







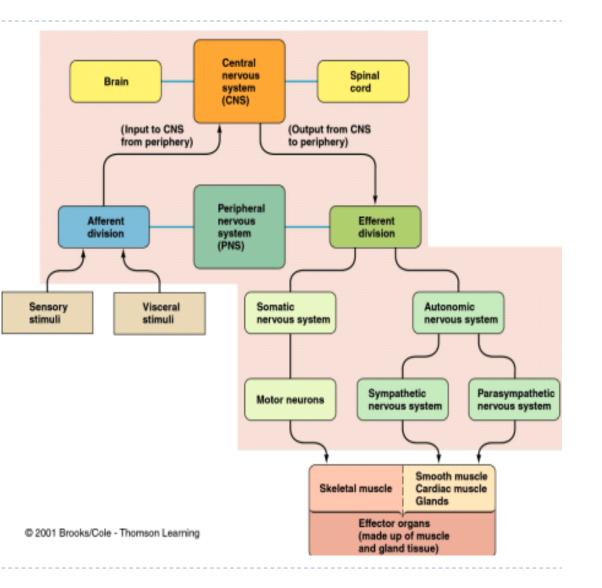
## **CNS PHYSIOLOGY**

Lecture No.3

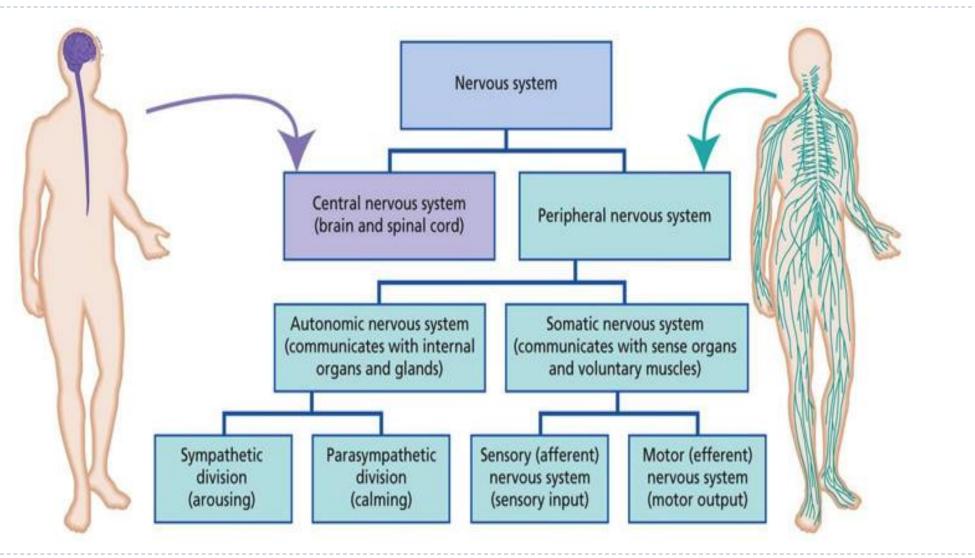
> "Failure Is Simply The Opportunity To Begin Again, This Time More Intelligently"

Text

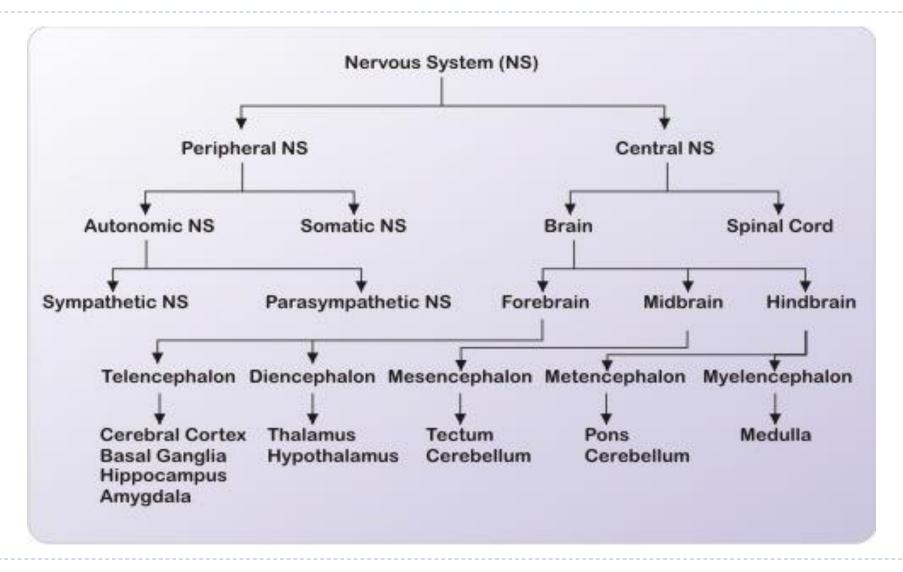
- Important
- Formulas
- Numbers
- Doctor notes
- Notes and explanation


#### Physiology of the autonomic nervous system

#### **Objectives:**

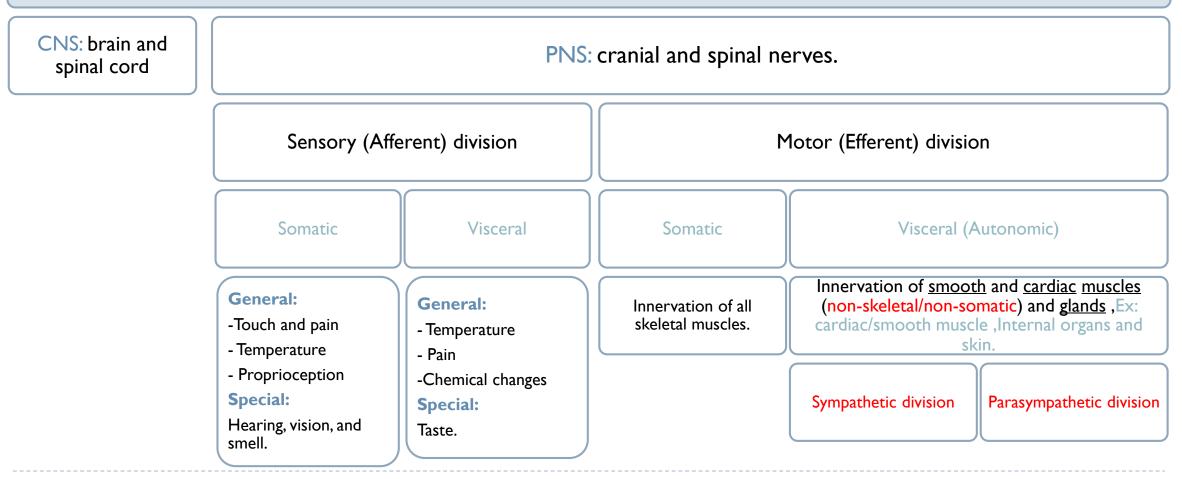

- I. The anatomy of somatic and autonomic nervous system.
- 2. Sympathetic and parasympathetic nerves.
- 3. Pre and post ganglionic neurons.
- 4. Functions of sympathetic and parasympathetic nerves in head & neck, chest, abdomen and pelvis.
- 5. Neurotransmitters release at pre and post ganglionic sympathetic / parasympathetic nerve endings.
- 6. Various responses due to stimulation of the sympathetic / parasympathetic nervous system.

### Introduction


- The autonomic nervous system is a subdivision of the Efferent nervous system and then the autonomic nervous system has 2 subdivisions, sympathetic and parasympathetic.
- The nervous system monitors and controls almost every organ / system through a series of positive and negative feedback loops.
- The Central Nervous System (CNS): Includes the brain and spinal cord.
- The Peripheral Nervous System (PNS): Formed by neurons & their process present in all the regions of the body.
  - It consists of :
    - L cranial nerves arises from the brain
    - II. spinal nerves arising from the spinal cord.
  - The peripheral NS is divided into:
    - Somatic Nervous system
    - II. Autonomic nervous system



### THE NERVOUS SYSTEM




### Cont.

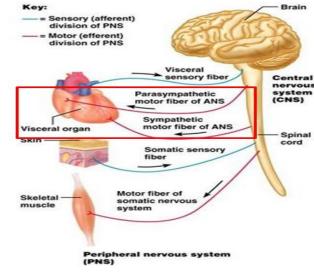


## Anatomical Divisions of the Nervous System

#### Nervous system



## What is Autonomic Nervous System?

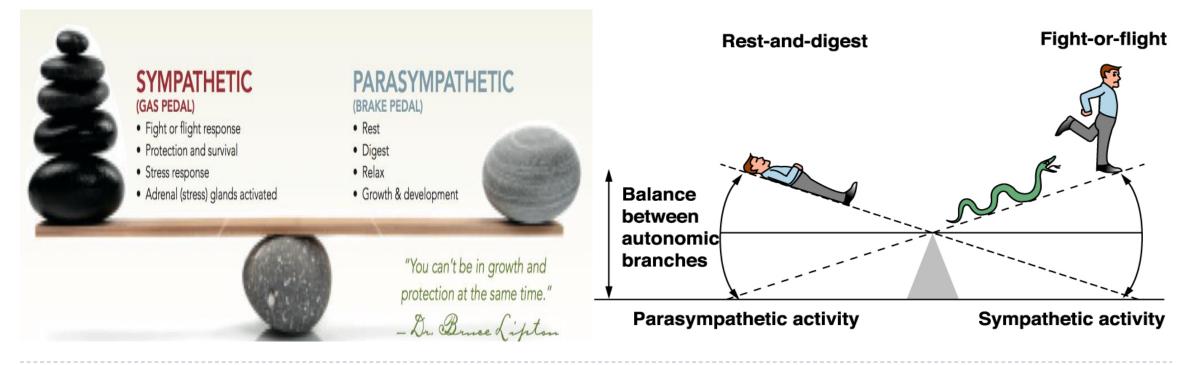

- ANS is the **Efferent** portion of the peripheral nervous system that controls **involuntary** (subconsciously) to adapt the changes in environment by regulating individual organ, homeostasis and visceral functions such as:
  - L Control of heart rate and force of contraction
  - II. Constriction and dilatation of blood vessels
  - III. Contraction and relaxation of smooth muscle
  - V. Visual accommodation
  - v. Secretions from exocrine and endocrine glands.
- Divisions of ANS:
  - . Sympathetic
  - II. Parasympathetic
  - III. Enteric Nervous System : neurons that control the function of the gastrointestinal tract.

ANS is activated by : centers located in the spinal cord, brain stem, hypothalamus and also cerebral cortex

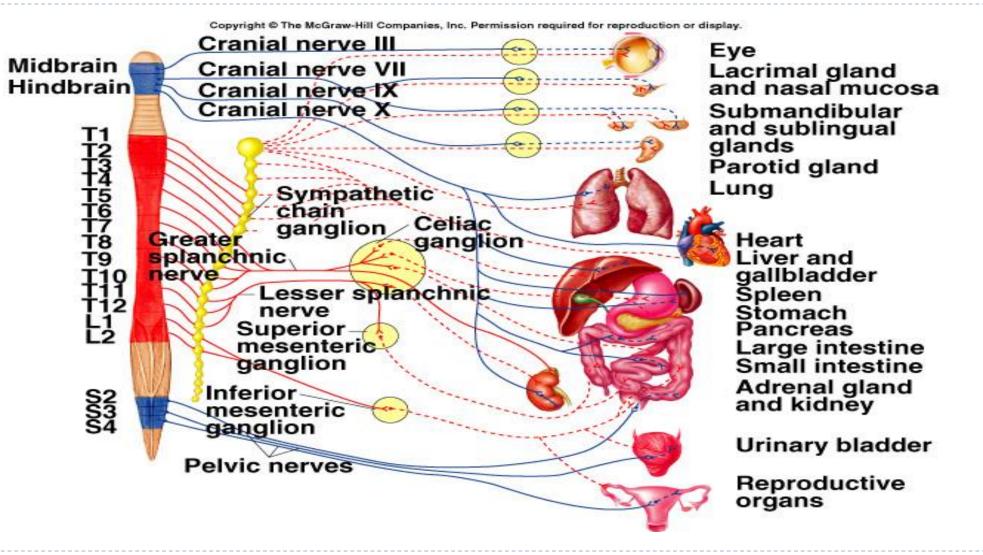
especially the limbic cortex can transmit signals to the lower centers, influence autonomic control.

ANS operates by visceral reflexes ; Subconscious sensory signals from a visceral organ enter the autonomic ganglia, brain stem or hypothalamus and then return subconscious reflex responses directly back to the visceral organ to control its activities.

Subconsciously = not under conscious control.




**ONLY IN MALES' SLIDES** 

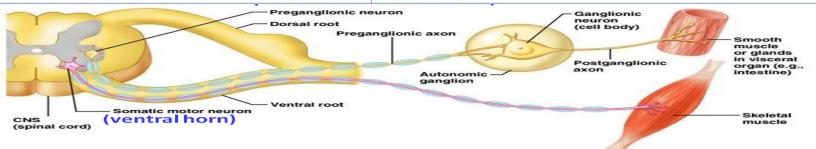

#### . . .

## THE AUTONOMIC NERVOUS SYSTEM

- The striking characteristics of ANS is the rapidity and intensity with which it can change visceral functions:
- I. Heart rate can be doubled within 3-5 sec.
- II. Blood pressure can be doubled or decreased low enough to cause fainting within 10-15 sec.
- III. Sweating can begin within seconds.
- IV. The urinary bladder may empty involuntarily, also within seconds.



# Distribution of the sympathetic and parasympathetic nervous system



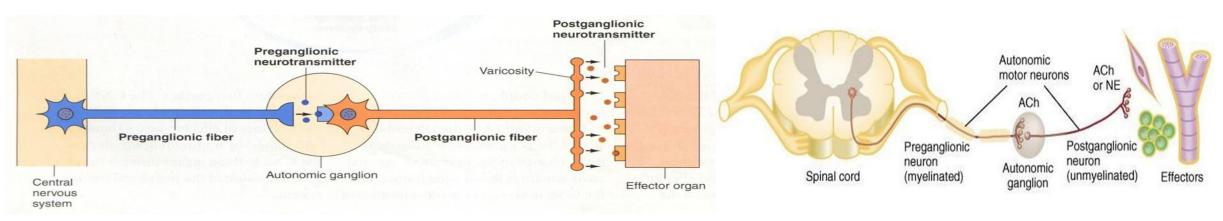

9 Blue= parasympathetic.Red: sympathetic

# Comparison Between Autonomic and Somatic motor systems

 Basic anatomical difference between the motor pathways of the voluntary somatic nervous system (to skeletal muscles) and those of the autonomic nervous system:

| Somatic motor system                                                                                                                                                                                                                                 | Autonomic nervous system (Not under voluntary control)                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>One motor neuron extends from CNS to skeletal muscle.</li> <li>Cell bodies of motor neurons reside in CNS (brain or spinal cord).</li> <li>Their axons (sheathed in spinal nerves) extend all the way to their skeletal muscles.</li> </ul> | Chain of two motor neuron:<br>I <sup>st</sup> : Preganglionic neuron (in brain or cord).<br>2 <sup>nd</sup> : Postganglionic neuron (Cell body in ganglion outside CNS).                                                                      |
| Axons are thickly myelinated, conduct impulses rapidly.                                                                                                                                                                                              | Conduction is slower due to lightly/thinly or unmyelinated axons.                                                                                                                                                                             |
| No autonomic ganglion, only one neuron inside the Nervous system.                                                                                                                                                                                    | <ul> <li>Myelin sheath and node of Ranvier play a major rule is increasing the conduction of impulses.</li> <li>The conduction is slower because the preganglionic neuron is myelinated and postganglionic neuron is unmyelinated.</li> </ul> |




## Basic anatomy of the ANS

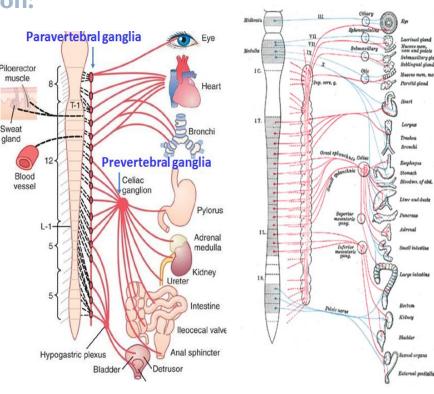
#### **Preganglionic neuron:**

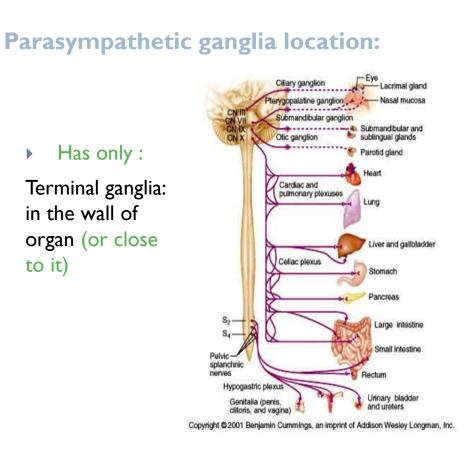
- Cell body in brain or spinal cord
- Axon is myelinated (Aβ-type) that extends to autonomic ganglion

#### **Postganglionic neuron:**

- Cell body is outside in CNS in an autonomic ganglion
- Axon is unmyelinated (C-type) that terminates on an effector cell (organ)
- A single preganglionic neuron synapses with 8-9 postganglionic neurons
- Process :
  - Axon of 1st (preganglionic) neuron leaves CNS to synapse with the 2nd (ganglionic) neuron.
  - Axon of 2nd (ganglionic) neuron extends to the organ it serves.
- 2 ganglion, preganglionic inside the nervous system but postganglionic is outside the nervous system




### Locations of autonomic ganglia


Swea alanc

Sympathetic and parasympathetic systems are consists of myelinated pre-ganglionic fibers which make synaptic connections with un-myelinated postganglionic fibers and then innervate the effector organ. These synapses usually occur in clusters called ganglia.

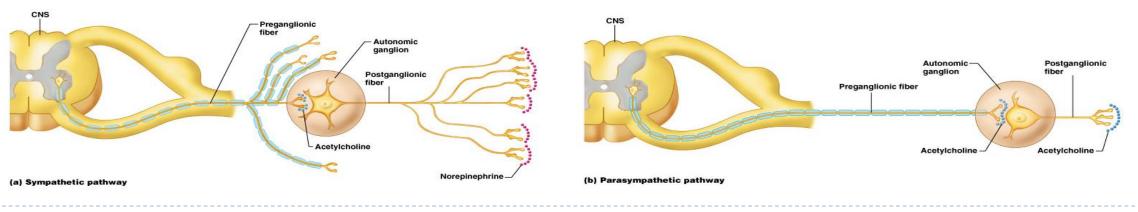
#### Sympathetic ganglia location:

- Paravertebral ganglia: Two (bilateral) Trunk (chain) ganglia near vertebral bodies.
- Prevertebral ganglia near large blood vessel in gut, celiac, superior mesenteric & inferior mesenteric.
- All the red lines are outside the CNS (Ganglia trunk).



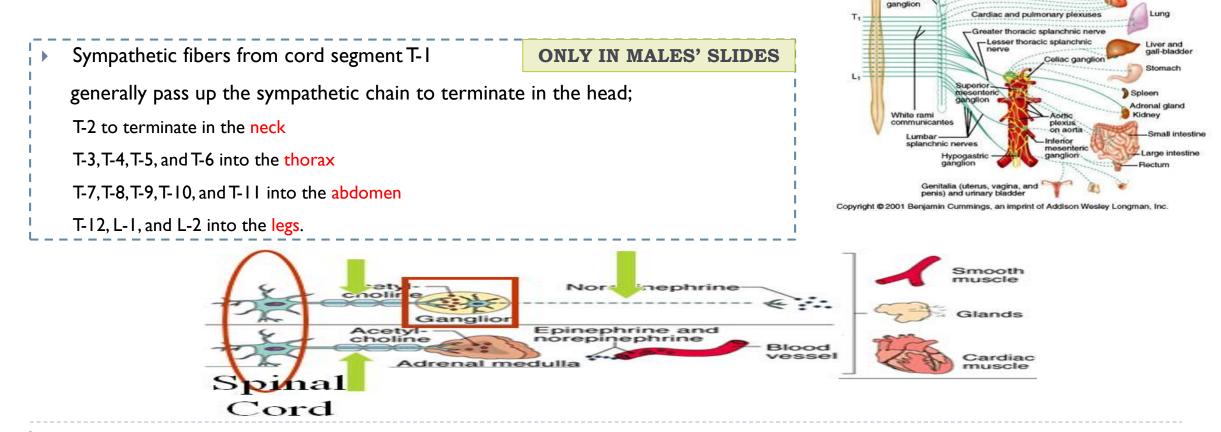


## characteristics


#### Sympathetic:

- <u>Preganglionic:</u> Short, lightly myelinated fibers to ST.
- <u>Postganglionic:</u> Long, unmyelinated fibers, terminating at effectors.
- Sympathetic axons highly branched.
- Ganglia as we said is close to spinal cord.

#### **Parasympathetic:**


- <u>Preganglionic:</u> Long preganglionic fibers.
- <u>Postganglionic:</u> Short postganglionic fibers.
- Parasympathetic axons few branches.
- terminal ganglia on or near effectors (target organs).

All preganglionic, (sympathetic or parasympathetic are myelinated) originate from lateral horn of spinal cord, but motor system from anterior and sensory from dorsal



## Sympathetic division of the ANS

- > The 2 divisions originate from different regions of the CNS.
- A. <u>Sympathetic</u> division originates from <u>thoracic & lumbar</u> levels of spinal cord. (Thoracolumbar lateral horns, TI - L2).
- Nerve fibers originate between T1 & L2.



Superior cervical

Middle

cervical

ganglior

Inferiorcervical

ganglion

Midbrain

Pons

Medulla

Sympathetic chain

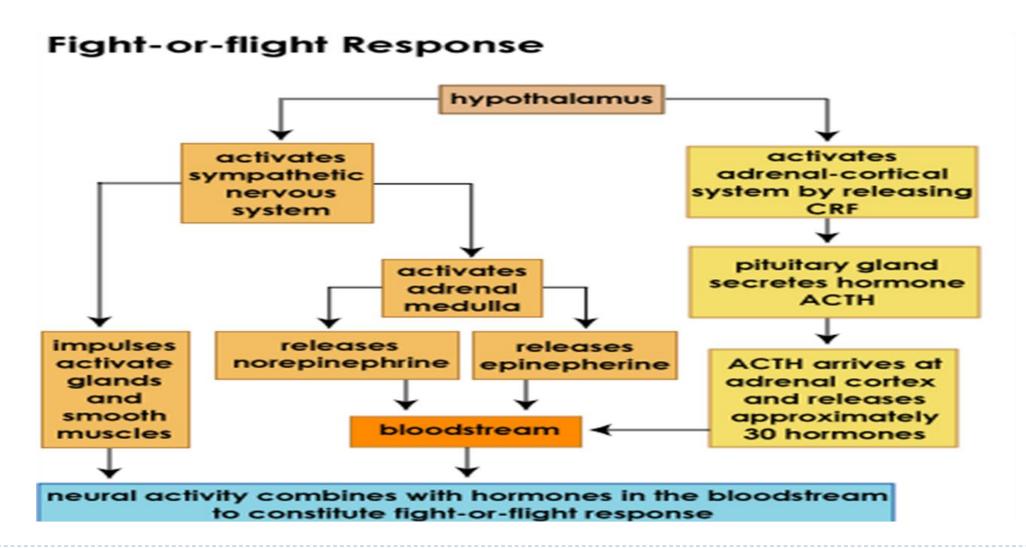
(paravertebral ganglia)

Lacrimal gland

Nasal mucos

Submandibular and sublingual glands

Parotid gland


## Function of Sympathetic nervous system

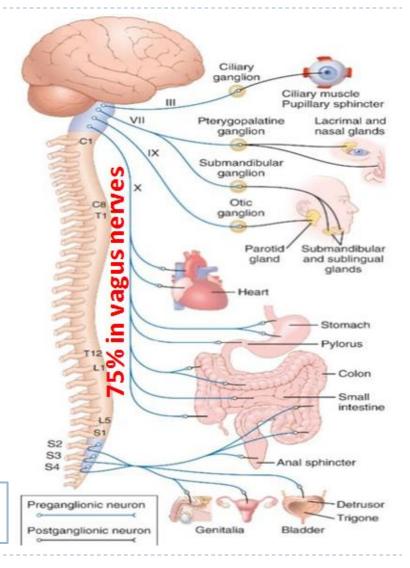
- The sympathetic system enables the body to be prepared for fear, flight or fight.
- Under stress condition
- Sympathetic responses include an increase in heart rate, blood pressure and cardiac output.
- Diversion of blood flow from the skin and splanchnic vessels to those supplying skeletal muscle. (No need for a lot of blood in the skin under stress so there will be vasoconstriction, so the blood will go to the brain, decrease blood supply to skin and GIT)
- Bronchioles dilate, which allows for greater alveolar oxygen exchange.
- Blood flow to skeletal muscles, lungs is not only maintained, but enhanced (by as much as 1200%), in case of skeletal muscles.
- في حالة الخوف يكون الريق ناشف ,Decrease saliva

Increased (Far vision) pupil size, contraction of sphincters (No time to go the bathroom even if you feel full) and metabolic changes such as the mobilization of fat and glycogen

- increases heart rate and the contractility of cardiac cells (myocytes), thereby providing a mechanism for the enhanced blood flow to skeletal muscles.
- Sympathetic nerves dilate the pupil and relax the lens, allowing more light to enter the eye.
- Also known as the "E" division:
- Exercise.
- Excitement.
- Emergency.
- Embarrassment

## The sympathetic nervous system



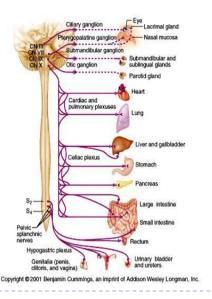

## Parasympathetic ANS Dominates During Relaxed Situations

#### Parasympathetic division originates from:

- I. motor nuclei of the cranial nerves (III,VII, IX and X) in the brain stem.
- II. 2<sup>nd</sup>, 3<sup>rd</sup>, & 4<sup>th</sup> [S2-S4] sacral levels of CNS. (craniosacral)

The Parasympathetic division of the ANS is sometimes referred to as the "craniosacral outflow" division **because** its nerve fibers arise from the Central Nervous System <u>directly</u> from the brain in the cranium and from spinal chord between the sacral vertebrae.






Dual innervation allows the precise control over the activity of a visceral organ.

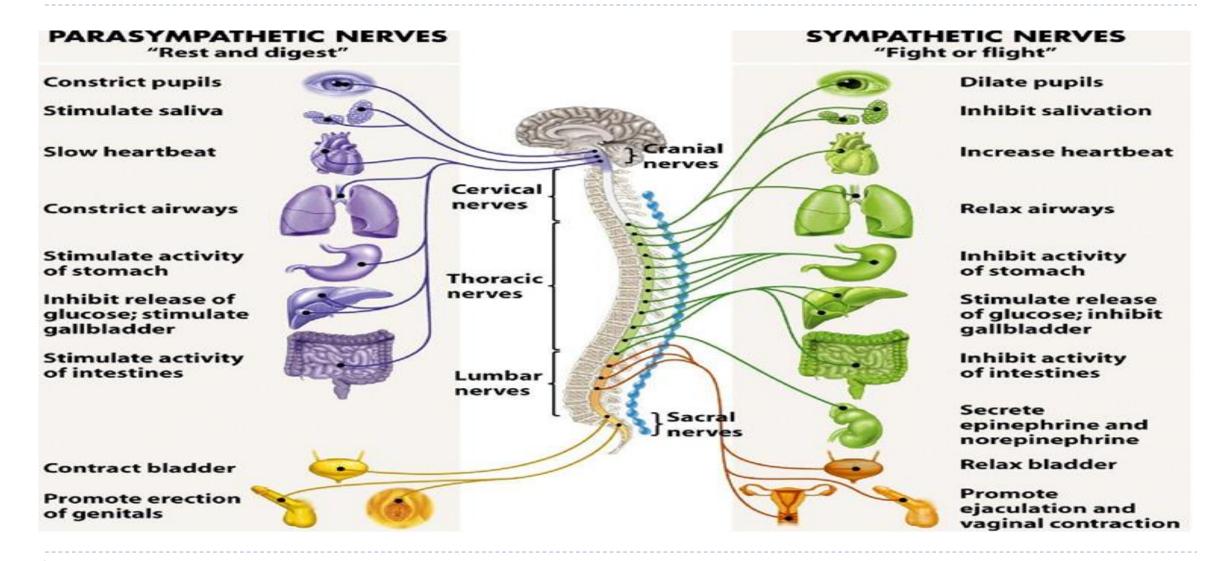
17 • The cranial nerves III, VII, IX and X is classified as Parasympathetic nerves.

## Parasympathetic nervous system

- The cranial nerves III,VII and IX affect the pupil and salivary gland secretion.
- Vagus nerve (X) carries fibres to the heart, lungs, stomach, upper intestine, ureter.
- The sacral fibres form pelvic plexuses which innervate the distal colon, rectum, bladder and reproductive organs.
- Responsible for stimulation of "Rest & Digest" or "Feed & Breed" activities
- Also known as the "D" division:
  - i. Digestion.
  - ii. Defecation.
  - iii. Diuresis.
- Elicits responses that are usually (but no those caused by sympathetic division.
- Conservation of body energy.



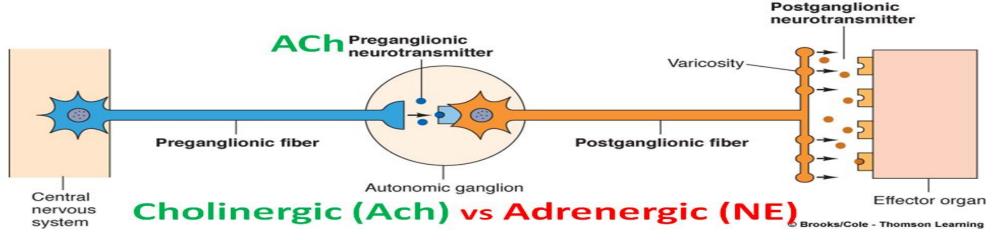
In physiological terms, the parasympathetic system is concerned with conservation and restoration of energy, as it causes a reduction in heart rate and blood pressure, and facilitates digestion and absorption of nutrients, and consequently the excretion of waste products. **ONLY IN MALES' SLIDES** Normally dominate over sympathetic impulses. SLUDD type responses: salivation, lacrimation, urination, digestion & defecation. 3 "Decreases" decreased HR, diameter of airways and diameter of pupil. Paradoxical fear when there is no escape route or no way to win activation of parasympathetic massive division causes loss of control over urination and defecation Smooth muscle Acetylcholine Glands Ganglion Cardiac muscle


### The autonomic nervous system

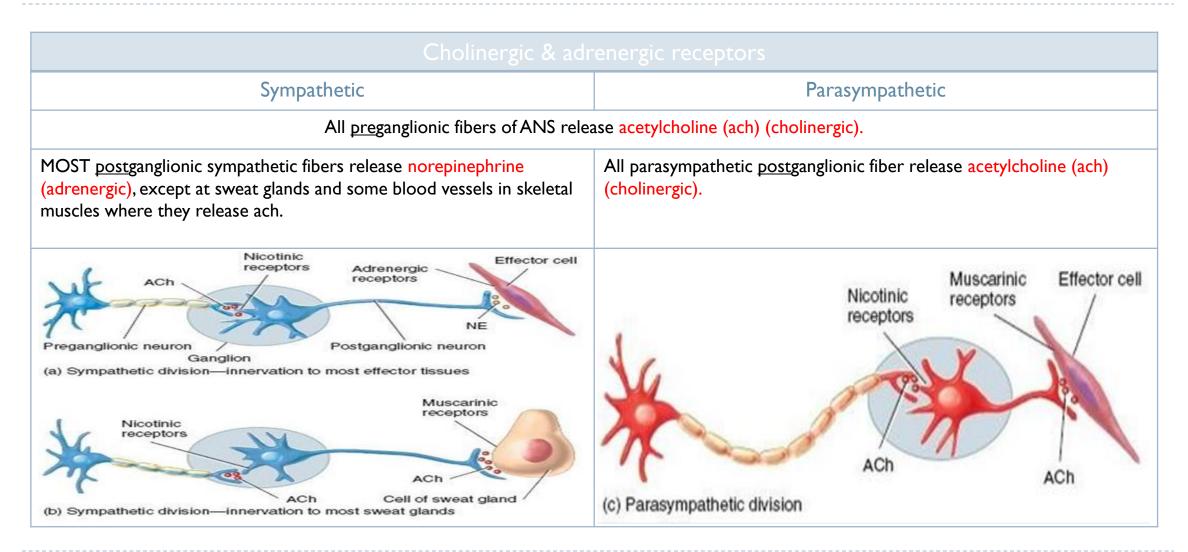
SubdivisionNervesLocation ofChemicalGeneralEmployedGangliaMessengerFunction

Sympathetic Thoracolumbar Alongside Norepinephrine Fight or flight vertebral column

ParasympathCraniosacralOn or nearAcetylcholineConservationetican effectorof bodyorganenergy


### Summary of main functions of ANS



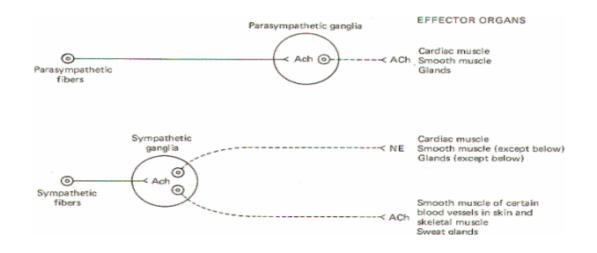

## Neurotransmitters & Receptors of the ANS

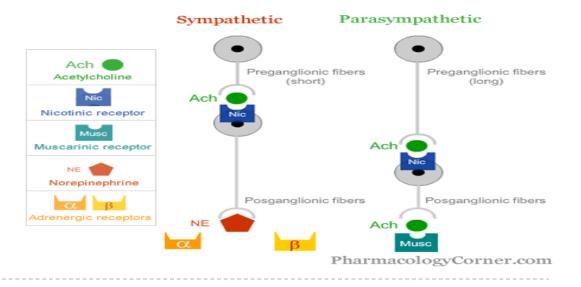
- ANS Neurotransmitters: Classified as either cholinergic or adrenergic neurons based upon the neurotransmitter released.
- Adrenergic= release norepinephrine (NE).
- Cholinergic= release acetylcholine (ACh).
- > The ACh acts on two types of receptors, the muscarinic and nicotinic cholinergic receptors.
- All cholinergic receptors on the postganglionic neurons of sympathetic and parasympathetic systems and on the adrenal gland are nicotinic.





## Cholinergic & Adrenergic Receptors





## Neurotransmitters of autonomic nervous system

- Neurotransmitter released by pre-ganglionic axons:
  - Acetylcholine for both branches (cholinergic).
- Neurotransmitter released by postganglionic axons:
  - Sympathetic most release norepinephrine (adrenergic).

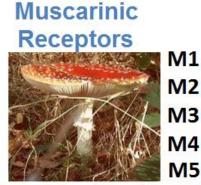
#### Parasympathetic – release acetylcholine.

| Feature                                | Sympathetic                                                                                      | Parasympathetic                                                      |
|----------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Origin of pre-<br>ganglionic<br>fibers | Thoracolumbar<br>nerves                                                                          | Craniosacral nerves                                                  |
| Location of<br>ganglia                 | Far from vis-<br>ceral effector<br>organs; in sym-<br>pathetic chain<br>or collateral<br>ganglia | Near or within viscera<br>effector organs                            |
| Neurotransmitter                       | In ganglia,<br>acetylcholine;<br>in effector<br>organs, norepi-<br>nephrine                      | In ganglia, acetylcholine;<br>in effector organs, acetyl-<br>choline |





## The autonomic nervous system


- Acetylcholine activates mainly two types of receptors. They are called muscarinic and nicotinic receptors.
- Muscarine activates only muscarinic receptors whereas nicotine activates only nicotinic receptors; acetylcholine activates both of them.
- Muscarinic receptors are found on all effector cells that are stimulated by the postganglionic cholinergic neurons of either the parasympathetic nervous system or the sympathetic system.
- Nicotinic receptors are found in the autonomic ganglia at the synapses between the preganglionic and postganglionic neurons of both the sympathetic and parasympathetic systems.

## Receptors

#### Ext

#### **Cholinergic receptors:**

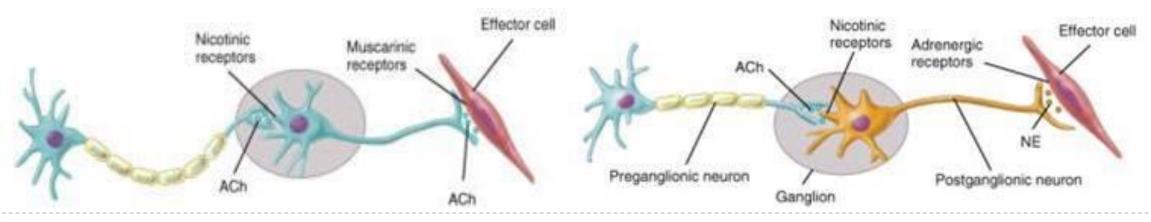
- They are named after the drugs that bind to them:
- I. Muscarinic (G-ptotein coupled) Receptors (bind muscarine)
- II. Nicotinic (ligand-gated) Receptors (bind nicotine)



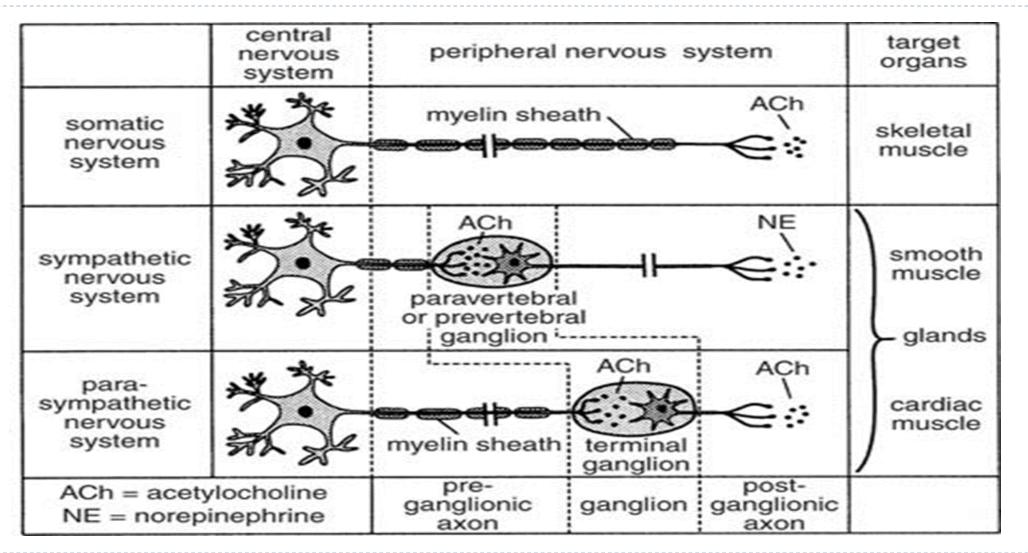


Muscarine (Mushroom)

Nicotine (Tobacco)


#### **ONLY IN MALES' SLIDES**

#### Adrenergic receptors:


- The Sympathetic NS Acts on two types of receptors  $\alpha$  and  $\beta$ :
- α1-receptors: their activation usually produces excitation (most target tissues).
- α2-receptors: their activation usually produce inhibition (digestive organs)
- β1-receptors: They cause an excitatory response (mainly in heart).
- β2-receptors: their activation in general causes inhibition (blood vessels and airways).
- β3-receptors:
- Blocker: Aatropine blocks M receptors and is used to inhibit salivary and bronchial secretion before surgery.

### Receptors

- > The parasympathetic nervous system uses only acetylcholine (ACh) as its neurotransmitter.
- > The ACh acts on two types of receptors, the muscarinic and nicotinic cholinergic receptors.
- Most transmissions occur in two stages: When stimulated, the preganglionic nerve releases ACh at the ganglion, which acts on nicotinic receptors of the postganglionic nerve.
- > The postganglionic nerve then releases ACh to stimulate the muscarinic receptors of the target organ.
- The Sympathetic NS Acts on two types of receptors :  $\alpha$  and  $\beta$ .
- What do the receptors do?
- I. Activation of  $\alpha$  receptors leads to smooth muscle contraction e.g.blood vessel.
- II. Activation of  $\beta_2$  receptors leads to smooth muscle relaxation.
- III. Activation of  $\beta_1$  receptors leads to smooth muscle contraction (especially in heart).



## Cont.



## Physiological functions of the autonomic nervous system

| Physiological functions of the autonomic nervous system |                                                                                 |           |                                              |                                               |                                 |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------|-----------|----------------------------------------------|-----------------------------------------------|---------------------------------|--|--|
| Structure                                               | Sympathetic (adrenergic) Parasympathetic (muscarinic)                           |           | Structure                                    | Sympathetic (adrenergic)                      | Parasympathetic<br>(muscarinic) |  |  |
| Endocrine                                               | -                                                                               | -         | circulatory system                           | -                                             | -                               |  |  |
| Pancreas (islets)                                       | A2: decreases secretion                                                         | -         | cardiac output                               | increases                                     | M2: decreases                   |  |  |
| Adrenal medulla                                         | N: secretes epinephrine                                                         | -         | SA node: heart rate (chronotropic)           | β, β2: increases                              | M2: decreases                   |  |  |
| Urinary system                                          | -                                                                               | -         | cardiac muscle: contractility<br>(inotropic) | β, β2: increases                              | M2: decreases<br>(atria only)   |  |  |
| Bladder wall                                            | B2: relaxes                                                                     | Contracts | conduction at AV node                        | βl:increases                                  | M2: decreases                   |  |  |
| Ureter                                                  | Al: contracts                                                                   | Relaxes   | vascular smooth muscle                       | M3: contracts<br>A= contracts<br>β2 = relaxes | -                               |  |  |
| Sphincter                                               | Al: contracts; β2 relaxes                                                       | Relaxes   | platelets                                    | $\alpha$ 2: aggregates                        | -                               |  |  |
| Sweat gland secretions                                  | M: stimulates<br>(major contribution)<br>αI: stimulates<br>(minor contribution) | -         | mast cells - histamine                       | β2: inhibits                                  | -                               |  |  |
| Arrector pili                                           | A l : stimulates                                                                | -         | circulatory system                           | -                                             | -                               |  |  |

#### **ONLY IN MALES' SLIDES**

## Physiological functions of the autonomic nervous system

| Physiological functions of the autonomic nervous system |                                                                                     |                                                                    |                               |                                            |                   |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|--------------------------------------------|-------------------|--|
| Structure                                               | Sympathetic (adrenergic)                                                            | Parasympathetic<br>(muscarinic) Structure Sympathetic (adrenergic) |                               | Parasympathetic<br>(muscarinic)            |                   |  |
| respiratory<br>system                                   | -                                                                                   | -                                                                  | lacrimal glands (tears)       | decreases                                  | M3: increases     |  |
| smooth muscles<br>of bronchioles                        | β2: relaxes<br>(major contribution)<br>α1: contracts<br>(minor contribution)        | M3: contracts                                                      | kidney (renin)                | secretes                                   | -                 |  |
| nervous system                                          | -                                                                                   | -                                                                  | parietal cells                | -                                          | MI: secretion     |  |
| pupil of eye                                            | $\alpha$ l : relaxes                                                                | M3: contracts                                                      | liver                         | αΙ, β2: glycogenolysis,<br>gluconeogenesis | -                 |  |
| ciliary muscle                                          | β2: relaxes                                                                         | M3: contracts                                                      | GI tract motility             | decreases                                  | MI, M3: increases |  |
| digestive system                                        | -                                                                                   | -                                                                  | smooth muscles of GI<br>tract | α, β2: relaxes                             | M3: contracts     |  |
| salivary glands:<br>secretions                          | β: stimulates viscous, amylase<br>secretions<br>αI = stimulates potassium<br>cation | stimulates watery<br>secretions                                    | sphincters of GI tract        | αl:contracts                               | M3: relaxes       |  |

### The stress reaction

- When stress occurs, the sympathetic nervous system is triggered.
- Norepinephrine is released by nerves, and epinephrine is secreted by the adrenal glands. By activating receptors in blood vessels and other structures, these substances ready the heart and working muscles for action.
- Acetylcholine is released in the parasympathetic nervous system, producing calming effects.
- The digestive tract is stimulated to digest a meal, the heart rate slows, and the pupils of the eyes become smaller. The neuroendocrine system also maintains the body's normal internal functioning.

#### Chronic stress:

- When glucocorticoids or adrenaline are secreted in response to the prolonged psychological stress commonly encountered by humans, the results are not ideal.
- Normally, bodily systems gear up under stress and release hormones to improve memory, increase immune function, enhance muscular activity, and restore homeostasis. If you are not fighting or fleeing, but standing frustrated in a supermarket checkout line or sitting in a traffc jam, you are not engaging in muscular exercise.
- Yet these systems continue to be stimulated, and when they are stimulated chronically, there are different consequences: Memory is impaired, immune function is suppressed, and energy is stored as fat.

### Response to stress

Psychological Short Fuse

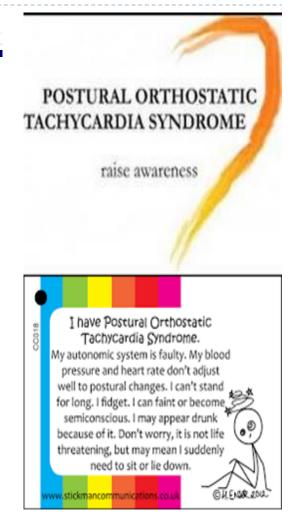
Irritability

Depression Frustration Emotional Irritability Insecurity

Mental Illness Anxiety

#### <u>Behavioral</u>

Drug/Use Abuse Alcohol Use/Abuse


Smoking Strained Relationships Eating Problems Suicide Attempts

Violence Impulsive/

Irrational Behavior

#### <u>Psychosomatic</u>

Ulcers High Blood Pressure Insomnia Indigestion Headaches Other Cardiovascular Body Infections Irregular Pulse rate



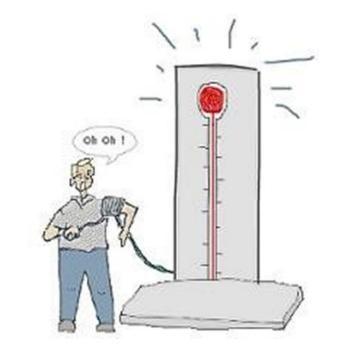
## Summary

| The autonomic nervous system |                 |                              |                    |                             |  |  |
|------------------------------|-----------------|------------------------------|--------------------|-----------------------------|--|--|
| Subdivision                  | Nerves Employed | Location of Ganglia          | Chemical Messenger | General Function            |  |  |
| Sympathetic                  | Thoracolumbar   | Alongside vertebral column   | Norepinephrine     | Fight or flight             |  |  |
| Parasympathetic              | Craniosacral    | On or near an effector organ | Acetylcholine      | Conservation of body energy |  |  |

#### Physiological functions of the autonomic nervous system

| Structure            | Sympathetic                    | Parasympathetic                 | Structure          | Sympathetic                                                                      | Parasympathetic                   | Structure               | Sympathetic                                                                      | Parasympathetic                      |                 |
|----------------------|--------------------------------|---------------------------------|--------------------|----------------------------------------------------------------------------------|-----------------------------------|-------------------------|----------------------------------------------------------------------------------|--------------------------------------|-----------------|
| lris (eye<br>muscle) | Pupil dilation                 | Pupil constriction              | Lung               | Bronchial muscle Bronchial muscle<br>relaxed (Because contracted<br>we need more |                                   | Liver                   | Increased conversion of<br>glycogen to glucose (Because we need<br>more energy ) |                                      |                 |
| Salivary             | Saliva prod.                   | Saliva prod.                    | Stomach            | Oxygen)                                                                          | oxygen)<br>Peristalsis            | Gastric juice secreted; | Kidnov                                                                           | Decreased urine                      | Increased urine |
| glands               | reduces                        | induced                         |                    | reduced                                                                          | motility increased                | Kidney                  | secretion                                                                        | secretion                            |                 |
| Oral/Nasal<br>mucosa | Mucus prod.<br>reduced         | Mucus prod.<br>induced          | Small<br>intestine | Motility reduced                                                                 | Digestion increased               | Adrenal<br>medulla      |                                                                                  |                                      |                 |
| Heart                | Heart rate and force increased | Heart rate and force decreased. | Large<br>intestine | Motility reduced                                                                 | Secretions and motility increased | Bladder                 | Wall relaxed<br>Sphincter closed                                                 | Wall contracted<br>Sphincter relaxed |                 |

32 • Blood sample of stimulated adrenal medulla will have more noradrenaline and adrenaline


## Disorders of the ANS

#### **Raynaud's disease:**



- Characterized by constriction of blood vessels
- It is an exaggeration of vasomotor responses to cold or emotional stress
- During an attack, the fingers and toes can change colors from white to blue to red.

#### Hypertension – high blood pressure



Can result from overactive sympathetic vasoconstriction.

## Thank you!

اعمل لترسم بسمة، اعمل لتمسح دمعة، اعمل و أنت تعلم أن الله لا يضيع أجر من أحسن عملا.

#### The Physiology 436 Team:

Females Members: Aseel Alsulimani Lina alwakeel Hayfaa Alshaalan Males Members: Hassan Alshammari

#### **Team Leaders:**

Lulwah Alshiha Laila Mathkour Mohammad Alayed

**Contact us:** 

OUIZ

**References:** 

- Females and Males slides.
- Guyton and Hall Textbook of Medical Physiology (Thirteenth Edition.)

