





# Anterior Pituitary Disorders

## **Objectives:**

- To understand basic pathophysiology and feedback for anterior pituitary hormones
- Know about clinical approach for common anterior pituitary gland disorders:
- Common clinical presentations.
- Main laboratory investigations.
- Radiological investigations
- Describe lines of management for each of these conditions.

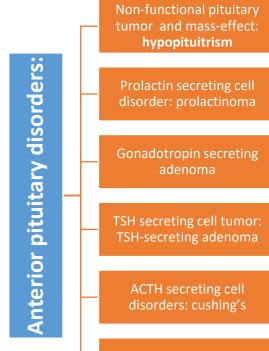
# **Color index:**

- 1. Extra explanation
- 2. Important
- 3. Doctors notes

Please check the editing file before studying



" أن أجاهد في طلب العلم، أسخره لنفع الإنسان "

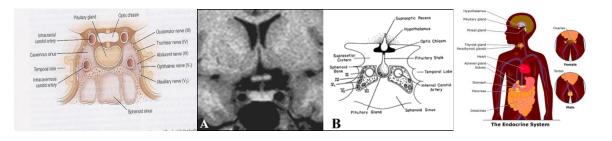

What will happen if T4 was low?

TRH and TSH increase and stimulate gland to produce hormone.

it is inappropriate response when T4 low and TSH normal

Most hormones from hypothalamus are releasing hormones. Most hormone from pituitary are stimulating hormones

The table is very important




Growth hormone secreting cell disorder: acromegaly

|                    | Corticotroph                     | Gonadotroph                                                   | Thyrotroph                                   | Lactotroph               | Somatotroph                                                     |
|--------------------|----------------------------------|---------------------------------------------------------------|----------------------------------------------|--------------------------|-----------------------------------------------------------------|
| Hormone            | POMC, ACTH                       | FSH, LH                                                       | TSH                                          | Prolactin                | GH                                                              |
| Stimulators        | CRH, AVP,<br>gp-130<br>cytokines | GnRH, Estrogen                                                | TRH                                          | Estrogen,<br>TRH         | GHRH, GHS                                                       |
| Inhibitors         | Glucocortico<br>ids              | Sex steroids,<br>inhibin                                      | T3, T4,<br>Dopamine,<br>Somatostat<br>in, GH | Dopamine                 | Somatostatin,<br>IGF-1, Activins                                |
| Target<br>Gland    | Adrenals                         | Ovary, Testes                                                 | Thyroid                                      | Breast and other tissues | Liver, bone and other tissues                                   |
| Target<br>hormone  | cortisol                         | Testosterone, E2                                              | T4                                           |                          | IGF-1                                                           |
| Trophic<br>Effects | Steroid<br>production            | Sex Steroid,<br>Follicular growth,<br>Germ Cell<br>maturation | T4<br>synthesis<br>and<br>secretion          | Milk<br>Production       | IGF-1 production,<br>Growth<br>induction, Insulin<br>antagonism |

# **Pituitary Development:**

| Anterior                                                | Anterior pituitary is recognizable by 4- 5 <sup>th</sup> wk of gestation                                                                                           |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pituitary gland –                                       | Full maturation by 20th wk                                                                                                                                         |
|                                                         | From Rathke's pouch, Ectodermal evagination of oropharynx                                                                                                          |
|                                                         | Migrate to join neurohypophysis                                                                                                                                    |
|                                                         | Portion of Rathke's pouch $ ightarrow  ightarrow$ Intermediate lobe                                                                                                |
|                                                         | Remnant of Rathke's pouch cell in oral cavity $ ightarrow  ightarrow$ pharyngeal pituitary                                                                         |
|                                                         | Lies at the base of the skull as sella turcica                                                                                                                     |
|                                                         | Roof is formed by diaphragma sellae                                                                                                                                |
|                                                         | Floor by the roof of sphenoid sinus                                                                                                                                |
|                                                         |                                                                                                                                                                    |
| Posterior pituitary<br>gland:                           | Posterior pituitary from neural cells as an outpouching from the floor o 3 <sup>rd</sup> ventricle                                                                 |
| Posterior                                               | Pituitary stalk in midline joins the pituitary gland with hypothalamus that is below 3 <sup>rd</sup> ventricle                                                     |
| pituitary gland<br>cant produce any<br>hormone just for | Development of pituitary cells is controlled by a set of transcription growth factors like pit-1, Prop-1, Pitx2                                                    |
| storage                                                 | Only storage: Oxyctocin, ADH (hypothalamic hormones) .                                                                                                             |
|                                                         | Pituitary stalk and its blood vessels pass through the diaphragm                                                                                                   |
|                                                         | Lateral wall by cavernous sinus containing III, IV, VI, V1, V2 cranial nerves and internal carotid artery with sympathetic fibers. Both adjacent to temporal lobes |
|                                                         | Pituitary gland measures 15 X 10 X 6 mm, weighs 500 mg but about 1 g<br>in women                                                                                   |
|                                                         | Optic chiasm lies 10 mm above the gland and anterior to the stalk                                                                                                  |
|                                                         | Blood supply : superior, middle, inferior hypophysial arteries ( internal carotid artery) running in median eminence from hypothalamus                             |
|                                                         | Venous drainage: to superior and inferior petrosal sinsuses to jugular vein                                                                                        |



- (A) Picture shows: Tumor extended upward. Moreover, the affect optic chiasm that will affect visual field(bitemporal hemianopia)
  - يسألون المريض اذا يقدر يشوف السيارات اللي جمبه وهو يسوق او المرايا الجانبيه ؟عادة يجاوب لا بكذا يعرفون انه مأثر على (B) optic chiasm
- (C) . If the mass extend down edit will cause CSF drain from the nose If it affect temporal lobe it will cause seizure

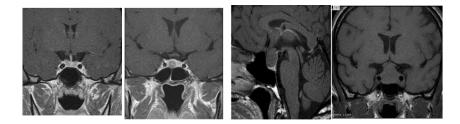
# othalamic Lesions:

Non-Functioning Pituitary Adenomas

adenomas:Prolactinoma,Somatotropinoma, Corticotropinoma, Thyrotropinoma, Other

Malignant pituitary tumors: Functional and non-functional pituitary carcinoma

Metastases in the pituitary (breast, lung, stomach, kidney)


Pituitary cysts: Rathke's cleft cyst, Mucocoeles, Others

Empty sella syndrome

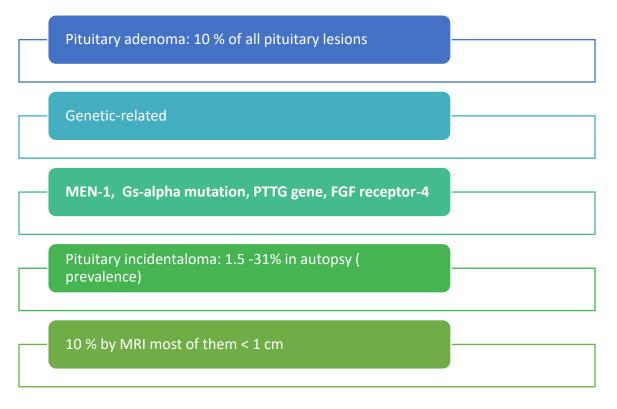
Pituitary abscess

Lymphocytic hypophysitis

Carotid aneurysm



# **Disorders of Pituitary Function:**


#### **Hypopituitarism**

- Central hypoadrenalism( isolated, multiple, pan)
- hypogonadism, hypothyroidism or GH deficiency
- Panhypopituitarism

Hypersecretion of Pituitary Hormones(GH,LH,FSH,PRL,TSH,ACTH)

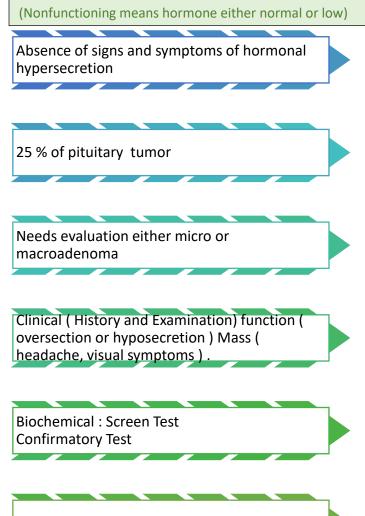
- Hyperprolactinemia
- Acromegaly (**↑**GH)
- Cushing's Disease (
   coresterol)

# **Evaluation of Pituitary mass:**



6

#### ANESTH ANALG 2005;101:1170-81


#### REVIEW ARTICLE NEMERGUT ET AL. 1171 TRANSPHENOIDAL PITUITARY SURGERY

#### Table 1. Functioning Adenomas: Clinical Disease and Medical Therapy

| Clinical disease                         | Hormone produced<br>by tumor | Estimated<br>frequency (%) | Medical therapy                                                     |
|------------------------------------------|------------------------------|----------------------------|---------------------------------------------------------------------|
| Acromegaly                               | Growth hormone               | 5-10                       | Somatostatin analog (octreotide)<br>Growth hormone receptor blocker |
| Cushing's disease                        | ACTH                         | 10-15                      | Ketoconazole (blocks cortisol synthesis)                            |
| Gonadotroph                              | FSH, LH                      | 5                          | None                                                                |
| Prolactinoma                             | Prolactin                    | 20-30                      | Dopamine agonist (bromocriptine,<br>cabergoline, pergolide)         |
| Null cell                                | None                         | 20-25                      | None                                                                |
| Thyrotropic                              | TSH                          | <3                         | Somatostatin analog (octreotide)<br>Propylthiouracil                |
| Other (including<br>mixed cell adenomas) | None                         | 20                         | None                                                                |

ACTH = adrenocorticotropic hormone, FHS = follicle-stimulating hormone, LH = luteinizing hormone, TSH = thyroid-stimulating hormone.

# **Non-Functional pituitary lesion:**



Anatomical : MRI of sella turcica

| Presentation of NFPA:             |                                                          |                                 |                           |  |
|-----------------------------------|----------------------------------------------------------|---------------------------------|---------------------------|--|
| As<br>incidentaloma<br>by imaging | Symptoms of<br>mass effects (<br>mechanical<br>pressure) | Hypopituitarism<br>( mechanism) | Gonadal<br>hypersecretion |  |

#### **Treatment:**

Surgery if indicated

recurrence rate 17 % if gross removal, 40 %~ with residual tumor

predictors of recurrence: young male, cavernous sinus invasion, extent of suprasellar extention of residual tumor, duration of follow up, marker; Ki-67

**Observation** with annual follow up for 5 years and then as needed, visual field exam Q 6-12 month if close to optic chiasm. Slow growing tumour

Adjunctive therapy: 1/Radiation therapy 2/Dopamine agonist 3/Somatostatin analogue

Non-functional pituitary adenoma

| C: Clinical    | Asymptomtic , incidentaloma by imaging<br>Mass-effect ( mechanical pressure, hypopituitarism, visual (<br>bitemproal hemianopia)<br>Gonadal hypersecretion |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| B: Biochemical | GH,LH,FSH,TSH,ACTH: not high PRL : low ,high, normal                                                                                                       |  |  |
| A: Anatomical  | MRI                                                                                                                                                        |  |  |
| Treatment      | Surgery if indicated Observation Adjunctive therapy:<br>- Radiation therapy<br>- Dopamine agonist<br>- Somatostatin analogue                               |  |  |

# **Functional pituitary mass:**

Prolactin is the only hormone has no direct Releasing hormone

# **Prolactin**

REMEMBER: Not all hyperprolactinemia is due to a prolactinoma

Human prolactin is a 198 amino acid polypeptide

Primary function is to enhance breast development during pregnancy and to induce lactation

Prolactin also binds to specific receptors in the gonads, lymphoid cells, and liver

Secretion is pulsatile; it increases with sleep, stress, pregnancy, and chest wall stimulation or trauma

Secretion of prolactin is under tonic inhibitory control by dopamine, which acts via D2-type receptors located on lactotrophs

Prolactin production can be stimulated by the hypothalamic peptides, thyrotropin-releasing hormone (TRH) and vasoactive intestinal peptide (VIP)

### Low prolactin:

No clinical significant if there is no mass invading the hypothalamus. N.B.: PRL is the only pituitary hormone that is inhibited by hypothalamus.

### **Causes of Hyperprolactinemia:**

| Hypothalamic<br>Dopamine<br>Deficiency                                                                                                                                           | Defective Transport<br>Mechanisms                                 | Lactotroph Insensitivity to<br>Dopamine                                                                                                                                                 | Stimulation of Lactotrophs                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diseases of the<br>hypothalamus(<br>including tumors,<br>arterio-venous<br>malformations, and<br>inflammatory<br>processes<br>Drugs (e.g. alpha-<br>methyldopa and<br>reserpine) | Section of the<br>pituitary stalk<br>Pituitary or stalk<br>tumors | Dopamine-receptor-blocking<br>agents: phenothiazines (e.g.<br>chlorpromazine),<br>butyrophenones<br>(haloperidol), and<br>benzamides<br>(metoclopramide, sulpiride,<br>and domperidone) | Hypothyroidism- increased TRH<br>production (acts as a PRF)<br>Estrogens: stimulate lactotrophs<br>Injury to the chest wall: abnormal<br>stimulation of the reflex associated with<br>the rise in prolactin that is seen<br>normally in lactating women during<br>suckling |

when adenoma produce prolactin in high level, what will happen? In female, galactorrhea, infertility and amenorrhea (irregular cycle). in male, hypogonadism and gynecomastia, lebedo.

### **Clinical Features of Hyperprolactinemia/Prolactinoma:**

In both sexes, tumor mass effects may cause visual-field defects or headache Men often have less symptoms than women (sexual dysfunction, visual problems, or headache) and are diagnosed later Women may present with oligomenorrhea, amenorrhea, galactorrhea or infertility

Normally prolactin increased during pregnancy, so the first thing should be done for lady with high prolactin level is pregnancy test. 45 years old with headache and amenorrhea prolactin is high. what is the treatment? Medical treatment (dopamine) in the same case, if the mass affects visual field we do not do surgery because the medical treatment causes the mass to shrink. Surgical treatment if there was no response to medical

### Work up of Patient with Hyperprolactinemia:

In females, pregnancy must always be ruled out

Get a TSH- hypothyroidism is another common cause of elevated prolactin:

Obtain detailed drug history- rule out medication effects

Rule out other common causes including:

- Nonfasting sample
- •Nipple stimulation or sex
- Excessive exercise
- •History of chest wall surgery or trauma
- •Renal failure
- Cirrhosis

٠

•

If no cause determined or tumor suspected, consider MRI, especially if high prolactin levels (> 100 ng/mL)

## **Prolactinomas:**

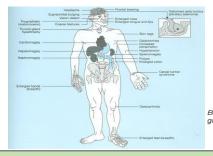
Most common of functional pituitary adenomas

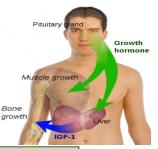
25-30% of all pituitary adenomas

Some growth hormone (GH)–producing tumors also co-secrete PRL

Of women with prolactinomas- 90% present with microprolactinomas. 1<cm

Of men with prolactinomas- up to 60% present with macroprolactinomas. 1>cm


# **Growth hormone:**


Pituitary tumor as mass effect →→ Growth hormone deficiency Hyperfunctioning mass  $\rightarrow \rightarrow$  Acromegaly

Isolated, pan hypopituitarism

#### Disease:

- ➤ Children: Short stature
- ≻ Adult: ??





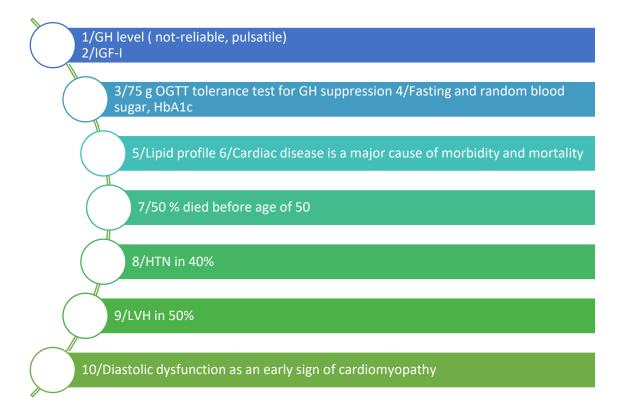
↑GH:

↑hand size, مايقدر يلبس gloves>called acral enlargement ↑feet size, يتغير مقاس الرجل called acral enlargement Knee pain ↑mandible size(jaw malocclusion), peace between teeth Hypertrophy of frontal bones ↑risk of colon cancer Headache Seizures

hvperglvcemia (DM in children)

when the Mass cause compression, the first hormone will be released is GH what is the most important hormone for life? Cortisol.

نعطي انسولين لشخص قصير وشاكين GH فبيصير عندنا بهذي الحالة ان عنده نقص ب hypoglycemia والطبيعي ان هذي نظرا لقلة السكر بالدم فلو ما افرز GH دلالة على نقص هرمون النمو


catecholamine, cortisol, GH and glucagon normally increase the glucose.

IGF1 is active form in muscle and skeleton.

↓GH: Truncal obesity (in adult)>>because there is NO lipolysis

# Acromegaly:

#### **Clinical picture and presentation:**



#### **Medical treatment:**

- ➤ Somatostatin analogue
- ➤ Surgical resection of the tumor

#### Important table

## Growth hormone deficiency

| C: Clinical    | Function : Short stature<br>Mass-effect ( mechanical pressure, hypopituitarism)                                                                                                                                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B: Biochemical | Pituitary Function (LH,FSH.PRL, TSH, ACTH, cortisol,testesterone, T4)<br>Screen: IGF-1<br>Dynamic testing:<br>clonidine stimulation test<br>glucagon stimulation<br>exercise testing,<br>arginine-GHRH<br>insulin tolerance testing |
| A: Anatomical  | X-ray of hands: delayed bone age<br>MRI                                                                                                                                                                                             |
| Treatment      | GH replacement                                                                                                                                                                                                                      |

#### Very important table

| Prolactinomas  |                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| C: Clinical    | oligomenorrhea, amenorrhea or infertility<br>Galactorrhea<br>Mass-effect (mechanical pressure, hypopituitarism)<br>Sexual dysfunction (in male)<br>asleep, stress, pregnancy, lactation and chest wall stimulation or trauma, Renal failure,<br>Liver failure<br>medication<br>O/E: Visual field defect ( Bitemporal hemianopia)<br>Nipple discharge |  |  |
| B: Biochemical | GH,LH,FSH,TSH,ACTH: normal or low<br>PRL : High<br>TSH: R/O Hypothyroidism( primary)<br>IGF-1: R/O acromegaly co-secrtion                                                                                                                                                                                                                            |  |  |
| A: Anatomical  | MRI                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Treatment      | Medical – Medical – Medical ( Dopamine agonist)<br>Surgical- Radiation                                                                                                                                                                                                                                                                               |  |  |

| Acromegal      | Acromegaly                                                                                                                                                                                                                                                                                               |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| C: Clinical    | Function : Sweating, Enlargement (acral, face gross features, heart, tongue Jaw,<br>gigantism in children , Galactorrhea<br>Mass-effect ( mechanical pressure, hypopituitarism)<br><i>HTN,CHF, OSA,constipation</i><br>O/E: Visual field defect ( Bitemporal hemianopia)<br>Gross features of Acromegaly |  |  |
| B: Biochemical | Pituitary Function (LH,FSH.PRL, TSH, ACTH, cortisol,testesterone, T4)<br>Screen: IGF-1<br>Confirmatory Test : 75 g OGTT tolerance test for GH suppression<br>Fasting and random blood sugar, HbA1c<br>Lipid profile                                                                                      |  |  |
| A: Anatomical  | MRI<br>Echo:<br>Cardiac disease is a major cause of morbidity and mortality<br>50 % died before age of 50<br>HTN in 40%, LVH in 50%, Diastolic dysfunction as an early sign of cardiomyopathy                                                                                                            |  |  |
| Treatment      | Surgical – Medical (Somatostatin analogue)- Radiation                                                                                                                                                                                                                                                    |  |  |

| ocal tumor effects                                   | Visceromegaly                                                        |
|------------------------------------------------------|----------------------------------------------------------------------|
| Pituitary enlargement                                | Tongue                                                               |
| isual-field defects                                  | Thyroid gland                                                        |
| ranial-nerve palsy                                   | Salivary glands                                                      |
| leadache                                             | Liver                                                                |
| iomatic systems                                      | Spleen                                                               |
| cral enlargement, including thickness of soft tissue | Kidney                                                               |
| of hands and feet                                    | Prostate                                                             |
| /lusculoskeletal system                              | Endocrine and metabolic systems                                      |
| Gigantism                                            | Reproduction                                                         |
| Prognathism                                          | Menstrual abnormalities                                              |
| Jaw malocclusion                                     | Galactorrhea                                                         |
| Arthralgias and arthritis                            | Decreased libido, impotence, low levels of sex hormone-              |
| Carpal tunnel syndrome                               | binding globulin                                                     |
| Acroparesthesia                                      | Multiple endocrine neoplasia type 1                                  |
| Proximal myopathy                                    | Hyperparathyroidism                                                  |
| Hypertrophy of frontal bones                         | Pancreatic islet-cell tumors                                         |
| kin and gastrointestinal system                      | Carbohydrate                                                         |
| lyperhidrosis                                        | Impaired glucose tolerance                                           |
| Dily texture                                         | Insulin resistance and hyperinsulinemia                              |
| ikin tags                                            | Diabetes mellitus                                                    |
| olon polyps                                          | Lipid                                                                |
| ardiovascular system                                 | Hypertriglyceridemia                                                 |
| eft ventricular hypertrophy                          | Mineral                                                              |
| symmetric septal hypertrophy                         | Hypercalciuria, increased levels of 25-hydroxyvitamin D <sub>3</sub> |
| ardiomyopathy                                        | Urinary hydroxyproline                                               |
| lypertension                                         | Electrolyte                                                          |
| ongestive heart failure                              | Low renin levels                                                     |
| ulmonary system                                      | Increased aldosterone levels                                         |
| ileep disturbances                                   | Thyroid                                                              |
| ileep apnea (central and obstructive)                | Low thyroxine-binding-globulin levels                                |
| Varcolepsy                                           | Goiter                                                               |





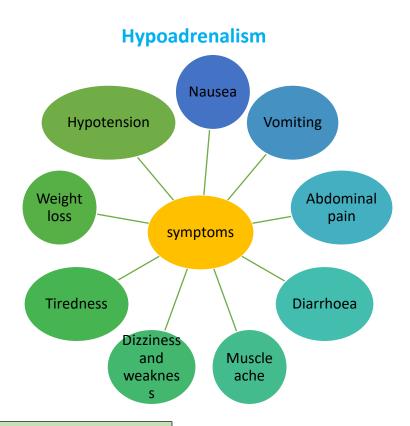


Diagnosis: first step>IGF-1 Why not diagnosed by GH test? BC IGF-1 value is constant during all the day not like GH which fluctuating during all the day

#### **Growth hormone deficiency:**

 Diagnosis in children and adults

 GH, IGF-I level


 Dynamic testing: clonidine stimulation test, glucagon stimulation, exercise testing, arginine-GHRH, insulin tolerance testing

 X-ray of hands: delayed bone age

 In Adult: Insulin tolerance testing, MRI pituitary to rule out pituitary adenoma

 Management: GH replacement

Treatment: GH replacement in children In adult: الا اذا GH عادة ما نعطیهم truncal obesity or psychological problems

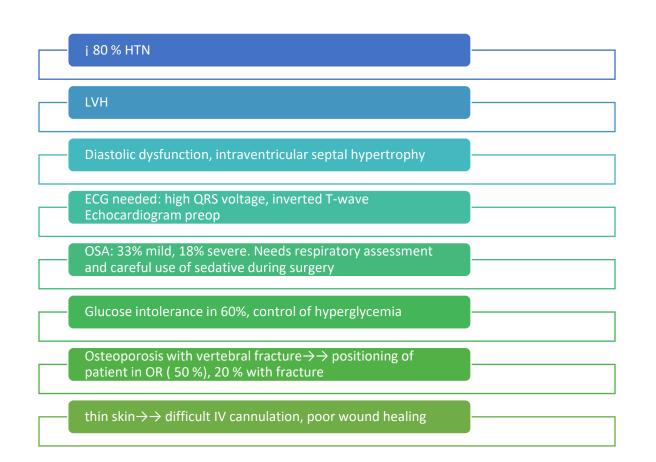


Other symptoms: Moon like face ,Thin skin ,Fat pads (accumulation of fat in the dorsal neck),Truncal obesity,Red cheeks ,Thin arms and legs ,Hypertension ,Acne ,Hair over growth

Remember cortisol is the most important hormone for life. What is the difference between staria in obesity and cushion syndrome. the color. ACTH will stimulate the melatonin and cause the color. ACTH has the same origin of melatonin.

#### Management of hypoadrenalism

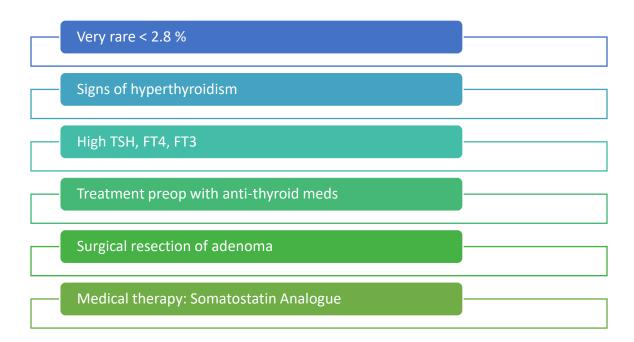
**?** Cortisol replacement


#### HPA-axis excessive cortisol:



excissive cortisol (cushings) <sup>17</sup> ecchymosis




excissive cortisol (cushings) stria purple wide >1 cm



| Cushing's ( excessive cortisol) |                                                                                                                                                                                                                                    | Central Hypothyroidism |                                                                                                                                                                         |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C: Clinical                     | Function : Hirsutism, acne, easily bur DM,HTN, irregular period, proximal weakness,<br>recurrent infections, depression<br>O/E: hirsutism, acne, moon face, central obesity, stria, proximal weakness,<br>supraclavicular fat pad, | C: Clinical            | Function : fatigue, weight gain, irregular menses, dry skin, depression, cold<br>intolerance, increase sleep, slow thinking<br>O/E: obesity, ? Depressed face, eye brow |
| B: Biochemical                  | High cortisol , high ACH<br>24hrs for UFC<br>1MG DST<br>Midnight salivary cortisol                                                                                                                                                 | B: Biochemical         | LowT4, LowTSH                                                                                                                                                           |
| A: Anatomical                   | MRI                                                                                                                                                                                                                                | A: Anatomical          | MRI                                                                                                                                                                     |
| Treatment                       | Surgical – Medical - Radiation                                                                                                                                                                                                     | Treatment              | Thyroxine replacement<br>Surgical removal of pituitary adenoma if large                                                                                                 |

### **Central hypothyroidism**

### **TSH producing adenoma**



### Gonadotroph adenoma vs. menopause and ovarian failure

| High FSH with low LH | High serum free alpha<br>subunit | High estradiol, FSH,<br>thickened<br>endometrium and<br>polycystic ovaries |
|----------------------|----------------------------------|----------------------------------------------------------------------------|
|----------------------|----------------------------------|----------------------------------------------------------------------------|

### **Gonadotroph adenoma**

- Surgical resection if large
- **Radiation therapy**

### **Assessment of pituitary function**

Baseline: TSH, FT4, FT3, LH, FSH, Prolactin, GH, IGFI,Testosterone, Estradiol

 MRI brain

 Neuropthalmic evaluation of visual field

 Cardiac and respiratory assessment

 Anesthesiologist for airway and perioperative monitoring

 Neurosurgeon

 ENT for Endonasal evaluation for surgical approach

 Preop hormonal replacement: all pituitary adenoma should be covered with stress dose of HC

#### Questions

Q1-a boy has a pituitary gland disorder, he is 16 years old and looks like he is 10, what is the hormone that is effected:

A-TSH. B-GH. C-FSH. D-prolactin.

Q2-what is the most common functional pituitary adenomas:

A-prolactinoma. B-hypoadrenalism. C-Cushing. D-gonadotrophs adenoma.

Q3-a patient come to the ER with severe headache when taking the vital signs ha has a high blood pressure and the doctor noticed that the patient has a moon face with red cheeks, what is the most likely diagnosis:

A-high amount of cortisol. B-Cushing's. C-A and B. D-none.

Q4– a patient come to the ER with severe headache when taking the vital signs ha has a high blood pressure and the doctor noticed that the patient has a moon face with red cheeks, which of the following will be seen in ECG:

> Answers: 1-B 2-A 3-C

> > 4-D 5-C

6-B

A- low QRS voltage and inverted T wave.

B- - low QRS voltage and erect T wave.C-- high QRS voltage and erect T wave.

D– high QRS voltage and inverted T wave

Q5-excess amount of GH will lead to:

A-dwarfism. B-diabetes. C-acromegaly. D-infertility in women.

Q6-How to manage a patient with hypoadrenalism:

A-insulin. B-cortisol replacement. C-dopamine agonist. D-non.

21

# Videos

- Over view of pituitary gland tumor
- ✤ prolactinoma
- ✤ <u>hyperprolactinemia</u>
- ✤ <u>hyperprolactinemia</u> (2)
- ✤ Cushing



اللهم إني استودعتك ما حفظت وما فهمت، فردّه لي عند حاجتي إليه، إنك على كل شيءٍ قدير

# قادة الفريق

جواهر الخيَّال & ناصر أبو دجين

# أعضاء الفريق

### فارس النفيسة

Girls and boys slides

436.medicine@hotmail.com

Give us your feedback!

نجود العنزي عروب الهذيل أنوار العجمي الاء العقيل سما الحربي

@medicine436



 $\mathbf{N}$ 

 $\square$