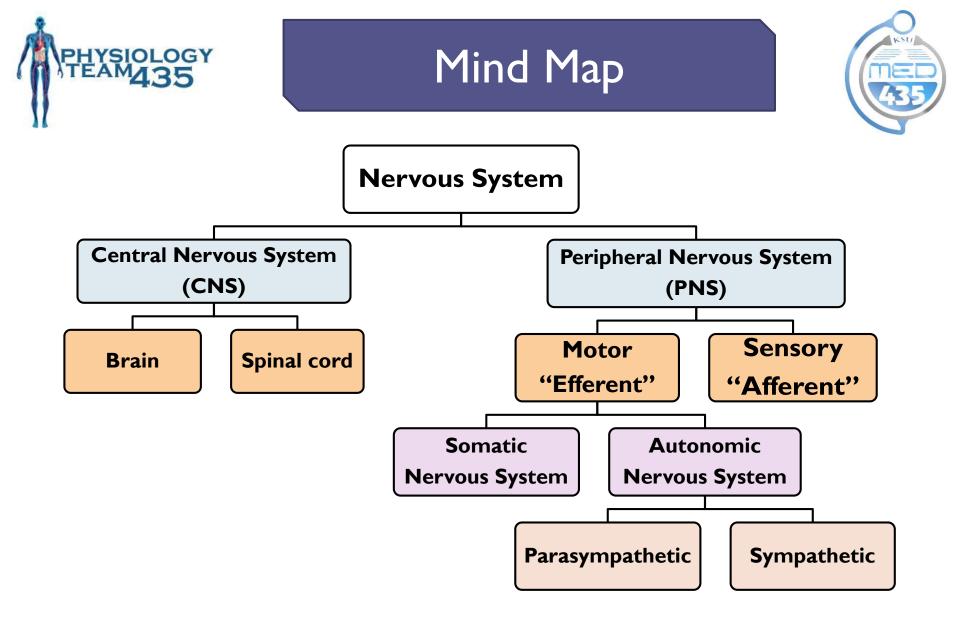


6 - 7 Autonomic Nervous System

Intelligence without ambition is like a bird without wings.


- Organization of the Autonomic Nervous System.
- Terminology.
- Sympathetic Nervous System (SNS).
- Neurotransmitters and Types of Receptors.
- Parasympathetic Nervous System.
- Autonomic Receptors:
 - a.Adrenoreceptors
 - b. Cholinorecptors
- Prototypes of Agonists and Antagonists to Autonomic Receptors.
- **Sympathetic and Parasympathetic Tone.**
- Function of Adrenal Gland.
- **Examples of The Effects of Sympathetic and Parasympathetic.**
- Appreciate the anatomy of sympathetic& parasympathetic nervous system.
- Explain physiological functions of Sympathetic & parasympathetic nerves in head, neck, chest, abdomen and pelvis.

Introduction

- The nervous system <u>monitors and controls</u> almost every organ / system through a series of positive and negative feedback loops.
- The Central Nervous System (CNS): Includes the brain and spinal cord.
- The Peripheral Nervous System (PNS): Formed by neurons & their process present in all the regions of the body.
- PNS consists of cranial nerves arises from the brain & spinal nerves arising from the spinal cord.
- The peripheral NS is divided into :
 - Somatic Nervous system
 - Autonomic nervous system

Words And Concepts

• Ganglia :

a structure containing a number of nerve cell bodies, typically linked by synapses, usually located outside the brain and spinal cord.

• Neuron:

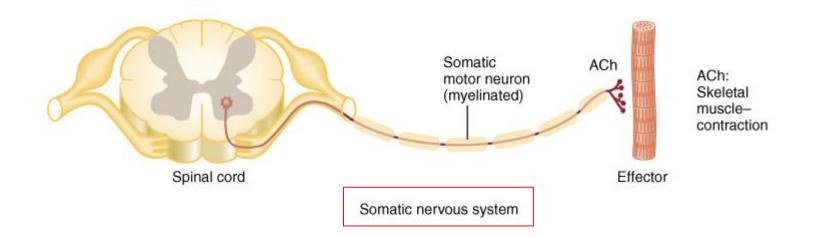
a specialized cell transmitting nerve impulses.

Sensory axon:

sensory nerve cell process, conducting impulses from the periphery toward the nerve cell body.

Motor axon :

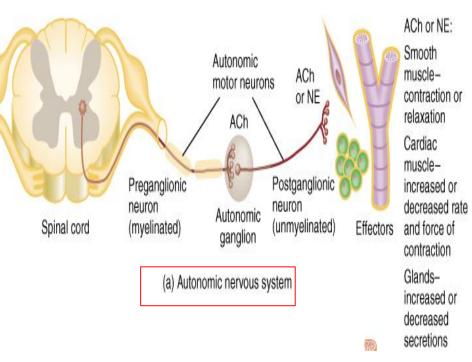
single nerve cell process, conducting impulses from the nerve cell body toward a muse.


Somatic nervous system (SNS)

- Voluntary nerves that supply <u>skeletal muscles</u>.
- Has <u>only one axon</u>.
- Cell bodies of motor reside in CNS (brain or spinal cord)
- Myelinated .

6

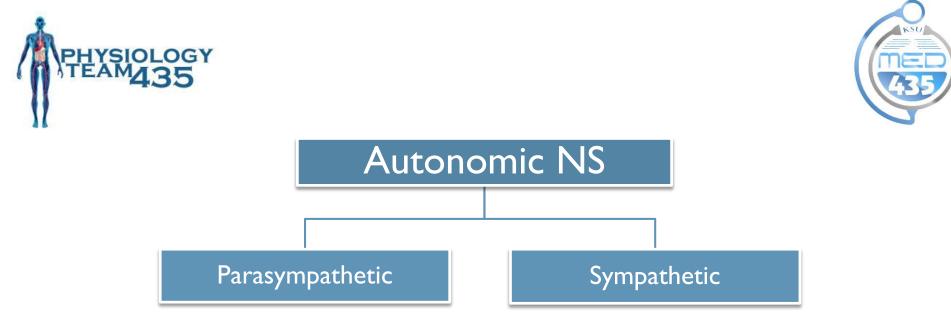
Has No ganglia.



Autonomic Nervous System (ANS)

 Involuntary and regulate the function of <u>visceral organs</u>. (smooth and cardiac muscles)

- Consist of 2 division :
 - Sympathetic
 - parasympathetic
- Has 2 axons (2 neurons) :
 - Preganglionic (inside CNS)
 - Postganglionic (outside CNS)
- Activated by centers in :
 - Spinal cord
 - Brain stem
 - Hypothalamus


8

	Somatic	Autonomic
Control	Voluntary	Involuntary
Affect organs	Skeletal Muscles	Cardiac , Smooth Muscles And Glands
Number of neurons	One	Тwo
Neurons	Somatic Motor Neuron	Preganglionic Postganglionic
Origin	In CNS	Preganglionic (Inside CNS) Postganglionic (Outside CNS)
Ganglia	Absent	Present
Myelinated	Yes	Pre (lightly myelinated) Post (unmyelinated_)

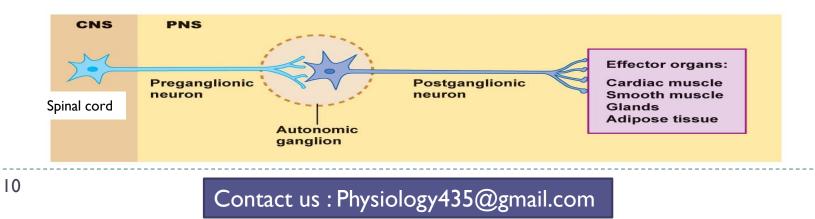
Note: ANS slower because lightly or unmyelinated

Comparison between somatic and autonomic NS $% \left({{\rm{NS}}} \right)$ in a <u>vedio</u>

Consisting of nerves and ganglia that arise from the cranial and sacral regions

"Rest & Digest"

Consisting of nerves that arise from the thoracic and lumbar regions of the spinal cord

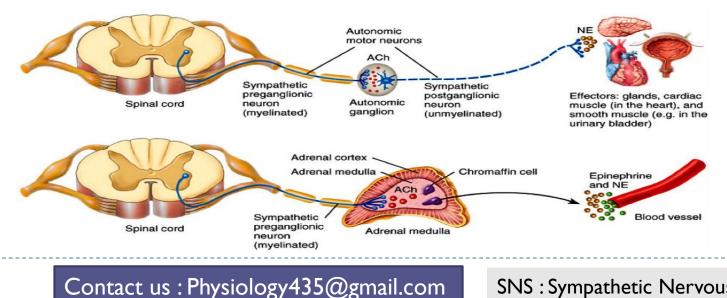

Sympathetic & Parasympathetic both have Preganglionic fibers and Postganglionic fibers (what does that mean ?)

Preganglionic:

Situated proximal to or preceding a ganglion, especially a ganglion of the autonomic nervous system, <u>myelinated</u> nerve fiber. The axon of this neuron does not directly innervate the effector organ but instead synapses with a second neuron within an autonomic ganglion.

Postganglionic:

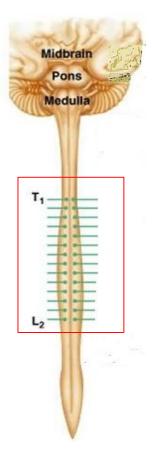
<u>unmyelinated</u> nerve fibers from an autonomic ganglion to the target tissue, e.g. gland. It synapses with its target tissue.



Sympathetic Nervous System

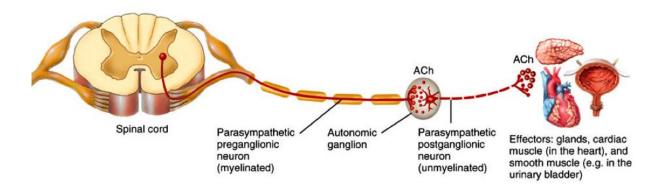
- Operates continuously to modulate "adjust" the functions of many organ systems.
- Stressful stimulation activates SNS leads to a response known as "fight or flight".
- <u>Preganglionic neurons are short & lightly myelinated.</u>
- postganglionic neurons are long & unmyelinated.
- Ganglia located near the spinal cord.

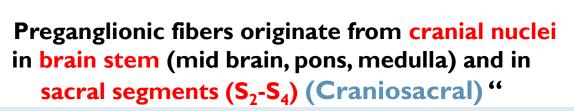
SNS : Sympathetic Nervous System


Sympathetic Origin

SNS is located at Thoracolumbar <u>lateral horns</u> of the spinal

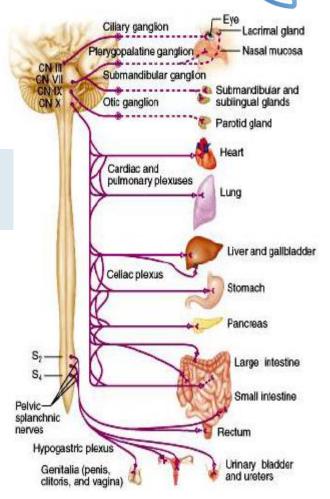
segments (TI-L2).


"L3 in some references"



- Responsible for activities that occur when the body is <u>at rest</u> "rest and digest".
- <u>Preganglionic neuron are long.</u>
- <u>postganglionic neuron are short.</u>
- Ganglia located in or on the affected organ. (close to the target organ)

Parasympathetic Origin


Craniosacral:

14

Denoting the cranial and sacral origins of the parasympathetic division of the autonomic nervous system)

- Craniosacral Cell bodies of the motor nuclei of the cranial nerves III (3), VII (7), IX(9) and X (10) in the brain stem.
- Second, third and fourth [S2-S4] sacral segments of the spinal cord
- Nerve fibers emerge from brain & sacrum (cranio-sacral outflow).

رقم 5 باللغة اللاتينية يرمز له ٧وعندما تكون قبلها | يصبح 4 أما إذا كانت | بعدها فيصبح الرقم 6 وإذا أصبحت || بالتالي 7 ، ||| تصبح 8 أما الرقم 10 فيرمز له بالرمز X وبالمثل إذا كانت قبله | يصبح 9 ، بعد || يصبح 11.

	sympathetic	parasympathetic
Preganglion	Short	Long
Postganglion	Long	short
Origin	thoracolumbar spinal cord (TI-L2)	brain stem and in sacral segments (S ₂ -S ₄)
Ganglia	near the spinal cord	in or on the affected organ
Function	fight or flight	rest and digest

Comparison between sympathetic & parasympathetic in a vedio

Contact us : Physiology435@gmail.com

Structure	Sympathetic stimulation	Parasympathetic stimulation	
lris (eye muscle)	Pupil dilation	Pupil constriction	
Salivary Glands	Saliva production reduced	Saliva production increased	
Oral/Nasal Mucosa	Mucus production reduced	Mucus production increased	
Heart	Heart rate and force increased	Heart rate and force decreased	
Lung	Bronchial muscle relaxed	Bronchial muscle contracted	
Stomach	Peristalsis reduced	Gastric juice secreted; motility increased	
Small Intestines	Motility reduced	Digestion increased	
Large Intestines	Motility reduced	Secretions and motility increased	
Liver	Increased conversion of glycogen to glucose	-	
Kidney	Decreased urine secretion	Increased urine secretion	
Adrenal medulla	Norepinephrine and epinephrine secreted	-	
Bladder	Wall relaxed Sphincter closed	Wall contracted Sphincter relaxed	

Structure	Sympathetic stimulation	Parasympathetic stimulation
Glands	Decrease by vasoconstriction, except sweat glands (Increase).	Increase their secretion.
Blood vessels	Constricted to ¹ / ₂	No effect, except in certain areas like blushing of the face.
Arterial pressure	Increase cardiac output and blood flow and resistance to pressure	decrease cardiac output. No effect on blood vessels.

* (GIT) undergoes to Enteric nervous system which it's third division of (ANS).

Neurotransmitters

Neurotransmitters:

Chemicals within the nervous system that transmit information from or between nerve cells and give the action of Autonomic nervous system (ANS).

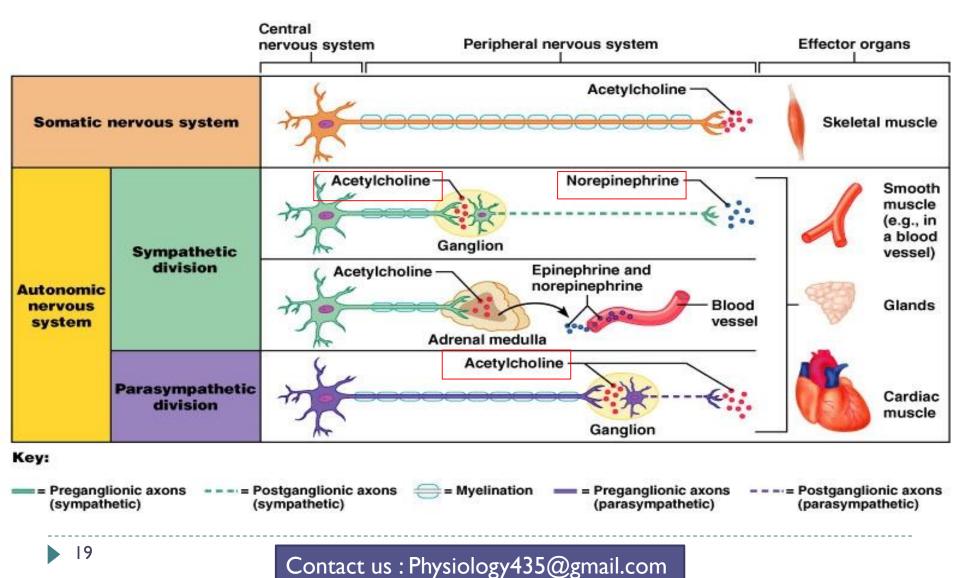
Sympathetic Neurotransmitters

- The preganglionic neurons : release Acetylcholine (Ach) = Cholinergic .

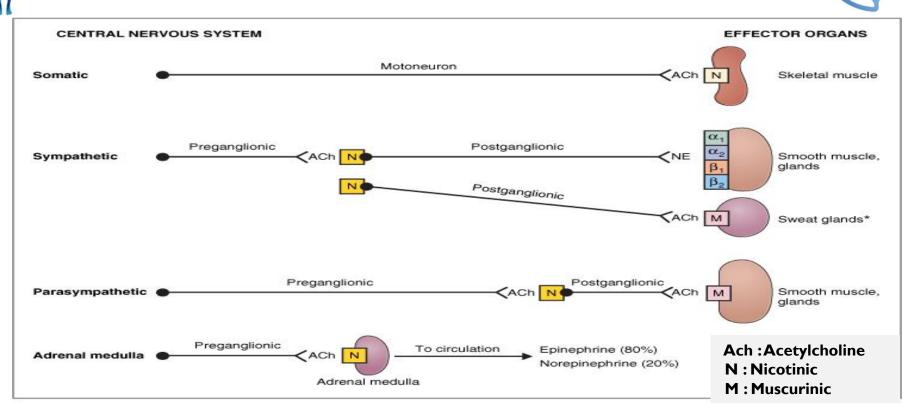
- Postganglionic neurons : release Norepinephrine at target organs = Adrenergic

Parasympathetic Neurotransmitters

Pre & Postganglionic neurons release Acetylcholine = Cholinergic. which interacts with muscarinic receptors

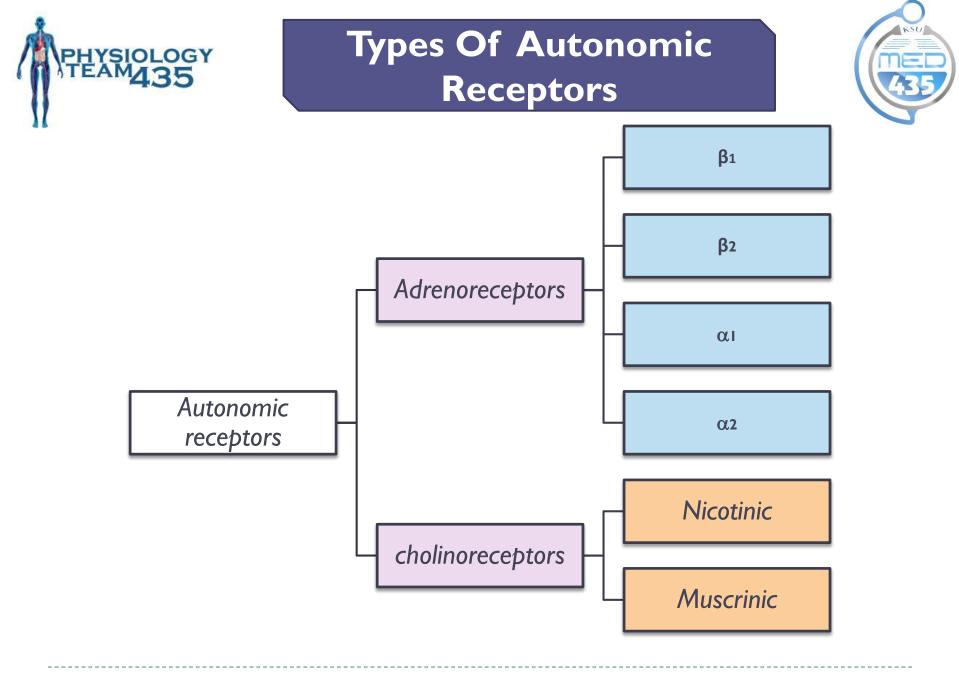

Cholinergic:

Relating to nerve cells or fibers that use <u>acetylcholine</u> as their neurotransmitter.


All preganglionic fibers release acetylcholine which interacts with nicotinic receptors.

Neurotransmitters

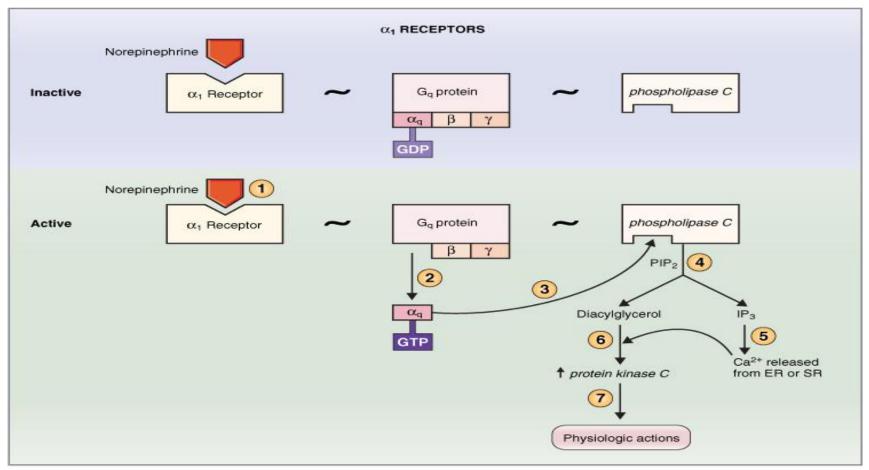
Organization of the Autonomic Nervous System


Sympathetic postganglionic neurons are adrenergic <u>except</u> in thermoregulatory sweat glands (Muscarinic, cholinergic).

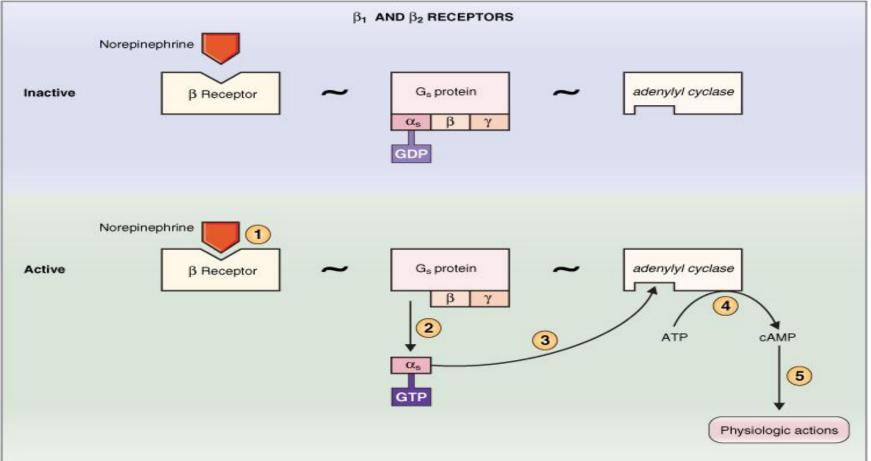
"All sympathetic postganglionic release noradrenalin (Norepinephrine) except sweat glands & blood vessels to skeletal muscles "

- The parasympathetic nervous system uses only acetylcholine (ACh) as its <u>neurotransmitter</u>.
- The ACh acts on two types of receptors : the muscarinic and nicotonic choloinergic receptors.
- Most transmissions occur in two stages:
 When stimulated, the preganglionic nerve releases ACh at the ganglion, which acts on nicotinic receptors of the postganglionic nerve.
- The postganglionic nerve then releases ACh to stimulate the muscarinic receptors of the target organ.
- The Sympathetic NS acts on tow types of receptors : α and β

Contact us : Physiology435@gmail.com



Adrenoreceptors		
αι	Found in vascular smooth muscle, gastrointestinal sphincters and bladder, radial muscle of iris and its function is <u>contraction</u> of all these organs "leads to smooth muscle contraction "	
βι	 Existing in : sinoatrial node increases heart rate (S.A node) Atrioventricular node increases conduction velocity (A.V node) Ventricular muscles increases contractility Salivary gland increases secretion (but enzymes production) "leads to smooth muscle contraction (especially in heart)" 	
β2	found in vascular smooth muscle wall of bladder, and wall of GI. Activation of β2 is <u>relaxation</u> β2 is more sensitive to Epinephrine than Nor-epinephrine " leads to smooth muscle relaxation "	

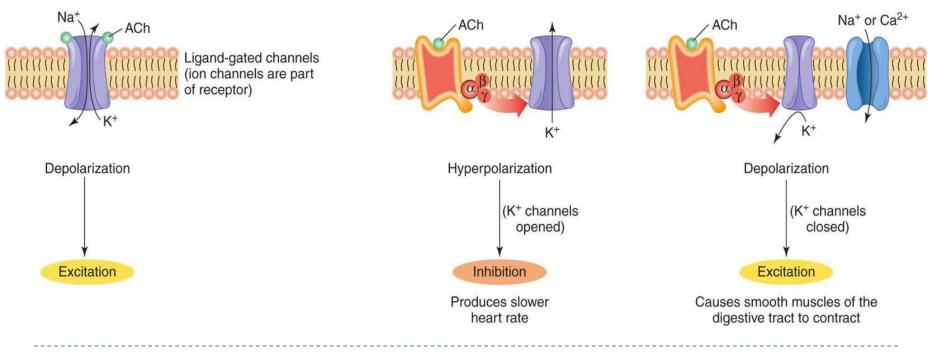

Note : α 2 receptors are very rare in the body and their role are the same of α 1.

Contact us : Physiology435@gmail.com

Cholinoreceptors		
Nicotinic	 An ion channel for Na+ and K+ In all postganglionic neurons, motor end plate at skeletal muscle and chromaffin cells. 	
Muscarinic	Works either like αι adrenoreceptors via PKC, DAG and IP3 or via G protein which has αι subunit that binds K+ channel and open it	

IP3 (Inositol trisphosphate) / DAG (Diacylglycerol) / PKC (Protein kinase C)

Cholinorecepters


Nicotinic ACh receptors

Postsynaptic membrane of

- All autonomic ganglia
- All neuromuscular junctions
- Some CNS pathways

Muscarinic ACh receptors

- Produces parasympathetic nerve effects in the heart, smooth muscles, and glands
- G-protein-coupled receptors (receptors influence ion channels by means of G-proteins)

Prototypes of Agonists and Antagonists to Autonomic Receptors

• Agonist : A drug or other chemical substance that can combine with a receptor on a cell to produce a physiologic reaction.

• Antagonist : is a chemical substance that interferes with the physiological action of another, especially by combining with and blocking its nerve receptor

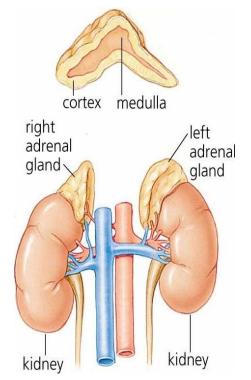
Receptors	Agonist	Antagonist	
α1	NorepinephrinePhenylephrine	- Phenoxybenzamine	
β1	NorepinephrineIsoproterenol	- Propranolol	
β2	- Albuterol	- Propranolol	
Nicotinic	- Ach	- Curare	
Muscarinic	- Muscarine	- Atropine	

Sympathetic and Parasympathetic Tone

- The role of them is to keep the stimulated organs in normal stage
- Examples:
- 1. sympathetic always keeps the blood vessel constricted ½ of its normal diameter.
- 2. removal of vagus nerve \rightarrow atony \rightarrow loss of peristalsis (contraction of small intestine) constipation.

Effect of loss of sympathetic and parasympathetic tone after denervation

 Loss of sympathetic tone in blood vessel causes <u>severe vasodilatation</u> توسع حاد بالأوعية but after sometime, intrinsic tone increases by chemical adaptation.


Adrenal gland triggers the Adrenal Medulla to release Epinephrine & Norepinephrine.

Stimulation of sympathetic nerves causes large quantities of **Epinephrine** and **Nor-epinephrine** to be secreted in blood.

- The effect of Epinephrine & Nor-epinephrine lasts 5-10 times more than the ones which secreted from sympathetic.

- Adrenal medulla will stimulated during Sympathetic only.

For more explanation <u>Click here</u> and <u>here</u>

31

Autonomic reflexes.

Most of the <u>visceral</u> functions of the body are regulated by <u>autonomic reflexes</u>.

Cardiovascular.	Gastrointesine (GI)	Sexual reflexes
Baroreceptors reflex. It's stretch, in the main arteries to detect blood pressure. Ex.(carotid artery).	Receptors in nose & mouth. Sends a signal to parasympathetic to notify the glands in mouth & stomach to secret digestive juices.	 Erection by Parasympathetic. Ejaculation by sympathetic.

Urinary Bladder. Parasy

<u>Parasympathetic</u> innervation initiates the micturition."التبول

	Filling of		Emptyir	tying of Bladder	
Spinal cord	State	Control Mechanism	State	Control Mechanism	
L1 L2 L3 Sympathetic L3 Detrusor muscle	Relaxed	Sympathetic	Contracted	Parasympathetic	
S2 S3	Contracted	Sympathetic	Relaxed	Parasympathetic	
S4 Parasympathetic TM • External sphincter	Contracted	Voluntary	Relaxed	Voluntary	

Autonomic reflexes.

- Sympathetic activation could occur in isolated portions. such as: (heart regulation, sympathetic reflexes that regulate G.I. functions)

 Parasympathetic usually causes specific localized responses.
 It specifies to certain organ, <u>but sometimes there is a common effect of</u> <u>parasympathetic activity by affecting the functions of some organs together.</u>
 such as: (Rectal and Bladder emptying, salivary and gastric secretion)

- Sympathetic can deal with every single organ alone.

- Parasympathetic can do that, but sometimes not, should be two processes together.

Important

- What is the Neurotransmitter of the sympathetic NS ? (in general) Norepinephrine (Noradrenaline)

- What are the Neurotransmitters that released during sympathetic stimulation?

Norepinephrine & Epinephrine.

What is the Neurotransmitter that released at the Preganglionic fiber during sympathetic stimulation ?
 Acetylcholine (Ach).

- What is the Neurotransmitter of the parasympathetic stimulation ? Acetylcholine (Ach).

- What are is Neurotransmitter of the Preganglionic fiber during parasympathetic stimulation ? Acetylcholine (Ach).

- QUIZ : <u>Click here</u>
- Videos :

The Autonomic Nervous System

Receptors: Adrenergic, Cholinergic

Autonomic Nervous System (ANS) - An overview of anatomy, divisions, receptors, and neurotransmitters

Physiology team

- عمرالعتيبي
- روافالرواف
- حسنالبلادي
- عمرالشهري
- عادلالشهري عبدالله الجعفر
- عبدالرحمن البركة
- خليلالدريي عبدالعزيزالحماد
- عبدالعزيز الغنايم
- عبدالمجيد العتيبي
 عبدالعزيز رضوان

- خولةالعما ري. الهنوف الجلعود
- إلهام الزهراني.
- رغدالنفيسة
- نورةالقحطاني منيرةالحسيني
 - منيرةالسلولي
 - ريم البهلال.
- عرببالعقيل ملاك الشريف
- منيال باوزير
- فتون الصالح
- أفنانالمالكي ربىالسليمي