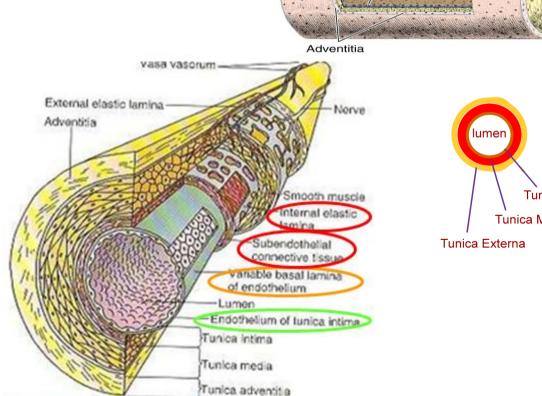


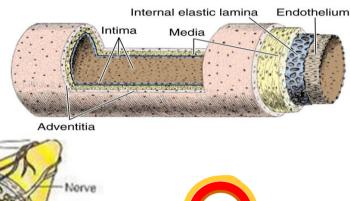
BLOOD VESSELS

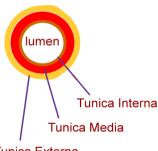
CARDIOVASCULAR BLOCK

Histology.team@gmail.com

General Structure of Blood Vessels

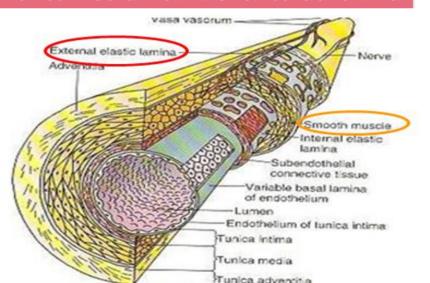

The wall of blood vessel is formed of three concentric layers:


- Tunica intima (interna)
- Tunica media
- Tunica adventitia (externa)


Tunica Intima

Is the innermost layer Composed of:

- Endothelial cells: Simple squamous epithelium
- Subendothelial layer: loose C.T.
- Internal elastic lamina: fenestrated elastic sheet.

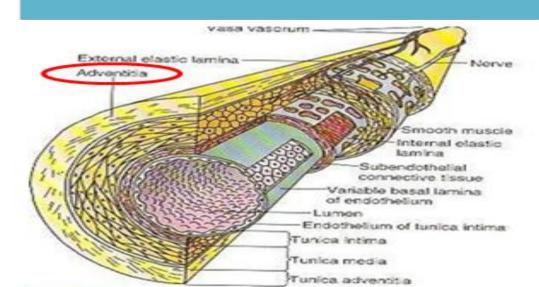


Tunica Media

Intermediate layer Composed of:

- 1. Smooth muscles.
- 2. Elastic fibers.
- 3. Type III collagen (reticular fibers).
- 4. Type I collagen.

NB: Large muscular arteries have external elastic lamina, separating the tunica media from the tunica adventitia

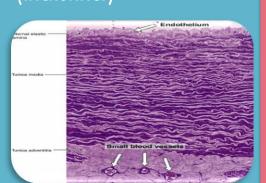

Tunica Adventitia

Outermost layer Composed of connective tissue containing Vasa vasorum:

They are small arterioles in tunica adventitia and the outer part of tunica media.

They are more prevalent in the walls of veins than arteries — why?

Venous blood contains less oxygen and nutrients than arterial blood.


ELASTIC ARTERIES

Examples: aorta, common carotid a., subclavian a., common iliac a, pulmonary Trunk. Cardiovascular

Microscopic structure:

1- T. Intima:

- *Endothelium.
- *Subendothelial C.T.
- *Internal elastic lamina: (not prominent) (indistinct)

2- T. Media: it consists of:

- A. Fenestrated elastic membranes (sheets) (lamellae):

 It is the main component of T.M.
- B. In between, there are:
 - 1. Smooth muscle cells.
 - 2. Collagen fibers (type I collagen).
 - 3. Reticular fibers (type III collagen).
 - 4. Elastic fibers.

3- T. Adventitia:

Much thinner than T.M.

It is composed of loose C.T.

Contains vasa vasorum

→ send branches to the outer part of T.M.

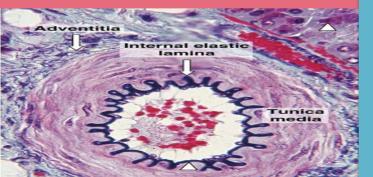
MUSCULAR ARTERIES

(Medium-sized artery)

Examples: brachial, ulnar, renal.

Microscopic structure:

1 - T. Intima:


Endothelium.

Subendothelial C.T. layer.

Internal elastic lamina:

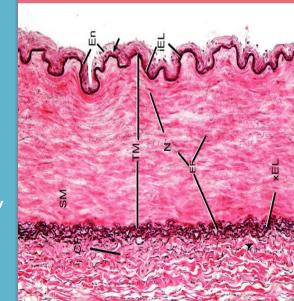
Is prominent.

Displays an undulating surface.

2- T. Media:(Thicker than T. Adventitia or similar in thickness).

Components:

A. Smooth muscle cells (SMCs): are the predominant component.


B. In between there are:

Elastic fibers.

Type III collagen fibers.

Type I collagen fibers.

C. External elastic lamina: may be identifiable. 3- T. Adventitia.: loose C.T.

ARTERIES

	Elastic artery	Muscular artery	
Tunica intima	Endothelium. *Subendothelial C.T. *Internal elastic lamina: (not prominent) (indistinct)	Endothelium. Subendothelial C.T. layer. Internal elastic lamina: Is prominent. Displays an undulating surface.	
Tunica media	A-Fenestrated elastic Membranes B-In between, there are: 1.Smooth muscle cells. 2. Collagen fibers (type I collagen). 3. Reticular fibers (type III collagen). 4. Elastic fibers.	Thicker than T. Adventitia or similar in thickness A-Smooth muscle cells (SMCs): are the predominant component. B. In between there are: Elastic fibers. Type III collagen fibers. Type I collagen fibers. C-External elastic lamina: may be identifiable.	
Tunica adventitia	Much thinner than T.M. It is composed of loose C.T. Contains vasa vasorum → send branches to the outer part of T.M.	loose C.T.	
Example	aorta, common carotid a., subclavian a., common iliac a, pulmonary Trunk	brachial, ulnar, renal	

MEDIUM-SIZED VEIN

Thickness of the wall: thinner than the accompanying artery.

T. Intima:

*usually forms valves.

*no internal elastic lamina

T. Adventitia:

thicker than T. Media

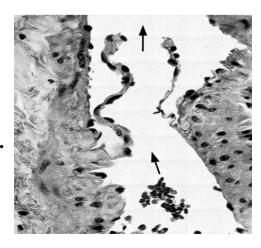

T. Media:

Thinner than T. Adventitia

Consists of:

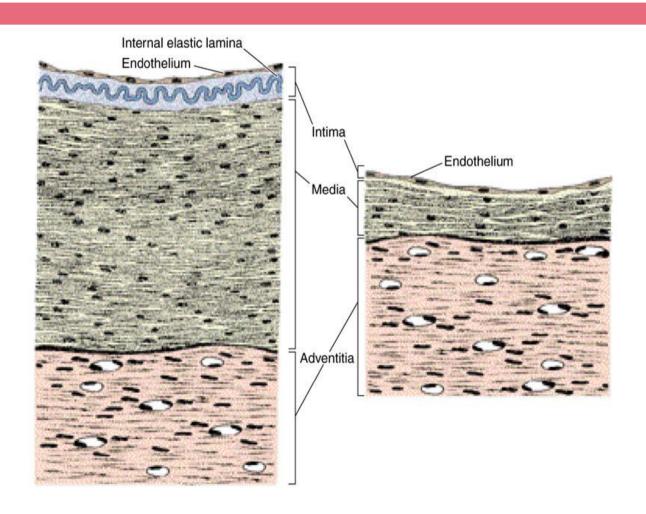
Fewer SMCs.

Types I & III Collagen fibers.




VALVES OF VEINS

Valve of a vein is composed of 2 leaflets Each leaflet has a thin fold of the T. Intima. Components:


Endothelium

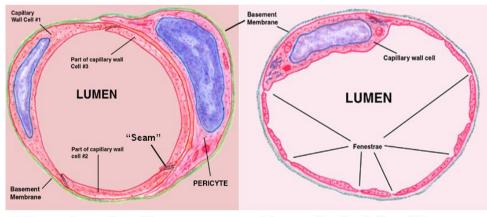
Core of C.T.

MEDIUM-SIZED ARTERY AND VEIN

BLOOD CAPILLARIES

Diameter: usually 8-10 µm.

Microscopic structure:


- 1. Single layer of squamous endothelial cells.
- 2. Basal lamina: surrounds the external surface of the endothelial cells.
- 3. Pericytes:

Have processes.

Share the basal laming of the endothelial cells.

Types:

- 1- Continuous blood capillaries
- 2- Fenestrated blood capillaries
 - a- with diaphragms
 - b- without diaphragms
- 3- <u>Sinusoidal blood</u> <u>capillaries</u>

Closed or Continuous Capillary

Fenestrated Capillary

BLOOD CAPILLARIES

	Continuous blood capillaries	Fenestrated blood capillaries with diaphragms	Fenestrated blood capillaries without diaphragms	Sinusoidal blood capillaries
Microscopic structure	No pores or fenestrae in their walls.	The walls of their endothelial cells have pores These pores are covered by diaphragm.	The walls of their endothelial cell have pores These pores are <u>NOT</u> covered By diaphragm.	-Their endothelial cells have fenestrae without diaphragmsThey possess discontinuous endothelial cells.
			ON DININITION	-They possess discontinuous basal lamina. -Macrophages may be located in or along the outside of the endothelial wall
Distribution	In muscles, nervous T., C.T.	In intestine, pancreas and endocrine glands.	In renal glomerulus	Red bone marrow, liver, spleen and certain endocrine glands

Work Done By:

Faris Alharbi Abdulaziz Alsudairi

