

•Red : important

•Black : in male / female slides

•Pink : in female's slides only

•Blue : in male's slides only

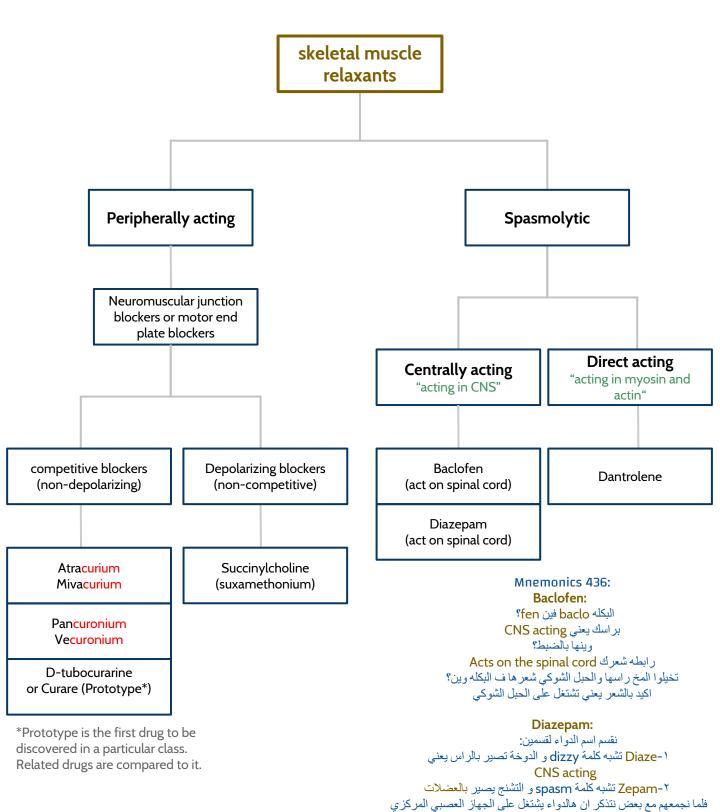
•Green : Dr's notes

•Grey: Extra information, explanation

Editing File

LECTURE 2: MUSCLE RELAXANTS

OBJECTIVES:


By the end of this lecture, students should be able to:

- Identify classification of skeletal muscle relaxants
- Describe the pharmacokinetics and dynamics of neuromuscular relaxants
- Recognize the clinical applications for neuromuscular blockers
- Know the different types of spasmolytics
- Describe the pharmacokinetics and dynamics of spasmolytic drugs
- Recognize the clinical applications for spasmolytic drugs

Skeletal Muscle Relaxants :

Are drugs used to induce skeletal muscle relaxation

They are classified according to the mechanism of action into:

ويعالج العضلات المتشنجة

Neuromuscular Blockers

Mechanism of action: Act by blocking neuromuscular junction or motor end plate leading to skeletal muscle relaxation both competitive and depolarizing drugs are taken parenterally ججدًا (injection) مهم *

Classification according to the mechanism of Action:

	Classification according to the mechanism of Action:					
	1-Competitive (Non-depolarizing) Blockers	2-Depolarizing (non-competitive) Blockers				
Mechanism of action	 Competes with Ach for the nicotinic receptors present in post-junctional membrane of neuromuscular junction or motor end plate. No depolarization of post junctional membrane (non depolarizing). No Na influx Action can be reversed by increasing Ach concentration cholinesterase inhibitors can reverse blockade (neostigmine) 	Phase 1: combine with nicotinic receptors in post-junctional membrane of neuromuscular junction → initial depolarization of motor end plate →muscle twitching → Phase 2: persistent depolarization → Skeletal Muscle relaxation				
Drugs	 According to the duration of action: Long acting: D-tubocurarine(Prototype not used anymore) Pancuronium Intermediate acting: Atracurium, Vecuronium Short acting: Mivacurium 	Succinylcholine (Suxamethonium)				
Pharmacokinetics	 Polar compound Inactive orally, taken parenterally Don't cross Blood brain barrier (No central acting) Don't cross placenta (Can be used with pregnant women) Metabolism by either liver(intermediate duration of action) or kidney(long duration of action) EXCEPT: Mivacurium->degraded by Acetylcholinesterase Atracurium->Spontaneous degradation in blood (without the effect of any enzyme) 	 Fast onset of action (1 min). Short duration of action (5-10 min). Metabolized by pseudo-cholinesterase in plasma Half life is prolonged in: Neonates (Low enzymes) Elderly (Liver function declined due to aging) Pseudo-cholinesterase deficiency (liver disease or malnutrition or genetic cholinesterase deficiency). Note : We have two types of acetylcholinesterase true Acetylcholinesterase > found in neuromuscular junction pseudo-cholinesterase > found in plasma 				
Pharmacological actions	1-Skeletal muscle relaxation. -small rapidly contracting muscles of: face and eyes, fingers, neck, trunk muscle, intercostal muscles*, diaphragm* -Recovery comes from REVERSE MANNER starting with diaphragm. Last is face and eyes. 2-They produce different effects on CVS 3-some release histamine and produce hypotension; o d-Tubocurarine (Severe release) o Atracurium (Moderate release) o Mivacurium (Mild release) 4-Others produce tachycardia (↑ H.R); o Pancuronium (No release of Histamine)	 Skeletal muscles: twitching → relaxation (Usually used before surgery). Hyperkalemia: Cardiac arrest. Due to the release of K+ into the blood CVS: arrhythmia. Eye:↑ intraocular pressure (due to contraction of extra-ocular muscle). 				
Uses of NM blockers	 control convulsion → electroshock therapy in psychotic patients. Relieve of tetanus and epileptic convulsion. As adjuvant in general anesthesia to induce muscle relaxation (main use) Facilitate endotracheal intubation, endoscopy Orthopedic surgery 					
Modify the effects of NM blockers	Diseases: (since it enhances the activity it can Myasthenia Gravis & parkinson increases the r Drugs: As Aminoglycosides (e.g. <i>Streptomycin</i>), Magne potentiate or enhance the effects of NM block relaxants but decreases the effect of nondepolarizing re	esponse to muscle relaxants. esium Sulphate and General anesthesia can kers. Cholinesterase inhibitors enhance the effect of depolarizing				

Competitive (Non-depolarizing) Blockers

Drugs		Atracurium	Mivacurium		
Drugs	D-Tubocurarine	Chemically related		Pancuronium	Vecuronium
Duration	1-2 h (Long)	30 min (intermediate)	15 min (shortest one)	1-2 h (Long)	40 min (intermediate)
Metabolism and excretion	Eliminated by kidney 60% & liver 40%.	Spontaneous hydrolysis at body pH, thus goes through non enzymatic chemical degradation in plasma.	-fast onset of action -metabolized by Pseudo cholinesterase	Metabolized by liver Excreted by the kidney(80%) Its metabolic products also have some NM blocking activities	Metabolized by liver. Excretion in bile. نقدر نصرفه للمريض الليّ عنده مرض بكليته لانه ماراح يعتمد على الكلية في اخراج
Side effects	Not used clinically due to its side effects. Histamine releaser leading to: -Bronchospasm (constriction of bronchial smooth muscle) -Hypotension -Tachycardia	-Liberates Histamine causing transient hypotension. -Antihistamine Pretreatment may prevent those side effects. No effect on muscarinic receptors nor ganglia	Transient Hypotension due to Histamine release. Mivacuriuam induced prolonged muscle paralysis can be reversed by acetylcholinesterase inhibitors such as Endrophonium.acetylcholin esterase inhibitors increase Ach displacing the drug from the receptor in NMJ	-Hypertension -Tachycardia -Increased Norepinephrine release from adrenergic nerve endings. -Antimuscarinic action (Block parasympathetic effects) Blocks muscarinic receptors in SA node	Has few side effects: -No Histamine release -No Tachycardia (No Ganglionic block nor antimuscarinic effects)
Uses	-	used in kidney and liver failure (Drug of choice)	-	-	Given with renal failure patients
Contraindication	-	Asthmatic patients (Because of release of histamine causing bronchospasm)	Longer duration in patients with liver diseases or genetic cholinesterase deficiency (ADR type B) or malnutrition (protein defect)	Patients with coronary diseases المراض القلب التاجية	-
Potency	-	As potent as curare		6 times more cura	

Depolarizing (Non-competitive) Blockers:

Drug	Succinylcholine (Suxamethonium)				
Duration	Fast onset of action (1 min), short duration of action (5-10 min) Metabolized by pseudo-cholinesterase in plasma Half life is prolonged in: -Neonates -Elderly -Pseudo-cholinesterase deficiency (liver disease, malnutrition, genetic cholinesterase deficiency, organophosphorus poisoning)	Contraindications	-Glaucoma -Patient with cardiac disease		
Side Effects	 Hyperkalemia causing cardiac arrest CVS arrhythmia ↑ Intraocular pressure contraindicated in glaucoma Can produce malignant hyperthermia May cause succinylcholine apnea due to deficiency of pseudo-cholinesterase 	Pharmacodynamics	-Skeletal muscles: twitching → relaxation -Hyperkalemia: cardiac arrest -CVS: arrhythmia -Eye: ↑ intraocular pressure (due to contraction of extraocular muscle) GIT: increased intragastric pressure → regurgitation of gastric content to esophagus		

Malignant Hyperthermia

Is a rare bizarre inherited condition of having a body temperature greatly above normal. Is an example of Idiosyncrasy. (ADR type B)

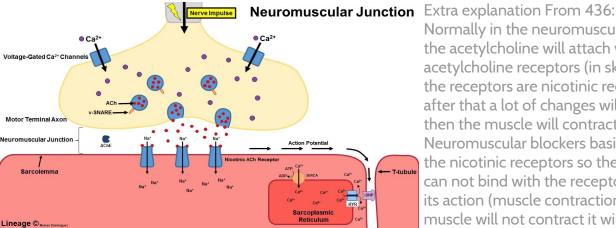
occurs upon administration of drugs as:

- general anesthesia e.g. halothane
- neuromuscular blockers e.g. succinylcholine
- Mechanism of the disease:
 - Inability to bind calcium by sarcoplasmic reticulum in some patients due to genetic defect .
 - ↑ Ca release
 - muscle rigidity (spasm)
 - Metabolic acidosis
 - Tachycardia
- Hyperthermia (Hyperpyrexia)

Treatment of the disease: Dantrolene

Spasmolytics

Muscle Relaxants	Action	Act On	Clinical Uses	
Baclofen	Centrally	GABA* agonist (acts on spinal cord)	Reduce muscle spasm in spastic states produced by neurological disorders such as: -Spinal cord injury -Cerebral stroke -Cerebral palsy	
Diazepam (Benzodiazepines)	Centrally	Facilitate GABA action on CNS		
Dantrolene	Direct	-	All the above + Malignant hyperthermia	


*GABA: γ-Aminobutyric acid is the chief inhibitory neurotransmitter in the mammalian CNS. It plays the principal role in reducing neuronal excitability throughout the nervous system, thus reducing contraction.

Mechanism of Action of Dantrolene:

- It acts directly on skeletal muscles.
- It interferes with the release of calcium (inhibit the release) from its stores in skeletal muscles (sarcoplasmic reticulum)
- It inhibits excitation-contraction coupling in the muscle fiber.Ca releases from the sarcoplasmic reticulum via Ca channels, Dantrolene blocks these channels.
 Given orally or IV (t ½ = 8-9 h)
- **Clinical Uses:**
 - Spastic states
 - Malignant hyperthermia (the first choice)

Extra explanation

Mechanism of action of Neuromuscular Blockers:

Normally in the neuromuscular junction the acetylcholine will attach with the acetylcholine receptors (in skeletal muscle the receptors are nicotinic receptors type 1) after that a lot of changes will happen and then the muscle will contract. The Neuromuscular blockers basically will block the nicotinic receptors so the acetylcholine can not bind with the receptors and produce its action (muscle contraction) and if the muscle will not contract it will relax.

Mechanism of action of Depolarizing Blockers:

Extra explanation from 437:

They fool Ach receptors in the muscular end point by attaching to them and stimulating the same effect as the Ach(acetylcholine) so they initiate the contractions of muscles fasciculation (twitching) by opening the Na+ sodium voltage channels. in the beginning. but after the sodium inside the muscle is used. the depolarizing blocker will still be attached to the Ach receptors. which will prevent repolarization.

this is called **hyperpolarization** so no more contractions will occur. e.g of depolarization NMB is: succinylcholine They are agonist drugs

Mnemonics 436: Mivacurium

جربت كريم curium نيفيا miva كذابين حربت كريم مره مو زین ما یطول بالجسم بسر عه یروح اثره Short duration of action Pancuronium (Tachycardia) عشان اربط ان هالدواء له علاقة معدل ضربات القلب بنك panc الدم بالجسم هو القلب

*taken from prof. Hanan's lecture

SUMMARY

(# = contraindicator)

Drug	Drug Duration Side Effects		Notes
Tubocurarine	Long 1-2 h	Hypotension # Renal Failure	
Pancuronium	Long 1-2 h	Tachycardia # Renal Failu	
Atracurium	m Short Transient hypotension 30 min Histamine release		Spontaneous degradation Used in liver and kidney failure
Vecuronium	Short <mark>40 min</mark>	Few side effects	# Liver failure
Mivacurium	MivacuriumShort 15 minSimilar to atracurium		Metabolized by pseudocholinesterase # Cholinesterase deficiency
Succinyl choline	Short 10 min	Hyperkalemia Arrhythmia Increase IOP	# CVS Diseases # Glaucoma # Liver disease

Quiz (MCQ) :

Q1.Which one of these is an example of depolarizing Blockers ?		
A)Pancuronium B)Suxamethonium C)Vecuronium		
Q2.The metabolism of Atracurium ocurre in ?		
A)Blood B)Liver C)Kidney		
Q3.Which one of these NM blockers hydrolysis at body pH?		
A)Pancuronium B)Atracurium C)Vecuronium		
Q4.Which one of these act on the spinal cord?		
A)Atracurium B) Dantrolene C) Diazepam		
Q5.Which one of these has a long duration of action ?		
A)Mivacurium B)Vecuronium C)Tubocurarine		

ANSWER : 1)B - 2)A - 3)B - 4)C - 5)C

Quiz (SAQ) :

Q1.Define the skeletal Muscle Relaxants ?

Q2.What is the mechanism of action of Peripheral Acting Drugs ?

Q3. Give an example of a disease and drug that change the effect the NM blockers ?

4-5.A patient came to the emergency with high fever, after examinations the diagnose was Malignant Hyperthermia.

Q4.What is the possible causes of this condition ?

Q5.What is the suitable treatment ?

Q6.Why does D-tubocurarine drug not favor to use clinically ?

Q7.What is the pharmacodynamics effect of Suxamethonium in the eyes ?

Q8.What is the main mechanism of action of Spasmolytic ?

Q9.Why using muscle relaxant during caesarean surgery doesn't affect Uterus?

1.Drugs used to induce skeletal muscles relaxation.

2.Act by blocking neuromuscular junction or motor end plate leading to skeletal muscle relaxation

3.Diseases: Myasthenia Gravis - Drug: Streptomycin

4.administration of drugs as: (general anesthesia e.g. halothane) (neuromuscular blockers e.g. succinylcholine)

5.Dantrolene

6.due to its side effects

7.increase intraocular pressure

8.Reduce muscle spasm in spastic states

9.Because it doesn't affect smooth muscle.

GOOD LUCK

Team Leaders:

Nouf Alshammari

Zyad Aldosari

Team Members:

Deana Awartani Reema Alserhani Najla Alkilani Njoud Almutairi Noura Almazrou Shahad alsahil

Sources: Team 435 Team 437