces

Complex joint

 more than two articular surfaces

Combined joint

Two anatomically isolated joints move together at the same time

Joints of the vertebral bodies

Intervertebral disc

- Each disc composed of an outer fibrocartilaginous portion (*annulus fibrosus*) and an inner gelatinous central portion (*nucleus pulposus*)
- Nucleus pulposus remnant of notochord

Functions of intervertebral disc:

- Permit limited movement between adjacent vertebrae
- Nucleus pulposus compressible but deformable pad, that distribute forces over the entire surface of the vertebra

Joints of the vertebral arches

the yellow ligaments (ligg. flava) – elastic fibers!

Joints of the vertebral spinous processes

Joints of the vertebral transverse processes

the intertransverse ligaments (ligg. intertransversaria)

Joints of the sacral vertebrae

Temporary synchondrosis

Synostosis

Two epiphysial plates for each lateral surface *

Sacrococcygeal joints:

- symphysis
- syndesmoses (ligaments)

Joints of the vertebral articular processes

NB! Plane joints – amphyarthrosis – multiaxial - Volume of the movements in every single zygoapophysial joint is minimal

Movements of Spinal Column Sagittal plane vertical axis Frontal (coronal) plane Rotation Lateral Flexion Flexion Extension Lateral flexion Rotation along Flexion and extension along frontal axis vertical axis along sagittal axis

The vertebral column is curved in sagittal plane

Physiological curves

Skoliosis – deviation of the vertebral column from the median plane

The curvatures of the vertebral column appear after birth

Fetal "C" Curve

4 Month Old Head & Neck Control

7-10 months old Crawling &Balance on Hands & Knees

Sitting with Aligned Spine

Fully Verticle & Walking on 2 feet (Support from Mature Spine)

Movements in the thoracic cage

Shoulder Girdle

*Sternoclavicular joint

- simple (if there is no intraarticular disk)
- complex(in 30% there is intraarticular disk – complex)

- saddle - biaxial

Combined joints
Combined joints
Acromioclavicular joint
- simple
- plane - multiaxial

Shoulder joint (*articulatio humeri*)

Articular surfaces:

- the head of the humerus,
- the glenoid cavity of the scapula.

• The glenoid labrum (labrum glenoidale) is on the circumference of the glenoid cavity. It increases its depth (increase congruence).

Shoulder joint (articulatio humeri)

Coracoacromial ligament

prevents over abduction in this joint, limits the movements of the humerus upwards

Shoulder joint (articulatio humeri)

Shoulder joint (articulatio humeri)

•Simple spheroidal joint.

Rotation and circumduction along vertical axis

The elbow joint (articulatio cubiti)

Three articulating bones form three joints invested in a common capsule:

1) humero-ulnar joint (hinge joint)

2) humeroradial joint (spheroidal joint) 3) proximal radio-ulnar joint (cylindrical=pivot joint)

<u>Articular capsule</u> embraces the olecranon, radial and coronoid fossae but leaves the epicondyles free.

Flexion and extension along frontal axis

Elbow Joint

Pronation and supination along vertical axis Combined movement in proximal and distal radio-ulnar joint

Combined movement in proximal and distal radio-ulnar joint

The wrist joint (*articulatio radiocarpalis*)

Articular surfaces:

- the carpal articular surface of the <u>radius</u>
- the <u>articular disc</u> (the distal radio-ulnar joint)
- <u>scaphoid</u>, <u>lunate</u> and <u>triquetral</u> bones.

≻Complex ellipsoid joint.
The wrist joint

ANTERIOR SURFACE

POSTERIOR SURFACE

Wrist Joint

Joints of the pelvis

Comparison of Male and Female Pelves

CHARACTERISTIC	FEMALE	MALE
General structure and functional modifications	Tilted forward; adapted for childbearing; true pelvis defines the birth canal; cavity of the true pelvis is broad, shallow, and has a greater capacity	Tilted less far forward; adapted for support of a male's heavier build and stronger muscles; cavity of the true pelvis is narrow and deep
Bone thickness	Less; bones lighter, thinner, and smoother	Greater; bones heavier and thicker, and markings are more prominent
Acetabula	Smaller; farther apart	Larger; closer
Pubic arch/angle	Broader (80–90°); more rounded	More acute (50-60°)
	Pelvic brim - Pubic arch -	Female Male
oyright © 2006 Pearson Educ	ation, Inc., publishing as Benjamin Cummings	Hip bone

The hip joint (articulatio coxae)

Articular surfaces:

- Lunate surface of acetabulum of the <u>hip bone</u>
- Head of the <u>femur</u>

Femur

(c) Posterior view

5) Lig. capitis femoris

The hip joint

Flexion and extension along frontal axis

Adduction and abduction along sagittal axis

Adduction

Abduction

Sagittal

plane

The knee joint (*articulatio genus*)

Articular surfaces:

- Articular surface of medial and lateral condyle of <u>femur</u>
- Superior articular surface of <u>tibia</u>
- Articular surface of <u>patella</u>
- Patellar surface of <u>femur</u>

Complex bicondylar joint

Frontal View of Right Knee (with patella reflected)

The knee joint (articulatio genus)

Extra-articular ligaments

Anterolateral ligament of the knee joint

Journal of Anatomy

J. Anat. (2013) 223, pp321-328

doi: 10.1111/joa.12087

Anatomy of the anterolateral ligament of the knee

Steven Claes,¹ Evie Vereecke,² Michael Maes,¹ Jan Victor,³ Peter Verdonk⁴ and Johan Bellemans¹

¹Department of Orthopedic Surgery & Traumatology, University Hospitals Leuven, Leuven, Belgium ²Department of Development and Regeneration, Faculty of Medicine@Kulak, Catholic University Leuven, Kortrijk, Belgium ³Department of Orthopedic Surgery & Traumatology, University Hospital Gent, Ghent, Belgium

⁴Antwerp Orthopedic Center, Monica Hospitals, Antwerp, Belgium

Hypothesized function control internal tibial rotation, stabilize internal rotation

Origin – on the prominence of the lateral femoral epicondyle **Insertion** - the body of the ALL ran an oblique course to the anterolateral side of the proximal tibia.

Anatomy of the ALL, S. Claes et al. J. Anat. (2013) 223, pp321--328

Fig. 4 Anatomic drawing considering the ALL and its relationship with wellknown anatomical landmarks on the lateral aspect of the human knee.(A) Knee in full extension.(B) Knee in 90° of flexion.

ALL, anterolateral ligament; LCL, lateral collateral ligament; GT, Gerdy's tubercle; LFE, lateral femoral epicondyle; PT, popliteus tendon; PFL, popliteo-fibular ligament.

Anatomy of the ALL, S. Claes et al. J. Anat. (2013) 223, pp321--328

1879, years before the discovery of X-rays, **Dr. Paul Segond** described a remarkably constant avulsion fracture pattern at the anterolateral proximal tibia as a result of forced internal rotation at the knee (**Segond fracture**)

The knee joint (articulatio genus)

Intra-articular ligaments

Lateral and medial menisci of the knee joint (viscoelastic soft tissue)

Functions of the menisci:

- adapt articular surfaces of femur and tibia, increase their congruence, hence the stresses on tibial cartilage are reduced
- to distribute loads and therefore reduce the stresses on the tibia,
- joint stabilisation;
- shock absorption;
- joint lubrication;
- cartilage protection and prevention of osteoarthrosis

Human meniscus

Fig. 1. Human meniscus. (a) Right human knee joint viewed from above (the femur has been removed); the tibial tuberosity is on top. The medial and lateral menisci are connected by a transverse ligament (TL).
1 - anterior insertional ligament of the medial meniscus;
2 - posterior insertional ligament of the medial meniscus;
3 - anterior insertional ligament of the lateral meniscus;
4 - posterior insertional ligament of the lateral meniscus;
ACL - cross section of the anterior cruciate ligament;

Karola Messner and Jizong Gao. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. Review. J. Anat. (1998) 193, pp. 161±178

Karola Messner and Jizong Gao. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. Review. J. Anat. (1998) 193, pp. 161±178

Fig. 2. Diagram demonstrating the importance of intact meniscal entheses for the load distribution function of the meniscus. (a) With intact entheses the load (thick arrows) is transmitted via the menisci and articular cartilage through a large contact area (left hand side of figure; small arrows). Part of the load is transformed to hoop stresses (right hand side of figure; long arrows).

(*b*) When the insertional ligaments are transected (right hand side of figure; arrowheads), the meniscus will extrude from the knee joint during loading, and the load (left hand side of figure; thick arrows) is mainly transmitted via articular cartilage through a reduced contact area (small arrows).

The knee joint (articulatio genus)

Flexion and extension along frontal axis

The knee joint

Rotation becomes possible when the knee is flexed!

Ankle joint (articulation talocruralis)

<u>Articular surfaces:</u>

- Inferior articular surface of tibia
- Articular surface of medial malleoli (tibia)
- Articular surface of lateral malleoli (fibula)

Complex saddle joint

Ankle joint ligaments

The temporomandibular joint (*articulatio temporomandibularis*, TMJ)

• Complex (+articular facets of the the disk) bicondylar combined joint

The temporomandibular joint

Disc is made out of fibrocartilage with markedly anteroposterior alignment.

Functions:

 to diminish the effects of incongruence between the articular surfaces.
 the disc acts as a shock absorber when the joint is subjected to impact loading.

• The surfaces are complemented by *a fibrous articular disc* (**discus articularis**) located between them. The edges of the disc are joined to the articular capsule as a result of which the articular cavity is separated into two isolated compartments.

 <u>Articular</u> capsule is attached along the borders of articular surfaces. The mandibular neck is within the articular cavity.

Movements of the temporomandibular joint

*When the mandible moves laterally, one condyle (B) moves forward (first two steps of opening) and a bit inward, while the other condyle (A) will shift slightly in a lateroposterior (or rotate in vertical axis) direction

* Cranium as a whole

Sutures (syndesmosis): - plane, serrate and squamos sutures.

Diarthrosis:

- Temporomandibular joint (complex, condylar, biaxial, combined joint).

Gomphosis (syndesmosis): -dentoalveolar junction.

Clivus: temporary sphenooccipital synchondrosis becomes clivus - synostosis

Permanent synchondroses: -synchondrosis petrooccipitalis -synchondrosis sphenopetrosa

Fontanells (syndesmosis): -newborn baby cranium.

Subsequence of the answer:

- 1.Name of the joint (English and Latin)2.Classification of the joint (simple, combined, complex)
- 3.Description of the essential elements of the joint (articular surface, type of cartilage, cavity and capsule)
- 4. Description of the ligaments.
- 5. Special features (bursa)
- 6.Movements